Files
cutlass/include/cutlass/complex.h
Yujia Zhai b78588d163 CUTLASS 3.7 (#2045)
* CUTLASS 3.7

* clean up changelog

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-01-18 09:53:07 -05:00

824 lines
24 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cuComplex.h>
#include <cuda_fp16.h>
#if defined(__CUDACC_RTC__)
#include <cuda/std/cstdint>
#else
#include <cstdint>
#endif
#include "cutlass/cutlass.h"
#include "cutlass/functional.h"
#include "cutlass/platform/platform.h"
#include "cutlass/real.h"
#include "cutlass/numeric_types.h"
#include "cutlass/fast_math.h"
#if !defined(__CUDACC_RTC__)
#include <iosfwd>
#endif
namespace cutlass {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Enumeraed type describing a transformation on a complex value.
enum class ComplexTransform {
kNone,
kConjugate
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines ComplexTransform inversions
template <ComplexTransform kTransform>
struct InvertComplexTransform;
/// Invert ComplexTransform from kNone to kConjugate
template <>
struct InvertComplexTransform<ComplexTransform::kNone> {
static ComplexTransform const transform = ComplexTransform::kConjugate;
};
/// Invert ComplexTransform from kConjugate to kNone
template <>
struct InvertComplexTransform<ComplexTransform::kConjugate> {
static ComplexTransform const transform = ComplexTransform::kNone;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
//
// Accessors for CUDA complex types
//
#if !defined(__CUDACC_RTC__)
/// Returns the real part of the complex number
CUTLASS_HOST_DEVICE
float const &real(cuFloatComplex const &z) { return z.x; }
/// Returns the real part of the complex number
CUTLASS_HOST_DEVICE
float &real(cuFloatComplex &z) { return z.x; }
/// Returns the real part of the complex number
CUTLASS_HOST_DEVICE
double const &real(cuDoubleComplex const &z) { return z.x; }
/// Returns the real part of the complex number
CUTLASS_HOST_DEVICE
double &real(cuDoubleComplex &z) { return z.x; }
/// Returns the imaginary part of the complex number
CUTLASS_HOST_DEVICE
float const &imag(cuFloatComplex const &z) { return z.y; }
/// Returns the imaginary part of the complex number
CUTLASS_HOST_DEVICE
float &imag(cuFloatComplex &z) { return z.y; }
/// Returns the imaginary part of the complex number
CUTLASS_HOST_DEVICE
double const &imag(cuDoubleComplex const &z) { return z.y; }
/// Returns the imaginary part of the complex number
CUTLASS_HOST_DEVICE
double &imag(cuDoubleComplex &z) { return z.y; }
// Returns the conjugate of the complex number
CUTLASS_HOST_DEVICE cuFloatComplex
conj(cuFloatComplex const& z) {
return make_cuFloatComplex(z.x, -z.y);
}
// Returns the conjugate of the complex number
CUTLASS_HOST_DEVICE cuDoubleComplex
conj(cuDoubleComplex const& z) {
return make_cuDoubleComplex(z.x, -z.y);
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Class for representing and manipulating complex numbers with conversions from built-in CUDA
/// complex types.
template <typename T>
class complex
{
public:
/// Type alias for scalar type
using value_type = T;
private:
//
// Data members
//
/// Real part
T _real;
/// Imaginary part
T _imag;
public:
//
// Methods
//
/// Default constructor
complex() = default;
/// Constructor
CUTLASS_HOST_DEVICE
complex(T r) : _real(r), _imag(T(0)) {}
/// Constructor
CUTLASS_HOST_DEVICE
complex(T r, T i) : _real(r), _imag(i) {}
/// Constructor
template<typename A>
CUTLASS_HOST_DEVICE
complex(complex<A> const &z) : _real(static_cast<T>(z.real())), _imag(static_cast<T>(z.imag())) {}
#if !defined(__CUDACC_RTC__)
/// Conversion from cuFloatComplex
CUTLASS_HOST_DEVICE
complex(cuFloatComplex const &z) : _real(static_cast<T>(cuCrealf(z))), _imag(static_cast<T>(cuCimagf(z))) {}
/// Conversion from cuDoubleComplex
CUTLASS_HOST_DEVICE
complex(cuDoubleComplex const &z) : _real(static_cast<T>(cuCreal(z))), _imag(static_cast<T>(cuCimag(z))) {}
#endif
/// Equality operator
CUTLASS_HOST_DEVICE bool operator==(complex<T> const &rhs) const {
return this->real() == rhs.real() && this->imag() == rhs.imag();
}
/// Inequality operator
CUTLASS_HOST_DEVICE bool operator!=(complex<T> const &rhs) const {
return !(*this == rhs);
}
/// Addition
template <typename A>
CUTLASS_HOST_DEVICE complex<T> operator+(complex<A> const &rhs) const {
return complex<T>(this->real() + rhs.real(), this->imag() + rhs.imag());
}
/// Reduction into memory address. Components may update out of order.
