Files
ComfyUI-WanMoeKSampler/nodes.py
Stéphane du Hamel 98b7919d6a first commit
2025-08-09 02:02:32 +02:00

133 lines
8.4 KiB
Python

import torch
import comfy.sample
import comfy.samplers
import comfy.utils
import latent_preview
def wan_ksampler(model_high_noise, model_low_noise, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, boundary = 0.875, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
# boundary is .9 for i2v, .875 for t2v
latent_image = latent["samples"]
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
assert start_step is None or start_step < steps
assert last_step is None or last_step >= start_step
if start_step is None:
start_step = 0
if last_step is None:
last_step=9999
# first, we get all sigmas
sampler = comfy.samplers.KSampler(model_high_noise, steps=steps, device=model_high_noise.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model_high_noise.model_options)
sigmas = sampler.sigmas
# why are timesteps 0-1000?
timesteps = [model_high_noise.get_model_object("model_sampling").timestep(sigma)/1000 for sigma in sigmas.tolist()]
switching_step = steps
for (i,t) in enumerate(timesteps):
if t < boundary:
switching_step = i
break
print(f"switching model at step {i}")
start_with_high = start_step<switching_step
end_wth_low = last_step>=switching_step
if start_with_high:
print("Running high noise model...")
callback = latent_preview.prepare_callback(model_high_noise, steps)
end_step = min(last_step,switching_step)
latent_image = comfy.sample.fix_empty_latent_channels(model_high_noise, latent_image)
latent_image = comfy.sample.sample(model_high_noise, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=end_wth_low or disable_noise, start_step=start_step, last_step=end_step,
force_full_denoise=end_wth_low or force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
if end_wth_low:
print("Running low noise model...")
callback = latent_preview.prepare_callback(model_low_noise, steps)
begin_step = max(start_step, switching_step)
latent_image = comfy.sample.fix_empty_latent_channels(model_low_noise, latent_image)
latent_image = comfy.sample.sample(model_low_noise, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=begin_step, last_step=last_step,
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
out = latent.copy()
out["samples"] = latent_image
return (out, )
class WanMoeKSampler:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_high_noise": ("MODEL", {"tooltip": "The first expert of the model used for denoising the input latent."}),
"model_low_noise": ("MODEL", {"tooltip": "The second expert of the model used for denoising the input latent."}),
"boundary": ("FLOAT", {"default:": 0.875, "min": 0.0, "max": 1.0, "step": 0.001, "round": 0.001,"tooltip": "Boundary (or t_moe): Timestep (not to be confused with denoising step) at which models should be swapped. Recommended values: 0.875 for t2v, 0.9 for i2v"}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True, "tooltip": "The random seed used for creating the noise."}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "The number of steps used in the denoising process."}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01, "tooltip": "The Classifier-Free Guidance scale balances creativity and adherence to the prompt. Higher values result in images more closely matching the prompt however too high values will negatively impact quality."}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, {"tooltip": "The algorithm used when sampling, this can affect the quality, speed, and style of the generated output."}),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, {"tooltip": "The scheduler controls how noise is gradually removed to form the image."}),
"positive": ("CONDITIONING", {"tooltip": "The conditioning describing the attributes you want to include in the image."}),
"negative": ("CONDITIONING", {"tooltip": "The conditioning describing the attributes you want to exclude from the image."}),
"latent_image": ("LATENT", {"tooltip": "The latent image to denoise."}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The amount of denoising applied, lower values will maintain the structure of the initial image allowing for image to image sampling."}),
}
}
RETURN_TYPES = ("LATENT",)
OUTPUT_TOOLTIPS = ("The denoised latent.",)
FUNCTION = "sample"
CATEGORY = "sampling"
DESCRIPTION = "Uses the provided model, positive and negative conditioning to denoise the latent image."
def sample(self, model_high_noise, model_low_noise, boundary, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
return wan_ksampler(model_high_noise, model_low_noise, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,boundary=boundary, denoise=denoise)
class WanMoeKSamplerAdvanced:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model_high_noise": ("MODEL", {"tooltip": "The first expert of the model used for denoising the input latent."}),
"model_low_noise": ("MODEL", {"tooltip": "The second expert of the model used for denoising the input latent."}),
"boundary":("FLOAT", {"default:": 0.875, "min": 0.0, "max": 1.0, "step": 0.001, "round":0.001,"tooltip": "Boundary (or t_moe): Timestep (not to be confused with denoising step) at which models should be swapped. Recommended values: 0.875 for t2v, 0.9 for i2v"}),
"add_noise": (["enable", "disable"], ),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"return_with_leftover_noise": (["disable", "enable"], ),
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
CATEGORY = "sampling"
def sample(self, model_high_noise, model_low_noise, boundary, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
force_full_denoise = True
if return_with_leftover_noise == "enable":
force_full_denoise = False
disable_noise = False
if add_noise == "disable":
disable_noise = True
return wan_ksampler(model_high_noise, model_low_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, boundary=boundary, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)