Files
cutlass/examples/python/CuTeDSL/hopper/dense_gemm.py
2025-06-06 02:39:20 -04:00

1487 lines
57 KiB
Python

# Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
from typing import Tuple, Type
import math
import cuda.bindings.driver as cuda
import torch
import cutlass
import cutlass.cute as cute
import cutlass.utils as utils
import cutlass.torch as cutlass_torch
from cutlass.cute.runtime import from_dlpack
import cutlass.utils.hopper_helpers as sm90_utils
"""
A high-performance batched dense GEMM (C = A * B) example for the NVIDIA Hopper architecture
using CUTE DSL.
- Matrix A is MxKxL, L is batch dimension, A can be row-major("K") or column-major("M")
- Matrix B is NxKxL, L is batch dimension, B can be row-major("N") or column-major("K")
- Matrix C is MxNxL, L is batch dimension, C can be row-major("N") or column-major("M")
This GEMM kernel supports the following features:
- Utilizes Tensor Memory Access (TMA) for efficient memory operations
- Utilizes Hopper's WGMMA for matrix multiply-accumulate (MMA) operations
- Implements TMA multicast with cluster to reduce L2 memory traffic
- Supports multi-stage pipeline to overlap computation and memory access
This GEMM works as follows:
1. Load A and B matrices from global memory (GMEM) to shared memory (SMEM) using TMA operations.
2. Perform matrix multiply-accumulate (MMA) operations using WGMMA instruction.
3. Store results from registers (RMEM) to shared memory (SMEM), then to global memory (GMEM) with TMA operations.
Hopper WGMMA instructions operate as follows:
- Read matrix A from SMEM
- Read matrix B from SMEM
- Perform MMA operation and store the result in Accumulator(register)
To run this example:
.. code-block:: bash
python examples/hopper/dense_gemm.py \
--mnkl 8192,8192,8192,1 --tile_shape_mnk 128,256,64 \
--cluster_shape_mn 1,1 --a_dtype Float16 --b_dtype Float16 \
--c_dtype Float16 --acc_dtype Float32 \
--a_major k --b_major k --c_major n
The above example command compute batched gemm with M=8192, N=8192, K=8192,
batch_count=1. The Hopper WGMMA tile shape is 128x256x64 and the cluster shape
is (1,1). The input, mma accumulator and output data type are set as fp16, fp32
and fp16, respectively.
To collect performance with NCU profiler:
.. code-block:: bash
ncu python examples/hopper/dense_gemm.py \
--mnkl 8192,8192,8192,1 --tile_shape_mnk 128,256,64 \
--cluster_shape_mn 1,1 --a_dtype Float16 --b_dtype Float16 \
--c_dtype Float16 --acc_dtype Float32 \
--a_major k --b_major k --c_major n
Constraints:
* Supported input data types: fp16, fp8 (e4m3fn, e5m2)
* For fp16 types, A and B must have the same data type
* For fp8 types, A and B can have different types (e4m3fn or e5m2) but both must be 8-bit
* Fp8 types only support k-major layout
* Only fp32 accumulation is supported in this example
* CTA tile shape M must be 64/128
* CTA tile shape N must be 64/128/256
* CTA tile shape K must be 64
* Cluster shape M/N must be positive and power of 2, total cluster size <= 4
* The contiguous dimension of A/B/C tensors must be at least 16 bytes aligned,
i.e, number of elements is a multiple of 8, 16 for Float16, and Float8, respectively.
* OOB tiles are not allowed when TMA store is disabled
"""
# /////////////////////////////////////////////////////////////////////////////
# Helpers to parse args
# /////////////////////////////////////////////////////////////////////////////
def parse_comma_separated_ints(s: str):
try:
return tuple([int(x.strip()) for x in s.split(",")])
except ValueError:
raise argparse.ArgumentTypeError(
"Invalid format. Expected comma-separated integers."
)
def parse_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Example of MxNxKxL GEMM on Hopper.")
parser.add_argument(
"--mnkl",
type=parse_comma_separated_ints,
default=(4096, 4096, 4096, 1),
help="mnkl dimensions (comma-separated)",
)
parser.add_argument(
"--tile_shape_mnk",
type=parse_comma_separated_ints,
choices=[(128, 128, 64), (128, 256, 64), (128, 64, 64), (64, 64, 64)],
default=(128, 128, 64),
help="Cta tile shape (comma-separated)",
)
parser.add_argument(
"--cluster_shape_mn",
type=parse_comma_separated_ints,
choices=[(1, 1), (2, 1), (1, 2), (2, 2)],
default=(1, 1),
help="Cluster shape (comma-separated)",
)
parser.add_argument(
"--a_dtype",
type=cutlass.dtype,
default=cutlass.Float16,
)
parser.add_argument(
"--b_dtype",
type=cutlass.dtype,
default=cutlass.Float16,
)
parser.add_argument(
"--c_dtype",
type=cutlass.dtype,
default=cutlass.Float16,
)
parser.add_argument(
"--acc_dtype",
type=cutlass.dtype,
default=cutlass.Float32,
)
parser.add_argument("--a_major", choices=["k", "m"], type=str, default="k")
parser.add_argument("--b_major", choices=["k", "n"], type=str, default="k")
parser.add_argument("--c_major", choices=["n", "m"], type=str, default="n")
parser.add_argument(
"--tolerance", type=float, default=1e-01, help="Tolerance for validation"
)
args = parser.parse_args()
if len(args.mnkl) != 4:
parser.error("--mnkl must contain exactly 4 values")
if len(args.tile_shape_mnk) != 3:
parser.error("--tile_shape_mnk must contain exactly 3 values")
if len(args.cluster_shape_mn) != 2:
parser.error("--cluster_shape_mn must contain exactly 2 values")
return args
# /////////////////////////////////////////////////////////////////////////////
# Host setup and device kernel launch
# /////////////////////////////////////////////////////////////////////////////
class HopperWgmmaGemmKernel:
"""
This class implements batched matrix multiplication (C = A x B) with support for various data types
and architectural features specific to Hopper GPUs.
:param acc_dtype: Data type for accumulation during computation
:type acc_dtype: type[cutlass.Numeric]
:param tile_shape_mnk: Shape of the CTA tile (M,N,K)
:type tile_shape_mnk: Tuple[int, int, int]
:param cluster_shape_mnk: Cluster dimensions (M,N,K) for parallel processing
:type cluster_shape_mnk: Tuple[int, int, int]
:note: Data type requirements:
- For 16-bit types: A and B must have the same data type
- For 8-bit types: A and B can have different types (Float8E4M3FN/Float8E5M2) as long as both are 8-bit
- Float8 types only support k-major layout
:note: Supported data types:
- Float16
- Float8E4M3FN/Float8E5M2
:note: Supported accumulation types:
- Float32 (for all floating point inputs)
:note: Constraints:
- CTA tile M must be 64/128
- CTA tile N must be 64/128/256
- CTA tile K must be 64
- Cluster shape M/N must be positive and power of 2, total cluster size <= 4
Example:
>>> gemm = HopperWgmmaGemmKernel(
... acc_dtype=cutlass.Float32,
... tile_shape_mnk=(128, 256, 64),
... cluster_shape_mnk=(1, 1, 1)
... )
>>> gemm(a_tensor, b_tensor, c_tensor, stream)
"""
def __init__(
self,
acc_dtype: type[cutlass.Numeric],
tile_shape_mnk: tuple[int, int, int],
cluster_shape_mnk: tuple[int, int, int],
):
"""
Initializes the configuration for a Hopper dense GEMM kernel.
