[Benchmark] Cleanup deprecated nightly benchmark and adjust the docstring for performance benchmark (#25786)

Signed-off-by: KuntaiDu <kuntai@uchicago.edu>
This commit is contained in:
Kuntai Du
2025-10-29 21:43:37 -07:00
committed by GitHub
parent b5d70751d8
commit 8bff831f0a
29 changed files with 10 additions and 1289 deletions

View File

@ -1,184 +0,0 @@
steps:
- label: "Wait for container to be ready"
key: wait-for-container-image
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
containers:
- image: badouralix/curl-jq
command:
- sh .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
- label: "Cleanup H100"
agents:
queue: H100
depends_on: ~
command: docker system prune -a --volumes --force
- label: "A100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: A100
depends_on: wait-for-container-image
if: build.branch == "main"
plugins:
- kubernetes:
podSpec:
priorityClassName: perf-benchmark
containers:
- image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
command:
- bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
- label: "H200"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: H200
depends_on: wait-for-container-image
if: build.branch == "main"
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
command:
- bash
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
mount-buildkite-agent: true
propagate-environment: true
ipc: host
gpus: 4,5,6,7
volumes:
- /data/benchmark-hf-cache:/root/.cache/huggingface
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN
#- block: "Run H100 Benchmark"
#key: block-h100
#depends_on: ~
- label: "H100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: H100
depends_on: wait-for-container-image
if: build.branch == "main"
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
command:
- bash
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
mount-buildkite-agent: true
propagate-environment: true
ipc: host
gpus: all # see CUDA_VISIBLE_DEVICES for actual GPUs used
volumes:
- /data/benchmark-hf-cache:/root/.cache/huggingface
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN
# Premerge benchmark
- label: "A100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: A100
depends_on: wait-for-container-image
if: build.branch != "main"
plugins:
- kubernetes:
podSpec:
priorityClassName: perf-benchmark
containers:
- image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
- label: "H200"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: H200
depends_on: wait-for-container-image
if: build.branch != "main"
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
mount-buildkite-agent: true
propagate-environment: true
ipc: host
gpus: 4,5,6,7
volumes:
- /data/benchmark-hf-cache:/root/.cache/huggingface
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN
#- block: "Run H100 Benchmark"
#key: block-h100
#depends_on: ~
- label: "H100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: H100
depends_on: wait-for-container-image
if: build.branch != "main"
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
mount-buildkite-agent: true
propagate-environment: true
ipc: host
gpus: all # see CUDA_VISIBLE_DEVICES for actual GPUs used
volumes:
- /data/benchmark-hf-cache:/root/.cache/huggingface
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN

View File

@ -1,28 +0,0 @@
# Nightly benchmark annotation
## Description
This file contains the downloading link for benchmarking results.
- [benchmarking pipeline](artifact://nightly-pipeline.yaml)
- [benchmarking results](artifact://results.zip)
- [benchmarking code](artifact://nightly-benchmarks.zip)
Please download the visualization scripts in the post
## Results reproduction
- Find the docker we use in `benchmarking pipeline`
- Deploy the docker, and inside the docker:
- Download `nightly-benchmarks.zip`.
- In the same folder, run the following code:
```bash
export HF_TOKEN=<your HF token>
apt update
apt install -y git
unzip nightly-benchmarks.zip
VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
```
And the results will be inside `./benchmarks/results`.

View File

@ -1,39 +0,0 @@
# Nightly benchmark
This benchmark aims to:
- Provide performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and SGLang) leads in performance in what workload.
- Be reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions.
Latest results: [results link](https://blog.vllm.ai/2024/09/05/perf-update.html), scroll to the end.
Latest reproduction guide: [github issue link](https://github.com/vllm-project/vllm/issues/8176)
## Setup
- Docker images:
- vLLM: `vllm/vllm-openai:v0.6.2`
- SGLang: `lmsysorg/sglang:v0.3.2-cu121`
- LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12`
- TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3`
- *NOTE: we use r24.07 as the current implementation only works for this version. We are going to bump this up.*
- Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark.
- Hardware
- 8x Nvidia A100 GPUs
- Workload:
- Dataset
- ShareGPT dataset
- Prefill-heavy dataset (in average 462 input tokens, 16 tokens as output)
- Decode-heavy dataset (in average 462 input tokens, 256 output tokens)
- Check [nightly-tests.json](tests/nightly-tests.json) for the concrete configuration of datasets we use.
- Models: llama-3 8B, llama-3 70B.
- We do not use llama 3.1 as it is incompatible with trt-llm r24.07. ([issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105)).
- Average QPS (query per second): 2, 4, 8, 16, 32 and inf.
- Queries are randomly sampled, and arrival patterns are determined via Poisson process, but all with fixed random seed.
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
## Known issues
- TRT-LLM crashes with Llama 3.1 8B [issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105).
- TGI does not support `ignore-eos` flag.

