Compare commits
4 Commits
amd_dev
...
split_kv_c
| Author | SHA1 | Date | |
|---|---|---|---|
| 6e1e31a66a | |||
| 50e80db4ef | |||
| d3d6afb355 | |||
| 808fa43d76 |
@ -5,11 +5,11 @@ import os
|
|||||||
import sys
|
import sys
|
||||||
import zipfile
|
import zipfile
|
||||||
|
|
||||||
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 500 MiB
|
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 450 MiB
|
||||||
# Note that we have 800 MiB quota, please use it wisely.
|
# Note that we have 800 MiB quota, please use it wisely.
|
||||||
# See https://github.com/pypi/support/issues/6326 .
|
# See https://github.com/pypi/support/issues/6326 .
|
||||||
# Please also sync the value with the one in Dockerfile.
|
# Please also sync the value with the one in Dockerfile.
|
||||||
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 500))
|
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 450))
|
||||||
|
|
||||||
|
|
||||||
def print_top_10_largest_files(zip_file):
|
def print_top_10_largest_files(zip_file):
|
||||||
|
|||||||
@ -1,12 +0,0 @@
|
|||||||
# For vllm script, with -t option (tensor parallel size).
|
|
||||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 1000 -f 5 -t 1
|
|
||||||
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
|
|
||||||
tasks:
|
|
||||||
- name: "gsm8k"
|
|
||||||
metrics:
|
|
||||||
- name: "exact_match,strict-match"
|
|
||||||
value: 0.419
|
|
||||||
- name: "exact_match,flexible-extract"
|
|
||||||
value: 0.416
|
|
||||||
limit: 1000
|
|
||||||
num_fewshot: 5
|
|
||||||
@ -1,12 +0,0 @@
|
|||||||
# For hf script, without -t option (tensor parallel size).
|
|
||||||
# bash .buildkite/lm-eval-harness/run-lm-eval-chartqa-vllm-vlm-baseline.sh -m meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 -l 100 -t 8
|
|
||||||
model_name: "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
|
|
||||||
backend: "vllm-vlm"
|
|
||||||
tasks:
|
|
||||||
- name: "chartqa"
|
|
||||||
metrics:
|
|
||||||
- name: "relaxed_accuracy,none"
|
|
||||||
# TODO(zhewenl): model card is 0.90, but the actual score is 0.80.
|
|
||||||
value: 0.80
|
|
||||||
limit: 100
|
|
||||||
num_fewshot: 0
|
|
||||||
@ -1,10 +0,0 @@
|
|||||||
# For hf script, without -t option (tensor parallel size).
|
|
||||||
# bash .buildkite/lm-eval-harness/run-lm-eval-mmlupro-vllm-baseline.sh -m meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 -l 250 -t 8 -f 5
|
|
||||||
model_name: "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
|
|
||||||
tasks:
|
|
||||||
- name: "mmlu_pro"
|
|
||||||
metrics:
|
|
||||||
- name: "exact_match,custom-extract"
|
|
||||||
value: 0.80
|
|
||||||
limit: 250 # will run on 250 * 14 subjects = 3500 samples
|
|
||||||
num_fewshot: 5
|
|
||||||
@ -1,5 +1,4 @@
|
|||||||
# For vllm script, with -t option (tensor parallel size)
|
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic -b auto -l 1319 -f 5 -t 1
|
||||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic -l 1319 -t 1
|
|
||||||
model_name: "RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic"
|
model_name: "RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic"
|
||||||
tasks:
|
tasks:
|
||||||
- name: "gsm8k"
|
- name: "gsm8k"
|
||||||
|
|||||||
@ -1,12 +0,0 @@
|
|||||||
# For vllm script, with -t option (tensor parallel size).
|
|
||||||
# bash .buildkite/lm-eval-harness/run-lm-eval-chartqa-vllm-vlm-baseline.sh -m Qwen/Qwen2.5-VL-7B-Instruct -l 2500 -t 1
|
|
||||||
|
|
||||||
model_name: "Qwen/Qwen2.5-VL-7B-Instruct"
|
|
||||||
backend: "vllm-vlm"
|
|
||||||
tasks:
|
|
||||||
- name: "chartqa"
|
|
||||||
metrics:
|
|
||||||
- name: "relaxed_accuracy,none"
|
|
||||||
value: 0.855
|
|
||||||
limit: 2500
|
|
||||||
num_fewshot: 0
|
|
||||||
@ -1 +0,0 @@
|
|||||||
Meta-Llama-4-Maverick-17B-128E-Instruct-FP8.yaml
|
|
||||||
@ -1 +0,0 @@
|
|||||||
Meta-Llama-4-Maverick-17B-128E-Instruct-FP8-MM.yaml
|
|
||||||
@ -1 +0,0 @@
|
|||||||
Qwen2.5-VL-7B-Instruct.yaml
|
|
||||||
@ -1,44 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
# We can use this script to compute baseline accuracy on chartqa for vllm.
|
|
||||||
#
|
|
||||||
# Make sure you have lm-eval-harness installed:
|
|
||||||
# pip install lm-eval==0.4.9
|
|
||||||
|
|
||||||
usage() {
|
|
||||||
echo``
|
|
||||||
echo "Runs lm eval harness on ChartQA using multimodal vllm."
|
|
||||||
echo "This pathway is intended to be used to create baselines for "
|
|
||||||
echo "our correctness tests in vllm's CI."
|
|
||||||
echo
|
|
||||||
echo "usage: ${0} <options>"
|
|
||||||
echo
|
|
||||||
echo " -m - huggingface stub or local directory of the model"
|
|
||||||
echo " -l - limit number of samples to run"
|
|
||||||
echo " -t - tensor parallel size to run at"
|
|
||||||
echo
|
|
||||||
}
|
|
||||||
|
|
||||||
while getopts "m:l:t:" OPT; do
|
|
||||||
case ${OPT} in
|
|
||||||
m )
|
|
||||||
MODEL="$OPTARG"
|
|
||||||
;;
|
|
||||||
l )
|
|
||||||
LIMIT="$OPTARG"
|
|
||||||
;;
|
|
||||||
t )
|
|
||||||
TP_SIZE="$OPTARG"
|
|
||||||
;;
|
|
||||||
\? )
|
|
||||||
usage
|
|
||||||
exit 1
|
|
||||||
;;
|
|
||||||
esac
|
|
||||||
done
|
|
||||||
|
|
||||||
lm_eval --model vllm-vlm \
|
|
||||||
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE" \
|
|
||||||
--tasks chartqa \
|
|
||||||
--batch_size auto \
|
|
||||||
--apply_chat_template \
|
|
||||||
--limit $LIMIT
|
|
||||||
0
.buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh
Executable file → Normal file
0
.buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh
Executable file → Normal file
@ -1,50 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
# We can use this script to compute baseline accuracy on MMLUPRO for vllm.
|
|
||||||
# We use this for fp8, which HF does not support.
|
|
||||||
#
|
|
||||||
# Make sure you have lm-eval-harness installed:
|
|
||||||
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d#egg=lm-eval[api]
|
|
||||||
|
|
||||||
usage() {
|
|
||||||
echo``
|
|
||||||
echo "Runs lm eval harness on MMLU Pro using huggingface transformers."
|
|
||||||
echo "This pathway is intended to be used to create baselines for "
|
|
||||||
echo "our automated nm-test-accuracy workflow"
|
|
||||||
echo
|
|
||||||
echo "usage: ${0} <options>"
|
|
||||||
echo
|
|
||||||
echo " -m - huggingface stub or local directory of the model"
|
|
||||||
echo " -l - limit number of samples to run"
|
|
||||||
echo " -f - number of fewshot samples to use"
|
|
||||||
echo " -t - tensor parallel size to run at"
|
|
||||||
echo
|
|
||||||
}
|
|
||||||
|
|
||||||
while getopts "m:b:l:f:t:" OPT; do
|
|
||||||
case ${OPT} in
|
|
||||||
m )
|
|
||||||
MODEL="$OPTARG"
|
|
||||||
;;
|
|
||||||
b )
|
|
||||||
BATCH_SIZE="$OPTARG"
|
|
||||||
;;
|
|
||||||
l )
|
|
||||||
LIMIT="$OPTARG"
|
|
||||||
;;
|
|
||||||
f )
|
|
||||||
FEWSHOT="$OPTARG"
|
|
||||||
;;
|
|
||||||
t )
|
|
||||||
TP_SIZE="$OPTARG"
|
|
||||||
;;
|
|
||||||
\? )
|
|
||||||
usage
|
|
||||||
exit 1
|
|
||||||
;;
|
|
||||||
esac
|
|
||||||
done
|
|
||||||
|
|
||||||
lm_eval --model vllm \
|
|
||||||
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,add_bos_token=true,trust_remote_code=true,max_model_len=4096" \
|
|
||||||
--tasks mmlu_pro --num_fewshot "$FEWSHOT" --limit "$LIMIT" \
|
|
||||||
--batch_size auto
|
|
||||||
@ -19,27 +19,21 @@ RTOL = 0.08
|
|||||||
def launch_lm_eval(eval_config, tp_size):
|
def launch_lm_eval(eval_config, tp_size):
|
||||||
trust_remote_code = eval_config.get("trust_remote_code", False)
|
trust_remote_code = eval_config.get("trust_remote_code", False)
|
||||||
max_model_len = eval_config.get("max_model_len", 4096)
|
max_model_len = eval_config.get("max_model_len", 4096)
|
||||||
batch_size = eval_config.get("batch_size", "auto")
|
|
||||||
backend = eval_config.get("backend", "vllm")
|
|
||||||
model_args = (
|
model_args = (
|
||||||
f"pretrained={eval_config['model_name']},"
|
f"pretrained={eval_config['model_name']},"
|
||||||
f"tensor_parallel_size={tp_size},"
|
f"tensor_parallel_size={tp_size},"
|
||||||
f"enforce_eager=true,"
|
f"enforce_eager=true,"
|
||||||
f"add_bos_token=true,"
|
f"add_bos_token=true,"
|
||||||
f"trust_remote_code={trust_remote_code},"
|
f"trust_remote_code={trust_remote_code},"
|
||||||
f"max_model_len={max_model_len},"
|
f"max_model_len={max_model_len}"
|
||||||
)
|
)
|
||||||
results = lm_eval.simple_evaluate(
|
results = lm_eval.simple_evaluate(
|
||||||
model=backend,
|
model="vllm",
|
||||||
model_args=model_args,
|
model_args=model_args,
|
||||||
tasks=[task["name"] for task in eval_config["tasks"]],
|
tasks=[task["name"] for task in eval_config["tasks"]],
|
||||||
num_fewshot=eval_config["num_fewshot"],
|
num_fewshot=eval_config["num_fewshot"],
|
||||||
limit=eval_config["limit"],
|
limit=eval_config["limit"],
|
||||||
# TODO(yeq): using chat template w/ fewshot_as_multiturn is supposed help
|
batch_size="auto",
|
||||||
# text models. however, this is regressing measured strict-match for
|
|
||||||
# existing text models in CI, so only apply it for mm.
|
|
||||||
apply_chat_template=backend == "vllm-vlm",
|
|
||||||
batch_size=batch_size,
|
|
||||||
)
|
)
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|||||||
@ -368,7 +368,7 @@ if __name__ == "__main__":
|
|||||||
# The GPUs sometimes come in format of "GPUTYPE\nGPUTYPE\n...",
|
# The GPUs sometimes come in format of "GPUTYPE\nGPUTYPE\n...",
|
||||||
# we want to turn it into "8xGPUTYPE"
|
# we want to turn it into "8xGPUTYPE"
|
||||||
df["GPU"] = df["GPU"].apply(
|
df["GPU"] = df["GPU"].apply(
|
||||||
lambda x: f"{len(x.splitlines())}x{x.splitlines()[0]}"
|
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}"
|
||||||
)
|
)
|
||||||
|
|
||||||
# get markdown tables
|
# get markdown tables
|
||||||
|
|||||||
@ -181,14 +181,18 @@ launch_vllm_server() {
|
|||||||
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
|
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
|
||||||
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
|
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
|
||||||
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
|
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
|
||||||
server_command="vllm serve $model \
|
server_command="python3 \
|
||||||
|
-m vllm.entrypoints.openai.api_server \
|
||||||
-tp $tp \
|
-tp $tp \
|
||||||
|
--model $model \
|
||||||
--port $port \
|
--port $port \
|
||||||
$server_args"
|
$server_args"
|
||||||
else
|
else
|
||||||
echo "Key 'fp8' does not exist in common params."
|
echo "Key 'fp8' does not exist in common params."
|
||||||
server_command="vllm serve $model \
|
server_command="python3 \
|
||||||
|
-m vllm.entrypoints.openai.api_server \
|
||||||
-tp $tp \
|
-tp $tp \
|
||||||
|
--model $model \
|
||||||
--port $port \
|
--port $port \
|
||||||
$server_args"
|
$server_args"
|
||||||
fi
|
fi
|
||||||
|
|||||||
@ -365,7 +365,8 @@ run_serving_tests() {
|
|||||||
continue
|
continue
|
||||||
fi
|
fi
|
||||||
|
|
||||||
server_command="$server_envs vllm serve \
|
server_command="$server_envs python3 \
|
||||||
|
-m vllm.entrypoints.openai.api_server \
|
||||||
$server_args"
|
$server_args"
|
||||||
|
|
||||||
# run the server
|
# run the server
|
||||||
@ -454,6 +455,11 @@ main() {
|
|||||||
fi
|
fi
|
||||||
check_hf_token
|
check_hf_token
|
||||||
|
|
||||||
|
# Set to v1 to run v1 benchmark
|
||||||
|
if [[ "${ENGINE_VERSION:-v0}" == "v1" ]]; then
|
||||||
|
export VLLM_USE_V1=1
|
||||||
|
fi
|
||||||
|
|
||||||
# dependencies
|
# dependencies
|
||||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||||
(which jq) || (apt-get update && apt-get -y install jq)
|
(which jq) || (apt-get update && apt-get -y install jq)
|
||||||
|
|||||||
46
.buildkite/pyproject.toml
Normal file
46
.buildkite/pyproject.toml
Normal file
@ -0,0 +1,46 @@
|
|||||||
|
# This local pyproject file is part of the migration from yapf to ruff format.
|
||||||
|
# It uses the same core rules as the main pyproject.toml file, but with the
|
||||||
|
# following differences:
|
||||||
|
# - ruff line length is overridden to 88
|
||||||
|
# - deprecated typing ignores (UP006, UP035) have been removed
|
||||||
|
|
||||||
|
[tool.ruff]
|
||||||
|
line-length = 88
|
||||||
|
|
||||||
|
[tool.ruff.lint.per-file-ignores]
|
||||||
|
"vllm/third_party/**" = ["ALL"]
|
||||||
|
"vllm/version.py" = ["F401"]
|
||||||
|
"vllm/_version.py" = ["ALL"]
|
||||||
|
|
||||||
|
[tool.ruff.lint]
|
||||||
|
select = [
|
||||||
|
# pycodestyle
|
||||||
|
"E",
|
||||||
|
# Pyflakes
|
||||||
|
"F",
|
||||||
|
# pyupgrade
|
||||||
|
"UP",
|
||||||
|
# flake8-bugbear
|
||||||
|
"B",
|
||||||
|
# flake8-simplify
|
||||||
|
"SIM",
|
||||||
|
# isort
|
||||||
|
"I",
|
||||||
|
# flake8-logging-format
|
||||||
|
"G",
|
||||||
|
]
|
||||||
|
ignore = [
|
||||||
|
# star imports
|
||||||
|
"F405", "F403",
|
||||||
|
# lambda expression assignment
|
||||||
|
"E731",
|
||||||
|
# Loop control variable not used within loop body
|
||||||
|
"B007",
|
||||||
|
# f-string format
|
||||||
|
"UP032",
|
||||||
|
# Can remove once 3.10+ is the minimum Python version
|
||||||
|
"UP007",
|
||||||
|
]
|
||||||
|
|
||||||
|
[tool.ruff.format]
|
||||||
|
docstring-code-format = true
|
||||||
@ -1,5 +1,5 @@
|
|||||||
steps:
|
steps:
|
||||||
# aarch64 + CUDA builds
|
# aarch64 + CUDA builds. PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
|
||||||
- label: "Build arm64 wheel - CUDA 12.9"
|
- label: "Build arm64 wheel - CUDA 12.9"
|
||||||
depends_on: ~
|
depends_on: ~
|
||||||
id: build-wheel-arm64-cuda-12-9
|
id: build-wheel-arm64-cuda-12-9
|
||||||
@ -8,28 +8,13 @@ steps:
|
|||||||
commands:
|
commands:
|
||||||
# #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here:
|
# #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here:
|
||||||
# https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7
|
# https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7
|
||||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg VLLM_MAIN_CUDA_VERSION=12.9 --build-arg torch_cuda_arch_list='8.7 8.9 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg VLLM_MAIN_CUDA_VERSION=12.9 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||||
- "mkdir artifacts"
|
- "mkdir artifacts"
|
||||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||||
env:
|
env:
|
||||||
DOCKER_BUILDKIT: "1"
|
DOCKER_BUILDKIT: "1"
|
||||||
|
|
||||||
# aarch64 build
|
|
||||||
- label: "Build arm64 CPU wheel"
|
|
||||||
depends_on: ~
|
|
||||||
id: build-wheel-arm64-cpu
|
|
||||||
agents:
|
|
||||||
queue: arm64_cpu_queue_postmerge
|
|
||||||
commands:
|
|
||||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg VLLM_BUILD_ACL=ON --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile.cpu ."
|
|
||||||
- "mkdir artifacts"
|
|
||||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
|
||||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
|
||||||
env:
|
|
||||||
DOCKER_BUILDKIT: "1"
|
|
||||||
|
|
||||||
# x86 + CUDA builds
|
|
||||||
- label: "Build wheel - CUDA 12.8"
|
- label: "Build wheel - CUDA 12.8"
|
||||||
depends_on: ~
|
depends_on: ~
|
||||||
id: build-wheel-cuda-12-8
|
id: build-wheel-cuda-12-8
|
||||||
@ -43,33 +28,33 @@ steps:
|
|||||||
env:
|
env:
|
||||||
DOCKER_BUILDKIT: "1"
|
DOCKER_BUILDKIT: "1"
|
||||||
|
|
||||||
|
- label: "Build wheel - CUDA 12.6"
|
||||||
|
depends_on: ~
|
||||||
|
id: build-wheel-cuda-12-6
|
||||||
|
agents:
|
||||||
|
queue: cpu_queue_postmerge
|
||||||
|
commands:
|
||||||
|
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.6.3 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||||
|
- "mkdir artifacts"
|
||||||
|
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||||
|
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||||
|
env:
|
||||||
|
DOCKER_BUILDKIT: "1"
|
||||||
|
|
||||||
|
# x86 + CUDA builds
|
||||||
- label: "Build wheel - CUDA 12.9"
|
- label: "Build wheel - CUDA 12.9"
|
||||||
depends_on: ~
|
depends_on: ~
|
||||||
id: build-wheel-cuda-12-9
|
id: build-wheel-cuda-12-9
|
||||||
agents:
|
agents:
|
||||||
queue: cpu_queue_postmerge
|
queue: cpu_queue_postmerge
|
||||||
commands:
|
commands:
|
||||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||||
- "mkdir artifacts"
|
- "mkdir artifacts"
|
||||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||||
env:
|
env:
|
||||||
DOCKER_BUILDKIT: "1"
|
DOCKER_BUILDKIT: "1"
|
||||||
|
|
||||||
- label: "Build wheel - CUDA 13.0"
|
|
||||||
depends_on: ~
|
|
||||||
id: build-wheel-cuda-13-0
|
|
||||||
agents:
|
|
||||||
queue: cpu_queue_postmerge
|
|
||||||
commands:
|
|
||||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=13.0.1 --build-arg BUILD_BASE_IMAGE=nvidia/cuda:13.0.1-devel-ubuntu22.04 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
|
||||||
- "mkdir artifacts"
|
|
||||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
|
||||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
|
||||||
env:
|
|
||||||
DOCKER_BUILDKIT: "1"
|
|
||||||
|
|
||||||
# Build release images (12.9)
|
|
||||||
- label: "Build release image (x86)"
|
- label: "Build release image (x86)"
|
||||||
depends_on: ~
|
depends_on: ~
|
||||||
id: build-release-image-x86
|
id: build-release-image-x86
|
||||||
@ -77,12 +62,13 @@ steps:
|
|||||||
queue: cpu_queue_postmerge
|
queue: cpu_queue_postmerge
|
||||||
commands:
|
commands:
|
||||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
|
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
|
||||||
# re-tag to default image tag and push, just in case arm64 build fails
|
# re-tag to default image tag and push, just in case arm64 build fails
|
||||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||||
|
|
||||||
|
# PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
|
||||||
- label: "Build release image (arm64)"
|
- label: "Build release image (arm64)"
|
||||||
depends_on: ~
|
depends_on: ~
|
||||||
id: build-release-image-arm64
|
id: build-release-image-arm64
|
||||||
@ -90,7 +76,7 @@ steps:
|
|||||||
queue: arm64_cpu_queue_postmerge
|
queue: arm64_cpu_queue_postmerge
|
||||||
commands:
|
commands:
|
||||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg torch_cuda_arch_list='8.7 8.9 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
|
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
|
||||||
|
|
||||||
# Add job to create multi-arch manifest
|
# Add job to create multi-arch manifest
|
||||||
@ -156,22 +142,6 @@ steps:
|
|||||||
env:
|
env:
|
||||||
DOCKER_BUILDKIT: "1"
|
DOCKER_BUILDKIT: "1"
|
||||||
|
|
||||||
- block: "Build arm64 CPU release image"
|
|
||||||
key: block-arm64-cpu-release-image-build
|
|
||||||
depends_on: ~
|
|
||||||
|
|
||||||
- label: "Build and publish arm64 CPU release image"
|
|
||||||
depends_on: block-arm64-cpu-release-image-build
|
|
||||||
agents:
|
|
||||||
queue: arm64_cpu_queue_postmerge
|
|
||||||
commands:
|
|
||||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
|
||||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
|
|
||||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:latest"
|
|
||||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
|
|
||||||
env:
|
|
||||||
DOCKER_BUILDKIT: "1"
|
|
||||||
|
|
||||||
- label: "Build and publish nightly multi-arch image to DockerHub"
|
- label: "Build and publish nightly multi-arch image to DockerHub"
|
||||||
depends_on:
|
depends_on:
|
||||||
- create-multi-arch-manifest
|
- create-multi-arch-manifest
|
||||||
@ -180,16 +150,11 @@ steps:
|
|||||||
queue: cpu_queue_postmerge
|
queue: cpu_queue_postmerge
|
||||||
commands:
|
commands:
|
||||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||||
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-x86_64"
|
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||||
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-aarch64"
|
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly"
|
||||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-x86_64 vllm/vllm-openai:nightly-x86_64"
|
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
|
||||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-aarch64 vllm/vllm-openai:nightly-aarch64"
|
- "docker push vllm/vllm-openai:nightly"
|
||||||
- "docker push vllm/vllm-openai:nightly-x86_64"
|
- "docker push vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
|
||||||
- "docker push vllm/vllm-openai:nightly-aarch64"
|
|
||||||
- "docker manifest create vllm/vllm-openai:nightly vllm/vllm-openai:nightly-x86_64 vllm/vllm-openai:nightly-aarch64 --amend"
|
|
||||||
- "docker manifest create vllm/vllm-openai:nightly-$BUILDKITE_COMMIT vllm/vllm-openai:nightly-x86_64 vllm/vllm-openai:nightly-aarch64 --amend"
|
|
||||||
- "docker manifest push vllm/vllm-openai:nightly"
|
|
||||||
- "docker manifest push vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
|
|
||||||
# Clean up old nightly builds (keep only last 14)
|
# Clean up old nightly builds (keep only last 14)
|
||||||
- "bash .buildkite/scripts/cleanup-nightly-builds.sh"
|
- "bash .buildkite/scripts/cleanup-nightly-builds.sh"
|
||||||
plugins:
|
plugins:
|
||||||
@ -198,4 +163,3 @@ steps:
|
|||||||
password-env: DOCKERHUB_TOKEN
|
password-env: DOCKERHUB_TOKEN
|
||||||
env:
|
env:
|
||||||
DOCKER_BUILDKIT: "1"
|
DOCKER_BUILDKIT: "1"
|
||||||
DOCKERHUB_USERNAME: "vllmbot"
|
|
||||||
|
|||||||
@ -8,41 +8,20 @@ set -ex
|
|||||||
# DockerHub API endpoint for vllm/vllm-openai repository
|
# DockerHub API endpoint for vllm/vllm-openai repository
|
||||||
REPO_API_URL="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags"
|
REPO_API_URL="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags"
|
||||||
|
|
||||||
# Get DockerHub credentials from environment
|
# Get DockerHub token from environment
|
||||||
if [ -z "$DOCKERHUB_TOKEN" ]; then
|
if [ -z "$DOCKERHUB_TOKEN" ]; then
|
||||||
echo "Error: DOCKERHUB_TOKEN environment variable is not set"
|
echo "Error: DOCKERHUB_TOKEN environment variable is not set"
|
||||||
exit 1
|
exit 1
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ -z "$DOCKERHUB_USERNAME" ]; then
|
|
||||||
echo "Error: DOCKERHUB_USERNAME environment variable is not set"
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
|
|
||||||
# Get DockerHub bearer token
|
|
||||||
echo "Getting DockerHub bearer token..."
|
|
||||||
set +x
|
|
||||||
BEARER_TOKEN=$(curl -s -X POST \
|
|
||||||
-H "Content-Type: application/json" \
|
|
||||||
-d "{\"username\": \"$DOCKERHUB_USERNAME\", \"password\": \"$DOCKERHUB_TOKEN\"}" \
|
|
||||||
"https://hub.docker.com/v2/users/login" | jq -r '.token')
|
|
||||||
set -x
|
|
||||||
|
|
||||||
if [ -z "$BEARER_TOKEN" ] || [ "$BEARER_TOKEN" = "null" ]; then
|
|
||||||
echo "Error: Failed to get DockerHub bearer token"
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
|
|
||||||
# Function to get all tags from DockerHub
|
# Function to get all tags from DockerHub
|
||||||
get_all_tags() {
|
get_all_tags() {
|
||||||
local page=1
|
local page=1
|
||||||
local all_tags=""
|
local all_tags=""
|
||||||
|
|
||||||
while true; do
|
while true; do
|
||||||
set +x
|
local response=$(curl -s -H "Authorization: Bearer $DOCKERHUB_TOKEN" \
|
||||||
local response=$(curl -s -H "Authorization: Bearer $BEARER_TOKEN" \
|
|
||||||
"$REPO_API_URL?page=$page&page_size=100")
|
"$REPO_API_URL?page=$page&page_size=100")
|
||||||
set -x
|
|
||||||
|
|
||||||
# Get both last_updated timestamp and tag name, separated by |
|
# Get both last_updated timestamp and tag name, separated by |
|
||||||
local tags=$(echo "$response" | jq -r '.results[] | select(.name | startswith("nightly-")) | "\(.last_updated)|\(.name)"')
|
local tags=$(echo "$response" | jq -r '.results[] | select(.name | startswith("nightly-")) | "\(.last_updated)|\(.name)"')
|
||||||
@ -64,9 +43,7 @@ delete_tag() {
|
|||||||
echo "Deleting tag: $tag_name"
|
echo "Deleting tag: $tag_name"
|
||||||
|
|
||||||
local delete_url="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags/$tag_name"
|
local delete_url="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags/$tag_name"
|
||||||
set +x
|
local response=$(curl -s -X DELETE -H "Authorization: Bearer $DOCKERHUB_TOKEN" "$delete_url")
|
||||||
local response=$(curl -s -X DELETE -H "Authorization: Bearer $BEARER_TOKEN" "$delete_url")
|
|
||||||
set -x
|
|
||||||
|
|
||||||
if echo "$response" | jq -e '.detail' > /dev/null 2>&1; then
|
if echo "$response" | jq -e '.detail' > /dev/null 2>&1; then
|
||||||
echo "Warning: Failed to delete tag $tag_name: $(echo "$response" | jq -r '.detail')"
|
echo "Warning: Failed to delete tag $tag_name: $(echo "$response" | jq -r '.detail')"
|
||||||
|
|||||||
@ -86,6 +86,10 @@ if [[ $commands == *"pytest -v -s models/test_registry.py"* ]]; then
|
|||||||
commands=${commands//"pytest -v -s models/test_registry.py"/"pytest -v -s models/test_registry.py -k 'not BambaForCausalLM and not GritLM and not Mamba2ForCausalLM and not Zamba2ForCausalLM'"}
|
commands=${commands//"pytest -v -s models/test_registry.py"/"pytest -v -s models/test_registry.py -k 'not BambaForCausalLM and not GritLM and not Mamba2ForCausalLM and not Zamba2ForCausalLM'"}
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
if [[ $commands == *"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"* ]]; then
|
||||||
|
commands=${commands//"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"/"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2 and not BambaForCausalLM and not Gemma2ForCausalLM and not Grok1ModelForCausalLM and not Zamba2ForCausalLM and not Gemma2Model and not GritLM'"}
|
||||||
|
fi
|
||||||
|
|
||||||
if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
|
if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
|
||||||
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
|
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
|
||||||
fi
|
fi
|
||||||
@ -163,6 +167,12 @@ if [[ $commands == *" entrypoints/llm "* ]]; then
|
|||||||
--ignore=entrypoints/llm/test_prompt_validation.py "}
|
--ignore=entrypoints/llm/test_prompt_validation.py "}
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
#Obsolete currently
|
||||||
|
##ignore certain Entrypoints/llm tests
|
||||||
|
#if [[ $commands == *" && pytest -v -s entrypoints/llm/test_guided_generate.py"* ]]; then
|
||||||
|
# commands=${commands//" && pytest -v -s entrypoints/llm/test_guided_generate.py"/" "}
|
||||||
|
#fi
|
||||||
|
|
||||||
# --ignore=entrypoints/openai/test_encoder_decoder.py \
|
# --ignore=entrypoints/openai/test_encoder_decoder.py \
|
||||||
# --ignore=entrypoints/openai/test_embedding.py \
|
# --ignore=entrypoints/openai/test_embedding.py \
|
||||||
# --ignore=entrypoints/openai/test_oot_registration.py
|
# --ignore=entrypoints/openai/test_oot_registration.py
|
||||||
|
|||||||
@ -25,28 +25,25 @@ function cpu_tests() {
|
|||||||
|
|
||||||
# offline inference
|
# offline inference
|
||||||
podman exec -it "$container_id" bash -c "
|
podman exec -it "$container_id" bash -c "
|
||||||
set -xve
|
set -e
|
||||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m" >> $HOME/test_basic.log
|
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
|
||||||
|
|
||||||
# Run basic model test
|
# Run basic model test
|
||||||
podman exec -it "$container_id" bash -c "
|
podman exec -it "$container_id" bash -c "
|
||||||
set -evx
|
set -e
|
||||||
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
|
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
|
||||||
pip install sentence-transformers datamodel_code_generator
|
pip install sentence-transformers datamodel_code_generator
|
||||||
|
pytest -v -s tests/models/language/generation/test_bart.py -m cpu_model
|
||||||
# Note: disable Bart until supports V1
|
|
||||||
# pytest -v -s tests/models/language/generation/test_bart.py -m cpu_model
|
|
||||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-openai-community/gpt2]
|
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-openai-community/gpt2]
|
||||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
|
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
|
||||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
|
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
|
||||||
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
|
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
|
||||||
# TODO: Below test case tests/models/language/pooling/test_embedding.py::test_models[True-ssmits/Qwen2-7B-Instruct-embed-base] fails on ppc64le. Disabling it for time being.
|
pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model"
|
||||||
# pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model" >> $HOME/test_rest.log
|
|
||||||
}
|
}
|
||||||
|
|
||||||
# All of CPU tests are expected to be finished less than 40 mins.
|
# All of CPU tests are expected to be finished less than 40 mins.
|
||||||
|
|
||||||
export container_id
|
export container_id
|
||||||
export -f cpu_tests
|
export -f cpu_tests
|
||||||
timeout 120m bash -c cpu_tests
|
timeout 40m bash -c cpu_tests
|
||||||
|
|
||||||
|
|||||||
@ -58,8 +58,11 @@ function cpu_tests() {
|
|||||||
# pytest -x -v -s tests/kernels/attention/test_cache.py -m cpu_model
|
# pytest -x -v -s tests/kernels/attention/test_cache.py -m cpu_model
|
||||||
# pytest -x -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
|
# pytest -x -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
|
||||||
|
|
||||||
pytest -x -v -s tests/models/language/generation -m cpu_model
|
# Note: disable Bart until supports V1
|
||||||
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model
|
pytest -x -v -s tests/models/language/generation -m cpu_model \
|
||||||
|
--ignore=tests/models/language/generation/test_bart.py
|
||||||
|
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model \
|
||||||
|
--ignore=tests/models/language/generation/test_bart.py
|
||||||
|
|
||||||
pytest -x -v -s tests/models/language/pooling -m cpu_model
|
pytest -x -v -s tests/models/language/pooling -m cpu_model
|
||||||
pytest -x -v -s tests/models/multimodal/generation \
|
pytest -x -v -s tests/models/multimodal/generation \
|
||||||
@ -70,7 +73,7 @@ function cpu_tests() {
|
|||||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||||
set -e
|
set -e
|
||||||
pytest -x -s -v \
|
pytest -x -s -v \
|
||||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs"
|
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
|
||||||
|
|
||||||
# Note: disable it until supports V1
|
# Note: disable it until supports V1
|
||||||
# Run AWQ test
|
# Run AWQ test
|
||||||
|
|||||||
@ -1,191 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
# This script build the Ascend NPU docker image and run the offline inference inside the container.
|
|
||||||
# It serves a sanity check for compilation and basic model usage.
|
|
||||||
set -ex
|
|
||||||
|
|
||||||
# Base ubuntu image with basic ascend development libraries and python installed
|
|
||||||
VLLM_ASCEND_REPO="https://github.com/vllm-project/vllm-ascend.git"
|
|
||||||
CONFIG_FILE_REMOTE_PATH="tests/e2e/vllm_interface/vllm_test.cfg"
|
|
||||||
TEST_RUN_CONFIG_FILE="vllm_test.cfg"
|
|
||||||
VLLM_ASCEND_TMP_DIR=
|
|
||||||
# Get the test run configuration file from the vllm-ascend repository
|
|
||||||
fetch_vllm_test_cfg() {
|
|
||||||
VLLM_ASCEND_TMP_DIR=$(mktemp -d)
|
|
||||||
# Ensure that the temporary directory is cleaned up when an exception occurs during configuration file retrieval
|
|
||||||
cleanup() {
|
|
||||||
rm -rf "${VLLM_ASCEND_TMP_DIR}"
|
|
||||||
}
|
|
||||||
trap cleanup EXIT
|
|
||||||
|
|
||||||
GIT_TRACE=1 git clone -v --depth 1 "${VLLM_ASCEND_REPO}" "${VLLM_ASCEND_TMP_DIR}"
|
|
||||||
if [ ! -f "${VLLM_ASCEND_TMP_DIR}/${CONFIG_FILE_REMOTE_PATH}" ]; then
|
|
||||||
echo "Error: file '${CONFIG_FILE_REMOTE_PATH}' does not exist in the warehouse" >&2
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
|
|
||||||
# If the file already exists locally, just overwrite it
|
|
||||||
cp "${VLLM_ASCEND_TMP_DIR}/${CONFIG_FILE_REMOTE_PATH}" "${TEST_RUN_CONFIG_FILE}"
|
|
||||||
echo "Copied ${CONFIG_FILE_REMOTE_PATH} to ${TEST_RUN_CONFIG_FILE}"
|
|
||||||
|
|
||||||
# Since the trap will be overwritten later, and when it is executed here, the task of cleaning up resources
|
|
||||||
# when the trap is abnormal has been completed, so the temporary resources are manually deleted here.
|
|
||||||
rm -rf "${VLLM_ASCEND_TMP_DIR}"
|
|
||||||
trap - EXIT
|
|
||||||
}
|
|
||||||
|
|
||||||
# Downloads test run configuration file from a remote URL.
|
|
||||||
# Loads the configuration into the current script environment.
|
|
||||||
get_config() {
|
|
||||||
if [ ! -f "${TEST_RUN_CONFIG_FILE}" ]; then
|
|
||||||
echo "Error: file '${TEST_RUN_CONFIG_FILE}' does not exist in the warehouse" >&2
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
source "${TEST_RUN_CONFIG_FILE}"
|
|
||||||
echo "Base docker image name that get from configuration: ${BASE_IMAGE_NAME}"
|
|
||||||
return 0
|
|
||||||
}
|
|
||||||
|
|
||||||
# get test running configuration.
|
|
||||||
fetch_vllm_test_cfg
|
|
||||||
get_config
|
|
||||||
# Check if the function call was successful. If not, exit the script.
|
|
||||||
if [ $? -ne 0 ]; then
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
|
|
||||||
image_name="npu/vllm-ci:${BUILDKITE_COMMIT}_${EPOCHSECONDS}"
|
|
||||||
container_name="npu_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
|
|
||||||
|
|
||||||
# BUILDKITE_AGENT_NAME format is {hostname}-{agent_idx}-{npu_card_num}cards
|
|
||||||
agent_idx=$(echo "${BUILDKITE_AGENT_NAME}" | awk -F'-' '{print $(NF-1)}')
|
|
||||||
echo "agent_idx: ${agent_idx}"
|
|
||||||
builder_name="cachebuilder${agent_idx}"
|
|
||||||
builder_cache_dir="/mnt/docker-cache${agent_idx}"
|
|
||||||
mkdir -p ${builder_cache_dir}
|
|
||||||
|
|
||||||
# Try building the docker image
|
|
||||||
cat <<EOF | DOCKER_BUILDKIT=1 docker build \
|
|
||||||
--add-host cache-service-vllm.nginx-pypi-cache.svc.cluster.local:${PYPI_CACHE_HOST} \
|
|
||||||
--builder ${builder_name} --cache-from type=local,src=${builder_cache_dir} \
|
|
||||||
--cache-to type=local,dest=${builder_cache_dir},mode=max \
|
|
||||||
--progress=plain --load -t ${image_name} -f - .
|
|
||||||
FROM ${BASE_IMAGE_NAME}
|
|
||||||
|
|
||||||
# Define environments
|
|
||||||
ENV DEBIAN_FRONTEND=noninteractive
|
|
||||||
|
|
||||||
RUN pip config set global.index-url http://cache-service-vllm.nginx-pypi-cache.svc.cluster.local:${PYPI_CACHE_PORT}/pypi/simple && \
|
|
||||||
pip config set global.trusted-host cache-service-vllm.nginx-pypi-cache.svc.cluster.local && \
|
|
||||||
apt-get update -y && \
|
|
||||||
apt-get install -y python3-pip git vim wget net-tools gcc g++ cmake libnuma-dev && \
|
|
||||||
rm -rf /var/cache/apt/* && \
|
|
||||||
rm -rf /var/lib/apt/lists/*
|
|
||||||
|
|
||||||
# Install for pytest to make the docker build cache layer always valid
|
|
||||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
|
||||||
pip install pytest>=6.0 modelscope
|
|
||||||
|
|
||||||
WORKDIR /workspace/vllm
|
|
||||||
|
|
||||||
# Install vLLM dependencies in advance. Effect: As long as common.txt remains unchanged, the docker cache layer will be valid.
|
|
||||||
COPY requirements/common.txt /workspace/vllm/requirements/common.txt
|
|
||||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
|
||||||
pip install -r requirements/common.txt
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
# Install vLLM
|
|
||||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
|
||||||
VLLM_TARGET_DEVICE="empty" python3 -m pip install -v -e /workspace/vllm/ --extra-index https://download.pytorch.org/whl/cpu/ && \
|
|
||||||
python3 -m pip uninstall -y triton
|
|
||||||
|
|
||||||
# Install vllm-ascend
|
|
||||||
WORKDIR /workspace
|
|
||||||
ARG VLLM_ASCEND_REPO=https://github.com/vllm-project/vllm-ascend.git
|
|
||||||
ARG VLLM_ASCEND_TAG=main
|
|
||||||
RUN git config --global url."https://gh-proxy.test.osinfra.cn/https://github.com/".insteadOf "https://github.com/" && \
|
|
||||||
git clone --depth 1 \$VLLM_ASCEND_REPO --branch \$VLLM_ASCEND_TAG /workspace/vllm-ascend
|
|
||||||
|
|
||||||
# Install vllm dependencies in advance. Effect: As long as common.txt remains unchanged, the docker cache layer will be valid.
|
|
||||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
|
||||||
pip install -r /workspace/vllm-ascend/requirements.txt
|
|
||||||
|
|
||||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
|
||||||
export PIP_EXTRA_INDEX_URL=https://mirrors.huaweicloud.com/ascend/repos/pypi && \
|
|
||||||
source /usr/local/Ascend/ascend-toolkit/set_env.sh && \
|
|
||||||
source /usr/local/Ascend/nnal/atb/set_env.sh && \
|
|
||||||
export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/usr/local/Ascend/ascend-toolkit/latest/`uname -i`-linux/devlib && \
|
|
||||||
python3 -m pip install -v -e /workspace/vllm-ascend/ --extra-index https://download.pytorch.org/whl/cpu/
|
|
||||||
|
|
||||||
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
|
|
||||||
ENV VLLM_USE_MODELSCOPE=True
|
|
||||||
|
|
||||||
WORKDIR /workspace/vllm-ascend
|
|
||||||
|
|
||||||
CMD ["/bin/bash"]
|
|
||||||
|
|
||||||
EOF
|
|
||||||
|
|
||||||
# Setup cleanup
|
|
||||||
remove_docker_container() {
|
|
||||||
docker rm -f "${container_name}" || true;
|
|
||||||
docker image rm -f "${image_name}" || true;
|
|
||||||
docker system prune -f || true;
|
|
||||||
}
|
|
||||||
trap remove_docker_container EXIT
|
|
||||||
|
|
||||||
# Generate corresponding --device args based on BUILDKITE_AGENT_NAME
|
|
||||||
# Ascend NPU BUILDKITE_AGENT_NAME format is {hostname}-{agent_idx}-{npu_card_num}cards, and agent_idx starts from 1.
|
|
||||||
# e.g. atlas-a2-001-1-2cards means this is the 1-th agent on atlas-a2-001 host, and it has 2 NPU cards.
|
|
||||||
# returns --device /dev/davinci0 --device /dev/davinci1
|
|
||||||
parse_and_gen_devices() {
|
|
||||||
local input="$1"
|
|
||||||
local index cards_num
|
|
||||||
if [[ "$input" =~ ([0-9]+)-([0-9]+)cards$ ]]; then
|
|
||||||
index="${BASH_REMATCH[1]}"
|
|
||||||
cards_num="${BASH_REMATCH[2]}"
|
|
||||||
else
|
|
||||||
echo "parse error" >&2
|
|
||||||
return 1
|
|
||||||
fi
|
|
||||||
|
|
||||||
local devices=""
|
|
||||||
local i=0
|
|
||||||
while (( i < cards_num )); do
|
|
||||||
local dev_idx=$(((index - 1)*cards_num + i ))
|
|
||||||
devices="$devices --device /dev/davinci${dev_idx}"
|
|
||||||
((i++))
|
|
||||||
done
|
|
||||||
|
|
||||||
# trim leading space
|
|
||||||
devices="${devices#"${devices%%[![:space:]]*}"}"
|
|
||||||
# Output devices: assigned to the caller variable
|
|
||||||
printf '%s' "$devices"
|
|
||||||
}
|
|
||||||
|
|
||||||
devices=$(parse_and_gen_devices "${BUILDKITE_AGENT_NAME}") || exit 1
|
|
||||||
|
|
||||||
# Run the image and execute the Out-Of-Tree (OOT) platform interface test case on Ascend NPU hardware.
|
|
||||||
# This test checks whether the OOT platform interface is functioning properly in conjunction with
|
|
||||||
# the hardware plugin vllm-ascend.
|
|
||||||
model_cache_dir=/mnt/modelscope${agent_idx}
|
|
||||||
mkdir -p ${model_cache_dir}
|
|
||||||
docker run \
|
|
||||||
${devices} \
|
|
||||||
--device /dev/davinci_manager \
|
|
||||||
--device /dev/devmm_svm \
|
|
||||||
--device /dev/hisi_hdc \
|
|
||||||
-v /usr/local/dcmi:/usr/local/dcmi \
|
|
||||||
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
|
|
||||||
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
|
|
||||||
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
|
|
||||||
-v /etc/ascend_install.info:/etc/ascend_install.info \
|
|
||||||
-v ${model_cache_dir}:/root/.cache/modelscope \
|
|
||||||
--entrypoint="" \
|
|
||||||
--name "${container_name}" \
|
|
||||||
"${image_name}" \
|
|
||||||
bash -c '
|
|
||||||
set -e
|
|
||||||
pytest -v -s tests/e2e/vllm_interface/
|
|
||||||
'
|
|
||||||
@ -62,11 +62,12 @@ echo "--- Installing Python dependencies ---"
|
|||||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||||
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
||||||
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
|
&& python3 -m pip install --progress-bar off hf-transfer
|
||||||
echo "--- Python dependencies installed ---"
|
echo "--- Python dependencies installed ---"
|
||||||
|
export VLLM_USE_V1=1
|
||||||
export VLLM_XLA_CHECK_RECOMPILATION=1
|
export VLLM_XLA_CHECK_RECOMPILATION=1
|
||||||
export VLLM_XLA_CACHE_PATH=
|
export VLLM_XLA_CACHE_PATH=
|
||||||
|
echo "Using VLLM V1"
|
||||||
|
|
||||||
echo "--- Hardware Information ---"
|
echo "--- Hardware Information ---"
|
||||||
# tpu-info
|
# tpu-info
|
||||||
|
|||||||
@ -62,11 +62,12 @@ echo "--- Installing Python dependencies ---"
|
|||||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||||
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
||||||
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
|
&& python3 -m pip install --progress-bar off hf-transfer
|
||||||
echo "--- Python dependencies installed ---"
|
echo "--- Python dependencies installed ---"
|
||||||
|
export VLLM_USE_V1=1
|
||||||
export VLLM_XLA_CHECK_RECOMPILATION=1
|
export VLLM_XLA_CHECK_RECOMPILATION=1
|
||||||
export VLLM_XLA_CACHE_PATH=
|
export VLLM_XLA_CACHE_PATH=
|
||||||
|
echo "Using VLLM V1"
|
||||||
|
|
||||||
echo "--- Hardware Information ---"
|
echo "--- Hardware Information ---"
|
||||||
# tpu-info
|
# tpu-info
|
||||||
|
|||||||
@ -35,14 +35,16 @@ docker run \
|
|||||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
|
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
|
||||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
|
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
|
||||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
|
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
|
||||||
VLLM_ATTENTION_BACKEND=TRITON_ATTN python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
|
VLLM_ATTENTION_BACKEND=TRITON_ATTN_VLLM_V1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
|
||||||
cd tests
|
cd tests
|
||||||
pytest -v -s v1/core
|
pytest -v -s v1/core
|
||||||
pytest -v -s v1/engine
|
pytest -v -s v1/engine
|
||||||
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
|
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
|
||||||
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
|
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
|
||||||
pytest -v -s v1/structured_output
|
pytest -v -s v1/structured_output
|
||||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py
|
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py --ignore=v1/spec_decode/test_tree_attention.py
|
||||||
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
|
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
|
||||||
pytest -v -s v1/test_serial_utils.py
|
pytest -v -s v1/test_serial_utils.py
|
||||||
|
pytest -v -s v1/test_utils.py
|
||||||
|
pytest -v -s v1/test_metrics_reader.py
|
||||||
'
|
'
|
||||||
|
|||||||
@ -18,7 +18,7 @@ vllm bench throughput --input-len 256 --output-len 256 --output-json throughput_
|
|||||||
bench_throughput_exit_code=$?
|
bench_throughput_exit_code=$?
|
||||||
|
|
||||||
# run server-based benchmarks and upload the result to buildkite
|
# run server-based benchmarks and upload the result to buildkite
|
||||||
vllm serve meta-llama/Llama-2-7b-chat-hf &
|
python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-hf &
|
||||||
server_pid=$!
|
server_pid=$!
|
||||||
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||||
|
|
||||||
|
|||||||
@ -1,59 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
# SPDX-License-Identifier: Apache-2.0
|
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
||||||
|
|
||||||
# Setup script for Prime-RL integration tests
|
|
||||||
# This script prepares the environment for running Prime-RL tests with nightly vLLM
|
|
||||||
|
|
||||||
set -euo pipefail
|
|
||||||
|
|
||||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
|
||||||
REPO_ROOT="$(cd "${SCRIPT_DIR}/../.." && pwd)"
|
|
||||||
PRIME_RL_REPO="https://github.com/PrimeIntellect-ai/prime-rl.git"
|
|
||||||
PRIME_RL_DIR="${REPO_ROOT}/prime-rl"
|
|
||||||
|
|
||||||
echo "Setting up Prime-RL integration test environment..."
|
|
||||||
|
|
||||||
# Clean up any existing Prime-RL directory
|
|
||||||
if [ -d "${PRIME_RL_DIR}" ]; then
|
|
||||||
echo "Removing existing Prime-RL directory..."
|
|
||||||
rm -rf "${PRIME_RL_DIR}"
|
|
||||||
fi
|
|
||||||
|
|
||||||
# Install UV if not available
|
|
||||||
if ! command -v uv &> /dev/null; then
|
|
||||||
echo "Installing UV package manager..."
|
|
||||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
|
||||||
source $HOME/.local/bin/env
|
|
||||||
fi
|
|
||||||
|
|
||||||
# Clone Prime-RL repository at specific branch for reproducible tests
|
|
||||||
PRIME_RL_BRANCH="integ-vllm-main"
|
|
||||||
echo "Cloning Prime-RL repository at branch: ${PRIME_RL_BRANCH}..."
|
|
||||||
git clone --branch "${PRIME_RL_BRANCH}" --single-branch "${PRIME_RL_REPO}" "${PRIME_RL_DIR}"
|
|
||||||
cd "${PRIME_RL_DIR}"
|
|
||||||
|
|
||||||
echo "Setting up UV project environment..."
|
|
||||||
export UV_PROJECT_ENVIRONMENT=/usr/local
|
|
||||||
ln -s /usr/bin/python3 /usr/local/bin/python
|
|
||||||
|
|
||||||
# Remove vllm pin from pyproject.toml
|
|
||||||
echo "Removing vllm pin from pyproject.toml..."
|
|
||||||
sed -i '/vllm==/d' pyproject.toml
|
|
||||||
|
|
||||||
# Sync Prime-RL dependencies
|
|
||||||
echo "Installing Prime-RL dependencies..."
|
|
||||||
uv sync --inexact && uv sync --inexact --all-extras
|
|
||||||
|
|
||||||
# Verify installation
|
|
||||||
echo "Verifying installations..."
|
|
||||||
uv run python -c "import vllm; print(f'vLLM version: {vllm.__version__}')"
|
|
||||||
uv run python -c "import prime_rl; print('Prime-RL imported successfully')"
|
|
||||||
|
|
||||||
echo "Prime-RL integration test environment setup complete!"
|
|
||||||
|
|
||||||
echo "Running Prime-RL integration tests..."
