Files
cutlass/examples/python/CuTeDSL/blackwell/dense_gemm_persistent.py
2025-07-21 22:03:55 -04:00

2195 lines
84 KiB
Python

# Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
from typing import Optional, Type, Tuple, Union
import cuda.bindings.driver as cuda
import torch
import cutlass
import cutlass.cute as cute
from cutlass.cute.nvgpu import cpasync, tcgen05
import cutlass.torch as cutlass_torch
import cutlass.utils as utils
import cutlass.pipeline as pipeline
import cutlass.cute.testing as testing
import cutlass.utils.blackwell_helpers as sm100_utils
from cutlass.cute.runtime import from_dlpack
"""
A high-performance persistent batched dense GEMM example for the NVIDIA Blackwell SM100 architecture
using CUTE DSL.
- Matrix A is MxKxL, L is batch dimension, A can be row-major("K") or column-major("M")
- Matrix B is NxKxL, L is batch dimension, B can be row-major("N") or column-major("K")
- Matrix C is MxNxL, L is batch dimension, C can be row-major("N") or column-major("M")
This GEMM kernel supports the following features:
- Utilizes Tensor Memory Access (TMA) for efficient memory operations
- Utilizes Blackwell's tcgen05.mma for matrix multiply-accumulate (MMA) operations (including 2cta mma instructions)
- Implements TMA multicast with cluster to reduce L2 memory traffic
- Support persistent tile scheduling to better overlap memory load/store with mma between tiles
- Support warp specialization to avoid explicit pipelining between mainloop load and mma
This GEMM works as follows:
1. DMA warp: Load A and B matrices from global memory (GMEM) to shared memory (SMEM) using TMA operations.
2. MMA warp: Perform matrix multiply-accumulate (MMA) operations using tcgen05.mma instruction.
3. EPILOGUE warp:
- Load completed accumulator from tensor memory (TMEM) to registers (RMEM) using tcgen05.ld.
- Type convert C matrix to output type.
- Optionally store C matrix from registers (RMEM) to shared memory (SMEM) to global memory (GMEM) with TMA operations,
or directly store C matrix from registers (RMEM) to global memory (GMEM) without TMA operations.
- Optionally accept an elementwise lambda function epilogue_op to apply to the output tensor:
e.g., relu can set epilogue_op = lambda x: cute.where(x > 0, x, cute.full_like(x, 0))
SM100 tcgen05.mma instructions operate as follows:
- Read matrix A from SMEM
- Read matrix B from SMEM
- Write accumulator to TMEM
The accumulator in TMEM must then be loaded to registers before writing back to GMEM.
Input arguments to this example is same as dense_gemm.py.
.. code-block:: bash
python examples/blackwell/dense_gemm_persistent.py \
--ab_dtype Float16 --c_dtype Float16 --acc_dtype Float32 \
--mma_tiler_mn 256,128 --cluster_shape_mn 2,1 \
--mnkl 8192,8192,8192,1 \
--use_tma_store --use_2cta_instrs
To collect performance with NCU profiler:
.. code-block:: bash
ncu python examples/blackwell/dense_gemm_persistent.py \
--ab_dtype Float16 --c_dtype Float16 --acc_dtype Float32 \
--mma_tiler_mn 256,128 --cluster_shape_mn 2,1 \
--mnkl 8192,8192,8192,1 \
--use_tma_store --use_2cta_instrs \
--warmup_iterations 1 --iterations 10 --skip_ref_check
Constraints are same as dense_gemm.py:
* Supported input data types: fp16, bf16, tf32, int8, uint8, fp8 (e4m3fn, e5m2),
see detailed valid dtype combinations in below PersistentDenseGemmKernel class documentation
* A/B tensor must have the same data type
* Mma tiler M must be 64/128 (use_2cta_instrs=False) or 128/256 (use_2cta_instrs=True)
* Mma tiler N must be 32-256, step 32
* Cluster shape M/N must be positive and power of 2, total cluster size <= 16
* Cluster shape M must be multiple of 2 if use_2cta_instrs=True
* The contiguous dimension of A/B/C tensors must be at least 16 bytes aligned,
i.e, number of elements is a multiple of 4, 8, and 16 for TFloat32,
Float16/BFloat16, and Int8/Uint8/Float8, respectively.
* OOB tiles are not allowed when TMA store is disabled
"""
class PersistentDenseGemmKernel:
"""This class implements batched matrix multiplication (C = A x B) with support for various data types
and architectural features specific to Blackwell GPUs with persistent tile scheduling and warp specialization.
:param acc_dtype: Data type for accumulation during computation
:type acc_dtype: type[cutlass.Numeric]
:param use_2cta_instrs: Whether to use CTA group 2 for advanced thread cooperation
:type use_2cta_instrs: bool
:param mma_tiler_mn: Shape of the Matrix Multiply-Accumulate (MMA) tile (M,N)
:type mma_tiler_mn: Tuple[int, int]
:param cluster_shape_mn: Cluster dimensions (M,N) for parallel processing
:type cluster_shape_mn: Tuple[int, int]
:param use_tma_store: Whether to use Tensor Memory Access (TMA) for storing results
:type use_tma_store: bool
:note: In current version, A and B tensor must have the same data type
- i.e., Float8E4M3FN for A and Float8E5M2 for B is not supported
:note: Supported A/B data types:
- TFloat32
- Float16/BFloat16
- Int8/Uint8
- Float8E4M3FN/Float8E5M2
:note: Supported accumulator data types:
- Float32 (for all floating point A/B data types)
- Float16 (only for fp16 and fp8 A/B data types)
- Int32 (only for uint8/int8 A/B data types)
:note: Supported C data types:
- Float32 (for float32 and int32 accumulator data types)
- Int32 (for float32 and int32 accumulator data types)
- Float16/BFloat16 (for fp16 and fp8 accumulator data types)
- Int8/Uint8 (for uint8/int8 accumulator data types)
- Float8E4M3FN/Float8E5M2 (for float32 accumulator data types)
:note: Constraints:
- MMA tiler M must be 64/128 (use_2cta_instrs=False) or 128/256 (use_2cta_instrs=True)
- MMA tiler N must be 32-256, step 32
- Cluster shape M must be multiple of 2 if use_2cta_instrs=True
- Cluster shape M/N must be positive and power of 2, total cluster size <= 16
Example:
>>> gemm = PersistentDenseGemmKernel(
... acc_dtype=cutlass.Float32,
... use_2cta_instrs=True,
... mma_tiler_mn=(128, 128),
... cluster_shape_mn=(2, 2)
... )
>>> gemm(a_tensor, b_tensor, c_tensor, max_active_clusters, stream)
"""
def __init__(
self,
acc_dtype: Type[cutlass.Numeric],
use_2cta_instrs: bool,
mma_tiler_mn: Tuple[int, int],
cluster_shape_mn: Tuple[int, int],
use_tma_store: bool,
):
"""Initializes the configuration for a Blackwell dense GEMM kernel.
This configuration includes several key aspects:
1. MMA Instruction Settings (tcgen05):
- acc_dtype: Data types for MMA accumulator.
- mma_tiler_mn: The (M, N) shape of the MMA instruction tiler.
- use_2cta_instrs: Boolean indicating if the tcgen05 MMA variant
with cta_group=2 should be used.
2. Cluster Shape:
- cluster_shape_mn: The (ClusterM, ClusterN) shape of the CTA cluster.
3. Output C tensor store mode:
- use_tma_store: Boolean indicating whether to use Tensor Memory Access (TMA) for storing results.
:param acc_dtype: Data type of the accumulator.
:type acc_dtype: type[cutlass.Numeric]
:param mma_tiler_mn: Tuple (M, N) shape of the MMA instruction.
:type mma_tiler_mn: Tuple[int, int]
:param use_2cta_instrs: Boolean, True to use cta_group=2 MMA variant.
:type use_2cta_instrs: bool
:param cluster_shape_mn: Tuple (ClusterM, ClusterN) shape of the cluster.
:type cluster_shape_mn: Tuple[int, int]
:param use_tma_store: Use Tensor Memory Access (TMA) or normal store for output C tensor.
