Files
cutlass/include/cutlass/gemm/thread/mma_sm50.h
Andrew Kerr c53f3339bb CUTLASS 2.3 initial commit (#134)
CUTLASS 2.3 adds GEMMs targeting Sparse Tensor Cores on the NVIDIA Ampere Architecture, fast SGEMM, and small matrix classes, bug fixes, and performance enhancements.
2020-09-23 14:00:58 -07:00

275 lines
7.8 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Templates exposing architecture support for multiply-add operations
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/tensor_ref.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/arch/mma.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/gemm/thread/mma.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace thread {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Gemplate that handles all packed matrix layouts
template <
/// Size of the Gemm problem - concept: gemm::GemmShape<>
typename Shape_,
/// Data type of A elements
typename ElementA_,
/// Layout of A matrix (concept: layout::MapFunc)
typename LayoutA_,
/// Data type of B elements
typename ElementB_,
/// Layout of B matrix (concept: layout::MapFunc)
typename LayoutB_,
/// Element type of C matrix
typename ElementC_,
/// Layout of C matrix (concept: layout::MapFunc)
typename LayoutC_,
/// Operator used to compute GEMM
typename Operator_
>
struct MmaGeneric {
/// Size of the Gemm problem - concept: gemm::GemmShape<>
using Shape = Shape_;
/// Data type of operand A
using ElementA = ElementA_;
/// Layout of A matrix (concept: layout::MapFunc)
using LayoutA = LayoutA_;
/// Data type of operand B
using ElementB = ElementB_;
/// Layout of B matrix (concept: layout::MapFunc)
using LayoutB = LayoutB_;
/// Element type of operand C
using ElementC = ElementC_;
/// Layout of C matrix (concept: layout::MapFunc)
using LayoutC = LayoutC_;
/// Underlying mathematical operator
using Operator = Operator_;
/// A operand storage
using FragmentA = Array<ElementA, Shape::kMK>;
/// B operand storage
using FragmentB = Array<ElementB, Shape::kKN>;
/// C operand storage
using FragmentC = Array<ElementC, Shape::kMN>;
/// Instruction
using MmaOp = arch::Mma<
gemm::GemmShape<1,1,1>,
1,
ElementA, LayoutA,
ElementB, LayoutB,
ElementC, LayoutC,
Operator>;
//
// Methods
//
/// Computes a matrix product D = A * B + C
CUTLASS_HOST_DEVICE
void operator()(
FragmentC & D,
FragmentA const & A,
FragmentB const & B,
FragmentC const & C) {
TensorRef<ElementA const, LayoutA> a_ref(
reinterpret_cast<ElementA const *>(&A), LayoutA::packed({Shape::kM, Shape::kK}));
TensorRef<ElementB const, LayoutB> b_ref(
reinterpret_cast<ElementB const *>(&B), LayoutB::packed({Shape::kK, Shape::kN}));
TensorRef<ElementC, LayoutC> d_ref(
reinterpret_cast<ElementC *>(&D), LayoutC::packed({ Shape::kM, Shape::kN }));
MmaOp mma_op;
// Copy accumulators
D = C;
// Compute matrix product
CUTLASS_PRAGMA_UNROLL
for (int k = 0; k < Shape::kK; ++k) {
CUTLASS_PRAGMA_UNROLL
for (int n = 0; n < Shape::kN; ++n) {
CUTLASS_PRAGMA_UNROLL
for (int m = 0; m < Shape::kM; ++m) {
int m_serpentine = (n % 2) ? (Shape::kM - 1 - m) : m;
MatrixCoord mn(m_serpentine, n);
MatrixCoord mk(m_serpentine, k);
MatrixCoord kn(k, n);
Array<ElementC, 1> d;
Array<ElementA, 1> a;
Array<ElementB, 1> b;
d[0] = d_ref.at(mn);
a[0] = a_ref.at(mk);
b[0] = b_ref.at(kn);
mma_op(d, a, b, d);
d_ref.at(mn) = d[0];
}
}
}
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Gemplate that handles conventional layouts for FFMA and DFMA GEMM
template <
/// Size of the Gemm problem - concept: gemm::GemmShape<>
typename Shape_,
/// Data type of A elements
typename ElementA_,
/// Layout of A matrix (concept: layout::MapFunc)
typename LayoutA_,
/// Data type of B elements
typename ElementB_,
/// Layout of B matrix (concept: layout::MapFunc)
typename LayoutB_,
/// Element type of C matrix
typename ElementC_,
/// Layout of C matrix (concept: layout::MapFunc)
typename LayoutC_
>
struct Mma<
Shape_,
ElementA_,
LayoutA_,
ElementB_,
LayoutB_,
ElementC_,
LayoutC_,
arch::OpMultiplyAdd,
bool> {
/// Size of the Gemm problem - concept: gemm::GemmShape<>
using Shape = Shape_;
/// Data type of operand A
using ElementA = ElementA_;
/// Layout of A matrix (concept: layout::MapFunc)
using LayoutA = LayoutA_;
/// Data type of operand B
using ElementB = ElementB_;
/// Layout of B matrix (concept: layout::MapFunc)
using LayoutB = LayoutB_;
/// Element type of operand C
using ElementC = ElementC_;
/// Layout of C matrix (concept: layout::MapFunc)
using LayoutC = LayoutC_;
/// Underlying mathematical operator
using Operator = arch::OpMultiplyAdd;
/// A operand storage
using FragmentA = Array<ElementA, Shape::kMK>;
/// B operand storage
using FragmentB = Array<ElementB, Shape::kKN>;
/// C operand storage
using FragmentC = Array<ElementC, Shape::kMN>;
/// Underlying matrix multiply operator (concept: arch::Mma)
using ArchMmaOperator = typename MmaGeneric<
Shape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
Operator>::MmaOp;
//
// Methods
//
/// Computes a matrix product D = A * B + C
CUTLASS_HOST_DEVICE
void operator()(
FragmentC & D,
FragmentA const & A,
FragmentB const & B,
FragmentC const & C) {
MmaGeneric<
Shape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
Operator> mma;
mma(D, A, B, C);
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace thread
} // namespace gemm
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////