|
|
||||||
export WANDB_MODE=offline # this makes this test not require a WANDB_API_KEY
|
|
||||||
uv run pytest -vs tests/integration/test_rl.py -m gpu
|
|
||||||
|
|
||||||
echo "Prime-RL integration tests completed!"
|
|
||||||
@ -9,6 +9,6 @@ MAX_NUM_BATCHED_TOKENS=1024
|
|||||||
TENSOR_PARALLEL_SIZE=1
|
TENSOR_PARALLEL_SIZE=1
|
||||||
MAX_MODEL_LEN=2048
|
MAX_MODEL_LEN=2048
|
||||||
DOWNLOAD_DIR=/mnt/disks/persist
|
DOWNLOAD_DIR=/mnt/disks/persist
|
||||||
EXPECTED_THROUGHPUT=8.7
|
EXPECTED_THROUGHPUT=10.0
|
||||||
INPUT_LEN=1800
|
INPUT_LEN=1800
|
||||||
OUTPUT_LEN=128
|
OUTPUT_LEN=128
|
||||||
|
|||||||
@ -42,7 +42,7 @@ echo "lanching vllm..."
|
|||||||
echo "logging to $VLLM_LOG"
|
echo "logging to $VLLM_LOG"
|
||||||
echo
|
echo
|
||||||
|
|
||||||
vllm serve $MODEL \
|
VLLM_USE_V1=1 vllm serve $MODEL \
|
||||||
--seed 42 \
|
--seed 42 \
|
||||||
--max-num-seqs $MAX_NUM_SEQS \
|
--max-num-seqs $MAX_NUM_SEQS \
|
||||||
--max-num-batched-tokens $MAX_NUM_BATCHED_TOKENS \
|
--max-num-batched-tokens $MAX_NUM_BATCHED_TOKENS \
|
||||||
|
|||||||
@ -58,25 +58,33 @@ python3 .buildkite/generate_index.py --wheel "$normal_wheel"
|
|||||||
aws s3 cp "$wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
|
aws s3 cp "$wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
|
||||||
aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
|
aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
|
||||||
|
|
||||||
if [[ $normal_wheel == *"cu129"* ]]; then
|
if [[ $normal_wheel == *"cu126"* ]]; then
|
||||||
|
# if $normal_wheel matches cu126, do not upload the index.html
|
||||||
|
echo "Skipping index files for cu126 wheels"
|
||||||
|
elif [[ $normal_wheel == *"cu128"* ]]; then
|
||||||
|
# if $normal_wheel matches cu128, do not upload the index.html
|
||||||
|
echo "Skipping index files for cu128 wheels"
|
||||||
|
else
|
||||||
# only upload index.html for cu129 wheels (default wheels) as it
|
# only upload index.html for cu129 wheels (default wheels) as it
|
||||||
# is available on both x86 and arm64
|
# is available on both x86 and arm64
|
||||||
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
|
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
|
||||||
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
|
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
|
||||||
else
|
|
||||||
echo "Skipping index files for non-cu129 wheels"
|
|
||||||
fi
|
fi
|
||||||
|
|
||||||
# generate index for nightly
|
# generate index for nightly
|
||||||
aws s3 cp "$wheel" "s3://vllm-wheels/nightly/"
|
aws s3 cp "$wheel" "s3://vllm-wheels/nightly/"
|
||||||
aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
|
aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
|
||||||
|
|
||||||
if [[ $normal_wheel == *"cu129"* ]]; then
|
if [[ $normal_wheel == *"cu126"* ]]; then
|
||||||
|
# if $normal_wheel matches cu126, do not upload the index.html
|
||||||
|
echo "Skipping index files for cu126 wheels"
|
||||||
|
elif [[ $normal_wheel == *"cu128"* ]]; then
|
||||||
|
# if $normal_wheel matches cu128, do not upload the index.html
|
||||||
|
echo "Skipping index files for cu128 wheels"
|
||||||
|
else
|
||||||
# only upload index.html for cu129 wheels (default wheels) as it
|
# only upload index.html for cu129 wheels (default wheels) as it
|
||||||
# is available on both x86 and arm64
|
# is available on both x86 and arm64
|
||||||
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
|
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
|
||||||
else
|
|
||||||
echo "Skipping index files for non-cu129 wheels"
|
|
||||||
fi
|
fi
|
||||||
|
|
||||||
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"
|
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"
|
||||||
|
|||||||
File diff suppressed because it is too large
Load Diff
@ -6,28 +6,24 @@
|
|||||||
# to generate the final pipeline yaml file.
|
# to generate the final pipeline yaml file.
|
||||||
|
|
||||||
# Documentation
|
# Documentation
|
||||||
# label(str): the name of the test. emojis allowed.
|
# label(str): the name of the test. emoji allowed.
|
||||||
# fast_check(bool): whether to run this on each commit on the fastcheck pipeline.
|
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
|
||||||
# torch_nightly(bool): whether to run this on vllm against the torch nightly pipeline.
|
# torch_nightly(bool): whether to run this on vllm against torch nightly pipeline.
|
||||||
# fast_check_only(bool): run this test on the fastcheck pipeline only
|
# fast_check_only(bool): run this test on fastcheck pipeline only
|
||||||
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's a scheduled nightly run.
|
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's scheduled nightly run.
|
||||||
# soft_fail(bool): allow this step to fail without failing the entire pipeline (useful for flaky or experimental tests).
|
|
||||||
# command(str): the single command to run for tests. incompatible with commands.
|
# command(str): the single command to run for tests. incompatible with commands.
|
||||||
# commands(list): the list of commands to run for the test. incompatible with command.
|
# commands(list): the list of commands to run for test. incompatbile with command.
|
||||||
# mirror_hardwares(list): the list of hardware to run the test on as well. currently only supports [amdexperimental]
|
# mirror_hardwares(list): the list of hardwares to run the test on as well. currently only supports [amd]
|
||||||
# gpu(str): override the GPU selection for the test. default is L4 GPUs. supports a100, b200, h200
|
# gpu(str): override the GPU selection for the test. default is on L4 GPUs. currently only supports a100
|
||||||
# num_gpus(int): override the number of GPUs for the test. defaults to 1 GPU. currently supports 2,4.
|
# num_gpus(int): override the number of GPUs for the test. default to 1 GPU. currently support 2,4.
|
||||||
# num_nodes(int): whether to simulate multi-node setup by launching multiple containers on one host,
|
# num_nodes(int): whether to simulate multi-node setup by launch multiple containers on one host,
|
||||||
# in this case, commands must be specified. the first command runs on the first host, the second
|
# in this case, commands must be specified. the first command runs on first host, the second
|
||||||
# command runs on the second host.
|
# command runs on the second host.
|
||||||
# timeout_in_minutes(int): sets a timeout for the step in minutes. if not specified, uses the default timeout.
|
# working_dir(str): specify the place where command should execute, default to /vllm-workspace/tests
|
||||||
# parallelism(int): number of parallel jobs to run for this step. enables test sharding using $$BUILDKITE_PARALLEL_JOB
|
# source_file_dependencies(list): the list of prefix to opt-in the test for, if empty, the test will always run.
|
||||||
# and $$BUILDKITE_PARALLEL_JOB_COUNT environment variables.
|
|
||||||
# working_dir(str): specify the place where the command should execute, default to /vllm-workspace/tests
|
|
||||||
# source_file_dependencies(list): the list of prefixes to opt-in the test for, if empty, the test will always run.
|
|
||||||
|
|
||||||
# When adding a test
|
# When adding a test
|
||||||
# - If the test belongs to an existing group, add it there
|
# - If the test belong to an existing group, add it there
|
||||||
# - If the test is short, add to any existing step
|
# - If the test is short, add to any existing step
|
||||||
# - If the test takes more than 10min, then it is okay to create a new step.
|
# - If the test takes more than 10min, then it is okay to create a new step.
|
||||||
# Note that all steps execute in parallel.
|
# Note that all steps execute in parallel.
|
||||||
@ -50,28 +46,23 @@ steps:
|
|||||||
mirror_hardwares: [amdexperimental]
|
mirror_hardwares: [amdexperimental]
|
||||||
source_file_dependencies:
|
source_file_dependencies:
|
||||||
- vllm/
|
- vllm/
|
||||||
- tests/multimodal
|
- tests/async_engine
|
||||||
- tests/utils_
|
|
||||||
commands:
|
|
||||||
- pytest -v -s -m 'not cpu_test' multimodal
|
|
||||||
- pytest -v -s utils_
|
|
||||||
|
|
||||||
- label: Async Engine, Inputs, Utils, Worker Test (CPU) # 4 mins
|
|
||||||
timeout_in_minutes: 10
|
|
||||||
source_file_dependencies:
|
|
||||||
- vllm/
|
|
||||||
- tests/test_inputs.py
|
- tests/test_inputs.py
|
||||||
- tests/test_outputs.py
|
- tests/test_outputs.py
|
||||||
- tests/multimodal
|
- tests/multimodal
|
||||||
|
- tests/utils_
|
||||||
|
- tests/worker
|
||||||
- tests/standalone_tests/lazy_imports.py
|
- tests/standalone_tests/lazy_imports.py
|
||||||
- tests/transformers_utils
|
- tests/transformers_utils
|
||||||
no_gpu: true
|
|
||||||
commands:
|
commands:
|
||||||
- python3 standalone_tests/lazy_imports.py
|
- python3 standalone_tests/lazy_imports.py
|
||||||
|
- pytest -v -s async_engine # AsyncLLMEngine
|
||||||
- pytest -v -s test_inputs.py
|
- pytest -v -s test_inputs.py
|
||||||
- pytest -v -s test_outputs.py
|
- pytest -v -s test_outputs.py
|
||||||
- pytest -v -s -m 'cpu_test' multimodal
|
- pytest -v -s multimodal
|
||||||
- pytest -v -s transformers_utils
|
- pytest -v -s utils_ # Utils
|
||||||
|
- pytest -v -s worker # Worker
|
||||||
|
- pytest -v -s transformers_utils # transformers_utils
|
||||||
|
|
||||||
- label: Python-only Installation Test # 10min
|
- label: Python-only Installation Test # 10min
|
||||||
timeout_in_minutes: 20
|
timeout_in_minutes: 20
|
||||||
@ -91,12 +82,14 @@ steps:
|
|||||||
- vllm/
|
- vllm/
|
||||||
- tests/basic_correctness/test_basic_correctness
|
- tests/basic_correctness/test_basic_correctness
|
||||||
- tests/basic_correctness/test_cpu_offload
|
- tests/basic_correctness/test_cpu_offload
|
||||||
|
- tests/basic_correctness/test_preemption
|
||||||
- tests/basic_correctness/test_cumem.py
|
- tests/basic_correctness/test_cumem.py
|
||||||
commands:
|
commands:
|
||||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||||
- pytest -v -s basic_correctness/test_cumem.py
|
- pytest -v -s basic_correctness/test_cumem.py
|
||||||
- pytest -v -s basic_correctness/test_basic_correctness.py
|
- pytest -v -s basic_correctness/test_basic_correctness.py
|
||||||
- pytest -v -s basic_correctness/test_cpu_offload.py
|
- pytest -v -s basic_correctness/test_cpu_offload.py
|
||||||
|
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
|
||||||
|
|
||||||
- label: Entrypoints Unit Tests # 5min
|
- label: Entrypoints Unit Tests # 5min
|
||||||
timeout_in_minutes: 10
|
timeout_in_minutes: 10
|
||||||
@ -121,9 +114,10 @@ steps:
|
|||||||
- tests/entrypoints/offline_mode
|
- tests/entrypoints/offline_mode
|
||||||
commands:
|
commands:
|
||||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||||
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
|
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
|
||||||
|
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
|
||||||
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
|
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
|
||||||
- pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
||||||
|
|
||||||
- label: Entrypoints Integration Test (API Server) # 100min
|
- label: Entrypoints Integration Test (API Server) # 100min
|
||||||
timeout_in_minutes: 130
|
timeout_in_minutes: 130
|
||||||
@ -161,6 +155,7 @@ steps:
|
|||||||
num_gpus: 4
|
num_gpus: 4
|
||||||
source_file_dependencies:
|
source_file_dependencies:
|
||||||
- vllm/distributed/
|
- vllm/distributed/
|
||||||
|
- vllm/core/
|
||||||
- tests/distributed/test_utils
|
- tests/distributed/test_utils
|
||||||
- tests/distributed/test_pynccl
|
- tests/distributed/test_pynccl
|
||||||
- tests/distributed/test_events
|
- tests/distributed/test_events
|
||||||
@ -168,36 +163,28 @@ steps:
|
|||||||
- examples/offline_inference/rlhf.py
|
- examples/offline_inference/rlhf.py
|
||||||
- examples/offline_inference/rlhf_colocate.py
|
- examples/offline_inference/rlhf_colocate.py
|
||||||
- tests/examples/offline_inference/data_parallel.py
|
- tests/examples/offline_inference/data_parallel.py
|
||||||
- tests/v1/distributed
|
- tests/v1/test_async_llm_dp.py
|
||||||
|
- tests/v1/test_external_lb_dp.py
|
||||||
|
- tests/v1/test_internal_lb_dp.py
|
||||||
|
- tests/v1/test_hybrid_lb_dp.py
|
||||||
- tests/v1/engine/test_engine_core_client.py
|
- tests/v1/engine/test_engine_core_client.py
|
||||||
- tests/distributed/test_symm_mem_allreduce.py
|
|
||||||
commands:
|
commands:
|
||||||
# https://github.com/NVIDIA/nccl/issues/1838
|
# test with tp=2 and external_dp=2
|
||||||
- export NCCL_CUMEM_HOST_ENABLE=0
|
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||||
# test with torchrun tp=2 and external_dp=2
|
|
||||||
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||||
# test with torchrun tp=2 and pp=2
|
# test with tp=2 and pp=2
|
||||||
- PP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
- PP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||||
# test with torchrun tp=4 and dp=1
|
|
||||||
- TP_SIZE=4 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
|
|
||||||
# test with torchrun tp=2, pp=2 and dp=1
|
|
||||||
- PP_SIZE=2 TP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
|
|
||||||
# test with torchrun tp=1 and dp=4 with ep
|
|
||||||
- DP_SIZE=4 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
|
|
||||||
# test with torchrun tp=2 and dp=2 with ep
|
|
||||||
- TP_SIZE=2 DP_SIZE=2 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
|
|
||||||
# test with internal dp
|
# test with internal dp
|
||||||
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
|
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
|
||||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
|
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
|
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
|
||||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_internal_lb_dp.py
|
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_internal_lb_dp.py
|
||||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_hybrid_lb_dp.py
|
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_hybrid_lb_dp.py
|
||||||
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
|
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
|
||||||
- pytest -v -s distributed/test_utils.py
|
- pytest -v -s distributed/test_utils.py
|
||||||
- pytest -v -s compile/test_basic_correctness.py
|
- pytest -v -s compile/test_basic_correctness.py
|
||||||
- pytest -v -s distributed/test_pynccl.py
|
- pytest -v -s distributed/test_pynccl.py
|
||||||
- pytest -v -s distributed/test_events.py
|
- pytest -v -s distributed/test_events.py
|
||||||
- pytest -v -s distributed/test_symm_mem_allreduce.py
|
|
||||||
# TODO: create a dedicated test section for multi-GPU example tests
|
# TODO: create a dedicated test section for multi-GPU example tests
|
||||||
# when we have multiple distributed example tests
|
# when we have multiple distributed example tests
|
||||||
- pushd ../examples/offline_inference
|
- pushd ../examples/offline_inference
|
||||||
@ -298,35 +285,23 @@ steps:
|
|||||||
- tests/v1
|
- tests/v1
|
||||||
commands:
|
commands:
|
||||||
# split the test to avoid interference
|
# split the test to avoid interference
|
||||||
- pytest -v -s -m 'not cpu_test' v1/core
|
- pytest -v -s v1/core
|
||||||
- pytest -v -s v1/executor
|
- pytest -v -s v1/executor
|
||||||
- pytest -v -s v1/kv_offload
|
|
||||||
- pytest -v -s v1/sample
|
- pytest -v -s v1/sample
|
||||||
- pytest -v -s v1/logits_processors
|
- pytest -v -s v1/logits_processors
|
||||||
- pytest -v -s v1/worker
|
- pytest -v -s v1/worker
|
||||||
|
- pytest -v -s v1/structured_output
|
||||||
- pytest -v -s v1/spec_decode
|
- pytest -v -s v1/spec_decode
|
||||||
- pytest -v -s -m 'not cpu_test' v1/kv_connector/unit
|
- pytest -v -s v1/kv_connector/unit
|
||||||
- pytest -v -s -m 'not cpu_test' v1/metrics
|
- pytest -v -s v1/metrics
|
||||||
|
- pytest -v -s v1/test_serial_utils.py
|
||||||
|
- pytest -v -s v1/test_utils.py
|
||||||
- pytest -v -s v1/test_oracle.py
|
- pytest -v -s v1/test_oracle.py
|
||||||
- pytest -v -s v1/test_request.py
|
- pytest -v -s v1/test_metrics_reader.py
|
||||||
# Integration test for streaming correctness (requires special branch).
|
# Integration test for streaming correctness (requires special branch).
|
||||||
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
|
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
|
||||||
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
|
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
|
||||||
|
|
||||||
- label: V1 Test others (CPU) # 5 mins
|
|
||||||
source_file_dependencies:
|
|
||||||
- vllm/
|
|
||||||
- tests/v1
|
|
||||||
no_gpu: true
|
|
||||||
commands:
|
|
||||||
# split the test to avoid interference
|
|
||||||
- pytest -v -s -m 'cpu_test' v1/core
|
|
||||||
- pytest -v -s v1/structured_output
|
|
||||||
- pytest -v -s v1/test_serial_utils.py
|
|
||||||
- pytest -v -s -m 'cpu_test' v1/kv_connector/unit
|
|
||||||
- pytest -v -s -m 'cpu_test' v1/metrics
|
|
||||||
|
|
||||||
|
|
||||||
- label: Examples Test # 30min
|
- label: Examples Test # 30min
|
||||||
timeout_in_minutes: 45
|
timeout_in_minutes: 45
|
||||||
mirror_hardwares: [amdexperimental]
|
mirror_hardwares: [amdexperimental]
|
||||||
@ -345,14 +320,12 @@ steps:
|
|||||||
- python3 offline_inference/vision_language.py --seed 0
|
- python3 offline_inference/vision_language.py --seed 0
|
||||||
- python3 offline_inference/vision_language_pooling.py --seed 0
|
- python3 offline_inference/vision_language_pooling.py --seed 0
|
||||||
- python3 offline_inference/vision_language_multi_image.py --seed 0
|
- python3 offline_inference/vision_language_multi_image.py --seed 0
|
||||||
- python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
- VLLM_USE_V1=0 python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||||
- python3 offline_inference/encoder_decoder_multimodal.py --model-type whisper --seed 0
|
- python3 offline_inference/encoder_decoder_multimodal.py --model-type whisper --seed 0
|
||||||
- python3 offline_inference/basic/classify.py
|
- python3 offline_inference/basic/classify.py
|
||||||
- python3 offline_inference/basic/embed.py
|
- python3 offline_inference/basic/embed.py
|
||||||
- python3 offline_inference/basic/score.py
|
- python3 offline_inference/basic/score.py
|
||||||
- python3 offline_inference/spec_decode.py --test --method eagle --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
|
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
|
||||||
# https://github.com/vllm-project/vllm/pull/26682 uses slightly more memory in PyTorch 2.9+ causing this test to OOM in 1xL4 GPU
|
|
||||||
- python3 offline_inference/spec_decode.py --test --method eagle3 --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 1536
|
|
||||||
|
|
||||||
- label: Platform Tests (CUDA) # 4min
|
- label: Platform Tests (CUDA) # 4min
|
||||||
timeout_in_minutes: 15
|
timeout_in_minutes: 15
|
||||||
@ -387,12 +360,7 @@ steps:
|
|||||||
--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT \
|
--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT \
|
||||||
--ignore=lora/test_chatglm3_tp.py \
|
--ignore=lora/test_chatglm3_tp.py \
|
||||||
--ignore=lora/test_llama_tp.py \
|
--ignore=lora/test_llama_tp.py \
|
||||||
--ignore=lora/test_llm_with_multi_loras.py \
|
--ignore=lora/test_llm_with_multi_loras.py
|
||||||
--ignore=lora/test_olmoe_tp.py \
|
|
||||||
--ignore=lora/test_deepseekv2_tp.py \
|
|
||||||
--ignore=lora/test_gptoss.py \
|
|
||||||
--ignore=lora/test_qwen3moe_tp.py
|
|
||||||
|
|
||||||
parallelism: 4
|
parallelism: 4
|
||||||
|
|
||||||
- label: PyTorch Compilation Unit Tests # 15min
|
- label: PyTorch Compilation Unit Tests # 15min
|
||||||
@ -406,12 +374,12 @@ steps:
|
|||||||
- pytest -v -s compile/test_pass_manager.py
|
- pytest -v -s compile/test_pass_manager.py
|
||||||
- pytest -v -s compile/test_fusion.py
|
- pytest -v -s compile/test_fusion.py
|
||||||
- pytest -v -s compile/test_fusion_attn.py
|
- pytest -v -s compile/test_fusion_attn.py
|
||||||
- pytest -v -s compile/test_functionalization.py
|
|
||||||
- pytest -v -s compile/test_silu_mul_quant_fusion.py
|
- pytest -v -s compile/test_silu_mul_quant_fusion.py
|
||||||
|
- pytest -v -s compile/test_sequence_parallelism.py
|
||||||
|
- pytest -v -s compile/test_async_tp.py
|
||||||
- pytest -v -s compile/test_fusion_all_reduce.py
|
- pytest -v -s compile/test_fusion_all_reduce.py
|
||||||
- pytest -v -s compile/test_decorator.py
|
- pytest -v -s compile/test_decorator.py
|
||||||
- pytest -v -s compile/test_noop_elimination.py
|
- pytest -v -s compile/test_noop_elimination.py
|
||||||
- pytest -v -s compile/test_aot_compile.py
|
|
||||||
|
|
||||||
- label: PyTorch Fullgraph Smoke Test # 15min
|
- label: PyTorch Fullgraph Smoke Test # 15min
|
||||||
timeout_in_minutes: 30
|
timeout_in_minutes: 30
|
||||||
@ -424,8 +392,8 @@ steps:
|
|||||||
- pytest -v -s compile/test_basic_correctness.py
|
- pytest -v -s compile/test_basic_correctness.py
|
||||||
- pytest -v -s compile/piecewise/
|
- pytest -v -s compile/piecewise/
|
||||||
|
|
||||||
- label: PyTorch Fullgraph Test # 22min
|
- label: PyTorch Fullgraph Test # 20min
|
||||||
timeout_in_minutes: 35
|
timeout_in_minutes: 30
|
||||||
mirror_hardwares: [amdexperimental]
|
mirror_hardwares: [amdexperimental]
|
||||||
torch_nightly: true
|
torch_nightly: true
|
||||||
source_file_dependencies:
|
source_file_dependencies:
|
||||||
@ -433,7 +401,6 @@ steps:
|
|||||||
- tests/compile
|
- tests/compile
|
||||||
commands:
|
commands:
|
||||||
- pytest -v -s compile/test_full_graph.py
|
- pytest -v -s compile/test_full_graph.py
|
||||||
- pytest -v -s compile/test_fusions_e2e.py
|
|
||||||
|
|
||||||
- label: Kernels Core Operation Test # 48min
|
- label: Kernels Core Operation Test # 48min
|
||||||
timeout_in_minutes: 75
|
timeout_in_minutes: 75
|
||||||
@ -441,9 +408,8 @@ steps:
|
|||||||
source_file_dependencies:
|
source_file_dependencies:
|
||||||
- csrc/
|
- csrc/
|
||||||
- tests/kernels/core
|
- tests/kernels/core
|
||||||
- tests/kernels/test_top_k_per_row.py
|
|
||||||
commands:
|
commands:
|
||||||
- pytest -v -s kernels/core kernels/test_top_k_per_row.py
|
- pytest -v -s kernels/core
|
||||||
|
|
||||||
- label: Kernels Attention Test %N # 23min
|
- label: Kernels Attention Test %N # 23min
|
||||||
timeout_in_minutes: 35
|
timeout_in_minutes: 35
|
||||||
@ -487,23 +453,33 @@ steps:
|
|||||||
source_file_dependencies:
|
source_file_dependencies:
|
||||||
- csrc/mamba/
|
- csrc/mamba/
|
||||||
- tests/kernels/mamba
|
- tests/kernels/mamba
|
||||||
- vllm/model_executor/layers/mamba/ops
|
|
||||||
commands:
|
commands:
|
||||||
- pytest -v -s kernels/mamba
|
- pytest -v -s kernels/mamba
|
||||||
|
|
||||||
- label: Model Executor Test # 23min
|
- label: Tensorizer Test # 14min
|
||||||
timeout_in_minutes: 35
|
timeout_in_minutes: 25
|
||||||
mirror_hardwares: [amdexperimental]
|
mirror_hardwares: [amdexperimental]
|
||||||
source_file_dependencies:
|
source_file_dependencies:
|
||||||
- vllm/model_executor
|
- vllm/model_executor/model_loader
|
||||||
- tests/model_executor
|
- tests/tensorizer_loader
|
||||||
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||||
commands:
|
commands:
|
||||||
- apt-get update && apt-get install -y curl libsodium23
|
- apt-get update && apt-get install -y curl libsodium23
|
||||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||||
- pytest -v -s model_executor
|
- pytest -v -s tensorizer_loader
|
||||||
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
|
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
|
||||||
|
|
||||||
|
- label: Model Executor Test # 7min
|
||||||
|
timeout_in_minutes: 20
|
||||||
|
mirror_hardwares: [amdexperimental]
|
||||||
|
source_file_dependencies:
|
||||||
|
- vllm/model_executor
|
||||||
|
- tests/model_executor
|
||||||
|
commands:
|
||||||
|
- apt-get update && apt-get install -y curl libsodium23
|
||||||
|
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||||
|
- pytest -v -s model_executor
|
||||||
|
|
||||||
- label: Benchmarks # 11min
|
- label: Benchmarks # 11min
|
||||||
timeout_in_minutes: 20
|
timeout_in_minutes: 20
|
||||||
mirror_hardwares: [amdexperimental]
|
mirror_hardwares: [amdexperimental]
|
||||||
@ -536,9 +512,8 @@ steps:
|
|||||||
# since torchao nightly is only compatible with torch nightly currently
|
# since torchao nightly is only compatible with torch nightly currently
|
||||||
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
|
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
|
||||||
# we can only upgrade after this is resolved
|
# we can only upgrade after this is resolved
|
||||||
# TODO(jerryzh168): resolve the above comment
|
- pip install --pre torchao==0.13.0.dev20250814 --index-url https://download.pytorch.org/whl/nightly/cu128
|
||||||
- uv pip install --system torchao==0.13.0 --index-url https://download.pytorch.org/whl/cu129
|
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
|
||||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/ --ignore quantization/test_blackwell_moe.py
|
|
||||||
|
|
||||||
- label: LM Eval Small Models # 53min
|
- label: LM Eval Small Models # 53min
|
||||||
timeout_in_minutes: 75
|
timeout_in_minutes: 75
|
||||||
@ -566,17 +541,10 @@ steps:
|
|||||||
source_file_dependencies:
|
source_file_dependencies:
|
||||||
- vllm/
|
- vllm/
|
||||||
- tests/tool_use
|
- tests/tool_use
|
||||||
|
- tests/mistral_tool_use
|
||||||
commands:
|
commands:
|
||||||
- pytest -v -s -m 'not cpu_test' tool_use
|
- pytest -v -s tool_use
|
||||||
|
- pytest -v -s mistral_tool_use
|
||||||
- label: OpenAI-Compatible Tool Use (CPU) # 5 mins
|
|
||||||
timeout_in_minutes: 10
|
|
||||||
source_file_dependencies:
|
|
||||||
- vllm/
|
|
||||||
- tests/tool_use
|
|
||||||
no_gpu: true
|
|
||||||
commands:
|
|
||||||
- pytest -v -s -m 'cpu_test' tool_use
|
|
||||||
|
|
||||||
##### models test #####
|
##### models test #####
|
||||||
|
|
||||||
@ -616,19 +584,13 @@ steps:
|
|||||||
- vllm/
|
- vllm/
|
||||||
- tests/models/test_transformers.py
|
- tests/models/test_transformers.py
|
||||||
- tests/models/test_registry.py
|
- tests/models/test_registry.py
|
||||||
commands:
|
|
||||||
- pytest -v -s models/test_transformers.py models/test_registry.py
|
|
||||||
|
|
||||||
- label: Basic Models Test (Other CPU) # 5min
|
|
||||||
timeout_in_minutes: 10
|
|
||||||
torch_nightly: true
|
|
||||||
source_file_dependencies:
|
|
||||||
- vllm/
|
|
||||||
- tests/models/test_utils.py
|
- tests/models/test_utils.py
|
||||||
- tests/models/test_vision.py
|
- tests/models/test_vision.py
|
||||||
no_gpu: true
|
|
||||||
commands:
|
commands:
|
||||||
- pytest -v -s models/test_utils.py models/test_vision.py
|
- pytest -v -s models/test_transformers.py \
|
||||||
|
models/test_registry.py \
|
||||||
|
models/test_utils.py \
|
||||||
|
models/test_vision.py
|
||||||
|
|
||||||
- label: Language Models Tests (Standard)
|
- label: Language Models Tests (Standard)
|
||||||
timeout_in_minutes: 25
|
timeout_in_minutes: 25
|
||||||
@ -743,16 +705,6 @@ steps:
|
|||||||
- pytest -v -s models/multimodal -m core_model --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/processing
|
- pytest -v -s models/multimodal -m core_model --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/processing
|
||||||
- cd .. && VLLM_WORKER_MULTIPROC_METHOD=spawn pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
|
- cd .. && VLLM_WORKER_MULTIPROC_METHOD=spawn pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
|
||||||
|
|
||||||
- label: Multi-Modal Accuracy Eval (Small Models) # 50min
|
|
||||||
timeout_in_minutes: 70
|
|
||||||
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
|
|
||||||
source_file_dependencies:
|
|
||||||
- vllm/multimodal/
|
|
||||||
- vllm/inputs/
|
|
||||||
- vllm/v1/core/
|
|
||||||
commands:
|
|
||||||
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-mm-small.txt --tp-size=1
|
|
||||||
|
|
||||||
- label: Multi-Modal Models Test (Extended) 1
|
- label: Multi-Modal Models Test (Extended) 1
|
||||||
mirror_hardwares: [amdexperimental]
|
mirror_hardwares: [amdexperimental]
|
||||||
optional: true
|
optional: true
|
||||||
@ -808,16 +760,14 @@ steps:
|
|||||||
commands:
|
commands:
|
||||||
- pip install --upgrade git+https://github.com/huggingface/transformers
|
- pip install --upgrade git+https://github.com/huggingface/transformers
|
||||||
- pytest -v -s tests/models/test_initialization.py
|
- pytest -v -s tests/models/test_initialization.py
|
||||||
- pytest -v -s tests/models/test_transformers.py
|
|
||||||
- pytest -v -s tests/models/multimodal/processing/
|
- pytest -v -s tests/models/multimodal/processing/
|
||||||
- pytest -v -s tests/models/multimodal/test_mapping.py
|
- pytest -v -s tests/models/multimodal/test_mapping.py
|
||||||
- python3 examples/offline_inference/basic/chat.py
|
- python3 examples/offline_inference/basic/chat.py
|
||||||
|
- python3 examples/offline_inference/audio_language.py --model-type whisper
|
||||||
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
|
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
|
||||||
# Whisper needs spawn method to avoid deadlock
|
|
||||||
- VLLM_WORKER_MULTIPROC_METHOD=spawn python3 examples/offline_inference/audio_language.py --model-type whisper
|
|
||||||
|
|
||||||
- label: Blackwell Test # 21 min
|
- label: Blackwell Test # 38 min
|
||||||
timeout_in_minutes: 30
|
timeout_in_minutes: 60
|
||||||
working_dir: "/vllm-workspace/"
|
working_dir: "/vllm-workspace/"
|
||||||
gpu: b200
|
gpu: b200
|
||||||
# optional: true
|
# optional: true
|
||||||
@ -830,6 +780,8 @@ steps:
|
|||||||
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
|
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
|
||||||
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
|
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
|
||||||
- vllm/v1/attention/backends/flashinfer.py
|
- vllm/v1/attention/backends/flashinfer.py
|
||||||
|
- vllm/compilation/fusion.py
|
||||||
|
- vllm/compilation/fusion_attn.py
|
||||||
commands:
|
commands:
|
||||||
- nvidia-smi
|
- nvidia-smi
|
||||||
- python3 examples/offline_inference/basic/chat.py
|
- python3 examples/offline_inference/basic/chat.py
|
||||||
@ -846,38 +798,19 @@ steps:
|
|||||||
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
|
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
|
||||||
- pytest -v -s tests/kernels/quantization/test_flashinfer_scaled_mm.py
|
- pytest -v -s tests/kernels/quantization/test_flashinfer_scaled_mm.py
|
||||||
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
|
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
|
||||||
- pytest -v -s tests/kernels/quantization/test_nvfp4_qutlass.py
|
|
||||||
- pytest -v -s tests/kernels/quantization/test_mxfp4_qutlass.py
|
|
||||||
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
|
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
|
||||||
- pytest -v -s tests/kernels/moe/test_ocp_mx_moe.py
|
- pytest -v -s tests/kernels/moe/test_mxfp4_moe.py
|
||||||
- pytest -v -s tests/kernels/moe/test_flashinfer.py
|
# Fusion
|
||||||
|
|
||||||
- label: Blackwell Fusion Tests # 30 min
|
|
||||||
timeout_in_minutes: 40
|
|
||||||
working_dir: "/vllm-workspace/"
|
|
||||||
gpu: b200
|
|
||||||
source_file_dependencies:
|
|
||||||
- csrc/quantization/fp4/
|
|
||||||
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
|
|
||||||
- vllm/v1/attention/backends/flashinfer.py
|
|
||||||
- vllm/compilation/
|
|
||||||
# can affect pattern matching
|
|
||||||
- vllm/model_executor/layers/layernorm.py
|
|
||||||
- vllm/model_executor/layers/activation.py
|
|
||||||
- vllm/model_executor/layers/quantization/input_quant_fp8.py
|
|
||||||
commands:
|
|
||||||
- nvidia-smi
|
|
||||||
- pytest -v -s tests/compile/test_fusion_attn.py
|
|
||||||
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
|
|
||||||
# this runner has 2 GPUs available even though num_gpus=2 is not set
|
|
||||||
- pytest -v -s tests/compile/test_fusion_all_reduce.py
|
- pytest -v -s tests/compile/test_fusion_all_reduce.py
|
||||||
- pytest -v -s tests/compile/test_fusions_e2e.py
|
- pytest -v -s tests/compile/test_fusion_attn.py::test_attention_quant_pattern
|
||||||
|
- pytest -v -s tests/kernels/moe/test_flashinfer.py
|
||||||
|
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
|
||||||
|
|
||||||
- label: Blackwell GPT-OSS Eval
|
- label: GPT-OSS Eval (Blackwell)
|
||||||
timeout_in_minutes: 60
|
timeout_in_minutes: 60
|
||||||
working_dir: "/vllm-workspace/"
|
working_dir: "/vllm-workspace/"
|
||||||
gpu: b200
|
gpu: b200
|
||||||
optional: true # run on nightlies
|
optional: true # disable while debugging
|
||||||
source_file_dependencies:
|
source_file_dependencies:
|
||||||
- tests/evals/gpt_oss
|
- tests/evals/gpt_oss
|
||||||
- vllm/model_executor/models/gpt_oss.py
|
- vllm/model_executor/models/gpt_oss.py
|
||||||
@ -885,34 +818,7 @@ steps:
|
|||||||
- vllm/v1/attention/backends/flashinfer.py
|
- vllm/v1/attention/backends/flashinfer.py
|
||||||
commands:
|
commands:
|
||||||
- uv pip install --system 'gpt-oss[eval]==0.0.5'
|
- uv pip install --system 'gpt-oss[eval]==0.0.5'
|
||||||
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58
|
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58 --server-args '--tensor-parallel-size 2'
|
||||||
|
|
||||||
- label: Blackwell Quantized MoE Test
|
|
||||||
timeout_in_minutes: 60
|
|
||||||
working_dir: "/vllm-workspace/"
|
|
||||||
gpu: b200
|
|
||||||
source_file_dependencies:
|
|
||||||
- tests/quantization/test_blackwell_moe.py
|
|
||||||
- vllm/model_executor/models/deepseek_v2.py
|
|
||||||
- vllm/model_executor/models/gpt_oss.py
|
|
||||||
- vllm/model_executor/models/llama4.py
|
|
||||||
- vllm/model_executor/layers/fused_moe
|
|
||||||
- vllm/model_executor/layers/quantization/compressed_tensors
|
|
||||||
- vllm/model_executor/layers/quantization/modelopt.py
|
|
||||||
- vllm/model_executor/layers/quantization/mxfp4.py
|
|
||||||
- vllm/v1/attention/backends/flashinfer.py
|
|
||||||
commands:
|
|
||||||
- pytest -s -v tests/quantization/test_blackwell_moe.py
|
|
||||||
|
|
||||||
- label: Blackwell LM Eval Small Models
|
|
||||||
timeout_in_minutes: 120
|
|
||||||
gpu: b200
|
|
||||||
optional: true # run on nightlies
|
|
||||||
source_file_dependencies:
|
|
||||||
- csrc/
|
|
||||||
- vllm/model_executor/layers/quantization
|
|
||||||
commands:
|
|
||||||
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-blackwell.txt --tp-size=1
|
|
||||||
|
|
||||||
##### 1 GPU test #####
|
##### 1 GPU test #####
|
||||||
##### multi gpus test #####
|
##### multi gpus test #####
|
||||||
@ -956,61 +862,47 @@ steps:
|
|||||||
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
|
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
|
||||||
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
|
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
|
||||||
|
|
||||||
- label: Distributed Tests (2 GPUs) # 68min
|
- label: Distributed Tests (2 GPUs) # 110min
|
||||||
timeout_in_minutes: 90
|
timeout_in_minutes: 150
|
||||||
mirror_hardwares: [amdexperimental]
|
mirror_hardwares: [amdexperimental]
|
||||||
working_dir: "/vllm-workspace/tests"
|
working_dir: "/vllm-workspace/tests"
|
||||||
num_gpus: 2
|
num_gpus: 2
|
||||||
source_file_dependencies:
|
source_file_dependencies:
|
||||||
- vllm/compilation/
|
|
||||||
- vllm/distributed/
|
- vllm/distributed/
|
||||||
- vllm/engine/
|
- vllm/engine/
|
||||||
- vllm/executor/
|
- vllm/executor/
|
||||||
- vllm/worker/worker_base.py
|
- vllm/model_executor/models/
|
||||||
- vllm/v1/engine/
|
|
||||||
- vllm/v1/worker/
|
|
||||||
- tests/compile/test_basic_correctness.py
|
|
||||||
- tests/compile/test_wrapper.py
|
|
||||||
- tests/distributed/
|
- tests/distributed/
|
||||||
- tests/entrypoints/llm/test_collective_rpc.py
|
- vllm/compilation
|
||||||
- tests/v1/distributed
|
- vllm/worker/worker_base.py
|
||||||
|
- vllm/worker/worker.py
|
||||||
|
- vllm/worker/model_runner.py
|
||||||
|
- entrypoints/llm/test_collective_rpc.py
|
||||||
|
- tests/v1/test_async_llm_dp.py
|
||||||
|
- tests/v1/test_external_lb_dp.py
|
||||||
- tests/v1/entrypoints/openai/test_multi_api_servers.py
|
- tests/v1/entrypoints/openai/test_multi_api_servers.py
|
||||||
- tests/v1/shutdown
|
- vllm/v1/engine/
|
||||||
- tests/v1/worker/test_worker_memory_snapshot.py
|
|
||||||
commands:
|
commands:
|
||||||
# https://github.com/NVIDIA/nccl/issues/1838
|
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||||
- export NCCL_CUMEM_HOST_ENABLE=0
|
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
|
||||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
|
|
||||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
|
|
||||||
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
|
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
|
||||||
- pytest -v -s entrypoints/llm/test_collective_rpc.py
|
- pytest -v -s entrypoints/llm/test_collective_rpc.py
|
||||||
- pytest -v -s ./compile/test_basic_correctness.py
|
- pytest -v -s ./compile/test_basic_correctness.py
|
||||||
- pytest -v -s ./compile/test_wrapper.py
|
- pytest -v -s ./compile/test_wrapper.py
|
||||||
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
|
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
|
||||||
- VLLM_TEST_SAME_HOST=1 VLLM_TEST_WITH_DEFAULT_DEVICE_SET=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
|
|
||||||
- pytest -v -s distributed/test_sequence_parallel.py
|
|
||||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
|
||||||
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
|
|
||||||
|
|
||||||
- label: Distributed Model Tests (2 GPUs) # 37min
|
|
||||||
timeout_in_minutes: 50
|
|
||||||
mirror_hardwares: [amdexperimental]
|
|
||||||
working_dir: "/vllm-workspace/tests"
|
|
||||||
num_gpus: 2
|
|
||||||
source_file_dependencies:
|
|
||||||
- vllm/model_executor/model_loader/sharded_state_loader.py
|
|
||||||
- vllm/model_executor/models/
|
|
||||||
- tests/basic_correctness/
|
|
||||||
- tests/model_executor/model_loader/test_sharded_state_loader.py
|
|
||||||
- tests/models/
|
|
||||||
commands:
|
|
||||||
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
|
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
|
||||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s model_executor/model_loader/test_sharded_state_loader.py
|
|
||||||
# Avoid importing model tests that cause CUDA reinitialization error
|
# Avoid importing model tests that cause CUDA reinitialization error
|
||||||
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
|
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
|
||||||
- pytest models/language -v -s -m 'distributed(num_gpus=2)'
|
- pytest models/language -v -s -m 'distributed(num_gpus=2)'
|
||||||
- pytest models/multimodal -v -s -m 'distributed(num_gpus=2)' --ignore models/multimodal/generation/test_whisper.py
|
- pytest models/multimodal -v -s -m 'distributed(num_gpus=2)' --ignore models/multimodal/generation/test_whisper.py
|
||||||
- VLLM_WORKER_MULTIPROC_METHOD=spawn pytest models/multimodal/generation/test_whisper.py -v -s -m 'distributed(num_gpus=2)'
|
- VLLM_WORKER_MULTIPROC_METHOD=spawn pytest models/multimodal/generation/test_whisper.py -v -s -m 'distributed(num_gpus=2)'
|
||||||
|
# test sequence parallel
|
||||||
|
- pytest -v -s distributed/test_sequence_parallel.py
|
||||||
|
# this test fails consistently.
|
||||||
|
# TODO: investigate and fix
|
||||||
|
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
|
||||||
|
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
||||||
|
- pytest -v -s models/multimodal/generation/test_maverick.py
|
||||||
|
|
||||||
- label: Plugin Tests (2 GPUs) # 40min
|
- label: Plugin Tests (2 GPUs) # 40min
|
||||||
timeout_in_minutes: 60
|
timeout_in_minutes: 60
|
||||||
@ -1031,11 +923,6 @@ steps:
|
|||||||
- pytest -v -s plugins_tests/test_io_processor_plugins.py
|
- pytest -v -s plugins_tests/test_io_processor_plugins.py
|
||||||
- pip uninstall prithvi_io_processor_plugin -y
|
- pip uninstall prithvi_io_processor_plugin -y
|
||||||
# end io_processor plugins test
|
# end io_processor plugins test
|
||||||
# begin stat_logger plugins test
|
|
||||||
- pip install -e ./plugins/vllm_add_dummy_stat_logger
|
|
||||||
- pytest -v -s plugins_tests/test_stats_logger_plugins.py
|
|
||||||
- pip uninstall dummy_stat_logger -y
|
|
||||||
# end stat_logger plugins test
|
|
||||||
# other tests continue here:
|
# other tests continue here:
|
||||||
- pytest -v -s plugins_tests/test_scheduler_plugins.py
|
- pytest -v -s plugins_tests/test_scheduler_plugins.py
|
||||||
- pip install -e ./plugins/vllm_add_dummy_model
|
- pip install -e ./plugins/vllm_add_dummy_model
|
||||||
@ -1075,7 +962,6 @@ steps:
|
|||||||
- pytest -v -s -x lora/test_chatglm3_tp.py
|
- pytest -v -s -x lora/test_chatglm3_tp.py
|
||||||
- pytest -v -s -x lora/test_llama_tp.py
|
- pytest -v -s -x lora/test_llama_tp.py
|
||||||
- pytest -v -s -x lora/test_llm_with_multi_loras.py
|
- pytest -v -s -x lora/test_llm_with_multi_loras.py
|
||||||
- pytest -v -s -x lora/test_olmoe_tp.py
|
|
||||||
|
|
||||||
|
|
||||||
- label: Weight Loading Multiple GPU Test # 33min
|
- label: Weight Loading Multiple GPU Test # 33min
|
||||||
@ -1101,17 +987,6 @@ steps:
|
|||||||
- tests/weight_loading
|
- tests/weight_loading
|
||||||
commands:
|
commands:
|
||||||
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
|
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
|
||||||
|
|
||||||
- label: NixlConnector PD accuracy tests (Distributed) # 30min
|
|
||||||
timeout_in_minutes: 30
|
|
||||||
working_dir: "/vllm-workspace/tests"
|
|
||||||
num_gpus: 4
|
|
||||||
source_file_dependencies:
|
|
||||||
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py
|
|
||||||
- tests/v1/kv_connector/nixl_integration/
|
|
||||||
commands:
|
|
||||||
- uv pip install --system -r /vllm-workspace/requirements/kv_connectors.txt
|
|
||||||
- bash v1/kv_connector/nixl_integration/tp_config_sweep_accuracy_test.sh
|
|
||||||
|
|
||||||
|
|
||||||
##### multi gpus test #####
|
##### multi gpus test #####
|
||||||
@ -1144,16 +1019,12 @@ steps:
|
|||||||
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
|
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
|
||||||
|
|
||||||
##### H200 test #####
|
##### H200 test #####
|
||||||
- label: Distributed Tests (H200) # optional
|
- label: Distrubted Tests (H200) # optional
|
||||||
gpu: h200
|
gpu: h200
|
||||||
optional: true
|
optional: true
|
||||||
working_dir: "/vllm-workspace/"
|
working_dir: "/vllm-workspace/"
|
||||||
num_gpus: 2
|
num_gpus: 2
|
||||||
commands:
|
commands:
|
||||||
- pytest -v -s tests/compile/test_async_tp.py
|
|
||||||
- pytest -v -s tests/compile/test_sequence_parallelism.py
|
|
||||||
- pytest -v -s tests/compile/test_fusion_all_reduce.py
|
|
||||||
- pytest -v -s tests/compile/test_fusions_e2e.py::test_tp2_attn_quant_allreduce_rmsnorm
|
|
||||||
- pytest -v -s tests/distributed/test_context_parallel.py
|
- pytest -v -s tests/distributed/test_context_parallel.py
|
||||||
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048
|
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048
|
||||||
|
|
||||||
@ -1165,16 +1036,3 @@ steps:
|
|||||||
num_gpus: 2
|
num_gpus: 2
|
||||||
commands:
|
commands:
|
||||||
- pytest -v -s tests/distributed/test_context_parallel.py
|
- pytest -v -s tests/distributed/test_context_parallel.py
|
||||||
- pytest -v -s tests/distributed/test_nccl_symm_mem_allreduce.py
|
|
||||||
|
|
||||||
##### RL Integration Tests #####
|
|
||||||
- label: Prime-RL Integration Test # 15min
|
|
||||||
timeout_in_minutes: 30
|
|
||||||
optional: true
|
|
||||||
num_gpus: 2
|
|
||||||
working_dir: "/vllm-workspace"
|
|
||||||
source_file_dependencies:
|
|
||||||
- vllm/
|
|
||||||
- .buildkite/scripts/run-prime-rl-test.sh
|
|
||||||
commands:
|
|
||||||
- bash .buildkite/scripts/run-prime-rl-test.sh
|
|
||||||
|
|||||||
17
.coveragerc
17
.coveragerc
@ -1,10 +1,5 @@
|
|||||||
[run]
|
[run]
|
||||||
# Track the installed vllm package (this is what actually gets imported during tests)
|
source = vllm
|
||||||
# Use wildcard pattern to match the installed location
|
|
||||||
source =
|
|
||||||
vllm
|
|
||||||
*/dist-packages/vllm
|
|
||||||
*/site-packages/vllm
|
|
||||||
omit =
|
omit =
|
||||||
*/tests/*
|
*/tests/*
|
||||||
*/test_*
|
*/test_*
|
||||||
@ -17,16 +12,6 @@ omit =
|
|||||||
*/benchmarks/*
|
*/benchmarks/*
|
||||||
*/docs/*
|
*/docs/*
|
||||||
|
|
||||||
[paths]
|
|
||||||
# Map all possible vllm locations to a canonical "vllm" path
|
|
||||||
# This ensures coverage.combine properly merges data from different test runs
|
|
||||||
source =
|
|
||||||
vllm
|
|
||||||
/vllm-workspace/src/vllm
|
|
||||||
/vllm-workspace/vllm
|
|
||||||
*/site-packages/vllm
|
|
||||||
*/dist-packages/vllm
|
|
||||||
|
|
||||||
[report]
|
[report]
|
||||||
exclude_lines =
|
exclude_lines =
|
||||||
pragma: no cover
|
pragma: no cover
|
||||||
|
|||||||
@ -1,4 +0,0 @@
|
|||||||
# Migrate from `yapf` & `isort` to `ruff`
|
|
||||||
d6953beb91da4e9c99be4c0a1304a2d24189535c
|
|
||||||
# Convert `Optional[x]` to `x | None` and `Union[x, y]` to `x | y`
|
|
||||||
8fcaaf6a165e661f63fc51be906bc05b0767332f
|
|
||||||
56
.github/CODEOWNERS
vendored
56
.github/CODEOWNERS
vendored
@ -4,12 +4,19 @@
|
|||||||
# This lists cover the "core" components of vLLM that require careful review
|
# This lists cover the "core" components of vLLM that require careful review
|
||||||
/vllm/attention @LucasWilkinson
|
/vllm/attention @LucasWilkinson
|
||||||
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||||
|
/vllm/core @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||||
|
/vllm/engine/llm_engine.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||||
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
|
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
|
||||||
/vllm/model_executor/layers/fused_moe @mgoin @pavanimajety
|
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
|
||||||
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256 @pavanimajety
|
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||||
|
/vllm/model_executor/layers/fused_moe @mgoin
|
||||||
|
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @NickLucche
|
||||||
|
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
|
||||||
/vllm/model_executor/layers/mamba @tdoublep
|
/vllm/model_executor/layers/mamba @tdoublep
|
||||||
/vllm/model_executor/model_loader @22quinn
|
/vllm/model_executor/model_loader @22quinn
|
||||||
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche
|
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche
|
||||||
|
/vllm/v1/attention @LucasWilkinson
|
||||||
|
/vllm/v1/sample @22quinn @houseroad
|
||||||
/vllm/vllm_flash_attn @LucasWilkinson
|
/vllm/vllm_flash_attn @LucasWilkinson
|
||||||
/vllm/lora @jeejeelee
|
/vllm/lora @jeejeelee
|
||||||
/vllm/reasoning @aarnphm @chaunceyjiang
|
/vllm/reasoning @aarnphm @chaunceyjiang
|
||||||
@ -21,22 +28,20 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
|||||||
# Any change to the VllmConfig changes can have a large user-facing impact,
|
# Any change to the VllmConfig changes can have a large user-facing impact,
|
||||||
# so spam a lot of people
|
# so spam a lot of people
|
||||||
/vllm/config @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg
|
/vllm/config @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg
|
||||||
/vllm/config/cache.py @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg @heheda12345
|
|
||||||
|
|
||||||
# vLLM V1
|
# vLLM V1
|
||||||
/vllm/v1/attention @LucasWilkinson
|
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
|
||||||
/vllm/v1/attention/backends/mla @pavanimajety
|
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
|
||||||
/vllm/v1/attention/backends/flashinfer.py @mgoin @pavanimajety
|
/vllm/v1/spec_decode @benchislett @luccafong
|
||||||
|
/vllm/v1/attention/backends/flashinfer.py @mgoin
|
||||||
/vllm/v1/attention/backends/triton_attn.py @tdoublep
|
/vllm/v1/attention/backends/triton_attn.py @tdoublep
|
||||||
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
|
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
|
||||||
/vllm/v1/sample @22quinn @houseroad @njhill
|
|
||||||
/vllm/v1/spec_decode @benchislett @luccafong
|
|
||||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
|
|
||||||
/vllm/v1/kv_cache_interface.py @heheda12345
|
/vllm/v1/kv_cache_interface.py @heheda12345
|
||||||
|
/vllm/v1/worker/kv_cache_initializer_mixin.py @heheda12345
|
||||||
/vllm/v1/offloading @ApostaC
|
/vllm/v1/offloading @ApostaC
|
||||||
|
|
||||||
# Test ownership
|
# Test ownership
|
||||||
/.buildkite/lm-eval-harness @mgoin @simon-mo
|
/.buildkite/lm-eval-harness @mgoin @simon-mo
|
||||||
|
/tests/async_engine @njhill @robertgshaw2-redhat @simon-mo
|
||||||
/tests/distributed/test_multi_node_assignment.py @youkaichao
|
/tests/distributed/test_multi_node_assignment.py @youkaichao
|
||||||
/tests/distributed/test_pipeline_parallel.py @youkaichao
|
/tests/distributed/test_pipeline_parallel.py @youkaichao
|
||||||
/tests/distributed/test_same_node.py @youkaichao
|
/tests/distributed/test_same_node.py @youkaichao
|
||||||
@ -45,7 +50,8 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
|||||||
/tests/kernels @mgoin @tlrmchlsmth @WoosukKwon @yewentao256
|
/tests/kernels @mgoin @tlrmchlsmth @WoosukKwon @yewentao256
|
||||||
/tests/models @DarkLight1337 @ywang96
|
/tests/models @DarkLight1337 @ywang96
|
||||||
/tests/multimodal @DarkLight1337 @ywang96 @NickLucche
|
/tests/multimodal @DarkLight1337 @ywang96 @NickLucche
|
||||||
/tests/quantization @mgoin @robertgshaw2-redhat @yewentao256 @pavanimajety
|
/tests/prefix_caching @comaniac @KuntaiDu
|
||||||
|
/tests/quantization @mgoin @robertgshaw2-redhat @yewentao256
|
||||||
/tests/test_inputs.py @DarkLight1337 @ywang96
|
/tests/test_inputs.py @DarkLight1337 @ywang96
|
||||||
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
|
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
|
||||||
/tests/v1/structured_output @mgoin @russellb @aarnphm
|
/tests/v1/structured_output @mgoin @russellb @aarnphm
|
||||||
@ -53,35 +59,23 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
|||||||
/tests/weight_loading @mgoin @youkaichao @yewentao256
|
/tests/weight_loading @mgoin @youkaichao @yewentao256
|
||||||
/tests/lora @jeejeelee
|
/tests/lora @jeejeelee
|
||||||
/tests/models/language/generation/test_hybrid.py @tdoublep
|
/tests/models/language/generation/test_hybrid.py @tdoublep
|
||||||
/tests/v1/kv_connector/nixl_integration @NickLucche
|
/tests/v1/kv_connector/nixl_integration @NickLucche
|
||||||
/tests/v1/kv_connector @ApostaC
|
/tests/v1/kv_connector @ApostaC
|
||||||
/tests/v1/offloading @ApostaC
|
/tests/v1/offloading @ApostaC
|
||||||
|
|
||||||
# Transformers backend
|
|
||||||
/vllm/model_executor/models/transformers @hmellor
|
|
||||||
/tests/models/test_transformers.py @hmellor
|
|
||||||
|
|
||||||
# Docs
|
# Docs
|
||||||
/docs/mkdocs @hmellor
|
/docs @hmellor
|
||||||
/docs/**/*.yml @hmellor
|
|
||||||
/requirements/docs.txt @hmellor
|
|
||||||
.readthedocs.yaml @hmellor
|
|
||||||
mkdocs.yaml @hmellor
|
mkdocs.yaml @hmellor
|
||||||
|
|
||||||
# Linting
|
|
||||||
.markdownlint.yaml @hmellor
|
|
||||||
.pre-commit-config.yaml @hmellor
|
|
||||||
/tools/pre_commit @hmellor
|
|
||||||
|
|
||||||
# CPU
|
# CPU
|
||||||
/vllm/v1/worker/cpu* @bigPYJ1151
|
/vllm/v1/worker/^cpu @bigPYJ1151
|
||||||
/csrc/cpu @bigPYJ1151
|
/csrc/cpu @bigPYJ1151
|
||||||
/vllm/platforms/cpu.py @bigPYJ1151
|
/vllm/platforms/cpu.py @bigPYJ1151
|
||||||
/cmake/cpu_extension.cmake @bigPYJ1151
|
/cmake/cpu_extension.cmake @bigPYJ1151
|
||||||
/docker/Dockerfile.cpu @bigPYJ1151
|
/docker/Dockerfile.cpu @bigPYJ1151
|
||||||
|
|
||||||
# Intel GPU
|
# Intel GPU
|
||||||
/vllm/v1/worker/xpu* @jikunshang
|
/vllm/v1/worker/^xpu @jikunshang
|
||||||
/vllm/platforms/xpu.py @jikunshang
|
/vllm/platforms/xpu.py @jikunshang
|
||||||
/docker/Dockerfile.xpu @jikunshang
|
/docker/Dockerfile.xpu @jikunshang
|
||||||
|
|
||||||
@ -119,11 +113,3 @@ mkdocs.yaml @hmellor
|
|||||||
|
|
||||||
# KVConnector installation files
|
# KVConnector installation files
|
||||||
/requirements/kv_connectors.txt @NickLucche
|
/requirements/kv_connectors.txt @NickLucche
|
||||||
|
|
||||||
# Pooling models
|
|
||||||
/examples/*/pooling/ @noooop
|
|
||||||
/tests/models/*/pooling* @noooop
|
|
||||||
/tests/entrypoints/pooling @noooop
|
|
||||||
/vllm/config/pooler.py @noooop
|
|
||||||
/vllm/pooling_params.py @noooop
|
|
||||||
/vllm/model_executor/layers/pooler.py @noooop
|
|
||||||
|
|||||||
4
.github/ISSUE_TEMPLATE/750-RFC.yml
vendored
4
.github/ISSUE_TEMPLATE/750-RFC.yml
vendored
@ -43,6 +43,10 @@ body:
|
|||||||
Any other things you would like to mention.