:type use_tma_store: bool
"""
self.acc_dtype: Type[cutlass.Numeric] = acc_dtype
self.use_2cta_instrs = use_2cta_instrs
self.cluster_shape_mn = cluster_shape_mn
# K dimension is deferred in _setup_attributes
self.mma_tiler = (*mma_tiler_mn, 1)
self.use_tma_store = use_tma_store
self.cta_group = (
tcgen05.CtaGroup.TWO if use_2cta_instrs else tcgen05.CtaGroup.ONE
)
self.occupancy = 1
# Set specialized warp ids
self.epilog_warp_id = (
0,
1,
2,
3,
)
self.mma_warp_id = 4
self.tma_warp_id = 5
self.threads_per_cta = 32 * len(
(self.mma_warp_id, self.tma_warp_id, *self.epilog_warp_id)
)
# Set barrier id for cta sync, epilogue sync and tmem ptr sync
self.cta_sync_bar_id = 0
self.epilog_sync_bar_id = 1
self.tmem_ptr_sync_bar_id = 2
self.smem_capacity = utils.get_smem_capacity_in_bytes("sm_100")
def _setup_attributes(self):
"""Set up configurations that are dependent on GEMM inputs
This method configures various attributes based on the input tensor properties
(data types, leading dimensions) and kernel settings:
- Configuring tiled MMA
- Computing MMA/cluster/tile shapes
- Computing cluster layout
- Computing multicast CTAs for A/B
- Computing epilogue subtile
- Setting up A/B/C stage counts in shared memory
- Computing A/B/C shared memory layout
- Computing tensor memory allocation columns
"""
# Configure tiled mma
tiled_mma = sm100_utils.make_trivial_tiled_mma(
self.a_dtype,
self.a_major_mode,
self.b_major_mode,
self.acc_dtype,
self.cta_group,
self.mma_tiler[:2],
)
# Compute mma/cluster/tile shapes
mma_inst_shape_k = cute.size(tiled_mma.shape_mnk, mode=[2])
mma_inst_tile_k = 4
self.mma_tiler = (
self.mma_tiler[0],
self.mma_tiler[1],
mma_inst_shape_k * mma_inst_tile_k,
)
self.cta_tile_shape_mnk = (
self.mma_tiler[0] // cute.size(tiled_mma.thr_id.shape),
self.mma_tiler[1],
self.mma_tiler[2],
)
# Compute cluster layout
self.cluster_layout_vmnk = cute.tiled_divide(
cute.make_layout((*self.cluster_shape_mn, 1)),
(tiled_mma.thr_id.shape,),
)
# Compute number of multicast CTAs for A/B
self.num_mcast_ctas_a = cute.size(self.cluster_layout_vmnk.shape[2])
self.num_mcast_ctas_b = cute.size(self.cluster_layout_vmnk.shape[1])
self.is_a_mcast = self.num_mcast_ctas_a > 1
self.is_b_mcast = self.num_mcast_ctas_b > 1
# Compute epilogue subtile
if cutlass.const_expr(self.use_tma_store):
self.epi_tile = sm100_utils.compute_epilogue_tile_shape(
self.cta_tile_shape_mnk,
self.use_2cta_instrs,
self.c_layout,
self.c_dtype,
)
else:
self.epi_tile = self.cta_tile_shape_mnk[:2]
# Setup A/B/C stage count in shared memory and ACC stage count in tensor memory
self.num_acc_stage, self.num_ab_stage, self.num_c_stage = self._compute_stages(
tiled_mma,
self.mma_tiler,
self.a_dtype,
self.b_dtype,
self.epi_tile,
self.c_dtype,
self.c_layout,
self.smem_capacity,
self.occupancy,
self.use_tma_store,
)
# Compute A/B/C shared memory layout
self.a_smem_layout_staged = sm100_utils.make_smem_layout_a(
tiled_mma,
self.mma_tiler,
self.a_dtype,
self.num_ab_stage,
)
self.b_smem_layout_staged = sm100_utils.make_smem_layout_b(
tiled_mma,
self.mma_tiler,
self.b_dtype,
self.num_ab_stage,
)
self.c_smem_layout_staged = (
sm100_utils.make_smem_layout_epi(
self.c_dtype,
self.c_layout,
self.epi_tile,
self.num_c_stage,
)
if cutlass.const_expr(self.use_tma_store)
else None
)
# Compute the number of tensor memory allocation columns
self.num_tmem_alloc_cols = self._compute_num_tmem_alloc_cols(
tiled_mma, self.mma_tiler, self.num_acc_stage
)
@cute.jit
def __call__(
self,
a: cute.Tensor,
b: cute.Tensor,
c: cute.Tensor,
max_active_clusters: cutlass.Constexpr,
stream: cuda.CUstream,
epilogue_op: cutlass.Constexpr = lambda x: x,
):
"""Execute the GEMM operation in steps:
- Setup static attributes before smem/grid/tma computation
- Setup TMA load/store atoms and tensors
- Compute grid size with regard to hardware constraints
- Define shared storage for kernel
- Launch the kernel synchronously
:param a: Input tensor A
:type a: cute.Tensor
:param b: Input tensor B
:type b: cute.Tensor
:param c: Output tensor C
:type c: cute.Tensor
:param max_active_clusters: Maximum number of active clusters
:type max_active_clusters: cutlass.Constexpr
:param stream: CUDA stream for asynchronous execution
:type stream: cuda.CUstream
:param epilogue_op: Optional elementwise lambda function to apply to the output tensor
:type epilogue_op: cutlass.Constexpr
:raises TypeError: If input data types are incompatible with the MMA instruction.
:raises AssertionError: If OOB (Out-Of-Bounds) tiles are present when TMA store is disabled.
"""
# Setup static attributes before smem/grid/tma computation
self.a_dtype: Type[cutlass.Numeric] = a.element_type
self.b_dtype: Type[cutlass.Numeric] = b.element_type
self.c_dtype: Type[cutlass.Numeric] = c.element_type
self.a_major_mode = utils.LayoutEnum.from_tensor(a).mma_major_mode()
self.b_major_mode = utils.LayoutEnum.from_tensor(b).mma_major_mode()
self.c_layout = utils.LayoutEnum.from_tensor(c)
# Check if input data types are compatible with MMA instruction
if cutlass.const_expr(self.a_dtype != self.b_dtype):
raise TypeError(f"Type must match: {self.a_dtype} != {self.b_dtype}")
# Setup attributes that dependent on gemm inputs
self._setup_attributes()
tiled_mma = sm100_utils.make_trivial_tiled_mma(
self.a_dtype,
self.a_major_mode,
self.b_major_mode,
self.acc_dtype,
self.cta_group,
self.mma_tiler[:2],
)
atom_thr_size = cute.size(tiled_mma.thr_id.shape)
# Setup TMA load for A
a_op = sm100_utils.cluster_shape_to_tma_atom_A(
self.cluster_shape_mn, tiled_mma.thr_id
)
a_smem_layout = cute.slice_(self.a_smem_layout_staged, (None, None, None, 0))
tma_atom_a, tma_tensor_a = cute.nvgpu.make_tiled_tma_atom_A(
a_op,
a,
a_smem_layout,
self.mma_tiler,
tiled_mma,
self.cluster_layout_vmnk.shape,
internal_type=(
cutlass.TFloat32 if a.element_type is cutlass.Float32 else None
),
)
# Setup TMA load for B
b_op = sm100_utils.cluster_shape_to_tma_atom_B(
self.cluster_shape_mn, tiled_mma.thr_id
)
b_smem_layout = cute.slice_(self.b_smem_layout_staged, (None, None, None, 0))
tma_atom_b, tma_tensor_b = cute.nvgpu.make_tiled_tma_atom_B(
b_op,
b,
b_smem_layout,
self.mma_tiler,
tiled_mma,
self.cluster_layout_vmnk.shape,
internal_type=(
cutlass.TFloat32 if b.element_type is cutlass.Float32 else None
),
)
a_copy_size = cute.size_in_bytes(self.a_dtype, a_smem_layout)
b_copy_size = cute.size_in_bytes(self.b_dtype, b_smem_layout)
self.num_tma_load_bytes = (a_copy_size + b_copy_size) * atom_thr_size
# Setup TMA store for C
tma_atom_c = None
tma_tensor_c = None
if cutlass.const_expr(self.use_tma_store):
c_cta_v_layout = cute.composition(
cute.make_identity_layout(c.shape), self.epi_tile
)
epi_smem_layout = cute.slice_(self.c_smem_layout_staged, (None, None, 0))
tma_atom_c, tma_tensor_c = cpasync.make_tiled_tma_atom(
cpasync.CopyBulkTensorTileS2GOp(),
c,
epi_smem_layout,
c_cta_v_layout,
)
# Compute grid size
self.tile_sched_params, grid = self._compute_grid(
c, self.cta_tile_shape_mnk, self.cluster_shape_mn, max_active_clusters
)
self.buffer_align_bytes = 1024
c_smem_size = (
cute.cosize(self.c_smem_layout_staged.outer)
if cutlass.const_expr(self.use_tma_store)
else 0
)
# Define shared storage for kernel
@cute.struct
class SharedStorage:
ab_full_mbar_ptr: cute.struct.MemRange[cutlass.Int64, self.num_ab_stage]
ab_empty_mbar_ptr: cute.struct.MemRange[cutlass.Int64, self.num_ab_stage]
acc_full_mbar_ptr: cute.struct.MemRange[cutlass.Int64, self.num_acc_stage]
acc_empty_mbar_ptr: cute.struct.MemRange[cutlass.Int64, self.num_acc_stage]
tmem_dealloc_mbar_ptr: cutlass.Int64
tmem_holding_buf: cutlass.Int32
# (EPI_TILE_M, EPI_TILE_N, STAGE)
sC: cute.struct.Align[
cute.struct.MemRange[
self.c_dtype,
c_smem_size,
],
self.buffer_align_bytes,
]
# (MMA, MMA_M, MMA_K, STAGE)
sA: cute.struct.Align[
cute.struct.MemRange[
self.a_dtype, cute.cosize(self.a_smem_layout_staged.outer)
],
self.buffer_align_bytes,
]
# (MMA, MMA_N, MMA_K, STAGE)
sB: cute.struct.Align[
cute.struct.MemRange[
self.b_dtype, cute.cosize(self.b_smem_layout_staged.outer)
],
self.buffer_align_bytes,
]
self.shared_storage = SharedStorage
# Launch the kernel synchronously
self.kernel(
tiled_mma,
tma_atom_a,
tma_tensor_a,
tma_atom_b,
tma_tensor_b,
tma_atom_c,
tma_tensor_c if cutlass.const_expr(self.use_tma_store) else c,
self.cluster_layout_vmnk,
self.a_smem_layout_staged,
self.b_smem_layout_staged,
self.c_smem_layout_staged,
self.epi_tile,
self.tile_sched_params,
epilogue_op,
).launch(
grid=grid,
block=[self.threads_per_cta, 1, 1],
cluster=(*self.cluster_shape_mn, 1),
smem=self.shared_storage.size_in_bytes(),
stream=stream,
)
return
# GPU device kernel
@cute.kernel
def kernel(
self,
tiled_mma: cute.TiledMma,
tma_atom_a: cute.CopyAtom,
mA_mkl: cute.Tensor,
tma_atom_b: cute.CopyAtom,
mB_nkl: cute.Tensor,
tma_atom_c: Optional[cute.CopyAtom],
mC_mnl: cute.Tensor,
cluster_layout_vmnk: cute.Layout,
a_smem_layout_staged: cute.ComposedLayout,
b_smem_layout_staged: cute.ComposedLayout,
c_smem_layout_staged: Union[cute.Layout, cute.ComposedLayout, None],
epi_tile: cute.Tile,
tile_sched_params: utils.PersistentTileSchedulerParams,
epilogue_op: cutlass.Constexpr,
):
"""
GPU device kernel performing the Persistent batched GEMM computation.