This configuration includes data types for operands, tile shape, cluster configuration,
and thread layout.
:param acc_dtype: Data type for accumulation during computation
:type acc_dtype: type[cutlass.Numeric]
:param tile_shape_mnk: Shape of the CTA tile (M,N,K)
:type tile_shape_mnk: Tuple[int, int, int]
:param cluster_shape_mnk: Cluster dimensions (M,N,K) for parallel processing
:type cluster_shape_mnk: Tuple[int, int, int]
"""
self.acc_dtype = acc_dtype
self.cluster_shape_mnk = cluster_shape_mnk
self.mma_inst_shape_mn = None
self.tile_shape_mnk = tuple(tile_shape_mnk)
# For large tile size, using two warp groups is preferred because using only one warp
# group may result in register spill
self.atom_layout_mnk = (
(2, 1, 1)
if tile_shape_mnk[0] > 64 and tile_shape_mnk[1] > 128
else (1, 1, 1)
)
self.num_mcast_ctas_a = None
self.num_mcast_ctas_b = None
self.is_a_mcast = False
self.is_b_mcast = False
self.occupancy = 1
self.mma_warp_groups = math.prod(self.atom_layout_mnk)
self.num_threads_per_warp_group = 128
self.threads_per_cta = self.mma_warp_groups * self.num_threads_per_warp_group
self.smem_capacity = sm90_utils.SMEM_CAPACITY["sm90"]
self.ab_stage = None
self.epi_stage = None
self.a_smem_layout_staged = None
self.b_smem_layout_staged = None
self.epi_smem_layout_staged = None
self.epi_tile = None
self.shared_storage = None
self.buffer_align_bytes = 1024
def _setup_attributes(self):
"""Set up configurations that are dependent on GEMM inputs
This method configures various attributes based on the input tensor properties
(data types, leading dimensions) and kernel settings:
- Configuring tiled MMA
- Computing MMA/cluster/tile shapes
- Computing cluster layout
- Computing multicast CTAs for A/B
- Computing epilogue subtile
- Setting up A/B/C stage counts in shared memory
- Computing A/B/C shared memory layout
"""
# check the cta tile shape
if self.tile_shape_mnk[0] not in [64, 128]:
raise ValueError("CTA tile shape M must be 64/128")
if self.tile_shape_mnk[1] not in [64, 128, 256]:
raise ValueError("CTA tile shape N must be 64/128/256")
if self.tile_shape_mnk[2] not in [64]:
raise ValueError("CTA tile shape K must be 64")
self.cta_layout_mnk = cute.make_layout(self.cluster_shape_mnk)
self.num_mcast_ctas_a = self.cluster_shape_mnk[1]
self.num_mcast_ctas_b = self.cluster_shape_mnk[0]
self.is_a_mcast = self.num_mcast_ctas_a > 1
self.is_b_mcast = self.num_mcast_ctas_b > 1
is_cooperative = self.atom_layout_mnk == (2, 1, 1)
self.epi_tile = self._sm90_compute_tile_shape_or_override(
self.tile_shape_mnk, self.c_dtype, is_cooperative=is_cooperative
)
# Compute stage before compute smem layout
self.ab_stage, self.epi_stage = self._compute_stages(
self.tile_shape_mnk,
self.a_dtype,
self.b_dtype,
self.smem_capacity,
self.occupancy,
)
(
self.a_smem_layout_staged,
self.b_smem_layout_staged,
self.epi_smem_layout_staged,
) = self._make_smem_layouts(
self.tile_shape_mnk,
self.epi_tile,
self.a_dtype,
self.a_layout,
self.b_dtype,
self.b_layout,
self.ab_stage,
self.c_dtype,
self.c_layout,
self.epi_stage,
)
@cute.jit
def __call__(
self,
a: cute.Tensor,
b: cute.Tensor,
c: cute.Tensor,
stream: cuda.CUstream,
):
"""Execute the GEMM operation in steps:
- Setup static attributes
- Setup TMA load/store atoms and tensors
- Compute grid size
- Define shared storage for kernel
- Launch the kernel synchronously
:param a: Input tensor A
:type a: cute.Tensor
:param b: Input tensor B
:type b: cute.Tensor
:param c: Output tensor C
:type c: cute.Tensor
:param stream: CUDA stream for asynchronous execution
:type stream: cuda.CUstream
"""
# setup static attributes before smem/grid/tma computation
self.a_dtype = a.element_type
self.b_dtype = b.element_type
self.c_dtype = c.element_type
self.a_layout = utils.LayoutEnum.from_tensor(a)
self.b_layout = utils.LayoutEnum.from_tensor(b)
self.c_layout = utils.LayoutEnum.from_tensor(c)
if cutlass.const_expr(
self.a_dtype.width == 16 and self.a_dtype != self.b_dtype
):
raise TypeError(f"Type mismatch: {self.a_dtype} != {self.b_dtype}")
if cutlass.const_expr(self.a_dtype.width != self.b_dtype.width):
raise TypeError(
f"Type width mismatch: {self.a_dtype.width} != {self.b_dtype.width}"
)
if cutlass.const_expr(self.a_dtype.width != 16 and self.a_dtype.width != 8):
raise TypeError(f"a_dtype should be float16 or float8")
self._setup_attributes()
tiled_mma = sm90_utils.make_trivial_tiled_mma(
self.a_dtype,
self.b_dtype,
self.a_layout.sm90_mma_major_mode(),
self.b_layout.sm90_mma_major_mode(),
self.acc_dtype,
self.atom_layout_mnk,
tiler_mn=(64, self.tile_shape_mnk[1]),
)
tma_atom_a, tma_tensor_a = self._make_tma_atoms_and_tensors(
a,
self.a_smem_layout_staged,
(self.tile_shape_mnk[0], self.tile_shape_mnk[2]),
self.cluster_shape_mnk[1],
)
tma_atom_b, tma_tensor_b = self._make_tma_atoms_and_tensors(
b,
self.b_smem_layout_staged,
(self.tile_shape_mnk[1], self.tile_shape_mnk[2]),
self.cluster_shape_mnk[0],
)
tma_atom_c, tma_tensor_c = self._make_tma_store_atoms_and_tensors(
c,
self.epi_smem_layout_staged,
self.epi_tile,
)
grid = self._compute_grid(c, self.tile_shape_mnk, self.cluster_shape_mnk)
@cute.struct
class SharedStorage:
mainloop_pipeline_array_ptr: cute.struct.MemRange[
cutlass.Int64, self.ab_stage * 2
]
sa: cute.struct.Align[
cute.struct.MemRange[
self.a_dtype, cute.cosize(self.a_smem_layout_staged)
],
self.buffer_align_bytes,
]
sb: cute.struct.Align[
cute.struct.MemRange[
self.b_dtype, cute.cosize(self.b_smem_layout_staged)
],
self.buffer_align_bytes,
]
self.shared_storage = SharedStorage
# Launch the kernel synchronously
self.kernel(
tma_atom_a,
tma_tensor_a,
tma_atom_b,
tma_tensor_b,
tma_atom_c,
tma_tensor_c,
tiled_mma,
self.cta_layout_mnk,
self.a_smem_layout_staged,
self.b_smem_layout_staged,
self.epi_smem_layout_staged,
).launch(
grid=grid,
block=[self.threads_per_cta, 1, 1],
cluster=self.cluster_shape_mnk,
smem=self.shared_storage.size_in_bytes(),
stream=stream,
)
return
# GPU device kernel
@cute.kernel
def kernel(
self,
tma_atom_a: cute.CopyAtom,
mA_mkl: cute.Tensor,
tma_atom_b: cute.CopyAtom,
mB_nkl: cute.Tensor,
tma_atom_c: cute.CopyAtom,
mC_mnl: cute.Tensor,
tiled_mma: cute.TiledMma,
cta_layout_mnk: cute.Layout,
a_smem_layout_staged: cute.ComposedLayout,
b_smem_layout_staged: cute.ComposedLayout,
epi_smem_layout_staged: cute.ComposedLayout,
):
"""
GPU device kernel performing the batched GEMM computation.