|
Any other things you would like to mention.
|
||||||
validations:
|
validations:
|
||||||
required: false
|
required: false
|
||||||
|
- type: markdown
|
||||||
|
attributes:
|
||||||
|
value: >
|
||||||
|
Thanks for contributing 🎉! The vLLM core team hosts a biweekly RFC review session at 9:30AM Pacific Time, while most RFCs can be discussed online, you can optionally sign up for a slot to discuss your RFC online [here](https://docs.google.com/document/d/1CiLVBZeIVfR7_PNAKVSusxpceywkoOOB78qoWqHvSZc/edit).
|
||||||
- type: checkboxes
|
- type: checkboxes
|
||||||
id: askllm
|
id: askllm
|
||||||
attributes:
|
attributes:
|
||||||
|
|||||||
54
.github/mergify.yml
vendored
54
.github/mergify.yml
vendored
@ -2,7 +2,6 @@ pull_request_rules:
|
|||||||
- name: label-documentation
|
- name: label-documentation
|
||||||
description: Automatically apply documentation label
|
description: Automatically apply documentation label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=^[^/]+\.md$
|
- files~=^[^/]+\.md$
|
||||||
- files~=^docs/
|
- files~=^docs/
|
||||||
@ -11,13 +10,10 @@ pull_request_rules:
|
|||||||
label:
|
label:
|
||||||
add:
|
add:
|
||||||
- documentation
|
- documentation
|
||||||
comment:
|
|
||||||
message: "Documentation preview: https://vllm--{{number}}.org.readthedocs.build/en/{{number}}/"
|
|
||||||
|
|
||||||
- name: label-ci-build
|
- name: label-ci-build
|
||||||
description: Automatically apply ci/build label
|
description: Automatically apply ci/build label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=^\.github/
|
- files~=^\.github/
|
||||||
- files~=\.buildkite/
|
- files~=\.buildkite/
|
||||||
@ -34,7 +30,6 @@ pull_request_rules:
|
|||||||
- name: label-deepseek
|
- name: label-deepseek
|
||||||
description: Automatically apply deepseek label
|
description: Automatically apply deepseek label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=^examples/.*deepseek.*\.py
|
- files~=^examples/.*deepseek.*\.py
|
||||||
- files~=^tests/.*deepseek.*\.py
|
- files~=^tests/.*deepseek.*\.py
|
||||||
@ -51,7 +46,6 @@ pull_request_rules:
|
|||||||
- name: label-frontend
|
- name: label-frontend
|
||||||
description: Automatically apply frontend label
|
description: Automatically apply frontend label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- files~=^vllm/entrypoints/
|
- files~=^vllm/entrypoints/
|
||||||
actions:
|
actions:
|
||||||
label:
|
label:
|
||||||
@ -61,7 +55,6 @@ pull_request_rules:
|
|||||||
- name: label-llama
|
- name: label-llama
|
||||||
description: Automatically apply llama label
|
description: Automatically apply llama label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=^examples/.*llama.*\.py
|
- files~=^examples/.*llama.*\.py
|
||||||
- files~=^tests/.*llama.*\.py
|
- files~=^tests/.*llama.*\.py
|
||||||
@ -77,7 +70,6 @@ pull_request_rules:
|
|||||||
- name: label-multi-modality
|
- name: label-multi-modality
|
||||||
description: Automatically apply multi-modality label
|
description: Automatically apply multi-modality label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=^vllm/multimodal/
|
- files~=^vllm/multimodal/
|
||||||
- files~=^tests/multimodal/
|
- files~=^tests/multimodal/
|
||||||
@ -91,7 +83,6 @@ pull_request_rules:
|
|||||||
- name: label-new-model
|
- name: label-new-model
|
||||||
description: Automatically apply new-model label
|
description: Automatically apply new-model label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- and:
|
- and:
|
||||||
- files~=^vllm/model_executor/models/
|
- files~=^vllm/model_executor/models/
|
||||||
- files=vllm/model_executor/models/registry.py
|
- files=vllm/model_executor/models/registry.py
|
||||||
@ -103,7 +94,6 @@ pull_request_rules:
|
|||||||
- name: label-performance
|
- name: label-performance
|
||||||
description: Automatically apply performance label
|
description: Automatically apply performance label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=^benchmarks/
|
- files~=^benchmarks/
|
||||||
- files~=^vllm/benchmarks/
|
- files~=^vllm/benchmarks/
|
||||||
@ -117,7 +107,6 @@ pull_request_rules:
|
|||||||
- name: label-qwen
|
- name: label-qwen
|
||||||
description: Automatically apply qwen label
|
description: Automatically apply qwen label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=^examples/.*qwen.*\.py
|
- files~=^examples/.*qwen.*\.py
|
||||||
- files~=^tests/.*qwen.*\.py
|
- files~=^tests/.*qwen.*\.py
|
||||||
@ -132,7 +121,6 @@ pull_request_rules:
|
|||||||
- name: label-gpt-oss
|
- name: label-gpt-oss
|
||||||
description: Automatically apply gpt-oss label
|
description: Automatically apply gpt-oss label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=^examples/.*gpt[-_]?oss.*\.py
|
- files~=^examples/.*gpt[-_]?oss.*\.py
|
||||||
- files~=^tests/.*gpt[-_]?oss.*\.py
|
- files~=^tests/.*gpt[-_]?oss.*\.py
|
||||||
@ -154,7 +142,6 @@ pull_request_rules:
|
|||||||
- name: label-rocm
|
- name: label-rocm
|
||||||
description: Automatically apply rocm label
|
description: Automatically apply rocm label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=^csrc/rocm/
|
- files~=^csrc/rocm/
|
||||||
- files~=^docker/Dockerfile.rocm
|
- files~=^docker/Dockerfile.rocm
|
||||||
@ -175,7 +162,6 @@ pull_request_rules:
|
|||||||
- name: label-structured-output
|
- name: label-structured-output
|
||||||
description: Automatically apply structured-output label
|
description: Automatically apply structured-output label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=^benchmarks/structured_schemas/
|
- files~=^benchmarks/structured_schemas/
|
||||||
- files=benchmarks/benchmark_serving_structured_output.py
|
- files=benchmarks/benchmark_serving_structured_output.py
|
||||||
@ -185,7 +171,7 @@ pull_request_rules:
|
|||||||
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
|
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
|
||||||
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
|
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
|
||||||
- files~=^tests/v1/structured_output/
|
- files~=^tests/v1/structured_output/
|
||||||
- files=tests/v1/entrypoints/llm/test_struct_output_generate.py
|
- files=tests/v1/entrypoints/llm/test_guided_generate.py
|
||||||
- files~=^vllm/v1/structured_output/
|
- files~=^vllm/v1/structured_output/
|
||||||
actions:
|
actions:
|
||||||
label:
|
label:
|
||||||
@ -195,7 +181,6 @@ pull_request_rules:
|
|||||||
- name: label-speculative-decoding
|
- name: label-speculative-decoding
|
||||||
description: Automatically apply speculative-decoding label
|
description: Automatically apply speculative-decoding label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=^vllm/v1/spec_decode/
|
- files~=^vllm/v1/spec_decode/
|
||||||
- files~=^tests/v1/spec_decode/
|
- files~=^tests/v1/spec_decode/
|
||||||
@ -211,7 +196,6 @@ pull_request_rules:
|
|||||||
- name: label-v1
|
- name: label-v1
|
||||||
description: Automatically apply v1 label
|
description: Automatically apply v1 label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=^vllm/v1/
|
- files~=^vllm/v1/
|
||||||
- files~=^tests/v1/
|
- files~=^tests/v1/
|
||||||
@ -224,7 +208,6 @@ pull_request_rules:
|
|||||||
description: Automatically apply tpu label
|
description: Automatically apply tpu label
|
||||||
# Keep this list in sync with `label-tpu-remove` conditions
|
# Keep this list in sync with `label-tpu-remove` conditions
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=tpu.py
|
- files~=tpu.py
|
||||||
- files~=_tpu
|
- files~=_tpu
|
||||||
@ -240,7 +223,6 @@ pull_request_rules:
|
|||||||
description: Automatically remove tpu label
|
description: Automatically remove tpu label
|
||||||
# Keep this list in sync with `label-tpu` conditions
|
# Keep this list in sync with `label-tpu` conditions
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- and:
|
- and:
|
||||||
- -files~=tpu.py
|
- -files~=tpu.py
|
||||||
- -files~=_tpu
|
- -files~=_tpu
|
||||||
@ -255,9 +237,9 @@ pull_request_rules:
|
|||||||
- name: label-tool-calling
|
- name: label-tool-calling
|
||||||
description: Automatically add tool-calling label
|
description: Automatically add tool-calling label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=^tests/tool_use/
|
- files~=^tests/tool_use/
|
||||||
|
- files~=^tests/mistral_tool_use/
|
||||||
- files~=^tests/entrypoints/openai/tool_parsers/
|
- files~=^tests/entrypoints/openai/tool_parsers/
|
||||||
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
|
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
|
||||||
- files~=^vllm/entrypoints/openai/tool_parsers/
|
- files~=^vllm/entrypoints/openai/tool_parsers/
|
||||||
@ -274,9 +256,8 @@ pull_request_rules:
|
|||||||
|
|
||||||
- name: ping author on conflicts and add 'needs-rebase' label
|
- name: ping author on conflicts and add 'needs-rebase' label
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
- conflict
|
||||||
- conflict
|
- -closed
|
||||||
- -closed
|
|
||||||
actions:
|
actions:
|
||||||
label:
|
label:
|
||||||
add:
|
add:
|
||||||
@ -290,12 +271,10 @@ pull_request_rules:
|
|||||||
|
|
||||||
- name: assign reviewer for tensorizer changes
|
- name: assign reviewer for tensorizer changes
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
|
||||||
- files~=^vllm/model_executor/model_loader/tensorizer.py
|
- files~=^vllm/model_executor/model_loader/tensorizer.py
|
||||||
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
|
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
|
||||||
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||||
- files~=^tests/model_executor/model_loader/tensorizer_loader/
|
- files~=^tests/tensorizer_loader/
|
||||||
actions:
|
actions:
|
||||||
assign:
|
assign:
|
||||||
users:
|
users:
|
||||||
@ -303,7 +282,6 @@ pull_request_rules:
|
|||||||
|
|
||||||
- name: assign reviewer for modelopt changes
|
- name: assign reviewer for modelopt changes
|
||||||
conditions:
|
conditions:
|
||||||
- label != stale
|
|
||||||
- or:
|
- or:
|
||||||
- files~=^vllm/model_executor/layers/quantization/modelopt\.py$
|
- files~=^vllm/model_executor/layers/quantization/modelopt\.py$
|
||||||
- files~=^vllm/model_executor/layers/quantization/__init__\.py$
|
- files~=^vllm/model_executor/layers/quantization/__init__\.py$
|
||||||
@ -318,27 +296,9 @@ pull_request_rules:
|
|||||||
|
|
||||||
- name: remove 'needs-rebase' label when conflict is resolved
|
- name: remove 'needs-rebase' label when conflict is resolved
|
||||||
conditions:
|
conditions:
|
||||||
- -conflict
|
- -conflict
|
||||||
- -closed
|
- -closed
|
||||||
actions:
|
actions:
|
||||||
label:
|
label:
|
||||||
remove:
|
remove:
|
||||||
- needs-rebase
|
- needs-rebase
|
||||||
|
|
||||||
- name: label-kv-connector
|
|
||||||
description: Automatically apply kv-connector label
|
|
||||||
conditions:
|
|
||||||
- label != stale
|
|
||||||
- or:
|
|
||||||
- files~=^examples/online_serving/disaggregated[^/]*/.*
|
|
||||||
- files~=^examples/offline_inference/disaggregated[^/]*/.*
|
|
||||||
- files~=^examples/others/lmcache/
|
|
||||||
- files~=^tests/v1/kv_connector/
|
|
||||||
- files~=^vllm/distributed/kv_transfer/
|
|
||||||
- title~=(?i)\bP/?D\b
|
|
||||||
- title~=(?i)NIXL
|
|
||||||
- title~=(?i)LMCache
|
|
||||||
actions:
|
|
||||||
label:
|
|
||||||
add:
|
|
||||||
- kv-connector
|
|
||||||
138
.github/workflows/issue_autolabel.yml
vendored
138
.github/workflows/issue_autolabel.yml
vendored
@ -13,7 +13,6 @@ jobs:
|
|||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- name: Label issues based on keywords
|
- name: Label issues based on keywords
|
||||||
id: label-step
|
|
||||||
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
|
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
|
||||||
with:
|
with:
|
||||||
script: |
|
script: |
|
||||||
@ -43,6 +42,7 @@ jobs:
|
|||||||
searchIn: "body"
|
searchIn: "body"
|
||||||
},
|
},
|
||||||
],
|
],
|
||||||
|
|
||||||
// Substring search - matches anywhere in text (partial matches)
|
// Substring search - matches anywhere in text (partial matches)
|
||||||
substrings: [
|
substrings: [
|
||||||
{
|
{
|
||||||
@ -89,12 +89,14 @@ jobs:
|
|||||||
term: "hip_",
|
term: "hip_",
|
||||||
searchIn: "both"
|
searchIn: "both"
|
||||||
},
|
},
|
||||||
|
|
||||||
// ROCm tools and libraries
|
// ROCm tools and libraries
|
||||||
{
|
{
|
||||||
term: "hipify",
|
term: "hipify",
|
||||||
searchIn: "both"
|
searchIn: "both"
|
||||||
},
|
},
|
||||||
],
|
],
|
||||||
|
|
||||||
// Regex patterns - for complex pattern matching
|
// Regex patterns - for complex pattern matching
|
||||||
regexPatterns: [
|
regexPatterns: [
|
||||||
{
|
{
|
||||||
@ -105,17 +107,13 @@ jobs:
|
|||||||
}
|
}
|
||||||
],
|
],
|
||||||
},
|
},
|
||||||
// Add more label configurations here as needed
|
|
||||||
// example: {
|
|
||||||
// keywords: [...],
|
|
||||||
// substrings: [...],
|
|
||||||
// regexPatterns: [...]
|
|
||||||
// },
|
|
||||||
};
|
};
|
||||||
|
|
||||||
// Helper function to create regex based on search type
|
// Helper function to create regex based on search type
|
||||||
function createSearchRegex(term, type) {
|
function createSearchRegex(term, type) {
|
||||||
// Escape special regex characters in the term
|
// Escape special regex characters in the term
|
||||||
const escapedTerm = term.replace(/[.*+?^${}()|[\]\\]/g, '\\$&');
|
const escapedTerm = term.replace(/[.*+?^${}()|[\]\\]/g, '\\$&');
|
||||||
|
|
||||||
switch (type) {
|
switch (type) {
|
||||||
case 'keyword':
|
case 'keyword':
|
||||||
// Word boundary search - matches whole words only
|
// Word boundary search - matches whole words only
|
||||||
@ -127,13 +125,16 @@ jobs:
|
|||||||
throw new Error(`Unknown search type: ${type}`);
|
throw new Error(`Unknown search type: ${type}`);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Helper function to find matching terms in text with line information
|
// Helper function to find matching terms in text with line information
|
||||||
function findMatchingTermsWithLines(text, searchTerms = [], searchType = 'keyword', searchLocation = '') {
|
function findMatchingTermsWithLines(text, searchTerms = [], searchType = 'keyword', searchLocation = '') {
|
||||||
const matches = [];
|
const matches = [];
|
||||||
const lines = text.split('\n');
|
const lines = text.split('\n');
|
||||||
|
|
||||||
for (const termConfig of searchTerms) {
|
for (const termConfig of searchTerms) {
|
||||||
let regex;
|
let regex;
|
||||||
let term, searchIn, pattern, description, flags;
|
let term, searchIn, pattern, description, flags;
|
||||||
|
|
||||||
// Handle different input formats (string or object)
|
// Handle different input formats (string or object)
|
||||||
if (typeof termConfig === 'string') {
|
if (typeof termConfig === 'string') {
|
||||||
term = termConfig;
|
term = termConfig;
|
||||||
@ -145,17 +146,21 @@ jobs:
|
|||||||
description = termConfig.description;
|
description = termConfig.description;
|
||||||
flags = termConfig.flags;
|
flags = termConfig.flags;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Skip if this term shouldn't be searched in the current location
|
// Skip if this term shouldn't be searched in the current location
|
||||||
if (searchIn !== 'both' && searchIn !== searchLocation) {
|
if (searchIn !== 'both' && searchIn !== searchLocation) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Create appropriate regex
|
// Create appropriate regex
|
||||||
if (searchType === 'regex') {
|
if (searchType === 'regex') {
|
||||||
regex = new RegExp(pattern, flags || "gi");
|
regex = new RegExp(pattern, flags || "gi");
|
||||||
} else {
|
} else {
|
||||||
regex = createSearchRegex(term, searchType);
|
regex = createSearchRegex(term, searchType);
|
||||||
}
|
}
|
||||||
|
|
||||||
const termMatches = [];
|
const termMatches = [];
|
||||||
|
|
||||||
// Check each line for matches
|
// Check each line for matches
|
||||||
lines.forEach((line, lineIndex) => {
|
lines.forEach((line, lineIndex) => {
|
||||||
const lineMatches = line.match(regex);
|
const lineMatches = line.match(regex);
|
||||||
@ -170,14 +175,15 @@ jobs:
|
|||||||
originalTerm: term || pattern,
|
originalTerm: term || pattern,
|
||||||
description: description,
|
description: description,
|
||||||
// Show context around the match in the line
|
// Show context around the match in the line
|
||||||
context: line.length > 100 ?
|
context: line.length > 100 ?
|
||||||
line.substring(Math.max(0, line.toLowerCase().indexOf(match.toLowerCase()) - 30),
|
line.substring(Math.max(0, line.toLowerCase().indexOf(match.toLowerCase()) - 30),
|
||||||
line.toLowerCase().indexOf(match.toLowerCase()) + match.length + 30) + '...'
|
line.toLowerCase().indexOf(match.toLowerCase()) + match.length + 30) + '...'
|
||||||
: line.trim()
|
: line.trim()
|
||||||
});
|
});
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
if (termMatches.length > 0) {
|
if (termMatches.length > 0) {
|
||||||
matches.push({
|
matches.push({
|
||||||
term: term || (description || pattern),
|
term: term || (description || pattern),
|
||||||
@ -190,48 +196,64 @@ jobs:
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return matches;
|
return matches;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Helper function to check if label should be added
|
// Helper function to check if label should be added
|
||||||
async function processLabel(labelName, config) {
|
async function processLabel(labelName, config) {
|
||||||
const body = context.payload.issue.body || "";
|
const body = context.payload.issue.body || "";
|
||||||
const title = context.payload.issue.title || "";
|
const title = context.payload.issue.title || "";
|
||||||
|
|
||||||
core.notice(`Processing label: ${labelName}`);
|
core.notice(`Processing label: ${labelName}`);
|
||||||
core.notice(`Issue Title: "${title}"`);
|
core.notice(`Issue Title: "${title}"`);
|
||||||
core.notice(`Issue Body length: ${body.length} characters`);
|
core.notice(`Issue Body length: ${body.length} characters`);
|
||||||
|
|
||||||
let shouldAddLabel = false;
|
let shouldAddLabel = false;
|
||||||
let allMatches = [];
|
let allMatches = [];
|
||||||
let reason = '';
|
let reason = '';
|
||||||
|
|
||||||
const keywords = config.keywords || [];
|
const keywords = config.keywords || [];
|
||||||
const substrings = config.substrings || [];
|
const substrings = config.substrings || [];
|
||||||
const regexPatterns = config.regexPatterns || [];
|
const regexPatterns = config.regexPatterns || [];
|
||||||
|
|
||||||
core.notice(`Searching with ${keywords.length} keywords, ${substrings.length} substrings, and ${regexPatterns.length} regex patterns`);
|
core.notice(`Searching with ${keywords.length} keywords, ${substrings.length} substrings, and ${regexPatterns.length} regex patterns`);
|
||||||
|
|
||||||
// Search in title
|
// Search in title
|
||||||
if (title.trim()) {
|
if (title.trim()) {
|
||||||
core.notice(`Searching in title: "${title}"`);
|
core.notice(`Searching in title: "${title}"`);
|
||||||
|
|
||||||
const titleKeywordMatches = findMatchingTermsWithLines(title, keywords, 'keyword', 'title');
|
const titleKeywordMatches = findMatchingTermsWithLines(title, keywords, 'keyword', 'title');
|
||||||
const titleSubstringMatches = findMatchingTermsWithLines(title, substrings, 'substring', 'title');
|
const titleSubstringMatches = findMatchingTermsWithLines(title, substrings, 'substring', 'title');
|
||||||
const titleRegexMatches = findMatchingTermsWithLines(title, regexPatterns, 'regex', 'title');
|
const titleRegexMatches = findMatchingTermsWithLines(title, regexPatterns, 'regex', 'title');
|
||||||
|
|
||||||
allMatches.push(...titleKeywordMatches, ...titleSubstringMatches, ...titleRegexMatches);
|
allMatches.push(...titleKeywordMatches, ...titleSubstringMatches, ...titleRegexMatches);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Search in body
|
// Search in body
|
||||||
if (body.trim()) {
|
if (body.trim()) {
|
||||||
core.notice(`Searching in body (${body.length} characters)`);
|
core.notice(`Searching in body (${body.length} characters)`);
|
||||||
|
|
||||||
const bodyKeywordMatches = findMatchingTermsWithLines(body, keywords, 'keyword', 'body');
|
const bodyKeywordMatches = findMatchingTermsWithLines(body, keywords, 'keyword', 'body');
|
||||||
const bodySubstringMatches = findMatchingTermsWithLines(body, substrings, 'substring', 'body');
|
const bodySubstringMatches = findMatchingTermsWithLines(body, substrings, 'substring', 'body');
|
||||||
const bodyRegexMatches = findMatchingTermsWithLines(body, regexPatterns, 'regex', 'body');
|
const bodyRegexMatches = findMatchingTermsWithLines(body, regexPatterns, 'regex', 'body');
|
||||||
|
|
||||||
allMatches.push(...bodyKeywordMatches, ...bodySubstringMatches, ...bodyRegexMatches);
|
allMatches.push(...bodyKeywordMatches, ...bodySubstringMatches, ...bodyRegexMatches);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (allMatches.length > 0) {
|
if (allMatches.length > 0) {
|
||||||
core.notice(`Found ${allMatches.length} matching term(s):`);
|
core.notice(`Found ${allMatches.length} matching term(s):`);
|
||||||
|
|
||||||
for (const termMatch of allMatches) {
|
for (const termMatch of allMatches) {
|
||||||
const locationText = termMatch.searchLocation === 'title' ? 'title' : 'body';
|
const locationText = termMatch.searchLocation === 'title' ? 'title' : 'body';
|
||||||
const searchInText = termMatch.searchIn === 'both' ? 'both' : termMatch.searchIn;
|
const searchInText = termMatch.searchIn === 'both' ? 'both' : termMatch.searchIn;
|
||||||
|
|
||||||
if (termMatch.searchType === 'regex') {
|
if (termMatch.searchType === 'regex') {
|
||||||
core.notice(` 📍 Regex: "${termMatch.term}" (pattern: ${termMatch.pattern}) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
|
core.notice(` 📍 Regex: "${termMatch.term}" (pattern: ${termMatch.pattern}) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
|
||||||
} else {
|
} else {
|
||||||
core.notice(` 📍 Term: "${termMatch.term}" (${termMatch.searchType} search) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
|
core.notice(` 📍 Term: "${termMatch.term}" (${termMatch.searchType} search) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Show details for each match
|
// Show details for each match
|
||||||
termMatch.matches.forEach((match, index) => {
|
termMatch.matches.forEach((match, index) => {
|
||||||
core.notice(` ${index + 1}. Line ${match.lineNumber} in ${match.searchLocation}: "${match.match}" [${match.searchType}]`);
|
core.notice(` ${index + 1}. Line ${match.lineNumber} in ${match.searchLocation}: "${match.match}" [${match.searchType}]`);
|
||||||
@ -244,6 +266,7 @@ jobs:
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
shouldAddLabel = true;
|
shouldAddLabel = true;
|
||||||
const totalMatches = allMatches.reduce((sum, t) => sum + t.count, 0);
|
const totalMatches = allMatches.reduce((sum, t) => sum + t.count, 0);
|
||||||
const titleMatches = allMatches.filter(t => t.searchLocation === 'title').reduce((sum, t) => sum + t.count, 0);
|
const titleMatches = allMatches.filter(t => t.searchLocation === 'title').reduce((sum, t) => sum + t.count, 0);
|
||||||
@ -251,10 +274,13 @@ jobs:
|
|||||||
const keywordMatches = allMatches.filter(t => t.searchType === 'keyword').reduce((sum, t) => sum + t.count, 0);
|
const keywordMatches = allMatches.filter(t => t.searchType === 'keyword').reduce((sum, t) => sum + t.count, 0);
|
||||||
const substringMatches = allMatches.filter(t => t.searchType === 'substring').reduce((sum, t) => sum + t.count, 0);
|
const substringMatches = allMatches.filter(t => t.searchType === 'substring').reduce((sum, t) => sum + t.count, 0);
|
||||||
const regexMatches = allMatches.filter(t => t.searchType === 'regex').reduce((sum, t) => sum + t.count, 0);
|
const regexMatches = allMatches.filter(t => t.searchType === 'regex').reduce((sum, t) => sum + t.count, 0);
|
||||||
|
|
||||||
reason = `Found ${totalMatches} total matches (${titleMatches} in title, ${bodyMatches} in body) - ${keywordMatches} keyword matches, ${substringMatches} substring matches, ${regexMatches} regex matches`;
|
reason = `Found ${totalMatches} total matches (${titleMatches} in title, ${bodyMatches} in body) - ${keywordMatches} keyword matches, ${substringMatches} substring matches, ${regexMatches} regex matches`;
|
||||||
}
|
}
|
||||||
|
|
||||||
core.notice(`Final decision: ${shouldAddLabel ? 'ADD LABEL' : 'DO NOT ADD LABEL'}`);
|
core.notice(`Final decision: ${shouldAddLabel ? 'ADD LABEL' : 'DO NOT ADD LABEL'}`);
|
||||||
core.notice(`Reason: ${reason || 'No matching terms found'}`);
|
core.notice(`Reason: ${reason || 'No matching terms found'}`);
|
||||||
|
|
||||||
if (shouldAddLabel) {
|
if (shouldAddLabel) {
|
||||||
const existingLabels = context.payload.issue.labels.map(l => l.name);
|
const existingLabels = context.payload.issue.labels.map(l => l.name);
|
||||||
if (!existingLabels.includes(labelName)) {
|
if (!existingLabels.includes(labelName)) {
|
||||||
@ -270,92 +296,14 @@ jobs:
|
|||||||
core.notice(`Label "${labelName}" already present.`);
|
core.notice(`Label "${labelName}" already present.`);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
core.notice(`No matching terms found for label "${labelName}".`);
|
core.notice(`No matching terms found for label "${labelName}".`);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Process all configured labels
|
// Process all configured labels
|
||||||
const labelsAddedResults = await Promise.all(
|
const processLabels = Object.entries(labelConfig)
|
||||||
Object.entries(labelConfig).map(([labelName, config]) =>
|
.map(([labelName, config]) => processLabel(labelName, config));
|
||||||
processLabel(labelName, config).then(added => ({ labelName, added }))
|
const labelsAdded = await Promise.all(processLabels);
|
||||||
)
|
const numLabelsAdded = labelsAdded.reduce((x, y) => x + y, 0);
|
||||||
);
|
core.notice(`Processing complete. ${numLabelsAdded} label(s) added.`);
|
||||||
|
|
||||||
const numLabelsAdded = labelsAddedResults.filter(r => r.added).length;
|
|
||||||
core.notice(`Processing complete. ${numLabelsAdded} label(s) added.`);
|
|
||||||
|
|
||||||
// Return which labels were added for the next step
|
|
||||||
const addedLabels = labelsAddedResults.filter(r => r.added).map(r => r.labelName);
|
|
||||||
core.setOutput('labels_added', JSON.stringify(addedLabels));
|
|
||||||
return addedLabels;
|
|
||||||
|
|
||||||
- name: CC users for labeled issues
|
|
||||||
if: steps.label-step.outputs.labels_added != '[]'
|
|
||||||
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
|
|
||||||
with:
|
|
||||||
script: |
|
|
||||||
// Configuration: Map labels to GitHub users to CC
|
|
||||||
// You can add multiple users per label, and multiple label configurations
|
|
||||||
const ccConfig = {
|
|
||||||
rocm: {
|
|
||||||
users: ['hongxiayang', 'tjtanaa', 'vllmellm'], // Add more users as needed: ['user1', 'user2', 'user3']
|
|
||||||
message: 'CC {users} for ROCm-related issue' // {users} will be replaced with @mentions
|
|
||||||
},
|
|
||||||
// Add more label -> user mappings here
|
|
||||||
// Example:
|
|
||||||
// cuda: {
|
|
||||||
// users: ['user1', 'user2'],
|
|
||||||
// message: 'CC {users} for CUDA-related issue'
|
|
||||||
// },
|
|
||||||
// performance: {
|
|
||||||
// users: ['perfexpert'],
|
|
||||||
// message: 'CC {users} for performance issue'
|
|
||||||
// },
|
|
||||||
};
|
|
||||||
|
|
||||||
const labelsAdded = JSON.parse('${{ steps.label-step.outputs.labels_added }}');
|
|
||||||
core.notice(`Labels added: ${labelsAdded.join(', ')}`);
|
|
||||||
|
|
||||||
// Get existing comments to check for already mentioned users
|
|
||||||
const comments = await github.rest.issues.listComments({
|
|
||||||
owner: context.repo.owner,
|
|
||||||
repo: context.repo.repo,
|
|
||||||
issue_number: context.issue.number,
|
|
||||||
});
|
|
||||||
|
|
||||||
const issueBody = context.payload.issue.body || '';
|
|
||||||
const allExistingText = issueBody + '\n' + comments.data.map(c => c.body).join('\n');
|
|
||||||
|
|
||||||
// Process each label that was added
|
|
||||||
for (const label of labelsAdded) {
|
|
||||||
if (ccConfig[label]) {
|
|
||||||
const config = ccConfig[label];
|
|
||||||
const usersToMention = [];
|
|
||||||
|
|
||||||
// Check which users haven't been mentioned yet
|
|
||||||
for (const user of config.users) {
|
|
||||||
const mentionPattern = new RegExp(`@${user}\\b`, 'i');
|
|
||||||
if (!mentionPattern.test(allExistingText)) {
|
|
||||||
usersToMention.push(user);
|
|
||||||
} else {
|
|
||||||
core.notice(`@${user} already mentioned for label "${label}", skipping`);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Post comment if there are users to mention
|
|
||||||
if (usersToMention.length > 0) {
|
|
||||||
const mentions = usersToMention.map(u => `@${u}`).join(' ');
|
|
||||||
const message = config.message.replace('{users}', mentions);
|
|
||||||
|
|
||||||
await github.rest.issues.createComment({
|
|
||||||
owner: context.repo.owner,
|
|
||||||
repo: context.repo.repo,
|
|
||||||
issue_number: context.issue.number,
|
|
||||||
body: message
|
|
||||||
});
|
|
||||||
|
|
||||||
core.notice(`CC comment added for label "${label}": ${mentions}`);
|
|
||||||
} else {
|
|
||||||
core.notice(`All users for label "${label}" already mentioned, skipping comment`);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
2
.github/workflows/stale.yml
vendored
2
.github/workflows/stale.yml
vendored
@ -13,7 +13,7 @@ jobs:
|
|||||||
actions: write
|
actions: write
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/stale@5f858e3efba33a5ca4407a664cc011ad407f2008 # v10.1.0
|
- uses: actions/stale@3a9db7e6a41a89f618792c92c0e97cc736e1b13f # v10.0.0
|
||||||
with:
|
with:
|
||||||
# Increasing this value ensures that changes to this workflow
|
# Increasing this value ensures that changes to this workflow
|
||||||
# propagate to all issues and PRs in days rather than months
|
# propagate to all issues and PRs in days rather than months
|
||||||
|
|||||||
3
.gitignore
vendored
3
.gitignore
vendored
@ -94,9 +94,6 @@ ipython_config.py
|
|||||||
# generated files
|
# generated files
|
||||||
**/generated/**
|
**/generated/**
|
||||||
|
|
||||||
# uv
|
|
||||||
uv.lock
|
|
||||||
|
|
||||||
# pyenv
|
# pyenv
|
||||||
# For a library or package, you might want to ignore these files since the code is
|
# For a library or package, you might want to ignore these files since the code is
|
||||||
# intended to run in multiple environments; otherwise, check them in:
|
# intended to run in multiple environments; otherwise, check them in:
|
||||||
|
|||||||
@ -4,6 +4,7 @@ MD013: false
|
|||||||
MD024:
|
MD024:
|
||||||
siblings_only: true
|
siblings_only: true
|
||||||
MD033: false
|
MD033: false
|
||||||
|
MD042: false
|
||||||
MD045: false
|
MD045: false
|
||||||
MD046: false
|
MD046: false
|
||||||
MD051: false
|
MD051: false
|
||||||
|
|||||||
@ -6,19 +6,30 @@ default_stages:
|
|||||||
- manual # Run in CI
|
- manual # Run in CI
|
||||||
exclude: 'vllm/third_party/.*'
|
exclude: 'vllm/third_party/.*'
|
||||||
repos:
|
repos:
|
||||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
- repo: https://github.com/google/yapf
|
||||||
rev: v0.14.0
|
rev: v0.43.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: ruff-check
|
- id: yapf
|
||||||
|
args: [--in-place, --verbose]
|
||||||
|
# Keep the same list from yapfignore here to avoid yapf failing without any inputs
|
||||||
|
exclude: '(.buildkite|benchmarks|build|examples)/.*'
|
||||||
|
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||||
|
rev: v0.11.7
|
||||||
|
hooks:
|
||||||
|
- id: ruff
|
||||||
args: [--output-format, github, --fix]
|
args: [--output-format, github, --fix]
|
||||||
- id: ruff-format
|
- id: ruff-format
|
||||||
|
files: ^(.buildkite|benchmarks|examples)/.*
|
||||||
- repo: https://github.com/crate-ci/typos
|
- repo: https://github.com/crate-ci/typos
|
||||||
rev: v1.38.1
|
rev: v1.35.5
|
||||||
hooks:
|
hooks:
|
||||||
- id: typos
|
- id: typos
|
||||||
args: [--force-exclude]
|
- repo: https://github.com/PyCQA/isort
|
||||||
|
rev: 6.0.1
|
||||||
|
hooks:
|
||||||
|
- id: isort
|
||||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||||
rev: v21.1.2
|
rev: v20.1.3
|
||||||
hooks:
|
hooks:
|
||||||
- id: clang-format
|
- id: clang-format
|
||||||
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
|
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
|
||||||
@ -35,10 +46,10 @@ repos:
|
|||||||
hooks:
|
hooks:
|
||||||
- id: actionlint
|
- id: actionlint
|
||||||
- repo: https://github.com/astral-sh/uv-pre-commit
|
- repo: https://github.com/astral-sh/uv-pre-commit
|
||||||
rev: 0.9.1
|
rev: 0.6.17
|
||||||
hooks:
|
hooks:
|
||||||
- id: pip-compile
|
- id: pip-compile
|
||||||
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu129, --python-platform, x86_64-manylinux_2_28]
|
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128]
|
||||||
files: ^requirements/test\.(in|txt)$
|
files: ^requirements/test\.(in|txt)$
|
||||||
- repo: local
|
- repo: local
|
||||||
hooks:
|
hooks:
|
||||||
@ -49,32 +60,38 @@ repos:
|
|||||||
files: ^requirements/test\.(in|txt)$
|
files: ^requirements/test\.(in|txt)$
|
||||||
- id: mypy-local
|
- id: mypy-local
|
||||||
name: Run mypy for local Python installation
|
name: Run mypy for local Python installation
|
||||||
entry: python tools/pre_commit/mypy.py 0 "local"
|
entry: tools/mypy.sh 0 "local"
|
||||||
|
language: python
|
||||||
|
types: [python]
|
||||||
|
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests, pydantic]
|
||||||
stages: [pre-commit] # Don't run in CI
|
stages: [pre-commit] # Don't run in CI
|
||||||
<<: &mypy_common
|
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||||
language: python
|
name: Run mypy for Python 3.9
|
||||||
types_or: [python, pyi]
|
entry: tools/mypy.sh 1 "3.9"
|
||||||
require_serial: true
|
language: python
|
||||||
additional_dependencies: [mypy==1.11.1, regex, types-cachetools, types-setuptools, types-PyYAML, types-requests, types-torch, pydantic]
|
types: [python]
|
||||||
|
additional_dependencies: *mypy_deps
|
||||||
|
stages: [manual] # Only run in CI
|
||||||
- id: mypy-3.10 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
- id: mypy-3.10 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||||
name: Run mypy for Python 3.10
|
name: Run mypy for Python 3.10
|
||||||
entry: python tools/pre_commit/mypy.py 1 "3.10"
|
entry: tools/mypy.sh 1 "3.10"
|
||||||
<<: *mypy_common
|
language: python
|
||||||
|
types: [python]
|
||||||
|
additional_dependencies: *mypy_deps
|
||||||
stages: [manual] # Only run in CI
|
stages: [manual] # Only run in CI
|
||||||
- id: mypy-3.11 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
- id: mypy-3.11 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||||
name: Run mypy for Python 3.11
|
name: Run mypy for Python 3.11
|
||||||
entry: python tools/pre_commit/mypy.py 1 "3.11"
|
entry: tools/mypy.sh 1 "3.11"
|
||||||
<<: *mypy_common
|
language: python
|
||||||
|
types: [python]
|
||||||
|
additional_dependencies: *mypy_deps
|
||||||
stages: [manual] # Only run in CI
|
stages: [manual] # Only run in CI
|
||||||
- id: mypy-3.12 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
- id: mypy-3.12 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||||
name: Run mypy for Python 3.12
|
name: Run mypy for Python 3.12
|
||||||
entry: python tools/pre_commit/mypy.py 1 "3.12"
|
entry: tools/mypy.sh 1 "3.12"
|
||||||
<<: *mypy_common
|
language: python
|
||||||
stages: [manual] # Only run in CI
|
types: [python]
|
||||||
- id: mypy-3.13 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
additional_dependencies: *mypy_deps
|
||||||
name: Run mypy for Python 3.13
|
|
||||||
entry: python tools/pre_commit/mypy.py 1 "3.13"
|
|
||||||
<<: *mypy_common
|
|
||||||
stages: [manual] # Only run in CI
|
stages: [manual] # Only run in CI
|
||||||
- id: shellcheck
|
- id: shellcheck
|
||||||
name: Lint shell scripts
|
name: Lint shell scripts
|
||||||
@ -138,15 +155,18 @@ repos:
|
|||||||
additional_dependencies: [regex]
|
additional_dependencies: [regex]
|
||||||
- id: check-pickle-imports
|
- id: check-pickle-imports
|
||||||
name: Prevent new pickle/cloudpickle imports
|
name: Prevent new pickle/cloudpickle imports
|
||||||
entry: python tools/pre_commit/check_pickle_imports.py
|
entry: python tools/check_pickle_imports.py
|
||||||
language: python
|
language: python
|
||||||
types: [python]
|
types: [python]
|
||||||
additional_dependencies: [regex]
|
pass_filenames: false
|
||||||
|
additional_dependencies: [pathspec, regex]
|
||||||
- id: validate-config
|
- id: validate-config
|
||||||
name: Validate configuration has default values and that each field has a docstring
|
name: Validate configuration has default values and that each field has a docstring
|
||||||
entry: python tools/validate_config.py
|
entry: python tools/validate_config.py
|
||||||
language: python
|
language: python
|
||||||
additional_dependencies: [regex]
|
types: [python]
|
||||||
|
pass_filenames: true
|
||||||
|
files: vllm/config.py|tests/test_config.py|vllm/entrypoints/openai/cli_args.py
|
||||||
# Keep `suggestion` last
|
# Keep `suggestion` last
|
||||||
- id: suggestion
|
- id: suggestion
|
||||||
name: Suggestion
|
name: Suggestion
|
||||||
|
|||||||
@ -13,7 +13,6 @@ build:
|
|||||||
|
|
||||||
mkdocs:
|
mkdocs:
|
||||||
configuration: mkdocs.yaml
|
configuration: mkdocs.yaml
|
||||||
fail_on_warning: true
|
|
||||||
|
|
||||||
# Optionally declare the Python requirements required to build your docs
|
# Optionally declare the Python requirements required to build your docs
|
||||||
python:
|
python:
|
||||||
|
|||||||
114
CMakeLists.txt
114
CMakeLists.txt
@ -34,10 +34,10 @@ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
|||||||
# Supported python versions. These versions will be searched in order, the
|
# Supported python versions. These versions will be searched in order, the
|
||||||
# first match will be selected. These should be kept in sync with setup.py.
|
# first match will be selected. These should be kept in sync with setup.py.
|
||||||
#
|
#
|
||||||
set(PYTHON_SUPPORTED_VERSIONS "3.10" "3.11" "3.12" "3.13")
|
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12" "3.13")
|
||||||
|
|
||||||
# Supported AMD GPU architectures.
|
# Supported AMD GPU architectures.
|
||||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201;gfx1150;gfx1151")
|
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
|
||||||
|
|
||||||
#
|
#
|
||||||
# Supported/expected torch versions for CUDA/ROCm.
|
# Supported/expected torch versions for CUDA/ROCm.
|
||||||
@ -49,8 +49,8 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
|
|||||||
# requirements.txt files and should be kept consistent. The ROCm torch
|
# requirements.txt files and should be kept consistent. The ROCm torch
|
||||||
# versions are derived from docker/Dockerfile.rocm
|
# versions are derived from docker/Dockerfile.rocm
|
||||||
#
|
#
|
||||||
set(TORCH_SUPPORTED_VERSION_CUDA "2.9.0")
|
set(TORCH_SUPPORTED_VERSION_CUDA "2.8.0")
|
||||||
set(TORCH_SUPPORTED_VERSION_ROCM "2.9.0")
|
set(TORCH_SUPPORTED_VERSION_ROCM "2.8.0")
|
||||||
|
|
||||||
#
|
#
|
||||||
# Try to find python package with an executable that exactly matches
|
# Try to find python package with an executable that exactly matches
|
||||||
@ -86,9 +86,6 @@ find_package(Torch REQUIRED)
|
|||||||
# Supported NVIDIA architectures.
|
# Supported NVIDIA architectures.
|
||||||
# This check must happen after find_package(Torch) because that's when CMAKE_CUDA_COMPILER_VERSION gets defined
|
# This check must happen after find_package(Torch) because that's when CMAKE_CUDA_COMPILER_VERSION gets defined
|
||||||
if(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
if(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
||||||
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 13.0)
|
|
||||||
set(CUDA_SUPPORTED_ARCHS "7.5;8.0;8.6;8.7;8.9;9.0;10.0;11.0;12.0")
|
|
||||||
elseif(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
|
||||||
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8)
|
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8)
|
||||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
|
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
|
||||||
else()
|
else()
|
||||||
@ -178,15 +175,6 @@ if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
|
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
#
|
|
||||||
# Set compression mode for CUDA >=13.x.
|
|
||||||
#
|
|
||||||
if(VLLM_GPU_LANG STREQUAL "CUDA" AND
|
|
||||||
DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
|
||||||
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 13.0)
|
|
||||||
list(APPEND VLLM_GPU_FLAGS "--compress-mode=size")
|
|
||||||
endif()
|
|
||||||
|
|
||||||
#
|
#
|
||||||
# Set CUDA include flags for CXX compiler.
|
# Set CUDA include flags for CXX compiler.
|
||||||
#
|
#
|
||||||
@ -269,8 +257,8 @@ set(VLLM_EXT_SRC
|
|||||||
"csrc/sampler.cu"
|
"csrc/sampler.cu"
|
||||||
"csrc/cuda_view.cu"
|
"csrc/cuda_view.cu"
|
||||||
"csrc/quantization/gptq/q_gemm.cu"
|
"csrc/quantization/gptq/q_gemm.cu"
|
||||||
"csrc/quantization/w8a8/int8/scaled_quant.cu"
|
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
|
||||||
"csrc/quantization/w8a8/fp8/common.cu"
|
"csrc/quantization/fp8/common.cu"
|
||||||
"csrc/quantization/fused_kernels/fused_layernorm_dynamic_per_token_quant.cu"
|
"csrc/quantization/fused_kernels/fused_layernorm_dynamic_per_token_quant.cu"
|
||||||
"csrc/quantization/gguf/gguf_kernel.cu"
|
"csrc/quantization/gguf/gguf_kernel.cu"
|
||||||
"csrc/quantization/activation_kernels.cu"
|
"csrc/quantization/activation_kernels.cu"
|
||||||
@ -282,7 +270,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
|
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
|
||||||
|
|
||||||
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
|
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
|
||||||
set(CUTLASS_REVISION "v4.2.1" CACHE STRING "CUTLASS revision to use")
|
set(CUTLASS_REVISION "v4.0.0" CACHE STRING "CUTLASS revision to use")
|
||||||
|
|
||||||
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
|
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
|
||||||
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
|
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
|
||||||
@ -314,13 +302,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
list(APPEND VLLM_EXT_SRC
|
list(APPEND VLLM_EXT_SRC
|
||||||
"csrc/quantization/awq/gemm_kernels.cu"
|
"csrc/quantization/awq/gemm_kernels.cu"
|
||||||
"csrc/permute_cols.cu"
|
"csrc/permute_cols.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/scaled_mm_entry.cu"
|
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
|
||||||
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
|
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
|
||||||
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
|
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
|
||||||
|
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu"
|
||||||
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
|
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
|
||||||
"csrc/cutlass_extensions/common.cpp"
|
"csrc/cutlass_extensions/common.cpp"
|
||||||
"csrc/quantization/w8a8/fp8/per_token_group_quant.cu"
|
"csrc/quantization/fp8/per_token_group_quant.cu")
|
||||||
"csrc/quantization/w8a8/int8/per_token_group_quant.cu")
|
|
||||||
|
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${VLLM_EXT_SRC}"
|
SRCS "${VLLM_EXT_SRC}"
|
||||||
@ -424,11 +412,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
|
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND SCALED_MM_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND SCALED_MM_ARCHS)
|
||||||
set(SRCS
|
set(SRCS
|
||||||
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm90.cu"
|
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm90.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm90_fp8.cu"
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_fp8.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm90_int8.cu"
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_int8.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_azp_sm90_int8.cu"
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_azp_sm90_int8.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm90_fp8.cu")
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm90_fp8.cu")
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||||
@ -452,16 +440,12 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
|
|
||||||
# The cutlass_scaled_mm kernels for Geforce Blackwell SM120 (c3x, i.e. CUTLASS 3.x) require
|
# The cutlass_scaled_mm kernels for Geforce Blackwell SM120 (c3x, i.e. CUTLASS 3.x) require
|
||||||
# CUDA 12.8 or later
|
# CUDA 12.8 or later
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
|
||||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0f" "${CUDA_ARCHS}")
|
|
||||||
else()
|
|
||||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0a" "${CUDA_ARCHS}")
|
|
||||||
endif()
|
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||||
set(SRCS
|
set(SRCS
|
||||||
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm120.cu"
|
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm120.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm120_fp8.cu"
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm120_fp8.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm120_fp8.cu"
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm120_fp8.cu"
|
||||||
)
|
)
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
@ -486,16 +470,12 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
|
|
||||||
# The cutlass_scaled_mm kernels for Blackwell SM100 (c3x, i.e. CUTLASS 3.x)
|
# The cutlass_scaled_mm kernels for Blackwell SM100 (c3x, i.e. CUTLASS 3.x)
|
||||||
# require CUDA 12.8 or later
|
# require CUDA 12.8 or later
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a" "${CUDA_ARCHS}")
|
||||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
|
||||||
else()
|
|
||||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
|
||||||
endif()
|
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||||
set(SRCS
|
set(SRCS
|
||||||
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm100.cu"
|
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm100_fp8.cu"
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm100_fp8.cu"
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm100_fp8.cu"
|
||||||
)
|
)
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
@ -526,7 +506,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
# subtract out the archs that are already built for 3x
|
# subtract out the archs that are already built for 3x
|
||||||
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
|
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
|
||||||
if (SCALED_MM_2X_ARCHS)
|
if (SCALED_MM_2X_ARCHS)
|
||||||
set(SRCS "csrc/quantization/w8a8/cutlass/scaled_mm_c2x.cu")
|
set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu")
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
CUDA_ARCHS "${SCALED_MM_2X_ARCHS}")
|
CUDA_ARCHS "${SCALED_MM_2X_ARCHS}")
|
||||||
@ -570,11 +550,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
|
|
||||||
# The nvfp4_scaled_mm_sm120 kernels for Geforce Blackwell SM120 require
|
# The nvfp4_scaled_mm_sm120 kernels for Geforce Blackwell SM120 require
|
||||||
# CUDA 12.8 or later
|
# CUDA 12.8 or later
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
cuda_archs_loose_intersection(FP4_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
|
||||||
cuda_archs_loose_intersection(FP4_ARCHS "12.0f" "${CUDA_ARCHS}")
|
|
||||||
else()
|
|
||||||
cuda_archs_loose_intersection(FP4_ARCHS "12.0a" "${CUDA_ARCHS}")
|
|
||||||
endif()
|
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
|
||||||
set(SRCS
|
set(SRCS
|
||||||
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
||||||
@ -593,11 +569,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
endif()
|
endif()
|
||||||
|
|
||||||
# FP4 Archs and flags
|
# FP4 Archs and flags
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||||
cuda_archs_loose_intersection(FP4_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
|
||||||
else()
|
|
||||||
cuda_archs_loose_intersection(FP4_ARCHS "10.0a;10.1a;12.0a;12.1a" "${CUDA_ARCHS}")
|
|
||||||
endif()
|
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
|
||||||
set(SRCS
|
set(SRCS
|
||||||
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
||||||
@ -619,11 +591,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
endif()
|
endif()
|
||||||
|
|
||||||
# CUTLASS MLA Archs and flags
|
# CUTLASS MLA Archs and flags
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||||
cuda_archs_loose_intersection(MLA_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
|
||||||
else()
|
|
||||||
cuda_archs_loose_intersection(MLA_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
|
||||||
endif()
|
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND MLA_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND MLA_ARCHS)
|
||||||
set(SRCS
|
set(SRCS
|
||||||
"csrc/attention/mla/sm100_cutlass_mla_kernel.cu")
|
"csrc/attention/mla/sm100_cutlass_mla_kernel.cu")
|
||||||
@ -649,7 +617,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
# if it's possible to compile MoE kernels that use its output.
|
# if it's possible to compile MoE kernels that use its output.
|
||||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a" "${CUDA_ARCHS}")
|
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
||||||
set(SRCS "csrc/quantization/w8a8/cutlass/moe/grouped_mm_c3x_sm90.cu")
|
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm90.cu")
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||||
@ -667,13 +635,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f" "${CUDA_ARCHS}")
|
|
||||||
else()
|
|
||||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
|
||||||
endif()
|
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||||
set(SRCS "csrc/quantization/w8a8/cutlass/moe/grouped_mm_c3x_sm100.cu")
|
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm100.cu")
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||||
@ -692,13 +656,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
endif()
|
endif()
