Compare commits

..

653 Commits

Author SHA1 Message Date
bf995febf2 Add plan for aligning local asset/tag endpoints with cloud API
Amp-Thread-ID: https://ampcode.com/threads/T-019befd9-1a77-70eb-808d-c83aa0c26515
Co-authored-by: Amp <amp@ampcode.com>
2026-01-24 04:22:03 -08:00
ce9fe98de9 Add input + output to seed_assets calls 2026-01-24 03:50:42 -08:00
aea55cad99 Merge branch 'master' into assets-redo-part2 2026-01-24 03:43:01 -08:00
4e6a1b66a9 speed up and reduce VRAM of QWEN VAE and WAN (less so) (#12036)
* ops: introduce autopad for conv3d

This works around pytorch missing ability to causal pad as part of the
kernel and avoids massive weight duplications for padding.

* wan-vae: rework causal padding

This currently uses F.pad which takes a full deep copy and is liable to
be the VRAM peak. Instead, kick spatial padding back to the op and
consolidate the temporal padding with the cat for the cache.

* wan-vae: implement zero pad fast path

The WAN VAE is also QWEN where it is used single-image. These
convolutions are however zero padded 3d convolutions, which means the
VAE is actually just 2D down the last element of the conv weight in
the temporal dimension. Fast path this, to avoid adding zeros that
then just evaporate in convoluton math but cost computation.
2026-01-23 19:56:14 -05:00
9cf299a9f9 Make regular empty latent node work properly on flux 2 variants. (#12050) 2026-01-23 19:50:48 -05:00
e89b22993a Support ModelScope-Trainer/DiffSynth LoRA format for Flux.2 Klein models (#12042) 2026-01-23 15:27:49 -05:00
55bd606e92 LTX2: Refactor forward function for better VRAM efficiency and fix spatial inpainting (#12046)
* Disable timestep embed compression when inpainting

Spatial inpainting not compatible with the compression

* Reduce crossattn peak VRAM

* LTX2: Refactor forward function for better VRAM efficiency
2026-01-23 15:26:38 -05:00
79cdbc81cb feat: Improve ResizeImageMaskNode UX with tooltips and search aliases (#12040)
- Add search_aliases for discoverability: resize, scale, dimensions, etc.
- Add node description for hover tooltip
- Add tooltips to all inputs explaining their behavior
- Reorder options: most common (scale dimensions) first, most technical (scale to multiple) last

Addresses user feedback that 'resize' search returned nothing useful and
options like 'match size' and 'scale to multiple' were not self-explanatory.
2026-01-22 22:04:27 -08:00
f443b9f2ca Revert "feat: Improve ResizeImageMaskNode UX with tooltips and search aliases…" (#12038)
This reverts commit 4e3038114a.
2026-01-22 23:02:37 -05:00
4e3038114a feat: Improve ResizeImageMaskNode UX with tooltips and search aliases (#12013)
- Add search_aliases for discoverability: resize, scale, dimensions, etc.
- Add node description for hover tooltip
- Add tooltips to all inputs explaining their behavior
- Reorder options: most common (scale dimensions) first, most technical (scale to multiple) last

Addresses user feedback that 'resize' search returned nothing useful and
options like 'match size' and 'scale to multiple' were not self-explanatory.
2026-01-22 18:46:55 -08:00
bbb8864778 add search aliases to all nodes (#12035)
* feat: Add search_aliases field to node schema

Adds `search_aliases` field to improve node discoverability. Users can define alternative search terms for nodes (e.g., "text concat" → StringConcatenate).

Changes:
- Add `search_aliases: list[str]` to V3 Schema
- Add `SEARCH_ALIASES` support for V1 nodes
- Include field in `/object_info` response
- Add aliases to high-priority core nodes

V1 usage:
```python
class MyNode:
    SEARCH_ALIASES = ["alt name", "synonym"]
```

V3 usage:
```python
io.Schema(
    node_id="MyNode",
    search_aliases=["alt name", "synonym"],
    ...
)
```

## Related PRs
- Frontend: Comfy-Org/ComfyUI_frontend#XXXX (draft - merge after this)
- Docs: Comfy-Org/docs#XXXX (draft - merge after stable)

* Propagate search_aliases through V3 Schema.get_v1_info to NodeInfoV1

* feat: add SEARCH_ALIASES for core nodes (#12016)

Add search aliases to 22 core nodes in nodes.py to improve node discoverability:
- Checkpoint/model loaders: CheckpointLoader, DiffusersLoader
- Conditioning nodes: ConditioningAverage, ConditioningSetArea, ConditioningSetMask, ConditioningZeroOut
- Style nodes: StyleModelApply
- Image nodes: LoadImageMask, LoadImageOutput, ImageBatch, ImageInvert, ImagePadForOutpaint
- Latent nodes: LoadLatent, SaveLatent, LatentBlend, LatentComposite, LatentCrop, LatentFlip, LatentFromBatch, LatentUpscale, LatentUpscaleBy, RepeatLatentBatch

* feat: add SEARCH_ALIASES for image, mask, and string nodes (#12017)

Add search aliases to nodes in comfy_extras for better discoverability:
- nodes_mask.py: mask manipulation nodes
- nodes_images.py: image processing nodes
- nodes_post_processing.py: post-processing effect nodes
- nodes_string.py: string manipulation nodes
- nodes_compositing.py: compositing nodes
- nodes_morphology.py: morphological operation nodes
- nodes_latent.py: latent space nodes

Uses search_aliases parameter in io.Schema() for v3 nodes.

* feat: add SEARCH_ALIASES for audio and video nodes (#12018)

Add search aliases to audio and video nodes for better discoverability:
- nodes_audio.py: audio loading, saving, and processing nodes
- nodes_video.py: video loading and processing nodes
- nodes_wan.py: WAN model nodes

Uses search_aliases parameter in io.Schema() for v3 nodes.

* feat: add SEARCH_ALIASES for model and misc nodes (#12019)

Add search aliases to model-related and miscellaneous nodes:
- Model nodes: nodes_model_merging.py, nodes_model_advanced.py, nodes_lora_extract.py
- Sampler nodes: nodes_custom_sampler.py, nodes_align_your_steps.py
- Control nodes: nodes_controlnet.py, nodes_attention_multiply.py, nodes_hooks.py
- Training nodes: nodes_train.py, nodes_dataset.py
- Utility nodes: nodes_logic.py, nodes_canny.py, nodes_differential_diffusion.py
- Architecture-specific: nodes_sd3.py, nodes_pixart.py, nodes_lumina2.py, nodes_kandinsky5.py, nodes_hidream.py, nodes_fresca.py, nodes_hunyuan3d.py
- Media nodes: nodes_load_3d.py, nodes_webcam.py, nodes_preview_any.py, nodes_wanmove.py

Uses search_aliases parameter in io.Schema() for v3 nodes, SEARCH_ALIASES class attribute for legacy nodes.
2026-01-22 18:36:58 -08:00
d7f3241bf6 qwen_image: propagate attention mask. (#11966) 2026-01-22 20:02:31 -05:00
09a2e67151 Support loading flux 2 klein checkpoints saved with SaveCheckpoint. (#12033) 2026-01-22 18:20:48 -05:00
0fd1b78736 Reduce LTX2 VAE VRAM consumption (#12028)
* causal_video_ae: Remove attention ResNet

This attention_head_dim argument does not exist on this constructor so
this is dead code. Remove as generic attention mid VAE conflicts with
temporal roll.

* ltx-vae: consoldate causal/non-causal code paths

* ltx-vae: add cache rolling adder

* ltx-vae: use cached adder for resnet

* ltx-vae: Implement rolling VAE

Implement a temporal rolling VAE for the LTX2 VAE.

Usually when doing temporal rolling VAEs you can just chunk on time relying
on causality and cache behind you as you go. The LTX VAE is however
non-causal.

So go whole hog and implement per layer run ahead and backpressure between
the decoder layers using recursive state beween the layers.

Operations are ammended with temporal_cache_state{} which they can use to
hold any state then need for partial execution. Convolutions cache their
inputs behind the up to N-1 frames, and skip connections need to cache the
mismatch between convolution input and output that happens due to missing
future (non-causal) input.

Each call to run_up() processes a layer accross a range on input that
may or may not be complete. It goes depth first to process as much as
possible to try and digest frames to the final output ASAP. If layers run
out of input due to convolution losses, they simply return without action
effectively applying back-pressure to the earlier layers. As the earlier
layers do more work and caller deeper, the partial states are reconciled
and output continues to digest depth first as much as possible.

Chunking is done using a size quota rather than a fixed frame length and
any layer can initiate chunking, and multiple layers can chunk at different
granulatiries. This remove the old limitation of always having to process
1 latent frame to entirety and having to hold 8 full decoded frames as
the VRAM peak.
2026-01-22 16:54:18 -05:00
8490eedadf add ply & 3dgs format in 3d node (#11474) 2026-01-22 09:46:56 -08:00
72f6be1690 chore(api-nodes): rename BriaImage and OpenAIGImage nodes (#12022) 2026-01-21 23:42:04 -08:00
16b9aabd52 Support Multi/InfiniteTalk (#10179)
* re-init

* Update model_multitalk.py

* whitespace...

* Update model_multitalk.py

* remove print

* this is redundant

* remove import

* Restore preview functionality

* Move block_idx to transformer_options

* Remove LoopingSamplerCustomAdvanced

* Remove looping functionality, keep extension functionality

* Update model_multitalk.py

* Handle ref_attn_mask with separate patch to avoid having to always return q and k from self_attn

* Chunk attention map calculation for multiple speakers to reduce peak VRAM usage

* Update model_multitalk.py

* Add ModelPatch type back

* Fix for latest upstream

* Use DynamicCombo for cleaner node

Basically just so that single_speaker mode hides mask inputs and 2nd audio input

* Update nodes_wan.py
2026-01-21 23:09:48 -05:00
245f6139b6 More targeted embedding_connector loading for LTX2 text encoder (#11992)
Reduces errors
2026-01-21 23:05:06 -05:00
3365ad18a5 Support LTX2 tiny vae (taeltx_2) (#11929) 2026-01-21 23:03:51 -05:00
f09904720d Fix for edge case of EasyCache when conditionings change during a sampling run (like with timestep scheduling) (#12020) 2026-01-21 23:01:35 -05:00
abe2ec26a6 Support the Anima model. (#12012) 2026-01-21 19:44:28 -05:00
bdeac8897e feat: Add search_aliases field to node schema (#12010)
* feat: Add search_aliases field to node schema

Adds `search_aliases` field to improve node discoverability. Users can define alternative search terms for nodes (e.g., "text concat" → StringConcatenate).

Changes:
- Add `search_aliases: list[str]` to V3 Schema
- Add `SEARCH_ALIASES` support for V1 nodes
- Include field in `/object_info` response
- Add aliases to high-priority core nodes

V1 usage:
```python
class MyNode:
    SEARCH_ALIASES = ["alt name", "synonym"]
```

V3 usage:
```python
io.Schema(
    node_id="MyNode",
    search_aliases=["alt name", "synonym"],
    ...
)
```

## Related PRs
- Frontend: Comfy-Org/ComfyUI_frontend#XXXX (draft - merge after this)
- Docs: Comfy-Org/docs#XXXX (draft - merge after stable)

* Propagate search_aliases through V3 Schema.get_v1_info to NodeInfoV1
2026-01-21 15:36:02 -08:00
451af70154 fix(api-nodes-Vidu): allow passing up to 7 subjects in Vidu Reference node (#12002) 2026-01-21 04:03:45 -08:00
0fc15700be Add LyCoris LoKr MLP layer support for Flux2 (#11997) 2026-01-20 23:18:33 -05:00
e755268e7b Config for Qwen 3 0.6B model. (#11998) 2026-01-20 23:08:31 -05:00
c4a14df9a3 Dynamically detect chroma radiance patch size (#11991) 2026-01-20 18:46:11 -05:00
965d0ed509 fix: remove normalization of audio in LTX Mel spectrogram creation (#11990)
For LTX Audio VAE, remove normalization of audio during MEL spectrogram creation.
This aligs inference with training and prevents loud audio from being attenuated.
2026-01-20 18:44:28 -05:00
ddc541ffda feat(api-nodes): add WaveSpeed nodes (#11945) 2026-01-20 13:05:40 -08:00
8ccc0c94fa Make omni stuff work on regular z image for easier testing. (#11985) 2026-01-20 00:32:00 -05:00
4edb87aa50 Bump comfyui-frontend-package to 1.37.11 (#11976) 2026-01-19 23:57:50 -05:00
0fc3b6e3a6 chore: update workflow templates to v0.8.15 (#11984) 2026-01-19 23:17:56 -05:00
2108167f9f Support zimage omni base model. (#11979) 2026-01-19 23:17:38 -05:00
9d273d3ab1 ComfyUI v0.10.0 2026-01-19 22:40:18 -05:00
70c91b8248 Fix #11963 (#11982) 2026-01-19 22:32:40 -05:00
0da5a0fe58 Convert mono audio to fake stereo for LTXV VAE encoding (#11965) 2026-01-19 22:12:02 -05:00
e0eacb0688 Simpler way to implement the #11980 loras. (#11981) 2026-01-19 22:00:36 -05:00
7458e20465 Make Autogrow validation work properly (#11977)
* In-progress autogrow validation fixes - properly looks at required/optional inputs, now working on the edge case that all inputs are optional and nothing is plugged in (should just be an empty dictionary passed into node)

* Allow autogrow to work with all inputs being optional

* Revert accidentally pushed changes to nodes_logic.py
2026-01-19 16:58:30 -08:00
b931b37e30 feat(api-nodes): add Bria Edit node (#11978)
Co-authored-by: Alexander Piskun <bigcat88@icloud.com>
2026-01-19 16:47:14 -08:00
866a4619db chore: update workflow templates to v0.8.14 (#11974) 2026-01-19 14:21:35 -08:00
1a72bf2046 Readme update. (#11957) 2026-01-18 19:53:43 -08:00
034fac7054 chore(api-nodes): auto-discover all nodes_*.py files to avoid merge conflicts when adding new API nodes (#11943) 2026-01-17 22:40:39 -08:00
a498556d0d feat: add advanced parameter to Input classes for advanced widgets support (#11939)
Add 'advanced' boolean parameter to Input and WidgetInput base classes
and propagate to all typed Input subclasses (Boolean, Int, Float, String,
Combo, MultiCombo, Webcam, MultiType, MatchType, ImageCompare).

When set to True, the frontend will hide these inputs by default in a
collapsible 'Advanced Inputs' section in the right side panel, reducing
visual clutter for power-user options.

This enables nodes to expose advanced configuration options (like encoding
parameters, quality settings, etc.) without overwhelming typical users.

Frontend support: ComfyUI_frontend PR #7812
2026-01-17 19:06:03 -08:00
f7ca41ff62 chore(api-nodes): remove check for pyav>=14.2 in code (it was added to requirements.txt long ago) (#11934) 2026-01-17 18:57:57 -08:00
ac26065e61 chore(api-nodes): remove non-used; extract model to separate files (#11927)
* chore(api-nodes): remove non-used; extract model to separate files

* chore(api-nodes): remove non-needed prefix in filenames
2026-01-17 18:52:45 -08:00
190c4416cc Bump comfy-kitchen dependency to version 0.2.7 (#11941) 2026-01-17 21:20:35 -05:00
0fd10ffa09 fix: use .cpu() for waveform conversion in AudioFrame creation (#11787) 2026-01-17 20:18:24 -05:00
00c775950a Update readme rdna3 nightly url (#11937) 2026-01-17 20:18:04 -05:00
7ac999bf30 Add image sizes to clip vision outputs. (#11923) 2026-01-16 23:02:28 -05:00
0c6b36c6ac chore: update workflow templates to v0.8.11 (#11918) 2026-01-16 17:22:50 -05:00
facda426b4 Remove extra whitespace at end of routes.py 2026-01-16 01:04:26 -08:00
65a5992f2d Remove unnecessary logging statement used for testing 2026-01-16 01:02:40 -08:00
287da646e5 Finished @ROUTES.post("/api/assets/scan/seed") 2026-01-16 01:01:49 -08:00
63f9f1b11b Finish @ROUTES.delete(f"/api/assets/{{id:{UUID_RE}}}/tags") 2026-01-16 00:50:13 -08:00
9e3f559189 Finished @ROUTES.post(f"/api/assets/{{id:{UUID_RE}}}/tags") 2026-01-16 00:45:36 -08:00
63c98d0c75 Finished @ROUTES.delete(f"/api/assets/{{id:{UUID_RE}}}") 2026-01-16 00:31:06 -08:00
e69a5aa1be Finished @ROUTES.put(f"/api/assets/{{id:{UUID_RE}}}/preview") 2026-01-16 00:14:03 -08:00
e0c063f93e Finished @ROUTES.put(f"/api/assets/{{id:{UUID_RE}}}") 2026-01-15 23:57:23 -08:00
6db4f4e3f1 Finished @ROUTES.post("/api/assets") 2026-01-15 23:41:19 -08:00
41d364030b Finished @ROUTES.post("/api/assets/from-hash") 2026-01-15 23:09:54 -08:00
9125613b53 feat(api-nodes): extend ByteDance nodes with seedance-1-5-pro model (#11871) 2026-01-15 22:09:07 -08:00
fab9b71f5d Finished @ROUTES.head("/api/assets/hash/{hash}") 2026-01-15 21:13:34 -08:00
e5c1de4777 Finished @ROUTES.get(f"/api/assets/{{id:{UUID_RE}}}/content") 2026-01-15 21:00:35 -08:00
a5ed151e51 Merge branch 'master' into assets-redo-part2 2026-01-15 20:34:44 -08:00
732b707397 Added try-except around seed_assets call in get_object_info with a logging statement (#11901) 2026-01-15 23:15:15 -05:00
e527b72b09 more progress 2026-01-15 18:16:00 -08:00
4c816d5c69 Adjust memory usage factor calculation for flux2 klein. (#11900) 2026-01-15 20:06:40 -05:00
6125b3a5e7 Update workflow templates to v0.8.10 (#11899)
* chore: update workflow templates to v0.8.9

* Update requirements.txt
2026-01-15 13:12:13 -08:00
12918a5f78 chore: update workflow templates to v0.8.7 (#11896) 2026-01-15 11:08:21 -08:00
8f40b43e02 ComfyUI v0.9.2 2026-01-15 10:57:35 -05:00
3b832231bb Flux2 Klein support. (#11890) 2026-01-15 10:33:15 -05:00
f14129947c in progress GET /api/assets/{uuid}/content endpoint support 2026-01-14 22:54:21 -08:00
be518db5a7 Remove extraneous clip missing warnings when loading LTX2 embeddings_connector weights (#11874) 2026-01-14 17:54:04 -05:00
80441eb15e utils: fix lanczos grayscale upscaling (#11873) 2026-01-14 17:53:16 -05:00
07f2462eae feat(api-nodes): add Meshy 3D nodes (#11843)
* feat(api-nodes): add Meshy 3D nodes

* rebased, added JSONata price badges
2026-01-14 11:25:38 -08:00
d150440466 Fix VAELoader (#11880) 2026-01-14 10:54:50 -08:00
6165c38cb5 Optimize nvfp4 lora applying. (#11866)
This changes results a bit but it also speeds up things a lot.
2026-01-14 00:49:38 -05:00
712cca36a1 feat: throttle ProgressBar updates to reduce WebSocket flooding (#11504) 2026-01-13 22:41:44 -05:00
ac4d8ea9b3 feat: add CI container version bump automation (#11692)
* feat: add CI container version bump automation

Adds a workflow that triggers on releases to create PRs in the
comfyui-ci-container repo, updating the ComfyUI version in the Dockerfile.

Supports both release events and manual workflow dispatch for testing.

* feat: add CI container version bump automation

Adds a workflow that triggers on releases to create PRs in the
comfyui-ci-container repo, updating the ComfyUI version in the Dockerfile.

Supports both release events and manual workflow dispatch for testing.

* ci: update CI container repository owner

* refactor: rename `update-ci-container.yaml` workflow to `update-ci-container.yml`

* Remove post-merge instructions from the CI container update workflow.
2026-01-13 22:39:22 -05:00
c9196f355e Fix scale_shorter_dimension portrait check (#11862) 2026-01-13 18:25:09 -08:00
7eb959ce93 fix: update ComfyUI repo reference to Comfy-Org/ComfyUI (#11858) 2026-01-13 21:03:16 -05:00
469dd9c16a Adds crop to multiple mode to ResizeImageMaskNode. (#11838)
* Add crop-to-multiple resize mode

* Make scale-to-multiple shape handling explicit
2026-01-13 16:48:10 -08:00
eff2b9d412 Optimize nvfp4 lora applying. (#11856) 2026-01-13 19:37:19 -05:00
15b312de7a Optimize nvfp4 lora applying. (#11854) 2026-01-13 19:23:58 -05:00
1419047fdb [Api Nodes]: Improve Price Badge Declarations (#11582)
* api nodes: price badges moved to nodes code

* added price badges for 4 more node-packs

* added price badges for 10 more node-packs

* added new price badges for Omni STD mode

* add support for autogrow groups

* use full names for "widgets", "inputs" and "groups"

* add strict typing for JSONata rules

* add price badge for WanReferenceVideoApi node

* add support for DynamicCombo

* sync price badges changes (https://github.com/Comfy-Org/ComfyUI_frontend/pull/7900)

* sync badges for Vidu2 nodes

* fixed incorrect price for RecraftCrispUpscaleNode

* fixed incorrect price badges for LTXV nodes

* fixed price badge for MinimaxHailuoVideoNode

* fixed price badges for PixVerse nodes
2026-01-13 16:18:28 -08:00
79f6bb5e4f add blueprints dir for built-in blueprints (#11853) 2026-01-13 16:14:40 -08:00
e4b4fb3479 Load metadata on VAELoader (#11846)
Needed to load the proper LTX2 VAE if separated from checkpoint
2026-01-13 17:37:21 -05:00
d9dc02a7d6 Support "lite" version of alibaba-pai Z-Image Controlnet (#11849)
* reduced number of control layers (3) compared to full model
2026-01-13 15:03:53 -05:00
c543ad81c3 fix(api-nodes-gemini): raise exception when no candidates due to safety block (#11848) 2026-01-13 08:30:13 -08:00
5ac1372533 ComfyUI v0.9.1 2026-01-13 01:44:06 -05:00
1dcbd9efaf Bump ltxav mem estimation a bit. (#11842) 2026-01-13 01:42:07 -05:00
db9e6edfa1 ComfyUI v0.9.0 2026-01-13 01:23:31 -05:00
8af13b439b Update requirements.txt (#11841) 2026-01-13 01:22:25 -05:00
acd0e53653 Make bulk_ops not use .returning to be compatible with python 3.10 and 3.11 sqlalchemy (#11839) 2026-01-13 00:15:24 -05:00
117e7a5853 Refactor to try to lower mem usage. (#11840) 2026-01-12 21:01:52 -08:00
b3c0e4de57 Make loras work on nvfp4 models. (#11837)
The initial applying is a bit slow but will probably be sped up in the
future.
2026-01-12 22:33:54 -05:00
ecaeeb990d chore: update workflow templates to v0.8.4 (#11835) 2026-01-12 19:18:01 -08:00
c2b65e2fce Update workflow templates to v0.8.0 (#11828) 2026-01-12 17:29:25 -05:00
fd5c0755af Reduce LTX2 VRAM use by more efficient timestep embed handling (#11829) 2026-01-12 17:28:59 -05:00
c881a1d689 Support the siglip 2 naflex model as a clip vision model. (#11831)
Not useful yet.
2026-01-12 17:05:54 -05:00
a3b5d4996a Support ModelScope-Trainer DiffSynth lora for Z Image. (#11805) 2026-01-12 15:38:46 -05:00
c6238047ee Put more details about portable in readme. (#11816) 2026-01-11 21:11:53 -05:00
5cd1113236 fix(api-nodes): use a unique name for uploading audio files (#11778) 2026-01-11 03:07:11 -08:00
2f642d5d9b Fix chroma fp8 te being treated as fp16. (#11795) 2026-01-10 14:40:42 -08:00
cd912963f1 Fix issue with t5 text encoder in fp4. (#11794) 2026-01-10 17:31:31 -05:00
6e4b1f9d00 pythorch_attn_by_def_on_gfx1200 (#11793) 2026-01-10 16:51:05 -05:00
dc202a2e51 Properly save mixed ops. (#11772) 2026-01-10 02:03:57 -05:00
153bc524bf chore: update embedded docs to v0.4.0 (#11776) 2026-01-10 01:29:30 -05:00
393d2880dd feat(api-nodes): added nodes for Vidu2 (#11760) 2026-01-09 12:59:38 -08:00
4484b93d61 fix(api-nodes): do not downscale the input image for Topaz Enhance (#11768) 2026-01-09 12:25:56 -08:00
bd0e6825e8 Be less strict when loading mixed ops weights. (#11769) 2026-01-09 14:21:06 -05:00
ec0a832acb Add workaround for hacky nodepack(s) that edit folder_names_and_paths to have values with tuples of more than 2. Other things could potentially break with those nodepack(s), so I will hunt for the guilty nodepack(s) now. (#11755) 2026-01-08 22:49:12 -08:00
04c49a29b4 feat: add cancelled filter to /jobs (#11680) 2026-01-08 21:57:36 -08:00
4609fcd260 add node - image compare (#11343) 2026-01-08 21:31:19 -08:00
6207f86c18 Fix VAEEncodeForInpaint to support WAN VAE tuple downscale_ratio (#11572)
Use vae.spacial_compression_encode() instead of directly accessing
downscale_ratio to handle both standard VAEs (int) and WAN VAEs (tuple).