template <typename OtherT>
CUTLASS_DEVICE void red(complex<OtherT> *ptr) const {
static_assert(platform::is_same<T, OtherT>::value, "Component type must match");
cutlass::atomic_add<T> reduce;
reduce(&ptr->_real, _real);
reduce(&ptr->_imag, _imag);
}
/// Reduction into memory address. Components may update out of order. (Half specialization)
CUTLASS_DEVICE void red(complex<half_t> *ptr) const {
static_assert(platform::is_same<T, half_t>::value, "Component type must match");
half2 *h2_ptr = reinterpret_cast<half2*>(ptr);
half2 h2_data = reinterpret_cast<half2&>(*this);
cutlass::atomic_add<half2> reduce;
reduce(h2_ptr, h2_data);
}
/// Subtraction
template <typename A>
CUTLASS_HOST_DEVICE complex<T> operator-(complex<A> const &rhs) const {
return complex<T>(this->real() - rhs.real(), this->imag() - rhs.imag());
}
/// Multiplication
template <typename A>
CUTLASS_HOST_DEVICE complex<T> operator*(complex<A> const &rhs) const {
return complex<T>(this->real() * rhs.real() - this->imag() * rhs.imag(),
this->real() * rhs.imag() + this->imag() * rhs.real());
}
/// Scalar Multiplication
template <typename A>
CUTLASS_HOST_DEVICE complex<T> operator*(A const &s) const {
return complex<T>(this->real() * s, this->imag() * s);
}
/// Division
template <typename A>
CUTLASS_HOST_DEVICE complex<T> operator/(complex<A> const &rhs) const {
T d = T(rhs.real() * rhs.real() + rhs.imag() * rhs.imag());
return complex<T>(
(real() * rhs.real() + imag() * rhs.imag()) / d,
(imag() * rhs.real() - real() * rhs.imag()) / d
);
}
/// Scalar Division
template <typename A>
CUTLASS_HOST_DEVICE complex<T> operator/(A const &s) const {
return complex<T>(this->real() / s, this->imag() / s);
}
/// Addition
template <typename A>
CUTLASS_HOST_DEVICE complex<T> &operator+=(complex<A> const &rhs) {
*this = *this + rhs;
return *this;
}
/// Subtraction
template <typename A>
CUTLASS_HOST_DEVICE complex<T> &operator-=(complex<A> const &rhs) {
*this = *this - rhs;
return *this;
}
/// Multiplication
template <typename A>
CUTLASS_HOST_DEVICE complex<T> &operator*=(complex<A> const &rhs) {
*this = *this * rhs;
return *this;
}
/// Scalar multiplication
template <typename A>
CUTLASS_HOST_DEVICE complex<T> &operator*=(A s) {
*this = *this * s;
return *this;
}
/// Division
template <typename A>
CUTLASS_HOST_DEVICE complex<T> &operator/=(complex<A> const &rhs) {
*this = *this / rhs;
return *this;
}
/// Accesses the real part of the complex number
CUTLASS_HOST_DEVICE
T const &real() const { return _real; }
/// Accesses the real part of the complex number
CUTLASS_HOST_DEVICE
T &real() { return _real; }
/// Accesses the imaginary part of the complex number
CUTLASS_HOST_DEVICE
T const &imag() const { return _imag; }
/// Accesses the imaginary part of the complex number
CUTLASS_HOST_DEVICE
T &imag() { return _imag; }
/// Set the real part of the complex number
CUTLASS_HOST_DEVICE
void real(T real) { _real = real; }
/// Set the imaginary part of the complex number
CUTLASS_HOST_DEVICE
void imag(T imag) { _imag = imag; }
#if !defined(__CUDACC_RTC__)
/// Converts to cuFloatComplex
CUTLASS_HOST_DEVICE
explicit operator cuFloatComplex() const { return make_cuFloatComplex(float(real()), float(imag())); }
/// Converts to cuDoubleComplex
CUTLASS_HOST_DEVICE
explicit operator cuDoubleComplex() const { return make_cuDoubleComplex(real(), imag()); }
#endif
};
// Complex conjugate
template<class T>
CUTLASS_HOST_DEVICE complex<T> conj(complex<T> const& z) {
return {z.real(), -z.imag()};
}
///////////////////////////////////////////////////////////////////////////////////////////////////
//
// Accessors for complex template
//
// Nonmember real and imag need to work for non-complex numbers too.