|
||||||
|
|
||||||
# moe_data.cu is used by all CUTLASS MoE kernels.
|
# moe_data.cu is used by all CUTLASS MoE kernels.
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
|
||||||
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
|
||||||
else()
|
|
||||||
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
|
||||||
endif()
|
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
|
||||||
set(SRCS "csrc/quantization/w8a8/cutlass/moe/moe_data.cu")
|
set(SRCS "csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
CUDA_ARCHS "${CUTLASS_MOE_DATA_ARCHS}")
|
CUDA_ARCHS "${CUTLASS_MOE_DATA_ARCHS}")
|
||||||
@ -715,13 +675,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
|
||||||
else()
|
|
||||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
|
||||||
endif()
|
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||||
set(SRCS "csrc/quantization/w8a8/cutlass/moe/blockwise_scaled_group_mm_sm100.cu")
|
set(SRCS "csrc/quantization/cutlass_w8a8/moe/blockwise_scaled_group_mm_sm100.cu")
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||||
@ -883,7 +839,6 @@ target_compile_definitions(_C PRIVATE CUTLASS_ENABLE_DIRECT_CUDA_DRIVER_CALL=1)
|
|||||||
set(VLLM_MOE_EXT_SRC
|
set(VLLM_MOE_EXT_SRC
|
||||||
"csrc/moe/torch_bindings.cpp"
|
"csrc/moe/torch_bindings.cpp"
|
||||||
"csrc/moe/moe_align_sum_kernels.cu"
|
"csrc/moe/moe_align_sum_kernels.cu"
|
||||||
"csrc/moe/moe_lora_align_sum_kernels.cu"
|
|
||||||
"csrc/moe/topk_softmax_kernels.cu")
|
"csrc/moe/topk_softmax_kernels.cu")
|
||||||
|
|
||||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||||
@ -1008,7 +963,6 @@ endif()
|
|||||||
# For CUDA we also build and ship some external projects.
|
# For CUDA we also build and ship some external projects.
|
||||||
if (VLLM_GPU_LANG STREQUAL "CUDA")
|
if (VLLM_GPU_LANG STREQUAL "CUDA")
|
||||||
include(cmake/external_projects/flashmla.cmake)
|
include(cmake/external_projects/flashmla.cmake)
|
||||||
include(cmake/external_projects/qutlass.cmake)
|
|
||||||
|
|
||||||
# vllm-flash-attn should be last as it overwrites some CMake functions
|
# vllm-flash-attn should be last as it overwrites some CMake functions
|
||||||
include(cmake/external_projects/vllm_flash_attn.cmake)
|
include(cmake/external_projects/vllm_flash_attn.cmake)
|
||||||
|
|||||||
@ -21,7 +21,6 @@ Join us at the [PyTorch Conference, October 22-23](https://events.linuxfoundatio
|
|||||||
|
|
||||||
*Latest News* 🔥
|
*Latest News* 🔥
|
||||||
|
|
||||||
- [2025/09] We hosted [vLLM Toronto Meetup](https://luma.com/e80e0ymm) focused on tackling inference at scale and speculative decoding with speakers from NVIDIA and Red Hat! Please find the meetup slides [here](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing).
|
|
||||||
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
|
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
|
||||||
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
|
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
|
||||||
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).
|
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).
|
||||||
@ -149,7 +148,6 @@ Compute Resources:
|
|||||||
- Trainy
|
- Trainy
|
||||||
- UC Berkeley
|
- UC Berkeley
|
||||||
- UC San Diego
|
- UC San Diego
|
||||||
- Volcengine
|
|
||||||
|
|
||||||
Slack Sponsor: Anyscale
|
Slack Sponsor: Anyscale
|
||||||
|
|
||||||
|
|||||||
@ -74,7 +74,7 @@ start_server() {
|
|||||||
local vllm_log=$4
|
local vllm_log=$4
|
||||||
local profile_dir=$5
|
local profile_dir=$5
|
||||||
|
|
||||||
pkill -if "vllm serve" || true
|
pkill -if vllm
|
||||||
|
|
||||||
# Define the common arguments as a bash array.
|
# Define the common arguments as a bash array.
|
||||||
# Each argument and its value are separate elements.
|
# Each argument and its value are separate elements.
|
||||||
@ -96,22 +96,17 @@ start_server() {
|
|||||||
# This correctly passes each element as a separate argument.
|
# This correctly passes each element as a separate argument.
|
||||||
if [[ -n "$profile_dir" ]]; then
|
if [[ -n "$profile_dir" ]]; then
|
||||||
# Start server with profiling enabled
|
# Start server with profiling enabled
|
||||||
VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir \
|
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir \
|
||||||
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
|
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
|
||||||
else
|
else
|
||||||
# Start server without profiling
|
# Start server without profiling
|
||||||
VLLM_SERVER_DEV_MODE=1 \
|
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 \
|
||||||
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
|
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
|
||||||
fi
|
fi
|
||||||
local server_pid=$!
|
|
||||||
|
|
||||||
# wait for 10 minutes...
|
# wait for 10 minutes...
|
||||||
server_started=0
|
server_started=0
|
||||||
for i in {1..60}; do
|
for i in {1..60}; do
|
||||||
# This line checks whether the server is still alive or not,
|
|
||||||
# since that we should always have permission to send signal to the server process.
|
|
||||||
kill -0 $server_pid 2> /dev/null || break
|
|
||||||
|
|
||||||
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
|
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
|
||||||
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
|
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
|
||||||
if [[ "$STATUS_CODE" -eq 200 ]]; then
|
if [[ "$STATUS_CODE" -eq 200 ]]; then
|
||||||
@ -123,7 +118,7 @@ start_server() {
|
|||||||
done
|
done
|
||||||
|
|
||||||
if (( ! server_started )); then
|
if (( ! server_started )); then
|
||||||
echo "server did not start within 10 minutes or crashed. Please check server log at $vllm_log".
|
echo "server did not start within 10 minutes. Please check server log at $vllm_log".
|
||||||
return 1
|
return 1
|
||||||
else
|
else
|
||||||
return 0
|
return 0
|
||||||
@ -139,7 +134,7 @@ run_benchmark() {
|
|||||||
echo "vllm_log: $vllm_log"
|
echo "vllm_log: $vllm_log"
|
||||||
echo
|
echo
|
||||||
rm -f $vllm_log
|
rm -f $vllm_log
|
||||||
pkill -if "vllm serve" || true
|
pkill -if vllm
|
||||||
|
|
||||||
echo "starting server..."
|
echo "starting server..."
|
||||||
# Call start_server without a profile_dir to avoid profiling overhead
|
# Call start_server without a profile_dir to avoid profiling overhead
|
||||||
@ -232,7 +227,7 @@ run_benchmark() {
|
|||||||
|
|
||||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
|
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
|
||||||
|
|
||||||
pkill -if "vllm serve" || true
|
pkill -if vllm
|
||||||
sleep 10
|
sleep 10
|
||||||
echo "===================="
|
echo "===================="
|
||||||
return 0
|
return 0
|
||||||
@ -308,6 +303,6 @@ if (( $(echo "$best_throughput > 0" | bc -l) )); then
|
|||||||
else
|
else
|
||||||
echo "No configuration met the latency requirements. Skipping final profiling run."
|
echo "No configuration met the latency requirements. Skipping final profiling run."
|
||||||
fi
|
fi
|
||||||
pkill -if "vllm serve" || true
|
pkill -if vllm
|
||||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH"
|
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH"
|
||||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH" >> "$RESULT"
|
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH" >> "$RESULT"
|
||||||
|
|||||||
@ -8,6 +8,7 @@ import sys
|
|||||||
import time
|
import time
|
||||||
import traceback
|
import traceback
|
||||||
from dataclasses import dataclass, field
|
from dataclasses import dataclass, field
|
||||||
|
from typing import Optional, Union
|
||||||
|
|
||||||
import aiohttp
|
import aiohttp
|
||||||
import huggingface_hub.constants
|
import huggingface_hub.constants
|
||||||
@ -27,13 +28,13 @@ class RequestFuncInput:
|
|||||||
prompt_len: int
|
prompt_len: int
|
||||||
output_len: int
|
output_len: int
|
||||||
model: str
|
model: str
|
||||||
model_name: str | None = None
|
model_name: Optional[str] = None
|
||||||
logprobs: int | None = None
|
logprobs: Optional[int] = None
|
||||||
extra_body: dict | None = None
|
extra_body: Optional[dict] = None
|
||||||
multi_modal_content: dict | list[dict] | None = None
|
multi_modal_content: Optional[dict | list[dict]] = None
|
||||||
ignore_eos: bool = False
|
ignore_eos: bool = False
|
||||||
language: str | None = None
|
language: Optional[str] = None
|
||||||
request_id: str | None = None
|
request_id: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@ -51,7 +52,7 @@ class RequestFuncOutput:
|
|||||||
|
|
||||||
async def async_request_tgi(
|
async def async_request_tgi(
|
||||||
request_func_input: RequestFuncInput,
|
request_func_input: RequestFuncInput,
|
||||||
pbar: tqdm | None = None,
|
pbar: Optional[tqdm] = None,
|
||||||
) -> RequestFuncOutput:
|
) -> RequestFuncOutput:
|
||||||
api_url = request_func_input.api_url
|
api_url = request_func_input.api_url
|
||||||
assert api_url.endswith("generate_stream")
|
assert api_url.endswith("generate_stream")
|
||||||
@ -132,7 +133,7 @@ async def async_request_tgi(
|
|||||||
|
|
||||||
async def async_request_trt_llm(
|
async def async_request_trt_llm(
|
||||||
request_func_input: RequestFuncInput,
|
request_func_input: RequestFuncInput,
|
||||||
pbar: tqdm | None = None,
|
pbar: Optional[tqdm] = None,
|
||||||
) -> RequestFuncOutput:
|
) -> RequestFuncOutput:
|
||||||
api_url = request_func_input.api_url
|
api_url = request_func_input.api_url
|
||||||
assert api_url.endswith("generate_stream")
|
assert api_url.endswith("generate_stream")
|
||||||
@ -203,7 +204,7 @@ async def async_request_trt_llm(
|
|||||||
|
|
||||||
async def async_request_deepspeed_mii(
|
async def async_request_deepspeed_mii(
|
||||||
request_func_input: RequestFuncInput,
|
request_func_input: RequestFuncInput,
|
||||||
pbar: tqdm | None = None,
|
pbar: Optional[tqdm] = None,
|
||||||
) -> RequestFuncOutput:
|
) -> RequestFuncOutput:
|
||||||
api_url = request_func_input.api_url
|
api_url = request_func_input.api_url
|
||||||
assert api_url.endswith(("completions", "profile")), (
|
assert api_url.endswith(("completions", "profile")), (
|
||||||
@ -266,7 +267,7 @@ async def async_request_deepspeed_mii(
|
|||||||
|
|
||||||
async def async_request_openai_completions(
|
async def async_request_openai_completions(
|
||||||
request_func_input: RequestFuncInput,
|
request_func_input: RequestFuncInput,
|
||||||
pbar: tqdm | None = None,
|
pbar: Optional[tqdm] = None,
|
||||||
) -> RequestFuncOutput:
|
) -> RequestFuncOutput:
|
||||||
api_url = request_func_input.api_url
|
api_url = request_func_input.api_url
|
||||||
assert api_url.endswith(("completions", "profile")), (
|
assert api_url.endswith(("completions", "profile")), (
|
||||||
@ -366,7 +367,7 @@ async def async_request_openai_completions(
|
|||||||
|
|
||||||
async def async_request_openai_chat_completions(
|
async def async_request_openai_chat_completions(
|
||||||
request_func_input: RequestFuncInput,
|
request_func_input: RequestFuncInput,
|
||||||
pbar: tqdm | None = None,
|
pbar: Optional[tqdm] = None,
|
||||||
) -> RequestFuncOutput:
|
) -> RequestFuncOutput:
|
||||||
api_url = request_func_input.api_url
|
api_url = request_func_input.api_url
|
||||||
assert api_url.endswith(("chat/completions", "profile")), (
|
assert api_url.endswith(("chat/completions", "profile")), (
|
||||||
@ -475,7 +476,7 @@ async def async_request_openai_chat_completions(
|
|||||||
|
|
||||||
async def async_request_openai_audio(
|
async def async_request_openai_audio(
|
||||||
request_func_input: RequestFuncInput,
|
request_func_input: RequestFuncInput,
|
||||||
pbar: tqdm | None = None,
|
pbar: Optional[tqdm] = None,
|
||||||
) -> RequestFuncOutput:
|
) -> RequestFuncOutput:
|
||||||
# Lazy import without PlaceholderModule to avoid vllm dep.
|
# Lazy import without PlaceholderModule to avoid vllm dep.
|
||||||
import soundfile
|
import soundfile
|
||||||
@ -609,7 +610,7 @@ def get_tokenizer(
|
|||||||
tokenizer_mode: str = "auto",
|
tokenizer_mode: str = "auto",
|
||||||
trust_remote_code: bool = False,
|
trust_remote_code: bool = False,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
) -> PreTrainedTokenizer | PreTrainedTokenizerFast:
|
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
|
||||||
if pretrained_model_name_or_path is not None and not os.path.exists(
|
if pretrained_model_name_or_path is not None and not os.path.exists(
|
||||||
pretrained_model_name_or_path
|
pretrained_model_name_or_path
|
||||||
):
|
):
|
||||||
|
|||||||
@ -2,9 +2,9 @@
|
|||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
import gc
|
import gc
|
||||||
|
|
||||||
from benchmark_utils import TimeCollector
|
|
||||||
from tabulate import tabulate
|
from tabulate import tabulate
|
||||||
|
|
||||||
|
from benchmark_utils import TimeCollector
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import FlexibleArgumentParser
|
||||||
from vllm.v1.core.block_pool import BlockPool
|
from vllm.v1.core.block_pool import BlockPool
|
||||||
|
|
||||||
|
|||||||
@ -1,31 +1,17 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
import gc
|
import gc
|
||||||
import time
|
|
||||||
from unittest import mock
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from benchmark_utils import TimeCollector
|
|
||||||
from tabulate import tabulate
|
from tabulate import tabulate
|
||||||
|
|
||||||
from vllm.config import (
|
from benchmark_utils import TimeCollector
|
||||||
CacheConfig,
|
from vllm.config import ModelConfig, SpeculativeConfig, VllmConfig
|
||||||
DeviceConfig,
|
|
||||||
LoadConfig,
|
|
||||||
ModelConfig,
|
|
||||||
ParallelConfig,
|
|
||||||
SchedulerConfig,
|
|
||||||
SpeculativeConfig,
|
|
||||||
VllmConfig,
|
|
||||||
)
|
|
||||||
from vllm.platforms import current_platform
|
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import FlexibleArgumentParser
|
||||||
from vllm.v1.spec_decode.ngram_proposer import NgramProposer
|
from vllm.v1.spec_decode.ngram_proposer import NgramProposer
|
||||||
from vllm.v1.worker.gpu_input_batch import InputBatch
|
|
||||||
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
|
|
||||||
|
|
||||||
|
|
||||||
def benchmark_propose(args):
|
def main(args):
|
||||||
rows = []
|
rows = []
|
||||||
for max_ngram in args.max_ngram:
|
for max_ngram in args.max_ngram:
|
||||||
collector = TimeCollector(TimeCollector.US)
|
collector = TimeCollector(TimeCollector.US)
|
||||||
@ -83,88 +69,10 @@ def benchmark_propose(args):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def benchmark_batched_propose(args):
|
|
||||||
NUM_SPECULATIVE_TOKENS_NGRAM = 10
|
|
||||||
PROMPT_LOOKUP_MIN = 5
|
|
||||||
PROMPT_LOOKUP_MAX = 15
|
|
||||||
MAX_MODEL_LEN = int(1e7)
|
|
||||||
DEVICE = current_platform.device_type
|
|
||||||
|
|
||||||
model_config = ModelConfig(model="facebook/opt-125m", runner="generate")
|
|
||||||
|
|
||||||
speculative_config = SpeculativeConfig(
|
|
||||||
target_model_config=model_config,
|
|
||||||
target_parallel_config=ParallelConfig(),
|
|
||||||
method="ngram",
|
|
||||||
num_speculative_tokens=NUM_SPECULATIVE_TOKENS_NGRAM,
|
|
||||||
prompt_lookup_max=PROMPT_LOOKUP_MAX,
|
|
||||||
prompt_lookup_min=PROMPT_LOOKUP_MIN,
|
|
||||||
)
|
|
||||||
|
|
||||||
vllm_config = VllmConfig(
|
|
||||||
model_config=model_config,
|
|
||||||
cache_config=CacheConfig(),
|
|
||||||
speculative_config=speculative_config,
|
|
||||||
device_config=DeviceConfig(device=current_platform.device_type),
|
|
||||||
parallel_config=ParallelConfig(),
|
|
||||||
load_config=LoadConfig(),
|
|
||||||
scheduler_config=SchedulerConfig(),
|
|
||||||
)
|
|
||||||
|
|
||||||
# monkey patch vllm.v1.worker.gpu_model_runner.get_pp_group
|
|
||||||
mock_pp_group = mock.MagicMock()
|
|
||||||
mock_pp_group.world_size = 1
|
|
||||||
with mock.patch(
|
|
||||||
"vllm.v1.worker.gpu_model_runner.get_pp_group", return_value=mock_pp_group
|
|
||||||
):
|
|
||||||
runner = GPUModelRunner(vllm_config, DEVICE)
|
|
||||||
|
|
||||||
# hack max model len
|
|
||||||
runner.max_model_len = MAX_MODEL_LEN
|
|
||||||
runner.drafter.max_model_len = MAX_MODEL_LEN
|
|
||||||
|
|
||||||
dummy_input_batch = InputBatch(
|
|
||||||
max_num_reqs=args.num_req,
|
|
||||||
max_model_len=MAX_MODEL_LEN,
|
|
||||||
max_num_batched_tokens=args.num_req * args.num_token,
|
|
||||||
device=DEVICE,
|
|
||||||
pin_memory=False,
|
|
||||||
vocab_size=256000,
|
|
||||||
block_sizes=[16],
|
|
||||||
)
|
|
||||||
dummy_input_batch._req_ids = list(str(id) for id in range(args.num_req))
|
|
||||||
dummy_input_batch.spec_decode_unsupported_reqs = ()
|
|
||||||
dummy_input_batch.num_tokens_no_spec = [args.num_token] * args.num_req
|
|
||||||
dummy_input_batch.token_ids_cpu = np.random.randint(
|
|
||||||
0, 20, (args.num_req, args.num_token)
|
|
||||||
)
|
|
||||||
|
|
||||||
runner.input_batch = dummy_input_batch
|
|
||||||
|
|
||||||
sampled_token_ids = [[0]] * args.num_req
|
|
||||||
|
|
||||||
print("Starting benchmark")
|
|
||||||
# first run is warmup so ignore it
|
|
||||||
for _ in range(args.num_iteration):
|
|
||||||
start = time.time()
|
|
||||||
runner.drafter.propose(
|
|
||||||
sampled_token_ids,
|
|
||||||
dummy_input_batch.req_ids,
|
|
||||||
dummy_input_batch.num_tokens_no_spec,
|
|
||||||
dummy_input_batch.token_ids_cpu,
|
|
||||||
dummy_input_batch.spec_decode_unsupported_reqs,
|
|
||||||
)
|
|
||||||
end = time.time()
|
|
||||||
print(f"Iteration time (s): {end - start}")
|
|
||||||
|
|
||||||
|
|
||||||
def invoke_main() -> None:
|
def invoke_main() -> None:
|
||||||
parser = FlexibleArgumentParser(
|
parser = FlexibleArgumentParser(
|
||||||
description="Benchmark the performance of N-gram speculative decode drafting"
|
description="Benchmark the performance of N-gram speculative decode drafting"
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
|
||||||
"--batched", action="store_true", help="consider time to prepare batch"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--num-iteration",
|
"--num-iteration",
|
||||||
type=int,
|
type=int,
|
||||||
@ -197,17 +105,8 @@ def invoke_main() -> None:
|
|||||||
help="Number of speculative tokens to generate",
|
help="Number of speculative tokens to generate",
|
||||||
)
|
)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
main(args)
|
||||||
if not args.batched:
|
|
||||||
benchmark_propose(args)
|
|
||||||
else:
|
|
||||||
benchmark_batched_propose(args)
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
# Example command lines:
|
|
||||||
# time python3 benchmarks/benchmark_ngram_proposer.py
|
|
||||||
# time python3 benchmarks/benchmark_ngram_proposer.py --batched --num-iteration 4 --num-token 1000000 --num-req 128
|
|
||||||
""" # noqa: E501
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
invoke_main() # pragma: no cover
|
invoke_main() # pragma: no cover
|
||||||
|
|||||||
@ -32,6 +32,7 @@ import dataclasses
|
|||||||
import json
|
import json
|
||||||
import random
|
import random
|
||||||
import time
|
import time
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
from transformers import PreTrainedTokenizerBase
|
from transformers import PreTrainedTokenizerBase
|
||||||
|
|
||||||
@ -79,7 +80,7 @@ def sample_requests_from_dataset(
|
|||||||
num_requests: int,
|
num_requests: int,
|
||||||
tokenizer: PreTrainedTokenizerBase,
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
input_length_range: tuple[int, int],
|
input_length_range: tuple[int, int],
|
||||||
fixed_output_len: int | None,
|
fixed_output_len: Optional[int],
|
||||||
) -> list[Request]:
|
) -> list[Request]:
|
||||||
if fixed_output_len is not None and fixed_output_len < 4:
|
if fixed_output_len is not None and fixed_output_len < 4:
|
||||||
raise ValueError("output_len too small")
|
raise ValueError("output_len too small")
|
||||||
@ -127,7 +128,7 @@ def sample_requests_from_random(
|
|||||||
num_requests: int,
|
num_requests: int,
|
||||||
tokenizer: PreTrainedTokenizerBase,
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
input_length_range: tuple[int, int],
|
input_length_range: tuple[int, int],
|
||||||
fixed_output_len: int | None,
|
fixed_output_len: Optional[int],
|
||||||
prefix_len: int,
|
prefix_len: int,
|
||||||
) -> list[Request]:
|
) -> list[Request]:
|
||||||
requests = []
|
requests = []
|
||||||
|
|||||||
@ -7,6 +7,7 @@ import dataclasses
|
|||||||
import json
|
import json
|
||||||
import random
|
import random
|
||||||
import time
|
import time
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
||||||
|
|
||||||
@ -23,7 +24,7 @@ def sample_requests(
|
|||||||
dataset_path: str,
|
dataset_path: str,
|
||||||
num_requests: int,
|
num_requests: int,
|
||||||
tokenizer: PreTrainedTokenizerBase,
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
fixed_output_len: int | None,
|
fixed_output_len: Optional[int],
|
||||||
) -> list[tuple[str, int, int, int]]:
|
) -> list[tuple[str, int, int, int]]:
|
||||||
if fixed_output_len is not None and fixed_output_len < 4:
|
if fixed_output_len is not None and fixed_output_len < 4:
|
||||||
raise ValueError("output_len too small")
|
raise ValueError("output_len too small")
|
||||||
|
|||||||
@ -31,19 +31,20 @@ import time
|
|||||||
import uuid
|
import uuid
|
||||||
import warnings
|
import warnings
|
||||||
from collections.abc import AsyncGenerator
|
from collections.abc import AsyncGenerator
|
||||||
from contextlib import nullcontext
|
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import datasets
|
import datasets
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
from tqdm.asyncio import tqdm
|
||||||
|
from transformers import PreTrainedTokenizerBase
|
||||||
|
|
||||||
from backend_request_func import (
|
from backend_request_func import (
|
||||||
ASYNC_REQUEST_FUNCS,
|
ASYNC_REQUEST_FUNCS,
|
||||||
RequestFuncInput,
|
RequestFuncInput,
|
||||||
RequestFuncOutput,
|
RequestFuncOutput,
|
||||||
)
|
)
|
||||||
from tqdm.asyncio import tqdm
|
|
||||||
from transformers import PreTrainedTokenizerBase
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||||
@ -316,7 +317,7 @@ def calculate_metrics(
|
|||||||
tokenizer: PreTrainedTokenizerBase,
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
selected_percentile_metrics: list[str],
|
selected_percentile_metrics: list[str],
|
||||||
selected_percentiles: list[float],
|
selected_percentiles: list[float],
|
||||||
goodput_config_dict: dict[str, float] | None = None,
|
goodput_config_dict: Optional[dict[str, float]] = None,
|
||||||
) -> tuple[BenchmarkMetrics, list[int]]:
|
) -> tuple[BenchmarkMetrics, list[int]]:
|
||||||
actual_output_lens: list[int] = []
|
actual_output_lens: list[int] = []
|
||||||
total_input = 0
|
total_input = 0
|
||||||
@ -436,9 +437,9 @@ async def benchmark(
|
|||||||
selected_percentile_metrics: list[str],
|
selected_percentile_metrics: list[str],
|
||||||
selected_percentiles: list[str],
|
selected_percentiles: list[str],
|
||||||
ignore_eos: bool,
|
ignore_eos: bool,
|
||||||
max_concurrency: int | None,
|
max_concurrency: Optional[int],
|
||||||
structured_output_ratio: float,
|
structured_output_ratio: float,
|
||||||
goodput_config_dict: dict[str, float] | None = None,
|
goodput_config_dict: Optional[dict[str, float]] = None,
|
||||||
):
|
):
|
||||||
if backend in ASYNC_REQUEST_FUNCS:
|
if backend in ASYNC_REQUEST_FUNCS:
|
||||||
request_func = ASYNC_REQUEST_FUNCS[backend]
|
request_func = ASYNC_REQUEST_FUNCS[backend]
|
||||||
@ -448,8 +449,7 @@ async def benchmark(
|
|||||||
def prepare_extra_body(request) -> dict:
|
def prepare_extra_body(request) -> dict:
|
||||||
extra_body = {}
|
extra_body = {}
|
||||||
# Add the schema to the extra_body
|
# Add the schema to the extra_body
|
||||||
extra_body["structured_outputs"] = {}
|
extra_body[request.structure_type] = request.schema
|
||||||
extra_body["structured_outputs"][request.structure_type] = request.schema
|
|
||||||
return extra_body
|
return extra_body
|
||||||
|
|
||||||
print("Starting initial single prompt test run...")
|
print("Starting initial single prompt test run...")
|
||||||
@ -502,9 +502,15 @@ async def benchmark(
|
|||||||
|
|
||||||
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
|
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
|
||||||
|
|
||||||
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else nullcontext()
|
# This can be used once the minimum Python version is 3.10 or higher,
|
||||||
|
# and it will simplify the code in limited_request_func.
|
||||||
|
# semaphore = (asyncio.Semaphore(max_concurrency)
|
||||||
|
# if max_concurrency else contextlib.nullcontext())
|
||||||
|
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None
|
||||||
|
|
||||||
async def limited_request_func(request_func_input, pbar):
|
async def limited_request_func(request_func_input, pbar):
|
||||||
|
if semaphore is None:
|
||||||
|
return await request_func(request_func_input=request_func_input, pbar=pbar)
|
||||||
async with semaphore:
|
async with semaphore:
|
||||||
return await request_func(request_func_input=request_func_input, pbar=pbar)
|
return await request_func(request_func_input=request_func_input, pbar=pbar)
|
||||||
|
|
||||||
@ -690,11 +696,11 @@ def evaluate(ret, args):
|
|||||||
return re.match(args.regex, actual) is not None
|
return re.match(args.regex, actual) is not None
|
||||||
|
|
||||||
def _eval_correctness(expected, actual):
|
def _eval_correctness(expected, actual):
|
||||||
if args.structure_type == "json":
|
if args.structure_type == "guided_json":
|
||||||
return _eval_correctness_json(expected, actual)
|
return _eval_correctness_json(expected, actual)
|
||||||
elif args.structure_type == "regex":
|
elif args.structure_type == "guided_regex":
|
||||||
return _eval_correctness_regex(expected, actual)
|
return _eval_correctness_regex(expected, actual)
|
||||||
elif args.structure_type == "choice":
|
elif args.structure_type == "guided_choice":
|
||||||
return _eval_correctness_choice(expected, actual)
|
return _eval_correctness_choice(expected, actual)
|
||||||
else:
|
else:
|
||||||
return None
|
return None
|
||||||
@ -774,18 +780,18 @@ def main(args: argparse.Namespace):
|
|||||||
)
|
)
|
||||||
|
|
||||||
if args.dataset == "grammar":
|
if args.dataset == "grammar":
|
||||||
args.structure_type = "grammar"
|
args.structure_type = "guided_grammar"
|
||||||
elif args.dataset == "regex":
|
elif args.dataset == "regex":
|
||||||
args.structure_type = "regex"
|
args.structure_type = "guided_regex"
|
||||||
elif args.dataset == "choice":
|
elif args.dataset == "choice":
|
||||||
args.structure_type = "choice"
|
args.structure_type = "guided_choice"
|
||||||
else:
|
else:
|
||||||
args.structure_type = "json"
|
args.structure_type = "guided_json"
|
||||||
|
|
||||||
if args.no_structured_output:
|
if args.no_structured_output:
|
||||||
args.structured_output_ratio = 0
|
args.structured_output_ratio = 0
|
||||||
if args.save_results:
|
if args.save_results:
|
||||||
result_file_name = f"{args.structured_output_ratio}so"
|
result_file_name = f"{args.structured_output_ratio}guided"
|
||||||
result_file_name += f"_{backend}"
|
result_file_name += f"_{backend}"
|
||||||
result_file_name += f"_{args.request_rate}qps"
|
result_file_name += f"_{args.request_rate}qps"
|
||||||
result_file_name += f"_{args.model.split('/')[-1]}"
|
result_file_name += f"_{args.model.split('/')[-1]}"
|
||||||
@ -903,13 +909,13 @@ def create_argument_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--tokenizer",
|
"--tokenizer",
|
||||||
type=str,
|
type=str,
|
||||||
help="Name or path of the tokenizer, if not using the default tokenizer.",
|
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--tokenizer-mode",
|
"--tokenizer-mode",
|
||||||
type=str,
|
type=str,
|
||||||
default="auto",
|
default="auto",
|
||||||
help="Name or path of the tokenizer, if not using the default tokenizer.",
|
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--num-prompts",
|
"--num-prompts",
|
||||||
|
|||||||
@ -6,7 +6,7 @@ import math
|
|||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
from types import TracebackType
|
from types import TracebackType
|
||||||
from typing import Any
|
from typing import Any, Optional, Union
|
||||||
|
|
||||||
|
|
||||||
def convert_to_pytorch_benchmark_format(
|
def convert_to_pytorch_benchmark_format(
|
||||||
@ -92,7 +92,7 @@ class TimeCollector:
|
|||||||
def __init__(self, scale: int) -> None:
|
def __init__(self, scale: int) -> None:
|
||||||
self.cnt: int = 0
|
self.cnt: int = 0
|
||||||
self._sum: int = 0
|
self._sum: int = 0
|
||||||
self._max: int | None = None
|
self._max: Optional[int] = None
|
||||||
self.scale = scale
|
self.scale = scale
|
||||||
self.start_time: int = time.monotonic_ns()
|
self.start_time: int = time.monotonic_ns()
|
||||||
|
|
||||||
@ -104,13 +104,13 @@ class TimeCollector:
|
|||||||
else:
|
else:
|
||||||
self._max = max(self._max, v)
|
self._max = max(self._max, v)
|
||||||
|
|
||||||
def avg(self) -> float | str:
|
def avg(self) -> Union[float, str]:
|
||||||
return self._sum * 1.0 / self.cnt / self.scale if self.cnt > 0 else "N/A"
|
return self._sum * 1.0 / self.cnt / self.scale if self.cnt > 0 else "N/A"
|
||||||
|
|
||||||
def max(self) -> float | str:
|
def max(self) -> Union[float, str]:
|
||||||
return self._max / self.scale if self._max else "N/A"
|
return self._max / self.scale if self._max else "N/A"
|
||||||
|
|
||||||
def dump_avg_max(self) -> list[float | str]:
|
def dump_avg_max(self) -> list[Union[float, str]]:
|
||||||
return [self.avg(), self.max()]
|
return [self.avg(), self.max()]
|
||||||
|
|
||||||
def __enter__(self) -> None:
|
def __enter__(self) -> None:
|
||||||
@ -118,8 +118,8 @@ class TimeCollector:
|
|||||||
|
|
||||||
def __exit__(
|
def __exit__(
|
||||||
self,
|
self,
|
||||||
exc_type: type[BaseException] | None,
|
exc_type: Optional[type[BaseException]],
|
||||||
exc_value: BaseException | None,
|
exc_value: Optional[BaseException],
|
||||||
exc_traceback: TracebackType | None,
|
exc_traceback: Optional[TracebackType],
|
||||||
) -> None:
|
) -> None:
|
||||||
self.collect(time.monotonic_ns() - self.start_time)
|
self.collect(time.monotonic_ns() - self.start_time)
|
||||||
|
|||||||
@ -6,7 +6,8 @@ import copy
|
|||||||
import itertools
|
import itertools
|
||||||
import pickle as pkl
|
import pickle as pkl
|
||||||
import time
|
import time
|
||||||
from collections.abc import Callable, Iterable
|
from collections.abc import Iterable
|
||||||
|
from typing import Callable
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.benchmark as TBenchmark
|
import torch.utils.benchmark as TBenchmark
|
||||||
|
|||||||
@ -6,7 +6,8 @@ import copy
|
|||||||
import itertools
|
import itertools
|
||||||
import pickle as pkl
|
import pickle as pkl
|
||||||
import time
|
import time
|
||||||
from collections.abc import Callable, Iterable
|
from collections.abc import Iterable
|
||||||
|
from typing import Callable, Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.benchmark as TBenchmark
|
import torch.utils.benchmark as TBenchmark
|
||||||
@ -16,7 +17,7 @@ from weight_shapes import WEIGHT_SHAPES
|
|||||||
|
|
||||||
from vllm import _custom_ops as ops
|
from vllm import _custom_ops as ops
|
||||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||||
w8a8_triton_block_scaled_mm,
|
w8a8_block_fp8_matmul,
|
||||||
)
|
)
|
||||||
from vllm.utils import FlexibleArgumentParser, cdiv
|
from vllm.utils import FlexibleArgumentParser, cdiv
|
||||||
|
|
||||||
@ -52,7 +53,7 @@ def bench_int8(
|
|||||||
n: int,
|
n: int,
|
||||||
label: str,
|
label: str,
|
||||||
sub_label: str,
|
sub_label: str,
|
||||||
bench_kernels: list[str] | None = None,
|
bench_kernels: Optional[list[str]] = None,
|
||||||
) -> Iterable[TMeasurement]:
|
) -> Iterable[TMeasurement]:
|
||||||
"""Benchmark INT8-based kernels."""
|
"""Benchmark INT8-based kernels."""
|
||||||
assert dtype == torch.int8
|
assert dtype == torch.int8
|
||||||
@ -107,7 +108,7 @@ def bench_fp8(
|
|||||||
n: int,
|
n: int,
|
||||||
label: str,
|
label: str,
|
||||||
sub_label: str,
|
sub_label: str,
|
||||||
bench_kernels: list[str] | None = None,
|
bench_kernels: Optional[list[str]] = None,
|
||||||
) -> Iterable[TMeasurement]:
|
) -> Iterable[TMeasurement]:
|
||||||
"""Benchmark FP8-based kernels."""
|
"""Benchmark FP8-based kernels."""
|
||||||
assert dtype == torch.float8_e4m3fn
|
assert dtype == torch.float8_e4m3fn
|
||||||
@ -157,7 +158,7 @@ def bench_fp8(
|
|||||||
"cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
|
"cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
|
||||||
a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)
|
a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)
|
||||||
),
|
),
|
||||||
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_triton_block_scaled_mm(
|
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_block_fp8_matmul(
|
||||||
a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)
|
a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)
|
||||||
),
|
),
|
||||||
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(
|
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(
|
||||||
@ -182,7 +183,7 @@ def bench(
|
|||||||
n: int,
|
n: int,
|
||||||
label: str,
|
label: str,
|
||||||
sub_label: str,
|
sub_label: str,
|
||||||
bench_kernels: list[str] | None = None,
|
bench_kernels: Optional[list[str]] = None,
|
||||||
) -> Iterable[TMeasurement]:
|
) -> Iterable[TMeasurement]:
|
||||||
if dtype == torch.int8:
|
if dtype == torch.int8:
|
||||||
return bench_int8(dtype, m, k, n, label, sub_label, bench_kernels)
|
return bench_int8(dtype, m, k, n, label, sub_label, bench_kernels)
|
||||||
@ -200,7 +201,7 @@ def print_timers(timers: Iterable[TMeasurement]):
|
|||||||
def run(
|
def run(
|
||||||
dtype: torch.dtype,
|
dtype: torch.dtype,
|
||||||
MKNs: Iterable[tuple[int, int, int]],
|
MKNs: Iterable[tuple[int, int, int]],
|
||||||
bench_kernels: list[str] | None = None,
|
bench_kernels: Optional[list[str]] = None,
|
||||||
) -> Iterable[TMeasurement]:
|
) -> Iterable[TMeasurement]:
|
||||||
results = []
|
results = []
|
||||||
for m, k, n in MKNs:
|
for m, k, n in MKNs:
|
||||||
|
|||||||
@ -55,7 +55,9 @@ benchmark() {
|
|||||||
output_len=$2
|
output_len=$2
|
||||||
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
|
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||||
|
-m vllm.entrypoints.openai.api_server \
|
||||||
|
--model $model \
|
||||||
--port 8100 \
|
--port 8100 \
|
||||||
--max-model-len 10000 \
|
--max-model-len 10000 \
|
||||||
--gpu-memory-utilization 0.6 \
|
--gpu-memory-utilization 0.6 \
|
||||||
@ -63,7 +65,9 @@ benchmark() {
|
|||||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||||
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
|
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||||
|
-m vllm.entrypoints.openai.api_server \
|
||||||
|
--model $model \
|
||||||
--port 8200 \
|
--port 8200 \
|
||||||
--max-model-len 10000 \
|
--max-model-len 10000 \
|
||||||
--gpu-memory-utilization 0.6 \
|
--gpu-memory-utilization 0.6 \
|
||||||
|
|||||||
@ -38,12 +38,16 @@ wait_for_server() {
|
|||||||
launch_chunked_prefill() {
|
launch_chunked_prefill() {
|
||||||
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||||
# disagg prefill
|
# disagg prefill
|
||||||
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
|
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||||
|
-m vllm.entrypoints.openai.api_server \
|
||||||
|
--model $model \
|
||||||
--port 8100 \
|
--port 8100 \
|
||||||
--max-model-len 10000 \
|
--max-model-len 10000 \
|
||||||
--enable-chunked-prefill \
|
--enable-chunked-prefill \
|
||||||
--gpu-memory-utilization 0.6 &
|
--gpu-memory-utilization 0.6 &
|
||||||
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
|
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||||
|
-m vllm.entrypoints.openai.api_server \
|
||||||
|
--model $model \
|
||||||
--port 8200 \
|
--port 8200 \
|
||||||
--max-model-len 10000 \
|
--max-model-len 10000 \
|
||||||
--enable-chunked-prefill \
|
--enable-chunked-prefill \
|
||||||
@ -58,14 +62,18 @@ launch_chunked_prefill() {
|
|||||||
launch_disagg_prefill() {
|
launch_disagg_prefill() {
|
||||||
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||||
# disagg prefill
|
# disagg prefill
|
||||||
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
|
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||||
|
-m vllm.entrypoints.openai.api_server \
|
||||||
|
--model $model \
|
||||||
--port 8100 \
|
--port 8100 \
|
||||||
--max-model-len 10000 \
|
--max-model-len 10000 \
|
||||||
--gpu-memory-utilization 0.6 \
|
--gpu-memory-utilization 0.6 \
|
||||||
--kv-transfer-config \
|
--kv-transfer-config \
|
||||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
|
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||||
|
-m vllm.entrypoints.openai.api_server \
|
||||||
|
--model $model \
|
||||||
--port 8200 \
|
--port 8200 \
|
||||||
--max-model-len 10000 \
|
--max-model-len 10000 \
|
||||||
--gpu-memory-utilization 0.6 \
|
--gpu-memory-utilization 0.6 \
|
||||||
|
|||||||
@ -3,9 +3,10 @@
|
|||||||
|
|
||||||
import pickle as pkl
|
import pickle as pkl
|
||||||
import time
|
import time
|
||||||
from collections.abc import Callable, Iterable
|
from collections.abc import Iterable
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from itertools import product
|
from itertools import product
|
||||||
|
from typing import Callable, Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.benchmark as TBenchmark
|
import torch.utils.benchmark as TBenchmark
|
||||||
@ -50,7 +51,7 @@ def get_bench_params() -> list[bench_params_t]:
|
|||||||
def unfused_int8_impl(
|
def unfused_int8_impl(
|
||||||
rms_norm_layer: RMSNorm,
|
rms_norm_layer: RMSNorm,
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
residual: torch.Tensor | None,
|
residual: Optional[torch.Tensor],
|
||||||
quant_dtype: torch.dtype,
|
quant_dtype: torch.dtype,
|
||||||
):
|
):
|
||||||
# Norm
|
# Norm
|
||||||
@ -67,7 +68,7 @@ def unfused_int8_impl(
|
|||||||
def unfused_fp8_impl(
|
def unfused_fp8_impl(
|
||||||
rms_norm_layer: RMSNorm,
|
rms_norm_layer: RMSNorm,
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
residual: torch.Tensor | None,
|
residual: Optional[torch.Tensor],
|
||||||
quant_dtype: torch.dtype,
|
quant_dtype: torch.dtype,
|
||||||
):
|
):
|
||||||
# Norm
|
# Norm
|
||||||
@ -84,7 +85,7 @@ def unfused_fp8_impl(
|
|||||||
def fused_impl(
|
def fused_impl(
|
||||||
rms_norm_layer: RMSNorm, # this stores the weights
|
rms_norm_layer: RMSNorm, # this stores the weights
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
residual: torch.Tensor | None,
|
residual: Optional[torch.Tensor],
|
||||||
quant_dtype: torch.dtype,
|
quant_dtype: torch.dtype,
|
||||||
):
|
):
|
||||||
out, _ = ops.rms_norm_dynamic_per_token_quant(
|
out, _ = ops.rms_norm_dynamic_per_token_quant(
|
||||||
|
|||||||
@ -1,191 +0,0 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
||||||
#
|
|
||||||
# Copyright (C) 2025 Roberto L. Castro (Roberto.LopezCastro@ist.ac.at).
|
|
||||||
# All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import copy
|
|
||||||
import itertools
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from compressed_tensors.transform.utils.hadamard import deterministic_hadamard_matrix
|
|
||||||
from weight_shapes import WEIGHT_SHAPES
|
|
||||||
|
|
||||||
from vllm._custom_ops import fusedQuantizeMx, matmul_mxf4_bf16_tn
|
|
||||||
from vllm.model_executor.layers.quantization.qutlass_utils import to_blocked
|
|
||||||
from vllm.triton_utils import triton
|
|
||||||
|
|
||||||
PROVIDER_CFGS = {
|
|
||||||
"torch-bf16": dict(enabled=True),
|
|
||||||
"mxfp4": dict(no_a_quant=False, enabled=True),
|
|
||||||
"mxfp4-noquant": dict(no_a_quant=True, enabled=True),
|
|
||||||
}
|
|
||||||
|
|
||||||
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
|
|
||||||
|
|
||||||
|
|
||||||
def get_hadamard_matrix(group_size: int, dtype: torch.dtype, device: torch.device):
|
|
||||||
return (
|
|
||||||
deterministic_hadamard_matrix(group_size, dtype=dtype, device=device)
|
|
||||||
* group_size**-0.5
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def _quant_weight_mxfp4(
|
|
||||||
b: torch.Tensor, forward_hadamard_matrix: torch.Tensor, device: str
|
|
||||||
):
|
|
||||||
weight_hf_e2m1, weight_hf_e8m0 = fusedQuantizeMx(
|
|
||||||
b, forward_hadamard_matrix, method="abs_max"
|
|
||||||
)
|
|
||||||
weight_hf_scale_block = to_blocked(weight_hf_e8m0, backend="triton")
|
|
||||||
return weight_hf_e2m1, weight_hf_scale_block
|
|
||||||
|
|
||||||
|
|
||||||
def build_mxfp4_runner(cfg, a, b, forward_hadamard_matrix, dtype, device):
|
|
||||||
weight_hf_e2m1, weight_hf_scale_block = _quant_weight_mxfp4(
|
|
||||||
b, forward_hadamard_matrix, device
|
|
||||||
)
|
|
||||||
alpha = torch.tensor([1.0], device="cuda")
|
|
||||||
|
|
||||||
if cfg["no_a_quant"]:
|
|
||||||
# Pre-quantize activation
|
|
||||||
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeMx(
|
|
||||||
a, forward_hadamard_matrix, method="abs_max"
|
|
||||||
)
|
|
||||||
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton")
|
|
||||||
|
|
||||||
def run():
|
|
||||||
return matmul_mxf4_bf16_tn(
|
|
||||||
input_hf_e2m1,
|
|
||||||
weight_hf_e2m1,
|
|
||||||
input_hf_scale_block,
|
|
||||||
weight_hf_scale_block,
|
|
||||||
alpha,
|
|
||||||
)
|
|
||||||
|
|
||||||
return run
|
|
||||||
|
|
||||||
# Quantize activation on-the-fly
|
|
||||||
def run():
|
|
||||||
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeMx(
|
|
||||||
a, forward_hadamard_matrix, method="abs_max"
|
|
||||||
)
|
|
||||||
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton")
|
|
||||||
return matmul_mxf4_bf16_tn(
|
|
||||||
input_hf_e2m1,
|
|
||||||
weight_hf_e2m1,
|
|
||||||
input_hf_scale_block,
|
|
||||||
weight_hf_scale_block,
|
|
||||||
alpha,
|
|
||||||
)
|
|
||||||
|
|
||||||
return run
|
|
||||||
|
|
||||||
|
|
||||||
@triton.testing.perf_report(
|
|
||||||
triton.testing.Benchmark(
|
|
||||||
x_names=["batch_size"],
|
|
||||||
x_vals=[
|
|
||||||
1,
|
|
||||||
4,
|
|
||||||
8,
|
|
||||||
16,
|
|
||||||
32,
|
|
||||||
64,
|
|
||||||
128,
|
|
||||||
256,
|
|
||||||
512,
|
|
||||||
1024,
|
|
||||||
2048,
|
|
||||||
4096,
|
|
||||||
8192,
|
|
||||||
16384,
|
|
||||||
24576,
|
|
||||||
32768,
|
|
||||||
],
|
|
||||||
x_log=False,
|
|
||||||
line_arg="provider",
|
|
||||||
line_vals=_enabled,
|
|
||||||
line_names=_enabled,
|
|
||||||
ylabel="TFLOP/s (larger is better)",
|
|
||||||
plot_name="BF16 vs MXFP4 GEMMs",
|
|
||||||
args={},
|
|
||||||
)
|
|
||||||
)
|
|
||||||
def benchmark(batch_size, provider, N, K, had_size):
|
|
||||||
M = batch_size
|
|
||||||
device = "cuda"
|
|
||||||
dtype = torch.bfloat16
|
|
||||||
|
|
||||||
a = torch.randn((M, K), device=device, dtype=dtype)
|
|
||||||
b = torch.randn((N, K), device=device, dtype=dtype)
|
|
||||||
forward_hadamard_matrix = get_hadamard_matrix(had_size, dtype, device)
|
|
||||||
|
|
||||||
quantiles = [0.5, 0.2, 0.8]
|
|
||||||
|
|
||||||
if provider == "torch-bf16":
|
|
||||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
|
||||||
lambda: torch.nn.functional.linear(a, b), rep=200, quantiles=quantiles
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
cfg = PROVIDER_CFGS[provider]
|
|
||||||
run_quant = build_mxfp4_runner(
|
|
||||||
cfg, a, b, forward_hadamard_matrix, dtype, device
|
|
||||||
)
|
|
||||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
|
||||||
lambda: run_quant(), rep=200, quantiles=quantiles
|
|
||||||
)
|
|
||||||
|
|
||||||
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
|
|
||||||
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_shapes(args):
|
|
||||||
out = []
|
|
||||||
for model, tp_size in itertools.product(args.models, args.tp_sizes):
|
|
||||||
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
|
|
||||||
KN[tp_dim] //= tp_size
|
|
||||||
KN.append(model)
|
|
||||||
out.append(KN)
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--models",
|
|
||||||
nargs="+",
|
|
||||||
type=str,
|
|
||||||
default=["meta-llama/Llama-3.3-70B-Instruct"],
|
|
||||||
choices=list(WEIGHT_SHAPES.keys()),
|
|
||||||
)
|
|
||||||
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
for K, N, model in prepare_shapes(args):
|
|
||||||
for had_size in [32, 64, 128]:
|
|
||||||
print(f"{model}, N={N} K={K}, HAD={had_size}, BF16 vs MXFP4 GEMMs TFLOP/s:")
|
|
||||||
benchmark.run(
|
|
||||||
print_data=True,
|
|
||||||
show_plots=True,
|
|
||||||
save_path=f"bench_mxfp4_res_n{N}_k{K}",
|
|
||||||
N=N,
|
|
||||||
K=K,
|
|
||||||
had_size=had_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
print("Benchmark finished!")
