Rename python/cutlass to python/cutlass_cppgen (#2652)
This commit is contained in:
committed by
Haicheng Wu
parent
4260d4aef9
commit
177a82e251
41
python/cutlass_cppgen/utils/__init__.py
Normal file
41
python/cutlass_cppgen/utils/__init__.py
Normal file
@ -0,0 +1,41 @@
|
||||
#################################################################################################
|
||||
#
|
||||
# Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
# SPDX-License-Identifier: BSD-3-Clause
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright notice, this
|
||||
# list of conditions and the following disclaimer.
|
||||
#
|
||||
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
# this list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
#
|
||||
# 3. Neither the name of the copyright holder nor the names of its
|
||||
# contributors may be used to endorse or promote products derived from
|
||||
# this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
#
|
||||
#################################################################################################
|
||||
|
||||
from cutlass_cppgen.utils.check import (
|
||||
alignment_or_default,
|
||||
calculate_smem_usage,
|
||||
calculate_smem_usage_per_stage,
|
||||
valid_cluster_shape,
|
||||
valid_schedule,
|
||||
valid_stage_count,
|
||||
update_alignment,
|
||||
)
|
||||
262
python/cutlass_cppgen/utils/check.py
Normal file
262
python/cutlass_cppgen/utils/check.py
Normal file
@ -0,0 +1,262 @@
|
||||
#################################################################################################
|
||||
#
|
||||
# Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
# SPDX-License-Identifier: BSD-3-Clause
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright notice, this
|
||||
# list of conditions and the following disclaimer.
|
||||
#
|
||||
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
# this list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
#
|
||||
# 3. Neither the name of the copyright holder nor the names of its
|
||||
# contributors may be used to endorse or promote products derived from
|
||||
# this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
#
|
||||
#################################################################################################
|
||||
|
||||
"""
|
||||
Utility functions for checking constraints on kernels and calculating kernel attributes
|
||||
"""
|
||||
|
||||
import ctypes
|
||||
|
||||
from cutlass_library import DataTypeSize, KernelScheduleSuffixes, OperationKind, SharedMemPerCC
|
||||
|
||||
import cutlass_cppgen
|
||||
from cutlass_cppgen.backend.library import TileDescription
|
||||
|
||||
|
||||
def calculate_smem_usage_per_stage(td: TileDescription, operation_kind: OperationKind) -> int:
|
||||
"""
|
||||
Returns the amount of shared memory in bytes consumed in a single stage of a kernel.
|
||||
|
||||
:param td: tile description to compute shared memory of
|
||||
:type td: TileDescription
|
||||
:param operation_kind: identifier for the type of operation being performed
|
||||
:type operation_kind: cutlass_library.OperationKind
|
||||
|
||||
:return: number of bytes of shared memory consumed by a single stage
|
||||
:rtype: int
|
||||
"""
|
||||
m, n, k = td.blackwell_threadblock_shape
|
||||
if td.is_2sm:
|
||||
m //= 2
|
||||
|
||||
if operation_kind == OperationKind.Gemm:
|
||||
stage_barrier_bytes = 32
|
||||
return (
|
||||
(DataTypeSize[td.math_instruction.element_a] * m * k // 8)
|
||||
+ (DataTypeSize[td.math_instruction.element_b] * k * n // 8)
|
||||
+ stage_barrier_bytes
|
||||
)
|
||||
else:
|
||||
raise Exception(f"No available shared memory calculation for operation kind {operation.operation_kind}")
|
||||
|
||||
|
||||
def calculate_smem_usage(operation) -> int:
|
||||
"""
|
||||
Returns the amount of shared memory in bytes consumed by a kernel.
|
||||
|
||||
:return: number of bytes of shared memory consumed by the operation
|
||||
:return: int
|
||||
"""
|
||||
_per_stage = calculate_smem_usage_per_stage(operation.tile_description, operation.operation_kind)
|
||||
return _per_stage * operation.tile_description.stages
|
||||
|
||||
|
||||
def valid_stage_count(
|
||||
cc: int,
|
||||
kernel_cc: int,
|
||||
td: TileDescription,
|
||||
element_C: cutlass_cppgen.DataType = None,
|
||||
element_D: cutlass_cppgen.DataType = None,
|
||||
verbose: bool = True) -> tuple:
|
||||
"""
|
||||
Checks whether a device with `cc` supports the number of stages within `tile_description`, both
|
||||
based on raw limits on the number of stages and based on shared memory capacity
|
||||
|
||||
:param cc: compute capability of device in question
|
||||
:type cc: int
|
||||
:param kernel_cc: compute capability that the kernel targets (corresponding to the arch::SMxy tag in CUTLASS)
|
||||
:type kernel_cc: int
|
||||
:param td: tile description to check
|
||||
:type td: TileDescription
|
||||
:param element_C: data type of operand C
|
||||
:type element_C: cutlass_cppgen.DataType
|
||||
:param element_D: data type of operand D
|
||||
:type element_D: cutlass_cppgen.DataType
|
||||
:param verbose: whether to log warnings
|
||||
:type verbose: bool
|
||||
|
||||
:return: tuple with the first element indicating whether the provided tile description is
|
||||
valid for the provided device and the second element being an error message
|
||||
:rtype: tuple
|
||||
"""
|
||||
if kernel_cc in [90, 100, 101, 103]:
|
||||
if (td.stages is None or td.stages == 0):