View File

@ -1,196 +0,0 @@
common_pod_spec: &common_pod_spec
priorityClassName: perf-benchmark
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
- name: hf-cache
hostPath:
path: /root/.cache/huggingface
type: Directory
common_container_settings: &common_container_settings
command:
- bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
- name: hf-cache
mountPath: /root/.cache/huggingface
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
steps:
- block: ":rocket: Ready for comparing vllm against alternatives? This will take 4 hours."
- label: "A100 vllm step 10"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: vllm/vllm-openai:v0.6.2
<<: *common_container_settings
- label: "A100 sglang benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: lmsysorg/sglang:v0.3.2-cu121
<<: *common_container_settings
- label: "A100 lmdeploy benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: openmmlab/lmdeploy:v0.6.1-cu12
<<: *common_container_settings
- label: "A100 trt llama-8B"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
<<: *common_container_settings
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- name: TEST_SELECTOR
value: "llama8B"
- label: "A100 trt llama-70B"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
<<: *common_container_settings
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- name: TEST_SELECTOR
value: "llama70B"
# FIXME(Kuntai): uncomment this after NVIDIA gives us their test docker image
# - label: "A100 trt benchmark"
# priority: 100
# agents:
# queue: A100
# plugins:
# - kubernetes:
# podSpec:
# <<: *common_pod_spec
# containers:
# - image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
# <<: *common_container_settings
# FIXME(Kuntai): uncomment this after TGI supports `--ignore-eos`.
# - label: "A100 tgi benchmark"
# priority: 100
# agents:
# queue: A100
# plugins:
# - kubernetes:
# podSpec:
# <<: *common_pod_spec
# containers:
# - image: ghcr.io/huggingface/text-generation-inference:2.2.0
# <<: *common_container_settings
- wait
- label: "Collect the results"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: vllm/vllm-openai:v0.5.0.post1
command:
- bash .buildkite/nightly-benchmarks/scripts/nightly-annotate.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- block: ":rocket: check the results!"

View File

@ -1,26 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
from transformers import AutoTokenizer
def main(model, cachedir):
# Load the tokenizer and save it to the specified directory
tokenizer = AutoTokenizer.from_pretrained(model)
tokenizer.save_pretrained(cachedir)
print(f"Tokenizer saved to {cachedir}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Download and save Hugging Face tokenizer"
)
parser.add_argument("--model", type=str, required=True, help="Name of the model")
parser.add_argument(
"--cachedir", type=str, required=True, help="Directory to save the tokenizer"
)
args = parser.parse_args()
main(args.model, args.cachedir)