"""
warp_idx = cute.arch.warp_idx()
warp_idx = cute.arch.make_warp_uniform(warp_idx)
#
# Prefetch tma desc
#
if warp_idx == self.tma_warp_id:
cpasync.prefetch_descriptor(tma_atom_a)
cpasync.prefetch_descriptor(tma_atom_b)
if cutlass.const_expr(self.use_tma_store):
cpasync.prefetch_descriptor(tma_atom_c)
use_2cta_instrs = cute.size(tiled_mma.thr_id.shape) == 2
#
# Setup cta/thread coordinates
#
# Coords inside cluster
bidx, bidy, bidz = cute.arch.block_idx()
mma_tile_coord_v = bidx % cute.size(tiled_mma.thr_id.shape)
is_leader_cta = mma_tile_coord_v == 0
cta_rank_in_cluster = cute.arch.make_warp_uniform(
cute.arch.block_idx_in_cluster()
)
block_in_cluster_coord_vmnk = cluster_layout_vmnk.get_flat_coord(
cta_rank_in_cluster
)
# Coord inside cta
tidx, _, _ = cute.arch.thread_idx()
#
# Alloc and init: a+b full/empty, accumulator full/empty, tensor memory dealloc barrier
#
smem = utils.SmemAllocator()
storage = smem.allocate(self.shared_storage)
tmem_dealloc_mbar_ptr = storage.tmem_dealloc_mbar_ptr
tmem_holding_buf = storage.tmem_holding_buf
# Initialize mainloop ab_pipeline (barrier) and states
ab_pipeline_producer_group = pipeline.CooperativeGroup(pipeline.Agent.Thread)
num_tma_producer = self.num_mcast_ctas_a + self.num_mcast_ctas_b - 1
ab_pipeline_consumer_group = pipeline.CooperativeGroup(
pipeline.Agent.Thread, num_tma_producer
)
ab_pipeline = pipeline.PipelineTmaUmma.create(
barrier_storage=storage.ab_full_mbar_ptr.data_ptr(),
num_stages=self.num_ab_stage,
producer_group=ab_pipeline_producer_group,
consumer_group=ab_pipeline_consumer_group,
tx_count=self.num_tma_load_bytes,
cta_layout_vmnk=cluster_layout_vmnk,
)
# Initialize acc_pipeline (barrier) and states
acc_pipeline_producer_group = pipeline.CooperativeGroup(pipeline.Agent.Thread)
num_acc_consumer_threads = len(self.epilog_warp_id) * (
2 if use_2cta_instrs else 1
)
acc_pipeline_consumer_group = pipeline.CooperativeGroup(
pipeline.Agent.Thread, num_acc_consumer_threads
)
acc_pipeline = pipeline.PipelineUmmaAsync.create(
barrier_storage=storage.acc_full_mbar_ptr.data_ptr(),
num_stages=self.num_acc_stage,
producer_group=acc_pipeline_producer_group,
consumer_group=acc_pipeline_consumer_group,
cta_layout_vmnk=cluster_layout_vmnk,
)
# Tensor memory dealloc barrier init
if use_2cta_instrs:
if warp_idx == self.tma_warp_id:
num_tmem_dealloc_threads = 32
with cute.arch.elect_one():
cute.arch.mbarrier_init(
tmem_dealloc_mbar_ptr, num_tmem_dealloc_threads
)
cute.arch.mbarrier_init_fence()
# Cluster arrive after barrier init
if cute.size(self.cluster_shape_mn) > 1:
cute.arch.cluster_arrive_relaxed()
#
# Setup smem tensor A/B/C
#
# (EPI_TILE_M, EPI_TILE_N, STAGE)
sC = (
storage.sC.get_tensor(
c_smem_layout_staged.outer, swizzle=c_smem_layout_staged.inner
)
if cutlass.const_expr(self.use_tma_store)
else None
)
# (MMA, MMA_M, MMA_K, STAGE)
sA = storage.sA.get_tensor(
a_smem_layout_staged.outer, swizzle=a_smem_layout_staged.inner
)
# (MMA, MMA_N, MMA_K, STAGE)
sB = storage.sB.get_tensor(
b_smem_layout_staged.outer, swizzle=b_smem_layout_staged.inner
)
#
# Compute multicast mask for A/B buffer full
#
a_full_mcast_mask = None
b_full_mcast_mask = None
if cutlass.const_expr(self.is_a_mcast or self.is_b_mcast or use_2cta_instrs):
a_full_mcast_mask = cpasync.create_tma_multicast_mask(
cluster_layout_vmnk, block_in_cluster_coord_vmnk, mcast_mode=2
)
b_full_mcast_mask = cpasync.create_tma_multicast_mask(
cluster_layout_vmnk, block_in_cluster_coord_vmnk, mcast_mode=1
)
#
# Local_tile partition global tensors
#
# (bM, bK, RestM, RestK, RestL)
gA_mkl = cute.local_tile(
mA_mkl, cute.slice_(self.mma_tiler, (None, 0, None)), (None, None, None)
)
# (bN, bK, RestN, RestK, RestL)
gB_nkl = cute.local_tile(
mB_nkl, cute.slice_(self.mma_tiler, (0, None, None)), (None, None, None)
)
# (bM, bN, RestM, RestN, RestL)
gC_mnl = cute.local_tile(
mC_mnl, cute.slice_(self.mma_tiler, (None, None, 0)), (None, None, None)
)
k_block_cnt = cute.size(gA_mkl, mode=[3])
#
# Partition global tensor for TiledMMA_A/B/C
#
thr_mma = tiled_mma.get_slice(mma_tile_coord_v)
# (MMA, MMA_M, MMA_K, RestM, RestK, RestL)
tCgA = thr_mma.partition_A(gA_mkl)
# (MMA, MMA_N, MMA_K, RestN, RestK, RestL)
tCgB = thr_mma.partition_B(gB_nkl)
# (MMA, MMA_M, MMA_N, RestM, RestN, RestL)
tCgC = thr_mma.partition_C(gC_mnl)
#
# Partition global/shared tensor for TMA load A/B
#
# TMA load A partition_S/D
a_cta_layout = cute.make_layout(
cute.slice_(cluster_layout_vmnk, (0, 0, None, 0)).shape
)
# ((atom_v, rest_v), STAGE)
# ((atom_v, rest_v), RestM, RestK, RestL)
tAsA, tAgA = cpasync.tma_partition(
tma_atom_a,
block_in_cluster_coord_vmnk[2],
a_cta_layout,
cute.group_modes(sA, 0, 3),
cute.group_modes(tCgA, 0, 3),
)
# TMA load B partition_S/D
b_cta_layout = cute.make_layout(
cute.slice_(cluster_layout_vmnk, (0, None, 0, 0)).shape
)
# ((atom_v, rest_v), STAGE)
# ((atom_v, rest_v), RestM, RestK, RestL)
tBsB, tBgB = cpasync.tma_partition(
tma_atom_b,
block_in_cluster_coord_vmnk[1],
b_cta_layout,
cute.group_modes(sB, 0, 3),
cute.group_modes(tCgB, 0, 3),
)
#
# Partition shared/tensor memory tensor for TiledMMA_A/B/C
#
# (MMA, MMA_M, MMA_K, STAGE)
tCrA = tiled_mma.make_fragment_A(sA)
# (MMA, MMA_N, MMA_K, STAGE)
tCrB = tiled_mma.make_fragment_B(sB)
# (MMA, MMA_M, MMA_N)
acc_shape = tiled_mma.partition_shape_C(self.mma_tiler[:2])
# (MMA, MMA_M, MMA_N, STAGE)
tCtAcc_fake = tiled_mma.make_fragment_C(
cute.append(acc_shape, self.num_acc_stage)
)
#
# Cluster wait before tensor memory alloc
#
if cute.size(self.cluster_shape_mn) > 1:
cute.arch.cluster_wait()
else:
cute.arch.barrier(
barrier_id=self.cta_sync_bar_id, number_of_threads=self.threads_per_cta
)
#
# Specialized TMA load warp
#
if warp_idx == self.tma_warp_id:
#
# Persistent tile scheduling loop
#
tile_sched = utils.StaticPersistentTileScheduler.create(
tile_sched_params, cute.arch.block_idx(), cute.arch.grid_dim()
)
work_tile = tile_sched.initial_work_tile_info()
ab_producer_state = pipeline.make_pipeline_state(
pipeline.PipelineUserType.Producer, self.num_ab_stage
)
while work_tile.is_valid_tile:
# Get tile coord from tile scheduler
cur_tile_coord = work_tile.tile_idx
mma_tile_coord_mnl = (
cur_tile_coord[0] // cute.size(tiled_mma.thr_id.shape),
cur_tile_coord[1],
cur_tile_coord[2],
)
#
# Slice to per mma tile index
#
# ((atom_v, rest_v), RestK)
tAgA_slice = tAgA[
(None, mma_tile_coord_mnl[0], None, mma_tile_coord_mnl[2])
]
# ((atom_v, rest_v), RestK)
tBgB_slice = tBgB[
(None, mma_tile_coord_mnl[1], None, mma_tile_coord_mnl[2])
]
# Peek (try_wait) AB buffer empty for k_block = prefetch_k_block_cnt
ab_producer_state.reset_count()
peek_ab_empty_status = cutlass.Boolean(1)
if ab_producer_state.count < k_block_cnt:
peek_ab_empty_status = ab_pipeline.producer_try_acquire(
ab_producer_state
)
#
# Tma load loop
#
for k_block in cutlass.range(0, k_block_cnt, 1, unroll=1):
# Conditionally wait for AB buffer empty
ab_pipeline.producer_acquire(
ab_producer_state, peek_ab_empty_status
)
# TMA load A/B
cute.copy(
tma_atom_a,
tAgA_slice[(None, ab_producer_state.count)],
tAsA[(None, ab_producer_state.index)],
tma_bar_ptr=ab_pipeline.producer_get_barrier(ab_producer_state),
mcast_mask=a_full_mcast_mask,
)
cute.copy(
tma_atom_b,
tBgB_slice[(None, ab_producer_state.count)],
tBsB[(None, ab_producer_state.index)],
tma_bar_ptr=ab_pipeline.producer_get_barrier(ab_producer_state),
mcast_mask=b_full_mcast_mask,
)
# Peek (try_wait) AB buffer empty for k_block = prefetch_k_block_cnt + k_block + 1
ab_producer_state.advance()
peek_ab_empty_status = cutlass.Boolean(1)
if ab_producer_state.count < k_block_cnt:
peek_ab_empty_status = ab_pipeline.producer_try_acquire(