:param tma_atom_a: TMA copy atom for A tensor
:type tma_atom_a: cute.CopyAtom
:param mA_mkl: Input tensor A
:type mA_mkl: cute.Tensor
:param tma_atom_b: TMA copy atom for B tensor
:type tma_atom_b: cute.CopyAtom
:param mB_nkl: Input tensor B
:type mB_nkl: cute.Tensor
:param tma_atom_c: TMA copy atom for C tensor
:type tma_atom_c: cute.CopyAtom
:param mC_mnl: Output tensor C
:type mC_mnl: cute.Tensor
:param tiled_mma: Tiled MMA object
:type tiled_mma: cute.TiledMma
:param cta_layout_mnk: CTA layout
:type cta_layout_mnk: cute.Layout
:param a_smem_layout_staged: Shared memory layout for A
:type a_smem_layout_staged: cute.ComposedLayout
:param b_smem_layout_staged: Shared memory layout for B
:type b_smem_layout_staged: cute.ComposedLayout
:param epi_smem_layout_staged: Shared memory layout for epilogue
:type epi_smem_layout_staged: cute.ComposedLayout
"""
warp_idx = cute.arch.warp_idx()
warp_idx = cute.arch.make_warp_uniform(warp_idx)
# /////////////////////////////////////////////////////////////////////////////
# Prefetch Tma desc
# /////////////////////////////////////////////////////////////////////////////
if warp_idx == 0:
cute.nvgpu.cpasync.prefetch_descriptor(tma_atom_a)
cute.nvgpu.cpasync.prefetch_descriptor(tma_atom_b)
# ///////////////////////////////////////////////////////////////////////////////
# Get cta/warp/thread idx
# ///////////////////////////////////////////////////////////////////////////////
bidx, bidy, bidz = cute.arch.block_idx()
tidx, _, _ = cute.arch.thread_idx()
cidx, cidy, _ = cute.arch.cluster_idx()
cdimx, cdimy, _ = cute.arch.cluster_dim()
cluster_id = cidx + cdimx * cidy
# CTA Swizzle to promote L2 data reuse
group_size_m = 8
s_shape = (
(group_size_m, cdimx // group_size_m),
cdimy,
)
s_stride = ((1, cdimy * group_size_m), group_size_m)
s_layout = cute.make_layout(s_shape, stride=s_stride)
num_reg_cids = cute.size(s_shape)
cid_m, cid_n = s_layout.get_flat_coord(cluster_id % num_reg_cids)
# Deal with the tail part
if cluster_id >= num_reg_cids:
tail_size_m = cdimx % group_size_m
tail_layout = cute.make_layout(
(tail_size_m, cdimy), stride=(1, tail_size_m)
)
tail_cid = cluster_id - num_reg_cids
tail_cid_m, tail_cid_n = tail_layout.get_flat_coord(tail_cid)
cid_m = cute.size(s_shape, mode=[0]) + tail_cid_m
cid_n = tail_cid_n
# Get the pid from cluster id
bidx_in_cluster = cute.arch.block_in_cluster_idx()
pid_m = cid_m * self.cluster_shape_mnk[0] + bidx_in_cluster[0]
pid_n = cid_n * self.cluster_shape_mnk[1] + bidx_in_cluster[1]
tile_coord_mnkl = (pid_m, pid_n, None, bidz)
cta_rank_in_cluster = cute.arch.make_warp_uniform(
cute.arch.block_idx_in_cluster()
)
cluster_coord_mnk = cta_layout_mnk.get_flat_coord(cta_rank_in_cluster)
# ///////////////////////////////////////////////////////////////////////////////
# Get mcast mask
# ///////////////////////////////////////////////////////////////////////////////
a_mcast_mask = cute.make_layout_image_mask(
cta_layout_mnk, cluster_coord_mnk, mode=1
)
b_mcast_mask = cute.make_layout_image_mask(
cta_layout_mnk, cluster_coord_mnk, mode=0
)
a_mcast_mask = a_mcast_mask if self.is_a_mcast else 0
b_mcast_mask = b_mcast_mask if self.is_b_mcast else 0
a_smem_layout = cute.slice_(a_smem_layout_staged, (None, None, 0))
b_smem_layout = cute.slice_(b_smem_layout_staged, (None, None, 0))
tma_copy_bytes = cute.size_in_bytes(
self.a_dtype, a_smem_layout
) + cute.size_in_bytes(self.b_dtype, b_smem_layout)
# /////////////////////////////////////////////////////////////////////////////
# Alloc and init AB full/empty + ACC full mbar (pipeline)
# /////////////////////////////////////////////////////////////////////////////
smem = cutlass.utils.SmemAllocator()
storage = smem.allocate(self.shared_storage)
# mbar arrays
mainloop_pipeline_array_ptr = storage.mainloop_pipeline_array_ptr.data_ptr()
# Threads/warps participating in this pipeline
mainloop_pipeline_producer_group = utils.CooperativeGroup(utils.Agent.Thread)
# Set the consumer arrive count to the number of mcast size
consumer_arrive_cnt = self.num_mcast_ctas_a + self.num_mcast_ctas_b - 1
mainloop_pipeline_consumer_group = utils.CooperativeGroup(
utils.Agent.Thread, consumer_arrive_cnt
)
mainloop_pipeline = utils.PipelineTmaAsync.create(
barrier_storage=mainloop_pipeline_array_ptr,
num_stages=self.ab_stage,
producer_group=mainloop_pipeline_producer_group,
consumer_group=mainloop_pipeline_consumer_group,
tx_count=tma_copy_bytes,
cta_layout_vmnk=cta_layout_mnk,
)
# Cluster arrive after barrier init
if cute.size(self.cluster_shape_mnk) > 1:
cute.arch.cluster_arrive_relaxed()
# ///////////////////////////////////////////////////////////////////////////////
# Generate smem tensor A/B
# ///////////////////////////////////////////////////////////////////////////////
sa = storage.sa.get_tensor(
a_smem_layout_staged.outer, swizzle=a_smem_layout_staged.inner
)
sb = storage.sb.get_tensor(
b_smem_layout_staged.outer, swizzle=b_smem_layout_staged.inner
)
sc_ptr = cute.recast_ptr(
sa.iterator, epi_smem_layout_staged.inner, dtype=self.c_dtype
)
sc = cute.make_tensor(sc_ptr, epi_smem_layout_staged.outer)
