Files
cutlass/python/cutlass_cppgen/backend/evt/frontend/python_ast.py
2025-09-18 14:26:57 -04:00

195 lines
7.0 KiB
Python

#################################################################################################
#
# Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Python AST frontend that parses input into DAG IR
"""
import ast
import inspect
import textwrap
from cutlass_library import DataType
import cutlass_cppgen
from cutlass_cppgen.backend.evt.frontend.frontend_base import EVTFrontendBase
from cutlass_cppgen.backend.epilogue import identity, relu, tanh, sigmoid, silu, hardswish, gelu
from cutlass_cppgen.backend.library import FunctionalOp
class PythonASTFrontend(EVTFrontendBase, ast.NodeVisitor):
def __init__(self, cc, element_compute=DataType.f32, **kwargs):
super().__init__(cc, element_compute, **kwargs)
# Flags
# If this state is True, visit_Constant returns values without creating imm node
self.no_imm = False
self.visiting_return = False
def parse(self, example_inputs):
self.example_inputs = example_inputs
self.source = textwrap.dedent(inspect.getsource(self.__call__))
self.ast = ast.parse(self.source)
self.visit(self.ast)
#
# Helper functions
#
@staticmethod
def ast_op_to_bindings(op):
mapping = {
ast.Add: FunctionalOp.Plus,
ast.Sub: FunctionalOp.Minus,
ast.Mult: FunctionalOp.Multiplies,
ast.Div: FunctionalOp.Divides,
"maximum": FunctionalOp.Maximum,
"minimum": FunctionalOp.Minimum,
"identity": identity.binding_type,
"relu": relu.binding_type,
"tanh": tanh.binding_type,
"sigmoid": sigmoid.binding_type,
"silu": silu.binding_type,
"hardswish": hardswish.binding_type,
"gelu": gelu.binding_type,
"multiply_add": FunctionalOp.MultiplyAdd,
"sum": (FunctionalOp.Plus, FunctionalOp.AtomicAdd),
"max": (FunctionalOp.Maximum, FunctionalOp.AtomicMaximum),
"exp": FunctionalOp.Exp
}
return mapping[op]
#
# Visiting different node types
#
def visit_FunctionDef(self, node: ast.FunctionDef):
# Visit args and register load nodes
for arg in node.args.args:
self.visit(arg)
for expr in node.body:
self.visit(expr)
def visit_arg(self, node: ast.arg):
# Name of the argument
name = node.arg
try:
example_tensor = self.example_inputs[name]
except:
raise RuntimeError(f"Example input for {name} is not provided.")
self.add_load_node(name, example_tensor)
def visit_Name(self, node: ast.Name):
return node.id
def visit_Constant(self, node: ast.Constant):
if self.no_imm:
return node.value
else:
name = self.add_imm(node.value)
return name
def visit_Tuple(self, node: ast.Tuple):
results = []
for elt in node.elts:
results.append(self.visit(elt))
return tuple(results)
def visit_keyword(self, node: ast.keyword):
return {node.arg: self.visit(node.value)}
def visit_BinOp(self, node: ast.BinOp):
if self.visiting_return:
raise SyntaxError("Return value cannot be an expression")
lhs = self.visit(node.left)
rhs = self.visit(node.right)
op = self.ast_op_to_bindings(type(node.op))
name = self.add_compute_node(op)
# Add edges
# The edge weights are used to sort the input args
self.add_edge(lhs, name, weight=0)
self.add_edge(rhs, name, weight=1)
return name
def visit_Assign(self, node: ast.BinOp):
target = self.visit(node.targets[0])
value = self.visit(node.value)
# Create the assign node
self.add_store_node(target)
# Add edges
self.add_edge(value, target)
return target
def visit_Call(self, node: ast.Call):
if self.visiting_return:
raise SyntaxError("Return value cannot be an expression")
func = self.visit(node.func)
args = [self.visit(arg) for arg in node.args]
if func in self.layout_fns.keys():
# Parse kwargs
# By default, visiting imm automatically creates a load node
# However, in function call, keyword args are used to set
# specific function attributes such as indices for permute
# So no_imm is set to True temporarily
self.no_imm = True
kwargs = {}
for kw in node.keywords:
kwargs.update(self.visit(kw))
self.no_imm = False
op = self.layout_fns[func]
name = self.add_layout_node(op, kwargs)
else:
op = self.ast_op_to_bindings(func)
name = self.add_compute_node(op)
# Add edges
for idx, arg in enumerate(args):
self.add_edge(arg, name, weight=idx)
return name
def visit_Return(self, node: ast.Return):
self.visiting_return = True
results = self.visit(node.value)
self.visiting_return = False
self.return_names = results
if not isinstance(results, tuple):
results = (results,)
for rst in results:
try:
example_tensor = self.example_inputs[rst]
except:
raise RuntimeError(f"Example input for {rst} is not provided.")
self.set_store_tensor(rst, example_tensor)
self.mark_output(rst)