510 lines
18 KiB
Python
510 lines
18 KiB
Python
#################################################################################################
|
|
#
|
|
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
#
|
|
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
# list of conditions and the following disclaimer.
|
|
#
|
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
# this list of conditions and the following disclaimer in the documentation
|
|
# and/or other materials provided with the distribution.
|
|
#
|
|
# 3. Neither the name of the copyright holder nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
#################################################################################################
|
|
|
|
"""
|
|
Common data types and string names/tags for them
|
|
"""
|
|
|
|
import enum
|
|
|
|
from cutlass_library import (
|
|
ComplexTransform,
|
|
DataType,
|
|
DataTypeSize,
|
|
EpilogueScheduleType,
|
|
KernelScheduleSuffixes,
|
|
KernelScheduleType,
|
|
MathOperation,
|
|
OpcodeClass,
|
|
TileSchedulerType
|
|
)
|
|
|
|
|
|
# The following block implements enum.auto() for Python 3.5 variants that don't include it such
|
|
# as the default 3.5.2 on Ubuntu 16.04.
|
|
#
|
|
# https://codereview.stackexchange.com/questions/177309/reimplementing-pythons-enum-auto-for-compatibility
|
|
|
|
try:
|
|
from enum import auto as enum_auto
|
|
except ImportError:
|
|
__cutlass_library_auto_enum = 0
|
|
|
|
def enum_auto() -> int:
|
|
global __cutlass_library_auto_enum
|
|
i = __cutlass_library_auto_enum
|
|
__cutlass_library_auto_enum += 1
|
|
return i
|
|
|
|
|
|
class DataTypeSizeBytes:
|
|
"""
|
|
Static class to mimic the `DataTypeSize` dictionary, but with checks for whether the
|
|
data type key is less than a full byte or a non-integer number of bytes.
|
|
"""
|
|
|
|
@staticmethod
|
|
def __class_getitem__(datatype):
|
|
"""
|
|
Returns the number of bytes in size the data type is. Raises an exception if the data type
|
|
is either less than a full byte or a non-integer number of bytes in size.
|
|
|
|
:param datatype: data type to query
|
|
|
|
:return: number of bytes the data type occupies
|
|
:rtype: int
|
|
"""
|
|
bits = DataTypeSize[datatype]
|
|
if bits < 8:
|
|
raise Exception(
|
|
f"Data type {datatype} is less than one byte in size."
|
|
)
|
|
elif bits % 8 != 0:
|
|
raise Exception(
|
|
f"Data type datatype is not an integer number of bytes."
|
|
)
|
|
return bits // 8
|
|
|
|
|
|
class SchedulerMode(enum.Enum):
|
|
Device = enum_auto()
|
|
Host = enum_auto()
|
|
|
|
|
|
SchedulerModeTag = {
|
|
SchedulerMode.Device: "cutlass::gemm::kernel::GroupScheduleMode::kDeviceOnly",
|
|
SchedulerMode.Host: "cutlass::gemm::kernel::GroupScheduleMode::kHostPrecompute",
|
|
}
|
|
|
|
|
|
ShortSchedulerModeNames = {SchedulerMode.Device: "Device", SchedulerMode.Host: "Host"}
|
|
|
|
|
|
class FunctionalOp(enum.Enum):
|
|
AtomicAdd = enum_auto()
|
|
AtomicMaximum = enum_auto()
|
|
Divides = enum_auto()
|
|
Maximum = enum_auto()
|
|
Minimum = enum_auto()
|
|
Minus = enum_auto()
|
|
Multiplies = enum_auto()
|
|
MultiplyAdd = enum_auto()
|
|
Plus = enum_auto()
|
|
Exp = enum_auto()
|
|
|
|
|
|
FunctionalOpTag = {
|
|
FunctionalOp.AtomicAdd: "cutlass::atomic_add",
|
|
FunctionalOp.AtomicMaximum: "cutlass::atomic_maximum",
|
|
FunctionalOp.Divides: "cutlass::divides",
|
|
FunctionalOp.Maximum: "cutlass::maximum",
|
|