# ///////////////////////////////////////////////////////////////////////////////
# Local_tile partition global tensors
# ///////////////////////////////////////////////////////////////////////////////
# (bM, bK, loopK)
gA_mkl = cute.local_tile(
mA_mkl, self.tile_shape_mnk, tile_coord_mnkl, proj=(1, None, 1)
)
# (bN, bK, loopK)
gB_nkl = cute.local_tile(
mB_nkl, self.tile_shape_mnk, tile_coord_mnkl, proj=(None, 1, 1)
)
# (bM, bN)
gC_mnl = cute.local_tile(
mC_mnl, self.tile_shape_mnk, tile_coord_mnkl, proj=(1, 1, None)
)
# //////////////////////////////////////////////////////////////////////////////
# Partition global tensor for TiledMMA_A/B/C
# //////////////////////////////////////////////////////////////////////////////
warp_group_idx = cute.arch.make_warp_uniform(
tidx // self.num_threads_per_warp_group
)
warp_group_thread_layout = cute.make_layout(
self.mma_warp_groups, stride=self.num_threads_per_warp_group
)
thr_mma = tiled_mma.get_slice(warp_group_thread_layout(warp_group_idx))
tCgC = thr_mma.partition_C(gC_mnl)
# //////////////////////////////////////////////////////////////////////////////
# Partition shared tensor for TMA load A/B
# //////////////////////////////////////////////////////////////////////////////
# TMA load A partition_S/D
a_cta_layout = cute.make_layout(cute.slice_(cta_layout_mnk, (0, None, 0)).shape)
a_cta_crd = cluster_coord_mnk[1]
sa_for_tma_partition = cute.group_modes(sa, 0, 2)
gA_for_tma_partition = cute.group_modes(gA_mkl, 0, 2)
tAsA, tAgA_mkl = cute.nvgpu.cpasync.tma_partition(
tma_atom_a,
a_cta_crd,
a_cta_layout,
sa_for_tma_partition,
gA_for_tma_partition,
)
# TMA load B partition_S/D
b_cta_layout = cute.make_layout(cute.slice_(cta_layout_mnk, (None, 0, 0)).shape)
b_cta_crd = cluster_coord_mnk[0]
sb_for_tma_partition = cute.group_modes(sb, 0, 2)
gB_for_tma_partition = cute.group_modes(gB_nkl, 0, 2)
tBsB, tBgB_nkl = cute.nvgpu.cpasync.tma_partition(
tma_atom_b,
b_cta_crd,
b_cta_layout,
sb_for_tma_partition,
gB_for_tma_partition,
)
# //////////////////////////////////////////////////////////////////////////////
# Make frangments
# //////////////////////////////////////////////////////////////////////////////
tCsA = thr_mma.partition_A(sa)
tCsB = thr_mma.partition_B(sb)
tCrA = tiled_mma.make_fragment_A(tCsA)
tCrB = tiled_mma.make_fragment_B(tCsB)
acc_shape = tCgC.shape
accumulators = cute.make_fragment(acc_shape, self.acc_dtype)
# ///////////////////////////////////////////////////////////////////////////////
# Cluster wait
# ///////////////////////////////////////////////////////////////////////////////
# cluster wait for barrier init
if cute.size(self.cluster_shape_mnk) > 1:
cute.arch.cluster_wait()
else:
cute.arch.sync_threads()
# /////////////////////////////////////////////////////////////////////////////
# Prefetch
# /////////////////////////////////////////////////////////////////////////////
k_tile_cnt = cute.size(gA_mkl, mode=[2])
prefetch_k_tile_cnt = cutlass.max(cutlass.min(self.ab_stage, k_tile_cnt), 0)
mainloop_producer_state = utils.make_pipeline_state(
utils.PipelineUserType.Producer, self.ab_stage
)
if warp_idx == 0:
# /////////////////////////////////////////////////////////////////////////////
# Prefetch TMA load
# /////////////////////////////////////////////////////////////////////////////
for prefetch_idx in cutlass.range_dynamic(prefetch_k_tile_cnt, unroll=1):
# /////////////////////////////////////////////////////////////////////////////
# Wait for A/B buffers to be empty before loading into them
# Also sets the transaction barrier for the A/B buffers
# /////////////////////////////////////////////////////////////////////////////
mainloop_pipeline.producer_acquire(mainloop_producer_state)
# /////////////////////////////////////////////////////////////////////////////
# Slice to global/shared memref to current k_tile
# /////////////////////////////////////////////////////////////////////////////
tAgA_k = tAgA_mkl[(None, mainloop_producer_state.count)]
tAsA_pipe = tAsA[(None, mainloop_producer_state.index)]
tBgB_k = tBgB_nkl[(None, mainloop_producer_state.count)]
tBsB_pipe = tBsB[(None, mainloop_producer_state.index)]
# /////////////////////////////////////////////////////////////////////////////
# TMA load A/B
# /////////////////////////////////////////////////////////////////////////////
cute.copy(
tma_atom_a,
tAgA_k,
tAsA_pipe,
tma_bar_ptr=mainloop_pipeline.producer_get_barrier(
mainloop_producer_state
),
mcast_mask=a_mcast_mask,
)
cute.copy(
tma_atom_b,
tBgB_k,
tBsB_pipe,
tma_bar_ptr=mainloop_pipeline.producer_get_barrier(
mainloop_producer_state
),
mcast_mask=b_mcast_mask,
)
# Mainloop pipeline's producer commit is a NOP
mainloop_pipeline.producer_commit(mainloop_producer_state)
mainloop_producer_state.advance()
# /////////////////////////////////////////////////////////////////////////////
# Prologue MMAs
# /////////////////////////////////////////////////////////////////////////////
k_pipe_mmas = 1
mainloop_consumer_read_state = utils.make_pipeline_state(
utils.PipelineUserType.Consumer, self.ab_stage
)
mainloop_consumer_release_state = utils.make_pipeline_state(
utils.PipelineUserType.Consumer, self.ab_stage
)
peek_ab_full_status = cutlass.Boolean(1)
if mainloop_consumer_read_state.count < k_tile_cnt:
peek_ab_full_status = mainloop_pipeline.consumer_try_wait(
