simplify sigmas computation
This commit is contained in:
7
nodes.py
7
nodes.py
@ -31,17 +31,16 @@ def wan_ksampler(model_high_noise, model_low_noise, seed, steps, cfgs, sampler_n
|
||||
last_step=9999
|
||||
|
||||
# first, we get all sigmas
|
||||
sampler = comfy.samplers.KSampler(model_high_noise, steps=steps, device=model_high_noise.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model_high_noise.model_options)
|
||||
sigmas = sampler.sigmas
|
||||
# why are timesteps 0-1000?
|
||||
sampling = model_high_noise.get_model_object("model_sampling")
|
||||
sigmas = comfy.samplers.calculate_sigmas(sampling,scheduler,steps)
|
||||
# why are timesteps 0-1000?
|
||||
timesteps = [sampling.timestep(sigma)/1000 for sigma in sigmas.tolist()]
|
||||
switching_step = steps
|
||||
for (i,t) in enumerate(timesteps[1:]):
|
||||
if t < boundary:
|
||||
switching_step = i
|
||||
break
|
||||
print(f"switching model at step {i}")
|
||||
print(f"switching model at step {switching_step}")
|
||||
start_with_high = start_step<switching_step
|
||||
end_wth_low = last_step>=switching_step
|
||||
|
||||
|
||||
Reference in New Issue
Block a user