// That means cutlass::complex, std::complex, cuda::std::complex, and
// any user-defined complex number type that looks like std::complex.
// It's reasonable to assume that a "complex number type" has
// zero-argument real() and imag() member functions returning
// non-void. While cuFloatComplex and cuDoubleComplex lack those
// member functions, one-argument nonmember real and imag overloads
// for those types are defined above.
namespace detail {
template <typename T, typename Enable = void>
struct has_zero_argument_real_member_function :
cutlass::platform::false_type
{};
template <typename T>
struct has_zero_argument_real_member_function<T,
cutlass::platform::enable_if_t<
! cutlass::platform::is_void_v<
decltype(cutlass::platform::declval<T>().real())
>
>
> : cutlass::platform::true_type
{};
template <typename T>
constexpr bool has_zero_argument_real_member_function_v =
has_zero_argument_real_member_function<T>::value;
template <typename T, typename Enable = void>
struct has_zero_argument_imag_member_function :
cutlass::platform::false_type
{};
template <typename T>
struct has_zero_argument_imag_member_function<T,
cutlass::platform::enable_if_t<
! cutlass::platform::is_void_v<
decltype(cutlass::platform::declval<T>().imag())
>
>
> : cutlass::platform::true_type
{};
template <typename T>
constexpr bool has_zero_argument_imag_member_function_v =
has_zero_argument_imag_member_function<T>::value;
} // namespace detail
template<typename T>
CUTLASS_HOST_DEVICE auto real(T z) {
if constexpr (detail::has_zero_argument_real_member_function_v<T>) {
return z.real();
} else {
return z;
}
}
template<typename T>
CUTLASS_HOST_DEVICE auto imag(T z) {
if constexpr (detail::has_zero_argument_imag_member_function_v<T>) {
return z.imag();
} else {
// Imaginary part of a non-complex input has the same type as the
// input, and its value is zero. CUTLASS assumes in this case
// that value-initializing T is well-formed and results in zero.
return T{};
}
}
//
// Output operators
//
#if !defined(__CUDACC_RTC__)
template <typename T>
std::ostream &operator<<(std::ostream &out, complex<T> const &z) {
T _r = real(z);
T _i = imag(z);
if (bool(_i)) {
return out << _r << "+i" << _i;
}
return out << _r;
}
#endif
//
// Non-member operators defined for complex types
//
//
// Non-member functions defined for complex numbers
//
// abs returns the magnitude of the complex number.
CUTLASS_HOST_DEVICE float abs(complex<float> const &z) {
return ::hypot(z.real(), z.imag());
}
CUTLASS_HOST_DEVICE double abs(complex<double> const &z) {
return ::hypot(z.real(), z.imag());
}
// In theory, it would make sense to add a complex<long double>
// specialization of abs here, since hypot works for long double too.
// In practice, long double doesn't have a portable number of bits or
// behavior, so users who care about higher-precision floating-point
// computation should probably insist on an actual FP128 type.
template <typename T>
CUTLASS_HOST_DEVICE T abs(complex<T> const &z) {
// cutlass::complex permits all kinds of T, including types that
// don't have NaN. For a generic floating-point type with Inf
// and/or NaN, LAPACK's DLAPY2 algorithm would make sense, as it
// would handle issues like avoiding unwarranted overflow if
// z.real() or z.imag() is slightly bigger than the square root of
// the max finite number. That could be a future improvement; for
// now, the code just uses the naive algorithm.
//
// Use the "swap two-step" idiom so that argument-dependent lookup
// can find any CUTLASS-specific overloads.