View File

@ -1,97 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import json
from pathlib import Path
import numpy as np
import pandas as pd
from tabulate import tabulate
def parse_arguments():
parser = argparse.ArgumentParser(
description="Parse command line arguments for summary-nightly-results script."
)
parser.add_argument(
"--results-folder",
type=str,
required=True,
help="The folder where the results are stored.",
)
parser.add_argument(
"--description", type=str, required=True, help="Description of the results."
)
args = parser.parse_args()
return args
def get_perf(df, method, model, metric):
means = []
for qps in [2, 4, 8, 16, "inf"]:
target = df["Test name"].str.contains(model)
target = target & df["Engine"].str.contains(method)
target = target & df["Test name"].str.contains("qps_" + str(qps))
filtered_df = df[target]
if filtered_df.empty:
means.append(0.0)
else:
means.append(filtered_df[metric].values[0])
return np.array(means)
def get_perf_w_std(df, method, model, metric):
if metric in ["TTFT", "ITL"]:
mean = get_perf(df, method, model, "Mean " + metric + " (ms)")
mean = mean.tolist()
std = get_perf(df, method, model, "Std " + metric + " (ms)")
if std.mean() == 0:
std = None
success = get_perf(df, method, model, "Successful req.")
if std is not None:
std = std / np.sqrt(success)
std = std.tolist()
else:
assert metric == "Tput"
mean = get_perf(df, method, model, "Input Tput (tok/s)") + get_perf(
df, method, model, "Output Tput (tok/s)"
)
mean = mean.tolist()
std = None
return mean, std
def main(args):
results_folder = Path(args.results_folder)
results = []
# collect results
for test_file in results_folder.glob("*_nightly_results.json"):
with open(test_file) as f:
results = results + json.loads(f.read())
# generate markdown table
df = pd.DataFrame.from_dict(results)
md_table = tabulate(df, headers="keys", tablefmt="pipe", showindex=False)
with open(args.description) as f:
description = f.read()
description = description.format(nightly_results_benchmarking_table=md_table)
with open("nightly_results.md", "w") as f:
f.write(description)
if __name__ == "__main__":
args = parse_arguments()
main(args)

View File

@ -1,9 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from lmdeploy.serve.openai.api_client import APIClient
api_client = APIClient("http://localhost:8000")
model_name = api_client.available_models[0]
print(model_name)

View File

@ -1,78 +0,0 @@
#!/bin/bash
set -ex
set -o pipefail
main() {
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)
(which zip) || (apt-get install -y zip)
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip plotting the results."
exit 0
fi
# initial annotation
#description="$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-descriptions.md"
# download results
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
mkdir -p results/
/workspace/buildkite-agent artifact download 'results/*nightly_results.json' results/
ls
ls results/
# upload benchmark results
zip -r results.zip results/
/workspace/buildkite-agent artifact upload "results.zip"
# upload benchmarking scripts
cd "$VLLM_SOURCE_CODE_LOC/"
zip -r nightly-benchmarks.zip .buildkite/ benchmarks/
/workspace/buildkite-agent artifact upload "nightly-benchmarks.zip"
cd "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/"
# upload benchmarking pipeline
/workspace/buildkite-agent artifact upload "nightly-pipeline.yaml"
cd "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/"
/workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly-annotation.md
# The figures should be generated by a separate process outside the CI/CD pipeline
# # generate figures
# python3 -m pip install tabulate pandas matplotlib
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/generate-nightly-markdown.py \
# --description $description \
# --results-folder results/
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
# --description $description \
# --results-folder results/ \
# --dataset sharegpt
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
# --description $description \
# --results-folder results/ \
# --dataset sonnet_2048_128
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
# --description $description \
# --results-folder results/ \
# --dataset sonnet_128_2048
# # upload results and figures
# /workspace/buildkite-agent artifact upload "nightly_results*.png"
# /workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-pipeline.yaml
# /workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/tests/nightly-tests.json
# /workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly_results.md
}
main "$@"