Addresses reviewer feedback on PR #11259.

Co-authored-by: ChrisFab16 <christopher@fabritius.dk>
2026-01-08 23:34:48 -05:00
1dc3da6314 Add most basic Asset support for models (#11315)
* Brought over minimal elements from PR 10045 to reproduce seed_assets and register_assets_system without adding anything to the DB or server routes yet, for now making everything sync (can introduce async once everything is cleaned up and brought over)

* Added db script to insert assets stuff, cleaned up some code; assets (models) now get added/rescanned

* Added support for 5 http endpoints for assets

* Replaced Optional with | None in schemas_in.py and schemas_out.py

* Remove two routes that will not be relevant yet in this PR: HEAD /api/assets/hash/<hash> and PUT /api/assets/<id>/preview

* Remove some functions the two deleted endpoints were using

* Don't show assets scan message upon calling /object_info endpoint

* removed unsued import to satisfy ruff

* Simplified hashing function tpye hint and _hash_file_obj

* Satisfied ruff
2026-01-08 22:21:51 -05:00
114fc73685 Bump comfyui-frontend-package to 1.36.13 (#11645) 2026-01-08 22:16:15 -05:00
b48d6a83d4 Fix csp error in frontend when forcing offline. (#11749) 2026-01-08 22:15:50 -05:00
027042db68 Add node: JoinAudioChannels (#11728) 2026-01-08 22:14:06 -05:00
1a20656448 Fix import issue. (#11746) 2026-01-08 17:23:59 -05:00
0f11869d55 Better detection if AMD torch compiled with efficient attention. (#11745) 2026-01-08 17:16:58 -05:00
5943fbf457 bump comfyui_manager version to the 4.0.5 (#11732) 2026-01-08 08:15:42 -08:00
a60b7b86c5 Revert "Force sequential execution in CI test jobs (#11687)" (#11725)
This reverts commit ce0000c4f2.
2026-01-07 21:41:57 -08:00
2e9d51680a ComfyUI version v0.8.2 2026-01-07 23:50:02 -05:00
50d6e1caf4 Tweak ltxv vae mem estimation. (#11722) 2026-01-07 23:07:05 -05:00
ac12f77bed ComfyUI version v0.8.1 2026-01-07 22:10:08 -05:00
fcd9a236b0 Update template to 0.7.69 (#11719) 2026-01-07 18:22:23 -08:00
21e8425087 Add warning for old pytorch. (#11718) 2026-01-07 21:07:26 -05:00
b6c79a648a ops: Fix offloading with FP8MM performance (#11697)
This logic was checking comfy_cast_weights, and going straight to
to the forward_comfy_cast_weights implementation without
attempting to downscale input to fp8 in the event comfy_cast_weights
is set.

The main reason comfy_cast_weights would be set would be for async
offload, which is not a good reason to nix FP8MM.

So instead, and together the underlying exclusions for FP8MM which
are:

* having a weight_function (usually LowVramPatch)
* force_cast_weights (compute dtype override)
* the weight is not Quantized
* the input is already quantized
* the model or layer has MM explictily disabled.

If you get past all of those exclusions, quantize the input tensor.
Then hand the new input, quantized or not off to
forward_comfy_cast_weights to handle it. If the weight is offloaded
but input is quantized you will get an offloaded MM8.
2026-01-07 21:01:16 -05:00
25bc1b5b57 Add memory estimation function to ltxav text encoder. (#11716) 2026-01-07 20:11:22 -05:00
3cd19e99c1 Increase ltxav mem estimation by a bit. (#11715) 2026-01-07 20:04:56 -05:00
007b87e7ac Bump required comfy-kitchen version. (#11714) 2026-01-07 19:48:47 -05:00
34751fe9f9 Lower ltxv text encoder vram use. (#11713) 2026-01-07 19:12:15 -05:00
1c705f7bfb Add device selection for LTXAVTextEncoderLoader (#11700) 2026-01-07 18:39:59 -05:00
48e5ea1dfd model_patcher: Remove confusing load stat (#11710)
If the loader passes 1e32 as the usable memory size, it means force
the full load. This happens with CPU loads and a few other misc cases.
Removing the confusing number and just leave the other details.
2026-01-07 18:39:20 -05:00
3cd7b32f1b Support gemma 12B with quant weights. (#11696) 2026-01-07 05:15:14 -05:00
c0c9720d77 Fix stable release workflow not pulling latest comfy kitchen. (#11695) 2026-01-07 04:48:28 -05:00
fc0cb10bcb ComfyUI v0.8.0 2026-01-07 04:07:31 -05:00
b7d7cc1d49 Fix fp8 fast issue. (#11688) 2026-01-07 01:39:06 -05:00
79e94544bd feat(api-nodes): add WAN2.6 ReferenceToVideo (#11644) 2026-01-06 22:04:50 -08:00
ce0000c4f2 Force sequential execution in CI test jobs (#11687)
Added max-parallel setting to enforce sequential execution in test jobs.
2026-01-07 00:57:31 -05:00
c5cfb34c07 Update comfy-kitchen version to 0.2.3 (#11685) 2026-01-06 23:51:45 -05:00
edee33f55e Disable comfy kitchen cuda if pytorch cuda less than 13 (#11681) 2026-01-06 22:13:43 -05:00
2c03884f5f Skip fp4 matrix mult on devices that don't support it. (#11677) 2026-01-06 18:07:26 -05:00
6e9ee55cdd Disable ltxav previews. (#11676) 2026-01-06 17:41:27 -05:00
023cf13721 Fix lowvram issue with ltxv2 text encoder. (#11675) 2026-01-06 17:33:03 -05:00
c3566c0d76 chore: update workflow templates to v0.7.67 (#11667) 2026-01-06 14:28:29 -08:00
c3c3e93c5b Use rope functions from comfy kitchen. (#11674) 2026-01-06 16:57:50 -05:00
6ffc159bdd Update comfy-kitchen version to 0.2.1 (#11672) 2026-01-06 15:53:43 -05:00
96e0d0924e Add helpful message to portable. (#11671) 2026-01-06 14:43:24 -05:00
e14f3b6610 chore: update workflow templates to v0.7.66 (#11652) 2026-01-05 22:37:11 -08:00
1618002411 Revert "Use rope functions from comfy kitchen. (#11647)" (#11648)
This reverts commit 6ef85c4915.
2026-01-05 23:07:39 -05:00
6ef85c4915 Use rope functions from comfy kitchen. (#11647) 2026-01-05 22:50:35 -05:00
6da00dd899 Initial ops changes to use comfy_kitchen: Initial nvfp4 checkpoint support. (#11635)
---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2026-01-05 21:48:58 -05:00
4f3f9e72a9 Fix name. (#11638) 2026-01-05 02:41:23 -08:00
d157c3299d Refactor module_size function. (#11637) 2026-01-05 03:48:31 -05:00
d1b9822f74 Add LTXAVTextEncoderLoader node. (#11634) 2026-01-05 02:27:31 -05:00
f2b002372b Support the LTXV 2 model. (#11632) 2026-01-05 01:58:59 -05:00
38d0493825 Fix case where upscale model wouldn't be moved to cpu. (#11633) 2026-01-04 19:13:50 -05:00
acbf08cd60 feat(api-nodes): add support for 720p resolution for Kling Omni nodes (#11604) 2026-01-03 23:05:02 -08:00
53e762a3af Print memory summary on OOM to help with debugging. (#11613) 2026-01-03 22:28:38 -05:00
9a552df898 Remove leftover scaled_fp8 key. (#11603) 2026-01-02 17:28:10 -08:00
f2fda021ab Tripo3D: pass face_limit parameter only when it differs from default (#11601) 2026-01-02 03:18:43 -08:00
303b1735f8 Give Mahiro CFG a more appropriate display name (#11580) 2026-01-02 00:37:37 -08:00
9e5f677746 Ignore all frames except the first one for MPO format. (#11569) 2026-01-02 00:35:34 -08:00
65cfcf5b1b New Year ruff cleanup. (#11595) 2026-01-01 22:06:14 -05:00
1bdc9a947f Remove duplicate import of model_management (#11587) 2025-12-31 19:29:55 -05:00
d622a61874 Refactor: move clip_preprocess to comfy.clip_model (#11586) 2025-12-31 17:38:36 -05:00
236b9e211d chore: update workflow templates to v0.7.65 (#11579) 2025-12-31 13:38:39 -08:00
6ca3d5c011 fix(api-nodes-vidu): preserve percent-encoding for signed URLs (#11564) 2025-12-30 20:12:38 -08:00
0be8a76c93 V3 Improvements + DynamicCombo + Autogrow exposed in public API (#11345)
* Support Combo outputs in a more sane way

* Remove test validate_inputs function on test node

* Make curr_prefix be a list of strings instead of string for easier parsing as keys get added to dynamic types

* Start to account for id prefixes from frontend, need to fix bug with nested dynamics

* Ensure inputs/outputs/hidden are lists in schema finalize function, remove no longer needed 'is not None' checks

* Add raw_link and extra_dict to all relevant Inputs

* Make nested DynamicCombos work properly with prefixed keys on latest frontend; breaks old Autogrow, but is pretty much ready for upcoming Autogrow keys

* Replace ... usage with a MISSING sentinel for clarity in nodes_logic.py

* Added CustomCombo node in backend to reflect frontend node

* Prepare Autogrow's expand_schema_for_dynamic to work with upcoming frontend changes

* Prepare for look up table for dynamic input stuff

* More progress towards dynamic input lookup function stuff

* Finished converting _expand_schema_for_dynamic to be done via lookup instead of OOP to guarantee working with process isolation, did refactoring to remove old implementation + cleaning INPUT_TYPES definition including v3 hidden definition

* Change order of functions

* Removed some unneeded functions after dynamic refactor

* Make MatchType's output default displayname "MATCHTYPE"

* Fix DynamicSlot get_all

* Removed redundant code - dynamic stuff no longer happens in OOP way

* Natively support AnyType (*) without __ne__ hacks

* Remove stray code that made it in

* Remove expand_schema_for_dynamic left over on DynamicInput class

* get_dynamic() on DynamicInput/Output was not doing anything anymore, so removed it

* Make validate_inputs validate combo input correctly

* Temporarily comment out conversion to 'new' (9 month old) COMBO format in get_input_info

* Remove refrences to resources feature scrapped from V3

* Expose DynamicCombo in public API

* satisfy ruff after some code got commented out

* Make missing input error prettier for dynamic types

* Created a Switch2 node as a side-by-side test, will likely go with Switch2 as the initial switch node

* Figured out Switch situation

* Pass in v3_data in IsChangedCache.get function's fingerprint_inputs, add a from_v3_data helper method to HiddenHolder

* Switch order of Switch and Soft Switch nodes in file

* Temp test node for MatchType

* Fix missing v3_data for v1 nodes in validation

* For now, remove chacking duplicate id's for dynamic types

* Add Resize Image/Mask node that thanks to MatchType+DynamicCombo is 16-nodes-in-1

* Made DynamicCombo references in DCTestNode use public interface

* Add an AnyTypeTestNode

* Make lazy status for specific inputs on DynamicInputs work by having the values of the dictionary for check_lazy_status be a tuple, where the second element is the key of the input that can be returned

* Comment out test logic nodes

* Make primitive float's step make more sense

* Add (and leave commented out) some potential logic nodes

* Change default crop option to "center" on Resize Image/Mask node

* Changed copy.copy(d) to d.copy()

* Autogrow is available in stable  frontend, so exposing it in public API

* Use outputs id as display_name if no display_name present, remove v3 outputs id restriction that made them have to have unique IDs from the inputs

* Enable Custom Combo node as stable frontend now supports it

* Make id properly act like display_name on outputs

* Add Batch Images/Masks/Latents node

* Comment out Batch Images/Masks/Latents node for now, as Autogrow has a bug with MatchType where top connection is disconnected upon refresh

* Removed code for a couple test nodes in nodes_logic.py

* Add Batch Images, Batch Masks, and Batch Latents nodes with Autogrow, deprecate old Batch Images + LatentBatch nodes
2025-12-30 23:09:55 -05:00
0357ed7ec4 Add support for sage attention 3 in comfyui, enable via new cli arg (#11026)
* Add support for sage attention 3 in comfyui, enable via new cli arg
--use-sage-attiention3

* Fix some bugs found in PR review. The N dimension at which Sage
Attention 3 takes effect is reduced to 1024 (although the improvement is
not significant at this scale).

* Remove the Sage Attention3 switch, but retain the attention function
registration.

* Fix a ruff check issue in attention.py
2025-12-30 22:53:52 -05:00
f59f71cf34 ComfyUI version v0.7.0 2025-12-30 22:41:22 -05:00
178bdc5e14 Add handling for vace_context in context windows (#11386)
Co-authored-by: ozbayb <17261091+ozbayb@users.noreply.github.com>
2025-12-30 14:40:42 -08:00
25a1bfab4e chore(api-nodes-bytedance): mark "seededit" as deprecated, adjust display name of Seedream (#11490) 2025-12-30 08:33:34 -08:00
d7111e426a ResizeByLongerSide: support video (#11555)
(cherry picked from commit 98c6840aa4e5fd5407ba9ab113d209011e474bf6)
2025-12-29 17:07:29 -08:00
0e6221cc79 Add some warnings for pin and unpin errors. (#11561) 2025-12-29 18:26:42 -05:00
9ca7e143af mm: discard async errors from pinning failures (#10738)
Pretty much every error cudaHostRegister can throw also queues the same
error on the async GPU queue. This was fixed for repinning error case,
but there is the bad mmap and just enomem cases that are harder to
detect.

Do some dummy GPU work to clean the error state.
2025-12-29 18:19:34 -05:00
8fd07170f1 Comment out unused norm_final in lumina/z image model. (#11545) 2025-12-28 22:07:25 -05:00
2943093a53 Enable async offload by default for AMD. (#11534) 2025-12-27 18:54:15 -05:00
36deef2c57 chore(api-nodes): switch to credits instead of $ (#11489) 2025-12-26 19:56:52 -08:00
0d2e4bdd44 fix(api-nodes-gemini): always force enhance_prompt to be True (#11503) 2025-12-26 19:55:30 -08:00
eff4ea0b62 [V3] converted nodes_images.py to V3 schema (#11206)
* converted nodes_images.py to V3 schema

* fix test
2025-12-26 19:39:02 -08:00
865568b7fc feat(api-nodes): add Kling Motion Control node (#11493) 2025-12-26 19:16:21 -08:00
1e4e342f54 Fix noise with ancestral samplers when inferencing on cpu. (#11528) 2025-12-26 22:03:01 -05:00
16fb6849d2 bump comfyui_manager version to the 4.0.4 (#11521) 2025-12-27 08:55:59 +09:00
d9a76cf66e Specify in readme that we only support pytorch 2.4 and up. (#11512) 2025-12-25 23:46:51 -05:00
532e285079 Add a ManualSigmas node. (#11499)
Can be used to manually set the sigmas for a model.

This node accepts a list of integer and floating point numbers separated
with any non numeric character.
2025-12-24 19:09:37 -05:00
4f067b07fb chore: update workflow templates to v0.7.64 (#11496) 2025-12-24 18:54:21 -05:00
650e716dda Bump comfyui-frontend-package to 1.35.9 (#11470)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-12-23 21:29:41 -08:00
e4c61d7555 ComfyUI v0.6.0 2025-12-23 20:50:02 -05:00
22ff1bbfcb chore: update workflow templates to v0.7.63 (#11482) 2025-12-23 20:48:45 -05:00
f4f44bb807 api-nodes: use new custom endpoint for Nano Banana (#11311) 2025-12-23 12:10:27 -08:00
33aa808713 Make denoised output on custom sampler nodes work with nested tensors. (#11471) 2025-12-22 16:43:24 -05:00
eb0e10aec4 Update workflow templates to v0.7.62 (#11467) 2025-12-22 16:02:41 -05:00
c176b214cc extend possible duration range for Kling O1 StartEndFrame node (#11451) 2025-12-21 22:44:49 -08:00
91bf6b6aa3 Add node to create empty latents for qwen image layered model. (#11460) 2025-12-21 19:59:40 -05:00
807538fe6c Core release process. (#11447) 2025-12-20 20:02:02 -05:00
bbb11e2608 fix(api-nodes): Topaz 4k video upscaling (#11438) 2025-12-20 08:48:28 -08:00
0899012ad6 chore(api-nodes): by default set Watermark generation to False (#11437) 2025-12-19 22:24:37 -08:00
fb478f679a Only apply gemma quant config to gemma model for newbie. (#11436) 2025-12-20 01:02:43 -05:00
4c432c11ed Implement Jina CLIP v2 and NewBie dual CLIP (#11415)
* Implement Jina CLIP v2

* Support quantized Gemma in NewBie dual CLIP
2025-12-20 00:57:22 -05:00
31e961736a Fix issue with batches and newbie. (#11435) 2025-12-20 00:23:51 -05:00
767ee30f21 ZImageFunControlNet: Fix mask concatenation in --gpu-only (#11421)
This operation trades in latents which in --gpu-only may be out of the GPU
The two VAE results will follow the --gpu-only defined behaviour so follow
the inpaint image device when calculating the mask in this path.
2025-12-20 00:22:17 -05:00
3ab9748903 Disable prompt weights on newbie te. (#11434) 2025-12-20 00:19:47 -05:00
0aa7fa464e Implement sliding attention in Gemma3 (#11409) 2025-12-20 00:16:46 -05:00
514c24d756 Fix error from logging line (#11423)
Co-authored-by: ozbayb <17261091+ozbayb@users.noreply.github.com>
2025-12-19 20:22:45 -08:00
809ce68749 Support nested tensor denoise masks. (#11431) 2025-12-19 19:59:25 -05:00
cc4ddba1b6 Allow enabling use of MIOpen by setting COMFYUI_ENABLE_MIOPEN=1 as an env var (#11366) 2025-12-19 17:01:50 -05:00
8376ff6831 bump comfyui_manager version to the 4.0.3b7 (#11422) 2025-12-19 10:41:56 -08:00
5b4d0664c8 add Flux2MaxImage API Node (#11420) 2025-12-19 10:02:49 -08:00
894802b0f9 Add LatentCutToBatch node. (#11411) 2025-12-18 22:21:40 -05:00
28eaab608b Diffusion model part of Qwen Image Layered. (#11408)
Only thing missing after this is some nodes to make using it easier.
2025-12-18 20:21:14 -05:00
6a2678ac65 Trim/pad channels in VAE code. (#11406) 2025-12-18 18:22:38 -05:00
e4fb3a3572 Support loading Wan/Qwen VAEs with different in/out channels. (#11405) 2025-12-18 17:45:33 -05:00
e8ebbe668e chore: update workflow templates to v0.7.60 (#11403) 2025-12-18 17:09:29 -05:00
1ca89b810e Add unified jobs API with /api/jobs endpoints (#11054)
* feat: create a /jobs api to return queue and history jobs

* update unused vars

* include priority

* create jobs helper file

* fix ruff

* update how we set error message

* include execution error in both responses

* rename error -> failed, fix output shape

* re-use queue and history functions

* set workflow id

* allow srot by exec duration

* fix tests

* send priority and remove error msg

* use ws messages to get start and end times

* revert main.py fully

* refactor: move all /jobs business logic to jobs.py

* fix failing test

* remove some tests

* fix non dict nodes

* address comments

* filter by workflow id and remove null fields

* add clearer typing - remove get("..") or ..