using cutlass::sqrt;
return sqrt(z.real() * z.real() + z.imag() * z.imag());
}
/// Returns the magnitude of the complex number
template <typename T>
CUTLASS_HOST_DEVICE T arg(complex<T> const &z) {
return atan2(imag(z), real(z));
}
/// Returns the squared magnitude of a real number
template <typename T>
CUTLASS_HOST_DEVICE T norm(T const &z) {
return z * z;
}
/// Returns the squared magnitude of a real number
template <>
CUTLASS_HOST_DEVICE int8_t norm(int8_t const &z) {
return static_cast<int8_t>(z * z);
}
/// Returns the squared magnitude of a complex number
template <typename T>
CUTLASS_HOST_DEVICE double norm(complex<T> const &z) {
return real(z) * real(z) + imag(z) * imag(z);
}
/// Norm-accumulate calculation
template <typename T, typename R>
CUTLASS_HOST_DEVICE R norm_accumulate(T const &x, R const & accumulator) {
return accumulator + static_cast<R>(x) * static_cast<R>(x);
}
/// Norm accumulate specialized for complex types
template <typename T, typename R>
CUTLASS_HOST_DEVICE R norm_accumulate(complex<T> const &z, R const &accumulator) {
return accumulator + static_cast<R>(real(z)) * static_cast<R>(real(z)) +
static_cast<R>(imag(z)) * static_cast<R>(imag(z));
}
namespace detail {
template<class T>
CUTLASS_HOST_DEVICE T conj_impl(T const& z, cutlass::platform::true_type) {
return conj(z);
}
template<class T>
CUTLASS_HOST_DEVICE T conj_impl(T const& z, cutlass::platform::false_type) {
return z;
}
template<class T>
CUTLASS_HOST_DEVICE T conj_impl(T const& z) {
constexpr bool use_unqualified_conj =
! cutlass::platform::is_arithmetic_v<T> &&
! detail::has_cutlass_conj_v<T> &&
detail::has_unqualified_conj_v<T>;
return conj_impl(z, cutlass::platform::bool_constant<use_unqualified_conj>{});
}
} // namespace detail
// Return the complex conjugate of the input.
//
// This MUST be a function and not a function object, because it may
// be common practice for downstream types to define specifically
// cutlass::conj overloads, instead of overloads in their namespace.
//
// As a result of this being a function and not a function object,
// CUTLASS code needs to declare "using cutlass::conj;" in scope and
// then call this function unqualified, just like std::swap.
//
// If an overload already exists for cutlass::conj(T), that overload
// will be called instead of this one. Otherwise:
//
// 1. for arithmetic types, return z;
//
// 2. for types where (namespace-unqualified) conj(z) is well formed
// and cutlass::conj(z) is NOT well formed, return conj(z); and,
//
// 3. for everything else, return z.
//
// Regarding (1), the C++ Standard Library makes std::conj always
// return std::complex, even for (noncomplex) arithmetic types.
// cutlass::conj(T t) needs to return type T. This follows the
// convention of linear algebra software like the BLAS, where
// "conjugate transpose" means the same thing as "transpose" for a
// matrix of noncomplex numbers.
//
// Case (2) covers std::complex, cuda::std::complex, and non-Standard
// (including user-defined) complex number types (for which "conj(z)"
// is findable via argument-dependent lookup, but does not live in the
// cutlass namespace). It excludes cutlass::conj(z) in order to
// prevent infinite recursion.
//
// Case (3) covers non-Standard non-complex number types.
template<class T>
CUTLASS_HOST_DEVICE T conj(T const& z) {
return detail::conj_impl(z);
}
/// Projects the complex number z onto the Riemann sphere
template <typename T>
CUTLASS_HOST_DEVICE complex<T> proj(complex<T> const &z) {
T d = real(z) * real(z) + imag(z) * imag(z) + T(1);
return complex<T>((T(2) * real(z)) / d, (T(2) * imag(z)) / d);
}
/// Returns a complex number with magnitude r and phase theta
template <typename T>
CUTLASS_HOST_DEVICE complex<T> polar(T const &r, T const &theta = T()) {
return complex<T>(r * cos(theta), r * sin(theta));
}
/// Computes the complex exponential of z.
template <typename T>
CUTLASS_HOST_DEVICE complex<T> exp(complex<T> const &z) {
return complex<T>(fast_exp(real(z)) * fast_cos(imag(z)), fast_exp(real(z)) * fast_sin(imag(z)));
}
/// Computes the log of z
template <typename T>
CUTLASS_HOST_DEVICE complex<T> log(complex<T> const &z) {
return complex<T>(log(abs(z)), arg(z));
}
/// Computes the log base 10 of z
template <typename T>
CUTLASS_HOST_DEVICE complex<T> log10(complex<T> const &z) {
return log(z) / T(log(T(10)));
}
/// Computes the square root of complex number z
template <typename T>
CUTLASS_HOST_DEVICE complex<T> sqrt(complex<T> const &z) {
return sqrt(T(2)) / T(2) *
complex<T>(sqrt(sqrt(norm(z)) + real(z)),
(imag(z) < 0 ? T(-1) : T(1)) * sqrt(sqrt(norm(z)) - real(z)));
}
/// Computes the cosine of complex z.
template <typename T>
CUTLASS_HOST_DEVICE complex<T> cos(complex<T> const &z) {
return (exp(z) + exp(-z)) / T(2);
}
/// Computes the sin of complex z.