View File

@ -1,464 +0,0 @@
#!/bin/bash
set -o pipefail
set -x
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type="$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')"
echo "GPU type is $gpu_type"
}
check_hf_token() {
# check if HF_TOKEN is available and valid
if [[ -z "$HF_TOKEN" ]]; then
echo "Error: HF_TOKEN is not set."
exit 1
elif [[ ! "$HF_TOKEN" =~ ^hf_ ]]; then
echo "Error: HF_TOKEN does not start with 'hf_'."
exit 1
else
echo "HF_TOKEN is set and valid."
fi
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
get_current_llm_serving_engine() {
if which lmdeploy >/dev/null; then
echo "Container: lmdeploy"
export CURRENT_LLM_SERVING_ENGINE=lmdeploy
return
fi
if [ -e /tgi-entrypoint.sh ]; then
echo "Container: tgi"
export CURRENT_LLM_SERVING_ENGINE=tgi
return
fi
if which trtllm-build >/dev/null; then
echo "Container: tensorrt-llm"
export CURRENT_LLM_SERVING_ENGINE=trt
return
fi
if [ -e /sgl-workspace ]; then
echo "Container: sglang"
export CURRENT_LLM_SERVING_ENGINE=sglang
return
fi
if [ -e /vllm-workspace ]; then
echo "Container: vllm"
# move to a completely irrelevant directory, to avoid import vllm from current folder
export CURRENT_LLM_SERVING_ENGINE=vllm
return
fi
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
kill_gpu_processes() {
pkill -f '[p]ython'
pkill -f '[p]ython3'
pkill -f '[t]ritonserver'
pkill -f '[p]t_main_thread'
pkill -f '[t]ext-generation'
pkill -f '[l]mdeploy'
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
pkill -f '[V]LLM'
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
sleep 1
done
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
timeout 1200 bash -c '
until curl -s localhost:8000/v1/completions > /dev/null; do
sleep 1
done' && return 0 || return 1
}
ensure_installed() {
# Ensure that the given command is installed by apt-get
local cmd=$1
if ! which "$cmd" >/dev/null; then
apt-get update && apt-get install -y "$cmd"
fi
}
run_serving_tests() {
# run serving tests using `vllm bench serve` command
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# prepend the current serving engine to the test name
test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name}
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
reuse_server=$(echo "$common_params" | jq -r '.reuse_server')
# get client and server arguments
server_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_server_parameters")
client_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_client_parameters")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if [[ $reuse_server == "true" ]]; then
echo "Reuse previous server for test case $test_name"
else
kill_gpu_processes
bash "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/launch-server.sh" \
"$server_params" "$common_params"
fi
if wait_for_server; then
echo ""
echo "$CURRENT_LLM_SERVING_ENGINE server is up and running."
else
echo ""
echo "$CURRENT_LLM_SERVING_ENGINE failed to start within the timeout period."
break
fi
# prepare tokenizer
# this is required for lmdeploy.
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
rm -rf /tokenizer_cache
mkdir /tokenizer_cache
python3 ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \
--model "$model" \
--cachedir /tokenizer_cache
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
# change model name for lmdeploy (it will not follow standard hf name)
if [[ "$CURRENT_LLM_SERVING_ENGINE" == "lmdeploy" ]]; then
model=$(python ../.buildkite/nightly-benchmarks/scripts/get-lmdeploy-modelname.py)
fi
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
backend=$CURRENT_LLM_SERVING_ENGINE
if [[ $backend = "trt" ]]; then
backend="tensorrt-llm"
fi
if [[ "$backend" == *"vllm"* ]]; then
backend="vllm"
fi
if [[ "$dataset_name" = "sharegpt" ]]; then
client_command="vllm bench serve \
--backend $backend \
--tokenizer /tokenizer_cache \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--ignore-eos \
$client_args"
elif [[ "$dataset_name" = "sonnet" ]]; then
sonnet_input_len=$(echo "$common_params" | jq -r '.sonnet_input_len')
sonnet_output_len=$(echo "$common_params" | jq -r '.sonnet_output_len')
sonnet_prefix_len=$(echo "$common_params" | jq -r '.sonnet_prefix_len')
client_command="vllm bench serve \
--backend $backend \
--tokenizer /tokenizer_cache \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--sonnet-input-len $sonnet_input_len \
--sonnet-output-len $sonnet_output_len \
--sonnet-prefix-len $sonnet_prefix_len \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--ignore-eos \
$client_args"
else
echo "The dataset name must be either 'sharegpt' or 'sonnet'. Got $dataset_name."
exit 1
fi
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
server_command="None"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "$CURRENT_LLM_SERVING_ENGINE" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
done
kill_gpu_processes
}
run_genai_perf_tests() {
# run genai-perf tests
# $1: a json file specifying genai-perf test cases
local genai_perf_test_file
genai_perf_test_file=$1
# Iterate over genai-perf tests
jq -c '.[]' "$genai_perf_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# prepend the current serving engine to the test name
test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name}
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
reuse_server=$(echo "$common_params" | jq -r '.reuse_server')
# get client and server arguments
server_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_server_parameters")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if [[ $reuse_server == "true" ]]; then
echo "Reuse previous server for test case $test_name"
else
kill_gpu_processes
bash "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/launch-server.sh" \
"$server_params" "$common_params"
fi
if wait_for_server; then
echo ""
echo "$CURRENT_LLM_SERVING_ENGINE server is up and running."
else
echo ""
echo "$CURRENT_LLM_SERVING_ENGINE failed to start within the timeout period."
break
fi
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps=$num_prompts
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
backend=$CURRENT_LLM_SERVING_ENGINE
if [[ "$backend" == *"vllm"* ]]; then
backend="vllm"
fi
#TODO: add output dir.
client_command="genai-perf profile \
-m $model \
--service-kind openai \
--backend "$backend" \
--endpoint-type chat \
--streaming \
--url localhost:$port \
--request-rate $qps \
--num-prompts $num_prompts \
"
echo "Client command: $client_command"
eval "$client_command"
#TODO: process/record outputs
done
done
kill_gpu_processes
}
prepare_dataset() {
# download sharegpt dataset
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
# duplicate sonnet by 4x, to allow benchmarking with input length 2048
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
echo "" > sonnet_4x.txt
for _ in {1..4}
do
cat sonnet.txt >> sonnet_4x.txt
done
}
main() {
# check if the environment variable is successfully injected from yaml
check_gpus
check_hf_token
get_current_llm_serving_engine
pip install -U transformers
pip install -r requirements/dev.txt
which genai-perf
# check storage
df -h
ensure_installed wget
ensure_installed curl
ensure_installed jq
# genai-perf dependency
ensure_installed libb64-0d
prepare_dataset
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT="$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/"
# run the test
run_serving_tests "$BENCHMARK_ROOT/tests/nightly-tests.json"
# run genai-perf tests
run_genai_perf_tests "$BENCHMARK_ROOT/tests/genai-perf-tests.json"
mv artifacts/ $RESULTS_FOLDER/
# upload benchmark results to buildkite
python3 -m pip install tabulate pandas
python3 "$BENCHMARK_ROOT/scripts/summary-nightly-results.py"
upload_to_buildkite
}
main "$@"