ab_producer_state
)
#
# Advance to next tile
#
tile_sched.advance_to_next_work()
work_tile = tile_sched.get_current_work()
#
# Wait A/B buffer empty
#
ab_pipeline.producer_tail(ab_producer_state)
#
# Specialized MMA warp
#
if warp_idx == self.mma_warp_id:
#
# Bar sync for retrieve tensor memory ptr from shared mem
#
tmem_ptr_read_threads = 32 * len((self.mma_warp_id, *self.epilog_warp_id))
cute.arch.barrier(
barrier_id=self.tmem_ptr_sync_bar_id,
number_of_threads=tmem_ptr_read_threads,
)
#
# Retrieving tensor memory ptr and make accumulator tensor
#
tmem_ptr = cute.arch.retrieve_tmem_ptr(
self.acc_dtype,
alignment=16,
ptr_to_buffer_holding_addr=tmem_holding_buf,
)
# (MMA, MMA_M, MMA_N, STAGE)
tCtAcc_base = cute.make_tensor(tmem_ptr, tCtAcc_fake.layout)
#
# Persistent tile scheduling loop
#
tile_sched = utils.StaticPersistentTileScheduler.create(
tile_sched_params, cute.arch.block_idx(), cute.arch.grid_dim()
)
work_tile = tile_sched.initial_work_tile_info()
ab_consumer_state = pipeline.make_pipeline_state(
pipeline.PipelineUserType.Consumer, self.num_ab_stage
)
acc_producer_state = pipeline.make_pipeline_state(
pipeline.PipelineUserType.Producer, self.num_acc_stage
)
while work_tile.is_valid_tile:
# Get tile coord from tile scheduler
cur_tile_coord = work_tile.tile_idx
mma_tile_coord_mnl = (
cur_tile_coord[0] // cute.size(tiled_mma.thr_id.shape),
cur_tile_coord[1],
cur_tile_coord[2],
)
# Set tensor memory buffer for current tile
# (MMA, MMA_M, MMA_N)
tCtAcc = tCtAcc_base[(None, None, None, acc_producer_state.index)]
# Peek (try_wait) AB buffer full for k_block = 0
ab_consumer_state.reset_count()
peek_ab_full_status = cutlass.Boolean(1)
if ab_consumer_state.count < k_block_cnt and is_leader_cta:
peek_ab_full_status = ab_pipeline.consumer_try_wait(
ab_consumer_state
)
#
# Wait for accumulator buffer empty
#
if is_leader_cta:
acc_pipeline.producer_acquire(acc_producer_state)
#
# Reset the ACCUMULATE field for each tile
#
tiled_mma.set(tcgen05.Field.ACCUMULATE, False)
#
# Mma mainloop
#
for k_block in range(k_block_cnt):
if is_leader_cta:
# Conditionally wait for AB buffer full
ab_pipeline.consumer_wait(
ab_consumer_state, peek_ab_full_status
)
# tCtAcc += tCrA * tCrB
num_kphases = cute.size(tCrA, mode=[2])
for kphase_idx in cutlass.range(num_kphases, unroll_full=True):
kphase_coord = (
None,
None,
kphase_idx,
ab_consumer_state.index,
)
cute.gemm(
tiled_mma,
tCtAcc,
tCrA[kphase_coord],
tCrB[kphase_coord],
tCtAcc,
)
# Enable accumulate on tCtAcc after first kphase
tiled_mma.set(tcgen05.Field.ACCUMULATE, True)
# Async arrive AB buffer empty
ab_pipeline.consumer_release(ab_consumer_state)
# Peek (try_wait) AB buffer full for k_block = k_block + 1
ab_consumer_state.advance()
peek_ab_full_status = cutlass.Boolean(1)
if ab_consumer_state.count < k_block_cnt:
if is_leader_cta:
peek_ab_full_status = ab_pipeline.consumer_try_wait(
ab_consumer_state
)
#
# Async arrive accumulator buffer full
#
if is_leader_cta:
acc_pipeline.producer_commit(acc_producer_state)
acc_producer_state.advance()
#
# Advance to next tile
#
tile_sched.advance_to_next_work()
work_tile = tile_sched.get_current_work()
#
# Wait for accumulator buffer empty
#
acc_pipeline.producer_tail(acc_producer_state)
#
# Specialized epilogue warps
#
if warp_idx < self.mma_warp_id:
#
# Alloc tensor memory buffer
#
if warp_idx == self.epilog_warp_id[0]:
cute.arch.alloc_tmem(
self.num_tmem_alloc_cols,
tmem_holding_buf,
is_two_cta=use_2cta_instrs,
)
#
# Bar sync for retrieve tensor memory ptr from shared memory
#
tmem_ptr_read_threads = 32 * len((self.mma_warp_id, *self.epilog_warp_id))
cute.arch.barrier(
barrier_id=self.tmem_ptr_sync_bar_id,
number_of_threads=tmem_ptr_read_threads,
)
#
# Retrieving tensor memory ptr and make accumulator tensor
#
tmem_ptr = cute.arch.retrieve_tmem_ptr(
self.acc_dtype,
alignment=16,
ptr_to_buffer_holding_addr=tmem_holding_buf,
)
# (MMA, MMA_M, MMA_N, STAGE)
tCtAcc_base = cute.make_tensor(tmem_ptr, tCtAcc_fake.layout)
#
# Partition for epilogue
#
epi_tidx = tidx
(
tiled_copy_t2r,
tTR_tAcc_base,
tTR_rAcc,
) = self.epilog_tmem_copy_and_partition(
epi_tidx, tCtAcc_base, tCgC, epi_tile, use_2cta_instrs
)
tTR_rC = None
tiled_copy_r2s = None
simt_atom = None
tRS_rC = None
tRS_sC = None
bSG_sC = None
bSG_gC_partitioned = None
tTR_gC_partitioned = None
if cutlass.const_expr(self.use_tma_store):
tTR_rC = cute.make_fragment(tTR_rAcc.shape, self.c_dtype)
tiled_copy_r2s, tRS_rC, tRS_sC = self.epilog_smem_copy_and_partition(
tiled_copy_t2r, tTR_rC, epi_tidx, sC
)
(
tma_atom_c,
bSG_sC,
bSG_gC_partitioned,
) = self.epilog_gmem_copy_and_partition(
epi_tidx, tma_atom_c, tCgC, epi_tile, sC
)
else:
(
simt_atom,
tTR_rC,
tTR_gC_partitioned,
) = self.epilog_gmem_copy_and_partition(
epi_tidx, tiled_copy_t2r, tCgC, epi_tile, sC
)
#
# Persistent tile scheduling loop
#
tile_sched = utils.StaticPersistentTileScheduler.create(
tile_sched_params, cute.arch.block_idx(), cute.arch.grid_dim()
)
work_tile = tile_sched.initial_work_tile_info()
acc_consumer_state = pipeline.make_pipeline_state(
pipeline.PipelineUserType.Consumer, self.num_acc_stage
)
c_pipeline = None
if cutlass.const_expr(self.use_tma_store):
# Threads/warps participating in tma store pipeline
c_producer_group = pipeline.CooperativeGroup(
pipeline.Agent.Thread,
32 * len(self.epilog_warp_id),
32 * len(self.epilog_warp_id),
)
c_pipeline = pipeline.PipelineTmaStore.create(
num_stages=self.num_c_stage,
producer_group=c_producer_group,
)
while work_tile.is_valid_tile:
# Get tile coord from tile scheduler
cur_tile_coord = work_tile.tile_idx
mma_tile_coord_mnl = (
cur_tile_coord[0] // cute.size(tiled_mma.thr_id.shape),
cur_tile_coord[1],
cur_tile_coord[2],
)
#
# Slice to per mma tile index
#
bSG_gC = None
tTR_gC = None
if cutlass.const_expr(self.use_tma_store):
# ((ATOM_V, REST_V), EPI_M, EPI_N)
bSG_gC = bSG_gC_partitioned[
(
None,
None,
None,
*mma_tile_coord_mnl,
)
]
else:
# (T2R, T2R_M, T2R_N, EPI_M, EPI_N)
tTR_gC = tTR_gC_partitioned[
(
None,
None,
None,
None,
None,
*mma_tile_coord_mnl,
)
]
# Set tensor memory buffer for current tile
# (T2R, T2R_M, T2R_N, EPI_M, EPI_M)
tTR_tAcc = tTR_tAcc_base[
(None, None, None, None, None, acc_consumer_state.index)
]
#
# Wait for accumulator buffer full
#
acc_pipeline.consumer_wait(acc_consumer_state)
tTR_tAcc = cute.group_modes(tTR_tAcc, 3, cute.rank(tTR_tAcc))
if cutlass.const_expr(self.use_tma_store):
bSG_gC = cute.group_modes(bSG_gC, 1, cute.rank(bSG_gC))
else:
tTR_gC = cute.group_modes(tTR_gC, 3, cute.rank(tTR_gC))
#
# Store accumulator to global memory in subtiles
#
subtile_cnt = cute.size(tTR_tAcc.shape, mode=[3])
num_prev_subtiles = tile_sched.num_tiles_executed * subtile_cnt
for subtile_idx in cutlass.range(subtile_cnt):
#
# Load accumulator from tensor memory buffer to register
#
tTR_tAcc_mn = tTR_tAcc[(None, None, None, subtile_idx)]
cute.copy(tiled_copy_t2r, tTR_tAcc_mn, tTR_rAcc)
if cutlass.const_expr(self.use_tma_store):
#
# Convert to C type
#
acc_vec = tiled_copy_r2s.retile(tTR_rAcc).load()
acc_vec = epilogue_op(acc_vec.to(self.c_dtype))
tRS_rC.store(acc_vec)
#
# Store C to shared memory
#
c_buffer = (num_prev_subtiles + subtile_idx) % self.num_c_stage
cute.copy(
tiled_copy_r2s,
tRS_rC,
tRS_sC[(None, None, None, c_buffer)],
)
# Fence and barrier to make sure shared memory store is visible to TMA store
cute.arch.fence_proxy(
cute.arch.ProxyKind.async_shared,
space=cute.arch.SharedSpace.shared_cta,
)
epilog_threads = 32 * len(self.epilog_warp_id)
cute.arch.barrier(
barrier_id=self.epilog_sync_bar_id,
number_of_threads=epilog_threads,
)
#
# TMA store C to global memory
#
if warp_idx == self.epilog_warp_id[0]:
cute.copy(
tma_atom_c,
bSG_sC[(None, c_buffer)],
bSG_gC[(None, subtile_idx)],
)
# Fence and barrier to make sure shared memory store is visible to TMA store
c_pipeline.producer_commit()
c_pipeline.producer_acquire()
cute.arch.barrier(
barrier_id=self.epilog_sync_bar_id,
number_of_threads=epilog_threads,
)
else:
#
# Convert to C type
#
acc_vec = tTR_rAcc.load()
acc_vec = epilogue_op(acc_vec.to(self.c_dtype))
tTR_rC.store(acc_vec)
#
# Store C to global memory
#
cute.copy(
simt_atom, tTR_rC, tTR_gC[(None, None, None, subtile_idx)]
)
#
# Async arrive accumulator buffer empty
#
with cute.arch.elect_one():
acc_pipeline.consumer_release(acc_consumer_state)
acc_consumer_state.advance()
#
# Advance to next tile
#
tile_sched.advance_to_next_work()
work_tile = tile_sched.get_current_work()
#
# Dealloc the tensor memory buffer
#
if warp_idx == self.epilog_warp_id[0]:
cute.arch.relinquish_tmem_alloc_permit(is_two_cta=use_2cta_instrs)
epilog_threads = 32 * len(self.epilog_warp_id)
cute.arch.barrier(
barrier_id=self.epilog_sync_bar_id, number_of_threads=epilog_threads
)
if warp_idx == self.epilog_warp_id[0]:
if use_2cta_instrs:
cute.arch.mbarrier_arrive(
tmem_dealloc_mbar_ptr, cta_rank_in_cluster ^ 1
)
cute.arch.mbarrier_wait(tmem_dealloc_mbar_ptr, 0)
cute.arch.dealloc_tmem(
tmem_ptr, self.num_tmem_alloc_cols, is_two_cta=use_2cta_instrs
)
#
# Wait for C store complete
#
if cutlass.const_expr(self.use_tma_store):
c_pipeline.producer_tail()
def epilog_tmem_copy_and_partition(
self,
tidx: cutlass.Int32,
tAcc: cute.Tensor,
gC_mnl: cute.Tensor,
epi_tile: cute.Tile,
use_2cta_instrs: Union[cutlass.Boolean, bool],
) -> Tuple[cute.TiledCopy, cute.Tensor, cute.Tensor]:
"""
Make tiledCopy for tensor memory load, then use it to partition tensor memory (source) and register array (destination).
:param tidx: The thread index in epilogue warp groups
:type tidx: cutlass.Int32
:param tAcc: The accumulator tensor to be copied and partitioned
:type tAcc: cute.Tensor
:param gC_mnl: The global tensor C
:type gC_mnl: cute.Tensor
:param epi_tile: The epilogue tiler
:type epi_tile: cute.Tile
:param use_2cta_instrs: Whether use_2cta_instrs is enabled
:type use_2cta_instrs: bool
:return: A tuple containing (tiled_copy_t2r, tTR_tAcc, tTR_rAcc) where:
- tiled_copy_t2r: The tiled copy operation for tmem to register copy(t2r)
- tTR_tAcc: The partitioned accumulator tensor
- tTR_rAcc: The accumulated tensor in register used to hold t2r results
:rtype: Tuple[cute.TiledCopy, cute.Tensor, cute.Tensor]
"""
# Make tiledCopy for tensor memory load
copy_atom_t2r = sm100_utils.get_tmem_load_op(
self.cta_tile_shape_mnk,
self.c_layout,
self.c_dtype,
self.acc_dtype,
epi_tile,
use_2cta_instrs,
)
# (EPI_TILE_M, EPI_TILE_N, EPI_M, EPI_N, STAGE)
tAcc_epi = cute.flat_divide(
tAcc[((None, None), 0, 0, None)],
epi_tile,
)
# (EPI_TILE_M, EPI_TILE_N)
tiled_copy_t2r = tcgen05.make_tmem_copy(
copy_atom_t2r, tAcc_epi[(None, None, 0, 0, 0)]
)
thr_copy_t2r = tiled_copy_t2r.get_slice(tidx)
# (T2R, T2R_M, T2R_N, EPI_M, EPI_M, STAGE)
tTR_tAcc = thr_copy_t2r.partition_S(tAcc_epi)
# (EPI_TILE_M, EPI_TILE_N, EPI_M, EPI_N, RestM, RestN, RestL)
gC_mnl_epi = cute.flat_divide(
gC_mnl[((None, None), 0, 0, None, None, None)], epi_tile
)
# (T2R, T2R_M, T2R_N, EPI_M, EPI_N, RestM, RestN, RestL)
tTR_gC = thr_copy_t2r.partition_D(gC_mnl_epi)
# (T2R, T2R_M, T2R_N)
tTR_rAcc = cute.make_fragment(
tTR_gC[(None, None, None, 0, 0, 0, 0, 0)].shape, self.acc_dtype
)
return tiled_copy_t2r, tTR_tAcc, tTR_rAcc
def epilog_smem_copy_and_partition(
self,
tiled_copy_t2r: cute.TiledCopy,
tTR_rC: cute.Tensor,
tidx: cutlass.Int32,
sC: cute.Tensor,
) -> Tuple[cute.TiledCopy, cute.Tensor, cute.Tensor]:
"""
Make tiledCopy for shared memory store, then use it to partition register array (source) and shared memory (destination).
:param tiled_copy_t2r: The tiled copy operation for tmem to register copy(t2r)
:type tiled_copy_t2r: cute.TiledCopy
:param tTR_rC: The partitioned accumulator tensor
:type tTR_rC: cute.Tensor
:param tidx: The thread index in epilogue warp groups
:type tidx: cutlass.Int32
:param sC: The shared memory tensor to be copied and partitioned
:type sC: cute.Tensor
:type sepi: cute.Tensor
:return: A tuple containing (tiled_copy_r2s, tRS_rC, tRS_sC) where:
- tiled_copy_r2s: The tiled copy operation for register to smem copy(r2s)
- tRS_rC: The partitioned tensor C (register source)
- tRS_sC: The partitioned tensor C (smem destination)
:rtype: Tuple[cute.TiledCopy, cute.Tensor, cute.Tensor]
"""
copy_atom_r2s = sm100_utils.get_smem_store_op(
self.c_layout, self.c_dtype, self.acc_dtype, tiled_copy_t2r
)
tiled_copy_r2s = cute.make_tiled_copy_D(copy_atom_r2s, tiled_copy_t2r)
# (R2S, R2S_M, R2S_N, PIPE_D)
thr_copy_r2s = tiled_copy_r2s.get_slice(tidx)
tRS_sC = thr_copy_r2s.partition_D(sC)
# (R2S, R2S_M, R2S_N)
tRS_rC = tiled_copy_r2s.retile(tTR_rC)
return tiled_copy_r2s, tRS_rC, tRS_sC
def epilog_gmem_copy_and_partition(
self,
tidx: cutlass.Int32,
atom: Union[cute.CopyAtom, cute.TiledCopy],
gC_mnl: cute.Tensor,
epi_tile: cute.Tile,
sC: cute.Tensor,
) -> Tuple[cute.CopyAtom, cute.Tensor, cute.Tensor]:
"""Make tiledCopy for global memory store, then use it to:
- partition register array (source) and global memory (destination) for none TMA store version;
- partition shared memory (source) and global memory (destination) for TMA store version.
:param tidx: The thread index in epilogue warp groups
:type tidx: cutlass.Int32
:param atom: The copy_atom_c to be used for TMA store version, or tiled_copy_t2r for none TMA store version
:type atom: cute.CopyAtom or cute.TiledCopy
:param gC_mnl: The global tensor C
:type gC_mnl: cute.Tensor
:param epi_tile: The epilogue tiler
:type epi_tile: cute.Tile
:param sC: The shared memory tensor to be copied and partitioned
:type sC: cute.Tensor
:return: A tuple containing either:
- For TMA store: (tma_atom_c, bSG_sC, bSG_gC) where:
- tma_atom_c: The TMA copy atom
- bSG_sC: The partitioned shared memory tensor C
- bSG_gC: The partitioned global tensor C
- For non-TMA store: (simt_atom, tTR_rC, tTR_gC) where:
- simt_atom: The SIMT copy atom
- tTR_rC: The register tensor C
- tTR_gC: The partitioned global tensor C
:rtype: Tuple[cute.CopyAtom, cute.Tensor, cute.Tensor]
"""
# (EPI_TILE_M, EPI_TILE_N, EPI_M, EPI_N, RestM, RestN, RestL)
gC_epi = cute.flat_divide(
gC_mnl[((None, None), 0, 0, None, None, None)], epi_tile
)
if cutlass.const_expr(self.use_tma_store):
tma_atom_c = atom
sC_for_tma_partition = cute.group_modes(sC, 0, 2)
gC_for_tma_partition = cute.group_modes(gC_epi, 0, 2)
# ((ATOM_V, REST_V), EPI_M, EPI_N)
# ((ATOM_V, REST_V), EPI_M, EPI_N, RestM, RestN, RestL)
bSG_sC, bSG_gC = cpasync.tma_partition(
tma_atom_c,
0,
cute.make_layout(1),
sC_for_tma_partition,
gC_for_tma_partition,
)
return tma_atom_c, bSG_sC, bSG_gC
else:
tiled_copy_t2r = atom
# (T2R, T2R_M, T2R_N, EPI_M, EPI_N, RestM, RestN, RestL)
thr_copy_t2r = tiled_copy_t2r.get_slice(tidx)
tTR_gC = thr_copy_t2r.partition_D(gC_epi)
# (T2R, T2R_M, T2R_N)
tTR_rC = cute.make_fragment(
tTR_gC[(None, None, None, 0, 0, 0, 0, 0)].shape, self.c_dtype
)
simt_atom = cute.make_copy_atom(cute.nvgpu.CopyUniversalOp(), self.c_dtype)
return simt_atom, tTR_rC, tTR_gC
@staticmethod
def _compute_stages(
tiled_mma: cute.TiledMma,
mma_tiler_mnk: Tuple[int, int, int],
a_dtype: Type[cutlass.Numeric],
b_dtype: Type[cutlass.Numeric],
epi_tile: cute.Tile,
c_dtype: Type[cutlass.Numeric],
c_layout: utils.LayoutEnum,
smem_capacity: int,
occupancy: int,
use_tma_store: bool,
) -> Tuple[int, int, int]:
"""Computes the number of stages for A/B/C operands based on heuristics.