* refactor query params to top get_job(s) doc, add remove_sensitive_from_queue

* add brief comment explaining why we skip animated

* comment that format field is for frontend backward compatibility

* fix whitespace

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
Co-authored-by: guill <jacob.e.segal@gmail.com>
2025-12-17 21:44:31 -08:00
bf7dc63bd6 skip_load_model -> force_full_load (#11390)
This should be a bit more clear and less prone to potential breakage if the
logic of the load models changes a bit.
2025-12-17 23:29:32 -05:00
86dbb89fc9 Resolution bucketing and Trainer implementation refactoring (#11117) 2025-12-17 22:15:27 -05:00
ba6080bbab ComfyUI v0.5.1 2025-12-17 21:04:50 -05:00
16d85ea133 Better handle torch being imported by prestartup nodes. (#11383) 2025-12-17 19:43:18 -05:00
5d9ad0c6bf Fix the last step with non-zero sigma in sa_solver (#11380) 2025-12-17 13:57:40 -05:00
c08f97f344 fix regression in V3 nodes processing (#11375) 2025-12-17 10:24:25 -08:00
887143854b feat(api-nodes): add GPT-Image-1.5 (#11368) 2025-12-17 09:43:41 -08:00
3a5f239cb6 ComfyUI v0.5.0 2025-12-17 03:46:11 -05:00
827bb1512b Add exp_heun_2_x0 sampler series (#11360) 2025-12-16 23:35:43 -05:00
ffdd53b327 Check state dict key to auto enable the index_timestep_zero ref method. (#11362) 2025-12-16 17:03:17 -05:00
65e2103b09 feat(api-nodes): add Wan2.6 model to video nodes (#11357) 2025-12-16 13:51:48 -08:00
9304e47351 Update workflows for new release process (#11064)
* Update release workflows for branch process

* Adjust branch order in workflow triggers

* Revert changes in test workflows
2025-12-15 23:24:18 -08:00
bc606d7d64 Add a way to set the default ref method in the qwen image code. (#11349) 2025-12-16 01:26:55 -05:00
645ee1881e Inpainting for z image fun control. Use the ZImageFunControlnet node. (#11346)
image -> control image ex: pose
inpaint_image -> image for inpainting
mask -> inpaint mask
2025-12-15 23:38:12 -05:00
3d082c3206 bump comfyui-frontend-package to 1.34.9 (patch) (#11342) 2025-12-15 23:35:37 -05:00
683569de55 Only enable fp16 on ZImage on newer pytorch. (#11344) 2025-12-15 22:33:27 -05:00
ea2c117bc3 [BlockInfo] Wan (#10845)
* block info

* animate

* tensor

* device

* revert
2025-12-15 17:59:16 -08:00
fc4af86068 [BlockInfo] Lumina (#11227)
* block info

* device

* Make tensor int again

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2025-12-15 17:57:28 -08:00
41bcf0619d Add code to detect if a z image fun controlnet is broken or not. (#11341) 2025-12-15 20:51:06 -05:00
d02d0e5744 [add] tripo3.0 (#10663)
* [add] tripo3.0

* [tripo] change paramter order

* change order

---------

Co-authored-by: liangd <liangding@vastai3d.com>
2025-12-15 17:38:46 -08:00
70541d4e77 Support the new qwen edit 2511 reference method. (#11340)
index_timestep_zero can be selected in the
FluxKontextMultiReferenceLatentMethod now with the display name set to the
more generic "Edit Model Reference Method" node.
2025-12-15 19:20:34 -05:00
77b2f7c228 Add context windows callback for custom cond handling (#11208)
Co-authored-by: ozbayb <17261091+ozbayb@users.noreply.github.com>
2025-12-15 16:06:32 -08:00
43e0d4e3cc comfy_api: remove usage of "Type","List" and "Dict" types (#11238) 2025-12-15 16:01:10 -08:00
dbd330454a feat(preview): add per-queue live preview method override (#11261)
- Add set_preview_method() to override live preview method per queue item
- Read extra_data.preview_method from /prompt request
- Support values: taesd, latent2rgb, none, auto, default
- "default" or unset uses server's CLI --preview-method setting
- Add 44 tests (37 unit + 7 E2E)
2025-12-15 15:57:39 -08:00
33c7f1179d drop Pika API nodes (#11306) 2025-12-15 15:32:29 -08:00
af91eb6c99 api-nodes: drop Kling v1 model (#11307) 2025-12-15 15:30:24 -08:00
5cb1e0c9a0 Disable guards on transformer_options when torch.compile (#11317) 2025-12-15 16:49:29 -05:00
51347f9fb8 chore: update workflow templates to v0.7.59 (#11337) 2025-12-15 16:28:55 -05:00
a5e85017d8 bump manager requirments to the 4.0.3b5 (#11324) 2025-12-15 14:24:01 -05:00
5ac3b26a7d Update warning for old pytorch version. (#11319)
Versions below 2.4 are no longer supported. We will not break support on purpose but will not fix it if we do.
2025-12-14 04:02:50 -05:00
6592bffc60 seeds_2: add phi_2 variant and sampler node (#11309)
* Add phi_2 solver type to seeds_2

* Add sampler node of seeds_2
2025-12-14 00:03:29 -05:00
971cefe7d4 Fix pytorch warnings. (#11314) 2025-12-13 18:45:23 -05:00
da2bfb5b0a Basic implementation of z image fun control union 2.0 (#11304)
The inpaint part is currently missing and will be implemented later.

I think they messed up this model pretty bad. They added some
control_noise_refiner blocks but don't actually use them. There is a typo
in their code so instead of doing control_noise_refiner -> control_layers
it runs the whole control_layers twice.

Unfortunately they trained with this typo so the model works but is kind
of slow and would probably perform a lot better if they corrected their
code and trained it again.
2025-12-13 01:39:11 -05:00
c5a47a1692 Fix bias dtype issue in mixed ops. (#11293) 2025-12-12 11:49:35 -05:00
908fd7d749 feat(api-nodes): new TextToVideoWithAudio and ImageToVideoWithAudio nodes (#11267) 2025-12-12 00:18:31 -08:00
5495589db3 Respect the dtype the op was initialized in for non quant mixed op. (#11282) 2025-12-11 23:32:27 -05:00
982876d59a WanMove support (#11247) 2025-12-11 22:29:34 -05:00
338d9ae3bb Make portable updater work with repos in unmerged state. (#11281) 2025-12-11 18:56:33 -05:00
eeb020b9b7 Better chroma radiance and other models vram estimation. (#11278) 2025-12-11 17:33:09 -05:00
ae65433a60 This only works on radiance. (#11277) 2025-12-11 17:15:00 -05:00
fdebe18296 Fix regular chroma radiance (#11276) 2025-12-11 17:09:35 -05:00
f8321eb57b Adjust memory usage factor. (#11257) 2025-12-11 01:30:31 -05:00
93948e3fc5 feat(api-nodes): enable Kling Omni O1 node (#11229) 2025-12-10 22:11:12 -08:00
e711aaf1a7 Lower VAE loading requirements:Create a new branch for GPU memory calculations in qwen-image vae (#11199) 2025-12-10 22:02:26 -05:00
57ddb7fd13 Fix: filter hidden files from /internal/files endpoint (#11191) 2025-12-10 21:49:49 -05:00
17c92a9f28 Tweak Z Image memory estimation. (#11254) 2025-12-10 19:59:48 -05:00
36357bbcc3 process the NodeV1 dict results correctly (#11237) 2025-12-10 11:55:09 -08:00
f668c2e3c9 bump comfyui-frontend-package to 1.34.8 (#11220) 2025-12-09 22:27:07 -05:00
fc657f471a ComfyUI version v0.4.0
From now on ComfyUI will do version numbers a bit differently, every stable
off the master branch will increment the minor version. Anytime a fix needs
to be backported onto a stable version the patch version will be
incremented.

Example: We release v0.6.0 off the master branch then a day later a bug is
discovered and we decide to backport the fix onto the v0.6.0 stable, this
will be done in a separate branch in the main repository and this new
stable will be tagged v0.6.1
2025-12-09 18:26:49 -05:00
791e30ff50 Fix nan issue when quantizing fp16 tensor. (#11213) 2025-12-09 17:03:21 -05:00
e2a800e7ef Fix for HunyuanVideo1.5 meanflow distil (#11212) 2025-12-09 16:59:16 -05:00
9d252f3b70 ops: delete dead code (#11204)
This became dead code in https://github.com/comfyanonymous/ComfyUI/pull/11069
2025-12-09 00:55:13 -05:00
b9fb542703 add chroma-radiance-x0 mode (#11197) 2025-12-08 23:33:29 -05:00
cabc4d351f bump comfyui-frontend-package to 1.33.13 (patch) (#11200) 2025-12-08 23:22:02 -05:00
e136b6dbb0 dequantization offload accounting (fixes Flux2 OOMs - incl TEs) (#11171)
* make setattr safe for non existent attributes

Handle the case where the attribute doesnt exist by returning a static
sentinel (distinct from None). If the sentinel is passed in as the set
value, del the attr.

* Account for dequantization and type-casts in offload costs

When measuring the cost of offload, identify weights that need a type
change or dequantization and add the size of the conversion result
to the offload cost.

This is mutually exclusive with lowvram patches which already has
a large conservative estimate and wont overlap the dequant cost so\
dont double count.

* Set the compute type on CLIP MPs

So that the loader can know the size of weights for dequant accounting.
2025-12-08 23:21:31 -05:00
d50f342c90 Fix potential issue. (#11201) 2025-12-08 23:20:04 -05:00
3b0368aa34 Fix regression. (#11194) 2025-12-08 17:38:36 -05:00
935493f6c1 chore: update workflow templates to v0.7.54 (#11192) 2025-12-08 15:18:53 -05:00
60ee574748 retune lowVramPatch VRAM accounting (#11173)
In the lowvram case, this now does its math in the model dtype in the
post de-quantization domain. Account for that. The patching was also
put back on the compute stream getting it off-peak so relax the
MATH_FACTOR to only x2 so get out of the worst-case assumption of
everything peaking at once.
2025-12-08 15:18:06 -05:00
8e889c535d Support "transformer." LoRA prefix for Z-Image (#11135) 2025-12-08 15:17:26 -05:00
fd271dedfd [API Nodes] add support for seedance-1-0-pro-fast model (#10947)
* feat(api-nodes): add support for seedance-1-0-pro-fast model

* feat(api-nodes): add support for seedream-4.5 model
2025-12-08 01:33:46 -08:00
c3c6313fc7 Added "system_prompt" input to Gemini nodes (#11177) 2025-12-08 01:28:17 -08:00
85c4b4ae26 chore: replace imports of deprecated V1 classes (#11127) 2025-12-08 01:27:02 -08:00
058f084371 Update workflow templates to v0.7.51 (#11150)
* chore: update workflow templates to v0.7.50

* Update template to 0.7.51
2025-12-08 01:22:51 -08:00
ec7f65187d chore(comfy_api): replace absolute imports with relative (#11145) 2025-12-08 01:21:41 -08:00
56fa7dbe38 Properly load the newbie diffusion model. (#11172)
There is still one of the text encoders missing and I didn't actually test it.
2025-12-07 07:44:55 -05:00
329480da5a Fix qwen scaled fp8 not working with kandinsky. Make basic t2i wf work. (#11162) 2025-12-06 17:50:10 -08:00
4086acf3c2 Fix on-load VRAM OOM (#11144)
slow down the CPU on model load to not run ahead. This fixes a VRAM on
flux 2 load.

I went to try and debug this with the memory trace pickles, which needs
--disable-cuda-malloc which made the bug go away. So I tried this
synchronize and it worked.

The has some very complex interactions with the cuda malloc async and
I dont have solid theory on this one yet.

Still debugging but this gets us over the OOM for the moment.
2025-12-06 18:42:09 -05:00
50ca97e776 Speed up lora compute and lower memory usage by doing it in fp16. (#11161) 2025-12-06 18:36:20 -05:00
7ac7d69d94 Fix EmptyAudio node input types (#11149) 2025-12-06 10:09:44 -08:00
76f18e955d marked all Pika API nodes a deprecated (#11146) 2025-12-06 03:28:08 -08:00
d7a0aef650 Set OCL_SET_SVM_SIZE on AMD. (#11139) 2025-12-06 00:15:21 -05:00
913f86b727 [V3] convert nodes_mask.py to V3 schema (#10669)
* convert nodes_mask.py to V3 schema

* set "Preview Mask" as display name for MaskPreview
2025-12-05 20:24:10 -08:00
117bf3f2bd convert nodes_freelunch.py to the V3 schema (#10904) 2025-12-05 20:22:02 -08:00
ae676ed105 Fix regression. (#11137) 2025-12-05 23:01:19 -05:00
fd109325db Kandinsky5 model support (#10988)
* Add Kandinsky5 model support

lite and pro T2V tested to work

* Update kandinsky5.py

* Fix fp8

* Fix fp8_scaled text encoder

* Add transformer_options for attention

* Code cleanup, optimizations, use fp32 for all layers originally at fp32

* ImageToVideo -node

* Fix I2V, add necessary latent post process nodes

* Support text to image model

* Support block replace patches (SLG mostly)

* Support official LoRAs

* Don't scale RoPE for lite model as that just doesn't work...

* Update supported_models.py

* Rever RoPE scaling to simpler one

* Fix typo

* Handle latent dim difference for image model in the VAE instead

* Add node to use different prompts for clip_l and qwen25_7b

* Reduce peak VRAM usage a bit

* Further reduce peak VRAM consumption by chunking ffn

* Update chunking

* Update memory_usage_factor

* Code cleanup, don't force the fp32 layers as it has minimal effect

* Allow for stronger changes with first frames normalization

Default values are too weak for any meaningful changes, these should probably be exposed as advanced node options when that's available.

* Add image model's own chat template, remove unused image2video template

* Remove hard error in ReplaceVideoLatentFrames -node

* Update kandinsky5.py

* Update supported_models.py

* Fix typos in prompt template

They were now fixed in the original repository as well

* Update ReplaceVideoLatentFrames

Add tooltips
Make source optional
Better handle negative index

* Rename NormalizeVideoLatentFrames -node

For bit better clarity what it does

* Fix NormalizeVideoLatentStart node out on non-op
2025-12-05 22:20:22 -05:00
bed12674a1 docs: add ComfyUI-Manager documentation and update to v4.0.3b4 (#11133)
- Add manager setup instructions and command line options to README
- Document --enable-manager, --enable-manager-legacy-ui, and
  --disable-manager-ui flags
- Bump comfyui_manager version from 4.0.3b3 to 4.0.3b4
2025-12-05 15:45:38 -08:00
092ee8a500 Fix some custom nodes. (#11134) 2025-12-05 18:25:31 -05:00
79d17ba233 Context windows fixes and features (#10975)
* Apply cond slice fix

* Add FreeNoise

* Update context_windows.py

* Add option to retain condition by indexes for each window

This allows for example Wan/HunyuanVideo image to video to "work" by using the initial start frame for each window, otherwise windows beyond first will be pure T2V generations.

* Update context_windows.py

* Allow splitting multiple conds into different windows

* Add handling for audio_embed

* whitespace

* Allow freenoise to work on other dims, handle 4D batch timestep

Refactor Freenoise function. And fix batch handling as timesteps seem to be expanded to batch size now.

* Disable experimental options for now

So that  the Freenoise and bugfixes can be merged first

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
Co-authored-by: ozbayb <17261091+ozbayb@users.noreply.github.com>
2025-12-05 12:42:46 -08:00
6fd463aec9 Fix regression when text encoder loaded directly on GPU. (#11129) 2025-12-05 15:33:16 -05:00
43071e3de3 Make old scaled fp8 format use the new mixed quant ops system. (#11000) 2025-12-05 14:35:42 -05:00
0ec05b1481 Remove line made unnecessary (and wrong) after transformer_options was added to NextDiT's _forward definition (#11118) 2025-12-05 14:05:38 -05:00
35fa091340 Forgot to put this in README. (#11112) 2025-12-04 22:52:09 -05:00
3c8456223c [API Nodes]: fixes and refactor (#11104)
* chore(api-nodes): applied ruff's pyupgrade(python3.10) to api-nodes client's to folder

* chore(api-nodes): add validate_video_frame_count function from LTX PR

* chore(api-nodes): replace deprecated V1 imports

* fix(api-nodes): the types returned by the "poll_op" function are now correct.
2025-12-04 14:05:28 -08:00
9bc893c5bb sd: bump HY1.5 VAE estimate (#11107)
Im able to push vram above estimate on partial unload. Bump the
estimate. This is experimentally determined with a 720P and 480P
datapoint calibrating for 24GB VRAM total.
2025-12-04 09:50:36 -08:00
f4bdf5f830 sd: revise hy VAE VRAM (#11105)
This was recently collapsed down to rolling VAE through temporal. Clamp
The time dimension.
2025-12-04 09:50:04 -08:00
6be85c7920 mp: use look-ahead actuals for stream offload VRAM calculation (#11096)
TIL that the WAN TE has a 2GB weight followed by 16MB as the next size
down. This means that team 8GB VRAM would fully offload the TE in async
offload mode as it just multiplied this giant size my the num streams.

Do the more complex logic of summing up the upcoming to-load weight
sizes to avoid triple counting this massive weight.

partial unload does the converse of recording the NS most recent
unloads as they go.
2025-12-03 23:28:44 -05:00
ea17add3c6 Fix case where text encoders where running on the CPU instead of GPU. (#11095) 2025-12-03 23:15:15 -05:00
ecdc8697d5 Qwen Image Lora training fix from #11090 (#11094) 2025-12-03 22:49:28 -05:00
dce518c2b4 convert nodes_audio.py to V3 schema (#10798) 2025-12-03 17:35:04 -08:00
440268d394 convert nodes_load_3d.py to V3 schema (#10990) 2025-12-03 13:52:31 -08:00
87c104bfc1 add support for "@image" reference format in Kling Omni API nodes (#11082) 2025-12-03 08:55:44 -08:00
19f2192d69 fix(V3-Schema): use empty list defaults for Schema.inputs/outputs/hidden to avoid None issues (#11083) 2025-12-03 08:37:35 -08:00
519c941165 Prs/lora reservations (reduce massive Lora reservations especially on Flux2) (#11069)
* mp: only count the offload cost of math once

This was previously bundling the combined weight storage and computation
cost

* ops: put all post async transfer compute on the main stream

Some models have massive weights that need either complex
dequantization or lora patching. Don't do these patchings on the offload
stream, instead do them on the main stream to syncrhonize the
potentially large vram spikes for these compute processes. This avoids
having to assume a worst case scenario of multiple offload streams
all spiking VRAM is parallel with whatever the main stream is doing.
2025-12-03 02:28:45 -05:00
861817d22d Fix issue with portable updater. (#11070)
This should fix the problem with the portable updater not working with portables created from a separate branch on the repo.

This does not affect any current portables who were all created on the master branch.
2025-12-03 00:47:51 -05:00
c120eee5ba Add MatchType, DynamicCombo, and Autogrow support to V3 Schema (#10832)
* Added output_matchtypes to generated json for v3, initial backend support for MatchType, created nodes_logic.py and added SwitchNode

* Fixed providing list of allowed_types

* Add workaround in validation.py for V3 Combo outputs not working as Combo inputs

* Make match type receive_type pass validation

* Also add MatchType check to input_type in validation - will likely trigger when connecting to non-lazy stuff

* Make sure this PR only has MatchType stuff

* Initial work on DynamicCombo

* Add get_dynamic function, not yet filled out correctly

* Mark Switch node as Beta

* Make sure other unfinished dynamic types are not accidentally used

* Send DynamicCombo.Option inputs in the same format as normal v1 inputs

* add dynamic combo test node

* Support validation of inputs and outputs

* Add missing input params to DynamicCombo.Input

* Add get_all function to inputs for id validation purposes

* Fix imports for v3 returning everything when doing io/ui/IO/UI instead of what is in __all__ of _io.py and _ui.py

* Modifying behavior of get_dynamic in V3 + serialization so can be used in execution code

* Fix v3 schema validation code after changes

* Refactor hidden_values for v3 in execution.py to be more general v3_data, add helper functions for dynamic behavior, preparing for restructuring dynamic type into object (not finished yet)

* Add nesting of inputs on DynamicCombo during execution

* Work with latest frontend commits

* Fix cringe arrows

* frontend will no longer namespace dynamic inputs widgets so reflect that in code, refactor build_nested_inputs

* Prepare Autogrow support for the love of the game

* satisfy ruff

* Create test nodes for Autogrow to collab with frontend development

* Add nested combo to DCTestNode

* Remove array support from build_nested_inputs, properly handle missing expected values

* Make execution.validate_inputs properly validate required dynamic inputs, renamed dynamic_data to dynamic_paths for clarity

* MatchType does not need any DynamicInput/Output features on backend; will increase compatibility with  dynamic types

* Probably need this for ruff check

* Change MatchType to have template be the first and only required param; output id's do nothing right now, so no need

* Fix merge regression with LatentUpscaleModel type not being put in __all__ for _io.py, fix invalid type hint for validate_inputs

* Make Switch node inputs optional, disallow both inputs from being missing, and still work properly with lazy; when one input is missing, use the other no matter what the switch is set to

* Satisfy ruff

* Move MatchType code above the types that inherit from DynamicInput

* Add DynamicSlot type, awaiting frontend support

* Make curr_prefix creation happen in Autogrow, move curr_prefix in DynamicCombo to only be created if input exists in live_inputs

* I was confused, fixing accidentally redundant curr_prefix addition in Autogrow

* Make sure Autogrow inputs are force_input = True when WidgetInput, fix runtime validation by removing original input from expected inputs, fix min/max bounds, change test nodes slightly

* Remove unnecessary id usage in Autogrow test node outputs

* Commented out Switch node + test nodes

* Remove commented out code from Autogrow

* Make TemplatePrefix max more clear, allow max == 1

* Replace all dict[str] with dict[str, Any]

* Renamed add_to_dict_live_inputs to expand_schema_for_dynamic

* Fixed typo in DynamicSlot input code

* note about live_inputs not being present soon in get_v1_info (internal function anyway)

* For now, hide DynamicCombo and Autogrow from public interface

* Removed comment
2025-12-03 00:17:13 -05:00
73f5649196 Implement temporal rolling VAE (Major VRAM reductions in Hunyuan and Kandinsky) (#10995)
* hunyuan upsampler: rework imports

Remove the transitive import of VideoConv3d and Resnet and takes these
from actual implementation source.

* model: remove unused give_pre_end

According to git grep, this is not used now, and was not used in the
initial commit that introduced it (see below).

This semantic is difficult to implement temporal roll VAE for (and would
defeat the purpose). Rather than implement the complex if, just delete
the unused feature.

(venv) rattus@rattus-box2:~/ComfyUI$ git log --oneline
220afe33 (HEAD) Initial commit.
(venv) rattus@rattus-box2:~/ComfyUI$ git grep give_pre
comfy/ldm/modules/diffusionmodules/model.py:                 resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
comfy/ldm/modules/diffusionmodules/model.py:        self.give_pre_end = give_pre_end
comfy/ldm/modules/diffusionmodules/model.py:        if self.give_pre_end:

(venv) rattus@rattus-box2:~/ComfyUI$ git co origin/master
Previous HEAD position was 220afe33 Initial commit.
HEAD is now at 9d8a8179 Enable async offloading by default on Nvidia. (#10953)
(venv) rattus@rattus-box2:~/ComfyUI$ git grep give_pre
comfy/ldm/modules/diffusionmodules/model.py:                 resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
comfy/ldm/modules/diffusionmodules/model.py:        self.give_pre_end = give_pre_end
comfy/ldm/modules/diffusionmodules/model.py:        if self.give_pre_end:

* move refiner VAE temporal roller to core

Move the carrying conv op to the common VAE code and give it a better
name. Roll the carry implementation logic for Resnet into the base
class and scrap the Hunyuan specific subclass.

* model: Add temporal roll to main VAE decoder

If there are no attention layers, its a standard resnet and VideoConv3d
is asked for, substitute in the temporal rolloing VAE algorithm. This
reduces VAE usage by the temporal dimension (can be huge VRAM savings).

* model: Add temporal roll to main VAE encoder

If there are no attention layers, its a standard resnet and VideoConv3d
is asked for, substitute in the temporal rolling VAE algorithm. This
reduces VAE usage by the temporal dimension (can be huge VRAM savings).
2025-12-02 22:49:29 -05:00
3f512f5659 Added PATCH method to CORS headers (#11066)
Added PATCH http method to access-control-allow-header-methods header because there are now PATCH endpoints exposed in the API.

