mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-01-19 11:45:10 +08:00
### What problem does this PR solve? This PR adds a dedicated HTTP benchmark CLI for RAGFlow chat and retrieval endpoints so we can measure latency/QPS. ### Type of change - [x] Documentation Update - [x] Other (please describe): Adds a CLI benchmarking tool for chat/retrieval latency/QPS --------- Co-authored-by: Liu An <asiro@qq.com>
99 lines
3.1 KiB
Bash
Executable File
99 lines
3.1 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
set -euo pipefail
|
|
|
|
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
|
REPO_ROOT="$(cd "${SCRIPT_DIR}/../.." && pwd)"
|
|
|
|
: "${ZHIPU_AI_API_KEY:?ZHIPU_AI_API_KEY is required}"
|
|
|
|
BASE_URL="http://127.0.0.1:9380"
|
|
LOGIN_EMAIL="qa@infiniflow.org"
|
|
LOGIN_PASSWORD="123"
|
|
DATASET_PAYLOAD='{"name":"bench_dataset","embedding_model":"BAAI/bge-small-en-v1.5@Builtin"}'
|
|
CHAT_PAYLOAD='{"name":"bench_chat","llm":{"model_name":"glm-4-flash@ZHIPU-AI"}}'
|
|
DATASET_ID=""
|
|
|
|
cleanup_dataset() {
|
|
if [[ -z "${DATASET_ID}" ]]; then
|
|
return
|
|
fi
|
|
set +e
|
|
BENCH_BASE_URL="${BASE_URL}" \
|
|
BENCH_LOGIN_EMAIL="${LOGIN_EMAIL}" \
|
|
BENCH_LOGIN_PASSWORD="${LOGIN_PASSWORD}" \
|
|
BENCH_DATASET_ID="${DATASET_ID}" \
|
|
PYTHONPATH="${REPO_ROOT}/test" uv run python - <<'PY'
|
|
import os
|
|
import sys
|
|
|
|
from benchmark import auth
|
|
from benchmark.auth import AuthError
|
|
from benchmark.dataset import delete_dataset
|
|
from benchmark.http_client import HttpClient
|
|
|
|
base_url = os.environ["BENCH_BASE_URL"]
|
|
email = os.environ["BENCH_LOGIN_EMAIL"]
|
|
password = os.environ["BENCH_LOGIN_PASSWORD"]
|
|
dataset_id = os.environ["BENCH_DATASET_ID"]
|
|
|
|
client = HttpClient(base_url=base_url, api_version="v1")
|
|
|
|
try:
|
|
password_enc = auth.encrypt_password(password)
|
|
nickname = email.split("@")[0]
|
|
try:
|
|
auth.register_user(client, email, nickname, password_enc)
|
|
except AuthError as exc:
|
|
print(f"Register warning: {exc}", file=sys.stderr)
|
|
login_token = auth.login_user(client, email, password_enc)
|
|
client.login_token = login_token
|
|
client.api_key = auth.create_api_token(client, login_token, None)
|
|
delete_dataset(client, dataset_id)
|
|
except Exception as exc:
|
|
print(f"Cleanup warning: failed to delete dataset {dataset_id}: {exc}", file=sys.stderr)
|
|
PY
|
|
}
|
|
|
|
trap cleanup_dataset EXIT
|
|
|
|
retrieval_output="$(PYTHONPATH="${REPO_ROOT}/test" uv run -m benchmark retrieval \
|
|
--base-url "${BASE_URL}" \
|
|
--allow-register \
|
|
--login-email "${LOGIN_EMAIL}" \
|
|
--login-password "${LOGIN_PASSWORD}" \
|
|
--bootstrap-llm \
|
|
--llm-factory ZHIPU-AI \
|
|
--llm-api-key "${ZHIPU_AI_API_KEY}" \
|
|
--dataset-name "bench_dataset" \
|
|
--dataset-payload "${DATASET_PAYLOAD}" \
|
|
--document-path "${SCRIPT_DIR}/test_docs/Doc1.pdf" \
|
|
--document-path "${SCRIPT_DIR}/test_docs/Doc2.pdf" \
|
|
--document-path "${SCRIPT_DIR}/test_docs/Doc3.pdf" \
|
|
--iterations 10 \
|
|
--concurrency 8 \
|
|
--question "What does RAG mean?")"
|
|
printf '%s\n' "${retrieval_output}"
|
|
|
|
DATASET_ID="$(printf '%s\n' "${retrieval_output}" | sed -n 's/^Created Dataset ID: //p' | head -n 1)"
|
|
if [[ -z "${DATASET_ID}" ]]; then
|
|
echo "Failed to parse Created Dataset ID from retrieval output." >&2
|
|
exit 1
|
|
fi
|
|
|
|
PYTHONPATH="${REPO_ROOT}/test" uv run -m benchmark chat \
|
|
--base-url "${BASE_URL}" \
|
|
--allow-register \
|
|
--login-email "${LOGIN_EMAIL}" \
|
|
--login-password "${LOGIN_PASSWORD}" \
|
|
--bootstrap-llm \
|
|
--llm-factory ZHIPU-AI \
|
|
--llm-api-key "${ZHIPU_AI_API_KEY}" \
|
|
--dataset-id "${DATASET_ID}" \
|
|
--chat-name "bench_chat" \
|
|
--chat-payload "${CHAT_PAYLOAD}" \
|
|
--message "What is the purpose of RAGFlow?" \
|
|
--model "glm-4-flash@ZHIPU-AI" \
|
|
--iterations 10 \
|
|
--concurrency 8 \
|
|
--teardown
|