mainloop_consumer_read_state
)
tiled_mma.set(cute.nvgpu.warpgroup.Field.ACCUMULATE, False)
num_k_blocks = cute.size(tCrA, mode=[2])
for k_tile in cutlass.range_dynamic(k_pipe_mmas, unroll=1):
# Wait for A/B buffer to be ready
mainloop_pipeline.consumer_wait(
mainloop_consumer_read_state, peek_ab_full_status
)
cute.nvgpu.warpgroup.fence()
for k_block_idx in range(num_k_blocks):
k_block_coord = (
None,
None,
k_block_idx,
mainloop_consumer_read_state.index,
)
tCrA_1phase = tCrA[k_block_coord]
tCrB_1phase = tCrB[k_block_coord]
cute.gemm(
tiled_mma,
accumulators,
tCrA_1phase,
tCrB_1phase,
accumulators,
)
tiled_mma.set(cute.nvgpu.warpgroup.Field.ACCUMULATE, True)
cute.nvgpu.warpgroup.commit_group()
mainloop_consumer_read_state.advance()
peek_ab_full_status = cutlass.Boolean(1)
if mainloop_consumer_read_state.count < k_tile_cnt:
peek_ab_full_status = mainloop_pipeline.consumer_try_wait(
mainloop_consumer_read_state
)
# /////////////////////////////////////////////////////////////////////////////
# MAINLOOP
# /////////////////////////////////////////////////////////////////////////////
for k_tile in cutlass.range_dynamic(k_pipe_mmas, k_tile_cnt, 1, unroll=1):
# /////////////////////////////////////////////////////////////////////////////
# Wait for TMA copies to complete
# /////////////////////////////////////////////////////////////////////////////
mainloop_pipeline.consumer_wait(
mainloop_consumer_read_state, peek_ab_full_status
)
# /////////////////////////////////////////////////////////////////////////////
# WGMMA
# /////////////////////////////////////////////////////////////////////////////
cute.nvgpu.warpgroup.fence()
for k_block_idx in range(num_k_blocks):
k_block_coord = (
None,
None,
k_block_idx,
mainloop_consumer_read_state.index,
)
tCrA_1phase = tCrA[k_block_coord]
tCrB_1phase = tCrB[k_block_coord]
cute.gemm(
tiled_mma,
accumulators,
tCrA_1phase,
tCrB_1phase,
accumulators,
)
cute.nvgpu.warpgroup.commit_group()
# Wait on the wgmma barrier for previous k_pipe_mmas wgmmas to complete
cute.nvgpu.warpgroup.wait_group(k_pipe_mmas)
mainloop_pipeline.consumer_release(mainloop_consumer_release_state)
mainloop_consumer_read_state.advance()
mainloop_consumer_release_state.advance()
peek_ab_full_status = cutlass.Boolean(1)
if mainloop_consumer_read_state.count < k_tile_cnt:
peek_ab_full_status = mainloop_pipeline.consumer_try_wait(
mainloop_consumer_read_state
)
# /////////////////////////////////////////////////////////////////////////////
# TMA load
# /////////////////////////////////////////////////////////////////////////////
if warp_idx == 0 and mainloop_producer_state.count < k_tile_cnt:
# /////////////////////////////////////////////////////////////////////////////
# Wait for A/B buffers to be empty before loading into them
# Also sets the transaction barrier for the A/B buffers
# /////////////////////////////////////////////////////////////////////////////
mainloop_pipeline.producer_acquire(mainloop_producer_state)
# /////////////////////////////////////////////////////////////////////////////
# Slice to global/shared memref to current k_tile
# /////////////////////////////////////////////////////////////////////////////
tAgA_k = tAgA_mkl[(None, mainloop_producer_state.count)]
tAsA_pipe = tAsA[(None, mainloop_producer_state.index)]
tBgB_k = tBgB_nkl[(None, mainloop_producer_state.count)]
tBsB_pipe = tBsB[(None, mainloop_producer_state.index)]
# /////////////////////////////////////////////////////////////////////////////
# TMA load A/B
# /////////////////////////////////////////////////////////////////////////////
cute.copy(
tma_atom_a,
tAgA_k,
tAsA_pipe,
tma_bar_ptr=mainloop_pipeline.producer_get_barrier(
mainloop_producer_state
),
mcast_mask=a_mcast_mask,
)
cute.copy(
tma_atom_b,
tBgB_k,
tBsB_pipe,
tma_bar_ptr=mainloop_pipeline.producer_get_barrier(
mainloop_producer_state
),
mcast_mask=b_mcast_mask,
)
# Mainloop pipeline's producer commit is a NOP
mainloop_pipeline.producer_commit(mainloop_producer_state)
mainloop_producer_state.advance()
# /////////////////////////////////////////////////////////////////////////////
# EPILOG
# /////////////////////////////////////////////////////////////////////////////
cute.nvgpu.warpgroup.wait_group(0)
if cute.size(self.cluster_shape_mnk) > 1:
# Wait for all threads in the cluster to finish, avoid early release of smem
cute.arch.cluster_arrive()
cute.arch.cluster_wait()
else:
# For cluster that has a single thread block, it might have more than one warp groups.
# Wait for all warp groups in the thread block to finish, because smem for tensor A in
# the mainloop is reused in the epilogue.
cute.arch.sync_threads()
copy_atom_r2s = sm90_utils.sm90_get_smem_store_op(
self.c_layout,
elem_ty_d=self.c_dtype,
elem_ty_acc=self.acc_dtype,
)
copy_atom_C = cute.make_copy_atom(
cute.nvgpu.warp.StMatrix8x8x16bOp(
self.c_layout.is_m_major_c(),
4,
),
self.c_dtype,
)
tiled_copy_C_Atom = cute.make_tiled_copy_C_atom(copy_atom_C, tiled_mma)
tiled_copy_r2s = cute.make_tiled_copy_S(
copy_atom_r2s,
tiled_copy_C_Atom,
)
# (R2S, R2S_M, R2S_N, PIPE_D)
thr_copy_r2s = tiled_copy_r2s.get_slice(tidx)
tRS_sD = thr_copy_r2s.partition_D(sc)
# (R2S, R2S_M, R2S_N)
tRS_rAcc = tiled_copy_r2s.retile(accumulators)