|
||||
# Stage count of None or 0 for SM90 indicates that the CollectiveBuilder automatically
|
||||
# determines the stage count to use. Thus, all settings are valid in these scenarios.
|
||||
return (True, "")
|
||||
elif verbose:
|
||||
cutlass_cppgen.logger.warning(
|
||||
"Setting an explicit stage count for SM90 kernels currently may "
|
||||
"result in compilation errors if the combination of tile shape, "
|
||||
"stage count, and shared memory requirement of the epilogue exceeds "
|
||||
"the available shared memory per SM.")
|
||||
|
||||
if td.stages <= 0:
|
||||
return (False, f"Stage counts must be positive integers. Tile description has stage count of {td.stages}.")
|
||||
|
||||
if cc < 80 and td.stages != 2:
|
||||
return (False, f"Tile description has stage count of {td.stages}, "
|
||||
f"but only 2 stages are supported on SM{cc}.")
|
||||
|
||||
# The calculation below does not consider shared memory used by the epilogue and, thus,
|
||||
# only catches cases in which the mainloop exceeds the device's shared memory capacity.
|
||||
# This is not a concern for CUTLASS 2.x kernels, for which the shared memory of the
|
||||
# mainloop and epilogue is shared.
|
||||
smem_per_stage = calculate_smem_usage_per_stage(td, OperationKind.Gemm)
|
||||
smem_usage_mainloop = (smem_per_stage * td.stages)
|
||||
smem_arch = SharedMemPerCC[cc] << 10
|
||||
if smem_usage_mainloop > smem_arch:
|
||||
return ( False,
|
||||
"Configuration uses too much shared memory. Consider reducing stage count or tile shape.\n"
|
||||
f"Details:\n"
|
||||
f"Mainloop uses {smem_per_stage} bytes of shared memory per stage, and "
|
||||
f"{td.stages} stages for a total of {smem_usage_mainloop} bytes.\n"
|
||||
f"The maxmium amount of shared memory that can be used per block on CC {cc} is {smem_arch}.")
|
||||
|
||||
return (True, "")
|
||||
|
||||
|
||||
def valid_cluster_shape(cc: int, cluster_shape: list) -> tuple:
|
||||
"""
|
||||
Checks whether a device with `cc` supports a thread block cluster of shape `cluster_shape`.
|
||||
|
||||
:param cc: compute capability of device in question
|
||||
:type cc: int
|
||||
:param cluster_shape: dimensions of thread block cluster shape to check
|
||||
:type cluster_shape: list
|
||||
|
||||
:return: tuple with the first element indicating whether the provided cluster shape is
|
||||
valid for the provided device and the second element being an error message
|
||||
:rtype: tuple
|
||||
"""
|
||||
|
||||
if cc < 90 or cc in [120, 121]:
|
||||
if cluster_shape != [1, 1, 1]:
|
||||
return (False,
|
||||
f"Cluster shape for pre-SM90 architectures and SM 120 and 121 must be [1, 1, 1]. Received cluster shape of "
|
||||
f"{cluster_shape} for SM{cc}.")
|
||||
else:
|
||||
return (True, "")
|
||||
|
||||
if len(cluster_shape) != 3:
|
||||
return (False,
|
||||
f"Cluster shapes must be rank-3. Received {cluster_shape} (rank {len(cluster_shape)}")
|
||||
|
||||
if cluster_shape[2] != 1:
|
||||
return (False,
|
||||
"CUTLASS kernels currently require the third dimension of cluster shape to be 1. "
|
||||
f"Received cluster shape of {cluster_shape}.")
|
||||
|
||||
return (True, "")
|
||||
|
||||
|
||||
def valid_schedule(
|
||||
cc: int,
|
||||
kernel_schedule: cutlass_cppgen.KernelScheduleType,
|
||||
epilogue_schedule: cutlass_cppgen.EpilogueScheduleType,
|
||||
tile_scheduler: cutlass_cppgen.TileSchedulerType) -> tuple:
|
||||
"""
|
||||
Checks that the kernel and epilogue schedules passed in are a valid combination for
|
||||
a device of compute capability ``cc``.