:param tiled_mma: The tiled MMA object defining the core computation.
:type tiled_mma: cute.TiledMma
:param mma_tiler_mnk: The shape (M, N, K) of the MMA tiler.
:type mma_tiler_mnk: tuple[int, int, int]
:param a_dtype: Data type of operand A.
:type a_dtype: type[cutlass.Numeric]
:param b_dtype: Data type of operand B.
:type b_dtype: type[cutlass.Numeric]
:param epi_tile: The epilogue tile shape.
:type epi_tile: cute.Tile
:param c_dtype: Data type of operand C (output).
:type c_dtype: type[cutlass.Numeric]
:param c_layout: Layout enum of operand C.
:type c_layout: utils.LayoutEnum
:param smem_capacity: Total available shared memory capacity in bytes.
:type smem_capacity: int
:param occupancy: Target number of CTAs per SM (occupancy).
:type occupancy: int
:param use_tma_store: Whether TMA store is enabled.
:type use_tma_store: bool
:return: A tuple containing the computed number of stages for:
(ACC stages, A/B operand stages, C stages)
:rtype: tuple[int, int, int]
"""
# Default ACC stages
num_acc_stage = 2
# Default C stages
num_c_stage = 2 if use_tma_store else 0
# Calculate smem layout and size for one stage of A, B, and C
a_smem_layout_stage_one = sm100_utils.make_smem_layout_a(
tiled_mma,
mma_tiler_mnk,
a_dtype,
1, # a tmp 1 stage is provided
)
b_smem_layout_staged_one = sm100_utils.make_smem_layout_b(
tiled_mma,
mma_tiler_mnk,
b_dtype,
1, # a tmp 1 stage is provided
)
c_smem_layout_staged_one = (
sm100_utils.make_smem_layout_epi(
c_dtype,
c_layout,
epi_tile,
1,
)
if use_tma_store
else None
)
ab_bytes_per_stage = cute.size_in_bytes(
a_dtype, a_smem_layout_stage_one
) + cute.size_in_bytes(b_dtype, b_smem_layout_staged_one)
mbar_helpers_bytes = 1024
c_bytes_per_stage = (
cute.size_in_bytes(c_dtype, c_smem_layout_staged_one)
if use_tma_store
else 0
)
c_bytes = c_bytes_per_stage * num_c_stage
# Calculate A/B stages:
# Start with total smem per CTA (capacity / occupancy)
# Subtract reserved bytes and initial C stages bytes
# Divide remaining by bytes needed per A/B stage
num_ab_stage = (
smem_capacity // occupancy - (mbar_helpers_bytes + c_bytes)
) // ab_bytes_per_stage
# Refine epilogue stages:
# Calculate remaining smem after allocating for A/B stages and reserved bytes
# Add remaining unused smem to epilogue
if use_tma_store:
num_c_stage += (
smem_capacity
- occupancy * ab_bytes_per_stage * num_ab_stage
- occupancy * (mbar_helpers_bytes + c_bytes)
) // (occupancy * c_bytes_per_stage)
return num_acc_stage, num_ab_stage, num_c_stage
@staticmethod
def _compute_grid(
c: cute.Tensor,
cta_tile_shape_mnk: Tuple[int, int, int],
cluster_shape_mn: Tuple[int, int],
max_active_clusters: cutlass.Constexpr,
) -> Tuple[utils.PersistentTileSchedulerParams, Tuple[int, int, int]]:
"""Use persistent tile scheduler to compute the grid size for the output tensor C.
:param c: The output tensor C
:type c: cute.Tensor
:param cta_tile_shape_mnk: The shape (M, N, K) of the CTA tile.
:type cta_tile_shape_mnk: tuple[int, int, int]
:param cluster_shape_mn: Shape of each cluster in M, N dimensions.
:type cluster_shape_mn: tuple[int, int]
:param max_active_clusters: Maximum number of active clusters.
:type max_active_clusters: cutlass.Constexpr
:return: A tuple containing:
- tile_sched_params: Parameters for the persistent tile scheduler.
- grid: Grid shape for kernel launch.
:rtype: Tuple[utils.PersistentTileSchedulerParams, tuple[int, int, int]]
"""
c_shape = cute.slice_(cta_tile_shape_mnk, (None, None, 0))
gc = cute.zipped_divide(c, tiler=c_shape)
num_ctas_mnl = gc[(0, (None, None, None))].shape
cluster_shape_mnl = (*cluster_shape_mn, 1)
tile_sched_params = utils.PersistentTileSchedulerParams(
num_ctas_mnl, cluster_shape_mnl
)
grid = utils.StaticPersistentTileScheduler.get_grid_shape(
tile_sched_params, max_active_clusters
)
return tile_sched_params, grid
@staticmethod
def _compute_num_tmem_alloc_cols(
tiled_mma: cute.TiledMma,
mma_tiler: Tuple[int, int, int],
num_acc_stage: int,
) -> int:
"""
Compute the number of tensor memory allocation columns.
:param tiled_mma: The tiled MMA object defining the core computation.
:type tiled_mma: cute.TiledMma
:param mma_tiler: The shape (M, N, K) of the MMA tile.
:type mma_tiler: tuple[int, int, int]
:param num_acc_stage: The stage of the accumulator tensor.
:type num_acc_stage: int
:return: The number of tensor memory allocation columns.
:rtype: int
"""
acc_shape = tiled_mma.partition_shape_C(mma_tiler[:2])
tCtAcc_fake = tiled_mma.make_fragment_C(cute.append(acc_shape, num_acc_stage))
num_tmem_alloc_cols = utils.get_num_tmem_alloc_cols(tCtAcc_fake)
return num_tmem_alloc_cols
@staticmethod
def is_valid_dtypes(
ab_dtype: Type[cutlass.Numeric],
acc_dtype: Type[cutlass.Numeric],
c_dtype: Type[cutlass.Numeric],
) -> bool:
"""
Check if the dtypes are valid
:param ab_dtype: The data type of the A and B operands
:type ab_dtype: Type[cutlass.Numeric]
:param acc_dtype: The data type of the accumulator
:type acc_dtype: Type[cutlass.Numeric]
:param c_dtype: The data type of the output tensor
:type c_dtype: Type[cutlass.Numeric]
:return: True if the dtypes are valid, False otherwise
:rtype: bool
"""
is_valid = True
if ab_dtype not in {
cutlass.Float16,
cutlass.BFloat16,
cutlass.TFloat32,
cutlass.Uint8,
cutlass.Int8,
cutlass.Float8E4M3FN,
cutlass.Float8E5M2,
}:
is_valid = False
if (
acc_dtype not in {cutlass.Float32, cutlass.Float16, cutlass.Int32}
or acc_dtype == cutlass.Float16
and ab_dtype
not in {cutlass.Float16, cutlass.Float8E4M3FN, cutlass.Float8E5M2}
or acc_dtype == cutlass.Int32
and ab_dtype not in {cutlass.Uint8, cutlass.Int8}
):
is_valid = False
if (
acc_dtype == cutlass.Float32
and c_dtype
not in {
cutlass.Float32,
cutlass.Float16,
cutlass.BFloat16,
cutlass.Float8E4M3FN,
cutlass.Float8E5M2,
cutlass.Int32,
cutlass.Int8,
cutlass.Uint8,
}
or acc_dtype == cutlass.Float16
and c_dtype
not in {
cutlass.BFloat16,
cutlass.Float16,
}
or acc_dtype == cutlass.Int32
and c_dtype
not in {
cutlass.BFloat16,
cutlass.Float16,
cutlass.Float32,
cutlass.Int32,
cutlass.Int8,
cutlass.Uint8,
}
):
is_valid = False
return is_valid
@staticmethod
def is_valid_mma_tiler_and_cluster_shape(
use_2cta_instrs: bool,
mma_tiler_mn: Tuple[int, int],
cluster_shape_mn: Tuple[int, int],
) -> bool:
"""
Check if the mma tiler and cluster shape are valid
:param use_2cta_instrs: Whether to use 2 CTA groups
:type use_2cta_instrs: bool
:param mma_tiler_mn: The (M, N) shape of the MMA instruction tiler
:type mma_tiler_mn: Tuple[int, int]
:param cluster_shape_mn: The (ClusterM, ClusterN) shape of the CTA cluster
:type cluster_shape_mn: Tuple[int, int]
:return: True if the mma tiler and cluster shape are valid, False otherwise
:rtype: bool
"""
is_valid = True
# Skip invalid mma tile shape
if not (
(not use_2cta_instrs and mma_tiler_mn[0] in [64, 128])
or (use_2cta_instrs and mma_tiler_mn[0] in [128, 256])
):
is_valid = False
if mma_tiler_mn[1] not in range(32, 257, 32):
is_valid = False
# Skip illegal cluster shape
if cluster_shape_mn[0] % (2 if use_2cta_instrs else 1) != 0:
is_valid = False
# Skip invalid cluster shape
is_power_of_2 = lambda x: x > 0 and (x & (x - 1)) == 0
if (
cluster_shape_mn[0] * cluster_shape_mn[1] > 16
or cluster_shape_mn[0] <= 0
or cluster_shape_mn[1] <= 0
or not is_power_of_2(cluster_shape_mn[0])
or not is_power_of_2(cluster_shape_mn[1])
):
is_valid = False
return is_valid
@staticmethod
def is_valid_tensor_alignment(
m: int,
n: int,
k: int,
l: int,
ab_dtype: Type[cutlass.Numeric],
c_dtype: Type[cutlass.Numeric],
a_major: str,
b_major: str,
c_major: str,
) -> bool:
"""
Check if the tensor alignment is valid
:param m: The number of rows in the A tensor
:type m: int
:param n: The number of columns in the B tensor
:type n: int
:param k: The number of columns in the A tensor
:type k: int
:param l: The number of columns in the C tensor
:type l: int
:param ab_dtype: The data type of the A and B operands
:type ab_dtype: Type[cutlass.Numeric]
:param c_dtype: The data type of the output tensor
:type c_dtype: Type[cutlass.Numeric]
:param a_major: The major axis of the A tensor
:type a_major: str
:param b_major: The major axis of the B tensor
:type b_major: str
:param c_major: The major axis of the C tensor
:type c_major: str
