CUTLASS 2.3 adds GEMMs targeting Sparse Tensor Cores on the NVIDIA Ampere Architecture, fast SGEMM, and small matrix classes, bug fixes, and performance enhancements.
279 lines
7.9 KiB
C++
279 lines
7.9 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Templates exposing architecture support for multiply-add operations
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/tensor_ref.h"
|
|
#include "cutlass/layout/matrix.h"
|
|
#include "cutlass/gemm/gemm.h"
|
|
#include "cutlass/gemm/thread/mma.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace cutlass {
|
|
namespace gemm {
|
|
namespace thread {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Gemplate that handles conventional layouts for IDP4A
|
|
template <
|
|
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
|
typename Shape_,
|
|
/// Layout of C matrix (concept: MatrixLayout)
|
|
typename LayoutC_
|
|
>
|
|
struct Mma<
|
|
Shape_,
|
|
int8_t,
|
|
layout::RowMajor,
|
|
int8_t,
|
|
layout::ColumnMajor,
|
|
int32_t,
|
|
LayoutC_,
|
|
arch::OpMultiplyAdd,
|
|
bool> {
|
|
|
|
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
|
using Shape = Shape_;
|
|
|
|
/// Data type of operand A
|
|
using ElementA = int8_t;
|
|
|
|
/// Layout of A matrix (concept: layout::MapFunc)
|
|
using LayoutA = layout::RowMajor;
|
|
|
|
/// Data type of operand B
|
|
using ElementB = int8_t;
|
|
|
|
/// Layout of B matrix (concept: layout::MapFunc)
|
|
using LayoutB = layout::ColumnMajor;
|
|
|
|
/// Element type of operand C
|
|
using ElementC = int32_t;
|
|
|
|
/// Layout of C matrix (concept: layout::MapFunc)
|
|
using LayoutC = LayoutC_;
|
|
|
|
/// Underlying mathematical operator
|
|
using Operator = arch::OpMultiplyAdd;
|
|
|
|
/// A operand storage
|
|
using FragmentA = Array<ElementA, Shape::kMK>;
|
|
|
|
/// B operand storage
|
|
using FragmentB = Array<ElementB, Shape::kKN>;
|
|
|
|
/// C operand storage
|
|
using FragmentC = Array<ElementC, Shape::kMN>;
|
|
|
|
/// Underlying matrix multiply operator (concept: arch::Mma)
|
|
// Use 1x1x4 IDP4A sequence for bulk of computation
|
|
using ArchMmaOperator = arch::Mma<
|
|
gemm::GemmShape<1,1,4>,
|
|
1,
|
|
ElementA,
|
|
LayoutA,
|
|
ElementB,
|
|
LayoutB,
|
|
ElementC,
|
|
LayoutC,
|
|
arch::OpMultiplyAdd>;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
/// Computes a matrix product D = A * B + C
|
|
CUTLASS_HOST_DEVICE
|
|
void operator()(
|
|
FragmentC & D,
|
|
FragmentA const & A,
|
|
FragmentB const & B,
|
|
FragmentC const & C) {
|
|
|
|
TensorRef<ElementC, LayoutC> d(
|
|
reinterpret_cast<ElementC *>(&D), LayoutC::packed({ Shape::kM, Shape::kN }));
|
|
|
|
// Copy accumulators
|
|
D = C;
|
|
|
|
/// Use 1x1x4 IDP4A sequence for bulk of computation
|
|
ArchMmaOperator mma;
|
|
|
|
// Compute matrix product
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int k = 0; k < Shape::kK / ArchMmaOperator::Shape::kK; ++k) {
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int n = 0; n < Shape::kN; ++n) {
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int m = 0; m < Shape::kM; ++m) {
|
|
MatrixCoord mn(m, n);
|
|
|
|
Array<int8_t, 4> const *ptr_A = reinterpret_cast<Array<int8_t, 4> const *>(&A);
|
|
Array<int8_t, 4> const *ptr_B = reinterpret_cast<Array<int8_t, 4> const *>(&B);
|
|
|
|