FunctionalOp.Minimum: "cutlass::minimum",
|
|
FunctionalOp.Minus: "cutlass::minus",
|
|
FunctionalOp.Multiplies: "cutlass::multiplies",
|
|
FunctionalOp.MultiplyAdd: "cutlass::multiply_add",
|
|
FunctionalOp.Plus: "cutlass::plus",
|
|
FunctionalOp.Exp: "cutlass::fast_exp_op",
|
|
}
|
|
|
|
|
|
class ActivationOp(enum.Enum):
|
|
DGelu = enum_auto()
|
|
Gelu = enum_auto()
|
|
GeluTaylor = enum_auto()
|
|
HardSwish = enum_auto()
|
|
Identity = enum_auto()
|
|
LeakyReLU = enum_auto()
|
|
ReLU = enum_auto()
|
|
Sigmoid = enum_auto()
|
|
SiLU = enum_auto()
|
|
Tanh = enum_auto()
|
|
|
|
|
|
ActivationOpTag = {
|
|
ActivationOp.DGelu: "cutlass::epilogue::thread::dGELU",
|
|
ActivationOp.Gelu: "cutlass::epilogue::thread::GELU",
|
|
ActivationOp.GeluTaylor: "cutlass::epilogue::thread::GELU_taylor",
|
|
ActivationOp.HardSwish: "cutlass::epilogue::thread::HardSwish",
|
|
ActivationOp.Identity: "cutlass::epilogue::thread::Identity",
|
|
ActivationOp.LeakyReLU: "cutlass::epilogue::thread::LeakyReLU",
|
|
ActivationOp.ReLU: "cutlass::epilogue::thread::ReLu",
|
|
ActivationOp.Sigmoid: "cutlass::epilogue::thread::Sigmoid",
|
|
ActivationOp.SiLU: "cutlass::epilogue::thread::SiLu",
|
|
ActivationOp.Tanh: "cutlass::epilogue::thread::Tanh",
|
|
}
|
|
|
|
|
|
def op_tag(op) -> str:
|
|
"""
|
|
Dispatches `op` to the appropriate *Tag dictionary depending on whether
|
|
`op` is an ActivationOp or FunctionalOp. This is useful for cases in which
|
|
either type can be used.
|
|
|
|
:param op: operation to emit a tag for
|
|
:type op: ActivationOp | FunctionalOp
|
|
|
|
:return: tag corresponding to op
|
|
:rtype: str
|
|
"""
|
|
if isinstance(op, ActivationOp):
|
|
return ActivationOpTag[op]
|
|
elif isinstance(op, FunctionalOp):
|
|
return FunctionalOpTag[op]
|
|
else:
|
|
raise Exception(f"Unexpected op type {op}. Must be one of ActivationOp or FunctionalOp.")
|
|
|
|
|
|
class FloatRoundStyle(enum.Enum):
|
|
ToNearest = enum_auto()
|
|
ToNearestSatfinite = enum_auto()
|
|
Indeterminate = enum_auto()
|
|
TowardZero = enum_auto()
|
|
TowardInfinity = enum_auto()
|
|
TowardNegInfinity = enum_auto()
|
|
HalfUlpTruncDntz = enum_auto()
|
|
HalfUlpTruncate = enum_auto()
|
|
|
|
|
|
FloatRoundStyleTag = {
|
|
FloatRoundStyle.ToNearest: "cutlass::FloatRoundStyle::round_to_nearest",
|
|
FloatRoundStyle.ToNearestSatfinite: "cutlass::FloatRoundStyle::round_to_nearest_satfinite",
|
|
FloatRoundStyle.Indeterminate: "cutlass::FloatRoundStyle::round_indeterminate",
|
|
FloatRoundStyle.TowardZero: "cutlass::FloatRoundStyle::round_toward_zero",
|
|
FloatRoundStyle.TowardInfinity: "cutlass::FloatRoundStyle::round_toward_infinity",
|
|
FloatRoundStyle.TowardNegInfinity: "cutlass::FloatRoundStyle::round_toward_neg_infinity",
|
|
FloatRoundStyle.HalfUlpTruncDntz: "cutlass::FloatRoundStyle::round_half_ulp_trunc_dntz",
|
|
FloatRoundStyle.HalfUlpTruncate: "cutlass::FloatRoundStyle::round_half_ulp_truncate",
|
|
}
|
|
|
|
|
|
class MathInstruction:
|
|
"""
|
|
Description of a the lowest-level matrix-multiply-accumulate operation to be used in a kernel
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
instruction_shape,
|
|
element_a,
|
|
element_b,
|
|
element_accumulator,
|
|
opcode_class=OpcodeClass.Simt,
|
|
math_operation=MathOperation.multiply_add,
|
|
):
|
|
"""
|
|
:param instruction_shape: size of the [M, N, K] dimensions of the instruction
|
|
:type instruction_shape: list or tuple
|
|
