Files
cutlass/python/cutlass_cppgen/epilogue/evt_ops.py
2025-09-18 14:26:57 -04:00

99 lines
3.3 KiB
Python

#################################################################################################
#
# Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Collection of builtin functions used for host reference in EVT
"""
import numpy as np
from cutlass_cppgen.utils.datatypes import is_cupy_tensor, is_numpy_tensor, is_torch_available, is_torch_tensor
if is_torch_available():
import torch
def multiply_add(x, y, z):
return x * y + z
def sum(x, dim):
if is_numpy_tensor(x):
return x.sum(axis=tuple(dim))
elif is_torch_tensor(x):
return torch.sum(x, dim)
def max(x, dim):
if is_numpy_tensor(x):
return x.max(axis=tuple(dim))
elif is_torch_tensor(x):
return torch.amax(x, dim)
def maximum(x, y):
if is_numpy_tensor(x):
return np.maximum(x, y)
elif is_torch_tensor(x):
return torch.maximum(x, torch.tensor(y))
def minimum(x, y):
if is_numpy_tensor(x):
return np.minimum(x, y)
elif is_torch_tensor(x):
return torch.minimum(x, torch.tensor(y))
def exp(x):
if is_numpy_tensor(x):
return np.exp(x)
elif is_torch_tensor(x):
return torch.exp(x)
##############################################################################
# Layout manipulate nodes
##############################################################################
def permute(x, indices: tuple):
if is_numpy_tensor(x):
return np.transpose(x, axes=indices)
elif is_torch_tensor(x):
return x.permute(*indices)
def reshape(x, new_shape: tuple):
if is_numpy_tensor(x):
return np.reshape(x, newshape=new_shape)
elif is_torch_tensor(x):
return x.view(new_shape)