See 277237ccc1/api_server/routes/internal/internal_routes.py (L34) for an example of an API endpoint that uses the PATCH method.
2025-12-02 22:29:27 -05:00
b94d394a64 Support Z Image alibaba pai fun controlnets. (#11062)
These are not actual controlnets so put it in the models/model_patches
folder and use the ModelPatchLoader + QwenImageDiffsynthControlnet node to
use it.
2025-12-02 21:38:31 -05:00
277237ccc1 attention: use flag based OOM fallback (#11038)
Exception ref all local variables for the lifetime of exception
context. Just set a flag and then if to dump the exception before
falling back.
2025-12-02 17:24:19 -05:00
daaceac769 Hack to make zimage work in fp16. (#11057) 2025-12-02 17:11:58 -05:00
33d6aec3b7 add check for the format arg type in VideoFromComponents.save_to function (#11046)
* add check for the format var type in VideoFromComponents.save_to function

* convert "format" to VideoContainer enum
2025-12-02 11:50:13 -08:00
44baa0b7f3 Fix CODEOWNERS formatting to have all on the same line, otherwise only last line applies (#11053) 2025-12-02 11:46:29 -08:00
a17cf1c387 Add @guill as a code owner (#11031) 2025-12-01 22:40:44 -05:00
b4a20acc54 feat: Support ComfyUI-Manager for pip version (#7555) 2025-12-01 22:32:52 -05:00
c55dc857d5 bump comfyui-frontend-package to 1.33.10 (#11028) 2025-12-01 20:56:38 -05:00
878db3a727 Implement the Ovis image model. (#11030) 2025-12-01 20:56:17 -05:00
30c259cac8 ComfyUI version v0.3.76 2025-12-01 20:25:35 -05:00
1cb7e22a95 [API Nodes] add Kling O1 model support (#11025)
* feat(api-nodes): add Kling O1 model support

* fix: increase max allowed duration to 10.05 seconds

* fix(VideoInput): respect "format" argument
2025-12-01 16:11:52 -08:00
2640acb31c Update qwen tokenizer to add qwen 3 tokens. (#11029)
Doesn't actually change anything for current workflows because none of the
current models have a template with the think tokens.
2025-12-01 17:13:48 -05:00
7dbd5dfe91 bump comfyui-frontend-package to 1.32.10 (#11018) 2025-12-01 13:27:17 -05:00
f8b981ae9a Next AMD portable will have pytorch with ROCm 7.1.1 (#11002) 2025-11-30 04:21:31 -05:00
4967f81778 update template to 0.7.25 (#10996)
* update template to 0.7.24

* Update template to 0.7.25
2025-11-29 18:07:26 -08:00
0a6746898d Make the ScaleRope node work on Z Image and Lumina. (#10994) 2025-11-29 18:00:55 -05:00
5151cff293 Add some missing z image lora layers. (#10980) 2025-11-28 23:55:00 -05:00
af96d9812d feat(security): add System User protection with __ prefix (#10966)
* feat(security): add System User protection with `__` prefix

Add protected namespace for custom nodes to store sensitive data
(API keys, licenses) that cannot be accessed via HTTP endpoints.

Key changes:
- New API: get_system_user_directory() for internal access
- New API: get_public_user_directory() with structural blocking
- 3-layer defense: header validation, path blocking, creation prevention
- 54 tests covering security, edge cases, and backward compatibility

System Users use `__` prefix (e.g., __system, __cache) following
Python's private member convention. They exist in user_directory/
but are completely blocked from /userdata HTTP endpoints.

* style: remove unused imports
2025-11-28 21:28:42 -05:00
52a32e2b32 Support some z image lora formats. (#10978) 2025-11-28 21:12:42 -05:00
b907085709 Support video tiny VAEs (#10884)
* Support video tiny VAEs

* lighttaew scaling fix

* Also support video taes in previews

Only first frame for now as live preview playback is currently only available through VHS custom nodes.

* Support Wan 2.1 lightVAE

* Relocate elif block and set Wan VAE dim directly without using pruning rate for lightvae
2025-11-28 19:40:19 -05:00
065a2fbbec Update driver link in AMD portable README (#10974) 2025-11-28 19:37:39 -05:00
0ff0457892 mm: wrap the raw stream in context manager (#10958)
The documentation of torch.foo.Stream being usable with with: suggests
it starts at version 2.7. Use the old API for backwards compatibility.
2025-11-28 16:38:12 -05:00
6484ac89dc fix QuantizedTensor.is_contiguous (#10956) (#10959) 2025-11-28 16:33:07 -05:00
f55c98a89f Disable offload stream when torch compile. (#10961) 2025-11-28 16:16:46 -05:00
ca7808f240 fix(user_manager): fix typo in move_userdata dest validation (#10967)
Check `dest` instead of `source` when validating destination path
in move_userdata endpoint.
2025-11-28 12:43:17 -08:00
52e778fff3 feat(Kling-API-Nodes): add v2-5-turbo model to FirstLastFrame node (#10938) 2025-11-28 02:52:59 -08:00
9d8a817985 Enable async offloading by default on Nvidia. (#10953)
Add --disable-async-offload to disable it.

If this causes OOMs that go away when you --disable-async-offload please
report it.
2025-11-27 17:46:12 -05:00
b59750a86a Update template to 0.7.23 (#10949) 2025-11-27 17:12:56 -05:00
3f382a4f98 quant ops: Dequantize weight in-place (#10935)
In flux2 these weights are huge (200MB). As plain_tensor is a throw-away
deep copy, do this multiplication in-place to save VRAM.
2025-11-27 08:06:30 -08:00
f17251bec6 Account for the VRAM cost of weight offloading (#10733)
* mm: default to 0 for NUM_STREAMS

Dont count the compute stream as an offload stream. This makes async
offload accounting easier.

* mm: remove 128MB minimum

This is from a previous offloading system requirement. Remove it to
make behaviour of the loader and partial unloader consistent.

* mp: order the module list by offload expense

Calculate an approximate offloading temporary VRAM cost to offload a
weight and primary order the module load list by that. In the simple
case this is just the same as the module weight, but with Loras, a
weight with a lora consumes considerably more VRAM to do the Lora
application on-the-fly.

This will slightly prioritize lora weights, but is really for
proper VRAM offload accounting.

* mp: Account for the VRAM cost of weight offloading

when checking the VRAM headroom, assume that the weight needs to be
offloaded, and only load if it has space for both the load and offload
 * the number of streams.

As the weights are ordered from largest to smallest by offload cost
this is guaranteed to fit in VRAM (tm), as all weights that follow
will be smaller.

Make the partial unload aware of this system as well by saving the
budget for offload VRAM to the model state and accounting accordingly.
Its possible that partial unload increases the size of the largest
offloaded weights, and thus needs to unload a little bit more than
asked to accomodate the bigger temp buffers.

Honor the existing codes floor on model weight loading of 128MB by
having the patcher honor this separately withough regard to offloading.
Otherwise when MM specifies its 128MB minimum, MP will see the biggest
weights, and budget that 128MB to only offload buffer and load nothing
which isnt the intent of these minimums. The same clamp applies in
case of partial offload of the currently loading model.
2025-11-27 01:03:03 -05:00
c38e7d6599 block info (#10841) 2025-11-26 20:28:44 -08:00
eaf68c9b5b Make lora training work on Z Image and remove some redundant nodes. (#10927) 2025-11-26 19:25:32 -05:00
cc6a8dcd1a Dataset Processing Nodes and Improved LoRA Trainer Nodes with multi resolution supports. (#10708)
* Create nodes_dataset.py

* Add encoded dataset caching mechanism

* make training node to work with our dataset system

* allow trainer node to get different resolution dataset

* move all dataset related implementation to nodes_dataset

* Rewrite dataset system with new io schema

* Rewrite training system with new io schema

* add ui pbar

* Add outputs' id/name

* Fix bad id/naming

* use single process instead of input list when no need

* fix wrong output_list flag

* use torch.load/save and fix bad behaviors
2025-11-26 19:18:08 -05:00
a2d60aad0f convert nodes_customer_sampler.py to V3 schema (#10206) 2025-11-26 14:55:31 -08:00
d8433c63fd chore(api-nodes): remove chat widgets from OpenAI/Gemini nodes (#10861) 2025-11-26 14:42:01 -08:00
dd41b74549 Add Z Image to readme. (#10924) 2025-11-26 15:36:38 -05:00
55f654db3d Fix the CSP offline feature. (#10923) 2025-11-26 15:16:40 -05:00
58c6ed541d Merge 3d animation node (#10025) 2025-11-26 14:58:27 -05:00
234c3dc85f Bump frontend to 1.32.9 (#10867) 2025-11-26 14:58:08 -05:00
8908ee2628 fix(gemini): use first 10 images as fileData (URLs) and remaining images as inline base64 (#10918) 2025-11-26 10:38:30 -08:00
1105e0d139 improve UX for batch uploads in upload_images_to_comfyapi (#10913) 2025-11-26 09:23:14 -08:00
8938aa3f30 add Veo3 First-Last-Frame node (#10878) 2025-11-26 09:14:02 -08:00
f16219e3aa Add cheap latent preview for flux 2. (#10907)
Thank you to the person who calculated them. You saved me a percent of my
time.
2025-11-26 04:00:43 -05:00
8402c8700a ComfyUI version v0.3.75 2025-11-26 02:41:13 -05:00
58b8574661 Fix Flux2 reference image mem estimation. (#10905) 2025-11-26 02:36:19 -05:00
90b3995ec8 ComfyUI v0.3.74 2025-11-26 00:34:15 -05:00
bdb10a583f Fix loras not working on mixed fp8. (#10899) 2025-11-26 00:07:58 -05:00
0e24dbb19f Adjustments to Z Image. (#10893) 2025-11-25 19:02:51 -05:00
e9aae31fa2 Z Image model. (#10892) 2025-11-25 18:41:45 -05:00
0c18842acb ComfyUI v0.3.73 2025-11-25 14:59:37 -05:00
d196a905bb Lower vram usage for flux 2 text encoder. (#10887) 2025-11-25 14:58:39 -05:00
18b79acba9 Update workflow templates to v0.7.20 (#10883) 2025-11-25 14:58:21 -05:00
dff996ca39 Fix crash. (#10885) 2025-11-25 14:30:24 -05:00
828b1b9953 ComfyUI version v0.3.72 2025-11-25 12:40:58 -05:00
af81cb962d Add Flux 2 support to README. (#10882) 2025-11-25 11:40:32 -05:00
5c7b08ca58 [API Nodes] add Flux.2 Pro node (#10880) 2025-11-25 11:09:07 -05:00
6b573ae0cb Flux 2 (#10879) 2025-11-25 10:50:19 -05:00
015a0599d0 I found a case where this is needed (#10875) 2025-11-25 03:23:19 -05:00
acfaa5c4a1 Don't try fp8 matrix mult in quantized ops if not supported by hardware. (#10874) 2025-11-25 02:55:49 -05:00
b6805429b9 Allow pinning quantized tensors. (#10873) 2025-11-25 02:48:20 -05:00
25022e0b09 Cleanup and fix issues with text encoder quants. (#10872) 2025-11-25 01:48:53 -05:00
22a2644e57 Bump transformers version in requirements.txt (#10869) 2025-11-24 19:45:54 -05:00
b2ef58e2b1 block info (#10844) 2025-11-24 10:40:09 -08:00
6a6d456c88 block info (#10842) 2025-11-24 10:38:38 -08:00
3d1fdaf9f4 block info (#10843) 2025-11-24 10:30:40 -08:00
1286fcfe40 add get_frame_count and get_frame_rate methods to VideoInput class (#10851) 2025-11-24 10:24:29 -08:00
3bd71554a2 fix(api-nodes): edge cases in responses for Gemini models (#10860) 2025-11-24 09:48:37 -08:00
f66183a541 [fix] Fixes non-async public API access (#10857)
It looks like the synchronous version of the public API broke due to an
addition of `from __future__ import annotations`. This change updates
the async-to-sync adapter to work with both types of type annotations.
2025-11-23 22:56:20 -08:00
cbd68e3d58 Add better error message for common error. (#10846) 2025-11-23 04:55:22 -05:00
d89c29f259 Add display names to Hunyuan latent video nodes. (#10837) 2025-11-22 22:51:53 -05:00
a9c35256bc Update requirements.txt (#10834) 2025-11-22 02:28:29 -08:00
532938b16b --disable-api-nodes now sets CSP header to force frontend offline. (#10829) 2025-11-21 17:51:55 -05:00
ecb683b057 update frontend to 1.30 (#10793) 2025-11-21 16:34:47 -05:00
c55fd74816 ComfyUI 0.3.71 2025-11-21 00:49:13 -05:00
3398123752 Fix wrong path. (#10821) 2025-11-20 23:39:37 -05:00
943b3b615d HunyuanVideo 1.5 (#10819)
* init

* update

* Update model.py

* Update model.py

* remove print

* Fix text encoding

* Prevent empty negative prompt

Really doesn't work otherwise

* fp16 works

* I2V

* Update model_base.py

* Update nodes_hunyuan.py

* Better latent rgb factors

* Use the correct sigclip output...

* Support HunyuanVideo1.5 SR model

* whitespaces...

* Proper latent channel count

* SR model fixes

This also still needs timesteps scheduling based on the noise scale, can be used with two samplers too already

* vae_refiner: roll the convolution through temporal

Work in progress.

Roll the convolution through time using 2-latent-frame chunks and a
FIFO queue for the convolution seams.

* Support HunyuanVideo15 latent resampler

* fix

* Some cleanup

Co-Authored-By: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>

* Proper hyvid15 I2V channels

Co-Authored-By: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>

* Fix TokenRefiner for fp16

Otherwise x.sum has infs, just in case only casting if input is fp16, I don't know if necessary.

* Bugfix for the HunyuanVideo15 SR model

* vae_refiner: roll the convolution through temporal II

Roll the convolution through time using 2-latent-frame chunks and a
FIFO queue for the convolution seams.

Added support for encoder, lowered to 1 latent frame to save more
VRAM, made work for Hunyuan Image 3.0 (as code shared).

Fixed names, cleaned up code.

* Allow any number of input frames in VAE.

* Better VAE encode mem estimation.

* Lowvram fix.

* Fix hunyuan image 2.1 refiner.

* Fix mistake.

* Name changes.

* Rename.

* Whitespace.

* Fix.

* Fix.

---------

Co-authored-by: kijai <40791699+kijai@users.noreply.github.com>
Co-authored-by: Rattus <rattus128@gmail.com>
2025-11-20 22:44:43 -05:00
10e90a5757 bump comfyui-workflow-templates for nano banana 2 (#10818)
* bump templates

* bump templates
2025-11-20 18:20:52 -08:00
b75d349f25 fix(KlingLipSyncAudioToVideoNode): convert audio to mp3 format (#10811) 2025-11-20 16:33:54 -08:00
7b8389578e feat(api-nodes): add Nano Banana Pro (#10814)
* feat(api-nodes): add Nano Banana Pro

* frontend bump to 1.28.9
2025-11-20 16:17:47 -08:00
9e00ce5b76 Make Batch Images node add alpha channel when one of the inputs has it (#10816)
* When one Batch Image input has alpha and one does not, add empty alpha channel

* Use torch.nn.functional.pad
2025-11-20 17:42:46 -05:00
f5e66d5e47 Fix ImageBatch with different channel count. (#10815) 2025-11-20 15:08:03 -05:00
87b0359392 Update server templates handler to use new multi-package distribution (comfyui-workflow-templates versions >=0.3) (#10791)
* update templates for monorepo

* refactor
2025-11-19 22:36:56 -08:00
cb96d4d18c Disable workaround on newer cudnn. (#10807) 2025-11-19 23:56:23 -05:00
394348f5ca feat(api-nodes): add Topaz API nodes (#10755) 2025-11-19 17:44:04 -08:00
7601e89255 Fix workflow name. (#10806) 2025-11-19 20:17:15 -05:00
6a1d3a1ae1 convert hunyuan3d.py to V3 schema (#10664) 2025-11-19 14:49:01 -08:00
65ee24c978 change display name of PreviewAny node to "Preview as Text" (#10796) 2025-11-19 01:25:28 -08:00
17027f2a6a Add a way to disable the final norm in the llama based TE models. (#10794) 2025-11-18 22:36:03 -05:00
b5c8be8b1d ComfyUI 0.3.70 2025-11-18 19:37:20 -05:00
24fdb92edf feat(api-nodes): add new Gemini model (#10789) 2025-11-18 14:26:44 -08:00
d526974576 Fix hunyuan 3d 2.0 (#10792) 2025-11-18 16:46:19 -05:00
e1ab6bb394 EasyCache: Fix for mismatch in input/output channels with some models (#10788)
Slices model input with output channels so the caching tracks only the noise channels, resolves channel mismatch with models like WanVideo I2V

Also fix for slicing deprecation in pytorch 2.9
2025-11-18 07:00:21 -08:00
048f49adbd chore(api-nodes): adjusted PR template; set min python version for pylint to 3.10 (#10787) 2025-11-18 03:59:27 -08:00
47bfd5a33f Native block swap custom nodes considered harmful. (#10783) 2025-11-18 00:26:44 -05:00
fdf49a2861 Fix the portable download link for CUDA 12.6 (#10780) 2025-11-17 22:04:06 -05:00
f41e5f398d Update README with new portable download link (#10778) 2025-11-17 19:59:19 -05:00
27cbac865e Add release workflow for NVIDIA cu126 (#10777) 2025-11-17 19:04:04 -05:00
3d0003c24c ComfyUI version 0.3.69 2025-11-17 17:17:24 -05:00
7d6103325e Change ROCm nightly install command to 7.1 (#10764) 2025-11-16 03:01:14 -05:00
2d4a08b717 Revert "chore(api-nodes): mark OpenAIDalle2 and OpenAIDalle3 nodes as deprecated (#10757)" (#10759)
This reverts commit 9a02382568.
2025-11-15 12:37:34 -08:00
9a02382568 chore(api-nodes): mark OpenAIDalle2 and OpenAIDalle3 nodes as deprecated (#10757) 2025-11-15 11:18:49 -08:00
bd01d9f7fd Add left padding support to tokenizers. (#10753) 2025-11-15 06:54:40 -05:00
443056c401 Fix custom nodes import error. (#10747)
This should fix the import errors but will break if the custom nodes actually try to use the class.
2025-11-14 03:26:05 -05:00
f60923590c Use same code for chroma and flux blocks so that optimizations are shared. (#10746) 2025-11-14 01:28:05 -05:00
1ef328c007 Better instructions for the portable. (#10743) 2025-11-13 21:32:39 -05:00
94c298f962 flux: reduce VRAM usage (#10737)
Cleanup a bunch of stack tensors on Flux. This take me from B=19 to B=22
for 1600x1600 on RTX5090.
2025-11-13 16:02:03 -08:00
2fde9597f4 feat: add create_time dict to prompt field in /history and /queue (#10741) 2025-11-13 15:11:52 -08:00
f91078b1ff add PR template for API-Nodes (#10736) 2025-11-13 10:05:26 -08:00
3b3ef9a77a Quantized Ops fixes (#10715)
* offload support, bug fixes, remove mixins

* add readme
2025-11-12 18:26:52 -05:00
8b0b93df51 Update Python 3.14 compatibility notes in README (#10730) 2025-11-12 17:04:41 -05:00
1c7eaeca10 qwen: reduce VRAM usage (#10725)
Clean up a bunch of stacked and no-longer-needed tensors on the QWEN
VRAM peak (currently FFN).

With this I go from OOMing at B=37x1328x1328 to being able to
succesfully run B=47 (RTX5090).
2025-11-12 16:20:53 -05:00
18e7d6dba5 mm/mp: always unload re-used but modified models (#10724)
The partial unloader path in model re-use flow skips straight to the
actual unload without any check of the patching UUID. This means that
if you do an upscale flow with a model patch on an existing model, it
will not apply your patchings.

Fix by delaying the partial_unload until after the uuid checks. This
is done by making partial_unload a model of partial_load where extra_mem
is -ve.
2025-11-12 16:19:53 -05:00
e1d85e7577 Update README.md for Intel Arc GPU installation, remove IPEX (#10729)
IPEX is no longer needed for Intel Arc GPUs.  Removing instruction to setup ipex.
2025-11-12 15:21:05 -05:00
1199411747 Don't pin tensor if not a torch.nn.parameter.Parameter (#10718) 2025-11-11 19:33:30 -05:00
5ebcab3c7d Update CI workflow to remove dead macOS runner. (#10704)
* Update CI workflow to remove dead macOS runner.

* revert

* revert
2025-11-10 15:35:29 -05:00
c350009236 ops: Put weight cast on the offload stream (#10697)
This needs to be on the offload stream. This reproduced a black screen
with low resolution images on a slow bus when using FP8.
2025-11-09 22:52:11 -05:00
dea899f221 Unload weights if vram usage goes up between runs. (#10690) 2025-11-09 18:51:33 -05:00
e632e5de28 Add logging for model unloading. (#10692) 2025-11-09 18:06:39 -05:00
2abd2b5c20 Make ScaleROPE node work on Flux. (#10686) 2025-11-08 15:52:02 -05:00
a1a70362ca Only unpin tensor if it was pinned by ComfyUI (#10677) 2025-11-07 11:15:05 -05:00
cf97b033ee mm: guard against double pin and unpin explicitly (#10672)
As commented, if you let cuda be the one to detect double pin/unpinning
it actually creates an asyc GPU error.
2025-11-06 21:20:48 -05:00
eb1c42f649 Tell users they need to upload their logs in bug reports. (#10671) 2025-11-06 20:24:28 -05:00
e05c907126 Clarify release cycle. (#10667) 2025-11-06 04:11:30 -05:00
09dc24c8a9 Pinned mem also seems to work on AMD. (#10658) 2025-11-05 19:11:15 -05:00
1d69245981 Enable pinned memory by default on Nvidia. (#10656)
Removed the --fast pinned_memory flag.

You can use --disable-pinned-memory to disable it. Please report if it
causes any issues.
2025-11-05 18:08:13 -05:00
97f198e421 Fix qwen controlnet regression. (#10657) 2025-11-05 18:07:35 -05:00
bda0eb2448 feat(API-nodes): move Rodin3D nodes to new client; removed old api client.py (#10645) 2025-11-05 02:16:00 -08:00
c4a6b389de Lower ltxv mem usage to what it was before previous pr. (#10643)
Bring back qwen behavior to what it was before previous pr.
2025-11-04 22:47:35 -05:00
4cd881866b Use single apply_rope function across models (#10547) 2025-11-04 20:10:11 -05:00
265adad858 ComfyUI version v0.3.68 2025-11-04 19:42:23 -05:00
7f3e4d486c Limit amount of pinned memory on windows to prevent issues. (#10638) 2025-11-04 17:37:50 -05:00
a389ee01bb caching: Handle None outputs tuple case (#10637) 2025-11-04 14:14:10 -08:00
9c71a66790 chore: update workflow templates to v0.2.11 (#10634) 2025-11-04 10:51:53 -08:00
af4b7b5edb More fp8 torch.compile regressions fixed. (#10625) 2025-11-03 22:14:20 -05:00
0f4ef3afa0 This seems to slow things down slightly on Linux. (#10624) 2025-11-03 21:47:14 -05:00
6b88478f9f Bring back fp8 torch compile performance to what it should be. (#10622) 2025-11-03 19:22:10 -05:00
e199c8cc67 Fixes (#10621) 2025-11-03 17:58:24 -05:00
0652cb8e2d Speed up torch.compile (#10620) 2025-11-03 17:37:12 -05:00
958a17199a People should update their pytorch versions. (#10618) 2025-11-03 17:08:30 -05:00
e974e554ca chore: update embedded docs to v0.3.1 (#10614) 2025-11-03 10:59:44 -08:00
4e2110c794 feat(Pika-API-nodes): use new API client (#10608) 2025-11-03 00:29:08 -08:00
e617cddf24 convert nodes_openai.py to V3 schema (#10604) 2025-11-03 00:28:13 -08:00
1f3f7a2823 convert nodes_hypernetwork.py to V3 schema (#10583) 2025-11-03 00:21:47 -08:00
88df172790 fix(caching): treat bytes as hashable (#10567) 2025-11-03 00:16:40 -08:00
6d6a18b0b7 fix(api-nodes-cloud): stop using sub-folder and absolute path for output of Rodin3D nodes (#10556) 2025-11-03 00:04:56 -08:00
97ff9fae7e Clarify help text for --fast argument (#10609)
Updated help text for the --fast argument to clarify potential risks.
2025-11-02 13:14:04 -05:00
135fa49ec2 Small speed improvements to --async-offload (#10593)
* ops: dont take an offload stream if you dont need one

* ops: prioritize mem transfer

The async offload streams reason for existence is to transfer from
RAM to GPU. The post processing compute steps are a bonus on the side
stream, but if the compute stream is running a long kernel, it can
stall the side stream, as it wait to type-cast the bias before
transferring the weight. So do a pure xfer of the weight straight up,
then do everything bias, then go back to fix the weight type and do
weight patches.
2025-11-01 18:48:53 -04:00
44869ff786 Fix issue with pinned memory. (#10597) 2025-11-01 17:25:59 -04:00
20182a393f convert StabilityAI to use new API client (#10582) 2025-11-01 12:14:06 -07:00
5f109fe6a0 added 12s-20s as available output durations for the LTXV API nodes (#10570) 2025-11-01 12:13:39 -07:00
c58c13b2ba Fix torch compile regression on fp8 ops. (#10580) 2025-11-01 00:25:17 -04:00
7f374e42c8 ScaleROPE now works on Lumina models. (#10578) 2025-10-31 15:41:40 -04:00
27d1bd8829 Fix rope scaling. (#10560) 2025-10-30 22:51:58 -04:00
614cf9805e Add a ScaleROPE node. Currently only works on WAN models. (#10559) 2025-10-30 22:11:38 -04:00
513b0c46fb Add RAM Pressure cache mode (#10454)
* execution: Roll the UI cache into the outputs

Currently the UI cache is parallel to the output cache with
expectations of being a content superset of the output cache.
At the same time the UI and output cache are maintained completely
seperately, making it awkward to free the output cache content without
changing the behaviour of the UI cache.