# Allocate D registers.
rD_shape = cute.shape(thr_copy_r2s.partition_S(sc))
tRS_rD_layout = cute.make_layout(rD_shape[:3])
tRS_rD = cute.make_fragment_like(tRS_rD_layout, self.acc_dtype)
size_tRS_rD = cute.size(tRS_rD)
sepi_for_tma_partition = cute.group_modes(sc, 0, 2)
tcgc_for_tma_partition = cute.zipped_divide(gC_mnl, self.epi_tile)
bSG_sD, bSG_gD = cute.nvgpu.cpasync.tma_partition(
tma_atom_c,
0,
cute.make_layout(1),
sepi_for_tma_partition,
tcgc_for_tma_partition,
)
epi_tile_num = cute.size(tcgc_for_tma_partition, mode=[1])
epi_tile_shape = tcgc_for_tma_partition.shape[1]
for epi_idx in cutlass.range_dynamic(epi_tile_num, unroll=epi_tile_num):
# Copy from accumulators to D registers
for epi_v in range(size_tRS_rD):
tRS_rD[epi_v] = tRS_rAcc[epi_idx * size_tRS_rD + epi_v]
# Type conversion
tRS_rD_out = cute.make_fragment_like(tRS_rD_layout, self.c_dtype)
acc_vec = tRS_rD.load()
tRS_rD_out.store(acc_vec.to(self.c_dtype))
# Copy from D registers to shared memory
epi_buffer = epi_idx % cute.size(tRS_sD, mode=[3])
cute.copy(
tiled_copy_r2s, tRS_rD_out, tRS_sD[(None, None, None, epi_buffer)]
)
cute.arch.fence_proxy(
cute.arch.ProxyKind.async_shared,
space=cute.arch.SharedSpace.shared_cta,
)
# barrier for sync
cute.arch.barrier()
# Get the global memory coordinate for the current epi tile.
epi_tile_layout = cute.make_layout(
epi_tile_shape, stride=(epi_tile_shape[1], 1)
)
gmem_coord = epi_tile_layout.get_hier_coord(epi_idx)
# Copy from shared memory to global memory
if warp_idx == 0:
cute.copy(
tma_atom_c,
bSG_sD[(None, epi_buffer)],
bSG_gD[(None, gmem_coord)],
)
cute.arch.cp_async_bulk_commit_group()
cute.arch.cp_async_bulk_wait_group(self.epi_stage - 1, read=True)
cute.arch.barrier()
return
@staticmethod
def _compute_stages(
tile_shape_mnk: tuple[int, int, int],
a_dtype: type[cutlass.Numeric],
b_dtype: type[cutlass.Numeric],
smem_capacity: int,
occupancy: int,
) -> tuple[int, int]:
"""Computes the number of stages for A/B/C operands based on heuristics.
:param tile_shape_mnk: The shape (M, N, K) of the CTA tile.
:type tile_shape_mnk: tuple[int, int, int]
:param a_dtype: Data type of operand A.
:type a_dtype: type[cutlass.Numeric]
:param b_dtype: Data type of operand B.
:type b_dtype: type[cutlass.Numeric]
:param smem_capacity: Total available shared memory capacity in bytes.
:type smem_capacity: int
:param occupancy: Target number of CTAs per SM (occupancy).
:type occupancy: int
:return: A tuple containing the computed number of stages for:
(A/B operand stages, epilogue stages)
:rtype: tuple[int, int]
"""
epi_stage = 4
# epi_smem will reuse smem ab.
epi_bytes = 0
a_shape = cute.slice_(tile_shape_mnk, (None, 0, None))
b_shape = cute.slice_(tile_shape_mnk, (0, None, None))
ab_bytes_per_stage = (
cute.size(a_shape) * a_dtype.width // 8
+ cute.size(b_shape) * b_dtype.width // 8
)
mbar_helpers_bytes = 1024
ab_stage = (
(smem_capacity - occupancy * 1024) // occupancy
- mbar_helpers_bytes
- epi_bytes
) // ab_bytes_per_stage
return ab_stage, epi_stage
@staticmethod
def _sm90_compute_tile_shape_or_override(
tile_shape_mnk: tuple[int, int, int],
element_type: type[cutlass.Numeric],
is_cooperative: bool = False,
epi_tile_override: tuple[int, int] | None = None,
) -> tuple[int, int]:
"""Compute the epilogue tile shape or use override if provided.
:param tile_shape_mnk: CTA tile shape (M,N,K)
:type tile_shape_mnk: Tuple[int, int, int]
:param element_type: Data type of elements
:type element_type: type[cutlass.Numeric]
:param is_cooperative: Whether to use cooperative approach
:type is_cooperative: bool
:param epi_tile_override: Optional override for epilogue tile shape
:type epi_tile_override: Tuple[int, int] or None
:return: Computed epilogue tile shape
:rtype: Tuple[int, int]
"""
if epi_tile_override is not None:
return epi_tile_override
if is_cooperative:
tile_m = min(128, cute.size(tile_shape_mnk, mode=[0]))
tile_n = min(32, cute.size(tile_shape_mnk, mode=[1]))
return (tile_m, tile_n)
else:
n_perf = 64 if element_type.width == 8 else 32
tile_m = min(64, cute.size(tile_shape_mnk, mode=[0]))
tile_n = min(n_perf, cute.size(tile_shape_mnk, mode=[1]))
return (tile_m, tile_n)
@staticmethod
def _make_smem_layouts(
tile_shape_mnk: tuple[int, int, int],
epi_tile: tuple[int, int],
a_dtype: type[cutlass.Numeric],
a_layout: utils.LayoutEnum,
b_dtype: type[cutlass.Numeric],
b_layout: utils.LayoutEnum,
ab_stage: int,
c_dtype: type[cutlass.Numeric],
c_layout: utils.LayoutEnum,
epi_stage: int,
) -> tuple[cute.ComposedLayout, cute.ComposedLayout, cute.ComposedLayout]:
"""Create shared memory layouts for A, B, and C tensors.