|
||||
|
||||
:param cc: compute capability of device in question
|
||||
:type cc: int
|
||||
:param kernel_schedule: kernel schedule type
|
||||
:type kernel_schedule: cutlass_cppgen.KernelScheduleType
|
||||
:param epilogue_schedule: epilogue schedule type
|
||||
:type epilogue_schedule: cutlass_cppgen.EpilogueScheduleType
|
||||
:param tile_scheduler: tile scheduler type
|
||||
:type tile_scheduler: cutlass_cppgen.TileSchedulerType
|
||||
|
||||
:return: tuple with the first element indicating whether the provided schedules are
|
||||
valid for the provided device and the second element being an error message
|
||||
:rtype: tuple
|
||||
"""
|
||||
kernel_auto = (kernel_schedule == cutlass_cppgen.KernelScheduleType.ScheduleAuto)
|
||||
epilogue_auto = (epilogue_schedule == cutlass_cppgen.EpilogueScheduleType.ScheduleAuto)
|
||||
tile_scheduler_default = (tile_scheduler == cutlass_cppgen.TileSchedulerType.Default)
|
||||
if (cc < 90 or cc in [120, 121]) and not (kernel_auto and epilogue_auto and tile_scheduler_default):
|
||||
return (False, "Non-default schedules are only supported on SM90 and beyond (excluding SM120 and SM121)")
|
||||
|
||||
if cc == 90 and ((kernel_auto and not epilogue_auto) or (not kernel_auto and epilogue_auto)):
|
||||
return (False, "Kernel and epilogue schedules must either both be auto or neither be auto")
|
||||
|
||||
if not tile_scheduler_default:
|
||||
cooperative_kernels = [cutlass_cppgen.KernelScheduleType.TmaWarpSpecializedCooperative,
|
||||
cutlass_cppgen.KernelScheduleType.CpAsyncWarpSpecializedCooperative]
|
||||
if cc == 90 and (tile_scheduler == cutlass_cppgen.TileSchedulerType.StreamK) and (kernel_schedule not in cooperative_kernels):
|
||||
return (False, "Stream-K tile scheduler is currently only supported with the cooperative kernel schedule")
|
||||
return (True, "")
|
||||
|
||||
|
||||
def alignment_or_default(alignment_provided: int, default_alignment: int) -> int:
|
||||
"""
|
||||
Returns `alignment_provided` if it is set, otherwise `default_alignment` and checks
|
||||
that `alignment_provided` does not exceed `default_alignment`.
|
||||
|
||||
:param alignment_provided: alignment preference specified. Can be None.
|
||||
:type alignment_provided: int
|
||||
:param default_alignment: alignment to use if `alignment_provided` is None
|
||||
:type default_alignment: int
|
||||
|
||||
:return: alignment to use
|
||||
:rtype: int
|
||||
"""
|
||||
if alignment_provided is not None:
|
||||
if alignment_provided > default_alignment:
|
||||
raise Exception(f"Alignment {alignment_provided} exceeds the maximum supported of {default_alignment}.")
|
||||
return alignment_provided
|
||||
|
||||
return default_alignment
|
||||
|
||||
|
||||
def update_alignment(alignment_provided:int, default_alignment: int) -> int:
|
||||
"""
|
||||
Returns `alignment_provided` if it is set, otherwise `default_alignment` and checks
|
||||
that `alignment_provided` does not exceed `default_alignment`.
|
||||
|
||||
:param alignment_provided: alignment preference specified. Can be None.
|
||||
:type alignment_provided: int
|
||||
:param default_alignment: alignment to use if `alignment_provided` is None
|
||||
:type default_alignment: int
|
||||
|
||||
:return: alignment to use
|
||||
:rtype: int
|
||||
"""
|
||||
if alignment_provided is not None:
|
||||
if alignment_provided > default_alignment:
|
||||
if alignment_provided % default_alignment == 0:
|
||||
return default_alignment
|
||||
raise Exception(f"Alignment {alignment_provided} exceeds the maximum supported of {default_alignment}.")