:param element_a: data type of operand A
|
|
:param element_b: data type of operand B
|
|
:param element_accumulator: data type used in accumulation
|
|
:param opcode_class: higher-level class of the instruction (e.g., SIMT or Tensor Core)
|
|
:type opcode_class: cutlass_library.library.OpcodeClass
|
|
:param math_operation: the type of low-level operation to be performed (e.g., multiply accumulate)
|
|
:type math_operation: MathOperation
|
|
"""
|
|
self.instruction_shape = instruction_shape
|
|
self.element_a = element_a
|
|
self.element_b = element_b
|
|
self.element_accumulator = element_accumulator
|
|
self.opcode_class = opcode_class
|
|
self.math_operation = math_operation
|
|
|
|
|
|
def to_blackwell_threadblock_shape(tile_description, cluster_shape, kernel_schedule):
|
|
blackwell_threadblock_shape = tile_description.threadblock_shape
|
|
is_2sm = False if kernel_schedule is None else ("2sm" in KernelScheduleSuffixes[kernel_schedule])
|
|
if cluster_shape[0] > 0:
|
|
blackwell_threadblock_shape = [
|
|
tile_description.threadblock_shape[0] // cluster_shape[0],
|
|
tile_description.threadblock_shape[1] // cluster_shape[1],
|
|
tile_description.threadblock_shape[2] // cluster_shape[2]
|
|
]
|
|
if is_2sm:
|
|
blackwell_threadblock_shape[0] *= 2
|
|
else:
|
|
blackwell_threadblock_shape = tile_description.math_instruction.instruction_shape
|
|
return blackwell_threadblock_shape, is_2sm
|
|
|
|
|
|
class TileDescription:
|
|
"""
|
|
Description of a tile of computation to be performed in the kernel, encompassing threadblock, cluster, and warp shapes,
|
|
stage count, and math instruction specification
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
threadblock_shape,
|
|
stages,
|
|
warp_count,
|
|
math_instruction,
|
|
cluster_shape=[1, 1, 1],
|
|
kernel_schedule: KernelScheduleType = None,
|
|
epilogue_schedule: EpilogueScheduleType = None,
|
|
tile_scheduler: TileSchedulerType = None
|
|
):
|
|
"""
|
|
:param threadblock_shape: shape of a threadblock tyle
|
|
:type threadblock_shape: list or tuple
|
|
:param stages: number of pipline stages in the operation. For SM90 kernels, this can be set to `None` and the maximum
|
|
number of stages that can be supported for an operation on a given architecture will be computed at a later time
|
|
:type stages: int or None
|
|
:param warp_count: number of warps in each [M, N, K] dimension of a threadblock tile
|
|
:type warp_count: list, tuple, or None
|
|
:param math_instruction: specification of the instruction type and shape to be performed and the types of its operands
|
|
:type math_instruction: MathInstruction
|
|
:param cluster_shape: number of threadblocks in the [X, Y, Z] dimensions of a threadblock cluster
|
|
:param kernel_schedule: type of kernel schedule to use (only available for SM90+)
|
|
:type kernel_schedule: cutlass_library.KernelScheduleType
|
|
:param epilogue_schedule: type of epilogue schedule to use (only available for SM90+)
|
|
:type epilogue_schedule: cutlass_library.EpilogueScheduleType
|
|
:param tile_scheduler: type of tile scheduler to use (only available for SM90+)
|
|
:type tile_scheduler: cutlass_library.TileSchedulerType
|
|
"""
|
|
if ((kernel_schedule is None and epilogue_schedule is not None) or
|
|
(kernel_schedule is not None and epilogue_schedule is None)):
|
|
raise Exception("Kernel and epilogue schedule must either both be Auto or neither be Auto.")