:param tile_shape_mnk: CTA tile shape (M,N,K)
:type tile_shape_mnk: Tuple[int, int, int]
:param epi_tile: Epilogue tile shape
:type epi_tile: Tuple[int, int]
:param a_dtype: Data type for matrix A
:type a_dtype: type[cutlass.Numeric]
:param a_layout: Layout enum for matrix A
:type a_layout: utils.LayoutEnum
:param b_dtype: Data type for matrix B
:type b_dtype: type[cutlass.Numeric]
:param b_layout: Layout enum for matrix B
:type b_layout: utils.LayoutEnum
:param ab_stage: Number of stages for A/B tensors
:type ab_stage: int
:param c_dtype: Data type for output matrix C
:type c_dtype: type[cutlass.Numeric]
:param c_layout: Layout enum for the output matrix C
:type c_layout: utils.LayoutEnum
:param epi_stage: Number of epilogue stages
:type epi_stage: int
:return: Tuple of shared memory layouts for A, B, and C
:rtype: Tuple[cute.ComposedLayout, cute.ComposedLayout, cute.ComposedLayout]
"""
a_smem_shape = cute.slice_(tile_shape_mnk, (None, 0, None))
a_is_k_major = (
a_layout.sm90_mma_major_mode() == cute.nvgpu.warpgroup.OperandMajorMode.K
)
b_is_k_major = (
b_layout.sm90_mma_major_mode() == cute.nvgpu.warpgroup.OperandMajorMode.K
)
a_major_mode_size = tile_shape_mnk[2 if a_is_k_major else 0]
a_smem_layout_atom = cute.nvgpu.warpgroup.make_smem_layout_atom(
sm90_utils.get_smem_layout_atom(
a_layout,
a_dtype,
a_major_mode_size,
),
a_dtype,
)
a_smem_layout_staged = cute.tile_to_shape(
a_smem_layout_atom,
cute.append(a_smem_shape, ab_stage),
order=(0, 1, 2) if a_is_k_major else (1, 0, 2),
)
b_smem_shape = cute.slice_(tile_shape_mnk, (0, None, None))
b_major_mode_size = tile_shape_mnk[2 if b_is_k_major else 1]
b_smem_layout_atom = cute.nvgpu.warpgroup.make_smem_layout_atom(
sm90_utils.get_smem_layout_atom(
b_layout,
b_dtype,
b_major_mode_size,
),
b_dtype,
)
b_smem_layout_staged = cute.tile_to_shape(
b_smem_layout_atom,
cute.append(b_smem_shape, ab_stage),
order=(0, 1, 2) if b_is_k_major else (1, 0, 2),
)
c_smem_shape = epi_tile
c_major_mode_size = epi_tile[1] if c_layout.is_n_major_c() else epi_tile[0]
c_smem_layout_atom = cute.nvgpu.warpgroup.make_smem_layout_atom(
sm90_utils.get_smem_layout_atom(
c_layout,
c_dtype,
c_major_mode_size,
),
c_dtype,
)
epi_smem_layout_staged = cute.tile_to_shape(
c_smem_layout_atom,
cute.append(c_smem_shape, epi_stage),
order=(1, 0, 2) if c_layout.is_m_major_c() else (0, 1, 2),
)
return a_smem_layout_staged, b_smem_layout_staged, epi_smem_layout_staged
@staticmethod
def _compute_grid(
c: cute.Tensor,
tile_shape_mnk: tuple[int, int, int],
cluster_shape_mnk: tuple[int, int, int],
) -> tuple[int, int, int]:
"""Compute grid shape for the output tensor C.
:param c: The output tensor C
:type c: cute.Tensor
:param tile_shape_mnk: The shape (M, N, K) of the CTA tile.
:type tile_shape_mnk: tuple[int, int, int]
:param cluster_shape_mnk: Shape of each cluster in M, N, K dimensions.
:type cluster_shape_mnk: tuple[int, int, int]
:return: Grid shape for kernel launch.
:rtype: tuple[int, int, int]
"""
c_shape = (tile_shape_mnk[0], tile_shape_mnk[1])
gc = cute.zipped_divide(c, tiler=c_shape)
clusters = cute.ceil_div(cute.get(gc.layout, mode=[1]).shape, cluster_shape_mnk)
grid = tuple(x * y for x, y in zip(clusters, cluster_shape_mnk))
return grid
@staticmethod
def _make_tma_store_atoms_and_tensors(
tensor_c: cute.Tensor,
epi_smem_layout_staged: cute.ComposedLayout,
epi_tile: tuple[int, int],
) -> tuple[cute.CopyAtom, cute.Tensor]:
"""Create TMA atoms and tensors for C tensor storage.
:param tensor_c: Output tensor C
:type tensor_c: cute.Tensor
:param epi_smem_layout_staged: Shared memory layout for epilogue
:type epi_smem_layout_staged: cute.ComposedLayout
:param epi_tile: Epilogue tile shape
:type epi_tile: Tuple[int, int]
:return: TMA atom and tensor for C
:rtype: Tuple[cute.CopyAtom, cute.Tensor]
"""
epi_smem_layout = cute.slice_(epi_smem_layout_staged, (None, None, 0))
c_cta_v_layout = cute.composition(
cute.make_identity_layout(tensor_c.shape), epi_tile
)
tma_atom_c, tma_tensor_c = cute.nvgpu.cpasync.make_tma_tile_atom(
cute.nvgpu.cpasync.CopyBulkTensorTileS2GOp(),
tensor_c,
epi_smem_layout,
c_cta_v_layout,
)
return tma_atom_c, tma_tensor_c
@staticmethod
def _make_tma_atoms_and_tensors(
tensor: cute.Tensor,
smem_layout_staged: cute.ComposedLayout,
smem_tile: tuple[int, int],
mcast_dim: int,
) -> tuple[cute.CopyAtom, cute.Tensor]:
"""Create TMA atoms and tensors for input tensors.
:param tensor: Input tensor (A or B)
:type tensor: cute.Tensor
:param smem_layout_staged: Shared memory layout for the tensor
:type smem_layout_staged: cute.ComposedLayout
:param smem_tile: Shared memory tile shape
:type smem_tile: Tuple[int, int]
:param mcast_dim: Multicast dimension
:type mcast_dim: int
:return: TMA atom and tensor
:rtype: Tuple[cute.CopyAtom, cute.Tensor]
"""
op = (
cute.nvgpu.cpasync.CopyBulkTensorTileG2SOp()
if mcast_dim == 1
else cute.nvgpu.cpasync.CopyBulkTensorTileG2SMulticastOp()
)
smem_layout = cute.slice_(smem_layout_staged, (None, None, 0))
tma_atom, tma_tensor = cute.nvgpu.cpasync.make_tma_tile_atom(
op,
tensor,
smem_layout,
smem_tile,
num_multicast=mcast_dim,
)
return tma_atom, tma_tensor
@staticmethod
def is_valid_dtypes(
a_dtype: Type[cutlass.Numeric],
b_dtype: Type[cutlass.Numeric],
acc_dtype: Type[cutlass.Numeric],
c_dtype: Type[cutlass.Numeric],
a_major: str,
b_major: str,
) -> bool:
"""
Check if the dtypes are valid
:param a_dtype: The data type of tensor A
:type a_dtype: Type[cutlass.Numeric]
:param b_dtype: The data type of tensor B
:type b_dtype: Type[cutlass.Numeric]
:param acc_dtype: The data type of the accumulator
:type acc_dtype: Type[cutlass.Numeric]
:param c_dtype: The data type of the output tensor
:type c_dtype: Type[cutlass.Numeric]
:param a_major: major mode of tensor A
:type a_major: str
:param b_major: major mode of tensor B
:type b_major: str
:return: True if the dtypes are valid, False otherwise
:rtype: bool
"""
is_valid = True
# tested a_dtype
if a_dtype not in {
cutlass.Float16,
cutlass.Float8E4M3FN,
cutlass.Float8E5M2,
}:
is_valid = False
# tested b_dtype
if b_dtype not in {
cutlass.Float16,
cutlass.Float8E4M3FN,
cutlass.Float8E5M2,
}:
is_valid = False
# tested acc_dtype
if acc_dtype != cutlass.Float32:
is_valid = False
# tested c_dtype
if c_dtype not in {
cutlass.Float32,
cutlass.Float16,
cutlass.Float8E4M3FN,
cutlass.Float8E5M2,
}:
is_valid = False
# make sure a_dtype == b_dtype for Float16
if a_dtype.width == 16 and a_dtype != b_dtype:
is_valid = False
# make sure a_dtype.width == b_dtype.width (i.e, Float8E4M3FN or Float8E5M2)
if a_dtype.width != b_dtype.width:
is_valid = False
# for Float8 types, this implementation only supports k-major layout
if (a_dtype.width == 8 and a_major != "k") or (
b_dtype.width == 8 and b_major != "k"
):
is_valid = False
return is_valid
def run_dense_gemm(
mnkl: Tuple[int, int, int, int],
a_dtype: Type[cutlass.Numeric],
b_dtype: Type[cutlass.Numeric],
c_dtype: Type[cutlass.Numeric],
acc_dtype: Type[cutlass.Numeric],
a_major: str,
b_major: str,
c_major: str,
tile_shape_mnk: Tuple[int, int, int],
cluster_shape_mn: Tuple[int, int],
tolerance: float,
):
"""
Prepare A/B/C tensors, launch GPU kernel, and reference checking.
