Files
cutlass/python/cutlass_cppgen/backend/evt/epilogue.py
2025-09-18 14:26:57 -04:00

169 lines
7.0 KiB
Python

#################################################################################################
#
# Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Epilogue Visitor interface for compiling, and running visitor-based epilogue.
"""
import ctypes
from cutlass_cppgen.utils.lazy_import import lazy_import
cuda = lazy_import("cuda.cuda")
from cutlass_library import DataType
import numpy as np
from cutlass_cppgen.backend.epilogue import EpilogueFunctorBase
import cutlass_cppgen.backend.evt.backend
from cutlass_cppgen.backend.frontend import TensorFrontend
from cutlass_cppgen.utils.datatypes import is_numpy_tensor
from cutlass_cppgen.backend.evt.passes.util import cc_map
class EpilogueFunctorVisitor(EpilogueFunctorBase):
"""
Apply an epilogue functor described by the epilogue EVT
:param cc: compute capability
:param visitor_frontend: user-provide visitor frontend
"""
def __init__(self, cc: int, visitor, element_compute=DataType.f32) -> None:
# Type of Emitter based on CC
self.emit_cls = getattr(cutlass_cppgen.backend.evt.backend, f"Sm{cc_map[cc]}Emitter")
# Visitor Types
self.visitor = visitor
self.graph = visitor.dag_ir
# Data types
self.element_epilogue = element_compute # element compute
self.element_output = self.graph.get_node_meta('D').underlying_impl.element
# Epilogue Thread Type
epilogue_thread_type = self.visitor.epilogue_thread_type
if cc_map[cc] in [90, 100]:
self.arg_c_type = self.visitor.arg_c_type
self.arg_d_type = self.visitor.arg_d_type
output_names = self.visitor.return_names
reduction_names = self.visitor.reduction_names
# Epilogue stages specialized for sm80 kernel
if cc == 80:
if hasattr(self.visitor, "epilogue_stages"):
self.epilogue_stages = self.visitor.epilogue_stages
assert self.epilogue_stages <= 2, "Only supports Stages <=2 in SM80 Epilogue"
# Epilogue Argument Type
class _Arguments(ctypes.Structure):
"""
Concepts:
class _EpilogueArguments(ctypes.Structure):
_fields_ = [
("epilogue", _Arguments), <- this class
("ptr_C", ctypes.c_void_p),
("stride_C", StrideBatched_),
("ptr_D", ctypes.c_void_p),
("stride_D", StrideBatched_)
]
"""
_fields_ = [
("output_op", epilogue_thread_type)
]
def __init__(self, kwargs: dict) -> None:
# The user-input kwargs is a dict of (name: tensors)
# We first convert all of them to device pointers
ptr_kwargs = {}
for key in kwargs.keys():
is_output = key in output_names and key not in reduction_names
ptr_kwargs[key] = self.get_tensor_ptr(key, kwargs, is_output)
# Initialize the thread arguments
self.output_op = epilogue_thread_type(ptr_kwargs)
def get_tensor_ptr(self, tensor_name, kwargs, is_output=False):
"""
Helper function for extracting device pointer
"""
# Skip the special tensors
if cc in [90, 100]:
if tensor_name in ["C", "D"]:
return 0
if tensor_name not in kwargs.keys():
raise ValueError(f"Tensor {tensor_name} is not provided.")
tensor = kwargs[tensor_name]
# For float scalar constant, directly return the value
if isinstance(tensor, float):
return tensor
# The tensor frontend returns a device buffer for np.ndarray
# and device ptr for other frontends
buffer_or_ptr = TensorFrontend.argument(tensor, is_output)
if is_numpy_tensor(tensor):
# Remember the host tensor for later synchronization
setattr(self, f"{tensor_name}_buffer", buffer_or_ptr)
setattr(self, f"{tensor_name}_host", tensor)
return int(buffer_or_ptr.ptr)
else:
return int(buffer_or_ptr)
def sync(self):
"""
Synchronize the results from device to host
"""
for name in output_names:
if hasattr(self, f"{name}_host"):
host_tensor = getattr(self, f"{name}_host")
tensor_ptr = getattr(self, f"{name}_buffer").ptr
(err,) = cuda.cuMemcpyDtoH(
host_tensor,
tensor_ptr,
host_tensor.size * host_tensor.itemsize,
)
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError("CUDA Error %s" % str(err))
self.epilogue_type = _Arguments
def emit(self, operation):
"""
Emit the C++ code
"""
emitter = self.emit_cls(operation, self.graph)
return emitter.emit()
def get_smem_size(self, tile_description):
"""
Get the shared memory size in bytes
"""
return self.visitor.get_smem_size(tile_description)