|
||||
return alignment_provided
|
||||
|
||||
return default_alignment
|
||||
362
python/cutlass_cppgen/utils/datatypes.py
Normal file
362
python/cutlass_cppgen/utils/datatypes.py
Normal file
@ -0,0 +1,362 @@
|
||||
#################################################################################################
|
||||
#
|
||||
# Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
# SPDX-License-Identifier: BSD-3-Clause
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright notice, this
|
||||
# list of conditions and the following disclaimer.
|
||||
#
|
||||
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
# this list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
#
|
||||
# 3. Neither the name of the copyright holder nor the names of its
|
||||
# contributors may be used to endorse or promote products derived from
|
||||
# this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
#
|
||||
#################################################################################################
|
||||
|
||||
"""
|
||||
Utility functions for converting between frontend datatypes and CUTLASS datatypes
|
||||
"""
|
||||
|
||||
import cutlass_cppgen
|
||||
from cutlass_library import (
|
||||
DataTypeSize,
|
||||
MathOperation,
|
||||
MathInstruction
|
||||
)
|
||||
from cutlass_cppgen.backend.library import (
|
||||
TileDescription,
|
||||
)
|
||||
|
||||
bfloat16_available = None
|
||||
cupy_available = None
|
||||
numpy_available = None
|
||||
torch_available = None
|
||||
_library_to_cupy_dict = None
|
||||
_library_to_numpy_dict = None
|
||||
_library_to_torch_dict = None
|
||||
_torch_to_library_dict = None
|
||||
|
||||
|
||||
def is_numpy_available():
|
||||
global numpy_available, _library_to_numpy_dict
|
||||
if numpy_available is None:
|
||||
try:
|
||||
import numpy as np
|
||||
|
||||
numpy_available = True
|
||||
_library_to_numpy_dict = {
|
||||
cutlass_cppgen.DataType.f16: np.float16,
|
||||
cutlass_cppgen.DataType.f32: np.float32,
|
||||
cutlass_cppgen.DataType.f64: np.float64,
|
||||
cutlass_cppgen.DataType.s8: np.int8,
|
||||
cutlass_cppgen.DataType.s32: np.int32,
|
||||
}
|
||||
except ImportError:
|
||||
numpy_available = False
|
||||
_library_to_numpy_dict = {}
|
||||
return numpy_available
|
||||
|
||||
|
||||
def is_numpy_tensor(inp) -> bool:
|
||||
if is_numpy_available():
|
||||
import numpy as np
|
||||
return isinstance(inp, np.ndarray)
|
||||
return False
|
||||
|
||||
|
||||
def numpy_library_type(inp) -> cutlass_cppgen.DataType:
|
||||
if is_numpy_available():
|
||||
import numpy as np
|
||||
if inp == np.float16:
|
||||
return cutlass_cppgen.DataType.f16
|
||||
elif inp == np.float32:
|
||||
return cutlass_cppgen.DataType.f32
|
||||
elif inp == np.float64:
|
||||
return cutlass_cppgen.DataType.f64
|
||||
elif inp == np.int8:
|
||||
return cutlass_cppgen.DataType.s8
|
||||
elif inp == np.int32:
|
||||
return cutlass_cppgen.DataType.s32
|
||||
return None
|
||||
|
||||
|
||||
def numpy_type(inp):
|
||||
return _library_to_numpy_dict.get(inp, None)
|
||||
|
||||
|
||||
def is_cupy_available():
|
||||
global cupy_available
|
||||
if cupy_available is None:
|
||||
try:
|
||||
import cupy as cp
|
||||
|
||||
cupy_available = True
|
||||
_library_to_cupy_dict = {
|
||||
cutlass_cppgen.DataType.f16: cp.float16,
|
||||
cutlass_cppgen.DataType.f32: cp.float32,
|
||||
cutlass_cppgen.DataType.f64: cp.float64,
|
||||
cutlass_cppgen.DataType.s8: cp.int8,
|
||||
cutlass_cppgen.DataType.s32: cp.int32,
|
||||
}
|
||||
except ImportError:
|
||||
cupy_available = False
|
||||
_library_to_cupy_dict = {}
|
||||
return cupy_available
|
||||
|
||||
|
||||
def is_cupy_tensor(inp) -> bool:
|
||||
if is_cupy_available():
|
||||
import cupy as cp
|
||||
return isinstance(inp, cp.ndarray)
|
||||
return False
|
||||
|
||||
|
||||
def cupy_library_type(inp) -> cutlass_cppgen.DataType:
|