View File

@ -1,82 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import datetime
import json
import os
from pathlib import Path
import pandas as pd
from tabulate import tabulate
results_folder = Path("results/")
# serving results and the keys that will be printed into markdown
serving_results = []
serving_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
"completed": "Successful req.",
"request_throughput": "Tput (req/s)",
"mean_ttft_ms": "Mean TTFT (ms)",
"std_ttft_ms": "Std TTFT (ms)",
"median_ttft_ms": "Median TTFT (ms)",
"mean_itl_ms": "Mean ITL (ms)",
"std_itl_ms": "Std ITL (ms)",
"median_itl_ms": "Median ITL (ms)",
"mean_tpot_ms": "Mean TPOT (ms)",
"std_tpot_ms": "Std TPOT (ms)",
"median_tpot_ms": "Median TPOT (ms)",
"total_token_throughput": "Total Token Tput (tok/s)",
"output_throughput": "Output Tput (tok/s)",
"total_input_tokens": "Total input tokens",
"total_output_tokens": "Total output tokens",
"engine": "Engine",
}
if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file) as f:
raw_result = json.loads(f.read())
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands")) as f:
command = json.loads(f.read())
raw_result.update(command)
# update the test name of this result
raw_result.update({"test_name": test_file.stem})
# add the result to raw_result
serving_results.append(raw_result)
continue
serving_results = pd.DataFrame.from_dict(serving_results)
if not serving_results.empty:
serving_results = serving_results[list(serving_column_mapping.keys())].rename(
columns=serving_column_mapping
)
serving_md_table_with_headers = tabulate(
serving_results, headers="keys", tablefmt="pipe", showindex=False
)
# remove the first line of header
serving_md_table_lines = serving_md_table_with_headers.split("\n")
serving_md_table_without_header = "\n".join(serving_md_table_lines[2:])
prefix = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
prefix = prefix + "_" + os.environ.get("CURRENT_LLM_SERVING_ENGINE")
# document benchmarking results in markdown
with open(results_folder / f"{prefix}_nightly_results.md", "w") as f:
# document results with header.
# for those who wants to reproduce our benchmark.
f.write(serving_md_table_with_headers)
f.write("\n")
# document benchmarking results in json
with open(results_folder / f"{prefix}_nightly_results.json", "w") as f:
results = serving_results.to_dict(orient="records")
f.write(json.dumps(results))