|
|
|
|
self.threadblock_shape = threadblock_shape
|
|
self.cluster_shape = cluster_shape
|
|
self.kernel_schedule = kernel_schedule
|
|
self.epilogue_schedule = epilogue_schedule
|
|
self.tile_scheduler = tile_scheduler
|
|
self.stages = stages
|
|
|
|
self.math_instruction = math_instruction
|
|
self.instruction_shape = math_instruction.instruction_shape
|
|
|
|
# Number of warps along x, y, z directions
|
|
self.warp_count = warp_count
|
|
|
|
self.blackwell_threadblock_shape, self.is_2sm = to_blackwell_threadblock_shape(self, self.cluster_shape, self.kernel_schedule)
|
|
|
|
def clone_and_update(self, td: dict):
|
|
attrs = {
|
|
"cluster_shape": None,
|
|
"threadblock_shape": None,
|
|
"warp_count": None,
|
|
"stages": None,
|
|
"instruction_shape": None,
|
|
"kernel_schedule": None,
|
|
"epilogue_schedule": None,
|
|
"tile_scheduler": None
|
|
}
|
|
for key in attrs.keys():
|
|
if key in td.keys():
|
|
attrs[key] = td[key]
|
|
else:
|
|
attrs[key] = getattr(self, key)
|
|
|
|
attrs["math_instruction"] = MathInstruction(
|
|
attrs["instruction_shape"],
|
|
self.math_instruction.element_a,
|
|
self.math_instruction.element_b,
|
|
self.math_instruction.element_accumulator,
|
|
self.math_instruction.opcode_class,
|
|
self.math_instruction.math_operation
|
|
)
|
|
|
|
# Remove the instruction shape
|
|
del attrs["instruction_shape"]
|
|
|
|
return TileDescription(**attrs)
|
|
|
|
@property
|
|
def num_threads(self):
|
|
"""
|
|
Returns the number of threads in the threadblock
|
|
|
|
:return: number of threads in the threadblock
|
|
:rtype: int or None (if warp count is None)
|
|
"""
|
|
if self.warp_count is not None:
|
|
threads = 32
|
|
for cnt in self.warp_count:
|
|
threads *= cnt
|
|
return threads
|
|
return None
|
|
|
|
def procedural_name(self):
|
|
"""
|
|
Returns a name identifying the tile description
|
|
|
|
:return: name identifying the tile description
|
|
:rtype: int
|
|
"""
|
|
emit_stages = 0 if self.stages is None else self.stages
|
|
name = "%dx%dx%d_%dx%d_%dx%d" % (
|
|
self.cluster_shape[0],
|
|
self.cluster_shape[1],
|
|
self.cluster_shape[2],
|
|
self.threadblock_shape[0],
|
|
self.threadblock_shape[1],
|
|
self.threadblock_shape[2],
|
|
emit_stages
|
|
)
|
|
|
|
return name
|
|
|
|
def procedural_name_2x(self):
|
|
"""
|
|
Returns a name identifying the tile description
|
|
|
|
:return: name identifying the tile description
|
|
:rtype: int
|
|
"""
|
|
return "%dx%d_%dx%d" % (self.threadblock_shape[0], self.threadblock_shape[1], self.threadblock_shape[2], self.stages)
|
|
|
|
def __str__(self):
|
|
"""
|
|
Returns a string with containing each of the tile description's values
|
|
|
|
:return: contents of tile description
|
|
:rtype: str
|
|
"""
|
|
if self.kernel_schedule is not None:
|
|
kschedule = self.kernel_schedule
|
|
else:
|
|
kschedule = KernelScheduleType.ScheduleAuto
|
|
|
|
if self.epilogue_schedule is not None:
|
|
eschedule = self.epilogue_schedule
|
|
else:
|
|
eschedule = EpilogueScheduleType.ScheduleAuto
|
|
|
|
if self.tile_scheduler is not None:
|
|
tschedule = self.tile_scheduler.name
|
|
else:
|
|
tschedule = "None"
|
|
return f"""
|
|
{{
|
|
ClusterShape: {self.cluster_shape}
|
|
