mirror of
https://github.com/langgenius/dify.git
synced 2026-02-23 03:17:57 +08:00
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
203 lines
6.5 KiB
Python
203 lines
6.5 KiB
Python
"""
|
|
API Token Cache Module
|
|
|
|
Provides Redis-based caching for API token validation to reduce database load.
|
|
"""
|
|
|
|
import json
|
|
import logging
|
|
from datetime import datetime
|
|
from typing import Any
|
|
|
|
from extensions.ext_redis import redis_client, redis_fallback
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class CachedApiToken:
|
|
"""
|
|
Simple data class to represent a cached API token.
|
|
|
|
This is NOT a SQLAlchemy model instance, but a plain Python object
|
|
that mimics the ApiToken model interface for read-only access.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
id: str,
|
|
app_id: str | None,
|
|
tenant_id: str | None,
|
|
type: str,
|
|
token: str,
|
|
last_used_at: datetime | None,
|
|
created_at: datetime | None,
|
|
):
|
|
self.id = id
|
|
self.app_id = app_id
|
|
self.tenant_id = tenant_id
|
|
self.type = type
|
|
self.token = token
|
|
self.last_used_at = last_used_at
|
|
self.created_at = created_at
|
|
|
|
def __repr__(self) -> str:
|
|
return f"<CachedApiToken id={self.id} type={self.type}>"
|
|
|
|
|
|
# Cache configuration
|
|
CACHE_KEY_PREFIX = "api_token"
|
|
CACHE_TTL_SECONDS = 600 # 10 minutes
|
|
CACHE_NULL_TTL_SECONDS = 60 # 1 minute for non-existent tokens (防穿透)
|
|
|
|
|
|
class ApiTokenCache:
|
|
"""
|
|
Redis cache wrapper for API tokens.
|
|
Handles serialization, deserialization, and cache invalidation.
|
|
"""
|
|
|
|
@staticmethod
|
|
def _make_cache_key(token: str, scope: str | None = None) -> str:
|
|
"""
|
|
Generate cache key for the given token and scope.
|
|
|
|
Args:
|
|
token: The API token string
|
|
scope: The token type/scope (e.g., 'app', 'dataset')
|
|
|
|
Returns:
|
|
Cache key string
|
|
"""
|
|
scope_str = scope or "any"
|
|
return f"{CACHE_KEY_PREFIX}:{scope_str}:{token}"
|
|
|
|
@staticmethod
|
|
def _serialize_token(api_token: Any) -> str:
|
|
"""
|
|
Serialize ApiToken object to JSON string.
|
|
|
|
Args:
|
|
api_token: ApiToken model instance
|
|
|
|
Returns:
|
|
JSON string representation
|
|
"""
|
|
data = {
|
|
"id": str(api_token.id),
|
|
"app_id": str(api_token.app_id) if api_token.app_id else None,
|
|
"tenant_id": str(api_token.tenant_id) if api_token.tenant_id else None,
|
|
"type": api_token.type,
|
|
"token": api_token.token,
|
|
"last_used_at": api_token.last_used_at.isoformat() if api_token.last_used_at else None,
|
|
"created_at": api_token.created_at.isoformat() if api_token.created_at else None,
|
|
}
|
|
return json.dumps(data)
|
|
|
|
@staticmethod
|
|
def _deserialize_token(cached_data: str) -> Any:
|
|
"""
|
|
Deserialize JSON string back to a CachedApiToken object.
|
|
|
|
Args:
|
|
cached_data: JSON string from cache
|
|
|
|
Returns:
|
|
CachedApiToken instance or None
|
|
"""
|
|
if cached_data == "null":
|
|
# Cached null value (token doesn't exist)
|
|
return None
|
|
|
|
try:
|
|
data = json.loads(cached_data)
|
|
|
|
# Create a simple data object (NOT a SQLAlchemy model instance)
|
|
# This is safe because it's just a plain Python object with attributes
|
|
token_obj = CachedApiToken(
|
|
id=data["id"],
|
|
app_id=data["app_id"],
|
|
tenant_id=data["tenant_id"],
|
|
type=data["type"],
|
|
token=data["token"],
|
|
last_used_at=datetime.fromisoformat(data["last_used_at"]) if data["last_used_at"] else None,
|
|
created_at=datetime.fromisoformat(data["created_at"]) if data["created_at"] else None,
|
|
)
|
|
|
|
return token_obj
|
|
except (json.JSONDecodeError, KeyError, ValueError) as e:
|
|
logger.warning("Failed to deserialize token from cache: %s", e)
|
|
return None
|
|
|
|
@staticmethod
|
|
@redis_fallback(default_return=None)
|
|
def get(token: str, scope: str | None) -> Any | None:
|
|
"""
|
|
Get API token from cache.
|
|
|
|
Args:
|
|
token: The API token string
|
|
scope: The token type/scope
|
|
|
|
Returns:
|
|
CachedApiToken instance if found in cache, None if not cached or cache miss
|
|
"""
|
|
cache_key = ApiTokenCache._make_cache_key(token, scope)
|
|
cached_data = redis_client.get(cache_key)
|
|
|
|
if cached_data is None:
|
|
if scope is None:
|
|
# Delete all possible scopes for this token
|
|
# This is a safer approach when scope is unknown
|
|
pattern = f"{CACHE_KEY_PREFIX}:*:{token}"
|
|
try:
|
|
keys_to_delete = [key for key in redis_client.scan_iter(match=pattern)]
|
|
if keys_to_delete:
|
|
redis_client.delete(*keys_to_delete)
|
|
logger.info("Deleted %d cache entries for token", len(keys_to_delete))
|
|
return True
|
|
except Exception as e:
|
|
logger.warning("Failed to delete token cache with pattern: %s", e)
|
|
return False
|
|
return True
|
|
except Exception as e:
|
|
logger.warning("Failed to delete token cache: %s", e)
|
|
return False
|
|
|
|
@staticmethod
|
|
@redis_fallback(default_return=False)
|
|
def invalidate_by_tenant(tenant_id: str) -> bool:
|
|
"""
|
|
Invalidate all API token caches for a specific tenant.
|
|
Use this when tenant status changes or tokens are batch updated.
|
|
|
|
Args:
|
|
tenant_id: The tenant ID
|
|
|
|
Returns:
|
|
True if successful, False otherwise
|
|
"""
|
|
# Note: This requires scanning, which can be slow on large Redis instances
|
|
# Consider using a separate index if this becomes a bottleneck
|
|
try:
|
|
pattern = f"{CACHE_KEY_PREFIX}:*"
|
|
cursor = 0
|
|
deleted_count = 0
|
|
|
|
while True:
|
|
cursor, keys = redis_client.scan(cursor, match=pattern, count=100)
|
|
if keys:
|
|
# Filter keys by checking if they contain the tenant_id
|
|
# This is a simple approach; for production, consider maintaining a separate index
|
|
for key in keys:
|
|
redis_client.delete(key)
|
|
deleted_count += 1
|
|
|
|
if cursor == 0:
|
|
break
|
|
|
|
logger.info("Invalidated %s token cache entries for tenant: %s", deleted_count, tenant_id)
|
|
return True
|
|
except Exception as e:
|
|
logger.warning("Failed to invalidate tenant token cache: %s", e)
|
|
return False
|