||||
if is_cupy_available():
|
||||
import cupy as cp
|
||||
if inp == cp.float16:
|
||||
return cutlass_cppgen.DataType.f16
|
||||
elif inp == cp.float32:
|
||||
return cutlass_cppgen.DataType.f32
|
||||
elif inp == cp.float64:
|
||||
return cutlass_cppgen.DataType.f64
|
||||
return None
|
||||
|
||||
|
||||
def cupy_type(inp):
|
||||
return _library_to_cupy_dict.get(inp, None)
|
||||
|
||||
|
||||
def is_torch_available():
|
||||
global torch_available, _library_to_torch_dict, _torch_to_library_dict
|
||||
if torch_available is None:
|
||||
try:
|
||||
import torch
|
||||
|
||||
torch_available = True
|
||||
_torch_to_library_dict = {
|
||||
torch.half: cutlass_cppgen.DataType.f16,
|
||||
torch.float16: cutlass_cppgen.DataType.f16,
|
||||
torch.bfloat16: cutlass_cppgen.DataType.bf16,
|
||||
torch.float: cutlass_cppgen.DataType.f32,
|
||||
torch.float32: cutlass_cppgen.DataType.f32,
|
||||
torch.double: cutlass_cppgen.DataType.f64,
|
||||
torch.float64: cutlass_cppgen.DataType.f64,
|
||||
torch.int8: cutlass_cppgen.DataType.s8,
|
||||
torch.int32: cutlass_cppgen.DataType.s32,
|
||||
torch.uint8: cutlass_cppgen.DataType.u8,
|
||||
}
|
||||
|
||||
_library_to_torch_dict = {
|
||||
cutlass_cppgen.DataType.f16: torch.half,
|
||||
cutlass_cppgen.DataType.f16: torch.float16,
|
||||
cutlass_cppgen.DataType.bf16: torch.bfloat16,
|
||||
cutlass_cppgen.DataType.f32: torch.float,
|
||||
cutlass_cppgen.DataType.f32: torch.float32,
|
||||
cutlass_cppgen.DataType.f64: torch.double,
|
||||
cutlass_cppgen.DataType.f64: torch.float64,
|
||||
cutlass_cppgen.DataType.s8: torch.int8,
|
||||
cutlass_cppgen.DataType.s32: torch.int32,
|
||||
cutlass_cppgen.DataType.u8: torch.uint8,
|
||||
}
|
||||
|
||||
def possibly_add_type(torch_type_name, cutlass_type):
|
||||
# Only try adding the type if the version of torch being used supports it
|
||||
if hasattr(torch, torch_type_name):
|
||||
torch_type = getattr(torch, torch_type_name)
|
||||
_torch_to_library_dict[torch_type] = cutlass_type
|
||||
_library_to_torch_dict[cutlass_type] = torch_type
|
||||
|
||||
possibly_add_type("float8_e4m3fn", cutlass_cppgen.DataType.e4m3)
|
||||
possibly_add_type("float8_e5m2", cutlass_cppgen.DataType.e5m2)
|
||||
|
||||
except ImportError:
|
||||
torch_available = False
|
||||
_torch_to_library_dict = {}
|
||||
_library_to_torch_dict = {}
|
||||
return torch_available
|
||||
|
||||
|
||||
def is_torch_tensor(inp) -> bool:
|
||||
if is_torch_available():
|
||||
import torch
|
||||
return isinstance(inp, torch.Tensor)
|
||||
return False
|
||||
|
||||
|
||||
def torch_library_type(inp) -> cutlass_cppgen.DataType:
|
||||
return _torch_to_library_dict.get(inp, None)
|
||||
|
||||
|
||||
def torch_type(inp):
|
||||
return _library_to_torch_dict.get(inp, None)
|
||||
|
||||
|
||||
def is_bfloat16_available():
|
||||
global bfloat16_available
|
||||
|
||||
if bfloat16_available is None:
|
||||
try:
|
||||
import bfloat16
|
||||
|
||||
bfloat16_available = True
|
||||
except ImportError:
|
||||
bfloat16_available = False
|
||||
return bfloat16_available
|
||||
|
||||
|
||||
def bfloat16_library_type(inp) -> cutlass_cppgen.DataType:
|
||||
if is_bfloat16_available():
|
||||
import bfloat16
|
||||
if inp == bfloat16.bfloat16:
|
||||
return cutlass_cppgen.DataType.bf16
|
||||
|
||||
|
||||
def bfloat16_type(inp):
|
||||
if is_bfloat16_available():
|
||||
import bfloat16
|
||||
if inp == cutlass_cppgen.DataType.bf16:
|
||||
return bfloat16.bfloat16
|
||||
|
||||
|
||||
def library_type(inp):
|
||||
if inp in DataTypeSize:
|
||||
return inp
|
||||
|
||||
for cvt_fn in [
|
||||
bfloat16_library_type,
|
||||
cupy_library_type,
|
||||
numpy_library_type,
|
||||
torch_library_type,
|
||||
]:
|
||||
out = cvt_fn(inp)
|
||||
if out is not None:
|
||||
return out
|
||||
|
||||
raise Exception(f"No available conversion from type {inp} to a library type.")
