177 lines
6.2 KiB
Python
177 lines
6.2 KiB
Python
#################################################################################################
|
|
#
|
|
# Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
#
|
|
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
# list of conditions and the following disclaimer.
|
|
#
|
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
# this list of conditions and the following disclaimer in the documentation
|
|
# and/or other materials provided with the distribution.
|
|
#
|
|
# 3. Neither the name of the copyright holder nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
#################################################################################################
|
|
|
|
"""
|
|
Registry of elementwise epilogues
|
|
|
|
Elementwise epilogues can be added to many CUTLASS kernels in the CUTLAS Python interface via
|
|
code like the following for GEMM:
|
|
|
|
.. highlight:: python
|
|
.. code-block:: python
|
|
|
|
plan = cutlass_cppgen.op.Gemm(element=cutlass_cppgen.DataType.f32, layout=cutlass_cppgen.LayoutType.RowMajor)
|
|
plan.activation = cutlass_cppgen.epilogue.relu
|
|
"""
|
|
|
|
from cutlass_cppgen.backend import epilogue, device_cc
|
|
|
|
|
|
gelu = epilogue.gelu
|
|
hardswish = epilogue.hardswish
|
|
identity = epilogue.identity
|
|
leaky_relu = epilogue.leaky_relu
|
|
relu = epilogue.relu
|
|
sigmoid = epilogue.sigmoid
|
|
silu = epilogue.silu
|
|
tanh = epilogue.tanh
|
|
|
|
|
|
_activations = [gelu, hardswish, identity, leaky_relu, relu, sigmoid, silu, tanh]
|
|
|
|
|
|
def get_activations() -> list:
|
|
"""
|
|
Returns a list of available activation functions
|
|
|
|
:return: list of available activation functions
|
|
:rtype: list
|
|
"""
|
|
return _activations
|
|
|
|
|
|
def get_activation_epilogue(
|
|
activation,
|
|
element_output,
|
|
elements_per_access,
|
|
element_accumulator,
|
|
element_compute,
|
|
):
|
|
"""
|
|
Return an epilogue corresponding to the activation function, data types, and alignment
|
|
used in the kernel
|
|
|
|
:param activation: elementwise activation function to use
|
|
:param element_output: data type of the output
|
|
:param elements_per_access: alignment of operand C of the kernel
|
|
:type elements_per_access: int
|
|
:param element_accumulator: data type of the accumulated output C
|
|
:param element_compute: data type in which compute operations should be performed
|
|
|
|
:return: epilogue functor
|
|
"""
|
|
if activation not in _activations:
|
|
raise Exception(
|
|
f"Unsupported activation type {activation}. Available activations are: {_activations}"
|
|
)
|
|
|
|
if activation == identity:
|
|
return epilogue.LinearCombination(
|
|
element_output, elements_per_access, element_accumulator, element_compute
|
|
)
|
|
else:
|
|
return epilogue.LinearCombinationGeneric(
|
|
activation,
|
|
element_output,
|
|
elements_per_access,
|
|
element_accumulator,
|
|
element_compute,
|
|
)
|
|
|
|
|
|
"""
|
|
Frontend for EVT that generates epilogue functor through tracing the input function
|
|
"""
|
|
from cutlass_cppgen.backend.evt.frontend import PythonASTFrontend
|
|
|
|
|
|
def trace(fn, example_tensors, **kwargs):
|
|
"""
|
|
Trace `fn(**example_tensors)` and generates epilogue visitor
|
|
|
|
:param fn or str: Python callable or string of the epilogue function
|
|
:param example_tensors: example inputs for fn
|
|
:type example_tensors: dict
|
|
|
|
.. hightlight:: python
|
|
.. code-block:: python
|
|
import cutlass_cppgen.backend.evt
|
|
|
|
# Define epilogue function as Python callable
|
|
def example_fn(accum, C, alpha, beta, gamma):
|
|
D = ((accum + C) * alpha - gamma) / beta
|
|
return D
|
|
|
|
# Define the example tensors
|
|
example_inputs = {
|
|
"accum": torch.empty(size=(6, 512, 512), dtype=torch.float16, device="cuda"),
|
|
"C": torch.empty(size=(6, 512, 512), dtype=torch.float16, device="cuda"),
|
|
"alpha": 1.5,
|
|
"beta": 0.5,
|
|
"gamma": 2.5,
|
|
"D": torch.empty(size=(6, 512, 512), dtype=torch.float16, device="cuda")
|
|
}
|
|
|
|
# Generate the epilogue functor
|
|
epilogue_visitor = cutlass_cppgen.epilogue.trace(example_fn, example_inputs)
|
|
"""
|
|
if callable(fn):
|
|
class EpilogueFunctor(PythonASTFrontend):
|
|
def __init__(self, cc=None, **kwargs):
|
|
if not cc:
|
|
cc = device_cc()
|
|
super().__init__(cc, **kwargs)
|
|
pass
|
|
setattr(EpilogueFunctor, "__call__", staticmethod(fn))
|
|
|
|
epilogue_functor = EpilogueFunctor(**kwargs)
|
|
epilogue_functor.trace(example_tensors)
|
|
return epilogue_functor
|
|
elif isinstance(fn, str):
|
|
class EpilogueFunctor(PythonASTFrontend):
|
|
def __init__(self, cc=None, **kwargs):
|
|
self.source = textwrap.dedent(fn)
|
|
if not cc:
|
|
cc = device_cc()
|
|
super().__init__(cc, **kwargs)
|
|
|
|
def parse(self, example_inputs) -> None:
|
|
self.example_inputs = example_inputs
|
|
self.ast = ast.parse(self.source)
|
|
self.visit(self.ast)
|
|
|
|
epilogue_functor = EpilogueFunctor(**kwargs)
|
|
epilogue_functor.trace(example_tensors)
|
|
return epilogue_functor
|
|
else:
|
|
raise NotImplementedError("Expect a callable Python function")
|