|
|
||||||
@ -3,7 +3,6 @@
|
|||||||
import argparse
|
import argparse
|
||||||
import copy
|
import copy
|
||||||
import itertools
|
import itertools
|
||||||
import os
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from weight_shapes import WEIGHT_SHAPES
|
from weight_shapes import WEIGHT_SHAPES
|
||||||
@ -24,45 +23,21 @@ PROVIDER_CFGS = {
|
|||||||
"torch-bf16": dict(enabled=True),
|
"torch-bf16": dict(enabled=True),
|
||||||
"nvfp4": dict(no_a_quant=False, enabled=True),
|
"nvfp4": dict(no_a_quant=False, enabled=True),
|
||||||
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
|
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
|
||||||
"fbgemm-nvfp4": dict(fbgemm=True, no_a_quant=False, enabled=True),
|
|
||||||
"fbgemm-nvfp4-noquant": dict(fbgemm=True, no_a_quant=True, enabled=True),
|
|
||||||
}
|
}
|
||||||
|
|
||||||
_needs_fbgemm = any(
|
|
||||||
v.get("fbgemm", False) for v in PROVIDER_CFGS.values() if v.get("enabled", False)
|
|
||||||
)
|
|
||||||
if _needs_fbgemm:
|
|
||||||
try:
|
|
||||||
from fbgemm_gpu.experimental.gemm.triton_gemm.fp4_quantize import (
|
|
||||||
triton_scale_nvfp4_quant,
|
|
||||||
)
|
|
||||||
except ImportError:
|
|
||||||
print(
|
|
||||||
"WARNING: FBGEMM providers are enabled but fbgemm_gpu is not installed. "
|
|
||||||
"These providers will be skipped. Please install fbgemm_gpu with: "
|
|
||||||
"'pip install fbgemm-gpu-genai' to run them."
|
|
||||||
)
|
|
||||||
# Disable FBGEMM providers so the benchmark can run.
|
|
||||||
for cfg in PROVIDER_CFGS.values():
|
|
||||||
if cfg.get("fbgemm"):
|
|
||||||
cfg["enabled"] = False
|
|
||||||
|
|
||||||
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
|
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
|
||||||
|
|
||||||
|
|
||||||
def _quant_weight_nvfp4(b: torch.Tensor, device: str, cfg):
|
def _quant_weight_nvfp4(b: torch.Tensor, device: str):
|
||||||
# Compute global scale for weight
|
# Compute global scale for weight
|
||||||
b_amax = torch.abs(b).max().to(torch.float32)
|
b_amax = torch.abs(b).max().to(torch.float32)
|
||||||
b_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
|
b_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
|
||||||
if "fbgemm" in cfg and cfg["fbgemm"]:
|
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
|
||||||
b_fp4, scale_b_fp4 = triton_scale_nvfp4_quant(b, b_global_scale)
|
|
||||||
else:
|
|
||||||
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
|
|
||||||
return b_fp4, scale_b_fp4, b_global_scale
|
return b_fp4, scale_b_fp4, b_global_scale
|
||||||
|
|
||||||
|
|
||||||
def build_nvfp4_runner(cfg, a, b, dtype, device):
|
def build_nvfp4_runner(cfg, a, b, dtype, device):
|
||||||
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device, cfg)
|
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device)
|
||||||
|
|
||||||
# Compute global scale for activation
|
# Compute global scale for activation
|
||||||
# NOTE: This is generally provided ahead-of-time by the model checkpoint.
|
# NOTE: This is generally provided ahead-of-time by the model checkpoint.
|
||||||
@ -71,35 +46,6 @@ def build_nvfp4_runner(cfg, a, b, dtype, device):
|
|||||||
|
|
||||||
# Alpha for the GEMM operation
|
# Alpha for the GEMM operation
|
||||||
alpha = 1.0 / (a_global_scale * b_global_scale)
|
alpha = 1.0 / (a_global_scale * b_global_scale)
|
||||||
if "fbgemm" in cfg and cfg["fbgemm"]:
|
|
||||||
if cfg["no_a_quant"]:
|
|
||||||
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
|
|
||||||
|
|
||||||
def run():
|
|
||||||
return torch.ops.fbgemm.f4f4bf16(
|
|
||||||
a_fp4,
|
|
||||||
b_fp4,
|
|
||||||
scale_a_fp4,
|
|
||||||
scale_b_fp4,
|
|
||||||
global_scale=alpha,
|
|
||||||
use_mx=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
return run
|
|
||||||
else:
|
|
||||||
|
|
||||||
def run():
|
|
||||||
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
|
|
||||||
return torch.ops.fbgemm.f4f4bf16(
|
|
||||||
a_fp4,
|
|
||||||
b_fp4,
|
|
||||||
scale_a_fp4,
|
|
||||||
scale_b_fp4,
|
|
||||||
global_scale=alpha,
|
|
||||||
use_mx=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
return run
|
|
||||||
|
|
||||||
if cfg["no_a_quant"]:
|
if cfg["no_a_quant"]:
|
||||||
# Pre-quantize activation
|
# Pre-quantize activation
|
||||||
@ -184,13 +130,10 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
for K, N, model in prepare_shapes(args):
|
for K, N, model in prepare_shapes(args):
|
||||||
print(f"{model}, N={N} K={K}, BF16 vs NVFP4 GEMMs TFLOP/s:")
|
print(f"{model}, N={N} K={K}, BF16 vs NVFP4 GEMMs TFLOP/s:")
|
||||||
save_dir = f"bench_nvfp4_res_n{N}_k{K}"
|
|
||||||
os.makedirs(save_dir, exist_ok=True)
|
|
||||||
|
|
||||||
benchmark.run(
|
benchmark.run(
|
||||||
print_data=True,
|
print_data=True,
|
||||||
show_plots=True,
|
show_plots=True,
|
||||||
save_path=save_dir,
|
save_path=f"bench_nvfp4_res_n{N}_k{K}",
|
||||||
N=N,
|
N=N,
|
||||||
K=K,
|
K=K,
|
||||||
)
|
)
|
||||||
|
|||||||
@ -1,207 +0,0 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
||||||
#
|
|
||||||
# Copyright (C) 2025 Roberto L. Castro (Roberto.LopezCastro@ist.ac.at).
|
|
||||||
# All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import copy
|
|
||||||
import itertools
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from compressed_tensors.transform.utils.hadamard import deterministic_hadamard_matrix
|
|
||||||
from weight_shapes import WEIGHT_SHAPES
|
|
||||||
|
|
||||||
from vllm import _custom_ops as ops # use existing nvfp4 gemm in vllm
|
|
||||||
from vllm._custom_ops import fusedQuantizeNv
|
|
||||||
from vllm.model_executor.layers.quantization.qutlass_utils import to_blocked
|
|
||||||
from vllm.triton_utils import triton
|
|
||||||
|
|
||||||
PROVIDER_CFGS = {
|
|
||||||
"torch-bf16": dict(enabled=True),
|
|
||||||
"nvfp4": dict(no_a_quant=False, enabled=True),
|
|
||||||
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
|
|
||||||
}
|
|
||||||
|
|
||||||
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
|
|
||||||
|
|
||||||
|
|
||||||
def get_hadamard_matrix(group_size: int, dtype: torch.dtype, device: torch.device):
|
|
||||||
return (
|
|
||||||
deterministic_hadamard_matrix(group_size, dtype=dtype, device=device)
|
|
||||||
* group_size**-0.5
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def _quant_weight_nvfp4(
|
|
||||||
b: torch.Tensor,
|
|
||||||
forward_hadamard_matrix: torch.Tensor,
|
|
||||||
global_scale: torch.Tensor,
|
|
||||||
device: str,
|
|
||||||
M: int,
|
|
||||||
N: int,
|
|
||||||
K: int,
|
|
||||||
):
|
|
||||||
weight_hf_e2m1, weight_hf_e8m0 = fusedQuantizeNv(
|
|
||||||
b, forward_hadamard_matrix, global_scale
|
|
||||||
)
|
|
||||||
weight_hf_scale_block = to_blocked(weight_hf_e8m0, backend="triton").view(
|
|
||||||
-1, K // 16
|
|
||||||
)
|
|
||||||
return weight_hf_e2m1, weight_hf_scale_block
|
|
||||||
|
|
||||||
|
|
||||||
def build_nvfp4_runner(cfg, a, b, forward_hadamard_matrix, dtype, device, M, N, K):
|
|
||||||
alpha = torch.tensor([1.0], device="cuda")
|
|
||||||
global_scale = torch.tensor([1.0], device="cuda")
|
|
||||||
weight_hf_e2m1, weight_hf_scale_block = _quant_weight_nvfp4(
|
|
||||||
b, forward_hadamard_matrix, global_scale, device, M, N, K
|
|
||||||
)
|
|
||||||
|
|
||||||
if cfg["no_a_quant"]:
|
|
||||||
# Pre-quantize activation
|
|
||||||
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeNv(
|
|
||||||
a, forward_hadamard_matrix, global_scale
|
|
||||||
)
|
|
||||||
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton").view(
|
|
||||||
-1, K // 16
|
|
||||||
)
|
|
||||||
|
|
||||||
def run():
|
|
||||||
return ops.cutlass_scaled_fp4_mm(
|
|
||||||
input_hf_e2m1,
|
|
||||||
weight_hf_e2m1,
|
|
||||||
input_hf_scale_block,
|
|
||||||
weight_hf_scale_block,
|
|
||||||
alpha,
|
|
||||||
torch.bfloat16,
|
|
||||||
)
|
|
||||||
|
|
||||||
return run
|
|
||||||
|
|
||||||
# Quantize activation on-the-fly
|
|
||||||
def run():
|
|
||||||
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeNv(
|
|
||||||
a, forward_hadamard_matrix, global_scale
|
|
||||||
)
|
|
||||||
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton").view(
|
|
||||||
-1, K // 16
|
|
||||||
)
|
|
||||||
return ops.cutlass_scaled_fp4_mm(
|
|
||||||
input_hf_e2m1,
|
|
||||||
weight_hf_e2m1,
|
|
||||||
input_hf_scale_block,
|
|
||||||
weight_hf_scale_block,
|
|
||||||
alpha,
|
|
||||||
torch.bfloat16,
|
|
||||||
)
|
|
||||||
|
|
||||||
return run
|
|
||||||
|
|
||||||
|
|
||||||
@triton.testing.perf_report(
|
|
||||||
triton.testing.Benchmark(
|
|
||||||
x_names=["batch_size"],
|
|
||||||
x_vals=[
|
|
||||||
1,
|
|
||||||
4,
|
|
||||||
8,
|
|
||||||
16,
|
|
||||||
32,
|
|
||||||
64,
|
|
||||||
128,
|
|
||||||
256,
|
|
||||||
512,
|
|
||||||
1024,
|
|
||||||
2048,
|
|
||||||
4096,
|
|
||||||
8192,
|
|
||||||
16384,
|
|
||||||
24576,
|
|
||||||
32768,
|
|
||||||
],
|
|
||||||
x_log=False,
|
|
||||||
line_arg="provider",
|
|
||||||
line_vals=_enabled,
|
|
||||||
line_names=_enabled,
|
|
||||||
ylabel="TFLOP/s (larger is better)",
|
|
||||||
plot_name="BF16 vs NVFP4 GEMMs",
|
|
||||||
args={},
|
|
||||||
)
|
|
||||||
)
|
|
||||||
def benchmark(batch_size, provider, N, K, had_size):
|
|
||||||
M = batch_size
|
|
||||||
device = "cuda"
|
|
||||||
dtype = torch.bfloat16
|
|
||||||
|
|
||||||
a = torch.randn((M, K), device=device, dtype=dtype)
|
|
||||||
b = torch.randn((N, K), device=device, dtype=dtype)
|
|
||||||
forward_hadamard_matrix = get_hadamard_matrix(had_size, dtype, device)
|
|
||||||
|
|
||||||
quantiles = [0.5, 0.2, 0.8]
|
|
||||||
|
|
||||||
if provider == "torch-bf16":
|
|
||||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
|
||||||
lambda: torch.nn.functional.linear(a, b), rep=200, quantiles=quantiles
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
cfg = PROVIDER_CFGS[provider]
|
|
||||||
run_quant = build_nvfp4_runner(
|
|
||||||
cfg, a, b, forward_hadamard_matrix, dtype, device, M, N, K
|
|
||||||
)
|
|
||||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
|
||||||
lambda: run_quant(), rep=200, quantiles=quantiles
|
|
||||||
)
|
|
||||||
|
|
||||||
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
|
|
||||||
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_shapes(args):
|
|
||||||
out = []
|
|
||||||
for model, tp_size in itertools.product(args.models, args.tp_sizes):
|
|
||||||
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
|
|
||||||
KN[tp_dim] //= tp_size
|
|
||||||
KN.append(model)
|
|
||||||
out.append(KN)
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--models",
|
|
||||||
nargs="+",
|
|
||||||
type=str,
|
|
||||||
default=["meta-llama/Llama-3.3-70B-Instruct"],
|
|
||||||
choices=list(WEIGHT_SHAPES.keys()),
|
|
||||||
)
|
|
||||||
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
for K, N, model in prepare_shapes(args):
|
|
||||||
for had_size in [16, 32, 64, 128]:
|
|
||||||
print(f"{model}, N={N} K={K}, HAD={had_size}, BF16 vs NVFP4 GEMMs TFLOP/s:")
|
|
||||||
benchmark.run(
|
|
||||||
print_data=True,
|
|
||||||
show_plots=True,
|
|
||||||
save_path=f"bench_nvfp4_res_n{N}_k{K}",
|
|
||||||
N=N,
|
|
||||||
K=K,
|
|
||||||
had_size=had_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
print("Benchmark finished!")
|
|
||||||
@ -1,7 +1,7 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
import itertools
|
import itertools
|
||||||
from collections.abc import Callable
|
from typing import Callable
|
||||||
from unittest.mock import patch
|
from unittest.mock import patch
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@ -10,8 +10,7 @@ import torch
|
|||||||
from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
|
from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
|
||||||
from vllm.model_executor.layers.quantization.utils.quant_utils import GroupShape
|
from vllm.model_executor.layers.quantization.utils.quant_utils import GroupShape
|
||||||
from vllm.triton_utils import triton
|
from vllm.triton_utils import triton
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
|
||||||
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
|
|
||||||
|
|
||||||
|
|
||||||
def with_triton_mode(fn):
|
def with_triton_mode(fn):
|
||||||
@ -52,7 +51,7 @@ def calculate_diff(
|
|||||||
):
|
):
|
||||||
"""Calculate the difference between Inductor and CUDA implementations."""
|
"""Calculate the difference between Inductor and CUDA implementations."""
|
||||||
device = torch.device("cuda")
|
device = torch.device("cuda")
|
||||||
x = torch.randn((batch_size, hidden_size), dtype=dtype, device=device)
|
x = torch.rand((batch_size * hidden_size, 4096), dtype=dtype, device=device)
|
||||||
|
|
||||||
quant_fp8 = QuantFP8(False, group_shape, column_major_scales=False)
|
quant_fp8 = QuantFP8(False, group_shape, column_major_scales=False)
|
||||||
|
|
||||||
@ -60,25 +59,23 @@ def calculate_diff(
|
|||||||
torch_eager_out, torch_eager_scale = quant_fp8.forward_native(x)
|
torch_eager_out, torch_eager_scale = quant_fp8.forward_native(x)
|
||||||
cuda_out, cuda_scale = quant_fp8.forward_cuda(x)
|
cuda_out, cuda_scale = quant_fp8.forward_cuda(x)
|
||||||
|
|
||||||
try:
|
out_allclose = lambda o1, o2: torch.allclose(
|
||||||
torch.testing.assert_close(
|
o1.to(torch.float32),
|
||||||
cuda_out.to(torch.float32),
|
o2.to(torch.float32),
|
||||||
torch_out.to(torch.float32),
|
rtol=1e-3,
|
||||||
rtol=1e-3,
|
atol=1e-5,
|
||||||
atol=1e-5,
|
)
|
||||||
)
|
scale_allclose = lambda s1, s2: torch.allclose(s1, s2, rtol=1e-3, atol=1e-5)
|
||||||
torch.testing.assert_close(cuda_scale, torch_scale, rtol=1e-3, atol=1e-5)
|
|
||||||
torch.testing.assert_close(
|
if (
|
||||||
cuda_out.to(torch.float32),
|
out_allclose(cuda_out, torch_out)
|
||||||
torch_eager_out.to(torch.float32),
|
and scale_allclose(cuda_scale, torch_scale)
|
||||||
rtol=1e-3,
|
and out_allclose(cuda_out, torch_eager_out)
|
||||||
atol=1e-5,
|
and scale_allclose(cuda_scale, torch_eager_scale)
|
||||||
)
|
):
|
||||||
torch.testing.assert_close(cuda_scale, torch_eager_scale, rtol=1e-3, atol=1e-5)
|
|
||||||
print("✅ All implementations match")
|
print("✅ All implementations match")
|
||||||
except AssertionError as e:
|
else:
|
||||||
print("❌ Implementations differ")
|
print("❌ Implementations differ")
|
||||||
print(e)
|
|
||||||
|
|
||||||
|
|
||||||
configs = []
|
configs = []
|
||||||
@ -94,7 +91,7 @@ def benchmark_quantization(
|
|||||||
):
|
):
|
||||||
device = torch.device("cuda")
|
device = torch.device("cuda")
|
||||||
|
|
||||||
x = torch.randn(batch_size, hidden_size, device=device, dtype=dtype)
|
x = torch.randn(batch_size * hidden_size, 4096, device=device, dtype=dtype)
|
||||||
|
|
||||||
quantiles = [0.5, 0.2, 0.8]
|
quantiles = [0.5, 0.2, 0.8]
|
||||||
quant_fp8 = QuantFP8(False, group_shape, column_major_scales=col_major)
|
quant_fp8 = QuantFP8(False, group_shape, column_major_scales=col_major)
|
||||||
@ -160,21 +157,21 @@ if __name__ == "__main__":
|
|||||||
)
|
)
|
||||||
parser.add_argument("-c", "--check", action="store_true")
|
parser.add_argument("-c", "--check", action="store_true")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="bfloat16"
|
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="half"
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--hidden-sizes",
|
"--hidden-sizes",
|
||||||
type=int,
|
type=int,
|
||||||
nargs="+",
|
nargs="+",
|
||||||
default=[896, 1024, 2048, 4096, 7168],
|
default=None,
|
||||||
help="Hidden sizes to benchmark",
|
help="Hidden sizes to benchmark (default: 1,16,64,128,256,512,1024,2048,4096)",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--batch-sizes",
|
"--batch-sizes",
|
||||||
type=int,
|
type=int,
|
||||||
nargs="+",
|
nargs="+",
|
||||||
default=[1, 16, 128, 512, 1024],
|
default=None,
|
||||||
help="Batch sizes to benchmark",
|
help="Batch sizes to benchmark (default: 1,16,32,64,128)",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--group-sizes",
|
"--group-sizes",
|
||||||
@ -195,8 +192,8 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
dtype = STR_DTYPE_TO_TORCH_DTYPE[args.dtype]
|
dtype = STR_DTYPE_TO_TORCH_DTYPE[args.dtype]
|
||||||
|
|
||||||
hidden_sizes = args.hidden_sizes
|
hidden_sizes = args.hidden_sizes or [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
|
||||||
batch_sizes = args.batch_sizes
|
batch_sizes = args.batch_sizes or [1, 16, 32, 64, 128]
|
||||||
|
|
||||||
if args.group_sizes is not None:
|
if args.group_sizes is not None:
|
||||||
group_shapes = []
|
group_shapes = []
|
||||||
|
|||||||
@ -10,8 +10,7 @@ import vllm.model_executor.layers.activation # noqa F401
|
|||||||
from vllm.model_executor.custom_op import CustomOp
|
from vllm.model_executor.custom_op import CustomOp
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.triton_utils import triton
|
from vllm.triton_utils import triton
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
|
||||||
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
|
|
||||||
|
|
||||||
batch_size_range = [1, 16, 32, 64, 128]
|
batch_size_range = [1, 16, 32, 64, 128]
|
||||||
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
|
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
|
||||||
|
|||||||
@ -1,406 +0,0 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
||||||
"""
|
|
||||||
Benchmark the performance of the cutlass_moe_fp8 kernel vs the triton_moe
|
|
||||||
kernel. Both kernels take in fp8 quantized weights and 16-bit activations,
|
|
||||||
but use different quantization strategies and backends.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import nvtx
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from vllm import _custom_ops as ops
|
|
||||||
from vllm.model_executor.layers.fused_moe.config import fp8_w8a8_moe_quant_config
|
|
||||||
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
|
|
||||||
from vllm.model_executor.layers.fused_moe.fused_moe import fused_experts, fused_topk
|
|
||||||
from vllm.platforms import current_platform
|
|
||||||
from vllm.utils import FlexibleArgumentParser
|
|
||||||
|
|
||||||
# Weight shapes for different models: [num_experts, topk, hidden_size,
|
|
||||||
# intermediate_size]
|
|
||||||
WEIGHT_SHAPES_MOE = {
|
|
||||||
"mixtral-8x7b": [
|
|
||||||
[8, 2, 4096, 14336],
|
|
||||||
],
|
|
||||||
"deepseek-v2": [
|
|
||||||
[160, 6, 5120, 12288],
|
|
||||||
],
|
|
||||||
"custom-small": [
|
|
||||||
[8, 2, 2048, 7168],
|
|
||||||
],
|
|
||||||
"glm45-fp8": [
|
|
||||||
[128, 8, 4096, 1408],
|
|
||||||
],
|
|
||||||
"Llama-4-Maverick-17B-128E-Instruct-FP8": [
|
|
||||||
[128, 1, 5120, 8192],
|
|
||||||
],
|
|
||||||
}
|
|
||||||
|
|
||||||
DEFAULT_MODELS = [
|
|
||||||
"mixtral-8x7b",
|
|
||||||
]
|
|
||||||
|
|
||||||
DEFAULT_BATCH_SIZES = [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
|
|
||||||
DEFAULT_TP_SIZES = [1]
|
|
||||||
|
|
||||||
PER_ACT_TOKEN_OPTS = [False, True]
|
|
||||||
PER_OUT_CH_OPTS = [False, True]
|
|
||||||
|
|
||||||
FP8_DTYPE = current_platform.fp8_dtype()
|
|
||||||
|
|
||||||
|
|
||||||
def bench_run(
|
|
||||||
results: list,
|
|
||||||
model: str,
|
|
||||||
num_experts: int,
|
|
||||||
topk: int,
|
|
||||||
per_act_token: bool,
|
|
||||||
per_out_ch: bool,
|
|
||||||
mkn: tuple[int, int, int],
|
|
||||||
):
|
|
||||||
(m, k, n) = mkn
|
|
||||||
|
|
||||||
dtype = torch.half
|
|
||||||
device = "cuda"
|
|
||||||
|
|
||||||
# Create input activations
|
|
||||||
a = torch.randn((m, k), device=device, dtype=dtype) / 10
|
|
||||||
|
|
||||||
# Create weights
|
|
||||||
w1 = torch.randn((num_experts, 2 * n, k), device=device, dtype=dtype) / 10
|
|
||||||
w2 = torch.randn((num_experts, k, n), device=device, dtype=dtype) / 10
|
|
||||||
|
|
||||||
# Create FP8 quantized weights and scales for both kernels
|
|
||||||
w1_fp8q = torch.empty((num_experts, 2 * n, k), device=device, dtype=FP8_DTYPE)
|
|
||||||
w2_fp8q = torch.empty((num_experts, k, n), device=device, dtype=FP8_DTYPE)
|
|
||||||
|
|
||||||
# Create scales based on quantization strategy
|
|
||||||
if per_out_ch:
|
|
||||||
# Per-channel quantization
|
|
||||||
w1_scale = torch.empty(
|
|
||||||
(num_experts, 2 * n, 1), device=device, dtype=torch.float32
|
|
||||||
)
|
|
||||||
w2_scale = torch.empty((num_experts, k, 1), device=device, dtype=torch.float32)
|
|
||||||
else:
|
|
||||||
# Per-tensor quantization
|
|
||||||
w1_scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
|
|
||||||
w2_scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
|
|
||||||
|
|
||||||
# Quantize weights
|
|
||||||
for expert in range(num_experts):
|
|
||||||
if per_out_ch:
|
|
||||||
# Per-channel quantization - not yet implemented properly
|
|
||||||
# For now, fall back to per-tensor quantization
|
|
||||||
w1_fp8q[expert], w1_scale_temp = ops.scaled_fp8_quant(w1[expert])
|
|
||||||
w2_fp8q[expert], w2_scale_temp = ops.scaled_fp8_quant(w2[expert])
|
|
||||||
# Expand scalar scales to the expected per-channel shape
|
|
||||||
w1_scale[expert] = w1_scale_temp.expand(2 * n, 1)
|
|
||||||
w2_scale[expert] = w2_scale_temp.expand(k, 1)
|
|
||||||
else:
|
|
||||||
# Per-tensor quantization
|
|
||||||
w1_fp8q[expert], w1_scale_temp = ops.scaled_fp8_quant(w1[expert])
|
|
||||||
w2_fp8q[expert], w2_scale_temp = ops.scaled_fp8_quant(w2[expert])
|
|
||||||
# Store scalar scales in [1, 1] tensors
|
|
||||||
w1_scale[expert, 0, 0] = w1_scale_temp
|
|
||||||
w2_scale[expert, 0, 0] = w2_scale_temp
|
|
||||||
|
|
||||||
# Prepare weights for CUTLASS (no transpose needed)
|
|
||||||
w1_fp8q_cutlass = w1_fp8q # Keep original [E, 2N, K]
|
|
||||||
w2_fp8q_cutlass = w2_fp8q # Keep original [E, K, N]
|
|
||||||
|
|
||||||
# Create router scores and get topk
|
|
||||||
score = torch.randn((m, num_experts), device=device, dtype=dtype)
|
|
||||||
topk_weights, topk_ids, _ = fused_topk(a, score, topk, renormalize=False)
|
|
||||||
|
|
||||||
# WORKAROUND: CUTLASS MoE FP8 has issues with per-token quantization
|
|
||||||
# Force per-tensor quantization for all cases to match working e2e setup
|
|
||||||
a1_scale = torch.full((), 1e-2, device=device, dtype=torch.float32)
|
|
||||||
a2_scale = torch.full((), 1e-2, device=device, dtype=torch.float32)
|
|
||||||
|
|
||||||
# Force per-tensor quantization for all cases
|
|
||||||
per_act_token = False
|
|
||||||
|
|
||||||
# Create stride tensors for CUTLASS
|
|
||||||
ab_strides1 = torch.full((num_experts,), k, dtype=torch.int64, device=device)
|
|
||||||
ab_strides2 = torch.full((num_experts,), n, dtype=torch.int64, device=device)
|
|
||||||
c_strides1 = torch.full((num_experts,), 2 * n, dtype=torch.int64, device=device)
|
|
||||||
c_strides2 = torch.full((num_experts,), k, dtype=torch.int64, device=device)
|
|
||||||
|
|
||||||
def run_triton_moe(
|
|
||||||
a: torch.Tensor,
|
|
||||||
w1: torch.Tensor,
|
|
||||||
w2: torch.Tensor,
|
|
||||||
topk_weights: torch.Tensor,
|
|
||||||
topk_ids: torch.Tensor,
|
|
||||||
w1_scale: torch.Tensor,
|
|
||||||
w2_scale: torch.Tensor,
|
|
||||||
a1_scale: torch.Tensor,
|
|
||||||
a2_scale: torch.Tensor,
|
|
||||||
num_repeats: int,
|
|
||||||
):
|
|
||||||
quant_config = fp8_w8a8_moe_quant_config(
|
|
||||||
w1_scale=w1_scale,
|
|
||||||
w2_scale=w2_scale,
|
|
||||||
a1_scale=a1_scale,
|
|
||||||
a2_scale=a2_scale,
|
|
||||||
per_act_token_quant=per_act_token,
|
|
||||||
per_out_ch_quant=per_out_ch,
|
|
||||||
)
|
|
||||||
|
|
||||||
for _ in range(num_repeats):
|
|
||||||
fused_experts(
|
|
||||||
a,
|
|
||||||
w1,
|
|
||||||
w2,
|
|
||||||
topk_weights,
|
|
||||||
topk_ids,
|
|
||||||
quant_config=quant_config,
|
|
||||||
)
|
|
||||||
|
|
||||||
def run_cutlass_moe_fp8(
|
|
||||||
a: torch.Tensor,
|
|
||||||
w1: torch.Tensor,
|
|
||||||
w2: torch.Tensor,
|
|
||||||
topk_weights: torch.Tensor,
|
|
||||||
topk_ids: torch.Tensor,
|
|
||||||
ab_strides1: torch.Tensor,
|
|
||||||
ab_strides2: torch.Tensor,
|
|
||||||
c_strides1: torch.Tensor,
|
|
||||||
c_strides2: torch.Tensor,
|
|
||||||
w1_scale: torch.Tensor,
|
|
||||||
w2_scale: torch.Tensor,
|
|
||||||
a1_scale: torch.Tensor,
|
|
||||||
a2_scale: torch.Tensor,
|
|
||||||
num_repeats: int,
|
|
||||||
):
|
|
||||||
quant_config = fp8_w8a8_moe_quant_config(
|
|
||||||
w1_scale=w1_scale,
|
|
||||||
w2_scale=w2_scale,
|
|
||||||
a1_scale=a1_scale,
|
|
||||||
a2_scale=a2_scale,
|
|
||||||
per_act_token_quant=per_act_token,
|
|
||||||
per_out_ch_quant=per_out_ch,
|
|
||||||
)
|
|
||||||
|
|
||||||
for _ in range(num_repeats):
|
|
||||||
with nvtx.annotate("cutlass_moe_fp8", color="blue"):
|
|
||||||
cutlass_moe_fp8(
|
|
||||||
a=a,
|
|
||||||
w1_q=w1,
|
|
||||||
w2_q=w2,
|
|
||||||
topk_weights=topk_weights,
|
|
||||||
topk_ids=topk_ids,
|
|
||||||
ab_strides1=ab_strides1,
|
|
||||||
ab_strides2=ab_strides2,
|
|
||||||
c_strides1=c_strides1,
|
|
||||||
c_strides2=c_strides2,
|
|
||||||
quant_config=quant_config,
|
|
||||||
activation="silu",
|
|
||||||
global_num_experts=num_experts,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Pre-create quantization config to avoid creating it inside CUDA graph
|
|
||||||
quant_config = fp8_w8a8_moe_quant_config(
|
|
||||||
w1_scale=w1_scale,
|
|
||||||
w2_scale=w2_scale,
|
|
||||||
a1_scale=a1_scale,
|
|
||||||
a2_scale=a2_scale,
|
|
||||||
per_act_token_quant=per_act_token,
|
|
||||||
per_out_ch_quant=per_out_ch,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Create CUDA graphs for CUTLASS (match benchmark_moe.py pattern exactly)
|
|
||||||
cutlass_stream = torch.cuda.Stream()
|
|
||||||
cutlass_graph = torch.cuda.CUDAGraph()
|
|
||||||
with torch.cuda.graph(cutlass_graph, stream=cutlass_stream):
|
|
||||||
# Capture 10 invocations like benchmark_moe.py
|
|
||||||
for _ in range(10):
|
|
||||||
cutlass_moe_fp8(
|
|
||||||
a=a,
|
|
||||||
w1_q=w1_fp8q_cutlass,
|
|
||||||
w2_q=w2_fp8q_cutlass,
|
|
||||||
topk_weights=topk_weights,
|
|
||||||
topk_ids=topk_ids,
|
|
||||||
ab_strides1=ab_strides1,
|
|
||||||
ab_strides2=ab_strides2,
|
|
||||||
c_strides1=c_strides1,
|
|
||||||
c_strides2=c_strides2,
|
|
||||||
quant_config=quant_config,
|
|
||||||
activation="silu",
|
|
||||||
global_num_experts=num_experts,
|
|
||||||
)
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
|
|
||||||
# Create CUDA graphs for Triton (match benchmark_moe.py pattern exactly)
|
|
||||||
triton_stream = torch.cuda.Stream()
|
|
||||||
triton_graph = torch.cuda.CUDAGraph()
|
|
||||||
with torch.cuda.graph(triton_graph, stream=triton_stream):
|
|
||||||
# Capture 10 invocations like benchmark_moe.py
|
|
||||||
for _ in range(10):
|
|
||||||
fused_experts(
|
|
||||||
a,
|
|
||||||
w1_fp8q,
|
|
||||||
w2_fp8q,
|
|
||||||
topk_weights,
|
|
||||||
topk_ids,
|
|
||||||
quant_config=quant_config,
|
|
||||||
)
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
|
|
||||||
def bench_cuda_graph(graph, num_warmup=5, num_iters=100):
|
|
||||||
"""Benchmark CUDA graph using events like benchmark_moe.py"""
|
|
||||||
# Warmup
|
|
||||||
for _ in range(num_warmup):
|
|
||||||
graph.replay()
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
|
|
||||||
# Timing
|
|
||||||
start_event = torch.cuda.Event(enable_timing=True)
|
|
||||||
end_event = torch.cuda.Event(enable_timing=True)
|
|
||||||
|
|
||||||
latencies = []
|
|
||||||
for _ in range(num_iters):
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
start_event.record()
|
|
||||||
graph.replay()
|
|
||||||
end_event.record()
|
|
||||||
end_event.synchronize()
|
|
||||||
latencies.append(start_event.elapsed_time(end_event))
|
|
||||||
|
|
||||||
# Divide by 10 since graph contains 10 calls
|
|
||||||
return sum(latencies) / (num_iters * 10)
|
|
||||||
|
|
||||||
# Benchmark parameters
|
|
||||||
num_warmup = 5
|
|
||||||
num_iters = 100
|
|
||||||
|
|
||||||
# Benchmark only CUDA graphs (more reliable and faster)
|
|
||||||
# Benchmark Triton MoE with CUDA graphs
|
|
||||||
triton_graph_time = bench_cuda_graph(
|
|
||||||
triton_graph, num_warmup=num_warmup, num_iters=num_iters
|
|
||||||
)
|
|
||||||
|
|
||||||
# Benchmark CUTLASS MoE with CUDA graphs
|
|
||||||
cutlass_graph_time = bench_cuda_graph(
|
|
||||||
cutlass_graph, num_warmup=num_warmup, num_iters=num_iters
|
|
||||||
)
|
|
||||||
|
|
||||||
# Convert ms to us and return results
|
|
||||||
triton_time_us = triton_graph_time * 1000
|
|
||||||
cutlass_time_us = cutlass_graph_time * 1000
|
|
||||||
|
|
||||||
return {
|
|
||||||
"batch_size": m,
|
|
||||||
"triton_time_us": triton_time_us,
|
|
||||||
"cutlass_time_us": cutlass_time_us,
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
|
||||||
print("Benchmarking models:")
|
|
||||||
for i, model in enumerate(args.models):
|
|
||||||
print(f"[{i}] {model}")
|
|
||||||
|
|
||||||
all_results = []
|
|
||||||
|
|
||||||
for model in args.models:
|
|
||||||
for tp in args.tp_sizes:
|
|
||||||
for layer in WEIGHT_SHAPES_MOE[model]:
|
|
||||||
num_experts = layer[0]
|
|
||||||
topk = layer[1]
|
|
||||||
size_k = layer[2]
|
|
||||||
size_n = layer[3] // tp
|
|
||||||
|
|
||||||
if len(args.limit_k) > 0 and size_k not in args.limit_k:
|
|
||||||
continue
|
|
||||||
|
|
||||||
if len(args.limit_n) > 0 and size_n not in args.limit_n:
|
|
||||||
continue
|
|
||||||
|
|
||||||
for per_act_token in args.per_act_token_opts:
|
|
||||||
for per_out_ch in args.per_out_ch_opts:
|
|
||||||
print(
|
|
||||||
f"\n=== {model}, experts={num_experts}, topk={topk},"
|
|
||||||
f"per_act={per_act_token}, per_out_ch={per_out_ch} ==="
|
|
||||||
)
|
|
||||||
|
|
||||||
config_results = []
|
|
||||||
for size_m in args.batch_sizes:
|
|
||||||
mkn = (size_m, size_k, size_n)
|
|
||||||
result = bench_run(
|
|
||||||
[], # Not used anymore
|
|
||||||
model,
|
|
||||||
num_experts,
|
|
||||||
topk,
|
|
||||||
per_act_token,
|
|
||||||
per_out_ch,
|
|
||||||
mkn,
|
|
||||||
)
|
|
||||||
if result:
|
|
||||||
config_results.append(result)
|
|
||||||
|
|
||||||
# Print results table for this configuration
|
|
||||||
if config_results:
|
|
||||||
print(
|
|
||||||
f"\n{'Batch Size':<12}"
|
|
||||||
f"{'Triton (us)':<15}"
|
|
||||||
f"{'CUTLASS (us)':<15}"
|
|
||||||
)
|
|
||||||
print("-" * 45)
|
|
||||||
for result in config_results:
|
|
||||||
print(
|
|
||||||
f"{result['batch_size']:<12}"
|
|
||||||
f"{result['triton_time_us']:<15.2f}"
|
|
||||||
f"{result['cutlass_time_us']:<15.2f}"
|
|
||||||
)
|
|
||||||
|
|
||||||
all_results.extend(config_results)
|
|
||||||
|
|
||||||
print(f"\nTotal benchmarks completed: {len(all_results)}")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = FlexibleArgumentParser(
|
|
||||||
description="""Benchmark CUTLASS FP8 MOE vs Triton FP8 FUSED MOE
|
|
||||||
across specified models/shapes/batches
|
|
||||||
|
|
||||||
Example usage:
|
|
||||||
python benchmark_cutlass_moe_fp8.py \
|
|
||||||
--model "Llama-4-Maverick-17B-128E-Instruct-FP8" \
|
|
||||||
--tp-sizes 8 \
|
|
||||||
--batch-size 2 4 8 \
|
|
||||||
--per-act-token-opts false \
|
|
||||||
--per-out-ch-opts false
|
|
||||||
|
|
||||||
"""
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--models",
|
|
||||||
nargs="+",
|
|
||||||
type=str,
|
|
||||||
default=DEFAULT_MODELS,
|
|
||||||
choices=WEIGHT_SHAPES_MOE.keys(),
|
|
||||||
)
|
|
||||||
parser.add_argument("--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES)
|
|
||||||
parser.add_argument(
|
|
||||||
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
|
|
||||||
)
|
|
||||||
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
|
|
||||||
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
|
|
||||||
parser.add_argument(
|
|
||||||
"--per-act-token-opts",
|
|
||||||
nargs="+",
|
|
||||||
type=lambda x: x.lower() == "true",
|
|
||||||
default=[False, True],
|
|
||||||
help="Per-activation token quantization options (true/false)",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--per-out-ch-opts",
|
|
||||||
nargs="+",
|
|
||||||
type=lambda x: x.lower() == "true",
|
|
||||||
default=[False, True],
|
|
||||||
help="Per-output channel quantization options (true/false)",
|
|
||||||
)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
main(args)
|
|
||||||
@ -7,10 +7,6 @@ Benchmark script for device communicators:
|
|||||||
CustomAllreduce (oneshot, twoshot), PyNcclCommunicator,
|
CustomAllreduce (oneshot, twoshot), PyNcclCommunicator,
|
||||||
and SymmMemCommunicator (multimem, two-shot).
|
and SymmMemCommunicator (multimem, two-shot).
|
||||||
|
|
||||||
for NCCL symmetric memory you need to set the environment variables
|
|
||||||
NCCL_NVLS_ENABLE=1 NCCL_CUMEM_ENABLE=1 VLLM_USE_NCCL_SYMM_MEM=1, otherwise NCCL does
|
|
||||||
not use fast NVLS implementation for all reduce.
|
|
||||||
|
|
||||||
Usage:
|
Usage:
|
||||||
torchrun --nproc_per_node=<N> benchmark_device_communicators.py [options]
|
torchrun --nproc_per_node=<N> benchmark_device_communicators.py [options]
|
||||||
|
|
||||||
@ -22,21 +18,15 @@ Example:
|
|||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
from collections.abc import Callable
|
|
||||||
from contextlib import nullcontext
|
from contextlib import nullcontext
|
||||||
|
from typing import Callable, Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
from torch.distributed import ProcessGroup
|
from torch.distributed import ProcessGroup
|
||||||
|
|
||||||
from vllm.distributed.device_communicators.custom_all_reduce import CustomAllreduce
|
from vllm.distributed.device_communicators.custom_all_reduce import CustomAllreduce
|
||||||
from vllm.distributed.device_communicators.pynccl import (
|
from vllm.distributed.device_communicators.pynccl import PyNcclCommunicator
|
||||||
PyNcclCommunicator,
|
|
||||||
register_nccl_symmetric_ops,
|
|
||||||
)
|
|
||||||
from vllm.distributed.device_communicators.pynccl_allocator import (
|
|
||||||
set_graph_pool_id,
|
|
||||||
)
|
|
||||||
from vllm.distributed.device_communicators.symm_mem import SymmMemCommunicator
|
from vllm.distributed.device_communicators.symm_mem import SymmMemCommunicator
|
||||||
from vllm.logger import init_logger
|
from vllm.logger import init_logger
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import FlexibleArgumentParser
|
||||||
@ -108,7 +98,6 @@ class CommunicatorBenchmark:
|
|||||||
)
|
)
|
||||||
if not self.pynccl_comm.disabled:
|
if not self.pynccl_comm.disabled:
|
||||||
logger.info("Rank %s: PyNcclCommunicator initialized", self.rank)
|
logger.info("Rank %s: PyNcclCommunicator initialized", self.rank)
|
||||||
register_nccl_symmetric_ops(self.pynccl_comm)
|
|
||||||
else:
|
else:
|
||||||
logger.info("Rank %s: PyNcclCommunicator disabled", self.rank)
|
logger.info("Rank %s: PyNcclCommunicator disabled", self.rank)
|
||||||
self.pynccl_comm = None
|
self.pynccl_comm = None
|
||||||
@ -205,15 +194,6 @@ class CommunicatorBenchmark:
|
|||||||
None, # no env variable needed
|
None, # no env variable needed
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
communicators.append(
|
|
||||||
(
|
|
||||||
"pynccl-symm",
|
|
||||||
lambda t: torch.ops.vllm.all_reduce_symmetric_with_copy(t),
|
|
||||||
lambda t: True, # Always available if initialized
|
|
||||||
nullcontext(),
|
|
||||||
None, # no env variable needed
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.symm_mem_comm_multimem is not None:
|
if self.symm_mem_comm_multimem is not None:
|
||||||
comm = self.symm_mem_comm_multimem
|
comm = self.symm_mem_comm_multimem
|
||||||
@ -264,12 +244,12 @@ class CommunicatorBenchmark:
|
|||||||
def benchmark_allreduce_single(
|
def benchmark_allreduce_single(
|
||||||
self,
|
self,
|
||||||
sequence_length: int,
|
sequence_length: int,
|
||||||
allreduce_fn: Callable[[torch.Tensor], torch.Tensor | None],
|
allreduce_fn: Callable[[torch.Tensor], Optional[torch.Tensor]],
|
||||||
should_use_fn: Callable[[torch.Tensor], bool],
|
should_use_fn: Callable[[torch.Tensor], bool],
|
||||||
context,
|
context,
|
||||||
num_warmup: int,
|
num_warmup: int,
|
||||||
num_trials: int,
|
num_trials: int,
|
||||||
) -> float | None:
|
) -> Optional[float]:
|
||||||
"""Benchmark method with CUDA graph optimization."""
|
"""Benchmark method with CUDA graph optimization."""
