################################################################################################# # # Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import logging import os import sys import cutlass_library def _cuda_install_path_from_nvcc() -> str: import subprocess # Attempt to detect CUDA_INSTALL_PATH based on location of NVCC result = subprocess.run(['/usr/bin/which', 'nvcc'], capture_output=True) if result.returncode != 0: raise Exception(f'Unable to find nvcc via `which` utility.') cuda_install_path = result.stdout.decode('utf-8').split('/bin/nvcc')[0] if not os.path.isdir(cuda_install_path): raise Exception(f'Environment variable "CUDA_INSTALL_PATH" is not defined, ' f'and default path of {cuda_install_path} does not exist.') return cuda_install_path CUTLASS_PATH = os.getenv("CUTLASS_PATH", cutlass_library.source_path) # Alias CUTLASS_PATH as source_path source_path = CUTLASS_PATH _NVCC_VERSION = None def nvcc_version(): global _NVCC_VERSION if _NVCC_VERSION is None: import subprocess # Attempt to get NVCC version result = subprocess.run(['nvcc', '--version'], capture_output=True) if result.returncode != 0: raise Exception('Unable to run `nvcc --version') _NVCC_VERSION = str(result.stdout).split(" release ")[-1].split(",")[0] return _NVCC_VERSION _CUDA_INSTALL_PATH = None def cuda_install_path(): """ Helper method for on-demand fetching of the CUDA installation path. This allows the import of CUTLASS to proceed even if NVCC is not available, preferring to raise this error only when an operation that needs NVCC is being performed. """ global _CUDA_INSTALL_PATH if _CUDA_INSTALL_PATH is None: _CUDA_INSTALL_PATH = os.getenv("CUDA_INSTALL_PATH", _cuda_install_path_from_nvcc()) return _CUDA_INSTALL_PATH CACHE_FILE = "compiled_cache.db" from cutlass_library import ( DataType, EpilogueScheduleType, KernelScheduleType, MathOperation, LayoutType, OpcodeClass, TileDescription, TileSchedulerType, ) this = sys.modules[__name__] this.logger = logging.getLogger(__name__) # RMM is only supported for Python 3.9+ if (sys.version_info.major == 3 and sys.version_info.minor > 8) or sys.version_info.major > 3: try: import rmm this.use_rmm = True except ImportError: this.use_rmm = False else: this.use_rmm = False def set_log_level(level: int): """ Sets the log level :param log_level: severity of logging level to use. See https://docs.python.org/3/library/logging.html#logging-levels for options :type log_level: int """ this.logger.setLevel(level) set_log_level(logging.ERROR) from cutlass_cppgen.library_defaults import OptionRegistry from cutlass_cppgen.backend.utils.device import device_cc this._option_registry = None def get_option_registry(): """ Helper method for on-demand initialization of the options registry. This avoids building the registry when CUTLASS is imported. """ if this._option_registry is None: this.logger.info("Initializing option registry") this._option_registry = OptionRegistry(device_cc()) return this._option_registry this.__version__ = '4.3.0' from cutlass_cppgen.backend import create_memory_pool from cutlass_cppgen.emit.pytorch import pytorch from cutlass_cppgen.op.gemm import Gemm from cutlass_cppgen.op.conv import Conv2d, Conv2dFprop, Conv2dDgrad, Conv2dWgrad from cutlass_cppgen.op.gemm_grouped import GroupedGemm from cutlass_cppgen.op.op import OperationBase from cutlass_cppgen.backend.evt.ir.tensor import Tensor from cutlass_cppgen.utils.lazy_import import lazy_import this.memory_pool = None def get_memory_pool(): """" Helper method for on-demand memory pool. This avoids allocating the memory pool unnecessarily whe CUTLASS is imported. """ if this.use_rmm and this.memory_pool is None: this.memory_pool = create_memory_pool(init_pool_size=2 ** 30, max_pool_size=2 ** 32) return this.memory_pool base_cuda = lazy_import("cuda") cuda = lazy_import("cuda.cuda") cudart = lazy_import("cuda.cudart") this._device_id = None this._nvcc_version = None def check_cuda_versions(): # Strip any additional information from the CUDA version _cuda_version = base_cuda.__version__.split("rc")[0] # Check that Python CUDA version exceeds NVCC version this._nvcc_version = nvcc_version() _cuda_list = _cuda_version.split('.') _nvcc_list = this._nvcc_version.split('.') for val_cuda, val_nvcc in zip(_cuda_list, _nvcc_list): if int(val_cuda) < int(val_nvcc): raise Exception(f"Python CUDA version of {_cuda_version} must be greater than or equal to NVCC version of {this._nvcc_version}") if len(_nvcc_list) > len(_cuda_list): if len(_nvcc_list) != len(_cuda_list) + 1: raise Exception(f"Malformatted NVCC version of {this._nvcc_version}") if _nvcc_list[:-1] == _cuda_list and int(_nvcc_list[-1]) != 0: raise Exception(f"Python CUDA version of {_cuda_version} must be greater than or equal to NVCC version of {this._nvcc_version}") def initialize_cuda_context(): check_cuda_versions() if this._device_id is not None: return if this.use_rmm: # This also covers initializing the CUDA context get_memory_pool() device_id = os.getenv("CUTLASS_CUDA_DEVICE_ID") if device_id is None: if not this.use_rmm: # Manually call cuInit() and create context by making a runtime API call err, = cudart.cudaFree(0) if err != cudart.cudaError_t.cudaSuccess: raise RuntimeError(f"cudaFree failed with error {err}") err, device_count = cuda.cuDeviceGetCount() if err != cuda.CUresult.CUDA_SUCCESS: raise Exception(f"cuDeviceGetCount failed with error {err}") if device_count <= 0: raise Exception("No CUDA devices found") device_id = 0 this._device_id = int(device_id) def device_id() -> int: initialize_cuda_context() return this._device_id