Array<int32_t, 1> tmp = reinterpret_cast<Array<int32_t, 1> &>(d.at(mn));
|
|
|
|
mma(
|
|
tmp,
|
|
ptr_A[m * Shape::kK / ArchMmaOperator::Shape::kK + k],
|
|
ptr_B[n * Shape::kK / ArchMmaOperator::Shape::kK + k],
|
|
tmp);
|
|
|
|
d.at(mn) = reinterpret_cast<int32_t &>(tmp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
/// Gemplate that handles conventional layouts for IDP4A
|
|
template <
|
|
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
|
typename Shape_,
|
|
/// Layout of C matrix (concept: MatrixLayout)
|
|
typename LayoutC_
|
|
>
|
|
struct Mma<
|
|
Shape_,
|
|
int8_t,
|
|
layout::ColumnMajor,
|
|
int8_t,
|
|
layout::RowMajor,
|
|
int32_t,
|
|
LayoutC_,
|
|
arch::OpMultiplyAdd,
|
|
int8_t> {
|
|
|
|
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
|
using Shape = Shape_;
|
|
|
|
/// Data type of operand A
|
|
using ElementA = int8_t;
|
|
|
|
/// Layout of A matrix (concept: layout::MapFunc)
|
|
using LayoutA = layout::ColumnMajor;
|
|
|
|
/// Data type of operand B
|
|
using ElementB = int8_t;
|
|
|
|
/// Layout of B matrix (concept: layout::MapFunc)
|
|
using LayoutB = layout::RowMajor;
|
|
|
|
/// Element type of operand C
|
|
using ElementC = int32_t;
|
|
|
|
/// Layout of C matrix (concept: layout::MapFunc)
|
|
using LayoutC = LayoutC_;
|
|
|
|
/// Underlying mathematical operator
|
|
using Operator = arch::OpMultiplyAdd;
|
|
|
|
/// A operand storage
|
|
using FragmentA = Array<ElementA, Shape::kMK>;
|
|
|
|
/// B operand storage
|
|
using FragmentB = Array<ElementB, Shape::kKN>;
|
|
|
|
/// C operand storage
|
|
using FragmentC = Array<ElementC, Shape::kMN>;
|
|
|
|
/// Underlying matrix multiply operator (concept: arch::Mma)
|
|
/// Use 1x1x4 IDP4A sequence for bulk of computation
|
|
using ArchMmaOperator = arch::Mma<
|
|
gemm::GemmShape<1,1,4>,
|
|
1,
|
|
ElementA,
|
|
LayoutA,
|
|
ElementB,
|
|
LayoutB,
|
|
ElementC,
|
|
LayoutC,
|
|
arch::OpMultiplyAdd>;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
/// Computes a matrix product D = A * B + C
|
|
CUTLASS_HOST_DEVICE
|
|
void operator()(
|
|
FragmentC & D,
|
|
FragmentA const & A,
|
|
FragmentB const & B,
|
|
FragmentC const & C) {
|
|
|
|
TensorRef<ElementC, LayoutC> d(
|
|
reinterpret_cast<ElementC *>(&D), LayoutC::packed({ Shape::kM, Shape::kN }));
|
|
|
|
// Copy accumulators
|
|
D = C;
|
|
|
|
/// Underlying matrix multiply operator
|
|
ArchMmaOperator mma;
|
|
|
|
Array<int8_t, 4> const *ptr_A = reinterpret_cast<Array<int8_t, 4> const *>(&A);
|
|
Array<int8_t, 4> const *ptr_B = reinterpret_cast<Array<int8_t, 4> const *>(&B);
|
|
|
|
// Compute matrix product
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int k = 0; k < Shape::kK / ArchMmaOperator::Shape::kK; ++k) {
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int n = 0; n < Shape::kN; ++n) {
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int m = 0; m < Shape::kM; ++m) {
|
|
MatrixCoord mn(m, n);
|
|
|
|
Array<int32_t, 1> tmp = reinterpret_cast<Array<int32_t, 1> &>(d.at(mn));
|
|
|
|
mma(
|
|
tmp,
|
|
ptr_A[m + k * Shape::kM],
|
|
ptr_B[n + k * Shape::kN],
|
|
tmp);
|
|
|
|
d.at(mn) = reinterpret_cast<int32_t &>(tmp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace thread
|
|
} // namespace gemm
|
|
} // namespace cutlass
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|