:return: True if the problem shape is valid, False otherwise
:rtype: bool
"""
is_valid = True
def check_contigous_16B_alignment(dtype, is_mode0_major, tensor_shape):
major_mode_idx = 0 if is_mode0_major else 1
num_major_elements = tensor_shape[major_mode_idx]
num_contiguous_elements = 16 * 8 // dtype.width
return num_major_elements % num_contiguous_elements == 0
if (
not check_contigous_16B_alignment(ab_dtype, a_major == "m", (m, k, l))
or not check_contigous_16B_alignment(ab_dtype, b_major == "n", (n, k, l))
or not check_contigous_16B_alignment(c_dtype, c_major == "m", (m, n, l))
):
is_valid = False
return is_valid
@staticmethod
def is_valid_epilog_store_option(
use_2cta_instrs: bool,
use_tma_store: bool,
m: int,
n: int,
mma_tiler_mn: Tuple[int, int],
) -> bool:
"""
Check if the epilogue store option is valid
:param use_2cta_instrs: Whether to use 2 CTA groups
:type use_2cta_instrs: bool
:param use_tma_store: Whether to use TMA store
:type use_tma_store: bool
:param m: The number of rows in the A tensor
:type m: int
:param n: The number of columns in the B tensor
:type n: int
:param mma_tiler_mn: The (M, N) shape of the MMA instruction tiler
:type mma_tiler_mn: Tuple[int, int]
:return: True if the epilogue store option is valid, False otherwise
:rtype: bool
"""
is_valid = True
# None TMA store version does not have predication, can not support OOB tiles
cta_tile_shape_mn = (
mma_tiler_mn[0] // (2 if use_2cta_instrs else 1),
mma_tiler_mn[1],
)
if not use_tma_store:
if not (m % cta_tile_shape_mn[0] == 0 and n % cta_tile_shape_mn[1] == 0):
is_valid = False
return is_valid
@staticmethod
def can_implement(
ab_dtype: Type[cutlass.Numeric],
acc_dtype: Type[cutlass.Numeric],
c_dtype: Type[cutlass.Numeric],
use_2cta_instrs: bool,
mma_tiler_mn: Tuple[int, int],
cluster_shape_mn: Tuple[int, int],
use_tma_store: bool,
m: int,
n: int,
k: int,
l: int,
a_major: str,
b_major: str,
c_major: str,
) -> bool:
"""
Check if the gemm can be implemented
:param ab_dtype: The data type of the A and B operands
:type ab_dtype: Type[cutlass.Numeric]
:param acc_dtype: The data type of the accumulator
:type acc_dtype: Type[cutlass.Numeric]
:param c_dtype: The data type of the output tensor
:type c_dtype: Type[cutlass.Numeric]
:param use_2cta_instrs: Whether to use 2 CTA groups
:type use_2cta_instrs: bool
:param mma_tiler_mn: The (M, N) shape of the MMA instruction tiler
:type mma_tiler_mn: Tuple[int, int]
:param cluster_shape_mn: The (ClusterM, ClusterN) shape of the CTA cluster
:type cluster_shape_mn: Tuple[int, int]
:param use_tma_store: Whether to use TMA store
:type use_tma_store: bool
:param m: The number of rows in the A tensor
:type m: int
:param n: The number of columns in the B tensor
:type n: int
:param k: The number of columns in the A tensor
:type k: int
:param l: The number of columns in the C tensor
:type l: int
:param a_major: The major axis of the A tensor
:type a_major: str
:param b_major: The major axis of the B tensor
:type b_major: str
:param c_major: The major axis of the C tensor
:type c_major: str
:return: True if the gemm can be implemented, False otherwise
:rtype: bool
"""
can_implement = True
# Skip unsupported types
if not PersistentDenseGemmKernel.is_valid_dtypes(ab_dtype, acc_dtype, c_dtype):
can_implement = False
# Skip invalid mma tile shape and cluster shape
if not PersistentDenseGemmKernel.is_valid_mma_tiler_and_cluster_shape(
use_2cta_instrs, mma_tiler_mn, cluster_shape_mn
):
can_implement = False
# Skip illegal problem shape for load/store alignment
if not PersistentDenseGemmKernel.is_valid_tensor_alignment(
m, n, k, l, ab_dtype, c_dtype, a_major, b_major, c_major
):
can_implement = False
# Skip invalid epilogue store option
if not PersistentDenseGemmKernel.is_valid_epilog_store_option(
use_2cta_instrs, use_tma_store, m, n, mma_tiler_mn
):
can_implement = False
return can_implement
def run(
mnkl: Tuple[int, int, int, int],
ab_dtype: Type[cutlass.Numeric],
c_dtype: Type[cutlass.Numeric],
acc_dtype: Type[cutlass.Numeric],
a_major: str,
b_major: str,
c_major: str,
mma_tiler_mn: Tuple[int, int] = (256, 256),
cluster_shape_mn: Tuple[int, int] = (2, 1),
use_2cta_instrs: bool = True,
use_tma_store: bool = True,
tolerance: float = 1e-01,
warmup_iterations: int = 0,
iterations: int = 1,
skip_ref_check: bool = False,
use_cold_l2: bool = False,
**kwargs,
):
"""Execute a persistent batched dense GEMM operation on Blackwell architecture with performance benchmarking.
This function prepares input tensors, configures and launches the persistent GEMM kernel,
optionally performs reference validation, and benchmarks the execution performance.
:param mnkl: Problem size (M, N, K, L)
:type mnkl: Tuple[int, int, int, int]
:param ab_dtype: Data type for input tensors A and B
:type ab_dtype: Type[cutlass.Numeric]
:param c_dtype: Data type for output tensor C
:type c_dtype: Type[cutlass.Numeric]
:param acc_dtype: Data type for accumulation during matrix multiplication
:type acc_dtype: Type[cutlass.Numeric]
:param a_major/b_major/c_major: Memory layout of tensor A/B/C
:type a_major/b_major/c_major: str
:param mma_tiler_mn: MMA tiling size. If not specified in the decorator parameters, the autotuner will use the
default value of (256, 256). Otherwise, the autotuner will use the value specified in the decorator parameters.
:type mma_tiler_mn: Tuple[int, int], optional
:param cluster_shape_mn: Cluster shape. If not specified in the decorator parameters, the autotuner will use the
default value of (2, 1). Otherwise, the autotuner will use the value specified in the decorator parameters.
:type cluster_shape_mn: Tuple[int, int], optional
:param use_2cta_instrs: Whether to use 2CTA instructions. If not specified in the decorator parameters, the autotuner
will use the default value of True. Otherwise, the autotuner will use the value specified in the decorator parameters.
:type use_2cta_instrs: bool, optional
:param use_tma_store: Whether to use TMA store. If not specified in the decorator parameters, the autotuner will use
the default value of True. Otherwise, the autotuner will use the value specified in the decorator parameters.
:type use_tma_store: bool, optional
:param tolerance: Tolerance value for reference validation comparison, defaults to 1e-01
:type tolerance: float, optional
:param warmup_iterations: Number of warmup iterations before benchmarking, defaults to 0
:type warmup_iterations: int, optional
:param iterations: Number of benchmark iterations to run, defaults to 1
:type iterations: int, optional
:param skip_ref_check: Whether to skip reference result validation, defaults to False
:type skip_ref_check: bool, optional
:param use_cold_l2: Whether to use circular buffer strategy to ensure cold L2 cache, defaults to False
:type use_cold_l2: bool, optional
:raises RuntimeError: If CUDA GPU is not available
:raises ValueError: If the configuration is invalid or unsupported by the kernel
:return: Execution time of the GEMM kernel
:rtype: float
"""
print(f"Running Blackwell Persistent Dense GEMM test with:")
print(f"mnkl: {mnkl}")
print(f"AB dtype: {ab_dtype}, C dtype: {c_dtype}, Acc dtype: {acc_dtype}")
print(f"Matrix majors - A: {a_major}, B: {b_major}, C: {c_major}")
print(f"Mma Tiler (M, N): {mma_tiler_mn}, Cluster Shape (M, N): {cluster_shape_mn}")
print(f"2CTA MMA instructions: {'True' if use_2cta_instrs else 'False'}")
print(f"Use TMA Store: {'True' if use_tma_store else 'False'}")
print(f"Tolerance: {tolerance}")
print(f"Warmup iterations: {warmup_iterations}")
print(f"Iterations: {iterations}")
print(f"Skip reference checking: {skip_ref_check}")
print(f"Use cold L2: {'True' if use_cold_l2 else 'False'}")
# Unpack parameters
m, n, k, l = mnkl
# Skip unsupported testcase
if not PersistentDenseGemmKernel.can_implement(
ab_dtype,
acc_dtype,
c_dtype,
use_2cta_instrs,
mma_tiler_mn,
cluster_shape_mn,
use_tma_store,
m,
n,
k,
l,
a_major,
b_major,
c_major,
):
raise TypeError(
f"Unsupported testcase {ab_dtype}, {acc_dtype}, {c_dtype}, {use_2cta_instrs}, {mma_tiler_mn}, {cluster_shape_mn}, {use_tma_store}, {m}, {n}, {k}, {l}, {a_major}, {b_major}, {c_major}"
)
if not torch.cuda.is_available():
raise RuntimeError("GPU is required to run this example!")