View File

@ -1,23 +0,0 @@
#!/bin/sh
TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-postmerge-repo:pull" | jq -r .token)
if [[ "$BUILDKITE_BRANCH" == "main" ]]; then
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-postmerge-repo/manifests/$BUILDKITE_COMMIT"
else
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-test-repo/manifests/$BUILDKITE_COMMIT"
fi
TIMEOUT_SECONDS=10
retries=0
while [ $retries -lt 1000 ]; do
if [ "$(curl -s --max-time "$TIMEOUT_SECONDS" -L -H "Authorization: Bearer $TOKEN" -o /dev/null -w "%{http_code}" "$URL")" -eq 200 ]; then
exit 0
fi
echo "Waiting for image to be available..."
retries=$((retries + 1))
sleep 5
done
exit 1

View File

@ -2,40 +2,23 @@
## Introduction
This directory contains two sets of benchmark for vllm.
- Performance benchmark: benchmark vllm's performance under various workload, for **developers** to gain clarity on whether their PR improves/degrades vllm's performance
- Nightly benchmark: compare vllm's performance against alternatives (tgi, trt-llm and lmdeploy), for **the public** to know when to choose vllm.
See [vLLM performance dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
This directory contains a benchmarking suite for **developers** to run locally and gain clarity on whether their PR improves/degrades vllm's performance.
vLLM also maintains a continuous performance benchmark under [perf.vllm.ai](https://perf.vllm.ai/), hosted under PyTorch CI HUD.
## Performance benchmark quick overview
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) and Intel® Xeon® Processors, with different models.
**Benchmarking Coverage**: latency, throughput and fix-qps serving on B200, A100, H100 and Intel® Xeon® Processors, with different models.
**Benchmarking Duration**: about 1hr.
**For benchmarking developers**: please try your best to constraint the duration of benchmarking to about 1 hr so that it won't take forever to run.
## Nightly benchmark quick overview
**Benchmarking Coverage**: Fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) on Llama-3 8B, 70B and Mixtral 8x7B.
**Benchmarking engines**: vllm, TGI, trt-llm and lmdeploy.
**Benchmarking Duration**: about 3.5hrs.
## Trigger the benchmark
Performance benchmark will be triggered when:
- A PR being merged into vllm.
- Every commit for those PRs with `perf-benchmarks` label AND `ready` label.
Manually Trigger the benchmark
The benchmark needs to be triggered manually:
```bash
bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
bash .buildkite/performance-benchmarks/scripts/run-performance-benchmarks.sh
```
Runtime environment variables:
@ -47,10 +30,6 @@ Runtime environment variables:
- `REMOTE_HOST`: IP for the remote vLLM service to benchmark. Default value is empty string.
- `REMOTE_PORT`: Port for the remote vLLM service to benchmark. Default value is empty string.
Nightly benchmark will be triggered when:
- Every commit for those PRs with `perf-benchmarks` label and `nightly-benchmarks` label.
## Performance benchmark details
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
@ -152,26 +131,3 @@ Here is an example using the script to compare result_a and result_b with Model,
A comparison diagram will be generated below the table.
Here is an example to compare between 96c/results_gnr_96c_091_tp2pp3 and 128c/results_gnr_128c_091_tp2pp3
<img width="1886" height="828" alt="image" src="https://github.com/user-attachments/assets/c02a43ef-25d0-4fd6-90e5-2169a28682dd" />
## Nightly test details
See [nightly-descriptions.md](nightly-descriptions.md) for the detailed description on test workload, models and docker containers of benchmarking other llm engines.
### Workflow
- The [nightly-pipeline.yaml](nightly-pipeline.yaml) specifies the docker containers for different LLM serving engines.
- Inside each container, we run [scripts/run-nightly-benchmarks.sh](scripts/run-nightly-benchmarks.sh), which will probe the serving engine of the current container.
- The `scripts/run-nightly-benchmarks.sh` will parse the workload described in [nightly-tests.json](tests/nightly-tests.json) and launch the right benchmark for the specified serving engine via `scripts/launch-server.sh`.
- At last, we run [scripts/summary-nightly-results.py](scripts/summary-nightly-results.py) to collect and plot the final benchmarking results, and update the results to buildkite.
### Nightly tests
In [nightly-tests.json](tests/nightly-tests.json), we include the command line arguments for benchmarking commands, together with the benchmarking test cases. The format is highly similar to performance benchmark.
### Docker containers
The docker containers for benchmarking are specified in `nightly-pipeline.yaml`.
WARNING: the docker versions are HARD-CODED and SHOULD BE ALIGNED WITH `nightly-descriptions.md`. The docker versions need to be hard-coded as there are several version-specific bug fixes inside `scripts/run-nightly-benchmarks.sh` and `scripts/launch-server.sh`.
WARNING: populating `trt-llm` to latest version is not easy, as it requires updating several protobuf files in [tensorrt-demo](https://github.com/neuralmagic/tensorrt-demo.git).