|
||||
|
||||
|
||||
def _tensor_from_numpy(np_tensor):
|
||||
dtype = library_type(np_tensor.dtype)
|
||||
if np_tensor.flags.c_contiguous:
|
||||
layout = cutlass_cppgen.LayoutType.RowMajor
|
||||
elif np_tensor.flags.f_contiguous:
|
||||
layout = cutlass_cppgen.LayoutType.ColumnMajor
|
||||
return (dtype, layout)
|
||||
|
||||
|
||||
def _tensor_from_torch(pt_tensor):
|
||||
dtype = library_type(pt_tensor.dtype)
|
||||
return (dtype, cutlass_cppgen.LayoutType.RowMajor)
|
||||
|
||||
|
||||
def get_datatype_and_layout(tensor):
|
||||
if (is_numpy_tensor(tensor) or is_cupy_tensor(tensor)):
|
||||
return _tensor_from_numpy(tensor)
|
||||
elif is_torch_tensor(tensor):
|
||||
return _tensor_from_torch(tensor)
|
||||
elif isinstance(tensor, float) or isinstance(tensor, int):
|
||||
return (cutlass_cppgen.DataType.f32, cutlass_cppgen.LayoutType.RowMajor)
|
||||
else:
|
||||
raise Exception(f"Unable to convert tensor of type {type(tensor)} to Python-bound CUTLASS datatype and layout.")
|
||||
|
||||
|
||||
def get_tensor_shape(tensor, op="GEMM"):
|
||||
if (is_numpy_tensor(tensor) or is_cupy_tensor(tensor)):
|
||||
return tensor.shape
|
||||
elif is_torch_tensor(tensor):
|
||||
size = tensor.size()
|
||||
if op == "CONV":
|
||||
# PyTorch Tensors have shape NCHW
|
||||
return (size[0], size[2], size[3], size[1])
|
||||
else:
|
||||
return tuple(tensor.size())
|
||||
elif isinstance(tensor, float) or isinstance(tensor, int):
|
||||
return (1,)
|
||||
else:
|
||||
raise Exception(f"Unable to convert tensor of type {type(tensor)} to Python-bound CUTLASS datatype and layout.")
|
||||
|
||||
|
||||
_math_operation_value_map = {x.value: x for x in MathOperation}
|
||||
|
||||
|
||||
def backend_math_operation(math_op: MathOperation):
|
||||
if math_op.value not in _math_operation_value_map.keys():
|
||||
raise Exception(f"Unable to convert math operation of type {math_op} to backend math operation.")
|
||||
return _math_operation_value_map[math_op.value]
|
||||
|
||||
|
||||
def construct_backend_td(td: cutlass_cppgen.TileDescription,
|
||||
kernel_schedule: cutlass_cppgen.KernelScheduleType,
|
||||
epilogue_schedule: cutlass_cppgen.EpilogueScheduleType,
|
||||
tile_scheduler: cutlass_cppgen.TileSchedulerType) -> TileDescription:
|
||||
mi = td.math_instruction
|
||||
backend_mi = MathInstruction(
|
||||
mi.instruction_shape,
|
||||
mi.element_a,
|
||||
mi.element_b,
|
||||
mi.element_accumulator,
|
||||
mi.opcode_class,
|
||||
backend_math_operation(mi.math_operation)
|
||||
)
|
||||
cluster_shape = td.cluster_shape if hasattr(td, "cluster_shape") else [1, 1, 1]
|
||||
return TileDescription(td.threadblock_shape, td.stages, td.warp_count,
|
||||
backend_mi, cluster_shape, kernel_schedule, epilogue_schedule, tile_scheduler)
|
||||
|
||||
|
||||
def td_from_profiler_op(op) -> TileDescription:
|
||||
"""
|
||||
Converts the profiler's TileDescription in ``op`` into the backend TileDescription
|
||||
|
||||
:param op: profiler Operation
|
||||
|
||||
:returns: backend TileDescription
|
||||
:rtype: cutlass_cppgen.backend.TileDescription
|
||||
"""
|
||||
kschedule = op.kernel_schedule if hasattr(op, 'kernel_schedule') else None
|
||||
eschedule = op.epilogue_schedule if hasattr(op, 'epilogue_schedule') else None
|
||||
tschedule = op.tile_scheduler if hasattr(op, 'tile_scheduler') else None
|
||||
return construct_backend_td(op.tile_description, kschedule, eschedule, tschedule)
|
||||
|
||||
|
||||
def td_from_profiler_td(td: TileDescription) -> TileDescription:
|
||||
"""
|
||||
Converts the profiler's TileDescription into the backend TileDescription
|
||||
|
||||
:param td: profiler TileDescription
|
||||
:type td: cutlass_cppgen.TileDescription
|
||||
|
||||
:returns: backend TileDescription
|
||||
:rtype: cutlass_cppgen.backend.TileDescription
|
||||
"""
|
||||
return construct_backend_td(td, kernel_schedule=None, epilogue_schedule=None, tile_scheduler=None)
|
||||
|
||||
|
||||
def to_camel_case(snake_str):
|
||||
return "".join(x.capitalize() for x in snake_str.lower().split("_"))
|
||||
|
||||
|
||||
def getattr_enum(obj, attr_name):
|
||||
# The attr_name is under the snake_case
|
||||
camel_attr = to_camel_case(attr_name)
|
||||
if hasattr(obj, camel_attr):
|
||||
return getattr(obj, camel_attr)
|
||||
else:
|
||||
raise Exception(f"Invalid option: {attr_name}")
|
||||
41
python/cutlass_cppgen/utils/lazy_import.py
Normal file
41
python/cutlass_cppgen/utils/lazy_import.py
Normal file
@ -0,0 +1,41 @@
|
||||
#################################################################################################