template <typename T>
CUTLASS_HOST_DEVICE complex<T> sin(complex<T> const &z) {
return (exp(-z) - exp(z)) * complex<T>(T(0), T(1) / T(2));
}
/// Comparison
template <typename T>
CUTLASS_HOST_DEVICE bool operator<(complex<T> const &lhs, complex<T> const &rhs) {
return true;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for complex-valued type.
template <typename T>
struct RealType< complex<T> >
{
using Type = T;
/// Number of elements
static int const kExtent = 2;
CUTLASS_HOST_DEVICE
static complex<T> from_real(double x) {
return complex<T>(static_cast<T>(x));
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template <>
CUTLASS_HOST_DEVICE
cutlass::complex<half_t> from_real<cutlass::complex<half_t> >(double r) {
return cutlass::complex<half_t>(half_t(r));
}
template <>
CUTLASS_HOST_DEVICE
cutlass::complex<float> from_real<cutlass::complex<float> >(double r) {
return cutlass::complex<float>(float(r));
}
template <>
CUTLASS_HOST_DEVICE
cutlass::complex<double> from_real<cutlass::complex<double> >(double r) {
return cutlass::complex<double>(r);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
struct is_complex {
static bool const value = false;
};
template <typename T>
struct is_complex<complex<T>> {
static bool const value = true;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
// functional.h numeric specializations
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Squares with optional conversion
template <typename T, typename Output>
struct magnitude_squared<complex<T>, Output> {
CUTLASS_HOST_DEVICE
Output operator()(complex<T> lhs) const {
multiplies<Output> mul_op;
Output y_r = Output(lhs.real());
Output y_i = Output(lhs.imag());
return mul_op(y_r, y_r) + mul_op(y_i, y_i);
}
};
/// Fused multiply-add
template <typename T>
struct multiply_add<complex<T>, complex<T>, complex<T>> {
CUTLASS_HOST_DEVICE
complex<T> operator()(
complex<T> const &a,
complex<T> const &b,
complex<T> const &c) const {
T real = c.real();
T imag = c.imag();
real += a.real() * b.real();
real += -a.imag() * b.imag();
imag += a.real() * b.imag();
imag += a.imag () * b.real();
return complex<T>{
real,
imag
};
}
};
/// Fused multiply-add
template <typename T>
struct multiply_add<complex<T>, T, complex<T>> {
CUTLASS_HOST_DEVICE
complex<T> operator()(
complex<T> const &a,
T const &b,
complex<T> const &c) const {
T real = c.real();
T imag = c.imag();
real += a.real() * b;
imag += a.imag () * b;
return complex<T>{
real,
imag
};
}
};
/// Fused multiply-add
template <typename T>
struct multiply_add<T, complex<T>, complex<T>> {
CUTLASS_HOST_DEVICE
complex<T> operator()(
T const &a,
complex<T> const &b,
complex<T> const &c) const {
T real = c.real();
T imag = c.imag();
real += a * b.real();
imag += a * b.imag();
return complex<T>{
real,
imag
};
}
};
/// Conjugate
template <typename T>
struct conjugate<complex<T>> {
CUTLASS_HOST_DEVICE
complex<T> operator()(complex<T> const &a) const {
// Invoke the complex<T> overload specifically, rather than
// wasting the compiler's effort on overload resolution.
return cutlass::conj(a);
}
};
#if ! defined(__CUDACC_RTC__)
template <>
struct conjugate<cuFloatComplex> {
CUTLASS_HOST_DEVICE
cuFloatComplex operator()(cuFloatComplex const& z) const {
return make_cuFloatComplex(z.x, -z.y);
}
};
template <>
struct conjugate<cuDoubleComplex> {
CUTLASS_HOST_DEVICE
cuDoubleComplex operator()(cuDoubleComplex const& z) const {
return make_cuDoubleComplex(z.x, -z.y);
}
};
#endif
/// Computes the square of a difference with optional conversion
template <typename T, typename Output>
struct magnitude_squared_difference<complex<T>, Output> {
CUTLASS_HOST_DEVICE
Output operator()(complex<T> lhs, complex<T> rhs) const {
multiplies<Output> mul_op;
Output y_r = Output(lhs.real()) - Output(rhs.real());
Output y_i = Output(lhs.imag()) - Output(rhs.imag());
return mul_op(y_r, y_r) + mul_op(y_i, y_i);
}
};
/// Reduces value into the data pointed to by ptr (complex<T> specialization)
template <typename T>
struct atomic_add<complex<T>> {
CUTLASS_DEVICE
void operator()(complex<T> *ptr, const complex<T> &data)
{
data.red(ptr);
}
};
//////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass
//////////////////////////////////////////////////////////////////////////////////////////////////