torch.manual_seed(1111)
# Create and permute tensor A/B/C
def create_and_permute_tensor(
l, mode0, mode1, is_mode0_major, dtype, is_dynamic_layout=True
):
# is_mode0_major: (l, mode1, mode0) -> (mode0, mode1, l)
# else: (l, mode0, mode1) -> (mode0, mode1, l)
shape = (l, mode1, mode0) if is_mode0_major else (l, mode0, mode1)
permute_order = (2, 1, 0) if is_mode0_major else (1, 2, 0)
is_unsigned = dtype in {cutlass.Uint8}
# Temporarily use uint8 as torch does not support fp8 type
torch_dtype = (
cutlass_torch.dtype(dtype)
if dtype not in {cutlass.Float8E5M2, cutlass.Float8E4M3FN}
else torch.uint8
)
# Create dtype torch tensor (cpu)
torch_tensor_cpu = cutlass_torch.create_and_permute_torch_tensor(
shape,
torch_dtype,
permute_order=permute_order,
init_type=cutlass_torch.TensorInitType.RANDOM,
init_config=cutlass_torch.RandomInitConfig(
min_val=0 if is_unsigned else -2, max_val=4 if is_unsigned else 2
),
)
# Create dtype torch tensor (gpu)
torch_tensor = torch_tensor_cpu.cuda()
# Create f32 torch tensor (cpu)
f32_torch_tensor = torch_tensor_cpu.to(dtype=torch.float32)
# Create dtype cute tensor (gpu)
cute_tensor = from_dlpack(torch_tensor, assumed_align=16)
cute_tensor.element_type = dtype
if is_dynamic_layout:
cute_tensor = cute_tensor.mark_layout_dynamic(
leading_dim=(0 if is_mode0_major else 1)
)
cute_tensor = cutlass_torch.convert_cute_tensor(
f32_torch_tensor,
cute_tensor,
dtype,
is_dynamic_layout=is_dynamic_layout,
)
return f32_torch_tensor, cute_tensor, torch_tensor, torch_tensor_cpu
a_ref, a_tensor, a_torch, a_torch_cpu = create_and_permute_tensor(
l, m, k, a_major == "m", ab_dtype, is_dynamic_layout=True
)
b_ref, b_tensor, b_torch, b_torch_cpu = create_and_permute_tensor(
l, n, k, b_major == "n", ab_dtype, is_dynamic_layout=True
)
c_ref, c_tensor, c_torch, c_torch_cpu = create_and_permute_tensor(
l, m, n, c_major == "m", c_dtype, is_dynamic_layout=True
)
# Configure gemm kernel
gemm = PersistentDenseGemmKernel(
acc_dtype,
use_2cta_instrs,
mma_tiler_mn,
cluster_shape_mn,
use_tma_store,
)
# Compute max active clusters on current device
hardware_info = cutlass.utils.HardwareInfo()
max_active_clusters = hardware_info.get_max_active_clusters(
cluster_shape_mn[0] * cluster_shape_mn[1]
)
# Get current CUDA stream from PyTorch
torch_stream = torch.cuda.current_stream()
# Get the raw stream pointer as a CUstream
current_stream = cuda.CUstream(torch_stream.cuda_stream)
# Compile gemm kernel
compiled_gemm = cute.compile(
gemm, a_tensor, b_tensor, c_tensor, max_active_clusters, current_stream
)
if not skip_ref_check:
compiled_gemm(a_tensor, b_tensor, c_tensor, current_stream)
if ab_dtype in {
cutlass.Int8,
cutlass.Uint8,
cutlass.Float8E4M3FN,
cutlass.Float8E5M2,
}:
ref = torch.einsum("mkl,nkl->mnl", a_ref.cpu(), b_ref.cpu())
else:
ref = (torch.einsum("mkl,nkl->mnl", a_ref, b_ref)).cpu()
# Copy gpu result back
gpu_c = c_torch.cpu()
# Convert ref to c_type
if c_dtype == cutlass.Float32:
ref_c = ref
elif c_dtype in {cutlass.Float8E5M2, cutlass.Float8E4M3FN}:
# m major: (l, n, m) -> (m, n, l)
# n major: (l, m, n) -> (m, n, l)
permute_order = (1, 2, 0) if c_major == "n" else (2, 1, 0)
shape = (l, m, n) if c_major == "n" else (l, n, m)
f8_torch_tensor = cutlass_torch.create_and_permute_torch_tensor(
shape,
torch.uint8,
permute_order=permute_order,
init_type=cutlass_torch.TensorInitType.SKIP,
).cuda()
# Create dtype cute tensor (gpu)
ref_c_tensor = from_dlpack(
f8_torch_tensor, assumed_align=16
).mark_layout_dynamic(leading_dim=(1 if c_major == "n" else 0))
ref_c_tensor.element_type = c_dtype
ref_c_tensor = cutlass_torch.convert_cute_tensor(
ref,
ref_c_tensor,
c_dtype,
is_dynamic_layout=True,
)
ref_c = f8_torch_tensor.cpu()
else:
ref_c = ref.to(cutlass_torch.dtype(c_dtype))
# Reference checking ref_c and gpu_c
torch.testing.assert_close(
gpu_c,
ref_c,
atol=tolerance,
rtol=1e-05,
)
def generate_tensors():
a_tensor, _ = cutlass_torch.cute_tensor_like(
a_torch_cpu, ab_dtype, is_dynamic_layout=True, assumed_align=16
)
b_tensor, _ = cutlass_torch.cute_tensor_like(
b_torch_cpu, ab_dtype, is_dynamic_layout=True, assumed_align=16
)
c_tensor, _ = cutlass_torch.cute_tensor_like(
c_torch_cpu, c_dtype, is_dynamic_layout=True, assumed_align=16
)
return testing.JitArguments(a_tensor, b_tensor, c_tensor, current_stream)
workspace_count = 1
if use_cold_l2:
one_workspace_bytes = (
a_torch_cpu.numel() * a_torch_cpu.element_size()
+ b_torch_cpu.numel() * b_torch_cpu.element_size()
+ c_torch_cpu.numel() * c_torch_cpu.element_size()
)
workspace_count = testing.get_workspace_count(
one_workspace_bytes, warmup_iterations, iterations
)
exec_time = testing.benchmark(
compiled_gemm,
workspace_generator=generate_tensors,
workspace_count=workspace_count,
stream=current_stream,
warmup_iterations=warmup_iterations,
iterations=iterations,
)
return exec_time # Return execution time in microseconds
if __name__ == "__main__":
def parse_comma_separated_ints(s: str) -> Tuple[int, ...]:
try:
return tuple(int(x.strip()) for x in s.split(","))
except ValueError:
raise argparse.ArgumentTypeError(
"Invalid format. Expected comma-separated integers."
)
parser = argparse.ArgumentParser(
description="Example of Dense Persistent GEMM on Blackwell."
)
parser.add_argument(
"--mnkl",
type=parse_comma_separated_ints,
default=(256, 256, 512, 1),
help="mnkl dimensions (comma-separated)",
)
parser.add_argument(
"--mma_tiler_mn",
type=parse_comma_separated_ints,
default=(128, 128),
help="Mma tile shape (comma-separated)",
)
parser.add_argument(
"--cluster_shape_mn",
type=parse_comma_separated_ints,
default=(1, 1),
help="Cluster shape (comma-separated)",
)
parser.add_argument("--ab_dtype", type=cutlass.dtype, default=cutlass.TFloat32)
parser.add_argument("--c_dtype", type=cutlass.dtype, default=cutlass.Float32)
parser.add_argument("--acc_dtype", type=cutlass.dtype, default=cutlass.Float32)
parser.add_argument(
"--use_2cta_instrs",
action="store_true",
help="Enable 2CTA MMA instructions feature",
)
parser.add_argument("--a_major", choices=["k", "m"], type=str, default="k")
parser.add_argument("--b_major", choices=["k", "n"], type=str, default="k")
parser.add_argument("--c_major", choices=["n", "m"], type=str, default="n")
parser.add_argument(
"--use_tma_store", action="store_true", help="Use tma store or not"
)
parser.add_argument(
"--tolerance", type=float, default=1e-01, help="Tolerance for validation"
)
parser.add_argument(
"--warmup_iterations", type=int, default=0, help="Warmup iterations"
)
parser.add_argument(
"--iterations",
type=int,
default=1,
help="Number of iterations to run the kernel",
)
parser.add_argument(
"--skip_ref_check", action="store_true", help="Skip reference checking"
)
parser.add_argument(
"--use_cold_l2",
action="store_true",
default=False,
help="Use circular buffer tensor sets to ensure L2 cold cache",
)
args = parser.parse_args()
if len(args.mnkl) != 4:
parser.error("--mnkl must contain exactly 4 values")
if len(args.mma_tiler_mn) != 2:
parser.error("--mma_tiler_mn must contain exactly 2 values")
if len(args.cluster_shape_mn) != 2:
parser.error("--cluster_shape_mn must contain exactly 2 values")
run(
args.mnkl,
args.ab_dtype,
args.c_dtype,
args.acc_dtype,
args.a_major,
args.b_major,
args.c_major,
args.mma_tiler_mn,
args.cluster_shape_mn,
args.use_2cta_instrs,
args.use_tma_store,
args.tolerance,
args.warmup_iterations,
args.iterations,
args.skip_ref_check,
args.use_cold_l2,
)
print("PASS")