View File

@ -392,7 +392,7 @@ if __name__ == "__main__":
json_file = "benchmark_results.json"
with open(results_folder / md_file, "w") as f:
results = read_markdown(
"../.buildkite/nightly-benchmarks/"
"../.buildkite/performance-benchmarks/"
+ "performance-benchmarks-descriptions.md"
)
results = results.format(

View File

@ -469,7 +469,7 @@ main() {
ensure_sharegpt_downloaded
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
QUICK_BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
QUICK_BENCHMARK_ROOT=../.buildkite/performance-benchmarks/
# dump vllm info via vllm collect-env
env_output=$(vllm collect-env)

2
.github/mergify.yml vendored
View File

@ -108,7 +108,7 @@ pull_request_rules:
- files~=^benchmarks/
- files~=^vllm/benchmarks/
- files~=^tests/benchmarks/
- files~=^\.buildkite/nightly-benchmarks/
- files~=^\.buildkite/performance-benchmarks/
actions:
label:
add:

View File

@ -9,7 +9,6 @@ vLLM provides comprehensive benchmarking tools for performance testing and evalu
- **[Benchmark CLI](#benchmark-cli)**: `vllm bench` CLI tools and specialized benchmark scripts for interactive performance testing
- **[Parameter sweeps](#parameter-sweeps)**: Automate `vllm bench` runs for multiple configurations
- **[Performance benchmarks](#performance-benchmarks)**: Automated CI benchmarks for development
- **[Nightly benchmarks](#nightly-benchmarks)**: Comparative benchmarks against alternatives
[Benchmark CLI]: #benchmark-cli
@ -1167,7 +1166,7 @@ docker run -it --entrypoint /bin/bash -v /data/huggingface:/root/.cache/huggingf
Then, run below command inside the docker instance.
```bash
bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
bash .buildkite/performance-benchmarks/scripts/run-performance-benchmarks.sh
```
When run, benchmark script generates results under **benchmark/results** folder, along with the benchmark_results.md and benchmark_results.json.
@ -1185,7 +1184,7 @@ For more results visualization, check the [visualizing the results](https://gith
The latest performance results are hosted on the public [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm).
More information on the performance benchmarks and their parameters can be found in [Benchmark README](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md) and [performance benchmark description](../../.buildkite/nightly-benchmarks/performance-benchmarks-descriptions.md).
More information on the performance benchmarks and their parameters can be found in [Benchmark README](https://github.com/intel-ai-tce/vllm/blob/more_cpu_models/.buildkite/nightly-benchmarks/README.md) and [performance benchmark description](../../.buildkite/performance-benchmarks/performance-benchmarks-descriptions.md).
### Continuous Benchmarking
@ -1210,11 +1209,3 @@ The benchmarking currently runs on a predefined set of models configured in the
#### Viewing Results
All continuous benchmarking results are automatically published to the public [vLLM Performance Dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm).
## Nightly Benchmarks
These compare vLLM's performance against alternatives (`tgi`, `trt-llm`, and `lmdeploy`) when there are major updates of vLLM (e.g., bumping up to a new version). They are primarily intended for consumers to evaluate when to choose vLLM over other options and are triggered on every commit with both the `perf-benchmarks` and `nightly-benchmarks` labels.
The latest nightly benchmark results are shared in major release blog posts such as [vLLM v0.6.0](https://blog.vllm.ai/2024/09/05/perf-update.html).
More information on the nightly benchmarks and their parameters can be found [here](../../.buildkite/nightly-benchmarks/nightly-descriptions.md).