There are two actual users (getters) of the UI cache. The first is
the case of a direct content hit on the output cache when executing a
node. This case is very naturally handled by merging the UI and outputs
cache.

The second case is the history JSON generation at the end of the prompt.
This currently works by asking the cache for all_node_ids and then
pulling the cache contents for those nodes. all_node_ids is the nodes
of the dynamic prompt.

So fold the UI cache into the output cache. The current UI cache setter
now writes to a prompt-scope dict. When the output cache is set, just
get this value from the dict and tuple up with the outputs.

When generating the history, simply iterate prompt-scope dict.

This prepares support for more complex caching strategies (like RAM
pressure caching) where less than 1 workflow will be cached and it
will be desirable to keep the UI cache and output cache in sync.

* sd: Implement RAM getter for VAE

* model_patcher: Implement RAM getter for ModelPatcher

* sd: Implement RAM getter for CLIP

* Implement RAM Pressure cache

Implement a cache sensitive to RAM pressure. When RAM headroom drops
down below a certain threshold, evict RAM-expensive nodes from the
cache.

Models and tensors are measured directly for RAM usage. An OOM score
is then computed based on the RAM usage of the node.

Note the due to indirection through shared objects (like a model
patcher), multiple nodes can account the same RAM as their individual
usage. The intent is this will free chains of nodes particularly
model loaders and associate loras as they all score similar and are
sorted in close to each other.

Has a bias towards unloading model nodes mid flow while being able
to keep results like text encodings and VAE.

* execution: Convert the cache entry to NamedTuple

As commented in review.

Convert this to a named tuple and abstract away the tuple type
completely from graph.py.
2025-10-30 17:39:02 -04:00
dfac94695b fix img2img operation in Dall2 node (#10552) 2025-10-30 10:22:35 -07:00
163b629c70 use new API client in Pixverse and Ideogram nodes (#10543) 2025-10-29 23:49:03 -07:00
998bf60beb Add units/info for the numbers displayed on 'load completely' and 'load partially' log messages (#10538) 2025-10-29 19:37:06 -04:00
906c089957 Fix small performance regression with fp8 fast and scaled fp8. (#10537) 2025-10-29 19:29:01 -04:00
25de7b1bfa Try to fix slow load issue on low ram hardware with pinned mem. (#10536) 2025-10-29 17:20:27 -04:00
ab7ab5be23 Fix Race condition in --async-offload that can cause corruption (#10501)
* mm: factor out the current stream getter

Make this a reusable function.

* ops: sync the offload stream with the consumption of w&b

This sync is nessacary as pytorch will queue cuda async frees on the
same stream as created to tensor. In the case of async offload, this
will be on the offload stream.

Weights and biases can go out of scope in python which then
triggers the pytorch garbage collector to queue the free operation on
the offload stream possible before the compute stream has used the
weight. This causes a use after free on weight data leading to total
corruption of some workflows.

So sync the offload stream with the compute stream after the weight
has been used so the free has to wait for the weight to be used.

The cast_bias_weight is extended in a backwards compatible way with
the new behaviour opt-in on a defaulted parameter. This handles
custom node packs calling cast_bias_weight and defeatures
async-offload for them (as they do not handle the race).

The pattern is now:

cast_bias_weight(... , offloadable=True) #This might be offloaded
thing(weight, bias, ...)
uncast_bias_weight(...)

* controlnet: adopt new cast_bias_weight synchronization scheme

This is nessacary for safe async weight offloading.

* mm: sync the last stream in the queue, not the next

Currently this peeks ahead to sync the next stream in the queue of
streams with the compute stream. This doesnt allow a lot of
parallelization, as then end result is you can only get one weight load
ahead regardless of how many streams you have.

Rotate the loop logic here to synchronize the end of the queue before
returning the next stream. This allows weights to be loaded ahead of the
compute streams position.
2025-10-29 17:17:46 -04:00
ec4fc2a09a Fix case of weights not being unpinned. (#10533) 2025-10-29 15:48:06 -04:00
1a58087ac2 Reduce memory usage for fp8 scaled op. (#10531) 2025-10-29 15:43:51 -04:00
6c14f3afac use new API client in Luma and Minimax nodes (#10528) 2025-10-29 11:14:56 -07:00
e525673f72 Fix issue. (#10527) 2025-10-29 00:37:00 -04:00
3fa7a5c04a Speed up offloading using pinned memory. (#10526)
To enable this feature use: --fast pinned_memory
2025-10-29 00:21:01 -04:00
210f7a1ba5 convert nodes_recraft.py to V3 schema (#10507) 2025-10-28 14:38:05 -07:00
d202c2ba74 execution: Allow a subgraph nodes to execute multiple times (#10499)
In the case of --cache-none lazy and subgraph execution can cause
anything to be run multiple times per workflow. If that rerun nodes is
in itself a subgraph generator, this will crash for two reasons.

pending_subgraph_results[] does not cleanup entries after their use.
So when a pending_subgraph_result is consumed, remove it from the list
so that if the corresponding node is fully re-executed this misses
lookup and it fall through to execute the node as it should.

Secondly, theres is an explicit enforcement against dups in the
addition of subgraphs nodes as ephemerals to the dymprompt. Remove this
enforcement as the use case is now valid.
2025-10-28 16:22:08 -04:00
8817f8fc14 Mixed Precision Quantization System (#10498)
* Implement mixed precision operations with a registry design and metadate for quant spec in checkpoint.

* Updated design using Tensor Subclasses

* Fix FP8 MM

* An actually functional POC

* Remove CK reference and ensure correct compute dtype

* Update unit tests

* ruff lint

* Implement mixed precision operations with a registry design and metadate for quant spec in checkpoint.

* Updated design using Tensor Subclasses

* Fix FP8 MM

* An actually functional POC

* Remove CK reference and ensure correct compute dtype

* Update unit tests

* ruff lint

* Fix missing keys

* Rename quant dtype parameter

* Rename quant dtype parameter

* Fix unittests for CPU build
2025-10-28 16:20:53 -04:00
22e40d2ace Tell users to update their nvidia drivers if portable doesn't start. (#10518) 2025-10-28 15:08:08 -04:00
3bea4efc6b Tell users to update nvidia drivers if problem with portable. (#10510) 2025-10-28 04:45:45 -04:00
8cf2ba4ba6 Remove comfy api key from queue api. (#10502) 2025-10-28 03:23:52 -04:00
b61a40cbc9 Bump stable portable to cu130 python 3.13.9 (#10508) 2025-10-28 03:21:45 -04:00
f2bb3230b7 ComfyUI version v0.3.67 2025-10-28 03:03:59 -04:00
614b8d3345 frontend bump to 1.28.8 (#10506) 2025-10-28 03:01:13 -04:00
6abc30aae9 Update template to 0.2.4 (#10505) 2025-10-28 01:56:30 -04:00
55bad30375 feat(api-nodes): add LTXV API nodes (#10496) 2025-10-27 22:25:29 -07:00
c305deed56 Update template to 0.2.3 (#10503) 2025-10-27 22:24:16 -07:00
601ee1775a Add a bat to run comfyui portable without api nodes. (#10504) 2025-10-27 23:54:00 -04:00
c170fd2db5 Bump portable deps workflow to torch cu130 python 3.13.9 (#10493) 2025-10-26 20:23:01 -04:00
9d529e5308 fix(api-nodes): random issues on Windows by capturing general OSError for retries (#10486) 2025-10-25 23:51:06 -07:00
f6bbc1ac84 Fix mistake. (#10484) 2025-10-25 23:07:29 -04:00
098a352f13 Add warning for torch-directml usage (#10482)
Added a warning message about the state of torch-directml.
2025-10-25 20:05:22 -04:00
e86b79ab9e convert Gemini API nodes to V3 schema (#10476) 2025-10-25 14:35:30 -07:00
426cde37f1 Remove useless function (#10472) 2025-10-24 19:56:51 -04:00
dd5af0c587 convert Tripo API nodes to V3 schema (#10469) 2025-10-24 15:48:34 -07:00
388b306a2b feat(api-nodes): network client v2: async ops, cancellation, downloads, refactor (#10390)
* feat(api-nodes): implement new API client for V3 nodes

* feat(api-nodes): implement new API client for V3 nodes

* feat(api-nodes): implement new API client for V3 nodes

* converted WAN nodes to use new client; polishing

* fix(auth): do not leak authentification for the absolute urls

* convert BFL API nodes to use new API client; remove deprecated BFL nodes

* converted Google Veo nodes

* fix(Veo3.1 model): take into account "generate_audio" parameter
2025-10-23 22:37:16 -07:00
24188b3141 Update template to 0.2.2 (#10461)
Fix template typo issue
2025-10-24 01:36:30 -04:00
1bcda6df98 WIP way to support multi multi dimensional latents. (#10456) 2025-10-23 21:21:14 -04:00
a1864c01f2 Small readme improvement. (#10442) 2025-10-22 17:26:22 -04:00
4739d7717f execution: fold in dependency aware caching / Fix --cache-none with loops/lazy etc (Resubmit) (#10440)
* execution: fold in dependency aware caching

This makes --cache-none compatiable with lazy and expanded
subgraphs.

Currently the --cache-none option is powered by the
DependencyAwareCache. The cache attempts to maintain a parallel
copy of the execution list data structure, however it is only
setup once at the start of execution and does not get meaninigful
updates to the execution list.

This causes multiple problems when --cache-none is used with lazy
and expanded subgraphs as the DAC does not accurately update its
copy of the execution data structure.

DAC has an attempt to handle subgraphs ensure_subcache however
this does not accurately connect to nodes outside the subgraph.
The current semantics of DAC are to free a node ASAP after the
dependent nodes are executed.

This means that if a subgraph refs such a node it will be requed
and re-executed by the execution_list but DAC wont see it in
its to-free lists anymore and leak memory.

Rather than try and cover all the cases where the execution list
changes from inside the cache, move the while problem to the
executor which maintains an always up-to-date copy of the wanted
data-structure.

The executor now has a fast-moving run-local cache of its own.
Each _to node has its own mini cache, and the cache is unconditionally
primed at the time of add_strong_link.

add_strong_link is called for all of static workflows, lazy links
and expanded subgraphs so its the singular source of truth for
output dependendencies.

In the case of a cache-hit, the executor cache will hold the non-none
value (it will respect updates if they happen somehow as well).

In the case of a cache-miss, the executor caches a None and will
wait for a notification to update the value when the node completes.

When a node completes execution, it simply releases its mini-cache
and in turn its strong refs on its direct anscestor outputs, allowing
for ASAP freeing (same as the DependencyAwareCache but a little more
automatic).

This now allows for re-implementation of --cache-none with no cache
at all. The dependency aware cache was also observing the dependency
sematics for the objects and UI cache which is not accurate (this
entire logic was always outputs specific).

This also prepares for more complex caching strategies (such as RAM
pressure based caching), where a cache can implement any freeing
strategy completely independently of the DepedancyAwareness
requirement.

* main: re-implement --cache-none as no cache at all

The execution list now tracks the dependency aware caching more
correctly that the DependancyAwareCache.

Change it to a cache that does nothing.

* test_execution: add --cache-none to the test suite

--cache-none is now expected to work universally. Run it through the
full unit test suite. Propagate the server parameterization for whether
or not the server is capabale of caching, so that the minority of tests
that specifically check for cache hits can if else. Hard assert NOT
caching in the else to give some coverage of --cache-none expected
behaviour to not acutally cache.
2025-10-22 15:49:05 -04:00
f13cff0be6 Add custom node published subgraphs endpoint (#10438)
* Add get_subgraphs_dir to ComfyExtension and PUBLISHED_SUBGRAPH_DIRS to nodes.py

* Created initial endpoints, although the returned paths are a bit off currently

* Fix path and actually return real data

* Sanitize returned /api/global_subgraphs entries

* Remove leftover function from early prototyping

* Remove added whitespace

* Add None check for sanitize_entry
2025-10-21 23:16:16 -04:00
9cdc64998f Only disable cudnn on newer AMD GPUs. (#10437) 2025-10-21 19:15:23 -04:00
560b1bdfca ComfyUI version v0.3.66 2025-10-21 01:12:32 -04:00
b7992f871a Revert "execution: fold in dependency aware caching / Fix --cache-none with l…" (#10422)
This reverts commit b1467da480.
2025-10-20 19:03:06 -04:00
2c2aa409b0 Log message for cudnn disable on AMD. (#10418) 2025-10-20 15:43:24 -04:00
a4787ac83b Update template to 0.2.1 (#10413)
* Update template to 0.1.97

* Update template to 0.2.1
2025-10-20 15:28:36 -04:00
b5c59b763c Deprecation warning on unused files (#10387)
* only warn for unused files

* include internal extensions
2025-10-19 13:05:46 -07:00
b4f30bd408 Pytorch is stupid. (#10398) 2025-10-19 01:25:35 -04:00
dad076aee6 Speed up chroma radiance. (#10395) 2025-10-18 23:19:52 -04:00
0cf33953a7 Fix batch size above 1 giving bad output in chroma radiance. (#10394) 2025-10-18 23:15:34 -04:00
5b80addafd Turn off cuda malloc by default when --fast autotune is turned on. (#10393) 2025-10-18 22:35:46 -04:00
9da397ea2f Disable torch compiler for cast_bias_weight function (#10384)
* Disable torch compiler for cast_bias_weight function

* Fix torch compile.
2025-10-17 20:03:28 -04:00
92d97380bd Update Python 3.14 installation instructions (#10385)
Removed mention of installing pytorch nightly for Python 3.14.
2025-10-17 18:22:59 -04:00
99ce2a1f66 convert nodes_controlnet.py to V3 schema (#10202) 2025-10-17 14:13:05 -07:00
b1467da480 execution: fold in dependency aware caching / Fix --cache-none with loops/lazy etc (#10368)
* execution: fold in dependency aware caching

This makes --cache-none compatiable with lazy and expanded
subgraphs.

Currently the --cache-none option is powered by the
DependencyAwareCache. The cache attempts to maintain a parallel
copy of the execution list data structure, however it is only
setup once at the start of execution and does not get meaninigful
updates to the execution list.

This causes multiple problems when --cache-none is used with lazy
and expanded subgraphs as the DAC does not accurately update its
copy of the execution data structure.

DAC has an attempt to handle subgraphs ensure_subcache however
this does not accurately connect to nodes outside the subgraph.
The current semantics of DAC are to free a node ASAP after the
dependent nodes are executed.

This means that if a subgraph refs such a node it will be requed
and re-executed by the execution_list but DAC wont see it in
its to-free lists anymore and leak memory.

Rather than try and cover all the cases where the execution list
changes from inside the cache, move the while problem to the
executor which maintains an always up-to-date copy of the wanted
data-structure.

The executor now has a fast-moving run-local cache of its own.
Each _to node has its own mini cache, and the cache is unconditionally
primed at the time of add_strong_link.

add_strong_link is called for all of static workflows, lazy links
and expanded subgraphs so its the singular source of truth for
output dependendencies.

In the case of a cache-hit, the executor cache will hold the non-none
value (it will respect updates if they happen somehow as well).

In the case of a cache-miss, the executor caches a None and will
wait for a notification to update the value when the node completes.

When a node completes execution, it simply releases its mini-cache
and in turn its strong refs on its direct anscestor outputs, allowing
for ASAP freeing (same as the DependencyAwareCache but a little more
automatic).

This now allows for re-implementation of --cache-none with no cache
at all. The dependency aware cache was also observing the dependency
sematics for the objects and UI cache which is not accurate (this
entire logic was always outputs specific).

This also prepares for more complex caching strategies (such as RAM
pressure based caching), where a cache can implement any freeing
strategy completely independently of the DepedancyAwareness
requirement.

* main: re-implement --cache-none as no cache at all

The execution list now tracks the dependency aware caching more
correctly that the DependancyAwareCache.

Change it to a cache that does nothing.

* test_execution: add --cache-none to the test suite

--cache-none is now expected to work universally. Run it through the
full unit test suite. Propagate the server parameterization for whether
or not the server is capabale of caching, so that the minority of tests
that specifically check for cache hits can if else. Hard assert NOT
caching in the else to give some coverage of --cache-none expected
behaviour to not acutally cache.
2025-10-17 13:55:15 -07:00
d8d60b5609 Do batch_slice in EasyCache's apply_cache_diff (#10376) 2025-10-17 00:39:37 -04:00
b1293d50ef workaround also works on cudnn 91200 (#10375) 2025-10-16 19:59:56 -04:00
19b466160c Workaround for nvidia issue where VAE uses 3x more memory on torch 2.9 (#10373) 2025-10-16 18:16:03 -04:00
bc0ad9bb49 fix(api-nodes): remove "veo2" model from Veo3 node (#10372) 2025-10-16 10:12:50 -07:00
4054b4bf38 feat: deprecated API alert (#10366) 2025-10-16 01:13:31 -07:00
55ac7d333c Bump frontend to 1.28.7 (#10364) 2025-10-15 20:30:39 -07:00
afa8a24fe1 refactor: Replace manual patches merging with merge_nested_dicts (#10360) 2025-10-15 17:16:09 -07:00
493b81e48f Fix order of inputs nested merge_nested_dicts (#10362) 2025-10-15 16:47:26 -07:00
6b035bfce2 Latest pytorch stable is cu130 (#10361) 2025-10-15 18:48:12 -04:00
74b7f0b04b feat(api-nodes): add Veo3.1 model (#10357) 2025-10-15 15:41:45 -07:00
f72c6616b2 Add TemporalScoreRescaling node (#10351)
* Add TemporalScoreRescaling node

* Mention image generation in tsr_k's tooltip
2025-10-15 18:12:25 -04:00
1c10b33f9b gfx942 doesn't support fp8 operations. (#10348) 2025-10-15 00:21:11 -04:00
ddfce1af4f Bump frontend to 1.28.6 (#10345) 2025-10-14 21:08:23 -04:00
7a883849ea api-nodes: fixed dynamic pricing format; import comfy_io directly (#10336) 2025-10-13 23:55:56 -07:00
84867067ea Python 3.14 instructions. (#10337) 2025-10-14 02:09:12 -04:00
3374e900d0 Faster workflow cancelling. (#10301) 2025-10-13 23:43:53 -04:00
51696e3fdc ComfyUI version 0.3.65 2025-10-13 23:39:55 -04:00
dfff7e5332 Better memory estimation for the SD/Flux VAE on AMD. (#10334) 2025-10-13 22:37:19 -04:00
e4ea393666 Fix loading old stable diffusion ckpt files on newer numpy. (#10333) 2025-10-13 22:18:58 -04:00
c8674bc6e9 Enable RDNA4 pytorch attention on ROCm 7.0 and up. (#10332) 2025-10-13 21:19:03 -04:00
3dfdcf66b6 convert nodes_hunyuan.py to V3 schema (#10136) 2025-10-13 12:36:26 -07:00
95ca2e56c8 WAN2.2: Fix cache VRAM leak on error (#10308)
Same change pattern as 7e8dd275c2
applied to WAN2.2

If this suffers an exception (such as a VRAM oom) it will leave the
encode() and decode() methods which skips the cleanup of the WAN
feature cache. The comfy node cache then ultimately keeps a reference
this object which is in turn reffing large tensors from the failed
execution.

The feature cache is currently setup at a class variable on the
encoder/decoder however, the encode and decode functions always clear
it on both entry and exit of normal execution.

Its likely the design intent is this is usable as a streaming encoder
where the input comes in batches, however the functions as they are
today don't support that.

So simplify by bringing the cache back to local variable, so that if
it does VRAM OOM the cache itself is properly garbage when the
encode()/decode() functions dissappear from the stack.
2025-10-13 15:23:11 -04:00
27ffd12c45 add indent=4 kwarg to json.dumps() (#10307) 2025-10-13 12:14:52 -07:00
e693e4db6a Always set diffusion model to eval() mode. (#10331) 2025-10-13 14:57:27 -04:00
d68ece7301 Update the extra_model_paths.yaml.example (#10319) 2025-10-12 23:54:41 -04:00
894837de9a update extra models paths example (#10316) 2025-10-12 23:35:33 -04:00
fdc92863b6 Update node docs to 0.3.0 (#10318) 2025-10-12 23:32:02 -04:00
a125cd84b0 Improve AMD performance. (#10302)
I honestly have no idea why this improves things but it does.
2025-10-12 00:28:01 -04:00
84e9ce32c6 Implement the mmaudio VAE. (#10300) 2025-10-11 22:57:23 -04:00
f43b8ab2a2 Update template to 0.1.95 (#10294) 2025-10-11 10:27:22 -07:00
14d642acd6 feat(api-nodes): add price extractor feature; small fixes to Kling & Pika nodes (#10284) 2025-10-10 16:21:40 -07:00
aa895db7e8 feat(GeminiImage-ApiNode): add aspect_ratio and release version of model (#10255) 2025-10-10 16:17:20 -07:00
cdfc25a160 Fix save audio nodes saving mono audio as stereo. (#10289) 2025-10-10 17:33:51 -04:00
81e4dac107 convert nodes_upscale_model.py to V3 schema (#10149) 2025-10-09 16:08:40 -07:00
90853fb9cd convert nodes_flux to V3 schema (#10122) 2025-10-09 16:07:17 -07:00
f1dd6e50f8 Fix bug with applying loras on fp8 scaled without fp8 ops. (#10279) 2025-10-09 19:02:40 -04:00
fc0fbf141c convert nodes_sd3.py and nodes_slg.py to V3 schema (#10162) 2025-10-09 15:18:23 -07:00
f3d5d328a3 fix(v3,api-nodes): V3 schema typing; corrected Pika API nodes (#10265) 2025-10-09 15:15:03 -07:00
139addd53c More surgical fix for #10267 (#10276) 2025-10-09 16:37:35 -04:00
cbee7d3390 convert nodes_latent.py to V3 schema (#10160) 2025-10-08 23:14:00 -07:00
6732014a0a convert nodes_compositing.py to V3 schema (#10174) 2025-10-08 23:13:15 -07:00
989f715d92 convert nodes_lora_extract.py to V3 schema (#10182) 2025-10-08 23:11:45 -07:00
2ba8d7cce8 convert nodes_model_downscale.py to V3 schema (#10199) 2025-10-08 23:10:23 -07:00
51fb505ffa feat(api-nodes, pylint): use lazy formatting in logging functions (#10248) 2025-10-08 23:06:56 -07:00
72c2071972 Mvly/node update (#10042)
* updated V2V node to allow for control image input
exposing steps in v2v
fixing guidance_scale as input parameter

TODO: allow for motion_intensity as input param.