|
||||||
try:
|
try:
|
||||||
# Create test tensor (2D: sequence_length x hidden_size)
|
# Create test tensor (2D: sequence_length x hidden_size)
|
||||||
@ -291,9 +271,7 @@ class CommunicatorBenchmark:
|
|||||||
# Capture the graph using context manager
|
# Capture the graph using context manager
|
||||||
with context:
|
with context:
|
||||||
graph = torch.cuda.CUDAGraph()
|
graph = torch.cuda.CUDAGraph()
|
||||||
graph_pool = torch.cuda.graph_pool_handle()
|
with torch.cuda.graph(graph):
|
||||||
set_graph_pool_id(graph_pool)
|
|
||||||
with torch.cuda.graph(graph, pool=graph_pool):
|
|
||||||
for _ in range(CUDA_GRAPH_CAPTURE_CYCLES):
|
for _ in range(CUDA_GRAPH_CAPTURE_CYCLES):
|
||||||
allreduce_fn(graph_input)
|
allreduce_fn(graph_input)
|
||||||
|
|
||||||
|
|||||||
@ -7,8 +7,7 @@ import torch
|
|||||||
|
|
||||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
|
||||||
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
|
|
||||||
|
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
|
|||||||
@ -6,12 +6,11 @@ import copy
|
|||||||
import json
|
import json
|
||||||
import pickle
|
import pickle
|
||||||
import time
|
import time
|
||||||
from collections.abc import Callable
|
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from enum import Enum, auto
|
from enum import Enum, auto
|
||||||
from itertools import product
|
from itertools import product
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any
|
from typing import Any, Callable, Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.benchmark as TBenchmark
|
import torch.utils.benchmark as TBenchmark
|
||||||
@ -80,9 +79,9 @@ def make_rand_lora_weight_tensor(
|
|||||||
|
|
||||||
|
|
||||||
def make_rand_tensors(
|
def make_rand_tensors(
|
||||||
a_shape: tuple[int, ...],
|
a_shape: tuple[int],
|
||||||
b_shape: tuple[int, ...],
|
b_shape: tuple[int],
|
||||||
c_shape: tuple[int, ...],
|
c_shape: tuple[int],
|
||||||
a_dtype: torch.dtype,
|
a_dtype: torch.dtype,
|
||||||
b_dtype: torch.dtype,
|
b_dtype: torch.dtype,
|
||||||
c_dtype: torch.dtype,
|
c_dtype: torch.dtype,
|
||||||
@ -159,7 +158,7 @@ def ref_group_gemm(
|
|||||||
seq_lens_cpu: torch.Tensor,
|
seq_lens_cpu: torch.Tensor,
|
||||||
prompt_lora_mapping_cpu: torch.Tensor,
|
prompt_lora_mapping_cpu: torch.Tensor,
|
||||||
scaling: float,
|
scaling: float,
|
||||||
add_inputs: bool | None,
|
add_inputs: Optional[bool],
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Torch group gemm reference implementation to test correctness of
|
Torch group gemm reference implementation to test correctness of
|
||||||
@ -244,7 +243,7 @@ class OpType(Enum):
|
|||||||
lora_rank: int,
|
lora_rank: int,
|
||||||
num_loras: int,
|
num_loras: int,
|
||||||
num_slices: int,
|
num_slices: int,
|
||||||
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
|
) -> tuple[tuple[int], tuple[int], tuple[int]]:
|
||||||
"""
|
"""
|
||||||
Given num_slices, return the shapes of the A, B, and C matrices
|
Given num_slices, return the shapes of the A, B, and C matrices
|
||||||
in A x B = C, for the op_type
|
in A x B = C, for the op_type
|
||||||
@ -317,8 +316,8 @@ class BenchmarkContext:
|
|||||||
lora_rank: int
|
lora_rank: int
|
||||||
sort_by_lora_id: bool
|
sort_by_lora_id: bool
|
||||||
dtype: torch.dtype
|
dtype: torch.dtype
|
||||||
seq_length: int | None = None
|
seq_length: Optional[int] = None
|
||||||
num_slices: int | None = None # num_slices for slice based ops
|
num_slices: Optional[int] = None # num_slices for slice based ops
|
||||||
|
|
||||||
def with_seq_length(self, seq_length: int) -> "BenchmarkContext":
|
def with_seq_length(self, seq_length: int) -> "BenchmarkContext":
|
||||||
ctx = copy.copy(self)
|
ctx = copy.copy(self)
|
||||||
@ -562,7 +561,7 @@ class BenchmarkTensors:
|
|||||||
}
|
}
|
||||||
|
|
||||||
def bench_fn_kwargs(
|
def bench_fn_kwargs(
|
||||||
self, op_type: OpType, add_inputs: bool | None = None
|
self, op_type: OpType, add_inputs: Optional[bool] = None
|
||||||
) -> dict[str, Any]:
|
) -> dict[str, Any]:
|
||||||
if op_type.is_shrink_fn():
|
if op_type.is_shrink_fn():
|
||||||
assert add_inputs is None
|
assert add_inputs is None
|
||||||
@ -576,7 +575,7 @@ class BenchmarkTensors:
|
|||||||
raise ValueError(f"Unrecognized optype {self}")
|
raise ValueError(f"Unrecognized optype {self}")
|
||||||
|
|
||||||
def test_correctness(
|
def test_correctness(
|
||||||
self, op_type: OpType, expand_fn_add_inputs: bool | None
|
self, op_type: OpType, expand_fn_add_inputs: Optional[bool]
|
||||||
) -> bool:
|
) -> bool:
|
||||||
"""
|
"""
|
||||||
Test correctness of op_type implementation against a grouped gemm
|
Test correctness of op_type implementation against a grouped gemm
|
||||||
@ -612,8 +611,8 @@ def bench_optype(
|
|||||||
ctx: BenchmarkContext,
|
ctx: BenchmarkContext,
|
||||||
arg_pool_size: int,
|
arg_pool_size: int,
|
||||||
op_type: OpType,
|
op_type: OpType,
|
||||||
cuda_graph_nops: int | None = None,
|
cuda_graph_nops: Optional[int] = None,
|
||||||
expand_fn_add_inputs: bool | None = None,
|
expand_fn_add_inputs: Optional[bool] = None,
|
||||||
test_correctness: bool = False,
|
test_correctness: bool = False,
|
||||||
) -> TMeasurement:
|
) -> TMeasurement:
|
||||||
assert arg_pool_size >= 1
|
assert arg_pool_size >= 1
|
||||||
@ -680,7 +679,7 @@ def bench_torch_mm(
|
|||||||
ctx: BenchmarkContext,
|
ctx: BenchmarkContext,
|
||||||
arg_pool_size: int,
|
arg_pool_size: int,
|
||||||
op_type: OpType,
|
op_type: OpType,
|
||||||
cuda_graph_nops: int | None = None,
|
cuda_graph_nops: Optional[int] = None,
|
||||||
) -> TMeasurement:
|
) -> TMeasurement:
|
||||||
"""
|
"""
|
||||||
Benchmark basic torch.mm as a roofline.
|
Benchmark basic torch.mm as a roofline.
|
||||||
@ -745,7 +744,7 @@ def use_cuda_graph_recommendation() -> str:
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
def print_timers(timers: list[TMeasurement], args: argparse.Namespace | None = None):
|
def print_timers(timers: list[TMeasurement], args: Optional[argparse.Namespace] = None):
|
||||||
compare = TBenchmark.Compare(timers)
|
compare = TBenchmark.Compare(timers)
|
||||||
compare.print()
|
compare.print()
|
||||||
|
|
||||||
|
|||||||
@ -8,9 +8,10 @@ import math
|
|||||||
import os
|
import os
|
||||||
import pickle as pkl
|
import pickle as pkl
|
||||||
import time
|
import time
|
||||||
from collections.abc import Callable, Iterable
|
from collections.abc import Iterable
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from itertools import product
|
from itertools import product
|
||||||
|
from typing import Callable, Optional
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import torch
|
import torch
|
||||||
@ -62,23 +63,23 @@ class BenchmarkTensors:
|
|||||||
a: torch.Tensor
|
a: torch.Tensor
|
||||||
|
|
||||||
w_q: torch.Tensor
|
w_q: torch.Tensor
|
||||||
group_size: int | None
|
group_size: Optional[int]
|
||||||
wtype: ScalarType
|
wtype: ScalarType
|
||||||
w_g_s: torch.Tensor
|
w_g_s: torch.Tensor
|
||||||
w_g_zp: torch.Tensor | None
|
w_g_zp: Optional[torch.Tensor]
|
||||||
w_ch_s: torch.Tensor | None
|
w_ch_s: Optional[torch.Tensor]
|
||||||
w_tok_s: torch.Tensor | None
|
w_tok_s: Optional[torch.Tensor]
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class TypeConfig:
|
class TypeConfig:
|
||||||
act_type: torch.dtype
|
act_type: torch.dtype
|
||||||
weight_type: ScalarType
|
weight_type: ScalarType
|
||||||
output_type: torch.dtype | None
|
output_type: Optional[torch.dtype]
|
||||||
group_scale_type: torch.dtype | None
|
group_scale_type: Optional[torch.dtype]
|
||||||
group_zero_type: torch.dtype | None
|
group_zero_type: Optional[torch.dtype]
|
||||||
channel_scale_type: torch.dtype | None
|
channel_scale_type: Optional[torch.dtype]
|
||||||
token_scale_type: torch.dtype | None
|
token_scale_type: Optional[torch.dtype]
|
||||||
|
|
||||||
|
|
||||||
def rand_data(shape, dtype=torch.float16, scale=1):
|
def rand_data(shape, dtype=torch.float16, scale=1):
|
||||||
@ -92,8 +93,8 @@ def quantize_and_pack(
|
|||||||
atype: torch.dtype,
|
atype: torch.dtype,
|
||||||
w: torch.Tensor,
|
w: torch.Tensor,
|
||||||
wtype: ScalarType,
|
wtype: ScalarType,
|
||||||
stype: torch.dtype | None,
|
stype: Optional[torch.dtype],
|
||||||
group_size: int | None,
|
group_size: Optional[int],
|
||||||
zero_points: bool = False,
|
zero_points: bool = False,
|
||||||
):
|
):
|
||||||
assert wtype.is_integer(), "TODO: support floating point weights"
|
assert wtype.is_integer(), "TODO: support floating point weights"
|
||||||
@ -112,7 +113,7 @@ def quantize_and_pack(
|
|||||||
|
|
||||||
|
|
||||||
def create_bench_tensors(
|
def create_bench_tensors(
|
||||||
shape: tuple[int, int, int], types: TypeConfig, group_size: int | None
|
shape: tuple[int, int, int], types: TypeConfig, group_size: Optional[int]
|
||||||
) -> list[BenchmarkTensors]:
|
) -> list[BenchmarkTensors]:
|
||||||
m, n, k = shape
|
m, n, k = shape
|
||||||
|
|
||||||
@ -330,8 +331,8 @@ def bench_fns(label: str, sub_label: str, description: str, fns: list[Callable])
|
|||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
_SWEEP_SCHEDULES_RESULTS: pd.DataFrame | None = None
|
_SWEEP_SCHEDULES_RESULTS: Optional[pd.DataFrame] = None
|
||||||
_SWEEP_SCHEDULES_RESULTS_CSV: str | None = None
|
_SWEEP_SCHEDULES_RESULTS_CSV: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
def bench(
|
def bench(
|
||||||
|
|||||||
@ -579,22 +579,18 @@ def main(args: argparse.Namespace):
|
|||||||
E = config.ffn_config.moe_num_experts
|
E = config.ffn_config.moe_num_experts
|
||||||
topk = config.ffn_config.moe_top_k
|
topk = config.ffn_config.moe_top_k
|
||||||
intermediate_size = config.ffn_config.ffn_hidden_size
|
intermediate_size = config.ffn_config.ffn_hidden_size
|
||||||
hidden_size = config.hidden_size
|
|
||||||
elif config.architectures[0] == "JambaForCausalLM":
|
elif config.architectures[0] == "JambaForCausalLM":
|
||||||
E = config.num_experts
|
E = config.num_experts
|
||||||
topk = config.num_experts_per_tok
|
topk = config.num_experts_per_tok
|
||||||
intermediate_size = config.intermediate_size
|
intermediate_size = config.intermediate_size
|
||||||
hidden_size = config.hidden_size
|
|
||||||
elif config.architectures[0] in (
|
elif config.architectures[0] in (
|
||||||
"DeepseekV2ForCausalLM",
|
|
||||||
"DeepseekV3ForCausalLM",
|
"DeepseekV3ForCausalLM",
|
||||||
"DeepseekV32ForCausalLM",
|
"DeepseekV2ForCausalLM",
|
||||||
"Glm4MoeForCausalLM",
|
"Glm4MoeForCausalLM",
|
||||||
):
|
):
|
||||||
E = config.n_routed_experts
|
E = config.n_routed_experts
|
||||||
topk = config.num_experts_per_tok
|
topk = config.num_experts_per_tok
|
||||||
intermediate_size = config.moe_intermediate_size
|
intermediate_size = config.moe_intermediate_size
|
||||||
hidden_size = config.hidden_size
|
|
||||||
elif config.architectures[0] in (
|
elif config.architectures[0] in (
|
||||||
"Qwen2MoeForCausalLM",
|
"Qwen2MoeForCausalLM",
|
||||||
"Qwen3MoeForCausalLM",
|
"Qwen3MoeForCausalLM",
|
||||||
@ -603,18 +599,10 @@ def main(args: argparse.Namespace):
|
|||||||
E = config.num_experts
|
E = config.num_experts
|
||||||
topk = config.num_experts_per_tok
|
topk = config.num_experts_per_tok
|
||||||
intermediate_size = config.moe_intermediate_size
|
intermediate_size = config.moe_intermediate_size
|
||||||
hidden_size = config.hidden_size
|
|
||||||
elif config.architectures[0] == "Qwen3VLMoeForConditionalGeneration":
|
|
||||||
text_config = config.get_text_config()
|
|
||||||
E = text_config.num_experts
|
|
||||||
topk = text_config.num_experts_per_tok
|
|
||||||
intermediate_size = text_config.moe_intermediate_size
|
|
||||||
hidden_size = text_config.hidden_size
|
|
||||||
elif config.architectures[0] in ("HunYuanMoEV1ForCausalLM"):
|
elif config.architectures[0] in ("HunYuanMoEV1ForCausalLM"):
|
||||||
E = config.num_experts
|
E = config.num_experts
|
||||||
topk = config.moe_topk[0]
|
topk = config.moe_topk[0]
|
||||||
intermediate_size = config.moe_intermediate_size[0]
|
intermediate_size = config.moe_intermediate_size[0]
|
||||||
hidden_size = config.hidden_size
|
|
||||||
else:
|
else:
|
||||||
# Support for llama4
|
# Support for llama4
|
||||||
config = config.get_text_config()
|
config = config.get_text_config()
|
||||||
@ -622,7 +610,6 @@ def main(args: argparse.Namespace):
|
|||||||
E = config.num_local_experts
|
E = config.num_local_experts
|
||||||
topk = config.num_experts_per_tok
|
topk = config.num_experts_per_tok
|
||||||
intermediate_size = config.intermediate_size
|
intermediate_size = config.intermediate_size
|
||||||
hidden_size = config.hidden_size
|
|
||||||
enable_ep = bool(args.enable_expert_parallel)
|
enable_ep = bool(args.enable_expert_parallel)
|
||||||
if enable_ep:
|
if enable_ep:
|
||||||
ensure_divisibility(E, args.tp_size, "Number of experts")
|
ensure_divisibility(E, args.tp_size, "Number of experts")
|
||||||
@ -631,7 +618,8 @@ def main(args: argparse.Namespace):
|
|||||||
else:
|
else:
|
||||||
ensure_divisibility(intermediate_size, args.tp_size, "intermediate_size")
|
ensure_divisibility(intermediate_size, args.tp_size, "intermediate_size")
|
||||||
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
||||||
dtype = torch.float16 if current_platform.is_rocm() else config.dtype
|
hidden_size = config.hidden_size
|
||||||
|
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
|
||||||
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
||||||
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
||||||
block_quant_shape = get_weight_block_size_safety(config)
|
block_quant_shape = get_weight_block_size_safety(config)
|
||||||
|
|||||||
@ -344,7 +344,7 @@ def main(args: argparse.Namespace):
|
|||||||
topk = config.num_experts_per_tok
|
topk = config.num_experts_per_tok
|
||||||
|
|
||||||
hidden_size = config.hidden_size
|
hidden_size = config.hidden_size
|
||||||
dtype = torch.float16 if current_platform.is_rocm() else config.dtype
|
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
|
||||||
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
||||||
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
||||||
use_customized_permute = args.use_customized_permute
|
use_customized_permute = args.use_customized_permute
|
||||||
|
|||||||
@ -3,15 +3,16 @@
|
|||||||
|
|
||||||
import random
|
import random
|
||||||
import time
|
import time
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from vllm import _custom_ops as ops
|
from vllm import _custom_ops as ops
|
||||||
from vllm.logger import init_logger
|
from vllm.logger import init_logger
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import (
|
||||||
from vllm.utils.torch_utils import (
|
|
||||||
STR_DTYPE_TO_TORCH_DTYPE,
|
STR_DTYPE_TO_TORCH_DTYPE,
|
||||||
|
FlexibleArgumentParser,
|
||||||
create_kv_caches_with_random,
|
create_kv_caches_with_random,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -36,7 +37,7 @@ def main(
|
|||||||
seed: int,
|
seed: int,
|
||||||
do_profile: bool,
|
do_profile: bool,
|
||||||
device: str = "cuda",
|
device: str = "cuda",
|
||||||
kv_cache_dtype: str | None = None,
|
kv_cache_dtype: Optional[str] = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
current_platform.seed_everything(seed)
|
current_platform.seed_everything(seed)
|
||||||
|
|
||||||
|
|||||||
@ -3,8 +3,8 @@
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import math
|
import math
|
||||||
from collections.abc import Callable
|
|
||||||
from contextlib import contextmanager
|
from contextlib import contextmanager
|
||||||
|
from typing import Callable
|
||||||
from unittest.mock import patch
|
from unittest.mock import patch
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|||||||
155
benchmarks/kernels/benchmark_polynorm.py
Normal file
155
benchmarks/kernels/benchmark_polynorm.py
Normal file
@ -0,0 +1,155 @@
|
|||||||
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
|
import itertools
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from vllm import _custom_ops as vllm_ops
|
||||||
|
from vllm.triton_utils import triton
|
||||||
|
|
||||||
|
|
||||||
|
def polynorm_naive(
|
||||||
|
x: torch.Tensor,
|
||||||
|
weight: torch.Tensor,
|
||||||
|
bias: torch.Tensor,
|
||||||
|
eps: float = 1e-6,
|
||||||
|
):
|
||||||
|
orig_shape = x.shape
|
||||||
|
x = x.view(-1, x.shape[-1])
|
||||||
|
|
||||||
|
def norm(x, eps: float):
|
||||||
|
return x / torch.sqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
||||||
|
|
||||||
|
x = x.float()
|
||||||
|
return (
|
||||||
|
(
|
||||||
|
weight[0] * norm(x**3, eps)
|
||||||
|
+ weight[1] * norm(x**2, eps)
|
||||||
|
+ weight[2] * norm(x, eps)
|
||||||
|
+ bias
|
||||||
|
)
|
||||||
|
.to(weight.dtype)
|
||||||
|
.view(orig_shape)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def polynorm_vllm(
|
||||||
|
x: torch.Tensor,
|
||||||
|
weight: torch.Tensor,
|
||||||
|
bias: torch.Tensor,
|
||||||
|
eps: float = 1e-6,
|
||||||
|
):
|
||||||
|
orig_shape = x.shape
|
||||||
|
x = x.view(-1, x.shape[-1])
|
||||||
|
|
||||||
|
out = torch.empty_like(x)
|
||||||
|
vllm_ops.poly_norm(out, x, weight, bias, eps)
|
||||||
|
output = out
|
||||||
|
|
||||||
|
output = output.view(orig_shape)
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_diff(batch_size, seq_len, hidden_dim):
|
||||||
|
dtype = torch.bfloat16
|
||||||
|
x = torch.randn(batch_size, seq_len, hidden_dim, dtype=dtype, device="cuda")
|
||||||
|
weight = torch.ones(3, dtype=dtype, device="cuda")
|
||||||
|
bias = torch.ones(1, dtype=dtype, device="cuda")
|
||||||
|
|
||||||
|
output_naive = polynorm_naive(x, weight, bias)
|
||||||
|
output_vllm = polynorm_vllm(x, weight, bias)
|
||||||
|
|
||||||
|
if torch.allclose(output_naive, output_vllm, atol=1e-2, rtol=1e-2):
|
||||||
|
print("✅ All implementations match")
|
||||||
|
else:
|
||||||
|
print("❌ Implementations differ")
|
||||||
|
|
||||||
|
|
||||||
|
batch_size_range = [2**i for i in range(0, 7, 2)]
|
||||||
|
seq_length_range = [2**i for i in range(6, 11, 1)]
|
||||||
|
dim_range = [2048, 4096]
|
||||||
|
configs = list(itertools.product(dim_range, batch_size_range, seq_length_range))
|
||||||
|
|
||||||
|
|
||||||
|
def get_benchmark():
|
||||||
|
@triton.testing.perf_report(
|
||||||
|
triton.testing.Benchmark(
|
||||||
|
x_names=["dim", "batch_size", "seq_len"],
|
||||||
|
x_vals=[list(_) for _ in configs],
|
||||||
|
line_arg="provider",
|
||||||
|
line_vals=["naive", "vllm"],
|
||||||
|
line_names=["Naive", "vLLM"],
|
||||||
|
styles=[("blue", "-"), ("red", "-")],
|
||||||
|
ylabel="us",
|
||||||
|
plot_name="polynorm-perf",
|
||||||
|
args={},
|
||||||
|
)
|
||||||
|
)
|
||||||
|
def benchmark(dim, batch_size, seq_len, provider):
|
||||||
|
dtype = torch.bfloat16
|
||||||
|
hidden_dim = dim * 4
|
||||||
|
|
||||||
|
x = torch.randn(batch_size, seq_len, hidden_dim, dtype=dtype, device="cuda")
|
||||||
|
weight = torch.ones(3, dtype=dtype, device="cuda")
|
||||||
|
bias = torch.ones(1, dtype=dtype, device="cuda")
|
||||||
|
|
||||||
|
quantiles = [0.5, 0.2, 0.8]
|
||||||
|
|
||||||
|
if provider == "naive":
|
||||||
|
ms, min_ms, max_ms = triton.testing.do_bench(
|
||||||
|
lambda: polynorm_naive(x, weight, bias),
|
||||||
|
quantiles=quantiles,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
ms, min_ms, max_ms = triton.testing.do_bench(
|
||||||
|
lambda: polynorm_vllm(x, weight, bias),
|
||||||
|
quantiles=quantiles,
|
||||||
|
)
|
||||||
|
|
||||||
|
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
|
||||||
|
|
||||||
|
return benchmark
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--batch-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="Batch size",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--seq-len",
|
||||||
|
type=int,
|
||||||
|
default=128,
|
||||||
|
help="Sequence length",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--hidden-dim",
|
||||||
|
type=int,
|
||||||
|
default=8192,
|
||||||
|
help="Intermediate size of MLP",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--save-path",
|
||||||
|
type=str,
|
||||||
|
default="./configs/polnorm/",
|
||||||
|
help="Path to save polnorm benchmark results",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Run correctness test
|
||||||
|
calculate_diff(
|
||||||
|
batch_size=args.batch_size,
|
||||||
|
seq_len=args.seq_len,
|
||||||
|
hidden_dim=args.hidden_dim,
|
||||||
|
)
|
||||||
|
|
||||||
|
benchmark = get_benchmark()
|
||||||
|
# Run performance benchmark
|
||||||
|
benchmark.run(print_data=True, save_path=args.save_path)
|
||||||
@ -7,8 +7,7 @@ import torch
|
|||||||
|
|
||||||
from vllm import _custom_ops as ops
|
from vllm import _custom_ops as ops
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
|
||||||
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
|
|
||||||
|
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
|
|||||||
@ -1,172 +0,0 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
||||||
import random
|
|
||||||
import time
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from tabulate import tabulate
|
|
||||||
|
|
||||||
from vllm import _custom_ops as ops
|
|
||||||
from vllm.logger import init_logger
|
|
||||||
from vllm.platforms import current_platform
|
|
||||||
from vllm.utils import FlexibleArgumentParser
|
|
||||||
from vllm.utils.torch_utils import (
|
|
||||||
STR_DTYPE_TO_TORCH_DTYPE,
|
|
||||||
create_kv_caches_with_random,
|
|
||||||
)
|
|
||||||
|
|
||||||
logger = init_logger(__name__)
|
|
||||||
|
|
||||||
|
|
||||||
@torch.inference_mode()
|
|
||||||
def run_benchmark(
|
|
||||||
num_tokens: int,
|
|
||||||
num_heads: int,
|
|
||||||
head_size: int,
|
|
||||||
block_size: int,
|
|
||||||
num_blocks: int,
|
|
||||||
dtype: torch.dtype,
|
|
||||||
kv_cache_dtype: str,
|
|
||||||
num_iters: int,
|
|
||||||
benchmark_mode: str,
|
|
||||||
device: str = "cuda",
|
|
||||||
) -> float:
|
|
||||||
"""Return latency (seconds) for given num_tokens."""
|
|
||||||
|
|
||||||
if kv_cache_dtype == "fp8" and head_size % 16:
|
|
||||||
raise ValueError("fp8 kv-cache requires head_size to be a multiple of 16.")
|
|
||||||
|
|
||||||
current_platform.seed_everything(42)
|
|
||||||
torch.set_default_device(device)
|
|
||||||
|
|
||||||
# create random key / value tensors [T, H, D].
|
|
||||||
key = torch.randn(num_tokens, num_heads, head_size, dtype=dtype, device=device)
|
|
||||||
value = torch.randn_like(key)
|
|
||||||
|
|
||||||
# prepare the slot mapping.
|
|
||||||
# each token is assigned a unique slot in the KV-cache.
|
|
||||||
num_slots = block_size * num_blocks
|
|
||||||
if num_tokens > num_slots:
|
|
||||||
raise ValueError("num_tokens cannot exceed the total number of cache slots")
|
|
||||||
slot_mapping_lst = random.sample(range(num_slots), num_tokens)
|
|
||||||
slot_mapping = torch.tensor(slot_mapping_lst, dtype=torch.long, device=device)
|
|
||||||
|
|
||||||
key_caches, value_caches = create_kv_caches_with_random(
|
|
||||||
num_blocks,
|
|
||||||
block_size,
|
|
||||||
1, # num_layers
|
|
||||||
num_heads,
|
|
||||||
head_size,
|
|
||||||
kv_cache_dtype,
|
|
||||||
dtype,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
key_cache, value_cache = key_caches[0], value_caches[0]
|
|
||||||
# to free unused memory
|
|
||||||
del key_caches, value_caches
|
|
||||||
|
|
||||||
# compute per-kernel scaling factors for fp8 conversion (if used).
|
|
||||||
k_scale = (key.amax() / 64.0).to(torch.float32)
|
|
||||||
v_scale = (value.amax() / 64.0).to(torch.float32)
|
|
||||||
|
|
||||||
function_under_test = lambda: ops.reshape_and_cache(
|
|
||||||
key, # noqa: F821
|
|
||||||
value, # noqa: F821
|
|
||||||
key_cache, # noqa: F821
|
|
||||||
value_cache, # noqa: F821
|
|
||||||
slot_mapping, # noqa: F821
|
|
||||||
kv_cache_dtype,
|
|
||||||
k_scale,
|
|
||||||
v_scale,
|
|
||||||
)
|
|
||||||
|
|
||||||
if benchmark_mode == "cudagraph":
|
|
||||||
g = torch.cuda.CUDAGraph()
|
|
||||||
with torch.cuda.graph(g):
|
|
||||||
function_under_test()
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
function_under_test = lambda: g.replay()
|
|
||||||
|
|
||||||
def run_cuda_benchmark(n_iters: int) -> float:
|
|
||||||
nonlocal key, value, key_cache, value_cache, slot_mapping
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
start = time.perf_counter()
|
|
||||||
for _ in range(n_iters):
|
|
||||||
function_under_test()
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
end = time.perf_counter()
|
|
||||||
return (end - start) / n_iters
|
|
||||||
|
|
||||||
# warm-up
|
|
||||||
run_cuda_benchmark(3)
|
|
||||||
|
|
||||||
lat = run_cuda_benchmark(num_iters)
|
|
||||||
|
|
||||||
# free tensors to mitigate OOM when sweeping
|
|
||||||
del key, value, key_cache, value_cache, slot_mapping
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
|
|
||||||
return lat
|
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
|
||||||
rows = []
|
|
||||||
for exp in range(1, 17):
|
|
||||||
n_tok = 2**exp
|
|
||||||
lat = run_benchmark(
|
|
||||||
num_tokens=n_tok,
|
|
||||||
num_heads=args.num_heads,
|
|
||||||
head_size=args.head_size,
|
|
||||||
block_size=args.block_size,
|
|
||||||
num_blocks=args.num_blocks,
|
|
||||||
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
|
|
||||||
kv_cache_dtype=args.kv_cache_dtype,
|
|
||||||
num_iters=args.iters,
|
|
||||||
benchmark_mode=args.mode,
|
|
||||||
device="cuda",
|
|
||||||
)
|
|
||||||
rows.append([n_tok, lat * 1e6]) # convert to microseconds
|
|
||||||
|
|
||||||
print(f"Benchmark results for implementation cuda (measuring with {args.mode}):")
|
|
||||||
print(tabulate(rows, headers=["num_tokens", "latency (µs)"], floatfmt=".3f"))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = FlexibleArgumentParser()
|
|
||||||
|
|
||||||
parser.add_argument("--num-heads", type=int, default=128)
|
|
||||||
parser.add_argument(
|
|
||||||
"--head-size",
|
|
||||||
type=int,
|
|
||||||
choices=[64, 80, 96, 112, 120, 128, 192, 256],
|
|
||||||
default=128,
|
|
||||||
)
|
|
||||||
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
|
|
||||||
parser.add_argument("--num-blocks", type=int, default=128 * 128)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--dtype",
|
|
||||||
type=str,
|
|
||||||
choices=["half", "bfloat16", "float"],
|
|
||||||
default="bfloat16",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--kv-cache-dtype",
|
|
||||||
type=str,
|
|
||||||
choices=["auto", "fp8"],
|
|
||||||
default="auto",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument("--iters", type=int, default=200)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--mode",
|
|
||||||
type=str,
|
|
||||||
choices=["cudagraph", "no_graph"],
|
|
||||||
default="cudagraph",
|
|
||||||
)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
main(args)
|
|
||||||
@ -1,5 +1,7 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
import random
|
import random
|
||||||
import time
|
import time
|
||||||
|
|
||||||
@ -7,14 +9,11 @@ import torch
|
|||||||
from tabulate import tabulate
|
from tabulate import tabulate
|
||||||
|
|
||||||
from vllm import _custom_ops as ops
|
from vllm import _custom_ops as ops
|
||||||
from vllm.attention.ops.triton_reshape_and_cache_flash import (
|
|
||||||
triton_reshape_and_cache_flash,
|
|
||||||
)
|
|
||||||
from vllm.logger import init_logger
|
from vllm.logger import init_logger
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import (
|
||||||
from vllm.utils.torch_utils import (
|
|
||||||
STR_DTYPE_TO_TORCH_DTYPE,
|
STR_DTYPE_TO_TORCH_DTYPE,
|
||||||
|
FlexibleArgumentParser,
|
||||||
create_kv_caches_with_random_flash,
|
create_kv_caches_with_random_flash,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -32,8 +31,6 @@ def run_benchmark(
|
|||||||
kv_cache_dtype: str,
|
kv_cache_dtype: str,
|
||||||
kv_cache_layout: str,
|
kv_cache_layout: str,
|
||||||
num_iters: int,
|
num_iters: int,
|
||||||
implementation: str,
|
|
||||||
benchmark_mode: str,
|
|
||||||
device: str = "cuda",
|
device: str = "cuda",
|
||||||
) -> float:
|
) -> float:
|
||||||
"""Return latency (seconds) for given num_tokens."""
|
"""Return latency (seconds) for given num_tokens."""
|
||||||
@ -41,14 +38,6 @@ def run_benchmark(
|
|||||||
if kv_cache_dtype == "fp8" and head_size % 16:
|
if kv_cache_dtype == "fp8" and head_size % 16:
|
||||||
raise ValueError("fp8 kv-cache requires head_size to be a multiple of 16.")
|
raise ValueError("fp8 kv-cache requires head_size to be a multiple of 16.")
|
||||||
|
|
||||||
if implementation not in ("cuda", "triton"):
|
|
||||||
raise ValueError(
|
|
||||||
f"Unsupported implementation: {implementation}. "
|
|
||||||
"Only 'cuda' and 'triton' are supported."
|
|
||||||
)
|
|
||||||
if implementation == "triton" and kv_cache_layout == "HND":
|
|
||||||
return float("nan") # Triton does not support HND layout yet.
|
|
||||||
|
|
||||||
current_platform.seed_everything(42)
|
current_platform.seed_everything(42)
|
||||||
torch.set_default_device(device)
|
torch.set_default_device(device)
|
||||||
|
|
||||||
@ -76,49 +65,27 @@ def run_benchmark(
|
|||||||
cache_layout=kv_cache_layout,
|
cache_layout=kv_cache_layout,
|
||||||
)
|
)
|
||||||
key_cache, value_cache = key_caches[0], value_caches[0]
|
key_cache, value_cache = key_caches[0], value_caches[0]
|
||||||
# to free unused memory
|
|
||||||
del key_caches, value_caches
|
|
||||||
|
|
||||||
# compute per-kernel scaling factors for fp8 conversion (if used).
|
# compute per-kernel scaling factors for fp8 conversion (if used).
|
||||||
k_scale = (key.amax() / 64.0).to(torch.float32)
|
k_scale = (key.amax() / 64.0).to(torch.float32)
|
||||||
v_scale = (value.amax() / 64.0).to(torch.float32)
|
v_scale = (value.amax() / 64.0).to(torch.float32)
|
||||||
|
|
||||||
if implementation == "cuda":
|
|
||||||
function_under_test = lambda: ops.reshape_and_cache_flash(
|
|
||||||
key, # noqa: F821
|
|
||||||
value, # noqa: F821
|
|
||||||
key_cache, # noqa: F821
|
|
||||||
value_cache, # noqa: F821
|
|
||||||
slot_mapping, # noqa: F821
|
|
||||||
kv_cache_dtype,
|
|
||||||
k_scale,
|
|
||||||
v_scale,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
function_under_test = lambda: triton_reshape_and_cache_flash(
|
|
||||||
key, # noqa: F821
|
|
||||||
value, # noqa: F821
|
|
||||||
key_cache, # noqa: F821
|
|
||||||
value_cache, # noqa: F821
|
|
||||||
slot_mapping, # noqa: F821
|
|
||||||
kv_cache_dtype,
|
|
||||||
k_scale,
|
|
||||||
v_scale,
|
|
||||||
)
|
|
||||||
if benchmark_mode == "cudagraph":
|
|
||||||
g = torch.cuda.CUDAGraph()
|
|
||||||
with torch.cuda.graph(g):
|
|
||||||
function_under_test()
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
function_under_test = lambda: g.replay()
|
|
||||||
|
|
||||||
def run_cuda_benchmark(n_iters: int) -> float:
|
def run_cuda_benchmark(n_iters: int) -> float:
|
||||||
nonlocal key, value, key_cache, value_cache, slot_mapping
|
nonlocal key, value, key_cache, value_cache, slot_mapping
|
||||||
torch.cuda.synchronize()
|
torch.cuda.synchronize()
|
||||||
start = time.perf_counter()
|
start = time.perf_counter()
|
||||||
for _ in range(n_iters):
|
for _ in range(n_iters):
|
||||||
function_under_test()
|
ops.reshape_and_cache_flash(
|
||||||
torch.cuda.synchronize()
|
key,
|
||||||
|
value,
|
||||||
|
key_cache,
|
||||||
|
value_cache,
|
||||||
|
slot_mapping,
|
||||||
|
kv_cache_dtype,
|
||||||
|
k_scale,
|
||||||
|
v_scale,
|
||||||
|
)
|
||||||
|
torch.cuda.synchronize()
|
||||||
end = time.perf_counter()
|
end = time.perf_counter()
|
||||||
return (end - start) / n_iters
|
return (end - start) / n_iters
|
||||||
|
|
||||||
@ -149,16 +116,10 @@ def main(args):
|
|||||||
kv_cache_dtype=args.kv_cache_dtype,
|
kv_cache_dtype=args.kv_cache_dtype,
|
||||||
kv_cache_layout=layout,
|
kv_cache_layout=layout,
|
||||||
num_iters=args.iters,
|
num_iters=args.iters,
|
||||||
implementation=args.implementation,
|
|
||||||
benchmark_mode=args.mode,
|
|
||||||
device="cuda",
|
device="cuda",
|
||||||
)
|
)
|
||||||
rows.append([n_tok, layout, f"{lat * 1e6:.3f}"])
|
rows.append([n_tok, layout, f"{lat * 1e6:.3f}"])
|
||||||
|
|
||||||
print(
|
|
||||||
f"Benchmark results for implementation {args.implementation}"
|
|
||||||
f" (measuring with {args.mode}):"
|
|
||||||
)
|
|
||||||
print(tabulate(rows, headers=["num_tokens", "layout", "latency (µs)"]))
|
print(tabulate(rows, headers=["num_tokens", "layout", "latency (µs)"]))
|
||||||
|
|
||||||
|
|
||||||
@ -190,21 +151,6 @@ if __name__ == "__main__":
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument("--iters", type=int, default=100)
|
parser.add_argument("--iters", type=int, default=100)
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--implementation",
|
|
||||||
type=str,
|
|
||||||
choices=["cuda", "triton"],
|
|
||||||
default="cuda",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--mode",
|
|
||||||
type=str,
|
|
||||||
choices=["cudagraph", "no_graph"],
|
|
||||||
default="cudagraph",
|
|
||||||
)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
main(args)
|
main(args)
|
||||||
|
|||||||
@ -2,6 +2,7 @@
|
|||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
import itertools
|
import itertools
|
||||||
|
from typing import Optional, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from flashinfer.norm import fused_add_rmsnorm, rmsnorm
|
from flashinfer.norm import fused_add_rmsnorm, rmsnorm
|
||||||
@ -20,8 +21,8 @@ class HuggingFaceRMSNorm(nn.Module):
|
|||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
residual: torch.Tensor | None = None,
|
residual: Optional[torch.Tensor] = None,
|
||||||
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
||||||
orig_dtype = x.dtype
|
orig_dtype = x.dtype
|
||||||
x = x.to(torch.float32)
|
x = x.to(torch.float32)
|
||||||
if residual is not None:
|
if residual is not None:
|
||||||
@ -40,7 +41,7 @@ class HuggingFaceRMSNorm(nn.Module):
|
|||||||
def rmsnorm_naive(
|
def rmsnorm_naive(
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
weight: torch.Tensor,
|
weight: torch.Tensor,
|
||||||
residual: torch.Tensor | None = None,
|
residual: Optional[torch.Tensor] = None,
|
||||||
eps: float = 1e-6,
|
eps: float = 1e-6,
|
||||||
):
|
):
|
||||||
naive_norm = HuggingFaceRMSNorm(x.shape[-1], eps=eps)
|
naive_norm = HuggingFaceRMSNorm(x.shape[-1], eps=eps)
|
||||||
@ -64,7 +65,7 @@ def rmsnorm_naive(
|
|||||||
def rmsnorm_flashinfer(
|
def rmsnorm_flashinfer(
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
weight: torch.Tensor,
|
weight: torch.Tensor,
|
||||||
residual: torch.Tensor | None = None,
|
residual: Optional[torch.Tensor] = None,
|
||||||
eps: float = 1e-6,
|
eps: float = 1e-6,
|
||||||
):
|
):
|
||||||
orig_shape = x.shape
|
orig_shape = x.shape
|
||||||
@ -88,7 +89,7 @@ def rmsnorm_flashinfer(
|
|||||||
def rmsnorm_vllm(
|
def rmsnorm_vllm(
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
weight: torch.Tensor,
|
weight: torch.Tensor,
|
||||||
residual: torch.Tensor | None = None,
|
residual: Optional[torch.Tensor] = None,
|
||||||
eps: float = 1e-6,
|
eps: float = 1e-6,
|
||||||
):
|
):
|
||||||
orig_shape = x.shape
|
orig_shape = x.shape
|
||||||
|
|||||||
@ -2,6 +2,7 @@
|
|||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
from itertools import accumulate
|
from itertools import accumulate
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import nvtx
|
import nvtx
|
||||||
import torch
|
import torch
|
||||||
@ -17,7 +18,7 @@ def benchmark_rope_kernels_multi_lora(
|
|||||||
seq_len: int,
|
seq_len: int,
|
||||||
num_heads: int,
|
num_heads: int,
|
||||||
head_size: int,
|
head_size: int,
|
||||||
rotary_dim: int | None,
|
rotary_dim: Optional[int],
|
||||||
dtype: torch.dtype,
|
dtype: torch.dtype,
|
||||||
seed: int,
|
seed: int,
|
||||||
device: str,
|
device: str,
|
||||||
|
|||||||
@ -1,19 +1,5 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
"""
|
|
||||||
Comprehensive 3-way SiLU Benchmark Suite
|
|
||||||
|
|
||||||
This benchmark compares three SiLU implementations:
|
|
||||||
1. SiLU V2 (CUDA) - Optimized CUDA kernel implementation
|
|
||||||
2. Triton Kernel - Triton-based implementation
|
|
||||||
|
|
||||||
The suite generates detailed performance comparisons including:
|
|
||||||
- Memory bandwidth utilization
|
|
||||||
- Speedup ratios (baseline vs optimized implementations)
|
|
||||||
- Performance across different expert configurations and token distributions
|
|
||||||
"""
|
|
||||||
|
|
||||||
from collections.abc import Callable
|
from collections.abc import Callable
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
@ -21,7 +7,7 @@ import numpy as np
|
|||||||
import torch
|
import torch
|
||||||
|
|
||||||
from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
|
from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
|
||||||
persistent_masked_m_silu_mul_quant,
|
silu_mul_fp8_quant_deep_gemm_cuda,
|
||||||
)
|
)
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.triton_utils import tl, triton
|
from vllm.triton_utils import tl, triton
|
||||||
@ -108,7 +94,6 @@ def silu_mul_fp8_quant_deep_gemm_triton(
|
|||||||
num_parallel_tokens,
|
num_parallel_tokens,
|
||||||
group_size: int = 128,
|
group_size: int = 128,
|
||||||
eps: float = 1e-10,
|
eps: float = 1e-10,
|
||||||
expert_offsets: torch.Tensor = None,
|
|
||||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||||
"""Quantize silu(y[..., :H]) * y[..., H:] to FP8 with group per-token scales
|
"""Quantize silu(y[..., :H]) * y[..., H:] to FP8 with group per-token scales
|
||||||
|
|
||||||
@ -189,7 +174,7 @@ def silu_mul_fp8_quant_deep_gemm_triton(
|
|||||||
|
|
||||||
|
|
||||||
# Parse generation strategies
|
# Parse generation strategies
|
||||||
strategies = ["random_imbalanced", "uniform", "max_t"]
|
strategies = ["uniform", "max_t", "first_t"]
|
||||||
|
|
||||||
|
|
||||||
def benchmark(
|
def benchmark(
|
||||||
@ -210,27 +195,15 @@ def benchmark(
|
|||||||
current_platform.seed_everything(42 + seed_offset)
|
current_platform.seed_everything(42 + seed_offset)
|
||||||
y = torch.rand((E, T, 2 * H), dtype=torch.bfloat16, device="cuda").contiguous()
|
y = torch.rand((E, T, 2 * H), dtype=torch.bfloat16, device="cuda").contiguous()
|
||||||
|
|
||||||
if gen_strategy == "random_imbalanced":
|
if gen_strategy == "uniform":
|
||||||
|
r = torch.rand(size=(E,), device="cuda")
|
||||||
def generate_expert_loads(n_e, total_tokens, ratio, device="cuda"):
|
|
||||||
mean = total_tokens // n_e
|
|
||||||
min_max = mean // ratio
|
|
||||||
e = torch.ones(size=(E,), dtype=torch.int64, device=device) * mean
|
|
||||||
e[0] = min_max
|
|
||||||
r = torch.rand(size=(E - 1,))
|
|
||||||
r /= r.sum()
|
|
||||||
r *= total_tokens - min_max
|
|
||||||
r = r.round().long()
|
|
||||||
e[1:] = r.to(device=device)
|
|
||||||
return e
|
|
||||||
|
|
||||||
tokens_per_expert = generate_expert_loads(E, total_tokens, 0.7, "cuda")
|
|
||||||
elif gen_strategy == "uniform":
|
|
||||||
r = torch.rand(size=(E,))
|
|
||||||
r /= r.sum()
|
r /= r.sum()
|
||||||
r *= total_tokens
|
r *= total_tokens
|
||||||
r = r.round().long()
|
tokens_per_expert = r.int()
|
||||||
tokens_per_expert = r
|
tokens_per_expert = torch.minimum(
|
||||||
|
tokens_per_expert,
|
||||||
|
torch.ones((E,), device=r.device, dtype=torch.int) * T,
|
||||||
|
)
|
||||||
elif gen_strategy == "max_t":
|
elif gen_strategy == "max_t":
|
||||||
tokens_per_expert = torch.empty(size=(E,), dtype=torch.int32, device="cuda")
|
tokens_per_expert = torch.empty(size=(E,), dtype=torch.int32, device="cuda")
|
||||||
tokens_per_expert.fill_(total_tokens / E)
|
tokens_per_expert.fill_(total_tokens / E)
|
||||||
@ -308,34 +281,40 @@ def benchmark(
|
|||||||
|
|
||||||
|
|
||||||
def create_comparison_plot(
|
def create_comparison_plot(
|
||||||
ratios, silu_v2_times, triton_times, config_labels, strategy_name, id
|
ratio, cuda_times, baseline_times, config_labels, strategy_name, id
|
||||||
):
|
):
|
||||||
fig, ax = plt.subplots(1, 1, figsize=(18, 6))
|
"""Create a comparison plot for a specific generation strategy"""
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(16, 6))
|
||||||
|
|
||||||
# Configure x-axis positions
|
# Configure x-axis positions
|
||||||
x = np.arange(len(config_labels))
|
x = np.arange(len(config_labels))
|
||||||
width = 0.25
|
width = 0.35
|
||||||
|
|
||||||
# Execution Time plot (lower is better)
|
# Execution Time plot (lower is better)
|
||||||
ax.bar(x, silu_v2_times, width, label="SiLU V2 (CUDA)", alpha=0.8, color="blue")
|
|
||||||
ax.bar(
|
ax.bar(
|
||||||
x + width, triton_times, width, label="Triton Kernel", alpha=0.8, color="green"
|
x - width / 2, cuda_times, width, label="CUDA Kernel", alpha=0.8, color="blue"
|
||||||
|
)
|
||||||
|
ax.bar(
|
||||||
|
x + width / 2,
|
||||||
|
baseline_times,
|
||||||
|
width,
|
||||||
|
label="Baseline",
|
||||||
|
alpha=0.8,
|
||||||
|
color="orange",
|
||||||
)
|
)
|
||||||
|
|
||||||
# Add speedup labels over each bar trio
|
# Add speedup labels over each bar pair
|
||||||
for i in range(len(x)):
|
for i in range(len(x)):
|
||||||
triton_v2_speedup = ratios[i][1] # triton/v2
|
speedup = ratio[i]
|
||||||
max_height = max(silu_v2_times[i], triton_times[i])
|
max_height = max(cuda_times[i], baseline_times[i])
|
||||||
|
|
||||||
# Triton/V2 speedup
|
|
||||||
ax.text(
|
ax.text(
|
||||||
x[i] + width / 2,
|
x[i],
|
||||||
max_height + max_height * 0.02,
|
max_height + max_height * 0.02,
|
||||||
f"{triton_v2_speedup:.2f}x",
|
f"{speedup:.2f}x",
|
||||||
ha="center",
|
ha="center",
|
||||||
va="bottom",
|
va="bottom",
|
||||||
fontweight="bold",
|
fontweight="bold",
|
||||||
fontsize=8,
|
fontsize=9,
|
||||||
)
|
)
|
||||||
|
|
||||||
ax.set_xlabel("Configuration")
|
ax.set_xlabel("Configuration")
|
||||||
@ -353,75 +332,56 @@ def create_comparison_plot(
|
|||||||
|
|
||||||
|
|
||||||
def create_combined_plot(all_results):
|
def create_combined_plot(all_results):
|
||||||
|
"""Create a combined plot with all strategies in one PNG"""
|
||||||
num_strategies = len(all_results)
|
num_strategies = len(all_results)
|
||||||
fig, axes = plt.subplots(num_strategies, 1, figsize=(22, 7 * num_strategies))
|
fig, axes = plt.subplots(num_strategies, 1, figsize=(20, 6 * num_strategies))
|
||||||
|
|
||||||
if num_strategies == 1:
|
if num_strategies == 1:
|
||||||
axes = [axes]
|
axes = [axes]
|
||||||
|
|
||||||
for idx, (
|
for idx, (
|
||||||
strategy_name,
|
strategy_name,
|
||||||
all_ratios,
|
ratio,
|
||||||
all_silu_v2_results,
|
cuda_times,
|
||||||
all_triton_results,
|
baseline_times,
|
||||||
config_labels,
|
config_labels,
|
||||||
config_x_axis,
|
|
||||||
) in enumerate(all_results):
|
) in enumerate(all_results):
|
||||||
ax = axes[idx]
|
ax = axes[idx]
|
||||||
|
|
||||||
# Flatten the nested results to get bandwidth percentages for plotting
|
|
||||||
silu_v2_bandwidths = []
|
|
||||||
triton_bandwidths = []
|
|
||||||
flat_ratios = []
|
|
||||||
|
|
||||||
for config_results in all_silu_v2_results:
|
|
||||||
for result in config_results:
|
|
||||||
silu_v2_bandwidths.append(result[3]) # bandwidth percentage
|
|
||||||
|
|
||||||
for config_results in all_triton_results:
|
|
||||||
for result in config_results:
|
|
||||||
triton_bandwidths.append(result[3]) # bandwidth percentage
|
|
||||||
|
|
||||||
for config_ratios in all_ratios:
|
|
||||||
for ratio in config_ratios:
|
|
||||||
flat_ratios.append(ratio)
|
|
||||||
|
|
||||||
# Configure x-axis positions
|
# Configure x-axis positions
|
||||||
x = np.arange(len(config_labels))
|
x = np.arange(len(config_labels))
|
||||||
width = 0.25
|
width = 0.35
|
||||||
|
|
||||||
# Bandwidth utilization plot (higher is better)
|
# Execution Time plot (lower is better)
|
||||||
ax.bar(
|
ax.bar(
|
||||||
x,
|
x - width / 2,
|
||||||
silu_v2_bandwidths,
|
cuda_times,
|
||||||
width,
|
width,
|
||||||
label="SiLU V2 (CUDA)",
|
label="CUDA Kernel",
|
||||||
alpha=0.8,
|
alpha=0.8,
|
||||||
color="blue",
|
color="blue",
|
||||||
)
|
)
|
||||||
ax.bar(
|
ax.bar(
|
||||||
x + width,
|
x + width / 2,
|
||||||
triton_bandwidths,
|
baseline_times,
|
||||||
width,
|
width,
|
||||||
label="Triton Kernel",
|
label="Baseline",
|
||||||
alpha=0.8,
|
alpha=0.8,
|
||||||
color="green",
|
color="orange",
|
||||||
)
|
)
|
||||||
|
|
||||||
# Add speedup labels over each bar trio
|
# Add speedup labels over each bar pair
|
||||||
for i in range(len(x)):
|
for i in range(len(x)):
|
||||||
triton_v2_speedup = flat_ratios[i] # triton/v2
|
speedup = ratio[i]
|
||||||
max_height = max(silu_v2_bandwidths[i], triton_bandwidths[i])
|
max_height = max(cuda_times[i], baseline_times[i])
|
||||||
|
|
||||||
# Triton/V2 speedup
|
|
||||||
ax.text(
|
ax.text(
|
||||||
x[i] + width / 2,
|
x[i],
|
||||||
max_height + max_height * 0.02,
|
max_height + max_height * 0.02,
|
||||||
f"{triton_v2_speedup:.2f}x",
|
f"{speedup:.2f}x",
|
||||||
ha="center",
|
ha="center",
|
||||||
va="bottom",
|
va="bottom",
|
||||||
fontweight="bold",
|
fontweight="bold",
|
||||||
fontsize=8,
|
fontsize=9,
|
||||||
)
|
)
|
||||||
|
|
||||||
ax.set_xlabel("Configuration")
|
ax.set_xlabel("Configuration")
|
||||||
@ -435,7 +395,7 @@ def create_combined_plot(all_results):
|
|||||||
ax.grid(True, alpha=0.3)
|
ax.grid(True, alpha=0.3)
|
||||||
|
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
filename = "silu_benchmark_combined_3way.png"
|
filename = "../../silu_bench/silu_benchmark_combined.png"
|
||||||
plt.savefig(filename, dpi=300, bbox_inches="tight")
|
plt.savefig(filename, dpi=300, bbox_inches="tight")
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
@ -445,9 +405,7 @@ def create_combined_plot(all_results):
|
|||||||
outer_dim = 7168
|
outer_dim = 7168
|
||||||
configs = [
|
configs = [
|
||||||
# DeepSeekV3 Configs
|
# DeepSeekV3 Configs
|
||||||
# (1, 56, 7168),
|
|
||||||
(8, 1024, 7168),
|
(8, 1024, 7168),
|
||||||
# (32, 56, 7168),
|
|
||||||
# DeepSeekV3 Configs
|
# DeepSeekV3 Configs
|
||||||
(32, 1024, 7168),
|
(32, 1024, 7168),
|
||||||
# DeepSeekV3 Configs
|
# DeepSeekV3 Configs
|
||||||
@ -459,7 +417,6 @@ num_warmups = 20
|
|||||||
|
|
||||||
strategy_descriptions = {
|
strategy_descriptions = {
|
||||||
"uniform": "Uniform Random",
|
"uniform": "Uniform Random",
|
||||||
"random_imbalanced": "Imbalanced Random",
|
|
||||||
"max_t": "Even Assignment",
|
"max_t": "Even Assignment",
|
||||||
"first_t": "experts[0] = T, experts[1:] = 0",
|
"first_t": "experts[0] = T, experts[1:] = 0",
|
||||||
}
|
}
|
||||||
@ -476,31 +433,28 @@ for id, strategy in enumerate(strategies):
|
|||||||
print(f"Testing strategy: {strategy_descriptions[strategy]}")
|
print(f"Testing strategy: {strategy_descriptions[strategy]}")
|
||||||
print(f"{'=' * 60}")