"""
print(f"Running Hopper Dense GEMM with:")
print(f"mnkl: {mnkl}")
print(
f"A dtype: {a_dtype}, B dtype: {b_dtype}, C dtype: {c_dtype}, Acc dtype: {acc_dtype}"
)
print(f"Matrix majors - A: {a_major}, B: {b_major}, C: {c_major}")
print(f"Tile Shape: {tile_shape_mnk}, Cluster Shape: {cluster_shape_mn}")
print(f"Tolerance: {tolerance}")
# Unpack parameters
m, n, k, l = mnkl
cluster_shape_mnk = (*cluster_shape_mn, 1)
# Skip unsupported types
if not HopperWgmmaGemmKernel.is_valid_dtypes(
a_dtype, b_dtype, acc_dtype, c_dtype, a_major, b_major
):
raise TypeError(
f"Skipping due to unsupported combination of types and majors: {a_dtype}, {b_dtype}, {acc_dtype}, {c_dtype}, {a_major=}, {b_major=}"
)
# Prepare pytorch tensors: A, B (random from 0 to 2) and C (all zero)
if not torch.cuda.is_available():
raise RuntimeError("GPU is required to run this example!")
torch.manual_seed(1111)
# Create and permute tensor A/B/C
def create_and_permute_tensor(
l, mode0, mode1, is_mode0_major, dtype, is_dynamic_layout=True
):
# is_mode0_major: (l, mode1, mode0) -> (mode0, mode1, l)
# else : (l, mode0, mode1) -> (mode0, mode1, l)
shape = (l, mode1, mode0) if is_mode0_major else (l, mode0, mode1)
permute_order = (2, 1, 0) if is_mode0_major else (1, 2, 0)
is_unsigned = dtype in {cutlass.Uint8}
# Temporarily use uint8 as torch does not support fp8 type
torch_dtype = (
cutlass_torch.dtype(dtype)
if dtype not in {cutlass.Float8E5M2, cutlass.Float8E4M3FN}
else torch.uint8
)
# Create dtype torch tensor (cpu)
torch_tensor_cpu = cutlass.torch.create_and_permute_torch_tensor(
shape,
torch_dtype,
permute_order=permute_order,
init_type=cutlass.torch.TensorInitType.RANDOM,
init_config=cutlass.torch.RandomInitConfig(
min_val=0 if is_unsigned else -2, max_val=4 if is_unsigned else 2
),
)
# Create dtype torch tensor (gpu)
torch_tensor = torch_tensor_cpu.cuda()
# Create f32 torch tensor (cpu)
f32_torch_tensor = torch_tensor_cpu.to(dtype=torch.float32)
# Create dtype cute tensor (gpu)
cute_tensor = from_dlpack(torch_tensor, assumed_align=16)
cute_tensor.element_type = dtype
if is_dynamic_layout:
cute_tensor = cute_tensor.mark_layout_dynamic(
leading_dim=(0 if is_mode0_major else 1)
)
cute_tensor = cutlass.torch.convert_cute_tensor(
f32_torch_tensor,
cute_tensor,
dtype,
is_dynamic_layout=is_dynamic_layout,
)
return f32_torch_tensor, cute_tensor, torch_tensor
a, mA, a_torch = create_and_permute_tensor(l, m, k, a_major == "m", a_dtype)
b, mB, b_torch = create_and_permute_tensor(l, n, k, b_major == "n", b_dtype)
c, mC, c_torch = create_and_permute_tensor(l, m, n, c_major == "m", c_dtype)
gemm = HopperWgmmaGemmKernel(acc_dtype, tile_shape_mnk, cluster_shape_mnk)
torch_stream = torch.cuda.Stream()
stream = cuda.CUstream(torch_stream.cuda_stream)
# compile gemm kernel
compiled_gemm = cute.compile(gemm, mA, mB, mC, stream)
# execution
compiled_gemm(mA, mB, mC, stream)
torch.cuda.synchronize()
# Ref check
ref = (torch.einsum("mkl,nkl->mnl", a, b)).cpu()
if c_dtype in (cutlass.Float8E4M3FN, cutlass.Float8E5M2):
# m major: (l, n, m) -> (m, n, l)
# k major: (l, m, n) -> (m, n, l)
permute_order = (1, 2, 0) if c_major == "n" else (2, 1, 0)
shape = (l, m, n) if c_major == "n" else (l, n, m)
f8_torch_tensor = cutlass_torch.create_and_permute_torch_tensor(
shape,
torch.uint8,
permute_order=permute_order,
init_type=cutlass_torch.TensorInitType.SKIP,
).cuda()
# Create dtype cute tensor (gpu)
ref_c_tensor = from_dlpack(
f8_torch_tensor, assumed_align=16
).mark_layout_dynamic(leading_dim=(1 if c_major == "n" else 0))
ref_c_tensor.element_type = c_dtype
ref_c_tensor = cutlass_torch.convert_cute_tensor(
ref,
ref_c_tensor,
c_dtype,
is_dynamic_layout=True,
)
ref_c = f8_torch_tensor.cpu()
else:
ref_c = ref.to(cutlass_torch.dtype(c_dtype))
torch.testing.assert_close(c_torch.cpu(), ref_c, atol=tolerance, rtol=1e-03)
if __name__ == "__main__":
args = parse_arguments()
run_dense_gemm(
args.mnkl,
args.a_dtype,
args.b_dtype,
args.c_dtype,
args.acc_dtype,
args.a_major,
args.b_major,
args.c_major,
args.tile_shape_mnk,
args.cluster_shape_mn,
args.tolerance,
)
print("PASS")