* refactor: comment out unsupported resolution and adjust default values in video nodes

* set control_after_generate

* adding new defaults

* fixes

* changed control_after_generate back to True

* changed control_after_generate back to False

---------

Co-authored-by: thorsten <thorsten@tripod-digital.co.nz>
2025-10-08 20:30:41 -04:00
6e59934089 Refactor model sampling sigmas code. (#10250) 2025-10-08 17:49:02 -04:00
3e0eb8d33f feat(V3-io): allow Enum classes for Combo options (#10237) 2025-10-08 00:14:04 -07:00
637221995f ComfyUI version 0.3.64 2025-10-08 00:53:43 -04:00
51697d50dc update template to 0.1.94 (#10253) 2025-10-07 19:48:51 -07:00
19f595b788 Bump frontend to 1.27.10 (#10252) 2025-10-07 17:54:00 -07:00
8a15568f10 Temp fix for LTXV custom nodes. (#10251) 2025-10-07 19:55:23 -04:00
9e984c48bc feat(api-nodes): add Sora2 API node (#10249) 2025-10-07 14:11:37 -07:00
fc34c3d112 fix(ReCraft-API-node): allow custom multipart parser to return FormData (#10244) 2025-10-07 13:15:32 -07:00
8aea746212 Implement gemma 3 as a text encoder. (#10241)
Not useful yet.
2025-10-06 22:08:08 -04:00
8c19910427 convert nodes_kling.py to V3 schema (#10236) 2025-10-06 16:26:52 -07:00
e77e0a8f8f convert nodes_pika.py to V3 schema (#10216) 2025-10-06 16:20:26 -07:00
a49007a7b0 fix(api-nodes): allow negative_prompt PixVerse to be multiline (#10196) 2025-10-06 16:13:43 -07:00
6ae3515801 fix(api-nodes): enable more pylint rules (#10213) 2025-10-06 16:05:57 -07:00
6bd3f8eb9f ComfyUI version 0.3.63 2025-10-06 14:49:04 -04:00
7326e46dee Update template to 0.1.93 (#10235)
* Update template to 0.1.92

* Update template to 0.1.93
2025-10-06 10:57:00 -07:00
195e0b0639 Remove useless code. (#10223) 2025-10-05 15:41:19 -04:00
187f43696d fix(api-nodes): disable "std" mode for Kling2.5-turbo (#10212) 2025-10-04 23:34:18 -07:00
caf07331ff Remove soundfile dependency. No more torchaudio load or save. (#10210) 2025-10-04 22:05:05 -04:00
b1fa1922df convert nodes_stable3d.py to V3 schema (#10204) 2025-10-04 12:33:48 -07:00
2ed74f7ac7 convert nodes_rodin.py to V3 schema (#10195) 2025-10-04 12:29:09 -07:00
22f99fb97e fix(api-nodes): enable 2 more pylint rules, removed non needed code (#10192) 2025-10-04 12:22:57 -07:00
bbd683098e Add instructions to install nightly AMD pytorch for windows. (#10190)
* Add instructions to install nightly AMD pytorch for windows.

* Update README.md
2025-10-03 23:37:43 -04:00
08726b64fe Update amd nightly command in readme. (#10189) 2025-10-03 18:22:43 -04:00
93d859cfaa Fix type annotation syntax in MotionEncoder_tc __init__ (#10186)
## Summary
Fixed incorrect type hint syntax in `MotionEncoder_tc.__init__()` parameter list.

## Changes
- Line 647: Changed `num_heads=int` to `num_heads: int` 
- This corrects the parameter annotation from a default value assignment to proper type hint syntax

## Details
The parameter was using assignment syntax (`=`) instead of type annotation syntax (`:`), which would incorrectly set the default value to the `int` class itself rather than annotating the expected type.
2025-10-03 14:32:19 -07:00
4614ee09ca convert nodes_edit_model.py to V3 schema (#10147) 2025-10-03 13:24:42 -07:00
5c8e986e27 convert nodes_tomesd.py to V3 schema (#10180) 2025-10-03 11:50:38 -07:00
8c26d7bbe6 convert nodes_pixverse.py to V3 schema (#10177) 2025-10-03 11:48:21 -07:00
d7aa414141 convert nodes_eps.py to V3 schema (#10172) 2025-10-03 11:45:02 -07:00
3e68bc342c convert nodes_torch_compile.py to V3 schema (#10173) 2025-10-03 11:43:54 -07:00
c2c5a7d5f8 fix(api-nodes): bad indentation in Recraft API node function (#10175) 2025-10-03 11:41:06 -07:00
8a293372ec fix(api-nodes): reimport of base64 in Gemini node (#10181) 2025-10-03 11:40:27 -07:00
ed3ca78e08 feat(api-nodes): add kling-2-5-turbo to txt2video and img2video nodes (#10155) 2025-10-03 11:26:34 -07:00
4ffea0e864 feat(linter, api-nodes): add pylint for comfy_api_nodes folder (#10157) 2025-10-02 19:14:28 -04:00
1395bce9f7 update example_node to use V3 schema (#9723) 2025-10-02 15:20:29 -07:00
e9364ee279 Turn on TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL by default. (#10168) 2025-10-02 17:57:15 -04:00
f6e3e9a456 fix(api-nodes): made logging path to be smaller (#10156) 2025-10-02 14:50:31 -07:00
8f4ee9984c convert nodes_morphology.py to V3 schema (#10159) 2025-10-02 13:53:00 -07:00
0e9d1724be Add a .bat to the AMD portable to disable smart memory. (#10153) 2025-10-02 00:33:05 -04:00
4965c0e2ac WAN: Fix cache VRAM leak on error (#10141)
If this suffers an exception (such as a VRAM oom) it will leave the
encode() and decode() methods which skips the cleanup of the WAN
feature cache. The comfy node cache then ultimately keeps a reference
this object which is in turn reffing large tensors from the failed
execution.

The feature cache is currently setup at a class variable on the
encoder/decoder however, the encode and decode functions always clear
it on both entry and exit of normal execution.

Its likely the design intent is this is usable as a streaming encoder
where the input comes in batches, however the functions as they are
today don't support that.

So simplify by bringing the cache back to local variable, so that if
it does VRAM OOM the cache itself is properly garbage when the
encode()/decode() functions dissappear from the stack.
2025-10-01 18:42:16 -04:00
911331c06c sd: fix VAE tiled fallback VRAM leak (#10139)
When the VAE catches this VRAM OOM, it launches the fallback logic
straight from the exception context.

Python however refs the entire call stack that caused the exception
including any local variables for the sake of exception report and
debugging. In the case of tensors, this can hold on the references
to GBs of VRAM and inhibit the VRAM allocated from freeing them.

So dump the except context completely before going back to the VAE
via the tiler by getting out of the except block with nothing but
a flag.

The greately increases the reliability of the tiler fallback,
especially on low VRAM cards, as with the bug, if the leak randomly
leaked more than the headroom needed for a single tile, the tiler
would fallback would OOM and fail the flow.
2025-10-01 18:40:28 -04:00
bb32d4ec31 feat: Add Epsilon Scaling node for exposure bias correction (#10132) 2025-10-01 17:59:07 -04:00
a6f83a4a1a Support the new hunyuan vae. (#10150) 2025-10-01 17:19:13 -04:00
e4f99b479a convert nodes_ip2p.pt to V3 schema (#10097) 2025-10-01 12:20:30 -07:00
d9c0a4053d convert nodes_lt.py to V3 schema (#10084) 2025-10-01 12:19:56 -07:00
11bab7be76 convert nodes_pag.py to V3 schema (#10080) 2025-10-01 12:18:49 -07:00
3af1881455 convert nodes_optimalsteps.py to V3 schema (#10074) 2025-10-01 12:18:04 -07:00
e0210ce0a7 convert nodes_differential_diffusion.py to V3 schema (#10056) 2025-10-01 12:17:33 -07:00
7eb7160db4 convert nodes_gits.py to V3 schema (#9949) 2025-10-01 12:16:59 -07:00
638097829d convert nodes_audio_encoder.py to V3 schema (#10123) 2025-09-30 23:00:22 -07:00
c4a8cf60ab Bump frontend to 1.27.7 (#10133) 2025-09-30 22:12:32 -07:00
bab8ba20bf ComfyUI version 0.3.62. 2025-09-30 15:12:07 -04:00
b682a73c55 enable Seedance Pro model in the FirstLastFrame node (#10120) 2025-09-30 10:43:41 -07:00
631b9ae861 fix(Rodin3D-Gen2): missing "task_uuid" parameter (#10128) 2025-09-30 10:21:47 -07:00
f48d7230de Add new portable links to readme. (#10112) 2025-09-30 12:17:49 -04:00
6e079abc3a Workflow permission fix. (#10110) 2025-09-29 23:11:37 -04:00
977a4ed8c5 ComfyUI version 0.3.61 2025-09-29 23:04:42 -04:00
414a178fb6 Add basic readme for AMD portable. (#10109) 2025-09-29 23:03:02 -04:00
447884b657 Make stable release workflow callable. (#10108) 2025-09-29 20:37:51 -04:00
bed4b49d08 Add action to do the full stable release. (#10107) 2025-09-29 20:31:15 -04:00
342cf644ce Add a way to have different names for stable nvidia portables. (#10106) 2025-09-29 20:05:44 -04:00
3758848423 Different base files for nvidia and amd portables. (#10105) 2025-09-29 19:54:37 -04:00
0db6aabed3 Different base files for different release. (#10104) 2025-09-29 19:54:05 -04:00
1673ace19b Make the final release test optional in the stable release action. (#10103) 2025-09-29 19:08:42 -04:00
7f38e4c538 Add action to create cached deps with manually specified torch. (#10102) 2025-09-29 17:27:52 -04:00
8accf50908 convert nodes_mahiro.py to V3 schema (#10070) 2025-09-29 12:35:51 -07:00
ed0f4a609b dont cache new locale entry points (#10101) 2025-09-29 12:16:02 -07:00
041b8824f5 convert nodes_perpneg.py to V3 schema (#10081) 2025-09-29 12:05:28 -07:00
b1111c2062 convert nodes_mochi.py to V3 schema (#10069) 2025-09-29 12:03:35 -07:00
05a258efd8 add WanImageToImageApi node (#10094) 2025-09-29 12:01:04 -07:00
c8276f8c6b Update template to 0.1.91 (#10096) 2025-09-29 11:59:42 -07:00
6ec1cfe101 [Rodin3d api nodes] Updated the name of the save file path (changed from timestamp to UUID). (#10011)
* Update savepath name from time to uuid

* delete lib
2025-09-29 11:59:12 -07:00
b60dc31627 Update command to install latest nighly pytorch. (#10085) 2025-09-28 13:41:32 -04:00
555f902fc1 Fix stable workflow creating multiple draft releases. (#10067) 2025-09-27 22:43:25 -04:00
1364548c72 feat: ComfyUI can be run on the specified Ascend NPU (#9663)
* feature: Set the Ascend NPU to use a single one

* Enable the `--cuda-device` parameter to support both CUDA and Ascend NPUs simultaneously.

* Make the code just set the ASCENT_RT_VISIBLE_DEVICES environment variable without any other edits to master branch

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2025-09-27 22:36:02 -04:00
2dadb34860 convert nodes_hypertile.py to V3 schema (#10061) 2025-09-27 19:16:22 -07:00
1cf86f5ae5 convert nodes_lumina2.py to V3 schema (#10058) 2025-09-27 19:12:51 -07:00
a1127b232d convert nodes_lotus.py to V3 schema (#10057) 2025-09-27 19:11:36 -07:00
896f2e653c Fix typo in release workflow. (#10066) 2025-09-27 21:30:35 -04:00
40ae495ddc Improvements to the stable release workflow. (#10065) 2025-09-27 20:28:49 -04:00
653ceab414 Reduce Peak WAN inference VRAM usage - part II (#10062)
* flux: math: Use _addcmul to avoid expensive VRAM intermediate

The rope process can be the VRAM peak and this intermediate
for the addition result before releasing the original can OOM.
addcmul_ it.

* wan: Delete the self attention before cross attention

This saves VRAM when the cross attention and FFN are in play as the
VRAM peak.
2025-09-27 18:14:16 -04:00
160698eb41 convert nodes_qwen.py to V3 schema (#10049) 2025-09-27 12:25:35 -07:00
7eca95657c convert nodes_photomaker.py to V3 schema (#10017) 2025-09-27 02:36:43 -07:00
ad5aef2d0c convert nodes_pixart.py to V3 schema (#10019) 2025-09-27 02:34:32 -07:00
bcfd80dd79 convert nodes_luma.py to V3 schema (#10030) 2025-09-27 02:28:11 -07:00
6b4b671ce7 convert nodes_bfl.py to V3 schema (#10033) 2025-09-27 02:27:01 -07:00
a9cf1cd249 convert nodes_hidream.py to V3 schema (#9946) 2025-09-26 23:13:05 -07:00
255572188f Add workflow templates version tracking to system_stats (#9089)
Adds installed and required workflow templates version information to the
/system_stats endpoint, allowing the frontend to detect and notify users
when their templates package is outdated.

- Add get_installed_templates_version() and get_required_templates_version()
  methods to FrontendManager
- Include templates version info in system_stats response
- Add comprehensive unit tests for the new functionality
2025-09-26 21:29:13 -07:00
0572029fee Update template to 0.1.88 (#10046) 2025-09-26 21:18:16 -07:00
365 changed files with 45235 additions and 24194 deletions

View File

@ -53,6 +53,16 @@ try:
repo.stash(ident)
except KeyError:
print("nothing to stash") # noqa: T201
except:
print("Could not stash, cleaning index and trying again.") # noqa: T201
repo.state_cleanup()
repo.index.read_tree(repo.head.peel().tree)
repo.index.write()
try:
repo.stash(ident)
except KeyError:
print("nothing to stash.") # noqa: T201
backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S'))
print("creating backup branch: {}".format(backup_branch_name)) # noqa: T201
try:
@ -66,8 +76,10 @@ if branch is None:
try:
ref = repo.lookup_reference('refs/remotes/origin/master')
except:
print("pulling.") # noqa: T201
pull(repo)
print("fetching.") # noqa: T201
for remote in repo.remotes:
if remote.name == "origin":
remote.fetch()
ref = repo.lookup_reference('refs/remotes/origin/master')
repo.checkout(ref)
branch = repo.lookup_branch('master')
@ -149,3 +161,4 @@ try:
shutil.copy(stable_update_script, stable_update_script_to)
except:
pass

View File

@ -0,0 +1,28 @@
As of the time of writing this you need this driver for best results:
https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-7-1-1.html
HOW TO RUN:
If you have a AMD gpu:
run_amd_gpu.bat
If you have memory issues you can try disabling the smart memory management by running comfyui with:
run_amd_gpu_disable_smart_memory.bat
IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints
You can download the stable diffusion XL one from: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors
RECOMMENDED WAY TO UPDATE:
To update the ComfyUI code: update\update_comfyui.bat
TO SHARE MODELS BETWEEN COMFYUI AND ANOTHER UI:
In the ComfyUI directory you will find a file: extra_model_paths.yaml.example
Rename this file to: extra_model_paths.yaml and edit it with your favorite text editor.

View File

@ -1,2 +1,2 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --disable-smart-memory
pause

View File

@ -0,0 +1,3 @@
..\python_embeded\python.exe -s ..\ComfyUI\main.py --windows-standalone-build --disable-api-nodes
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. If you get a c10.dll error you need to install vc redist that you can find: https://aka.ms/vc14/vc_redist.x64.exe
pause

View File

@ -0,0 +1,3 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. If you get a c10.dll error you need to install vc redist that you can find: https://aka.ms/vc14/vc_redist.x64.exe
pause

View File

@ -0,0 +1,3 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. If you get a c10.dll error you need to install vc redist that you can find: https://aka.ms/vc14/vc_redist.x64.exe
pause

View File

@ -8,13 +8,15 @@ body:
Before submitting a **Bug Report**, please ensure the following:
- **1:** You are running the latest version of ComfyUI.
- **2:** You have looked at the existing bug reports and made sure this isn't already reported.
- **2:** You have your ComfyUI logs and relevant workflow on hand and will post them in this bug report.
- **3:** You confirmed that the bug is not caused by a custom node. You can disable all custom nodes by passing
`--disable-all-custom-nodes` command line argument.
`--disable-all-custom-nodes` command line argument. If you have custom node try updating them to the latest version.
- **4:** This is an actual bug in ComfyUI, not just a support question. A bug is when you can specify exact
steps to replicate what went wrong and others will be able to repeat your steps and see the same issue happen.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
## Very Important
Please make sure that you post ALL your ComfyUI logs in the bug report. A bug report without logs will likely be ignored.
- type: checkboxes
id: custom-nodes-test
attributes:

View File

@ -0,0 +1,21 @@
<!-- API_NODE_PR_CHECKLIST: do not remove -->
## API Node PR Checklist
### Scope
- [ ] **Is API Node Change**
### Pricing & Billing
- [ ] **Need pricing update**
- [ ] **No pricing update**
If **Need pricing update**:
- [ ] Metronome rate cards updated
- [ ] Autobilling tests updated and passing
### QA
- [ ] **QA done**
- [ ] **QA not required**
### Comms
- [ ] Informed **Kosinkadink**

58
.github/workflows/api-node-template.yml vendored Normal file
View File

@ -0,0 +1,58 @@
name: Append API Node PR template
on:
pull_request_target:
types: [opened, reopened, synchronize, ready_for_review]
paths:
- 'comfy_api_nodes/**' # only run if these files changed
permissions:
contents: read
pull-requests: write
jobs:
inject:
runs-on: ubuntu-latest
steps:
- name: Ensure template exists and append to PR body
uses: actions/github-script@v7
with:
script: |
const { owner, repo } = context.repo;
const number = context.payload.pull_request.number;
const templatePath = '.github/PULL_REQUEST_TEMPLATE/api-node.md';
const marker = '<!-- API_NODE_PR_CHECKLIST: do not remove -->';
const { data: pr } = await github.rest.pulls.get({ owner, repo, pull_number: number });
let templateText;
try {
const res = await github.rest.repos.getContent({
owner,
repo,
path: templatePath,
ref: pr.base.ref
});
const buf = Buffer.from(res.data.content, res.data.encoding || 'base64');
templateText = buf.toString('utf8');
} catch (e) {
core.setFailed(`Required PR template not found at "${templatePath}" on ${pr.base.ref}. Please add it to the repo.`);
return;
}
// Enforce the presence of the marker inside the template (for idempotence)
if (!templateText.includes(marker)) {
core.setFailed(`Template at "${templatePath}" does not contain the required marker:\n${marker}\nAdd it so we can detect duplicates safely.`);
return;
}
// If the PR already contains the marker, do not append again.
const body = pr.body || '';
if (body.includes(marker)) {
core.info('Template already present in PR body; nothing to inject.');
return;
}
const newBody = (body ? body + '\n\n' : '') + templateText + '\n';
await github.rest.pulls.update({ owner, repo, pull_number: number, body: newBody });
core.notice('API Node template appended to PR description.');

View File

@ -0,0 +1,78 @@
name: "Release Stable All Portable Versions"
on:
workflow_dispatch:
inputs:
git_tag:
description: 'Git tag'
required: true
type: string
jobs:
release_nvidia_default:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release NVIDIA Default (cu130)"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "cu130"
python_minor: "13"
python_patch: "9"
rel_name: "nvidia"
rel_extra_name: ""
test_release: true
secrets: inherit
release_nvidia_cu128:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release NVIDIA cu128"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "cu128"
python_minor: "12"
python_patch: "10"
rel_name: "nvidia"
rel_extra_name: "_cu128"
test_release: true
secrets: inherit
release_nvidia_cu126:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release NVIDIA cu126"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "cu126"
python_minor: "12"
python_patch: "10"
rel_name: "nvidia"
rel_extra_name: "_cu126"
test_release: true
secrets: inherit
release_amd_rocm:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release AMD ROCm 7.1.1"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "rocm711"
python_minor: "12"
python_patch: "10"
rel_name: "amd"
rel_extra_name: ""
test_release: false
secrets: inherit

View File

@ -21,3 +21,28 @@ jobs:
- name: Run Ruff
run: ruff check .
pylint:
name: Run Pylint
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.12'
- name: Install requirements
run: |
python -m pip install --upgrade pip
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
- name: Install Pylint
run: pip install pylint
- name: Run Pylint
run: pylint comfy_api_nodes

View File

@ -2,17 +2,17 @@
name: "Release Stable Version"
on:
workflow_dispatch:
workflow_call:
inputs:
git_tag:
description: 'Git tag'
required: true
type: string
cu:
description: 'CUDA version'
cache_tag:
description: 'Cached dependencies tag'
required: true
type: string
default: "129"
default: "cu129"
python_minor:
description: 'Python minor version'
required: true
@ -23,7 +23,57 @@ on:
required: true
type: string
default: "6"
rel_name:
description: 'Release name'
required: true
type: string
default: "nvidia"
rel_extra_name:
description: 'Release extra name'
required: false
type: string
default: ""
test_release:
description: 'Test Release'
required: true
type: boolean
default: true
workflow_dispatch:
inputs:
git_tag:
description: 'Git tag'
required: true
type: string
cache_tag:
description: 'Cached dependencies tag'
required: true
type: string
default: "cu129"
python_minor:
description: 'Python minor version'
required: true
type: string
default: "13"
python_patch:
description: 'Python patch version'
required: true
type: string
default: "6"
rel_name:
description: 'Release name'
required: true
type: string
default: "nvidia"
rel_extra_name:
description: 'Release extra name'
required: false
type: string
default: ""
test_release:
description: 'Test Release'
required: true
type: boolean
default: true
jobs:
package_comfy_windows:
@ -42,15 +92,15 @@ jobs:
id: cache
with:
path: |
cu${{ inputs.cu }}_python_deps.tar
${{ inputs.cache_tag }}_python_deps.tar
update_comfyui_and_python_dependencies.bat
key: ${{ runner.os }}-build-cu${{ inputs.cu }}-${{ inputs.python_minor }}
key: ${{ runner.os }}-build-${{ inputs.cache_tag }}-${{ inputs.python_minor }}
- shell: bash
run: |
mv cu${{ inputs.cu }}_python_deps.tar ../
mv ${{ inputs.cache_tag }}_python_deps.tar ../
mv update_comfyui_and_python_dependencies.bat ../
cd ..
tar xf cu${{ inputs.cu }}_python_deps.tar
tar xf ${{ inputs.cache_tag }}_python_deps.tar
pwd
ls
@ -65,12 +115,19 @@ jobs:
echo 'import site' >> ./python3${{ inputs.python_minor }}._pth
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
./python.exe get-pip.py
./python.exe -s -m pip install ../cu${{ inputs.cu }}_python_deps/*
./python.exe -s -m pip install ../${{ inputs.cache_tag }}_python_deps/*
grep comfy ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
./python.exe -s -m pip install -r requirements_comfyui.txt
rm requirements_comfyui.txt
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
rm ./Lib/site-packages/torch/lib/libprotoc.lib
rm ./Lib/site-packages/torch/lib/libprotobuf.lib
if test -f ./Lib/site-packages/torch/lib/dnnl.lib; then
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
rm ./Lib/site-packages/torch/lib/libprotoc.lib
rm ./Lib/site-packages/torch/lib/libprotobuf.lib
fi
cd ..
@ -85,14 +142,18 @@ jobs:
mkdir update
cp -r ComfyUI/.ci/update_windows/* ./update/
cp -r ComfyUI/.ci/windows_base_files/* ./
cp -r ComfyUI/.ci/windows_${{ inputs.rel_name }}_base_files/* ./
cp ../update_comfyui_and_python_dependencies.bat ./update/
cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=768m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia.7z
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_${{ inputs.rel_name }}${{ inputs.rel_extra_name }}.7z
- shell: bash
if: ${{ inputs.test_release }}
run: |
cd ..
cd ComfyUI_windows_portable
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
@ -101,10 +162,9 @@ jobs:
ls
- name: Upload binaries to release
uses: svenstaro/upload-release-action@v2
uses: softprops/action-gh-release@v2
with:
repo_token: ${{ secrets.GITHUB_TOKEN }}
file: ComfyUI_windows_portable_nvidia.7z
tag: ${{ inputs.git_tag }}
overwrite: true
files: ComfyUI_windows_portable_${{ inputs.rel_name }}${{ inputs.rel_extra_name }}.7z
tag_name: ${{ inputs.git_tag }}
draft: true
overwrite_files: true

