Files
vllm/examples/offline_inference/basic/basic.py
Lucas Wilkinson 37c9babaa0 enable naive microbatching
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-05-22 20:51:35 +00:00

53 lines
1.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import logging
import os
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Configure logging level for vllm (optional, uses VLLM_LOGGING_LEVEL env var).
logging_level = os.getenv("VLLM_LOGGING_LEVEL", "").upper()
if logging_level:
logging.basicConfig(level=getattr(logging, logging_level, logging.INFO))
# Create a sampling params object, optionally limiting output tokens via MAX_TOKENS env var.
param_kwargs = {"temperature": 0.8, "top_p": 0.95}
max_tokens_env = os.getenv("MAX_TOKENS")
if max_tokens_env is not None:
try:
param_kwargs["max_tokens"] = int(max_tokens_env)
except ValueError:
raise ValueError(f"Invalid MAX_TOKENS value: {max_tokens_env}")
sampling_params = SamplingParams(**param_kwargs)
def main():
# Create an LLM.
llm = LLM(model="facebook/opt-125m",
enforce_eager=False,
compilation_config=2,
enable_microbatching=True,)
# Generate texts from the prompts.
# The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}")
print(f"Output: {generated_text!r}")
print("-" * 60)
if __name__ == "__main__":
main()