176 lines
6.5 KiB
Python
176 lines
6.5 KiB
Python
#################################################################################################
|
|
#
|
|
# Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
#
|
|
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
# list of conditions and the following disclaimer.
|
|
#
|
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
# this list of conditions and the following disclaimer in the documentation
|
|
# and/or other materials provided with the distribution.
|
|
#
|
|
# 3. Neither the name of the copyright holder nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
#################################################################################################
|
|
|
|
"""
|
|
Providers for kernel selection heuristics
|
|
"""
|
|
|
|
import sys
|
|
import os
|
|
import glob
|
|
import logging
|
|
import ctypes
|
|
import functools
|
|
|
|
|
|
try:
|
|
import builtins
|
|
if hasattr(builtins, "CUTLASS_IGNORE_PACKAGE") and CUTLASS_IGNORE_PACKAGE == True:
|
|
raise ImportError("Disabling attempt to import cutlass_library")
|
|
from cutlass_library.library import DataType, LayoutType
|
|
except ImportError:
|
|
from library import DataType, LayoutType
|
|
|
|
class MatmulHeuristics:
|
|
|
|
def __init__(self, gpu = None):
|
|
import nvMatmulHeuristics
|
|
self.mmh_lib = nvMatmulHeuristics
|
|
self.gpu = gpu
|
|
|
|
if 'CUTLASS_NVMMH_SO_PATH' in os.environ:
|
|
nvmmhInterfaceEx = functools.partial(self.mmh_lib.NvMatmulHeuristicsInterfaceEx, path=os.environ['CUTLASS_NVMMH_SO_PATH'])
|
|
else:
|
|
nvmmhInterfaceEx = self.mmh_lib.NvMatmulHeuristicsInterfaceEx
|
|
|
|
self.lh = nvmmhInterfaceEx(
|
|
backend=self.mmh_lib.NvMatmulHeuristicsTarget["CUTLASS3"],
|
|
flags=self.mmh_lib.NvMatmulHeuristicsFlags.PERF_MODEL_BASED_AUTO_TUNING,
|
|
load_discovery_implicitly=True,
|
|
gpu=self.mmh_lib.NvMatmulHeuristicsNvidiaGpu[self.gpu] if self.gpu else None
|
|
)
|
|
self.backend = self.lh.createBackend(self.mmh_lib.NvMatmulHeuristicsTarget["CUTLASS3"])
|
|
|
|
def _layout_from_cutlass(self, layouts):
|
|
assert(len(layouts)==3)
|
|
full_layout_str = ''.join('t' if l == LayoutType.RowMajor else 'n' for l in layouts)
|
|
input_layouts = full_layout_str[:2].upper()
|
|
lh_layout = input_layouts + '_' + str("ROW_MAJOR" if full_layout_str[-1]=='t' else "COL_MAJOR")
|
|
return self.mmh_lib.NvMatmulHeuristicsMatmulLayout[lh_layout]
|
|
|
|
def _precision_from_cutlass_dtypes(self, dtypes):
|
|
dtype_to_cublas = {
|
|
DataType.f64: 'D',
|
|
DataType.f32: 'S',
|
|
DataType.f16: 'H',
|
|
DataType.bf16: 'T',
|
|
DataType.e4m3: 'Q',
|
|
DataType.e5m2: 'R',
|
|
DataType.s32: 'I',
|
|
DataType.s8: 'B',
|
|
}
|
|
|
|
dtype_a, dtype_b, dtype_compute, dtype_c, dtype_d = dtypes
|
|
|
|
a_c = dtype_to_cublas[dtype_a]
|
|
|
|