ThreadblockShape: {self.threadblock_shape}
|
|
WarpCount: {self.warp_count}
|
|
Stages: {self.stages if self.stages is not None else 'Auto'}
|
|
InstructionShape: {self.math_instruction.instruction_shape}
|
|
Kernel schedule: {kschedule.name}
|
|
Epilogue schedule: {kschedule.name}
|
|
TileScheduler: {tschedule}
|
|
}}"""
|
|
|
|
|
|
class TensorDescription:
|
|
def __init__(self, element, layout, alignment=1, complex_transform=ComplexTransform.none):
|
|
self.element = element
|
|
self.layout = layout
|
|
if element != DataType.void:
|
|
self.alignment = min(128 // DataTypeSize[self.element], alignment)
|
|
else:
|
|
self.alignment = alignment
|
|
self.complex_transform = complex_transform
|
|
|
|
|
|
def CalculateSmemUsagePerStage(operation):
|
|
"""
|
|
Returns the amount of shared memory in bytes consumed in a single stage of a kernel.
|
|
|
|
:param op: operation for which the maximum stages should be computed. If stages are
|
|
set via the `op.tile_description.stages` parameter, this setting is ignored
|
|
in the present calculation
|
|
:type op: cutlass_cppgen.backend.Operation
|
|
|
|
:return: number of bytes of shared memory consumed by a single stage
|
|
:rtype: int
|
|
"""
|
|
m, n, k = operation.tile_description.threadblock_shape
|
|
|
|
if operation.operation_kind == OperationKind.Gemm:
|
|
stage_barrier_bytes = 32
|
|
return (
|
|
(DataTypeSize[operation.A.element] * m * k // 8)
|
|
+ (DataTypeSize[operation.B.element] * k * n // 8)
|
|
+ stage_barrier_bytes
|
|
)
|
|
else:
|
|
raise Exception("Unsupported operation kind {}.".format(operation.operation_kind))
|
|
|
|
|
|
def CalculateSmemUsage(operation):
|
|
"""
|
|
Returns the amount of shared memory in bytes consumed by a kernel.
|
|
|
|
:param op: operation for which the maximum stages should be computed. If stages are
|
|
set via the `op.tile_description.stages` parameter, this setting is ignored
|
|
in the present calculation
|
|
:type op: cutlass_cppgen.backend.Operation
|
|
|
|
:return: int
|
|
"""
|
|
return operation.tile_description.stages * CalculateSmemUsagePerStage(operation)
|
|
|
|
|
|
class ApiVersion(enum.Enum):
|
|
"""
|
|
Differentiate between CUTLASS 2.x and 3.x API versions
|
|
"""
|
|
|
|
v2x = enum_auto()
|
|
v3x = enum_auto()
|
|
|
|
|
|
def api_version(arch, opclass, dtype):
|
|
"""
|
|
Returns whether the architecture, opcode class, and datatype in question require using CUTLASS 2.x
|
|
or 3.x for code emission.
|
|
|
|
:param arch: compute capability of device on which to run
|
|
:type arch: int
|
|
:param opclass: class of the operation being performed
|
|
:type opclass: cutlass_library.OpcodeClass
|
|
:param dtype: data type to be used in operation (assumes that ElementA and ElementB are the same)
|
|
:type dtype: cutlass_library.DataType
|
|
|
|
:return: API version to be used in code emission
|
|
:rtype: ApiVersion
|
|
"""
|
|
if (arch in [90, 100, 101, 103] and
|
|
opclass == OpcodeClass.TensorOp and
|
|
(dtype != DataType.f64)):
|
|
return ApiVersion.v3x
|
|
else:
|
|
return ApiVersion.v2x
|
|
|
|
|
|
class EmissionType(enum.Enum):
|
|
"""
|
|
Tags for whether to emit a kernel- or device-level operation
|
|
"""
|
|
|
|
Kernel = enum_auto()
|
|
Device = enum_auto()
|