/*************************************************************************************************** * Copyright (c) 2024 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #include "cute/tensor.hpp" ///////////////////////////////////////////////////////////////////////////////////////////////// template< class ProblemShape, class TensorQ, class TensorK, class TensorV, class TensorO, class TensorLSE, class Fusion > void __global__ fmha_reference_kernel( ProblemShape problem_shape, TensorQ mQ, TensorK mK, TensorV mV, TensorO mO, TensorLSE mLSE, Fusion fusion ) { using namespace cute; using Element = typename TensorO::value_type; using ElementAccumulator = typename TensorLSE::value_type; extern __shared__ char mS_mem[]; Element* mS = reinterpret_cast(mS_mem); ElementAccumulator softmax_scale = static_cast(1.0 / sqrt(1.0 * size<1>(mO))); auto id = make_identity_tensor(make_shape(1, 1)); for (int idx_L = blockIdx.y; idx_L < size<2>(mO); idx_L += gridDim.y) { for (int idx_Q = blockIdx.x; idx_Q < size<0>(mO); idx_Q += gridDim.x) { for (int idx_K = threadIdx.x; idx_K < size<0>(mK); idx_K += blockDim.x) { ElementAccumulator acc = 0; for (int idx_D = 0; idx_D < size<1>(mK); idx_D++) { acc += mQ(idx_Q, idx_D, idx_L) * mK(idx_K, idx_D, idx_L); } auto frag = make_tensor(Shape<_1, _1>{}); frag(0) = acc; fusion.before_softmax(frag, make_tensor(id.data() + make_arithmetic_tuple(idx_Q, idx_K), id.layout()), problem_shape); mS[idx_K] = static_cast(frag(0) * softmax_scale); } __syncthreads(); ElementAccumulator maxS = -std::numeric_limits::infinity(); for (int idx_K = 0; idx_K < size<0>(mK); idx_K++) { maxS = std::max(maxS, mS[idx_K]); } if (maxS == -std::numeric_limits::infinity()) maxS = 0; __syncthreads(); for (int idx_K = threadIdx.x; idx_K < size<0>(mK); idx_K += blockDim.x) { mS[idx_K] = static_cast(exp(mS[idx_K] - maxS)); } __syncthreads(); ElementAccumulator sum = 0; for (int idx_K = 0; idx_K < size<0>(mK); idx_K++) { sum += mS[idx_K]; } Element scale = static_cast(1.0 / sum); for (int idx_D = threadIdx.x; idx_D < size<1>(mO); idx_D += blockDim.x) { ElementAccumulator acc = 0; for (int idx_K = 0; idx_K < size<0>(mK); idx_K++) { acc += mS[idx_K] * mV(idx_K, idx_D, idx_L) * scale; } mO(idx_Q, idx_D, idx_L) = static_cast(acc); } if (threadIdx.x == 0) { mLSE(idx_Q, idx_L) = log(sum) + maxS; } } } } ///////////////////////////////////////////////////////////////////////////////////////////////// template< class ProblemShape, class TensorQ, class TensorK, class TensorV, class TensorO, class TensorLSE, class Fusion > void fmha_reference( ProblemShape problem_shape, TensorQ mQ, TensorK mK, TensorV mV, TensorO mO, TensorLSE mLSE, Fusion fusion ) { using namespace cute; dim3 grid(size<0>(mO), size<2>(mO), 1); dim3 block(256); int shared_mem = size<0>(mK) * sizeof(typename TensorO::value_type); if (shared_mem >= (48 << 10)) { CUTLASS_TRACE_HOST(" Setting smem size to " << shared_mem); auto result = cudaFuncSetAttribute( fmha_reference_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, shared_mem); if (cudaSuccess != result) { result = cudaGetLastError(); // to clear the error bit CUTLASS_TRACE_HOST( " cudaFuncSetAttribute() returned error: " << cudaGetErrorString(result)); return; } } fmha_reference_kernel<<>>(problem_shape, mQ, mK, mV, mO, mLSE, fusion); } /////////////////////////////////////////////////////////////////////////////////////////////////