|
||||
#
|
||||
# Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
# SPDX-License-Identifier: BSD-3-Clause
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright notice, this
|
||||
# list of conditions and the following disclaimer.
|
||||
#
|
||||
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
# this list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
#
|
||||
# 3. Neither the name of the copyright holder nor the names of its
|
||||
# contributors may be used to endorse or promote products derived from
|
||||
# this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
#
|
||||
#################################################################################################
|
||||
import importlib
|
||||
from typing import Any
|
||||
|
||||
def lazy_import(mod_name: str) -> Any:
|
||||
class Lazy:
|
||||
def __getattr__(self, name:str) -> Any:
|
||||
module = importlib.import_module(mod_name)
|
||||
return getattr(module, name)
|
||||
|
||||
return Lazy()
|
||||
196
python/cutlass_cppgen/utils/profiler.py
Normal file
196
python/cutlass_cppgen/utils/profiler.py
Normal file
@ -0,0 +1,196 @@
|
||||
#################################################################################################
|
||||
#
|
||||
# Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
# SPDX-License-Identifier: BSD-3-Clause
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright notice, this
|
||||
# list of conditions and the following disclaimer.
|
||||
#
|
||||
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
# this list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
#
|
||||
# 3. Neither the name of the copyright holder nor the names of its
|
||||
# contributors may be used to endorse or promote products derived from
|
||||
# this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
#
|
||||
#################################################################################################
|
||||
|
||||
"""
|
||||
Profiler based on the cuda events
|
||||
"""
|
||||
|
||||
import re
|
||||
import subprocess
|
||||
|
||||
from cutlass_cppgen.utils.lazy_import import lazy_import
|
||||
cuda = lazy_import("cuda.cuda")
|
||||
cudart = lazy_import("cuda.cudart")
|
||||
import numpy as np
|
||||
|
||||
from cutlass_cppgen import CUTLASS_PATH
|
||||
from cutlass_cppgen.backend.library import DataTypeSize
|
||||
from cutlass_cppgen.op.op import OperationBase
|
||||
from cutlass_cppgen.shape import GemmCoord
|
||||
from cutlass_cppgen.utils.datatypes import is_numpy_tensor
|
||||
|
||||
|
||||
class GpuTimer:
|
||||
def __init__(self) -> None:
|
||||
self.events = [
|
||||
cuda.cuEventCreate(cuda.CUevent_flags.CU_EVENT_DEFAULT)[1],
|
||||
cuda.cuEventCreate(cuda.CUevent_flags.CU_EVENT_DEFAULT)[1],
|
||||
]
|
||||
|
||||
def start(self, stream=None):
|
||||
if not stream:
|
||||
stream = cuda.CUstream(0)
|
||||
|
||||
(err,) = cuda.cuEventRecord(self.events[0], stream)
|
||||
if err != cuda.CUresult.CUDA_SUCCESS:
|
||||
raise RuntimeError(f"CUDA Error {str(err)}")
|
||||
|
||||
def stop(self, stream=None):
|
||||
if not stream:
|
||||
stream = cuda.CUstream(0)
|
||||
|
||||
(err,) = cuda.cuEventRecord(self.events[1], stream)
|
||||
if err != cuda.CUresult.CUDA_SUCCESS:
|
||||
raise RuntimeError(f"CUDA Error {str(err)}")
|
||||
pass
|
||||
|
||||
def stop_and_wait(self, stream=None):
|
||||
if not stream:
|
||||
stream = cuda.CUstream(0)
|
||||
|
||||
self.stop(stream)
|
||||
if stream:
|
||||
(err,) = cuda.cuStreamSynchronize(stream)
|
||||
if err != cuda.CUresult.CUDA_SUCCESS:
|
||||
raise RuntimeError(f"CUDA Error {str(err)}")
|
||||
else:
|
||||
(err,) = cudart.cudaDeviceSynchronize()
|
||||
if err != cuda.CUresult.CUDA_SUCCESS:
|
||||
raise RuntimeError(f"CUDA Error {str(err)}")
|
||||
|
||||
