* v3.8 update x * fix blackwell gg * doc change * doc change * doc change --------- Co-authored-by: yuzhai <yuzhai@nvidia.com> Co-authored-by: Haicheng Wu <haichengw@nvidia.com> Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
106 lines
4.6 KiB
C++
106 lines
4.6 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2024 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
|
|
#pragma once
|
|
#include <cute/tensor.hpp> // CuTe tensor implementation
|
|
#include <cute/arch/copy_sm90_desc.hpp>
|
|
|
|
template <class AccType,
|
|
class TensorA, class TensorB,
|
|
class TensorC, class TensorD,
|
|
class Alpha, class Beta>
|
|
void
|
|
reference_gemm(TensorA const& tensor_A, TensorB const& tensor_B,
|
|
TensorC const& tensor_C, TensorD & tensor_D,
|
|
Alpha alpha, Beta beta)
|
|
{
|
|
using namespace cute;
|
|
for (int m = 0; m < size<0>(tensor_D); ++m) {
|
|
for (int n = 0; n < size<1>(tensor_D); ++n) {
|
|
AccType c = AccType(0.f);
|
|
for (int k = 0; k < size<1>(tensor_A); ++k) {
|
|
c += tensor_A(m,k) * tensor_B(n,k);
|
|
}
|
|
tensor_D(m,n) = alpha * c + beta * tensor_C(m,n);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class TensorA, class TensorB,
|
|
class TensorC, class TensorD,
|
|
class RefTensorD>
|
|
bool
|
|
compare_results(TensorA const& tensor_A, TensorB const& tensor_B,
|
|
TensorC const& tensor_C, TensorD const& tensor_D,
|
|
RefTensorD const& ref_tensor_D,
|
|
bool print_diff = false)
|
|
{
|
|
using namespace cute;
|
|
auto norm_A = matrix_inf_norm(tensor_A);
|
|
auto norm_B = matrix_inf_norm(tensor_B);
|
|
auto norm_C = matrix_inf_norm(tensor_C);
|
|
auto norm_D = matrix_inf_norm(tensor_D);
|
|
auto norm_ref_D = matrix_inf_norm(ref_tensor_D);
|
|
auto norm_diff = matrix_diff_inf_norm(tensor_D, ref_tensor_D);
|
|
|
|
if (print_diff) {
|
|
for (int m = 0; m < size<0>(tensor_D); ++m) {
|
|
for (int n = 0; n < size<1>(tensor_D); ++n) {
|
|
std::cout << m << "," << n << " : " << tensor_D(m,n) << " vs. " << ref_tensor_D(m,n) << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::cout << "norm (A) : " << norm_A.inf_norm << std::endl;
|
|
std::cout << "norm (B) : " << norm_B.inf_norm << std::endl;
|
|
std::cout << "norm (C) : " << norm_C.inf_norm << std::endl;
|
|
std::cout << "norm (D) : " << norm_D.inf_norm << std::endl;
|
|
std::cout << "norm (ref_D) : " << norm_ref_D.inf_norm << std::endl;
|
|
std::cout << "norm (D-ref_D) : " << norm_diff.inf_norm << std::endl;
|
|
|
|
return (!norm_A.found_nan) && (!norm_B.found_nan) &&
|
|
(!norm_C.found_nan) && (!norm_D.found_nan) && (!norm_ref_D.found_nan) && // There are no NaNs
|
|
(norm_A.inf_norm > 0.0) && (norm_B.inf_norm > 0.0) &&
|
|
(norm_C.inf_norm > 0.0) && (norm_D.inf_norm > 0.0) && (norm_ref_D.inf_norm > 0.0) && // Values in tensors aren't zeros
|
|
(norm_diff.inf_norm <= 0.0); // Diff (ref_D-D) == 0
|
|
}
|
|
|
|
template <class Tensor>
|
|
void
|
|
initialize_tensor(Tensor& tensor, cute::tuple<int, int> value_range = {-2, 2})
|
|
{
|
|
using DataType = typename Tensor::element_type;
|
|
auto [min, max] = value_range;
|
|
for (int i = 0; i < cute::size(tensor); i++) {
|
|
tensor(i) = DataType(int((max-min)*(rand() / double(RAND_MAX)) + min));
|
|
}
|
|
}
|