################################################################################################# # # Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import numpy as np import cutlass_cppgen from cutlass_cppgen.utils.datatypes import is_numpy_tensor from cutlass_cppgen.utils.lazy_import import lazy_import if cutlass_cppgen.use_rmm: import rmm else: cudart = lazy_import("cuda.cudart") class PoolMemoryManager: def __init__(self, init_pool_size: int, max_pool_size: int) -> None: self.pool = rmm.mr.PoolMemoryResource( rmm.mr.CudaMemoryResource(), initial_pool_size=init_pool_size, maximum_pool_size=max_pool_size ) self.mr = rmm.mr.TrackingResourceAdaptor(self.pool) rmm.mr.set_current_device_resource(self.mr) def pool_size(self): return self.pool.pool_size() class DevicePtrWrapper: """ Wrapper around a pointer to device memory to provide a uniform interface with the RMM DeviceBuffer (at least in terms of the interface used by the CUTLASS Python interface) """ def __init__(self, dev_ptr): self.dev_ptr = dev_ptr @property def ptr(self): return self.dev_ptr def _todevice(host_data): """ Helper for transferring host data to device memory """ if cutlass_cppgen.use_rmm: return rmm.DeviceBuffer.to_device(host_data.tobytes()) else: nbytes = len(host_data.tobytes()) dev_ptr_wrapper = device_mem_alloc(nbytes) err, = cudart.cudaMemcpy( dev_ptr_wrapper.ptr, host_data.__array_interface__['data'][0], nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice ) if err != cudart.cudaError_t.cudaSuccess: raise Exception(f"cudaMemcpy failed with error {err}") return dev_ptr_wrapper def todevice(host_data, dtype=np.float32): """ Pass the host_data to device memory """ if isinstance(host_data, list): return _todevice(np.array(host_data, dtype=dtype)) elif is_numpy_tensor(host_data): return _todevice(host_data) def device_mem_alloc(size): if cutlass_cppgen.use_rmm: return rmm.DeviceBuffer(size=size) else: err, ptr = cudart.cudaMalloc(size) if err != cudart.cudaError_t.cudaSuccess: raise Exception(f"cudaMalloc failed with error {err}") return DevicePtrWrapper(ptr) def align_size(size, alignment=256): return ((size + alignment - 1) // alignment) * alignment def create_memory_pool(init_pool_size=0, max_pool_size=2 ** 34): if cutlass_cppgen.use_rmm: memory_pool = PoolMemoryManager(init_pool_size=init_pool_size, max_pool_size=max_pool_size) return memory_pool else: return None