if a_c.lower() != 'q':
|
|
return a_c + dtype_to_cublas[dtype_compute] + dtype_to_cublas[dtype_d]
|
|
else:
|
|
return a_c + dtype_to_cublas[dtype_b] + dtype_to_cublas[dtype_c] + dtype_to_cublas[dtype_compute] + dtype_to_cublas[dtype_d]
|
|
|
|
def set_cta_div_n(self, div_n):
|
|
cta_n_div_requirement = ctypes.c_int(div_n)
|
|
self.lh.setBackendValueProperty(
|
|
self.backend,
|
|
self.mmh_lib.NvMatmulHeuristicsBackendProperty.CTA_TILE_N_DIV_REQUIREMENT,
|
|
ctypes.byref(cta_n_div_requirement),
|
|
ctypes.sizeof(cta_n_div_requirement)
|
|
)
|
|
|
|
def set_cta_div_m(self, div_m):
|
|
cta_m_div_requirement = ctypes.c_int(div_m)
|
|
self.lh.setBackendValueProperty(
|
|
self.backend,
|
|
self.mmh_lib.NvMatmulHeuristicsBackendProperty.CTA_TILE_M_DIV_REQUIREMENT,
|
|
ctypes.byref(cta_m_div_requirement),
|
|
ctypes.sizeof(cta_m_div_requirement)
|
|
)
|
|
|
|
def get_configs(self, m, n, k, batch_count, dtypes, layouts, align_a, align_b, voidC=False, use_fast_acc=True, count=1):
|
|
if use_fast_acc:
|
|
disable_fast_acc_for_fp8 = ctypes.c_int(0)
|
|
else:
|
|
disable_fast_acc_for_fp8 = ctypes.c_int(1)
|
|
self.lh.setBackendValueProperty(
|
|
self.backend,
|
|
self.mmh_lib.NvMatmulHeuristicsBackendProperty.DISABLE_FAST_ACC_FOR_FP8,
|
|
ctypes.byref(disable_fast_acc_for_fp8),
|
|
ctypes.sizeof(disable_fast_acc_for_fp8)
|
|
)
|
|
|
|
precision = self._precision_from_cutlass_dtypes(dtypes)
|
|
layout = self._layout_from_cutlass(layouts)
|
|
|
|
matmul_problem = self.lh.makeNvMatmulHeuristicsProblem(m, n, k, layout, batch_count)
|
|
configs = self.lh.getEx(matmul_problem, count, self.backend, precision=precision)
|
|
|
|
ret = []
|
|
for c in configs:
|
|
kernel = c['kernel']
|
|
problem = c['problem']
|
|
|
|
r = {}
|
|
r['estimated_runtime'] = c['runtime']
|
|
r['cta_tile_m'] = kernel.cta_tile_m
|
|
r['cta_tile_n'] = kernel.cta_tile_n
|
|
r['cta_tile_k'] = kernel.cta_tile_k
|
|
r['instr_tile_m'] = kernel.instr_tile_m
|
|
r['instr_tile_n'] = kernel.instr_tile_n
|
|
r['instr_tile_k'] = kernel.instr_tile_k
|
|
r['warp_tile_m'] = kernel.warp_tile_m
|
|
r['warp_tile_n'] = kernel.warp_tile_n
|
|
r['warp_tile_k'] = kernel.warp_tile_k
|
|
r['cluster_m'] = kernel.cluster_m
|
|
r['cluster_n'] = kernel.cluster_n
|
|
r['cluster_k'] = 1
|
|
r['layout_a'] = layouts[0]
|
|
r['layout_b'] = layouts[1]
|
|
r['layout_d'] = layouts[2]
|
|
r['dtype_a'] = dtypes[0]
|
|
r['dtype_b'] = dtypes[1]
|
|
r['dtype_acc'] = dtypes[2]
|
|
r['dtype_c'] = dtypes[3]
|
|
r['dtype_d'] = dtypes[4]
|
|
r['alignment_a'] = align_a
|
|
r['alignment_b'] = align_b
|
|
r['swizzle_size'] = kernel.swizzle_factor
|
|
r['raster_order'] = 'along_m' if kernel.cta_order==0 else 'along_n'
|
|
r['split_k_slices'] = kernel.split_k
|
|
r['use_fast_acc'] = use_fast_acc
|
|
r['voidC'] = voidC
|
|
|
|
ret.append(r)
|
|
|
|
return ret
|
|
|