def duration(self, iterations=1):
|
||||
err, duration = cuda.cuEventElapsedTime(self.events[0], self.events[1])
|
||||
if err != cuda.CUresult.CUDA_SUCCESS:
|
||||
raise RuntimeError(f"CUDA Error {str(err)}")
|
||||
return duration / float(iterations)
|
||||
|
||||
|
||||
class CUDAEventProfiler:
|
||||
def __init__(self, op: OperationBase, warmup_iterations: int=500, iterations: int=500, *args, **kwargs) -> None:
|
||||
self.arguments = op.run(*args, **kwargs)
|
||||
self.operation = op.operation
|
||||
self.warmup_iterations = warmup_iterations
|
||||
self.iterations = iterations
|
||||
self.timer = GpuTimer()
|
||||
|
||||
#
|
||||
# Cutlass Python Interface Profiler
|
||||
#
|
||||
|
||||
def __call__(self):
|
||||
for _ in range(self.warmup_iterations):
|
||||
self.operation.run(self.arguments)
|
||||
|
||||
self.timer.start()
|
||||
for _ in range(self.iterations):
|
||||
self.operation.run(self.arguments)
|
||||
|
||||
self.timer.stop_and_wait()
|
||||
runtime = self.timer.duration(self.iterations)
|
||||
return runtime
|
||||
|
||||
#
|
||||
# CUTLASS Profiler
|
||||
#
|
||||
|
||||
def run_cutlass_profiler(self):
|
||||
alpha = 1.0
|
||||
beta = 1.0
|
||||
|
||||
profiler_path = CUTLASS_PATH + "/build/tools/profiler/cutlass_profiler"
|
||||
kernel_name = self.operation.procedural_name()
|
||||
verification_providers = "device"
|
||||
provider = "cutlass"
|
||||
problem_size = self.arguments.problem_size
|
||||
|
||||
if "cutlass3x" in kernel_name:
|
||||
# cutlass3x generator only have column-major output
|
||||
layout_name = self.operation.layout_name_3x()
|
||||
if layout_name[-1] == "t":
|
||||
new_layout_name = "".join(["n" for l in layout_name if l == "t" or "t"])
|
||||
problem_size = GemmCoord(problem_size.n, problem_size.m, problem_size.k)
|
||||
kernel_name = kernel_name.replace(layout_name, new_layout_name)
|
||||
|
||||
batch_count = self.arguments.batch_count
|
||||
|
||||
cmd = f"{profiler_path} --kernels={kernel_name} --verification-providers={verification_providers} " \
|
||||
f"--providers={provider} --m={problem_size.m()} --n={problem_size.n()} --k={problem_size.k()} " \
|
||||
f"--batch_count={batch_count} --alpha={alpha} --beta={beta} "\
|
||||
f"--warmup-iterations={self.warmup_iterations} --profiling-iterations={self.iterations}"
|
||||
|
||||
result = subprocess.getoutput(cmd)
|
||||
|
||||
m = re.search(r"Runtime:\s+(?P<runtime>\d+.\d+)", result)
|
||||
runtime = float(m.group("runtime"))
|
||||
|
||||
m = re.search(r"Bytes:\s+(?P<bytes>\d+)", result)
|
||||
bytes = int(m.group("bytes"))
|
||||
|
||||
m = re.search(r"FLOPs:\s+(?P<flops>\d+)", result)
|
||||
flops = int(m.group("flops"))
|
||||
|
||||
# check if the problem size matches
|
||||
assert bytes == self.bytes(problem_size, batch_count, beta)
|
||||
assert flops == self.flops(problem_size, batch_count, beta)
|
||||
|
||||
return runtime
|
||||
|
||||
def bytes(self, problem_size, batch_count=1, beta=0.0):
|
||||
m = problem_size.m()
|
||||
n = problem_size.n()
|
||||
k = problem_size.k()
|
||||
|
||||
bytes = (
|
||||
(DataTypeSize[self.operation.A.element] * m // 8) * k
|
||||
+ (DataTypeSize[self.operation.B.element] * n // 8) * k
|
||||
+ (DataTypeSize[self.operation.C.element] * m // 8) * n
|
||||
)
|
||||
|
||||
if beta != 0:
|
||||
bytes += (DataTypeSize[self.operation.C.element] * m // 8) * n
|
||||
|
||||
bytes *= batch_count
|
||||
|
||||
return bytes
|
||||
|
||||
def flops(self, problem_size, batch_count=1, beta=0.0):
|
||||
m = problem_size.m()
|
||||
n = problem_size.n()
|
||||
k = problem_size.k()
|
||||
|
||||
flops_ = (m * n * k) * 2 * batch_count
|
||||
|
||||
if beta != 0:
|
||||
flops_ += m * n * batch_count * 2
|
||||
|
||||
return flops_
|
||||
|
||||
Reference in New Issue
Block a user