|
print(f"{'=' * 60}")
|
||||||
|
|
||||||
# Collect benchmark data for all three algorithms
|
# Collect benchmark data for both algorithms
|
||||||
config_labels = []
|
config_labels = []
|
||||||
config_x_axis = []
|
config_x_axis = []
|
||||||
all_silu_v2_results = []
|
all_cuda_results = []
|
||||||
all_triton_results = []
|
all_baseline_results = []
|
||||||
all_ratios = []
|
all_ratios = []
|
||||||
|
|
||||||
for E, T, H in configs:
|
for E, T, H in configs:
|
||||||
total_tokens_config = []
|
total_tokens_config = [8 * E, 16 * E, 32 * E, 64 * E, 128 * E, 256 * E]
|
||||||
for i in [8, 16, 32, 64, 128, 256, 512]:
|
|
||||||
if i <= T:
|
|
||||||
total_tokens_config.append(i * E)
|
|
||||||
config_x_axis.append(total_tokens_config)
|
config_x_axis.append(total_tokens_config)
|
||||||
|
|
||||||
silu_v2_results = []
|
cuda_results = []
|
||||||
triton_results = []
|
baseline_results = []
|
||||||
ratios = []
|
ratios = []
|
||||||
|
|
||||||
for total_tokens in total_tokens_config:
|
for total_tokens in total_tokens_config:
|
||||||
config_label = f"E={E},T={T},H={H},TT={total_tokens}"
|
config_label = f"E={E},T={T},H={H},TT={total_tokens}"
|
||||||
config_labels.append(config_label)
|
config_labels.append(config_label)
|
||||||
|
|
||||||
# SiLU V2 (CUDA kernel) results
|
# CUDA kernel results
|
||||||
time_ms_silu_v2, gflops, gbps, perc = benchmark(
|
time_ms_cuda, gflops, gbps, perc = benchmark(
|
||||||
persistent_masked_m_silu_mul_quant,
|
silu_mul_fp8_quant_deep_gemm_cuda,
|
||||||
E,
|
E,
|
||||||
T,
|
T,
|
||||||
H,
|
H,
|
||||||
@ -509,9 +463,9 @@ for id, strategy in enumerate(strategies):
|
|||||||
num_warmups=num_warmups,
|
num_warmups=num_warmups,
|
||||||
gen_strategy=strategy,
|
gen_strategy=strategy,
|
||||||
)
|
)
|
||||||
silu_v2_results.append((time_ms_silu_v2, gflops, gbps, perc))
|
cuda_results.append((time_ms_cuda, gflops, gbps, perc))
|
||||||
|
|
||||||
# Triton kernel results
|
# Baseline results
|
||||||
time_ms_triton, gflops, gbps, perc = benchmark(
|
time_ms_triton, gflops, gbps, perc = benchmark(
|
||||||
silu_mul_fp8_quant_deep_gemm_triton,
|
silu_mul_fp8_quant_deep_gemm_triton,
|
||||||
E,
|
E,
|
||||||
@ -522,20 +476,12 @@ for id, strategy in enumerate(strategies):
|
|||||||
num_warmups=num_warmups,
|
num_warmups=num_warmups,
|
||||||
gen_strategy=strategy,
|
gen_strategy=strategy,
|
||||||
)
|
)
|
||||||
triton_results.append((time_ms_triton, gflops, gbps, perc))
|
baseline_results.append((time_ms_triton, gflops, gbps, perc))
|
||||||
|
ratios.append(time_ms_triton / time_ms_cuda)
|
||||||
|
|
||||||
# Calculate speedup ratios (triton baseline / implementation)
|
print(f"Completed: {config_label}")
|
||||||
triton_v2_ratio = time_ms_triton / time_ms_silu_v2
|
all_cuda_results.append(cuda_results)
|
||||||
ratios.append(triton_v2_ratio)
|
all_baseline_results.append(baseline_results)
|
||||||
|
|
||||||
print(
|
|
||||||
f"Completed: {config_label}:"
|
|
||||||
f" V2: {time_ms_silu_v2:.3f}ms,"
|
|
||||||
f" Triton: {time_ms_triton:.3f}ms"
|
|
||||||
)
|
|
||||||
|
|
||||||
all_silu_v2_results.append(silu_v2_results)
|
|
||||||
all_triton_results.append(triton_results)
|
|
||||||
all_ratios.append(ratios)
|
all_ratios.append(ratios)
|
||||||
|
|
||||||
# Store results for combined plotting
|
# Store results for combined plotting
|
||||||
@ -543,8 +489,8 @@ for id, strategy in enumerate(strategies):
|
|||||||
(
|
(
|
||||||
strategy_descriptions[strategy],
|
strategy_descriptions[strategy],
|
||||||
all_ratios,
|
all_ratios,
|
||||||
all_silu_v2_results,
|
all_cuda_results,
|
||||||
all_triton_results,
|
all_baseline_results,
|
||||||
config_labels,
|
config_labels,
|
||||||
config_x_axis,
|
config_x_axis,
|
||||||
)
|
)
|
||||||
@ -552,18 +498,15 @@ for id, strategy in enumerate(strategies):
|
|||||||
|
|
||||||
# Print summary table for this strategy
|
# Print summary table for this strategy
|
||||||
print(f"\nSummary Table - {strategy_descriptions[strategy]}:")
|
print(f"\nSummary Table - {strategy_descriptions[strategy]}:")
|
||||||
print(f" {'V2 Time(ms)':<12} {'Triton Time(ms)':<14} {'Triton/V2':<10}")
|
print(f"{'Config':<20} {'CUDA Time(ms)':<12} {'Base Time(ms)':<12} {'Speedup':<8}")
|
||||||
print("-" * 90)
|
print("-" * 60)
|
||||||
|
|
||||||
for i, (E, T, H) in enumerate(configs):
|
for i, (E, T, H) in enumerate(configs):
|
||||||
# Get the first result for each config (simplifying for summary)
|
speedup = baseline_results[i][0] / cuda_results[i][0]
|
||||||
v2_time = silu_v2_results[i][0]
|
|
||||||
triton_time = triton_results[i][0]
|
|
||||||
triton_v2_speedup = triton_time / v2_time
|
|
||||||
config_label = f"E={E:3d},T={T:4d},H={H:4d}"
|
config_label = f"E={E:3d},T={T:4d},H={H:4d}"
|
||||||
print(
|
print(
|
||||||
f"{config_label:<20} {v2_time:8.5f} {triton_time:10.5f} "
|
f"{config_label:<20} {cuda_results[i][0]:8.5f} "
|
||||||
f"{triton_v2_speedup:8.2f}x"
|
f"{baseline_results[i][0]:8.5f} {speedup:6.2f}x"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -571,14 +514,15 @@ def create_total_tokens_plot(all_results):
|
|||||||
num_strategies = len(all_results)
|
num_strategies = len(all_results)
|
||||||
num_configs = len(configs)
|
num_configs = len(configs)
|
||||||
|
|
||||||
|
# Create side-by-side subplots: 2 columns for speedup and bandwidth percentage
|
||||||
fig, axs = plt.subplots(
|
fig, axs = plt.subplots(
|
||||||
num_strategies, num_configs * 2, figsize=(32, 8 * num_strategies)
|
num_strategies, num_configs * 2, figsize=(28, 6 * num_strategies)
|
||||||
)
|
)
|
||||||
|
|
||||||
# Add main title to the entire figure
|
# Add main title to the entire figure
|
||||||
fig.suptitle(
|
fig.suptitle(
|
||||||
"Performance Analysis: Speedup vs Bandwidth Utilization (SiLU V2, and Triton)",
|
"Performance Analysis: Speedup vs Bandwidth Utilization (Triton & CUDA)",
|
||||||
fontsize=18,
|
fontsize=16,
|
||||||
fontweight="bold",
|
fontweight="bold",
|
||||||
y=0.98,
|
y=0.98,
|
||||||
)
|
)
|
||||||
@ -595,8 +539,8 @@ def create_total_tokens_plot(all_results):
|
|||||||
(
|
(
|
||||||
strategy_name,
|
strategy_name,
|
||||||
all_ratios,
|
all_ratios,
|
||||||
all_silu_v2_results,
|
all_cuda_results,
|
||||||
all_triton_results,
|
all_baseline_results,
|
||||||
config_labels,
|
config_labels,
|
||||||
config_x_axis,
|
config_x_axis,
|
||||||
) = result
|
) = result
|
||||||
@ -611,54 +555,42 @@ def create_total_tokens_plot(all_results):
|
|||||||
ratios = all_ratios[config_idx]
|
ratios = all_ratios[config_idx]
|
||||||
total_tokens_values = config_x_axis[config_idx]
|
total_tokens_values = config_x_axis[config_idx]
|
||||||
|
|
||||||
# Extract speedup ratios
|
# Extract CUDA and Triton bandwidth percentages
|
||||||
triton_v2_ratios = [ratio for ratio in ratios]
|
cuda_bandwidth_percentages = [
|
||||||
|
result[3] for result in all_cuda_results[config_idx]
|
||||||
# Extract bandwidth percentages for all implementations
|
|
||||||
v2_bandwidth_percentages = [
|
|
||||||
result[3] for result in all_silu_v2_results[config_idx]
|
|
||||||
]
|
]
|
||||||
triton_bandwidth_percentages = [
|
triton_bandwidth_percentages = [
|
||||||
result[3] for result in all_triton_results[config_idx]
|
result[3] for result in all_baseline_results[config_idx]
|
||||||
]
|
]
|
||||||
|
|
||||||
# Plot speedup ratios vs total tokens (left plot)
|
# Plot speedup ratios vs total tokens (left plot)
|
||||||
ax_speedup.plot(
|
ax_speedup.plot(
|
||||||
total_tokens_values,
|
total_tokens_values, ratios, "bo-", linewidth=3, markersize=8
|
||||||
triton_v2_ratios,
|
|
||||||
"go-",
|
|
||||||
linewidth=3,
|
|
||||||
markersize=8,
|
|
||||||
label="Triton/V2 Speedup",
|
|
||||||
)
|
)
|
||||||
ax_speedup.set_title(
|
ax_speedup.set_title(
|
||||||
f"{strategy_name}\nSpeedup vs Baseline (Triton)\nE={E}, T={T}, H={H}",
|
f"{strategy_name}\nSpeedup (CUDA/Triton)\nE={E}, T={T}, H={H}",
|
||||||
fontsize=12,
|
fontsize=12,
|
||||||
fontweight="bold",
|
fontweight="bold",
|
||||||
)
|
)
|
||||||
ax_speedup.set_xlabel("Total Tokens", fontweight="bold", fontsize=11)
|
ax_speedup.set_xlabel("Total Tokens", fontweight="bold", fontsize=11)
|
||||||
ax_speedup.set_ylabel("Speedup Ratio", fontweight="bold", fontsize=11)
|
ax_speedup.set_ylabel("Speedup Ratio", fontweight="bold", fontsize=11)
|
||||||
ax_speedup.legend(prop={"weight": "bold"})
|
|
||||||
ax_speedup.grid(True, alpha=0.3)
|
ax_speedup.grid(True, alpha=0.3)
|
||||||
|
|
||||||
# Plot bandwidth utilization (right plot)
|
|
||||||
ax_bandwidth.plot(
|
ax_bandwidth.plot(
|
||||||
total_tokens_values,
|
total_tokens_values,
|
||||||
v2_bandwidth_percentages,
|
cuda_bandwidth_percentages,
|
||||||
"o-",
|
"ro-",
|
||||||
linewidth=3,
|
linewidth=3,
|
||||||
markersize=8,
|
markersize=8,
|
||||||
label="SiLU V2",
|
label="CUDA",
|
||||||
color="blue",
|
|
||||||
)
|
)
|
||||||
ax_bandwidth.plot(
|
ax_bandwidth.plot(
|
||||||
total_tokens_values,
|
total_tokens_values,
|
||||||
triton_bandwidth_percentages,
|
triton_bandwidth_percentages,
|
||||||
"o-",
|
"go-",
|
||||||
linewidth=3,
|
linewidth=3,
|
||||||
markersize=8,
|
markersize=8,
|
||||||
label="Triton",
|
label="Triton",
|
||||||
color="green",
|
|
||||||
)
|
)
|
||||||
ax_bandwidth.set_title(
|
ax_bandwidth.set_title(
|
||||||
f"{strategy_name}\nBandwidth Utilization (Hopper)\nE={E}, T={T}, H={H}",
|
f"{strategy_name}\nBandwidth Utilization (Hopper)\nE={E}, T={T}, H={H}",
|
||||||
@ -686,12 +618,38 @@ def create_total_tokens_plot(all_results):
|
|||||||
for label in ax.get_xticklabels() + ax.get_yticklabels():
|
for label in ax.get_xticklabels() + ax.get_yticklabels():
|
||||||
label.set_fontweight("bold")
|
label.set_fontweight("bold")
|
||||||
|
|
||||||
# Add value labels on Triton/V2 speedup points
|
# Add value labels on speedup points
|
||||||
for x, y in zip(total_tokens_values, triton_v2_ratios):
|
for x, y in zip(total_tokens_values, ratios):
|
||||||
ax_speedup.annotate(
|
ax_speedup.annotate(
|
||||||
f"{y:.2f}x",
|
f"{y:.2f}x",
|
||||||
(x, y),
|
(x, y),
|
||||||
textcoords="offset points",
|
textcoords="offset points",
|
||||||
|
xytext=(0, 12),
|
||||||
|
ha="center",
|
||||||
|
fontsize=10,
|
||||||
|
fontweight="bold",
|
||||||
|
bbox=dict(boxstyle="round,pad=0.3", facecolor="white", alpha=0.7),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add value labels on CUDA bandwidth points
|
||||||
|
for x, y in zip(total_tokens_values, cuda_bandwidth_percentages):
|
||||||
|
ax_bandwidth.annotate(
|
||||||
|
f"{y:.1f}%",
|
||||||
|
(x, y),
|
||||||
|
textcoords="offset points",
|
||||||
|
xytext=(0, 12),
|
||||||
|
ha="center",
|
||||||
|
fontsize=9,
|
||||||
|
fontweight="bold",
|
||||||
|
bbox=dict(boxstyle="round,pad=0.2", facecolor="red", alpha=0.3),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add value labels on Triton bandwidth points
|
||||||
|
for x, y in zip(total_tokens_values, triton_bandwidth_percentages):
|
||||||
|
ax_bandwidth.annotate(
|
||||||
|
f"{y:.1f}%",
|
||||||
|
(x, y),
|
||||||
|
textcoords="offset points",
|
||||||
xytext=(0, -15),
|
xytext=(0, -15),
|
||||||
ha="center",
|
ha="center",
|
||||||
fontsize=9,
|
fontsize=9,
|
||||||
@ -701,20 +659,17 @@ def create_total_tokens_plot(all_results):
|
|||||||
|
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
plt.subplots_adjust(top=0.93) # Make room for main title
|
plt.subplots_adjust(top=0.93) # Make room for main title
|
||||||
filename = "silu_benchmark_total_tokens_3way.png"
|
filename = "silu_benchmark_total_tokens.png"
|
||||||
plt.savefig(filename, dpi=300, bbox_inches="tight")
|
plt.savefig(filename, dpi=300, bbox_inches="tight")
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
return filename
|
return filename
|
||||||
|
|
||||||
|
|
||||||
# Create comprehensive 3-way comparison plots
|
# Create combined plot with all strategies
|
||||||
combined_plot_filename = create_combined_plot(all_results)
|
combined_plot_filename = create_total_tokens_plot(all_results)
|
||||||
total_tokens_plot_filename = create_total_tokens_plot(all_results)
|
|
||||||
|
|
||||||
print(f"\n{'=' * 80}")
|
print(f"\n{'=' * 60}")
|
||||||
print("3-Way Benchmark Suite Complete!")
|
print("Benchmark Complete!")
|
||||||
print(f"Generated combined comparison plot: {combined_plot_filename}")
|
print(f"Generated combined plot: {combined_plot_filename}")
|
||||||
print(f"Generated total tokens analysis plot: {total_tokens_plot_filename}")
|
print(f"{'=' * 60}")
|
||||||
print("Compared: SiLU V2 (CUDA), and Triton implementations")
|
|
||||||
print(f"{'=' * 80}")
|
|
||||||
|
|||||||
@ -4,6 +4,7 @@
|
|||||||
import csv
|
import csv
|
||||||
import os
|
import os
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import flashinfer
|
import flashinfer
|
||||||
import torch
|
import torch
|
||||||
@ -27,7 +28,9 @@ def to_float8(x, dtype=torch.float8_e4m3fn):
|
|||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def benchmark_decode(
|
def benchmark_decode(
|
||||||
dtype: torch.dtype,
|
dtype: torch.dtype,
|
||||||
quant_dtypes: tuple[torch.dtype | None, torch.dtype | None, torch.dtype | None],
|
quant_dtypes: tuple[
|
||||||
|
Optional[torch.dtype], Optional[torch.dtype], Optional[torch.dtype]
|
||||||
|
],
|
||||||
batch_size: int,
|
batch_size: int,
|
||||||
max_seq_len: int,
|
max_seq_len: int,
|
||||||
num_heads: tuple[int, int] = (64, 8),
|
num_heads: tuple[int, int] = (64, 8),
|
||||||
|
|||||||
@ -4,6 +4,7 @@
|
|||||||
import csv
|
import csv
|
||||||
import os
|
import os
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import flashinfer
|
import flashinfer
|
||||||
import torch
|
import torch
|
||||||
@ -27,7 +28,9 @@ def to_float8(x, dtype=torch.float8_e4m3fn):
|
|||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def benchmark_prefill(
|
def benchmark_prefill(
|
||||||
dtype: torch.dtype,
|
dtype: torch.dtype,
|
||||||
quant_dtypes: tuple[torch.dtype | None, torch.dtype | None, torch.dtype | None],
|
quant_dtypes: tuple[
|
||||||
|
Optional[torch.dtype], Optional[torch.dtype], Optional[torch.dtype]
|
||||||
|
],
|
||||||
batch_size: int,
|
batch_size: int,
|
||||||
max_seq_len: int,
|
max_seq_len: int,
|
||||||
num_heads: tuple[int, int] = (64, 8),
|
num_heads: tuple[int, int] = (64, 8),
|
||||||
|
|||||||
@ -11,13 +11,13 @@ from datetime import datetime
|
|||||||
from typing import Any
|
from typing import Any
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
import triton
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||||
_w8a8_triton_block_scaled_mm,
|
_w8a8_block_fp8_matmul,
|
||||||
)
|
)
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.triton_utils import triton
|
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import FlexibleArgumentParser
|
||||||
|
|
||||||
mp.set_start_method("spawn", force=True)
|
mp.set_start_method("spawn", force=True)
|
||||||
@ -83,7 +83,7 @@ def w8a8_block_matmul(
|
|||||||
)
|
)
|
||||||
|
|
||||||
if A.dtype == torch.float8_e4m3fn:
|
if A.dtype == torch.float8_e4m3fn:
|
||||||
kernel = _w8a8_triton_block_scaled_mm
|
kernel = _w8a8_block_fp8_matmul
|
||||||
else:
|
else:
|
||||||
raise RuntimeError("Currently, only support tune w8a8 block fp8 kernel.")
|
raise RuntimeError("Currently, only support tune w8a8 block fp8 kernel.")
|
||||||
|
|
||||||
|
|||||||
@ -1,5 +1,6 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
# fmt: off
|
||||||
# ruff: noqa: E501
|
# ruff: noqa: E501
|
||||||
import time
|
import time
|
||||||
|
|
||||||
@ -7,33 +8,27 @@ import torch
|
|||||||
|
|
||||||
from vllm import _custom_ops as ops
|
from vllm import _custom_ops as ops
|
||||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||||
|
get_col_major_tma_aligned_tensor,
|
||||||
per_token_group_quant_fp8,
|
per_token_group_quant_fp8,
|
||||||
w8a8_triton_block_scaled_mm,
|
w8a8_block_fp8_matmul,
|
||||||
)
|
)
|
||||||
from vllm.triton_utils import triton
|
from vllm.triton_utils import triton
|
||||||
from vllm.utils.deep_gemm import (
|
from vllm.utils.deep_gemm import calc_diff, fp8_gemm_nt, per_block_cast_to_fp8
|
||||||
calc_diff,
|
|
||||||
fp8_gemm_nt,
|
|
||||||
get_col_major_tma_aligned_tensor,
|
|
||||||
per_block_cast_to_fp8,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def benchmark_shape(
|
def benchmark_shape(m: int,
|
||||||
m: int,
|
n: int,
|
||||||
n: int,
|
k: int,
|
||||||
k: int,
|
warmup: int = 100,
|
||||||
warmup: int = 100,
|
repeat: int = 10000,
|
||||||
repeat: int = 10000,
|
verbose: bool = False) -> dict:
|
||||||
verbose: bool = False,
|
|
||||||
) -> dict:
|
|
||||||
"""Benchmark all implementations for a specific (m, n, k) shape."""
|
"""Benchmark all implementations for a specific (m, n, k) shape."""
|
||||||
if verbose:
|
if verbose:
|
||||||
print(f"\n=== Benchmarking shape: m={m}, n={n}, k={k} ===")
|
print(f"\n=== Benchmarking shape: m={m}, n={n}, k={k} ===")
|
||||||
|
|
||||||
# Create test tensors
|
# Create test tensors
|
||||||
A = torch.randn((m, k), device="cuda", dtype=torch.bfloat16)
|
A = torch.randn((m, k), device='cuda', dtype=torch.bfloat16)
|
||||||
B = torch.randn((n, k), device="cuda", dtype=torch.bfloat16)
|
B = torch.randn((n, k), device='cuda', dtype=torch.bfloat16)
|
||||||
|
|
||||||
# Reference result in BF16
|
# Reference result in BF16
|
||||||
torch.cuda.synchronize()
|
torch.cuda.synchronize()
|
||||||
@ -50,39 +45,34 @@ def benchmark_shape(
|
|||||||
# Pre-quantize A for all implementations
|
# Pre-quantize A for all implementations
|
||||||
A_deepgemm, A_scale_deepgemm = per_token_group_quant_fp8(A, block_size[1])
|
A_deepgemm, A_scale_deepgemm = per_token_group_quant_fp8(A, block_size[1])
|
||||||
A_scale_deepgemm = get_col_major_tma_aligned_tensor(A_scale_deepgemm)
|
A_scale_deepgemm = get_col_major_tma_aligned_tensor(A_scale_deepgemm)
|
||||||
C_deepgemm = torch.empty((m, n), device="cuda", dtype=torch.bfloat16)
|
C_deepgemm = torch.empty((m, n), device='cuda', dtype=torch.bfloat16)
|
||||||
A_vllm, A_scale_vllm = per_token_group_quant_fp8(A, block_size[1])
|
A_vllm, A_scale_vllm = per_token_group_quant_fp8(A, block_size[1])
|
||||||
A_vllm_cutlass, A_scale_vllm_cutlass = per_token_group_quant_fp8(
|
A_vllm_cutlass, A_scale_vllm_cutlass = per_token_group_quant_fp8(
|
||||||
A, block_size[1], column_major_scales=True
|
A, block_size[1], column_major_scales=True)
|
||||||
)
|
|
||||||
|
|
||||||
# === DeepGEMM Implementation ===
|
# === DeepGEMM Implementation ===
|
||||||
def deepgemm_gemm():
|
def deepgemm_gemm():
|
||||||
fp8_gemm_nt(
|
fp8_gemm_nt((A_deepgemm, A_scale_deepgemm),
|
||||||
(A_deepgemm, A_scale_deepgemm), (B_deepgemm, B_scale_deepgemm), C_deepgemm
|
(B_deepgemm, B_scale_deepgemm),
|
||||||
)
|
C_deepgemm)
|
||||||
return C_deepgemm
|
return C_deepgemm
|
||||||
|
|
||||||
# === vLLM Triton Implementation ===
|
# === vLLM Triton Implementation ===
|
||||||
def vllm_triton_gemm():
|
def vllm_triton_gemm():
|
||||||
return w8a8_triton_block_scaled_mm(
|
return w8a8_block_fp8_matmul(A_vllm,
|
||||||
A_vllm,
|
B_vllm,
|
||||||
B_vllm,
|
A_scale_vllm,
|
||||||
A_scale_vllm,
|
B_scale_vllm,
|
||||||
B_scale_vllm,
|
block_size,
|
||||||
block_size,
|
output_dtype=torch.bfloat16)
|
||||||
output_dtype=torch.bfloat16,
|
|
||||||
)
|
|
||||||
|
|
||||||
# === vLLM CUTLASS Implementation ===
|
# === vLLM CUTLASS Implementation ===
|
||||||
def vllm_cutlass_gemm():
|
def vllm_cutlass_gemm():
|
||||||
return ops.cutlass_scaled_mm(
|
return ops.cutlass_scaled_mm(A_vllm_cutlass,
|
||||||
A_vllm_cutlass,
|
B_vllm.T,
|
||||||
B_vllm.T,
|
scale_a=A_scale_vllm_cutlass,
|
||||||
scale_a=A_scale_vllm_cutlass,
|
scale_b=B_scale_vllm.T,
|
||||||
scale_b=B_scale_vllm.T,
|
out_dtype=torch.bfloat16)
|
||||||
out_dtype=torch.bfloat16,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Run correctness check first
|
# Run correctness check first
|
||||||
if verbose:
|
if verbose:
|
||||||
@ -99,23 +89,26 @@ def benchmark_shape(
|
|||||||
print(f"DeepGEMM vs Reference difference: {deepgemm_diff:.6f}")
|
print(f"DeepGEMM vs Reference difference: {deepgemm_diff:.6f}")
|
||||||
print(f"vLLM Triton vs Reference difference: {vllm_triton_diff:.6f}")
|
print(f"vLLM Triton vs Reference difference: {vllm_triton_diff:.6f}")
|
||||||
print(f"vLLM CUTLASS vs Reference difference: {vllm_cutlass_diff:.6f}")
|
print(f"vLLM CUTLASS vs Reference difference: {vllm_cutlass_diff:.6f}")
|
||||||
print(
|
print("vLLM Triton vs DeepGEMM difference: "
|
||||||
"vLLM Triton vs DeepGEMM difference: "
|
f"{calc_diff(C_vllm_triton, C_deepgemm):.6f}")
|
||||||
f"{calc_diff(C_vllm_triton, C_deepgemm):.6f}"
|
print("vLLM CUTLASS vs DeepGEMM difference: "
|
||||||
)
|
f"{calc_diff(C_vllm_cutlass, C_deepgemm):.6f}")
|
||||||
print(
|
|
||||||
"vLLM CUTLASS vs DeepGEMM difference: "
|
|
||||||
f"{calc_diff(C_vllm_cutlass, C_deepgemm):.6f}"
|
|
||||||
)
|
|
||||||
|
|
||||||
# Benchmark implementations
|
# Benchmark implementations
|
||||||
implementations = {
|
implementations = {
|
||||||
"DeepGEMM": deepgemm_gemm,
|
"DeepGEMM": deepgemm_gemm,
|
||||||
"vLLM Triton": vllm_triton_gemm,
|
"vLLM Triton": vllm_triton_gemm,
|
||||||
"vLLM CUTLASS": vllm_cutlass_gemm,
|
"vLLM CUTLASS": vllm_cutlass_gemm
|
||||||
}
|
}
|
||||||
|
|
||||||
benchmark_results = {"shape": {"m": m, "n": n, "k": k}, "implementations": {}}
|
benchmark_results = {
|
||||||
|
"shape": {
|
||||||
|
"m": m,
|
||||||
|
"n": n,
|
||||||
|
"k": k
|
||||||
|
},
|
||||||
|
"implementations": {}
|
||||||
|
}
|
||||||
|
|
||||||
for name, func in implementations.items():
|
for name, func in implementations.items():
|
||||||
# Warmup
|
# Warmup
|
||||||
@ -143,36 +136,38 @@ def benchmark_shape(
|
|||||||
"tflops": tflops,
|
"tflops": tflops,
|
||||||
"gb_s": gb_s,
|
"gb_s": gb_s,
|
||||||
"diff": {
|
"diff": {
|
||||||
"DeepGEMM": 0.0
|
"DeepGEMM":
|
||||||
if name == "DeepGEMM"
|
0.0 if name == "DeepGEMM" else calc_diff(func(), C_deepgemm),
|
||||||
else calc_diff(func(), C_deepgemm),
|
"Reference":
|
||||||
"Reference": deepgemm_diff
|
deepgemm_diff if name == "DeepGEMM" else
|
||||||
if name == "DeepGEMM"
|
(vllm_triton_diff
|
||||||
else (vllm_triton_diff if name == "vLLM Triton" else vllm_cutlass_diff),
|
if name == "vLLM Triton" else vllm_cutlass_diff)
|
||||||
},
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if verbose:
|
if verbose:
|
||||||
print(f"{name}: {avg_time_ms:.3f} ms, {tflops:.2f} TFLOPS, {gb_s:.2f} GB/s")
|
print(
|
||||||
|
f"{name}: {avg_time_ms:.3f} ms, {tflops:.2f} TFLOPS, {gb_s:.2f} GB/s"
|
||||||
|
)
|
||||||
|
|
||||||
# Calculate speedups
|
# Calculate speedups
|
||||||
baseline = benchmark_results["implementations"]["DeepGEMM"]["time_ms"]
|
baseline = benchmark_results["implementations"]["DeepGEMM"]["time_ms"]
|
||||||
for name, data in benchmark_results["implementations"].items():
|
for name, data in benchmark_results["implementations"].items():
|
||||||
if name != "DeepGEMM":
|
if name != "DeepGEMM":
|
||||||
speedup = baseline / data["time_ms"]
|
speedup = baseline / data["time_ms"]
|
||||||
benchmark_results["implementations"][name]["speedup_vs_deepgemm"] = speedup
|
benchmark_results["implementations"][name][
|
||||||
|
"speedup_vs_deepgemm"] = speedup
|
||||||
if verbose:
|
if verbose:
|
||||||
print(
|
print(f"DeepGEMM is {1/speedup:.2f}x "
|
||||||
f"DeepGEMM is {1 / speedup:.2f}x "
|
f"{'faster' if 1/speedup > 1 else 'slower'} than {name}")
|
||||||
f"{'faster' if 1 / speedup > 1 else 'slower'} than {name}"
|
|
||||||
)
|
|
||||||
|
|
||||||
vllm_triton_time = benchmark_results["implementations"]["vLLM Triton"]["time_ms"]
|
vllm_triton_time = benchmark_results["implementations"]["vLLM Triton"][
|
||||||
vllm_cutlass_time = benchmark_results["implementations"]["vLLM CUTLASS"]["time_ms"]
|
"time_ms"]
|
||||||
|
vllm_cutlass_time = benchmark_results["implementations"]["vLLM CUTLASS"][
|
||||||
|
"time_ms"]
|
||||||
cutlass_vs_triton = vllm_triton_time / vllm_cutlass_time
|
cutlass_vs_triton = vllm_triton_time / vllm_cutlass_time
|
||||||
benchmark_results["implementations"]["vLLM CUTLASS"]["speedup_vs_triton"] = (
|
benchmark_results["implementations"]["vLLM CUTLASS"][
|
||||||
cutlass_vs_triton
|
"speedup_vs_triton"] = cutlass_vs_triton
|
||||||
)
|
|
||||||
if verbose:
|
if verbose:
|
||||||
print(
|
print(
|
||||||
f"vLLM CUTLASS is {cutlass_vs_triton:.2f}x "
|
f"vLLM CUTLASS is {cutlass_vs_triton:.2f}x "
|
||||||
@ -184,7 +179,8 @@ def benchmark_shape(
|
|||||||
|
|
||||||
def format_table_row(values, widths):
|
def format_table_row(values, widths):
|
||||||
"""Format a row with specified column widths."""
|
"""Format a row with specified column widths."""
|
||||||
return "| " + " | ".join(f"{val:{w}}" for val, w in zip(values, widths)) + " |"
|
return "| " + " | ".join(f"{val:{w}}"
|
||||||
|
for val, w in zip(values, widths)) + " |"
|
||||||
|
|
||||||
|
|
||||||
def print_table(headers, rows, title=None):
|
def print_table(headers, rows, title=None):
|
||||||
@ -292,50 +288,38 @@ def run_benchmarks(verbose: bool = False):
|
|||||||
for result in all_results:
|
for result in all_results:
|
||||||
shape = result["shape"]
|
shape = result["shape"]
|
||||||
impl_data = result["implementations"]["DeepGEMM"]
|
impl_data = result["implementations"]["DeepGEMM"]
|
||||||
deepgemm_rows.append(
|
deepgemm_rows.append([
|
||||||
[
|
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
|
||||||
shape["m"],
|
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}"
|
||||||
shape["n"],
|
])
|
||||||
shape["k"],
|
|
||||||
f"{impl_data['time_us']:.1f}",
|
|
||||||
f"{impl_data['tflops']:.1f}",
|
|
||||||
f"{impl_data['gb_s']:.1f}",
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
print_table(deepgemm_headers, deepgemm_rows, title="DeepGEMM Implementation:")
|
print_table(deepgemm_headers,
|
||||||
|
deepgemm_rows,
|
||||||
|
title="DeepGEMM Implementation:")
|
||||||
|
|
||||||
# Print vLLM Triton table
|
# Print vLLM Triton table
|
||||||
triton_headers = ["m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM"]
|
triton_headers = [
|
||||||
|
"m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM"
|
||||||
|
]
|
||||||
triton_rows = []
|
triton_rows = []
|
||||||
for result in all_results:
|
for result in all_results:
|
||||||
shape = result["shape"]
|
shape = result["shape"]
|
||||||
impl_data = result["implementations"]["vLLM Triton"]
|
impl_data = result["implementations"]["vLLM Triton"]
|
||||||
speedup = impl_data.get("speedup_vs_deepgemm", 1.0)
|
speedup = impl_data.get("speedup_vs_deepgemm", 1.0)
|
||||||
triton_rows.append(
|
triton_rows.append([
|
||||||
[
|
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
|
||||||
shape["m"],
|
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}",
|
||||||
shape["n"],
|
format_speedup(speedup)
|
||||||
shape["k"],
|
])
|
||||||
f"{impl_data['time_us']:.1f}",
|
|
||||||
f"{impl_data['tflops']:.1f}",
|
|
||||||
f"{impl_data['gb_s']:.1f}",
|
|
||||||
format_speedup(speedup),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
print_table(triton_headers, triton_rows, title="vLLM Triton Implementation:")
|
print_table(triton_headers,
|
||||||
|
triton_rows,
|
||||||
|
title="vLLM Triton Implementation:")
|
||||||
|
|
||||||
# Print vLLM CUTLASS table
|
# Print vLLM CUTLASS table
|
||||||
cutlass_headers = [
|
cutlass_headers = [
|
||||||
"m",
|
"m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM",
|
||||||
"n",
|
"vs Triton"
|
||||||
"k",
|
|
||||||
"Time (μs)",
|
|
||||||
"TFLOPS",
|
|
||||||
"GB/s",
|
|
||||||
"vs DeepGEMM",
|
|
||||||
"vs Triton",
|
|
||||||
]
|
]
|
||||||
cutlass_rows = []
|
cutlass_rows = []
|
||||||
for result in all_results:
|
for result in all_results:
|
||||||
@ -343,27 +327,28 @@ def run_benchmarks(verbose: bool = False):
|
|||||||
impl_data = result["implementations"]["vLLM CUTLASS"]
|
impl_data = result["implementations"]["vLLM CUTLASS"]
|
||||||
vs_deepgemm = impl_data.get("speedup_vs_deepgemm", 1.0)
|
vs_deepgemm = impl_data.get("speedup_vs_deepgemm", 1.0)
|
||||||
vs_triton = impl_data.get("speedup_vs_triton", 1.0)
|
vs_triton = impl_data.get("speedup_vs_triton", 1.0)
|
||||||
cutlass_rows.append(
|
cutlass_rows.append([
|
||||||
[
|
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
|
||||||
shape["m"],
|
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}",
|
||||||
shape["n"],
|
format_speedup(vs_deepgemm),
|
||||||
shape["k"],
|
format_speedup(vs_triton)
|
||||||
f"{impl_data['time_us']:.1f}",
|
])
|
||||||
f"{impl_data['tflops']:.1f}",
|
|
||||||
f"{impl_data['gb_s']:.1f}",
|
|
||||||
format_speedup(vs_deepgemm),
|
|
||||||
format_speedup(vs_triton),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
print_table(cutlass_headers, cutlass_rows, title="vLLM CUTLASS Implementation:")
|
print_table(cutlass_headers,
|
||||||
|
cutlass_rows,
|
||||||
|
title="vLLM CUTLASS Implementation:")
|
||||||
|
|
||||||
# Calculate and print averages
|
# Calculate and print averages
|
||||||
print("\n===== AVERAGE PERFORMANCE =====")
|
print("\n===== AVERAGE PERFORMANCE =====")
|
||||||
|
|
||||||
implementations = ["DeepGEMM", "vLLM Triton", "vLLM CUTLASS"]
|
implementations = ["DeepGEMM", "vLLM Triton", "vLLM CUTLASS"]
|
||||||
avg_metrics = {
|
avg_metrics = {
|
||||||
impl: {"tflops": 0, "gb_s": 0, "time_ms": 0} for impl in implementations
|
impl: {
|
||||||
|
"tflops": 0,
|
||||||
|
"gb_s": 0,
|
||||||
|
"time_ms": 0
|
||||||
|
}
|
||||||
|
for impl in implementations
|
||||||
}
|
}
|
||||||
|
|
||||||
for result in all_results:
|
for result in all_results:
|
||||||
@ -381,9 +366,9 @@ def run_benchmarks(verbose: bool = False):
|
|||||||
avg_tflops = avg_metrics[impl]["tflops"] / num_shapes
|
avg_tflops = avg_metrics[impl]["tflops"] / num_shapes
|
||||||
avg_mem_bw = avg_metrics[impl]["gb_s"] / num_shapes
|
avg_mem_bw = avg_metrics[impl]["gb_s"] / num_shapes
|
||||||
avg_time = avg_metrics[impl]["time_ms"] / num_shapes
|
avg_time = avg_metrics[impl]["time_ms"] / num_shapes
|
||||||
avg_rows.append(
|
avg_rows.append([
|
||||||
[impl, f"{avg_tflops:.2f}", f"{avg_mem_bw:.2f}", f"{avg_time:.2f}"]
|
impl, f"{avg_tflops:.2f}", f"{avg_mem_bw:.2f}", f"{avg_time:.2f}"
|
||||||
)
|
])
|
||||||
|
|
||||||
print_table(avg_headers, avg_rows)
|
print_table(avg_headers, avg_rows)
|
||||||
|
|
||||||
@ -391,19 +376,21 @@ def run_benchmarks(verbose: bool = False):
|
|||||||
avg_speedups = {
|
avg_speedups = {
|
||||||
"DeepGEMM vs vLLM Triton": 0,
|
"DeepGEMM vs vLLM Triton": 0,
|
||||||
"DeepGEMM vs vLLM CUTLASS": 0,
|
"DeepGEMM vs vLLM CUTLASS": 0,
|
||||||
"vLLM CUTLASS vs vLLM Triton": 0,
|
"vLLM CUTLASS vs vLLM Triton": 0
|
||||||
}
|
}
|
||||||
|
|
||||||
for result in all_results:
|
for result in all_results:
|
||||||
deepgemm_time = result["implementations"]["DeepGEMM"]["time_ms"]
|
deepgemm_time = result["implementations"]["DeepGEMM"]["time_ms"]
|
||||||
vllm_triton_time = result["implementations"]["vLLM Triton"]["time_ms"]
|
vllm_triton_time = result["implementations"]["vLLM Triton"]["time_ms"]
|
||||||
vllm_cutlass_time = result["implementations"]["vLLM CUTLASS"]["time_ms"]
|
vllm_cutlass_time = result["implementations"]["vLLM CUTLASS"][
|
||||||
|
"time_ms"]
|
||||||
|
|
||||||
avg_speedups["DeepGEMM vs vLLM Triton"] += vllm_triton_time / deepgemm_time
|
avg_speedups[
|
||||||
avg_speedups["DeepGEMM vs vLLM CUTLASS"] += vllm_cutlass_time / deepgemm_time
|
"DeepGEMM vs vLLM Triton"] += vllm_triton_time / deepgemm_time
|
||||||
avg_speedups["vLLM CUTLASS vs vLLM Triton"] += (
|
avg_speedups[
|
||||||
vllm_triton_time / vllm_cutlass_time
|
"DeepGEMM vs vLLM CUTLASS"] += vllm_cutlass_time / deepgemm_time
|
||||||
)
|
avg_speedups[
|
||||||
|
"vLLM CUTLASS vs vLLM Triton"] += vllm_triton_time / vllm_cutlass_time
|
||||||
|
|
||||||
print("\n===== AVERAGE SPEEDUPS =====")
|
print("\n===== AVERAGE SPEEDUPS =====")
|
||||||
speedup_headers = ["Comparison", "Speedup"]
|
speedup_headers = ["Comparison", "Speedup"]
|
||||||
@ -421,7 +408,8 @@ def run_benchmarks(verbose: bool = False):
|
|||||||
|
|
||||||
for result in all_results:
|
for result in all_results:
|
||||||
for impl in implementations:
|
for impl in implementations:
|
||||||
avg_diff[impl] += result["implementations"][impl]["diff"]["Reference"]
|
avg_diff[impl] += result["implementations"][impl]["diff"][
|
||||||
|
"Reference"]
|
||||||
|
|
||||||
diff_headers = ["Implementation", "Avg Diff vs Reference"]
|
diff_headers = ["Implementation", "Avg Diff vs Reference"]
|
||||||
diff_rows = []
|
diff_rows = []
|
||||||
|
|||||||
@ -2,8 +2,8 @@
|
|||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
import dataclasses
|
import dataclasses
|
||||||
from collections.abc import Callable, Iterable
|
from collections.abc import Iterable
|
||||||
from typing import Any
|
from typing import Any, Callable, Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.benchmark as TBenchmark
|
import torch.utils.benchmark as TBenchmark
|
||||||
@ -55,7 +55,7 @@ class Bench:
|
|||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
cuda_graph_params: CudaGraphBenchParams | None,
|
cuda_graph_params: Optional[CudaGraphBenchParams],
|
||||||
label: str,
|
label: str,
|
||||||
sub_label: str,
|
sub_label: str,
|
||||||
description: str,
|
description: str,
|
||||||
|
|||||||
@ -2,7 +2,7 @@
|
|||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from statistics import mean
|
from statistics import mean
|
||||||
from typing import Any, NamedTuple
|
from typing import Any, NamedTuple, Optional, Union
|
||||||
|
|
||||||
import numpy as np # type: ignore
|
import numpy as np # type: ignore
|
||||||
import pandas as pd # type: ignore
|
import pandas as pd # type: ignore
|
||||||
@ -35,8 +35,8 @@ class Distribution(ABC):
|
|||||||
class UniformDistribution(Distribution):
|
class UniformDistribution(Distribution):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
min_val: int | float,
|
min_val: Union[int, float],
|
||||||
max_val: int | float,
|
max_val: Union[int, float],
|
||||||
is_integer: bool = True,
|
is_integer: bool = True,
|
||||||
) -> None:
|
) -> None:
|
||||||
self.min_val = min_val
|
self.min_val = min_val
|
||||||
@ -56,7 +56,7 @@ class UniformDistribution(Distribution):
|
|||||||
|
|
||||||
|
|
||||||
class ConstantDistribution(Distribution):
|
class ConstantDistribution(Distribution):
|
||||||
def __init__(self, value: int | float) -> None:
|
def __init__(self, value: Union[int, float]) -> None:
|
||||||
self.value = value
|
self.value = value
|
||||||
self.max_val = value
|
self.max_val = value
|
||||||
|
|
||||||
@ -68,7 +68,7 @@ class ConstantDistribution(Distribution):
|
|||||||
|
|
||||||
|
|
||||||
class ZipfDistribution(Distribution):
|
class ZipfDistribution(Distribution):
|
||||||
def __init__(self, alpha: float, max_val: int | None = None) -> None:
|
def __init__(self, alpha: float, max_val: Optional[int] = None) -> None:
|
||||||
self.alpha = alpha
|
self.alpha = alpha
|
||||||
self.max_val = max_val
|
self.max_val = max_val
|
||||||
|
|
||||||
@ -83,7 +83,7 @@ class ZipfDistribution(Distribution):
|
|||||||
|
|
||||||
|
|
||||||
class PoissonDistribution(Distribution):
|
class PoissonDistribution(Distribution):
|
||||||
def __init__(self, alpha: float, max_val: int | None = None) -> None:
|
def __init__(self, alpha: float, max_val: Optional[int] = None) -> None:
|
||||||
self.alpha = alpha
|
self.alpha = alpha
|
||||||
self.max_val = max_val
|
self.max_val = max_val
|
||||||
|
|
||||||
@ -100,11 +100,11 @@ class PoissonDistribution(Distribution):
|
|||||||
class LognormalDistribution(Distribution):
|
class LognormalDistribution(Distribution):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
mean: float | None = None,
|
mean: Optional[float] = None,
|
||||||
sigma: float | None = None,
|
sigma: Optional[float] = None,
|
||||||
average: int | None = None,
|
average: Optional[int] = None,
|
||||||
median_ratio: float | None = None,
|
median_ratio: Optional[float] = None,
|
||||||
max_val: int | None = None,
|
max_val: Optional[int] = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
self.average = average
|
self.average = average
|
||||||
self.median_ratio = median_ratio
|
self.median_ratio = median_ratio
|
||||||
|
|||||||
@ -13,7 +13,7 @@ from datetime import datetime
|
|||||||
from enum import Enum
|
from enum import Enum
|
||||||
from http import HTTPStatus
|
from http import HTTPStatus
|
||||||
from statistics import mean
|
from statistics import mean
|
||||||
from typing import NamedTuple
|
from typing import NamedTuple, Optional, Union
|
||||||
|
|
||||||
import aiohttp # type: ignore
|
import aiohttp # type: ignore
|
||||||
import numpy as np # type: ignore
|
import numpy as np # type: ignore
|
||||||
@ -46,9 +46,9 @@ class ConversationSampling(str, Enum):
|
|||||||
|
|
||||||
class ClientArgs(NamedTuple):
|
class ClientArgs(NamedTuple):
|
||||||
seed: int
|
seed: int
|
||||||
max_num_requests: int | None
|
max_num_requests: Optional[int]
|
||||||
skip_first_turn: bool
|
skip_first_turn: bool
|
||||||
max_turns: int | None
|
max_turns: Optional[int]
|
||||||
max_active_conversations: int
|
max_active_conversations: int
|
||||||
verbose: bool
|
verbose: bool
|
||||||
print_content: bool
|
print_content: bool
|
||||||
@ -109,9 +109,9 @@ class RequestStats(NamedTuple):
|
|||||||
|
|
||||||
class MetricStats:
|
class MetricStats:
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
self.min: float | None = None
|
self.min: Optional[float] = None
|
||||||
self.max: float | None = None
|
self.max: Optional[float] = None
|
||||||
self.avg: float | None = None
|
self.avg: Optional[float] = None
|
||||||
self.sum = 0.0
|
self.sum = 0.0
|
||||||
self.count = 0
|
self.count = 0
|
||||||
|
|
||||||
@ -143,7 +143,7 @@ class MovingAverage:
|
|||||||
self.index = 0
|
self.index = 0
|
||||||
self.sum = 0.0
|
self.sum = 0.0
|
||||||
self.count = 0
|
self.count = 0
|
||||||
self.avg: float | None = None
|
self.avg: Optional[float] = None
|
||||||
|
|
||||||
def update(self, new_value: float) -> None:
|
def update(self, new_value: float) -> None:
|
||||||
if self.count < self.window_size:
|
if self.count < self.window_size:
|
||||||
@ -169,7 +169,7 @@ class MovingAverage:
|
|||||||
class DebugStats:
|
class DebugStats:
|
||||||
def __init__(self, logger: logging.Logger, window_size: int) -> None:
|
def __init__(self, logger: logging.Logger, window_size: int) -> None:
|
||||||
self.logger = logger
|
self.logger = logger
|
||||||
self.metrics: dict[str, MovingAverage | MetricStats] = {
|
self.metrics: dict[str, Union[MovingAverage, MetricStats]] = {
|
||||||
"moving_avg_ttft_ms": MovingAverage(window_size),
|
"moving_avg_ttft_ms": MovingAverage(window_size),
|
||||||
"moving_avg_tpot_ms": MovingAverage(window_size),
|
"moving_avg_tpot_ms": MovingAverage(window_size),
|
||||||
"ttft_ms": MetricStats(),
|
"ttft_ms": MetricStats(),
|
||||||
@ -198,6 +198,14 @@ class DebugStats:
|
|||||||
self.logger.info("-" * 50)
|
self.logger.info("-" * 50)
|
||||||
|
|
||||||
|
|
||||||
|
# Must support Python 3.8, we can't use str.removeprefix(prefix)
|
||||||
|
# introduced in Python 3.9
|
||||||
|
def remove_prefix(text: str, prefix: str) -> str:
|
||||||
|
if text.startswith(prefix):
|
||||||
|
return text[len(prefix) :]
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
def nanosec_to_millisec(value: float) -> float:
|
def nanosec_to_millisec(value: float) -> float:
|
||||||
return value / 1000000.0
|
return value / 1000000.0
|
||||||
|
|
||||||
@ -212,8 +220,8 @@ async def send_request(
|
|||||||
chat_url: str,
|
chat_url: str,
|
||||||
model: str,
|
model: str,
|
||||||
stream: bool = True,
|
stream: bool = True,
|
||||||
min_tokens: int | None = None,
|
min_tokens: Optional[int] = None,
|
||||||
max_tokens: int | None = None,
|
max_tokens: Optional[int] = None,
|
||||||
) -> ServerResponse:
|
) -> ServerResponse:
|
||||||
payload = {
|
payload = {
|
||||||
"model": model,
|
"model": model,
|
||||||
@ -242,9 +250,9 @@ async def send_request(
|
|||||||
timeout = aiohttp.ClientTimeout(total=timeout_sec)
|
timeout = aiohttp.ClientTimeout(total=timeout_sec)
|
||||||
|
|
||||||
valid_response = True
|
valid_response = True
|
||||||
ttft: float | None = None
|
ttft: Optional[float] = None
|
||||||
chunk_delay: list[int] = []
|
chunk_delay: list[int] = []
|
||||||
latency: float | None = None
|
latency: Optional[float] = None
|
||||||
first_chunk = ""
|
first_chunk = ""
|
||||||
generated_text = ""
|
generated_text = ""
|
||||||
|
|
||||||
@ -261,7 +269,7 @@ async def send_request(
|
|||||||
if not chunk_bytes:
|
if not chunk_bytes:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
|
||||||
if chunk == "[DONE]":
|
if chunk == "[DONE]":
|
||||||
# End of stream
|
# End of stream
|
||||||
latency = time.perf_counter_ns() - start_time
|
latency = time.perf_counter_ns() - start_time
|
||||||
@ -356,7 +364,7 @@ async def send_turn(
|
|||||||
req_args: RequestArgs,
|
req_args: RequestArgs,
|
||||||
verbose: bool,
|
verbose: bool,
|
||||||
verify_output: bool,
|
verify_output: bool,
|
||||||
) -> RequestStats | None:
|
) -> Optional[RequestStats]:
|
||||||
assert messages_to_use > 0
|
assert messages_to_use > 0
|
||||||
assert messages_to_use <= len(conversation_messages)
|
assert messages_to_use <= len(conversation_messages)
|
||||||
|
|
||||||
@ -636,7 +644,7 @@ async def client_main(
|
|||||||
|
|
||||||
if args.verbose:
|
if args.verbose:
|
||||||
curr_time_sec: float = time.perf_counter()
|
curr_time_sec: float = time.perf_counter()
|
||||||
time_since_last_turn: str | float = "N/A"
|
time_since_last_turn: Union[str, float] = "N/A"
|
||||||
if conv_id in time_of_last_turn:
|
if conv_id in time_of_last_turn:
|
||||||
time_since_last_turn = round(
|
time_since_last_turn = round(
|
||||||
curr_time_sec - time_of_last_turn[conv_id], 3
|
curr_time_sec - time_of_last_turn[conv_id], 3
|
||||||
@ -761,7 +769,7 @@ def get_client_config(
|
|||||||
"Number of conversations must be equal or larger than the number of clients"
|
"Number of conversations must be equal or larger than the number of clients"
|
||||||
)
|
)
|
||||||
|
|
||||||
max_req_per_client: int | None = None
|
max_req_per_client: Optional[int] = None
|
||||||
if args.max_num_requests is not None:
|
if args.max_num_requests is not None:
|
||||||
# Max number of requests per client
|
# Max number of requests per client
|
||||||
req_per_client = args.max_num_requests // args.num_clients
|
req_per_client = args.max_num_requests // args.num_clients
|
||||||
@ -928,13 +936,13 @@ async def main_mp(
|
|||||||
f"{num_clients_finished} out of {bench_args.num_clients} clients finished, collected {len(client_metrics)} measurements, runtime {runtime_sec:.3f} sec{Color.RESET}" # noqa: E501
|
f"{num_clients_finished} out of {bench_args.num_clients} clients finished, collected {len(client_metrics)} measurements, runtime {runtime_sec:.3f} sec{Color.RESET}" # noqa: E501
|
||||||
)
|
)
|
||||||
|
|
||||||
rps: str | float = round(len(client_metrics) / runtime_sec, 3)
|
rps: Union[str, float] = round(len(client_metrics) / runtime_sec, 3)
|
||||||
if len(client_metrics) < (5 * bench_args.num_clients):
|
if len(client_metrics) < (5 * bench_args.num_clients):
|
||||||
# Do not estimate the RPS if the number of samples is very low
|
# Do not estimate the RPS if the number of samples is very low
|
||||||
# (threshold can be tuned if needed)
|
# (threshold can be tuned if needed)
|
||||||
rps = "N/A"
|
rps = "N/A"
|
||||||
|
|
||||||
runtime_left_sec: str | float = round(
|
runtime_left_sec: Union[str, float] = round(
|
||||||
(runtime_sec / finished_convs) * (total_convs - finished_convs), 3
|
(runtime_sec / finished_convs) * (total_convs - finished_convs), 3
|
||||||
)
|
)
|
||||||
if percent < 0.05:
|
if percent < 0.05:
|
||||||
@ -1024,7 +1032,7 @@ def process_statistics(
|
|||||||
warmup_percentages: list[float],
|
warmup_percentages: list[float],
|
||||||
test_params: dict,
|
test_params: dict,
|
||||||
verbose: bool,
|
verbose: bool,
|
||||||
gen_conv_args: GenConvArgs | None = None,
|
gen_conv_args: Optional[GenConvArgs] = None,
|
||||||
excel_output: bool = False,
|
excel_output: bool = False,
|
||||||
) -> None:
|
) -> None:
|
||||||
if len(client_metrics) == 0:
|
if len(client_metrics) == 0:
|
||||||
@ -1251,7 +1259,7 @@ async def main() -> None:
|
|||||||
default=None,
|
default=None,
|
||||||
help="The model name used in the API. "
|
help="The model name used in the API. "
|
||||||
"If not specified, the model name will be the "
|
"If not specified, the model name will be the "
|
||||||
"same as the `--model` argument. ",
|
"same as the ``--model`` argument. ",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
|||||||
@ -13,7 +13,7 @@ import argparse
|
|||||||
import json
|
import json
|
||||||
import random
|
import random
|
||||||
from statistics import mean
|
from statistics import mean
|
||||||
from typing import Any
|
from typing import Any, Optional
|
||||||
|
|
||||||
import pandas as pd # type: ignore
|
import pandas as pd # type: ignore
|
||||||
import tqdm # type: ignore
|
import tqdm # type: ignore
|
||||||
@ -25,7 +25,7 @@ def has_non_english_chars(text: str) -> bool:
|
|||||||
|
|
||||||
|
|
||||||
def content_is_valid(
|
def content_is_valid(
|
||||||
content: str, min_content_len: int | None, max_content_len: int | None
|
content: str, min_content_len: Optional[int], max_content_len: Optional[int]
|
||||||
) -> bool:
|
) -> bool:
|
||||||
if min_content_len and len(content) < min_content_len:
|
if min_content_len and len(content) < min_content_len:
|
||||||
return False
|
return False
|
||||||
@ -37,7 +37,7 @@ def content_is_valid(
|
|||||||
|
|
||||||
|
|
||||||
def print_stats(
|
def print_stats(
|
||||||
conversations: "list[dict[Any, Any]]", tokenizer: AutoTokenizer | None = None
|
conversations: "list[dict[Any, Any]]", tokenizer: Optional[AutoTokenizer] = None
|
||||||
) -> None:
|
) -> None:
|
||||||
# Collect statistics
|
# Collect statistics
|
||||||
stats = []
|
stats = []
|
||||||
@ -109,12 +109,12 @@ def convert_sharegpt_to_openai(
|
|||||||
seed: int,
|
seed: int,
|
||||||
input_file: str,
|
input_file: str,
|
||||||
output_file: str,
|
output_file: str,
|
||||||
max_items: int | None,
|
max_items: Optional[int],
|
||||||
min_content_len: int | None = None,
|
min_content_len: Optional[int] = None,
|
||||||
max_content_len: int | None = None,
|
max_content_len: Optional[int] = None,
|
||||||
min_turns: int | None = None,
|
min_turns: Optional[int] = None,
|
||||||
max_turns: int | None = None,
|
max_turns: Optional[int] = None,
|
||||||
model: str | None = None,
|
model: Optional[str] = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
if min_turns and max_turns:
|
if min_turns and max_turns:
|
||||||
assert min_turns <= max_turns
|
assert min_turns <= max_turns
|
||||||
|
|||||||
49
benchmarks/pyproject.toml
Normal file
49
benchmarks/pyproject.toml
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
# This local pyproject file is part of the migration from yapf to ruff format.
|
||||||
|
# It uses the same core rules as the main pyproject.toml file, but with the
|
||||||
|
# following differences:
|
||||||
|
# - ruff line length is overridden to 88
|
||||||
|
# - deprecated typing ignores (UP006, UP035) have been removed
|
||||||
|
|
||||||
|
[tool.ruff]
|
||||||
|
line-length = 88
|
||||||
|
|
||||||
|
[tool.ruff.lint.per-file-ignores]
|
||||||
|
"vllm/third_party/**" = ["ALL"]
|
||||||
|
"vllm/version.py" = ["F401"]
|
||||||
|
"vllm/_version.py" = ["ALL"]
|
||||||
|
|
||||||
|
[tool.ruff.lint]
|
||||||
|
select = [
|
||||||
|
# pycodestyle
|
||||||
|
"E",
|
||||||
|
# Pyflakes
|
||||||
|
"F",
|
||||||
|
# pyupgrade
|
||||||
|
"UP",
|
||||||
|
# flake8-bugbear
|
||||||
|
"B",
|
||||||
|
# flake8-simplify
|
||||||
|
"SIM",
|
||||||
|
# isort
|
||||||
|
"I",
|
||||||
|
# flake8-logging-format
|
||||||
|
"G",
|
||||||
|
]
|
||||||
|
ignore = [
|
||||||
|
# star imports
|
||||||
|
"F405", "F403",
|
||||||
|
# lambda expression assignment
|
||||||
|
"E731",
|
||||||
|
# Loop control variable not used within loop body
|
||||||
|
"B007",
|
||||||
|
# f-string format
|
||||||
|
"UP032",
|
||||||
|
# Can remove once 3.10+ is the minimum Python version
|
||||||
|
"UP007",
|
||||||
|
]
|
||||||
|
|
||||||
|
[tool.ruff.lint.isort]
|
||||||
|
known-first-party = ["vllm"]
|
||||||
|
|
||||||
|
[tool.ruff.format]
|
||||||
|
docstring-code-format = true
|
||||||
@ -101,7 +101,6 @@ else()
|
|||||||
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
|
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
|
||||||
find_isa(${CPUINFO} "bf16" ARM_BF16_FOUND) # Check for ARM BF16 support
|
find_isa(${CPUINFO} "bf16" ARM_BF16_FOUND) # Check for ARM BF16 support
|
||||||
find_isa(${CPUINFO} "S390" S390_FOUND)
|
find_isa(${CPUINFO} "S390" S390_FOUND)
|
||||||
find_isa(${CPUINFO} "v" RVV_FOUND) # Check for RISC-V RVV support
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if (AVX512_FOUND AND NOT AVX512_DISABLED)
|
if (AVX512_FOUND AND NOT AVX512_DISABLED)
|
||||||
@ -178,74 +177,35 @@ elseif (S390_FOUND)
|
|||||||
"-mzvector"
|
"-mzvector"
|
||||||
"-march=native"
|
"-march=native"
|
||||||
"-mtune=native")
|
"-mtune=native")
|
||||||
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "riscv64")
|
|
||||||
if(RVV_FOUND)
|
|
||||||
message(FAIL_ERROR "Can't support rvv now.")
|
|
||||||
else()
|
|
||||||
list(APPEND CXX_COMPILE_FLAGS "-march=rv64gc")
|
|
||||||
endif()
|
|
||||||
else()
|
else()
|
||||||
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA, ARMv8 or RISC-V support.")
|
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA or ARMv8 support.")
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
#
|
||||||
|
# Build oneDNN for W8A8 GEMM kernels (only for x86-AVX512 /ARM platforms)
|
||||||
|
# Flag to enable ACL kernels for AARCH64 platforms
|
||||||
|
if (VLLM_BUILD_ACL STREQUAL "ON")
|
||||||
|
set(USE_ACL ON)
|
||||||
|
else()
|
||||||
|
set(USE_ACL OFF)
|
||||||
|
endif()
|
||||||
|
|
||||||
# Build oneDNN for GEMM kernels (only for x86-AVX512 /ARM platforms)
|
|
||||||
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON_FOUND) OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
|
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON_FOUND) OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
|
||||||
# Fetch and build Arm Compute Library (ACL) as oneDNN's backend for AArch64
|
FetchContent_Declare(
|
||||||
# TODO [fadara01]: remove this once ACL can be fetched and built automatically as a dependency of oneDNN
|
oneDNN
|
||||||
if(ASIMD_FOUND)
|
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
|
||||||
if(DEFINED ENV{ACL_ROOT_DIR} AND IS_DIRECTORY "$ENV{ACL_ROOT_DIR}")
|
GIT_TAG v3.9
|
||||||
message(STATUS "Using ACL from specified source directory: $ENV{ACL_ROOT_DIR}")
|
GIT_PROGRESS TRUE
|
||||||
else()
|
GIT_SHALLOW TRUE
|
||||||
message(STATUS "Downloading Arm Compute Library (ACL) from GitHub")
|
)
|
||||||
FetchContent_Populate(arm_compute
|
|
||||||
SUBBUILD_DIR "${FETCHCONTENT_BASE_DIR}/arm_compute-subbuild"
|
|
||||||
SOURCE_DIR "${FETCHCONTENT_BASE_DIR}/arm_compute-src"
|
|
||||||
GIT_REPOSITORY https://github.com/ARM-software/ComputeLibrary.git
|
|
||||||
GIT_TAG v52.2.0
|
|
||||||
GIT_SHALLOW TRUE
|
|
||||||
GIT_PROGRESS TRUE
|
|
||||||
)
|
|
||||||
set(ENV{ACL_ROOT_DIR} "${arm_compute_SOURCE_DIR}")
|
|
||||||
endif()
|
|
||||||
|
|
||||||
# Build ACL with scons
|
if(USE_ACL)
|
||||||
include(ProcessorCount)
|
find_library(ARM_COMPUTE_LIBRARY NAMES arm_compute PATHS $ENV{ACL_ROOT_DIR}/build/)
|
||||||
ProcessorCount(_NPROC)
|
if(NOT ARM_COMPUTE_LIBRARY)
|
||||||
execute_process(
|
message(FATAL_ERROR "Could not find ARM Compute Library: please set ACL_ROOT_DIR")
|
||||||
COMMAND scons -j${_NPROC}
|
|
||||||
Werror=0 debug=0 neon=1 examples=0 embed_kernels=0 os=linux
|
|
||||||
arch=armv8.2-a build=native benchmark_examples=0 fixed_format_kernels=1
|
|
||||||
multi_isa=1 openmp=1 cppthreads=0
|
|
||||||
WORKING_DIRECTORY "$ENV{ACL_ROOT_DIR}"
|
|
||||||
RESULT_VARIABLE _acl_rc
|
|
||||||
)
|
|
||||||
if(NOT _acl_rc EQUAL 0)
|
|
||||||
message(FATAL_ERROR "ACL SCons build failed (exit ${_acl_rc}).")
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
set(ONEDNN_AARCH64_USE_ACL "ON")
|
set(ONEDNN_AARCH64_USE_ACL "ON")
|
||||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
|
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
|
||||||
add_compile_definitions(VLLM_USE_ACL)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
set(FETCHCONTENT_SOURCE_DIR_ONEDNN "$ENV{FETCHCONTENT_SOURCE_DIR_ONEDNN}" CACHE PATH "Path to a local oneDNN source directory.")
|
|
||||||
|
|
||||||
if(FETCHCONTENT_SOURCE_DIR_ONEDNN)
|
|
||||||
message(STATUS "Using oneDNN from specified source directory: ${FETCHCONTENT_SOURCE_DIR_ONEDNN}")
|
|
||||||
FetchContent_Declare(
|
|
||||||
oneDNN
|
|
||||||
SOURCE_DIR ${FETCHCONTENT_SOURCE_DIR_ONEDNN}
|
|
||||||
)
|
|
||||||
else()
|
|
||||||
message(STATUS "Downloading oneDNN from GitHub")
|
|
||||||
FetchContent_Declare(
|
|
||||||
oneDNN
|
|
||||||
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
|
|
||||||
GIT_TAG v3.9
|
|
||||||
GIT_PROGRESS TRUE
|
|
||||||
GIT_SHALLOW TRUE
|
|
||||||
)
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
set(ONEDNN_LIBRARY_TYPE "STATIC")
|
set(ONEDNN_LIBRARY_TYPE "STATIC")
|
||||||
@ -298,8 +258,7 @@ set(VLLM_EXT_SRC
|
|||||||
"csrc/cpu/layernorm.cpp"
|
"csrc/cpu/layernorm.cpp"
|
||||||
"csrc/cpu/mla_decode.cpp"
|
"csrc/cpu/mla_decode.cpp"
|
||||||
"csrc/cpu/pos_encoding.cpp"
|
"csrc/cpu/pos_encoding.cpp"
|
||||||
"csrc/cpu/torch_bindings.cpp"
|
"csrc/cpu/torch_bindings.cpp")
|
||||||
"csrc/moe/dynamic_4bit_int_moe_cpu.cpp")
|
|
||||||
|
|
||||||
if (AVX512_FOUND AND NOT AVX512_DISABLED)
|
if (AVX512_FOUND AND NOT AVX512_DISABLED)
|
||||||
set(VLLM_EXT_SRC
|
set(VLLM_EXT_SRC
|
||||||
@ -341,4 +300,4 @@ define_gpu_extension_target(
|
|||||||
WITH_SOABI
|
WITH_SOABI
|
||||||
)
|
)
|
||||||
|
|
||||||
message(STATUS "Enabling C extension.")
|
message(STATUS "Enabling C extension.")
|
||||||
|
|||||||
@ -18,8 +18,8 @@ if(FLASH_MLA_SRC_DIR)
|
|||||||
else()
|
else()
|
||||||
FetchContent_Declare(
|
FetchContent_Declare(
|
||||||
flashmla
|
flashmla
|
||||||
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA
|
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA.git
|
||||||
GIT_TAG 28417e516fcbf6257a422ba117ef5b6f44da5682
|
GIT_TAG a757314c04eedd166e329e846c820eb1bdd702de
|
||||||
GIT_PROGRESS TRUE
|
GIT_PROGRESS TRUE
|
||||||
CONFIGURE_COMMAND ""
|
CONFIGURE_COMMAND ""
|
||||||
BUILD_COMMAND ""
|
BUILD_COMMAND ""
|
||||||
@ -33,65 +33,23 @@ message(STATUS "FlashMLA is available at ${flashmla_SOURCE_DIR}")
|
|||||||
# The FlashMLA kernels only work on hopper and require CUDA 12.3 or later.
|
# The FlashMLA kernels only work on hopper and require CUDA 12.3 or later.
|
||||||
# Only build FlashMLA kernels if we are building for something compatible with
|
# Only build FlashMLA kernels if we are building for something compatible with
|
||||||
# sm90a
|
# sm90a
|
||||||
|
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||||
set(SUPPORT_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3)
|
|
||||||
list(APPEND SUPPORT_ARCHS 9.0a)
|
|
||||||
endif()
|
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8)
|
|
||||||
list(APPEND SUPPORT_ARCHS 10.0a)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
|
|
||||||
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "${SUPPORT_ARCHS}" "${CUDA_ARCHS}")
|
|
||||||
if(FLASH_MLA_ARCHS)
|
|
||||||
set(VLLM_FLASHMLA_GPU_FLAGS ${VLLM_GPU_FLAGS})
|
|
||||||
list(APPEND VLLM_FLASHMLA_GPU_FLAGS "--expt-relaxed-constexpr" "--expt-extended-lambda" "--use_fast_math")
|
|
||||||
|
|
||||||
set(FlashMLA_SOURCES
|
set(FlashMLA_SOURCES
|
||||||
${flashmla_SOURCE_DIR}/csrc/torch_api.cpp
|
${flashmla_SOURCE_DIR}/csrc/flash_api.cpp
|
||||||
${flashmla_SOURCE_DIR}/csrc/pybind.cpp
|
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu
|
||||||
${flashmla_SOURCE_DIR}/csrc/smxx/get_mla_metadata.cu
|
${flashmla_SOURCE_DIR}/csrc/kernels/mla_combine.cu
|
||||||
${flashmla_SOURCE_DIR}/csrc/smxx/mla_combine.cu
|
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
|
||||||
${flashmla_SOURCE_DIR}/csrc/sm90/decode/dense/splitkv_mla.cu
|
${flashmla_SOURCE_DIR}/csrc/kernels_fp8/flash_fwd_mla_fp8_sm90.cu)
|
||||||
${flashmla_SOURCE_DIR}/csrc/sm90/decode/sparse_fp8/splitkv_mla.cu
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/sm90/prefill/sparse/fwd.cu
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/sm100/decode/sparse_fp8/splitkv_mla.cu
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_fwd_sm100.cu
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_bwd_sm100.cu
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/sparse/fwd.cu
|
|
||||||
)
|
|
||||||
|
|
||||||
set(FlashMLA_Extension_SOURCES
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/extension/torch_api.cpp
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/pybind.cpp
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/flash_fwd_mla_fp8_sm90.cu
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/flash_fwd_mla_metadata.cu
|
|
||||||
)
|
|
||||||
|
|
||||||
set(FlashMLA_INCLUDES
|
set(FlashMLA_INCLUDES
|
||||||
${flashmla_SOURCE_DIR}/csrc
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/sm90
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/cutlass/include
|
${flashmla_SOURCE_DIR}/csrc/cutlass/include
|
||||||
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
|
${flashmla_SOURCE_DIR}/csrc)
|
||||||
)
|
|
||||||
|
|
||||||
set(FlashMLA_Extension_INCLUDES
|
|
||||||
${flashmla_SOURCE_DIR}/csrc
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/sm90
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/cutlass/include
|
|
||||||
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
|
|
||||||
)
|
|
||||||
|
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${FlashMLA_SOURCES}"
|
SRCS "${FlashMLA_SOURCES}"
|
||||||
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
|
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
|
||||||
|
|
||||||
set_gencode_flags_for_srcs(
|
|
||||||
SRCS "${FlashMLA_Extension_SOURCES}"
|
|
||||||
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
|
|
||||||
|
|
||||||
define_gpu_extension_target(
|
define_gpu_extension_target(
|
||||||
_flashmla_C
|
_flashmla_C
|
||||||
DESTINATION vllm
|
DESTINATION vllm
|
||||||
@ -102,32 +60,8 @@ if(FLASH_MLA_ARCHS)
|
|||||||
INCLUDE_DIRECTORIES ${FlashMLA_INCLUDES}
|
INCLUDE_DIRECTORIES ${FlashMLA_INCLUDES}
|
||||||
USE_SABI 3
|
USE_SABI 3
|
||||||
WITH_SOABI)
|
WITH_SOABI)
|
||||||
|
|
||||||
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
|
|
||||||
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
|
|
||||||
target_compile_options(_flashmla_C PRIVATE
|
|
||||||
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
|
|
||||||
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
|
|
||||||
|
|
||||||
define_gpu_extension_target(
|
|
||||||
_flashmla_extension_C
|
|
||||||
DESTINATION vllm
|
|
||||||
LANGUAGE ${VLLM_GPU_LANG}
|
|
||||||
SOURCES ${FlashMLA_Extension_SOURCES}
|
|
||||||
COMPILE_FLAGS ${VLLM_FLASHMLA_GPU_FLAGS}
|
|
||||||
ARCHITECTURES ${VLLM_GPU_ARCHES}
|
|
||||||
INCLUDE_DIRECTORIES ${FlashMLA_Extension_INCLUDES}
|
|
||||||
USE_SABI 3
|
|
||||||
WITH_SOABI)
|
|
||||||
|
|
||||||
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
|
|
||||||
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
|
|
||||||
target_compile_options(_flashmla_extension_C PRIVATE
|
|
||||||
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
|
|
||||||
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
|
|
||||||
else()
|
else()
|
||||||
# Create empty targets for setup.py when not targeting sm90a systems
|
# Create an empty target for setup.py when not targeting sm90a systems
|
||||||
add_custom_target(_flashmla_C)
|
add_custom_target(_flashmla_C)
|
||||||
add_custom_target(_flashmla_extension_C)
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
|||||||
@ -1,97 +0,0 @@
|
|||||||
include(FetchContent)
|
|
||||||
|
|
||||||
set(CUTLASS_INCLUDE_DIR "${CUTLASS_INCLUDE_DIR}" CACHE PATH "Path to CUTLASS include/ directory")
|
|
||||||
|
|
||||||
if(DEFINED ENV{QUTLASS_SRC_DIR})
|
|
||||||
set(QUTLASS_SRC_DIR $ENV{QUTLASS_SRC_DIR})
|
|
||||||
endif()
|
|
||||||
|
|
||||||
if(QUTLASS_SRC_DIR)
|
|
||||||
FetchContent_Declare(
|
|
||||||
qutlass
|
|
||||||
SOURCE_DIR ${QUTLASS_SRC_DIR}
|
|
||||||
CONFIGURE_COMMAND ""
|
|
||||||
BUILD_COMMAND ""
|
|
||||||
)
|
|
||||||
else()
|
|
||||||
FetchContent_Declare(
|
|
||||||
qutlass
|
|
||||||
GIT_REPOSITORY https://github.com/IST-DASLab/qutlass.git
|
|
||||||
GIT_TAG 830d2c4537c7396e14a02a46fbddd18b5d107c65
|
|
||||||
GIT_PROGRESS TRUE
|
|
||||||
CONFIGURE_COMMAND ""
|
|
||||||
BUILD_COMMAND ""
|
|
||||||
)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
FetchContent_Populate(qutlass)
|
|
||||||
|
|
||||||
if(NOT qutlass_SOURCE_DIR)
|
|
||||||
message(FATAL_ERROR "[QUTLASS] source directory could not be resolved.")
|
|
||||||
endif()
|
|
||||||
message(STATUS "[QUTLASS] QuTLASS is available at ${qutlass_SOURCE_DIR}")
|
|
||||||
|
|
||||||
cuda_archs_loose_intersection(QUTLASS_ARCHS "12.0a;10.0a" "${CUDA_ARCHS}")
|
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND QUTLASS_ARCHS)
|
|
||||||
|
|
||||||
if(QUTLASS_ARCHS MATCHES "10\\.0a")
|
|
||||||
set(QUTLASS_TARGET_CC 100)
|
|
||||||
elseif(QUTLASS_ARCHS MATCHES "12\\.0a")
|
|
||||||
set(QUTLASS_TARGET_CC 120)
|
|
||||||
else()
|
|
||||||
message(FATAL_ERROR "[QUTLASS] internal error parsing CUDA_ARCHS='${QUTLASS_ARCHS}'.")
|
|
||||||
endif()
|
|
||||||
|
|
||||||
set(QUTLASS_SOURCES
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/bindings.cpp
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/gemm.cu
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/gemm_ada.cu
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_mx.cu
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_nv.cu
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_mx_sm100.cu
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_nv_sm100.cu
|
|
||||||
)
|
|
||||||
|
|
||||||
set(QUTLASS_INCLUDES
|
|
||||||
${qutlass_SOURCE_DIR}
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/include
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/include/cutlass_extensions
|
|
||||||
)
|
|
||||||
|
|
||||||
if(CUTLASS_INCLUDE_DIR AND EXISTS "${CUTLASS_INCLUDE_DIR}/cutlass/cutlass.h")
|
|
||||||
list(APPEND QUTLASS_INCLUDES "${CUTLASS_INCLUDE_DIR}")
|
|
||||||
elseif(EXISTS "${qutlass_SOURCE_DIR}/qutlass/third_party/cutlass/include/cutlass/cutlass.h")
|
|
||||||
list(APPEND QUTLASS_INCLUDES "${qutlass_SOURCE_DIR}/qutlass/third_party/cutlass/include")
|
|
||||||
message(STATUS "[QUTLASS] Using QuTLASS vendored CUTLASS headers (no vLLM CUTLASS detected).")
|
|
||||||
else()
|
|
||||||
message(FATAL_ERROR "[QUTLASS] CUTLASS headers not found. "
|
|
||||||
"Set -DCUTLASS_INCLUDE_DIR=/path/to/cutlass/include")
|
|
||||||
endif()
|
|
||||||
|
|
||||||
set_gencode_flags_for_srcs(
|
|
||||||
SRCS "${QUTLASS_SOURCES}"
|
|
||||||
CUDA_ARCHS "${QUTLASS_ARCHS}"
|
|
||||||
)
|
|
||||||
|
|
||||||
target_sources(_C PRIVATE ${QUTLASS_SOURCES})
|
|
||||||
target_include_directories(_C PRIVATE ${QUTLASS_INCLUDES})
|
|
||||||
target_compile_definitions(_C PRIVATE
|
|
||||||
QUTLASS_DISABLE_PYBIND=1
|
|
||||||
TARGET_CUDA_ARCH=${QUTLASS_TARGET_CC}
|
|
||||||
)
|
|
||||||
|
|
||||||
set_property(SOURCE ${QUTLASS_SOURCES} APPEND PROPERTY COMPILE_OPTIONS
|
|
||||||
$<$<COMPILE_LANGUAGE:CUDA>:--expt-relaxed-constexpr --use_fast_math -O3>
|
|
||||||
)
|
|
||||||
|
|
||||||
else()
|
|
||||||
if("${CMAKE_CUDA_COMPILER_VERSION}" VERSION_LESS "12.8")
|
|
||||||
message(STATUS
|
|
||||||
"[QUTLASS] Skipping build: CUDA 12.8 or newer is required (found ${CMAKE_CUDA_COMPILER_VERSION}).")
|
|
||||||
else()
|
|
||||||
message(STATUS
|
|
||||||
"[QUTLASS] Skipping build: no supported arch (12.0a / 10.0a) found in "
|
|
||||||
"CUDA_ARCHS='${CUDA_ARCHS}'.")
|
|
||||||
endif()
|
|
||||||
endif()
|
|
||||||
@ -38,7 +38,7 @@ else()
|
|||||||
FetchContent_Declare(
|
FetchContent_Declare(
|
||||||
vllm-flash-attn
|
vllm-flash-attn
|
||||||
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
||||||
GIT_TAG a893712401d70362fbb299cd9c4b3476e8e9ed54
|
GIT_TAG ee4d25bd84e0cbc7e0b9b9685085fd5db2dcb62a
|
||||||
GIT_PROGRESS TRUE
|
GIT_PROGRESS TRUE
|
||||||
# Don't share the vllm-flash-attn build between build types
|
# Don't share the vllm-flash-attn build between build types
|
||||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||||
|
|||||||
@ -16,7 +16,7 @@ import shutil
|
|||||||
|
|
||||||
from torch.utils.hipify.hipify_python import hipify
|
from torch.utils.hipify.hipify_python import hipify
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
# Project directory where all the source + include files live.
|
# Project directory where all the source + include files live.
|
||||||
@ -34,14 +34,15 @@ if __name__ == "__main__":
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Source files to convert.
|
# Source files to convert.
|
||||||
parser.add_argument(
|
parser.add_argument("sources",
|
||||||
"sources", help="Source files to hipify.", nargs="*", default=[]
|
help="Source files to hipify.",
|
||||||
)
|
nargs="*",
|
||||||
|
default=[])
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# Limit include scope to project_dir only
|
# Limit include scope to project_dir only
|
||||||
includes = [os.path.join(args.project_dir, "*")]
|
includes = [os.path.join(args.project_dir, '*')]
|
||||||
|
|
||||||
# Get absolute path for all source files.
|
# Get absolute path for all source files.
|
||||||
extra_files = [os.path.abspath(s) for s in args.sources]
|
extra_files = [os.path.abspath(s) for s in args.sources]
|
||||||
@ -50,31 +51,25 @@ if __name__ == "__main__":
|
|||||||
# The directory might already exist to hold object files so we ignore that.
|
# The directory might already exist to hold object files so we ignore that.
|
||||||
shutil.copytree(args.project_dir, args.output_dir, dirs_exist_ok=True)
|
shutil.copytree(args.project_dir, args.output_dir, dirs_exist_ok=True)
|
||||||
|
|
||||||
hipify_result = hipify(
|
hipify_result = hipify(project_directory=args.project_dir,
|
||||||
project_directory=args.project_dir,
|
output_directory=args.output_dir,
|
||||||
output_directory=args.output_dir,
|
header_include_dirs=[],
|
||||||
header_include_dirs=[],
|
includes=includes,
|
||||||
includes=includes,
|
extra_files=extra_files,
|
||||||
extra_files=extra_files,
|
show_detailed=True,
|
||||||
show_detailed=True,
|
is_pytorch_extension=True,
|
||||||
is_pytorch_extension=True,
|
hipify_extra_files_only=True)
|
||||||
hipify_extra_files_only=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
hipified_sources = []
|
hipified_sources = []
|
||||||
for source in args.sources:
|
for source in args.sources:
|
||||||
s_abs = os.path.abspath(source)
|
s_abs = os.path.abspath(source)
|
||||||
hipified_s_abs = (
|
hipified_s_abs = (hipify_result[s_abs].hipified_path if
|
||||||
hipify_result[s_abs].hipified_path
|
(s_abs in hipify_result
|
||||||
if (
|
and hipify_result[s_abs].hipified_path is not None)
|
||||||
s_abs in hipify_result
|
else s_abs)
|
||||||
and hipify_result[s_abs].hipified_path is not None
|
|
||||||
)
|
|
||||||
else s_abs
|
|
||||||
)
|
|
||||||
hipified_sources.append(hipified_s_abs)
|
hipified_sources.append(hipified_s_abs)
|
||||||
|
|
||||||
assert len(hipified_sources) == len(args.sources)
|
assert (len(hipified_sources) == len(args.sources))
|
||||||
|
|
||||||
# Print hipified source files.
|
# Print hipified source files.
|
||||||
print("\n".join(hipified_sources))
|
print("\n".join(hipified_sources))
|
||||||
|
|||||||
@ -310,13 +310,13 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
|
|||||||
list(REMOVE_DUPLICATES _PTX_ARCHS)
|
list(REMOVE_DUPLICATES _PTX_ARCHS)
|
||||||
list(REMOVE_DUPLICATES _SRC_CUDA_ARCHS)
|
list(REMOVE_DUPLICATES _SRC_CUDA_ARCHS)
|
||||||
|
|
||||||
# If x.0a or x.0f is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
|
# if x.0a is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
|
||||||
# remove x.0a or x.0f from SRC_CUDA_ARCHS and add x.0a or x.0f to _CUDA_ARCHS
|
# remove x.0a from SRC_CUDA_ARCHS and add x.0a to _CUDA_ARCHS
|
||||||
set(_CUDA_ARCHS)
|
set(_CUDA_ARCHS)
|
||||||
foreach(_arch ${_SRC_CUDA_ARCHS})
|
foreach(_arch ${_SRC_CUDA_ARCHS})
|
||||||
if(_arch MATCHES "[af]$")
|
if(_arch MATCHES "\\a$")
|
||||||
list(REMOVE_ITEM _SRC_CUDA_ARCHS "${_arch}")
|
list(REMOVE_ITEM _SRC_CUDA_ARCHS "${_arch}")
|
||||||
string(REGEX REPLACE "[af]$" "" _base "${_arch}")
|
string(REPLACE "a" "" _base "${_arch}")
|
||||||
if ("${_base}" IN_LIST TGT_CUDA_ARCHS)
|
if ("${_base}" IN_LIST TGT_CUDA_ARCHS)
|
||||||
list(REMOVE_ITEM _TGT_CUDA_ARCHS "${_base}")
|
list(REMOVE_ITEM _TGT_CUDA_ARCHS "${_base}")
|
||||||
list(APPEND _CUDA_ARCHS "${_arch}")
|
list(APPEND _CUDA_ARCHS "${_arch}")
|
||||||
|
|||||||
12
codecov.yml
12
codecov.yml
@ -1,12 +0,0 @@
|
|||||||
codecov:
|
|
||||||
require_ci_to_pass: false
|
|
||||||
|
|
||||||
fixes:
|
|
||||||
# Map source code paths to repository root paths
|
|
||||||
# Wildcards match any Python version (python3.*)
|
|
||||||
- "/vllm-workspace/src/vllm/::vllm/"
|
|
||||||
- "/vllm-workspace/vllm/::vllm/"
|
|
||||||
- "/usr/local/lib/python3.*/dist-packages/vllm/::vllm/"
|
|
||||||
- "/usr/local/lib/python3.*/site-packages/vllm/::vllm/"
|
|
||||||
- "/usr/lib/python3.*/dist-packages/vllm/::vllm/"
|
|
||||||
- "/usr/lib/python3.*/site-packages/vllm/::vllm/"
|
|
||||||
@ -28,10 +28,10 @@
|
|||||||
|
|
||||||
#ifdef USE_ROCM
|
#ifdef USE_ROCM
|
||||||
#include <hip/hip_bf16.h>
|
#include <hip/hip_bf16.h>
|
||||||
#include "../quantization/w8a8/fp8/amd/quant_utils.cuh"
|
#include "../quantization/fp8/amd/quant_utils.cuh"
|
||||||
typedef __hip_bfloat16 __nv_bfloat16;
|
typedef __hip_bfloat16 __nv_bfloat16;
|
||||||
#else
|
#else
|
||||||
#include "../quantization/w8a8/fp8/nvidia/quant_utils.cuh"
|
#include "../quantization/fp8/nvidia/quant_utils.cuh"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||||
|
|||||||
@ -125,37 +125,32 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void set_split_kv (KernelArguments& args) {
|
static void set_split_kv (KernelArguments& args) {
|
||||||
|
// printf("set_split_kv start");
|
||||||
if (args.split_kv >= 1) return;
|
if (args.split_kv >= 1) return;
|
||||||
auto [H, K, D, B] = args.problem_shape;
|
auto [H, K, D, B] = args.problem_shape;
|
||||||
|
// std::cout << H << " " << K << " " << D << " " << B << "\n";
|
||||||
int sm_count = args.hw_info.sm_count;
|
int sm_count = args.hw_info.sm_count;
|
||||||
float seq_length_k = static_cast<float>(K) / 1024.0f;
|
// printf(" sm_count = %d\n", sm_count);
|
||||||
int max_splits = 1;
|
int max_splits = ceil_div(K, 128);
|
||||||
|
max_splits = min(16, max_splits);
|
||||||
|
|
||||||
if (B <= 4 && seq_length_k >= 16) {
|
// TODO: This avoids a hang when the batch size larger than 1 and
|
||||||
max_splits = 16;
|
// there is more than 4 kv_splits.
|
||||||
|
// Discuss with NVIDIA how this can be fixed.
|
||||||
|
if (B > 1) {
|
||||||
|
max_splits = min(2, max_splits);
|
||||||
}
|
}
|
||||||
else if (B <= 8 && seq_length_k >= 4) {
|
|
||||||
max_splits = 8;
|
// printf(" max_splits = %d\n", max_splits);
|
||||||
}
|
|
||||||
else if ((B <= 16 && seq_length_k >= 8) ||
|
|
||||||
(B == 48 && seq_length_k >= 32)) {
|
|
||||||
max_splits = 4;
|
|
||||||
}
|
|
||||||
else if ((B <= 32 && seq_length_k >= 16) ||
|
|
||||||
(B == 96 && seq_length_k >= 16)) {
|
|
||||||
max_splits = 2;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
max_splits = 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Wave-aware scheduling: ensure integer number of waves in K dimension
|
|
||||||
int sms_per_batch = max(1, sm_count / B);
|
int sms_per_batch = max(1, sm_count / B);
|
||||||
|
// printf(" sms_per_batch = %d\n", sms_per_batch);
|
||||||
int split_heur = min(max_splits, sms_per_batch);
|
int split_heur = min(max_splits, sms_per_batch);
|
||||||
int waves = ceil_div(B * split_heur, sm_count);
|
int waves = ceil_div(B * split_heur, sm_count);
|
||||||
int k_waves = ceil_div(max_splits, split_heur);
|
int k_waves = ceil_div(max_splits, split_heur);
|
||||||
int split_wave_aware = ceil_div(max_splits, k_waves);
|
int split_wave_aware = ceil_div(max_splits, k_waves);
|
||||||
args.split_kv = split_wave_aware;
|
args.split_kv = split_wave_aware;
|
||||||
|
// printf(" args.split_kv = %d\n", args.split_kv);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Determines whether the GEMM can execute the given problem.
|
/// Determines whether the GEMM can execute the given problem.
|
||||||
|
|||||||
@ -580,22 +580,22 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
|||||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||||
auto blk_coord = tile_scheduler.get_block_coord();
|
auto blk_coord = tile_scheduler.get_block_coord();
|
||||||
auto problem_shape = params.problem_shape;
|
auto problem_shape = params.problem_shape;
|
||||||
auto local_split_kv = params.split_kv;
|
auto local_split_kv = params.split_kv;
|
||||||
if (params.mainloop.ptr_seq != nullptr) {
|
if (params.mainloop.ptr_seq != nullptr) {
|
||||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||||
if (params.ptr_split_kv != nullptr) {
|
if (params.ptr_split_kv != nullptr) {
|
||||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (local_split_kv <= get<3>(blk_coord))
|
if (local_split_kv <= get<3>(blk_coord))
|
||||||
continue;
|
continue;
|
||||||
load_page_table(
|
load_page_table(
|
||||||
blk_coord,
|
blk_coord,
|
||||||
problem_shape,
|
problem_shape,
|
||||||
params.mainloop,
|
params.mainloop,
|
||||||
shared_storage.tensors,
|
shared_storage.tensors,
|
||||||
pipeline_page_table, pipeline_pt_producer_state,
|
pipeline_page_table, pipeline_pt_producer_state,
|
||||||
local_split_kv
|
local_split_kv
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -604,15 +604,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
|||||||
CUTLASS_PRAGMA_NO_UNROLL
|
CUTLASS_PRAGMA_NO_UNROLL
|
||||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||||
auto blk_coord = tile_scheduler.get_block_coord();
|
auto blk_coord = tile_scheduler.get_block_coord();
|
||||||
auto problem_shape = params.problem_shape;
|
auto problem_shape = params.problem_shape;
|
||||||
auto local_split_kv = params.split_kv;
|
auto local_split_kv = params.split_kv;
|
||||||
if (params.mainloop.ptr_seq != nullptr) {
|
if (params.mainloop.ptr_seq != nullptr) {
|
||||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||||
if (params.ptr_split_kv != nullptr) {
|
if (params.ptr_split_kv != nullptr) {
|
||||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (local_split_kv <= get<3>(blk_coord))
|
if (local_split_kv <= get<3>(blk_coord))
|
||||||
continue;
|
continue;
|
||||||
load_cpasync(
|
load_cpasync(
|
||||||
blk_coord,
|
blk_coord,
|
||||||
@ -621,7 +621,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
|||||||
params.mainloop_params,
|
params.mainloop_params,
|
||||||
shared_storage.tensors,
|
shared_storage.tensors,
|
||||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||||
local_split_kv,
|
local_split_kv,
|
||||||
/* must be shared pipe */
|
/* must be shared pipe */
|
||||||
pipeline_page_table, pipeline_pt_consumer_state
|
pipeline_page_table, pipeline_pt_consumer_state
|
||||||
);
|
);
|
||||||
@ -633,15 +633,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
|||||||
CUTLASS_PRAGMA_NO_UNROLL
|
CUTLASS_PRAGMA_NO_UNROLL
|
||||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||||
auto blk_coord = tile_scheduler.get_block_coord();
|
auto blk_coord = tile_scheduler.get_block_coord();
|
||||||
auto problem_shape = params.problem_shape;
|
auto problem_shape = params.problem_shape;
|
||||||
auto local_split_kv = params.split_kv;
|
auto local_split_kv = params.split_kv;
|
||||||
if (params.mainloop.ptr_seq != nullptr) {
|
if (params.mainloop.ptr_seq != nullptr) {
|
||||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||||
if (params.ptr_split_kv != nullptr) {
|
if (params.ptr_split_kv != nullptr) {
|
||||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (local_split_kv <= get<3>(blk_coord))
|
if (local_split_kv <= get<3>(blk_coord))
|
||||||
continue;
|
continue;
|
||||||
load_tma</* paged= */ true>(
|
load_tma</* paged= */ true>(
|
||||||
blk_coord,
|
blk_coord,
|
||||||
@ -651,7 +651,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
|||||||
shared_storage.tensors,
|
shared_storage.tensors,
|
||||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||||
local_split_kv
|
local_split_kv
|
||||||
);
|
);
|
||||||
cutlass::arch::NamedBarrier((kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp, kNamedBarrierEpilogue).arrive_and_wait();
|
cutlass::arch::NamedBarrier((kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp, kNamedBarrierEpilogue).arrive_and_wait();
|
||||||
}
|
}
|
||||||
@ -660,15 +660,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
|||||||
CUTLASS_PRAGMA_NO_UNROLL
|
CUTLASS_PRAGMA_NO_UNROLL
|
||||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||||
auto blk_coord = tile_scheduler.get_block_coord();
|
auto blk_coord = tile_scheduler.get_block_coord();
|
||||||
auto problem_shape = params.problem_shape;
|
auto problem_shape = params.problem_shape;
|
||||||
auto local_split_kv = params.split_kv;
|
auto local_split_kv = params.split_kv;
|
||||||
if (params.mainloop.ptr_seq != nullptr) {
|
if (params.mainloop.ptr_seq != nullptr) {
|
||||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||||
if (params.ptr_split_kv != nullptr) {
|
if (params.ptr_split_kv != nullptr) {
|
||||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (local_split_kv <= get<3>(blk_coord))
|
if (local_split_kv <= get<3>(blk_coord))
|
||||||
continue;
|
continue;
|
||||||
load_tma<false>(
|
load_tma<false>(
|
||||||
blk_coord,
|
blk_coord,
|
||||||
@ -678,7 +678,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
|||||||
shared_storage.tensors,
|
shared_storage.tensors,
|
||||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||||
pipeline_load_qk, pipeline_load_qk_producer_state,
|
pipeline_load_qk, pipeline_load_qk_producer_state,
|
||||||
local_split_kv
|
local_split_kv
|
||||||
);
|
);
|
||||||
cutlass::arch::NamedBarrier((kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp, kNamedBarrierEpilogue).arrive_and_wait();
|
cutlass::arch::NamedBarrier((kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp, kNamedBarrierEpilogue).arrive_and_wait();
|
||||||
}
|
}
|
||||||
@ -694,14 +694,14 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
|||||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||||
auto blk_coord = tile_scheduler.get_block_coord();
|
auto blk_coord = tile_scheduler.get_block_coord();
|
||||||
auto problem_shape = params.problem_shape;
|
auto problem_shape = params.problem_shape;
|
||||||
auto local_split_kv = params.split_kv;
|
auto local_split_kv = params.split_kv;
|
||||||
if (params.mainloop.ptr_seq != nullptr) {
|
if (params.mainloop.ptr_seq != nullptr) {
|
||||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||||
if (params.ptr_split_kv != nullptr) {
|
if (params.ptr_split_kv != nullptr) {
|
||||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (local_split_kv <= get<3>(blk_coord))
|
if (local_split_kv <= get<3>(blk_coord))
|
||||||
continue;
|
continue;
|
||||||
mma(blk_coord,
|
mma(blk_coord,
|
||||||
problem_shape,
|
problem_shape,
|
||||||
@ -711,7 +711,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
|||||||
pipeline_mma_s, pipeline_mma_s_producer_state,
|
pipeline_mma_s, pipeline_mma_s_producer_state,
|
||||||
pipeline_p_mma, pipeline_p_mma_consumer_state,
|
pipeline_p_mma, pipeline_p_mma_consumer_state,
|
||||||
pipeline_mma_o, pipeline_mma_o_producer_state,
|
pipeline_mma_o, pipeline_mma_o_producer_state,
|
||||||
local_split_kv
|
local_split_kv
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -726,15 +726,15 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
|||||||
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
for (; tile_scheduler.is_valid(); ++tile_scheduler) {
|
||||||
auto blk_coord = tile_scheduler.get_block_coord();
|
auto blk_coord = tile_scheduler.get_block_coord();
|
||||||
auto problem_shape = params.problem_shape;
|
auto problem_shape = params.problem_shape;
|
||||||
auto split_kv = params.split_kv;
|
auto split_kv = params.split_kv;
|
||||||
auto local_split_kv = split_kv;
|
auto local_split_kv = split_kv;
|
||||||
if (params.mainloop.ptr_seq != nullptr) {
|
if (params.mainloop.ptr_seq != nullptr) {
|
||||||
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
get<1>(problem_shape) = params.mainloop.ptr_seq[get<2>(blk_coord)];
|
||||||
if (params.ptr_split_kv != nullptr) {
|
if (params.ptr_split_kv != nullptr) {
|
||||||
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
local_split_kv = params.ptr_split_kv[get<2>(blk_coord)];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (local_split_kv <= get<3>(blk_coord))
|
if (local_split_kv <= get<3>(blk_coord))
|
||||||
continue;
|
continue;
|
||||||
compute(
|
compute(
|
||||||
blk_coord,
|
blk_coord,
|
||||||
@ -745,7 +745,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
|||||||
pipeline_mma_s, pipeline_mma_s_consumer_state,
|
pipeline_mma_s, pipeline_mma_s_consumer_state,
|
||||||
pipeline_p_mma, pipeline_p_mma_producer_state,
|
pipeline_p_mma, pipeline_p_mma_producer_state,
|
||||||
pipeline_mma_o, pipeline_mma_o_consumer_state,
|
pipeline_mma_o, pipeline_mma_o_consumer_state,
|
||||||
local_split_kv
|
local_split_kv
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1900,7 +1900,7 @@ struct Sm100FmhaMlaKernelTmaWarpspecialized {
|
|||||||
cutlass::arch::NamedBarrier(
|
cutlass::arch::NamedBarrier(
|
||||||
(kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp,
|
(kNumComputeWarps + kNumLoadWarps) * NumThreadsPerWarp,
|
||||||
kNamedBarrierEpilogue
|
kNamedBarrierEpilogue
|
||||||
).arrive_and_wait();
|
).arrive();
|
||||||
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|||||||
16
csrc/cache.h
16
csrc/cache.h
@ -56,19 +56,3 @@ void cp_gather_cache(
|
|||||||
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
|
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
|
||||||
torch::Tensor const& cu_seq_lens, // [BATCH+1]
|
torch::Tensor const& cu_seq_lens, // [BATCH+1]
|
||||||
int64_t batch_size, std::optional<torch::Tensor> seq_starts = std::nullopt);
|
int64_t batch_size, std::optional<torch::Tensor> seq_starts = std::nullopt);
|
||||||
|
|
||||||
// Indexer K quantization and cache function
|
|
||||||
void indexer_k_quant_and_cache(
|
|
||||||
torch::Tensor& k, // [num_tokens, head_dim]
|
|
||||||
torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
|
|
||||||
torch::Tensor& slot_mapping, // [num_tokens]
|
|
||||||
int64_t quant_block_size, // quantization block size
|
|
||||||
const std::string& scale_fmt);
|
|
||||||
|
|
||||||
// Extract function to gather quantized K cache
|
|
||||||
void cp_gather_indexer_k_quant_cache(
|
|
||||||
const torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
|
|
||||||
torch::Tensor& dst_k, // [num_tokens, head_dim]
|
|
||||||
torch::Tensor& dst_scale, // [num_tokens, head_dim / quant_block_size * 4]
|
|
||||||
const torch::Tensor& block_table, // [batch_size, num_blocks]
|
|
||||||
const torch::Tensor& cu_seq_lens); // [batch_size + 1]
|
|
||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user