View File

@ -1,173 +0,0 @@
name: Asset System Tests
on:
push:
paths:
- 'app/**'
- 'tests-assets/**'
- '.github/workflows/test-assets.yml'
- 'requirements.txt'
pull_request:
branches: [master]
workflow_dispatch:
permissions:
contents: read
env:
PIP_DISABLE_PIP_VERSION_CHECK: '1'
PYTHONUNBUFFERED: '1'
jobs:
sqlite:
name: SQLite (${{ matrix.sqlite_mode }}) • Python ${{ matrix.python }}
runs-on: ubuntu-latest
timeout-minutes: 40
strategy:
fail-fast: false
matrix:
python: ['3.9', '3.12']
sqlite_mode: ['memory', 'file']
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python }}
- name: Install dependencies
run: |
python -m pip install -U pip wheel
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
pip install pytest pytest-aiohttp pytest-asyncio
- name: Set deterministic test base dir
id: basedir
shell: bash
run: |
BASE="$RUNNER_TEMP/comfyui-assets-tests-${{ matrix.python }}-${{ matrix.sqlite_mode }}-${{ github.run_id }}-${{ github.run_attempt }}"
echo "ASSETS_TEST_BASE_DIR=$BASE" >> "$GITHUB_ENV"
echo "ASSETS_TEST_LOGS=$BASE/logs" >> "$GITHUB_ENV"
mkdir -p "$BASE/logs"
echo "ASSETS_TEST_BASE_DIR=$BASE"
- name: Set DB URL for SQLite
id: setdb
shell: bash
run: |
if [ "${{ matrix.sqlite_mode }}" = "memory" ]; then
echo "ASSETS_TEST_DB_URL=sqlite+aiosqlite:///:memory:" >> "$GITHUB_ENV"
else
DBFILE="$RUNNER_TEMP/assets-tests.sqlite"
mkdir -p "$(dirname "$DBFILE")"
echo "ASSETS_TEST_DB_URL=sqlite+aiosqlite:///$DBFILE" >> "$GITHUB_ENV"
fi
- name: Run tests
run: python -m pytest tests-assets
- name: Show ComfyUI logs
if: always()
shell: bash
run: |
echo "==== ASSETS_TEST_BASE_DIR: $ASSETS_TEST_BASE_DIR ===="
echo "==== ASSETS_TEST_LOGS: $ASSETS_TEST_LOGS ===="
ls -la "$ASSETS_TEST_LOGS" || true
for f in "$ASSETS_TEST_LOGS"/stdout.log "$ASSETS_TEST_LOGS"/stderr.log; do
if [ -f "$f" ]; then
echo "----- BEGIN $f -----"
sed -n '1,400p' "$f"
echo "----- END $f -----"
fi
done
- name: Upload ComfyUI logs
if: always()
uses: actions/upload-artifact@v4
with:
name: asset-logs-sqlite-${{ matrix.sqlite_mode }}-py${{ matrix.python }}
path: ${{ env.ASSETS_TEST_LOGS }}/*.log
if-no-files-found: warn
postgres:
name: PostgreSQL ${{ matrix.pgsql }} • Python ${{ matrix.python }}
runs-on: ubuntu-latest
timeout-minutes: 40
strategy:
fail-fast: false
matrix:
python: ['3.9', '3.12']
pgsql: ['16', '18']
services:
postgres:
image: postgres:${{ matrix.pgsql }}
env:
POSTGRES_DB: assets
POSTGRES_USER: postgres
POSTGRES_PASSWORD: postgres
ports:
- 5432:5432
options: >-
--health-cmd "pg_isready -U postgres -d assets"
--health-interval 10s
--health-timeout 5s
--health-retries 12
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python }}
- name: Install dependencies
run: |
python -m pip install -U pip wheel
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
pip install pytest pytest-aiohttp pytest-asyncio
pip install greenlet psycopg
- name: Set deterministic test base dir
id: basedir
shell: bash
run: |
BASE="$RUNNER_TEMP/comfyui-assets-tests-${{ matrix.python }}-${{ matrix.sqlite_mode }}-${{ github.run_id }}-${{ github.run_attempt }}"
echo "ASSETS_TEST_BASE_DIR=$BASE" >> "$GITHUB_ENV"
echo "ASSETS_TEST_LOGS=$BASE/logs" >> "$GITHUB_ENV"
mkdir -p "$BASE/logs"
echo "ASSETS_TEST_BASE_DIR=$BASE"
- name: Set DB URL for PostgreSQL
shell: bash
run: |
echo "ASSETS_TEST_DB_URL=postgresql+psycopg://postgres:postgres@localhost:5432/assets" >> "$GITHUB_ENV"
- name: Run tests
run: python -m pytest tests-assets
- name: Show ComfyUI logs
if: always()
shell: bash
run: |
echo "==== ASSETS_TEST_BASE_DIR: $ASSETS_TEST_BASE_DIR ===="
echo "==== ASSETS_TEST_LOGS: $ASSETS_TEST_LOGS ===="
ls -la "$ASSETS_TEST_LOGS" || true
for f in "$ASSETS_TEST_LOGS"/stdout.log "$ASSETS_TEST_LOGS"/stderr.log; do
if [ -f "$f" ]; then
echo "----- BEGIN $f -----"
sed -n '1,400p' "$f"
echo "----- END $f -----"
fi
done
- name: Upload ComfyUI logs
if: always()
uses: actions/upload-artifact@v4
with:
name: asset-logs-pgsql-${{ matrix.pgsql }}-py${{ matrix.python }}
path: ${{ env.ASSETS_TEST_LOGS }}/*.log
if-no-files-found: warn

View File

@ -18,7 +18,7 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
python-version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}

View File

@ -5,6 +5,7 @@ on:
push:
branches:
- master
- release/**
paths-ignore:
- 'app/**'
- 'input/**'
@ -21,14 +22,15 @@ jobs:
fail-fast: false
matrix:
# os: [macos, linux, windows]
os: [macos, linux]
python_version: ["3.9", "3.10", "3.11", "3.12"]
# os: [macos, linux]
os: [linux]
python_version: ["3.10", "3.11", "3.12"]
cuda_version: ["12.1"]
torch_version: ["stable"]
include:
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
# - os: macos
# runner_label: [self-hosted, macOS]
# flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""
@ -73,14 +75,15 @@ jobs:
strategy:
fail-fast: false
matrix:
os: [macos, linux]
# os: [macos, linux]
os: [linux]
python_version: ["3.11"]
cuda_version: ["12.1"]
torch_version: ["nightly"]
include:
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
# - os: macos
# runner_label: [self-hosted, macOS]
# flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""

View File

@ -2,9 +2,9 @@ name: Execution Tests
on:
push:
branches: [ main, master ]
branches: [ main, master, release/** ]
pull_request:
branches: [ main, master ]
branches: [ main, master, release/** ]
jobs:
test:

View File

@ -2,9 +2,9 @@ name: Test server launches without errors
on:
push:
branches: [ main, master ]
branches: [ main, master, release/** ]
pull_request:
branches: [ main, master ]
branches: [ main, master, release/** ]
jobs:
test:
@ -13,7 +13,7 @@ jobs:
- name: Checkout ComfyUI
uses: actions/checkout@v4
with:
repository: "comfyanonymous/ComfyUI"
repository: "Comfy-Org/ComfyUI"
path: "ComfyUI"
- uses: actions/setup-python@v4
with:
@ -32,7 +32,9 @@ jobs:
working-directory: ComfyUI
- name: Check for unhandled exceptions in server log
run: |
if grep -qE "Exception|Error" console_output.log; then
grep -v "Found comfy_kitchen backend triton: {'available': False, 'disabled': True, 'unavailable_reason': \"ImportError: No module named 'triton'\", 'capabilities': \[\]}" console_output.log | grep -v "Found comfy_kitchen backend triton: {'available': False, 'disabled': False, 'unavailable_reason': \"ImportError: No module named 'triton'\", 'capabilities': \[\]}" > console_output_filtered.log
cat console_output_filtered.log
if grep -qE "Exception|Error" console_output_filtered.log; then
echo "Unhandled exception/error found in server log."
exit 1
fi

View File

@ -2,9 +2,9 @@ name: Unit Tests
on:
push:
branches: [ main, master ]
branches: [ main, master, release/** ]
pull_request:
branches: [ main, master ]
branches: [ main, master, release/** ]
jobs:
test:

View File

@ -0,0 +1,59 @@
name: "CI: Update CI Container"
on:
release:
types: [published]
workflow_dispatch:
inputs:
version:
description: 'ComfyUI version (e.g., v0.7.0)'
required: true
type: string
jobs:
update-ci-container:
runs-on: ubuntu-latest
# Skip pre-releases unless manually triggered
if: github.event_name == 'workflow_dispatch' || !github.event.release.prerelease
steps:
- name: Get version
id: version
run: |
if [ "${{ github.event_name }}" = "release" ]; then
VERSION="${{ github.event.release.tag_name }}"
else
VERSION="${{ inputs.version }}"
fi
echo "version=$VERSION" >> $GITHUB_OUTPUT
- name: Checkout comfyui-ci-container
uses: actions/checkout@v4
with:
repository: comfy-org/comfyui-ci-container
token: ${{ secrets.CI_CONTAINER_PAT }}
- name: Check current version
id: current
run: |
CURRENT=$(grep -oP 'ARG COMFYUI_VERSION=\K.*' Dockerfile || echo "unknown")
echo "current_version=$CURRENT" >> $GITHUB_OUTPUT
- name: Update Dockerfile
run: |
VERSION="${{ steps.version.outputs.version }}"
sed -i "s/^ARG COMFYUI_VERSION=.*/ARG COMFYUI_VERSION=${VERSION}/" Dockerfile
- name: Create Pull Request
id: create-pr
uses: peter-evans/create-pull-request@v7
with:
token: ${{ secrets.CI_CONTAINER_PAT }}
branch: automation/comfyui-${{ steps.version.outputs.version }}
title: "chore: bump ComfyUI to ${{ steps.version.outputs.version }}"
body: |
Updates ComfyUI version from `${{ steps.current.outputs.current_version }}` to `${{ steps.version.outputs.version }}`
**Triggered by:** ${{ github.event_name == 'release' && format('[Release {0}]({1})', github.event.release.tag_name, github.event.release.html_url) || 'Manual workflow dispatch' }}
labels: automation
commit-message: "chore: bump ComfyUI to ${{ steps.version.outputs.version }}"

View File

@ -6,6 +6,7 @@ on:
- "pyproject.toml"
branches:
- master
- release/**
jobs:
update-version:

View File

@ -17,7 +17,7 @@ on:
description: 'cuda version'
required: true
type: string
default: "129"
default: "130"
python_minor:
description: 'python minor version'
@ -29,7 +29,7 @@ on:
description: 'python patch version'
required: true
type: string
default: "6"
default: "9"
# push:
# branches:
# - master
@ -56,7 +56,8 @@ jobs:
..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio ${{ inputs.xformers }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2
pause" > update_comfyui_and_python_dependencies.bat
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} ${{ inputs.extra_dependencies }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r requirements.txt pygit2 -w ./temp_wheel_dir
grep -v comfyui requirements.txt > requirements_nocomfyui.txt
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} ${{ inputs.extra_dependencies }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r requirements_nocomfyui.txt pygit2 -w ./temp_wheel_dir
python -m pip install --no-cache-dir ./temp_wheel_dir/*
echo installed basic
ls -lah temp_wheel_dir

View File

@ -0,0 +1,64 @@
name: "Windows Release dependencies Manual"
on:
workflow_dispatch:
inputs:
torch_dependencies:
description: 'torch dependencies'
required: false
type: string
default: "torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu128"
cache_tag:
description: 'Cached dependencies tag'
required: true
type: string
default: "cu128"
python_minor:
description: 'python minor version'
required: true
type: string
default: "12"
python_patch:
description: 'python patch version'
required: true
type: string
default: "10"
jobs:
build_dependencies:
runs-on: windows-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: 3.${{ inputs.python_minor }}.${{ inputs.python_patch }}
- shell: bash
run: |
echo "@echo off
call update_comfyui.bat nopause
echo -
echo This will try to update pytorch and all python dependencies.
echo -
echo If you just want to update normally, close this and run update_comfyui.bat instead.
echo -
pause
..\python_embeded\python.exe -s -m pip install --upgrade ${{ inputs.torch_dependencies }} -r ../ComfyUI/requirements.txt pygit2
pause" > update_comfyui_and_python_dependencies.bat
grep -v comfyui requirements.txt > requirements_nocomfyui.txt
python -m pip wheel --no-cache-dir ${{ inputs.torch_dependencies }} -r requirements_nocomfyui.txt pygit2 -w ./temp_wheel_dir
python -m pip install --no-cache-dir ./temp_wheel_dir/*
echo installed basic
ls -lah temp_wheel_dir
mv temp_wheel_dir ${{ inputs.cache_tag }}_python_deps
tar cf ${{ inputs.cache_tag }}_python_deps.tar ${{ inputs.cache_tag }}_python_deps
- uses: actions/cache/save@v4
with:
path: |
${{ inputs.cache_tag }}_python_deps.tar
update_comfyui_and_python_dependencies.bat
key: ${{ runner.os }}-build-${{ inputs.cache_tag }}-${{ inputs.python_minor }}

View File

@ -68,7 +68,7 @@ jobs:
mkdir update
cp -r ComfyUI/.ci/update_windows/* ./update/
cp -r ComfyUI/.ci/windows_base_files/* ./
cp -r ComfyUI/.ci/windows_nvidia_base_files/* ./
cp -r ComfyUI/.ci/windows_nightly_base_files/* ./
echo "call update_comfyui.bat nopause

View File

@ -81,7 +81,7 @@ jobs:
mkdir update
cp -r ComfyUI/.ci/update_windows/* ./update/
cp -r ComfyUI/.ci/windows_base_files/* ./
cp -r ComfyUI/.ci/windows_nvidia_base_files/* ./
cp ../update_comfyui_and_python_dependencies.bat ./update/
cd ..

1
.gitignore vendored
View File

@ -21,6 +21,7 @@ venv/
*.log
web_custom_versions/
.DS_Store
*:Zone.Identifier
openapi.yaml
filtered-openapi.yaml
uv.lock

View File

@ -1,3 +1,2 @@
# Admins
* @comfyanonymous
* @kosinkadink
* @comfyanonymous @kosinkadink @guill

139
PLAN.md Normal file
View File

@ -0,0 +1,139 @@
# Plan: Align Local Asset/Tag Endpoints with Cloud
## Endpoint Comparison
| Endpoint | Cloud (openapi.yaml) | Local (routes.py) |
|----------|---------------------|-------------------|
| `GET /api/assets` | ✅ + `include_public` param | ✅ |
| `POST /api/assets` | ✅ multipart + JSON URL upload | ✅ multipart only |
| `GET /api/assets/{id}` | ✅ | ✅ |
| `PUT /api/assets/{id}` | ✅ (`name`, `mime_type`, `preview_id`, `user_metadata`) | ✅ (`name`, `tags`, `user_metadata`) |
| `DELETE /api/assets/{id}` | ✅ | ✅ |
| `GET /api/assets/{id}/content` | ❌ | ✅ |
| `POST /api/assets/{id}/tags` | ✅ | ✅ |
| `DELETE /api/assets/{id}/tags` | ✅ | ✅ |
| `PUT /api/assets/{id}/preview` | ❌ | ✅ |
| `POST /api/assets/from-hash` | ✅ | ✅ |
| `HEAD /api/assets/hash/{hash}` | ✅ | ✅ |
| `GET /api/assets/remote-metadata` | ✅ | ❌ |
| `POST /api/assets/download` | ✅ (background download) | ❌ |
| `GET /api/assets/tags/refine` | ✅ (tag histogram) | ❌ |
| `GET /api/tags` | ✅ + `include_public` param | ✅ |
| `POST /api/assets/scan/seed` | ❌ | ✅ (local only) |
---
## Phase 1: Add Missing Cloud Endpoints to Local
### 1.1 `GET /api/assets/remote-metadata` *(deferred)*
Fetch metadata from remote URLs (CivitAI, HuggingFace) without downloading the file.
**Status:** Not supported yet. Add stub/placeholder that returns 501 Not Implemented.
**Parameters:**
- `url` (required): Download URL to retrieve metadata from
**Returns:** Asset metadata (name, size, hash if available, etc.)
### 1.2 `POST /api/assets/download` *(deferred)*
Initiate background download job for large files from HuggingFace or CivitAI.
**Status:** Not supported yet. Add stub/placeholder that returns 501 Not Implemented.
**Request body:**
- `source_url` (required): URL to download from
- `tags`: Optional tags for the asset
- `user_metadata`: Optional metadata
- `preview_id`: Optional preview asset ID
**Returns:**
- 200 if file already exists (returns asset immediately)
- 202 with `task_id` for background download tracking via `GET /api/tasks/{task_id}`
### 1.3 `GET /api/assets/tags/refine`
Get tag histogram for filtered assets (useful for search refinement UI).
**Parameters:**
- `include_tags`: Filter assets with ALL these tags
- `exclude_tags`: Exclude assets with ANY of these tags
- `name_contains`: Filter by name substring
- `metadata_filter`: JSON filter for metadata fields
- `limit`: Max tags to return (default 100)
- `include_public`: Include public/shared assets
**Returns:** List of tags with counts for matching assets
---
## Phase 2: Update Existing Endpoints for Parity
### 2.1 `GET /api/assets`
- Add `include_public` query parameter (boolean, default true)
### 2.2 `POST /api/assets`
- Add JSON body upload path for URL-based uploads:
```json
{
"url": "https://...",
"name": "model.safetensors",
"tags": ["models", "checkpoints"],
"user_metadata": {},
"preview_id": "uuid"
}
```
- Keep existing multipart upload support
### 2.3 `PUT /api/assets/{id}`
- Add `mime_type` field support
- Add `preview_id` field support
- Remove direct `tags` field (recommend using dedicated `POST/DELETE /api/assets/{id}/tags` endpoints instead)
### 2.4 `GET /api/tags`
- Add `include_public` query parameter (boolean, default true)
---
## Phase 3: Local-Only Endpoints
These endpoints exist locally but not in cloud.
### 3.1 `GET /api/assets/{id}/content`
Download asset file content. Cloud uses signed URLs instead. **Keep for local.**
### 3.2 `PUT /api/assets/{id}/preview`
**Remove this endpoint.** Merge functionality into `PUT /api/assets/{id}` by adding `preview_id` field support (aligns with cloud).
### 3.3 `POST /api/assets/scan/seed`
Filesystem seeding/scanning for local asset discovery. Not applicable to cloud. **Keep as local-only.**
---
## Phase 4: Testing
Add tests for all new and modified endpoints to ensure functionality matches cloud behavior.
### 4.1 New Endpoint Tests
- `GET /api/assets/remote-metadata` Test with valid/invalid URLs, various sources (CivitAI, HuggingFace)
- `POST /api/assets/download` Test background download initiation, existing file detection, task tracking
- `GET /api/assets/tags/refine` Test histogram generation with various filter combinations
### 4.2 Updated Endpoint Tests
- `GET /api/assets` Test `include_public` param filtering
- `POST /api/assets` Test JSON URL upload path alongside existing multipart tests
- `PUT /api/assets/{id}` Test `mime_type` and `preview_id` field updates
- `GET /api/tags` Test `include_public` param filtering
### 4.3 Removed Endpoint Tests
- Remove tests for `PUT /api/assets/{id}/preview`
- Add tests for `preview_id` in `PUT /api/assets/{id}` to cover the merged functionality
---
## Implementation Order
1. Phase 2.1, 2.4 Add `include_public` params (low effort, high compatibility)
2. Phase 2.3 Update PUT endpoint fields + remove preview endpoint
3. Phase 2.2 Add JSON URL upload to POST
4. Phase 1.3 Add tags/refine endpoint
5. Phase 1.1, 1.2 Add stub endpoints returning 501 (deferred implementation)
6. Phase 4 Add tests for each phase as implemented

168
QUANTIZATION.md Normal file
View File

@ -0,0 +1,168 @@
# The Comfy guide to Quantization
## How does quantization work?
Quantization aims to map a high-precision value x_f to a lower precision format with minimal loss in accuracy. These smaller formats then serve to reduce the models memory footprint and increase throughput by using specialized hardware.
When simply converting a value from FP16 to FP8 using the round-nearest method we might hit two issues:
- The dynamic range of FP16 (-65,504, 65,504) far exceeds FP8 formats like E4M3 (-448, 448) or E5M2 (-57,344, 57,344), potentially resulting in clipped values
- The original values are concentrated in a small range (e.g. -1,1) leaving many FP8-bits "unused"
By using a scaling factor, we aim to map these values into the quantized-dtype range, making use of the full spectrum. One of the easiest approaches, and common, is using per-tensor absolute-maximum scaling.
```
absmax = max(abs(tensor))
scale = amax / max_dynamic_range_low_precision
# Quantization
tensor_q = (tensor / scale).to(low_precision_dtype)
# De-Quantization
tensor_dq = tensor_q.to(fp16) * scale
tensor_dq ~ tensor
```
Given that additional information (scaling factor) is needed to "interpret" the quantized values, we describe those as derived datatypes.
## Quantization in Comfy
```
QuantizedTensor (torch.Tensor subclass)
↓ __torch_dispatch__
Two-Level Registry (generic + layout handlers)
MixedPrecisionOps + Metadata Detection
```
### Representation
To represent these derived datatypes, ComfyUI uses a subclass of torch.Tensor to implements these using the `QuantizedTensor` class found in `comfy/quant_ops.py`
A `Layout` class defines how a specific quantization format behaves:
- Required parameters
- Quantize method
- De-Quantize method
```python
from comfy.quant_ops import QuantizedLayout
class MyLayout(QuantizedLayout):
@classmethod
def quantize(cls, tensor, **kwargs):
# Convert to quantized format
qdata = ...
params = {'scale': ..., 'orig_dtype': tensor.dtype}
return qdata, params
@staticmethod
def dequantize(qdata, scale, orig_dtype, **kwargs):
return qdata.to(orig_dtype) * scale
```
To then run operations using these QuantizedTensors we use two registry systems to define supported operations.
The first is a **generic registry** that handles operations common to all quantized formats (e.g., `.to()`, `.clone()`, `.reshape()`).
The second registry is layout-specific and allows to implement fast-paths like nn.Linear.
```python
from comfy.quant_ops import register_layout_op
@register_layout_op(torch.ops.aten.linear.default, MyLayout)
def my_linear(func, args, kwargs):
# Extract tensors, call optimized kernel
...
```
When `torch.nn.functional.linear()` is called with QuantizedTensor arguments, `__torch_dispatch__` automatically routes to the registered implementation.
For any unsupported operation, QuantizedTensor will fallback to call `dequantize` and dispatch using the high-precision implementation.
### Mixed Precision
The `MixedPrecisionOps` class (lines 542-648 in `comfy/ops.py`) enables per-layer quantization decisions, allowing different layers in a model to use different precisions. This is activated when a model config contains a `layer_quant_config` dictionary that specifies which layers should be quantized and how.
**Architecture:**
```python
class MixedPrecisionOps(disable_weight_init):
_layer_quant_config = {} # Maps layer names to quantization configs
_compute_dtype = torch.bfloat16 # Default compute / dequantize precision
```
**Key mechanism:**
The custom `Linear._load_from_state_dict()` method inspects each layer during model loading:
- If the layer name is **not** in `_layer_quant_config`: load weight as regular tensor in `_compute_dtype`
- If the layer name **is** in `_layer_quant_config`:
- Load weight as `QuantizedTensor` with the specified layout (e.g., `TensorCoreFP8Layout`)
- Load associated quantization parameters (scales, block_size, etc.)
**Why it's needed:**
Not all layers tolerate quantization equally. Sensitive operations like final projections can be kept in higher precision, while compute-heavy matmuls are quantized. This provides most of the performance benefits while maintaining quality.
The system is selected in `pick_operations()` when `model_config.layer_quant_config` is present, making it the highest-priority operation mode.
## Checkpoint Format
Quantized checkpoints are stored as standard safetensors files with quantized weight tensors and associated scaling parameters, plus a `_quantization_metadata` JSON entry describing the quantization scheme.
The quantized checkpoint will contain the same layers as the original checkpoint but:
- The weights are stored as quantized values, sometimes using a different storage datatype. E.g. uint8 container for fp8.
- For each quantized weight a number of additional scaling parameters are stored alongside depending on the recipe.
- We store a metadata.json in the metadata of the final safetensor containing the `_quantization_metadata` describing which layers are quantized and what layout has been used.
### Scaling Parameters details
We define 4 possible scaling parameters that should cover most recipes in the near-future:
- **weight_scale**: quantization scalers for the weights
- **weight_scale_2**: global scalers in the context of double scaling
- **pre_quant_scale**: scalers used for smoothing salient weights
- **input_scale**: quantization scalers for the activations
| Format | Storage dtype | weight_scale | weight_scale_2 | pre_quant_scale | input_scale |
|--------|---------------|--------------|----------------|-----------------|-------------|
| float8_e4m3fn | float32 | float32 (scalar) | - | - | float32 (scalar) |
You can find the defined formats in `comfy/quant_ops.py` (QUANT_ALGOS).
### Quantization Metadata
The metadata stored alongside the checkpoint contains:
- **format_version**: String to define a version of the standard
- **layers**: A dictionary mapping layer names to their quantization format. The format string maps to the definitions found in `QUANT_ALGOS`.
Example:
```json
{
"_quantization_metadata": {
"format_version": "1.0",
"layers": {
"model.layers.0.mlp.up_proj": "float8_e4m3fn",
"model.layers.0.mlp.down_proj": "float8_e4m3fn",
"model.layers.1.mlp.up_proj": "float8_e4m3fn"
}
}
}
```
## Creating Quantized Checkpoints
To create compatible checkpoints, use any quantization tool provided the output follows the checkpoint format described above and uses a layout defined in `QUANT_ALGOS`.
### Weight Quantization
Weight quantization is straightforward - compute the scaling factor directly from the weight tensor using the absolute maximum method described earlier. Each layer's weights are quantized independently and stored with their corresponding `weight_scale` parameter.
### Calibration (for Activation Quantization)
Activation quantization (e.g., for FP8 Tensor Core operations) requires `input_scale` parameters that cannot be determined from static weights alone. Since activation values depend on actual inputs, we use **post-training calibration (PTQ)**:
1. **Collect statistics**: Run inference on N representative samples
2. **Track activations**: Record the absolute maximum (`amax`) of inputs to each quantized layer
3. **Compute scales**: Derive `input_scale` from collected statistics
4. **Store in checkpoint**: Save `input_scale` parameters alongside weights
The calibration dataset should be representative of your target use case. For diffusion models, this typically means a diverse set of prompts and generation parameters.

View File

@ -67,6 +67,8 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
- [Qwen Image](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/)
- [Hunyuan Image 2.1](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_image/)
- [Flux 2](https://comfyanonymous.github.io/ComfyUI_examples/flux2/)
- [Z Image](https://comfyanonymous.github.io/ComfyUI_examples/z_image/)
- Image Editing Models
- [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/)
- [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model)
@ -79,6 +81,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
- [Wan 2.2](https://comfyanonymous.github.io/ComfyUI_examples/wan22/)
- [Hunyuan Video 1.5](https://docs.comfy.org/tutorials/video/hunyuan/hunyuan-video-1-5)
- Audio Models
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
@ -105,17 +108,21 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/)
- Latent previews with [TAESD](#how-to-show-high-quality-previews)
- Works fully offline: core will never download anything unless you want to.
- Optional API nodes to use paid models from external providers through the online [Comfy API](https://docs.comfy.org/tutorials/api-nodes/overview).
- Optional API nodes to use paid models from external providers through the online [Comfy API](https://docs.comfy.org/tutorials/api-nodes/overview) disable with: `--disable-api-nodes`
- [Config file](extra_model_paths.yaml.example) to set the search paths for models.
Workflow examples can be found on the [Examples page](https://comfyanonymous.github.io/ComfyUI_examples/)
## Release Process
ComfyUI follows a weekly release cycle targeting Friday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
ComfyUI follows a weekly release cycle targeting Monday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
- Releases a new stable version (e.g., v0.7.0)
- Releases a new stable version (e.g., v0.7.0) roughly every week.
- Starting from v0.4.0 patch versions will be used for fixes backported onto the current stable release.
- Minor versions will be used for releases off the master branch.
- Patch versions may still be used for releases on the master branch in cases where a backport would not make sense.
- Commits outside of the stable release tags may be very unstable and break many custom nodes.
- Serves as the foundation for the desktop release
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
@ -172,10 +179,20 @@ There is a portable standalone build for Windows that should work for running on
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia.7z)
Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints
Simply download, extract with [7-Zip](https://7-zip.org) or with the windows explorer on recent windows versions and run. For smaller models you normally only need to put the checkpoints (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints but many of the larger models have multiple files. Make sure to follow the instructions to know which subfolder to put them in ComfyUI\models\
If you have trouble extracting it, right click the file -> properties -> unblock
The portable above currently comes with python 3.13 and pytorch cuda 13.0. Update your Nvidia drivers if it doesn't start.
#### Alternative Downloads:
[Experimental portable for AMD GPUs](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_amd.7z)
[Portable with pytorch cuda 12.8 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu128.7z).
[Portable with pytorch cuda 12.6 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu126.7z) (Supports Nvidia 10 series and older GPUs).
#### How do I share models between another UI and ComfyUI?
See the [Config file](extra_model_paths.yaml.example) to set the search paths for models. In the standalone windows build you can find this file in the ComfyUI directory. Rename this file to extra_model_paths.yaml and edit it with your favorite text editor.
@ -191,7 +208,13 @@ comfy install
## Manual Install (Windows, Linux)
Python 3.13 is very well supported. If you have trouble with some custom node dependencies you can try 3.12
Python 3.14 works but you may encounter issues with the torch compile node. The free threaded variant is still missing some dependencies.
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12
torch 2.4 and above is supported but some features and optimizations might only work on newer versions. We generally recommend using the latest major version of pytorch with the latest cuda version unless it is less than 2 weeks old.
### Instructions:
Git clone this repo.
@ -200,18 +223,36 @@ Put your SD checkpoints (the huge ckpt/safetensors files) in: models/checkpoints
Put your VAE in: models/vae
### AMD GPUs (Linux only)
### AMD GPUs (Linux)
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.4```
This is the command to install the nightly with ROCm 6.4 which might have some performance improvements:
This is the command to install the nightly with ROCm 7.1 which might have some performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.4```
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm7.1```
### AMD GPUs (Experimental: Windows and Linux), RDNA 3, 3.5 and 4 only.
These have less hardware support than the builds above but they work on windows. You also need to install the pytorch version specific to your hardware.
RDNA 3 (RX 7000 series):
```pip install --pre torch torchvision torchaudio --index-url https://rocm.nightlies.amd.com/v2/gfx110X-all/```
RDNA 3.5 (Strix halo/Ryzen AI Max+ 365):
```pip install --pre torch torchvision torchaudio --index-url https://rocm.nightlies.amd.com/v2/gfx1151/```
RDNA 4 (RX 9000 series):
```pip install --pre torch torchvision torchaudio --index-url https://rocm.nightlies.amd.com/v2/gfx120X-all/```
### Intel GPUs (Windows and Linux)
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
1. To install PyTorch xpu, use the following command:
@ -221,19 +262,15 @@ This is the command to install the Pytorch xpu nightly which might have some per
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu```
(Option 2) Alternatively, Intel GPUs supported by Intel Extension for PyTorch (IPEX) can leverage IPEX for improved performance.
1. visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
### NVIDIA
Nvidia users should install stable pytorch using this command:
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu129```
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu130```
This is the command to install pytorch nightly instead which might have performance improvements.
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu129```
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu130```
#### Troubleshooting
@ -264,12 +301,6 @@ You can install ComfyUI in Apple Mac silicon (M1 or M2) with any recent macOS ve
> **Note**: Remember to add your models, VAE, LoRAs etc. to the corresponding Comfy folders, as discussed in [ComfyUI manual installation](#manual-install-windows-linux).
#### DirectML (AMD Cards on Windows)
This is very badly supported and is not recommended. There are some unofficial builds of pytorch ROCm on windows that exist that will give you a much better experience than this. This readme will be updated once official pytorch ROCm builds for windows come out.
```pip install torch-directml``` Then you can launch ComfyUI with: ```python main.py --directml```
#### Ascend NPUs
For models compatible with Ascend Extension for PyTorch (torch_npu). To get started, ensure your environment meets the prerequisites outlined on the [installation](https://ascend.github.io/docs/sources/ascend/quick_install.html) page. Here's a step-by-step guide tailored to your platform and installation method:
@ -294,6 +325,32 @@ For models compatible with Iluvatar Extension for PyTorch. Here's a step-by-step
1. Install the Iluvatar Corex Toolkit by adhering to the platform-specific instructions on the [Installation](https://support.iluvatar.com/#/DocumentCentre?id=1&nameCenter=2&productId=520117912052801536)
2. Launch ComfyUI by running `python main.py`
## [ComfyUI-Manager](https://github.com/Comfy-Org/ComfyUI-Manager/tree/manager-v4)
**ComfyUI-Manager** is an extension that allows you to easily install, update, and manage custom nodes for ComfyUI.
### Setup
1. Install the manager dependencies:
```bash
pip install -r manager_requirements.txt
```
2. Enable the manager with the `--enable-manager` flag when running ComfyUI:
```bash
python main.py --enable-manager
```
### Command Line Options
| Flag | Description |
|------|-------------|
| `--enable-manager` | Enable ComfyUI-Manager |
| `--enable-manager-legacy-ui` | Use the legacy manager UI instead of the new UI (requires `--enable-manager`) |
| `--disable-manager-ui` | Disable the manager UI and endpoints while keeping background features like security checks and scheduled installation completion (requires `--enable-manager`) |
# Running
```python main.py```

View File

@ -3,7 +3,7 @@
[alembic]
# path to migration scripts
# Use forward slashes (/) also on windows to provide an os agnostic path
script_location = app/alembic_db
script_location = alembic_db
# template used to generate migration file names; The default value is %%(rev)s_%%(slug)s
# Uncomment the line below if you want the files to be prepended with date and time

View File

@ -2,12 +2,13 @@ from sqlalchemy import engine_from_config
from sqlalchemy import pool
from alembic import context
from app.assets.database.models import Base
# this is the Alembic Config object, which provides
# access to the values within the .ini file in use.
config = context.config
from app.database.models import Base
target_metadata = Base.metadata
# other values from the config, defined by the needs of env.py,

View File

@ -1,13 +1,12 @@
"""initial assets schema
"""
Initial assets schema
Revision ID: 0001_assets
Revises:
Create Date: 2025-08-20 00:00:00
Revises: None
Create Date: 2025-12-10 00:00:00
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
revision = "0001_assets"
down_revision = None
@ -94,7 +93,7 @@ def upgrade() -> None:
sa.Column("val_str", sa.String(length=2048), nullable=True),
sa.Column("val_num", sa.Numeric(38, 10), nullable=True),
sa.Column("val_bool", sa.Boolean(), nullable=True),
sa.Column("val_json", sa.JSON().with_variant(postgresql.JSONB(), 'postgresql'), nullable=True),
sa.Column("val_json", sa.JSON(), nullable=True),
sa.PrimaryKeyConstraint("asset_info_id", "key", "ordinal", name="pk_asset_info_meta"),
)
op.create_index("ix_asset_info_meta_key", "asset_info_meta", ["key"])

View File

@ -58,8 +58,13 @@ class InternalRoutes:
return web.json_response({"error": "Invalid directory type"}, status=400)
directory = get_directory_by_type(directory_type)
def is_visible_file(entry: os.DirEntry) -> bool:
"""Filter out hidden files (e.g., .DS_Store on macOS)."""
return entry.is_file() and not entry.name.startswith('.')
sorted_files = sorted(
(entry for entry in os.scandir(directory) if entry.is_file()),
(entry for entry in os.scandir(directory) if is_visible_file(entry)),
key=lambda entry: -entry.stat().st_mtime
)
return web.json_response([entry.name for entry in sorted_files], status=200)

View File

@ -1,4 +0,0 @@
from .api.routes import register_assets_system
from .scanner import sync_seed_assets
__all__ = ["sync_seed_assets", "register_assets_system"]

View File

@ -1,26 +1,38 @@
import contextlib
import logging
import os
import urllib.parse
import uuid
from typing import Optional
import urllib.parse
import os
import contextlib
from aiohttp import web
from pydantic import ValidationError
import app.assets.manager as manager
import app.assets.scanner as scanner
from app import user_manager
from app.assets.api import schemas_in
from app.assets.helpers import get_query_dict
import folder_paths
from ... import user_manager
from .. import manager, scanner
from . import schemas_in, schemas_out
ROUTES = web.RouteTableDef()
USER_MANAGER: Optional[user_manager.UserManager] = None
LOGGER = logging.getLogger(__name__)
USER_MANAGER: user_manager.UserManager | None = None
# UUID regex (canonical hyphenated form, case-insensitive)
UUID_RE = r"[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}"
def register_assets_system(app: web.Application, user_manager_instance: user_manager.UserManager) -> None:
global USER_MANAGER
USER_MANAGER = user_manager_instance
app.add_routes(ROUTES)
def _error_response(status: int, code: str, message: str, details: dict | None = None) -> web.Response:
return web.json_response({"error": {"code": code, "message": message, "details": details or {}}}, status=status)
def _validation_error_response(code: str, ve: ValidationError) -> web.Response:
return _error_response(400, code, "Validation failed.", {"errors": ve.json()})
@ROUTES.head("/api/assets/hash/{hash}")
async def head_asset_by_hash(request: web.Request) -> web.Response:
@ -30,29 +42,22 @@ async def head_asset_by_hash(request: web.Request) -> web.Response:
algo, digest = hash_str.split(":", 1)
if algo != "blake3" or not digest or any(c for c in digest if c not in "0123456789abcdef"):
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
exists = await manager.asset_exists(asset_hash=hash_str)
exists = manager.asset_exists(asset_hash=hash_str)
return web.Response(status=200 if exists else 404)
@ROUTES.get("/api/assets")
async def list_assets(request: web.Request) -> web.Response:
qp = request.rel_url.query
query_dict = {}
if "include_tags" in qp:
query_dict["include_tags"] = qp.getall("include_tags")
if "exclude_tags" in qp:
query_dict["exclude_tags"] = qp.getall("exclude_tags")
for k in ("name_contains", "metadata_filter", "limit", "offset", "sort", "order"):
v = qp.get(k)
if v is not None:
query_dict[k] = v
"""
GET request to list assets.
"""
query_dict = get_query_dict(request)
try:
q = schemas_in.ListAssetsQuery.model_validate(query_dict)
except ValidationError as ve:
return _validation_error_response("INVALID_QUERY", ve)
payload = await manager.list_assets(
payload = manager.list_assets(
include_tags=q.include_tags,
exclude_tags=q.exclude_tags,
name_contains=q.name_contains,
@ -66,14 +71,38 @@ async def list_assets(request: web.Request) -> web.Response:
return web.json_response(payload.model_dump(mode="json"))
@ROUTES.get(f"/api/assets/{{id:{UUID_RE}}}")
async def get_asset(request: web.Request) -> web.Response:
"""
GET request to get an asset's info as JSON.
"""
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
result = manager.get_asset(
asset_info_id=asset_info_id,
owner_id=USER_MANAGER.get_request_user_id(request),
)
except ValueError as e:
return _error_response(404, "ASSET_NOT_FOUND", str(e), {"id": asset_info_id})
except Exception:
logging.exception(
"get_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.get(f"/api/assets/{{id:{UUID_RE}}}/content")
async def download_asset_content(request: web.Request) -> web.Response:
# question: do we need disposition? could we just stick with one of these?
disposition = request.query.get("disposition", "attachment").lower().strip()
if disposition not in {"inline", "attachment"}:
disposition = "attachment"
try:
abs_path, content_type, filename = await manager.resolve_asset_content_for_download(
abs_path, content_type, filename = manager.resolve_asset_content_for_download(
asset_info_id=str(uuid.UUID(request.match_info["id"])),
owner_id=USER_MANAGER.get_request_user_id(request),
)
@ -103,7 +132,7 @@ async def create_asset_from_hash(request: web.Request) -> web.Response:
except Exception:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
result = await manager.create_asset_from_hash(
result = manager.create_asset_from_hash(
hash_str=body.hash,
name=body.name,
tags=body.tags,
@ -125,15 +154,15 @@ async def upload_asset(request: web.Request) -> web.Response:
reader = await request.multipart()
file_present = False
file_client_name: Optional[str] = None
file_client_name: str | None = None
tags_raw: list[str] = []
provided_name: Optional[str] = None
user_metadata_raw: Optional[str] = None
provided_hash: Optional[str] = None
provided_hash_exists: Optional[bool] = None
provided_name: str | None = None
user_metadata_raw: str | None = None
provided_hash: str | None = None
provided_hash_exists: bool | None = None
file_written = 0
tmp_path: Optional[str] = None
tmp_path: str | None = None
while True:
field = await reader.next()
if field is None:
@ -155,7 +184,7 @@ async def upload_asset(request: web.Request) -> web.Response:
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
provided_hash = f"{algo}:{digest}"
try:
provided_hash_exists = await manager.asset_exists(asset_hash=provided_hash)
provided_hash_exists = manager.asset_exists(asset_hash=provided_hash)
except Exception:
provided_hash_exists = None # do not fail the whole request here
@ -242,7 +271,7 @@ async def upload_asset(request: web.Request) -> web.Response:
# Fast path: if a valid provided hash exists, create AssetInfo without writing anything
if spec.hash and provided_hash_exists is True:
try:
result = await manager.create_asset_from_hash(
result = manager.create_asset_from_hash(
hash_str=spec.hash,
name=spec.name or (spec.hash.split(":", 1)[1]),
tags=spec.tags,
@ -250,7 +279,7 @@ async def upload_asset(request: web.Request) -> web.Response:
owner_id=owner_id,
)
except Exception:
LOGGER.exception("create_asset_from_hash failed for hash=%s, owner_id=%s", spec.hash, owner_id)
logging.exception("create_asset_from_hash failed for hash=%s, owner_id=%s", spec.hash, owner_id)
return _error_response(500, "INTERNAL", "Unexpected server error.")
if result is None:
@ -270,7 +299,7 @@ async def upload_asset(request: web.Request) -> web.Response:
return _error_response(404, "ASSET_NOT_FOUND", "Provided hash not found and no file uploaded.")
try:
created = await manager.upload_asset_from_temp_path(
created = manager.upload_asset_from_temp_path(
spec,
temp_path=tmp_path,
client_filename=file_client_name,
@ -293,30 +322,10 @@ async def upload_asset(request: web.Request) -> web.Response:
except Exception:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
LOGGER.exception("upload_asset_from_temp_path failed for tmp_path=%s, owner_id=%s", tmp_path, owner_id)
logging.exception("upload_asset_from_temp_path failed for tmp_path=%s, owner_id=%s", tmp_path, owner_id)
return _error_response(500, "INTERNAL", "Unexpected server error.")
@ROUTES.get(f"/api/assets/{{id:{UUID_RE}}}")
async def get_asset(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
result = await manager.get_asset(
asset_info_id=asset_info_id,
owner_id=USER_MANAGER.get_request_user_id(request),
)
except ValueError as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
LOGGER.exception(
"get_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.put(f"/api/assets/{{id:{UUID_RE}}}")
async def update_asset(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
@ -328,7 +337,7 @@ async def update_asset(request: web.Request) -> web.Response:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
try:
result = await manager.update_asset(
result = manager.update_asset(
asset_info_id=asset_info_id,
name=body.name,
tags=body.tags,
@ -338,7 +347,7 @@ async def update_asset(request: web.Request) -> web.Response:
except (ValueError, PermissionError) as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
LOGGER.exception(
logging.exception(
"update_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
@ -358,7 +367,7 @@ async def set_asset_preview(request: web.Request) -> web.Response:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
try:
result = await manager.set_asset_preview(
result = manager.set_asset_preview(
asset_info_id=asset_info_id,
preview_asset_id=body.preview_id,
owner_id=USER_MANAGER.get_request_user_id(request),
@ -366,7 +375,7 @@ async def set_asset_preview(request: web.Request) -> web.Response:
except (PermissionError, ValueError) as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
LOGGER.exception(
logging.exception(
"set_asset_preview failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
@ -382,13 +391,13 @@ async def delete_asset(request: web.Request) -> web.Response:
delete_content = True if delete_content is None else delete_content.lower() not in {"0", "false", "no"}
try:
deleted = await manager.delete_asset_reference(
deleted = manager.delete_asset_reference(
asset_info_id=asset_info_id,
owner_id=USER_MANAGER.get_request_user_id(request),
delete_content_if_orphan=delete_content,
)
except Exception:
LOGGER.exception(
logging.exception(
"delete_asset_reference failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
@ -402,17 +411,20 @@ async def delete_asset(request: web.Request) -> web.Response:
@ROUTES.get("/api/tags")
async def get_tags(request: web.Request) -> web.Response:
"""
GET request to list all tags based on query parameters.
"""
query_map = dict(request.rel_url.query)
try:
query = schemas_in.TagsListQuery.model_validate(query_map)
except ValidationError as ve:
except ValidationError as e:
return web.json_response(
{"error": {"code": "INVALID_QUERY", "message": "Invalid query parameters", "details": ve.errors()}},
{"error": {"code": "INVALID_QUERY", "message": "Invalid query parameters", "details": e.errors()}},
status=400,
)
result = await manager.list_tags(
result = manager.list_tags(
prefix=query.prefix,
limit=query.limit,
offset=query.offset,
@ -422,7 +434,6 @@ async def get_tags(request: web.Request) -> web.Response:
)
return web.json_response(result.model_dump(mode="json"))
@ROUTES.post(f"/api/assets/{{id:{UUID_RE}}}/tags")
async def add_asset_tags(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
@ -435,7 +446,7 @@ async def add_asset_tags(request: web.Request) -> web.Response:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
try:
result = await manager.add_tags_to_asset(
result = manager.add_tags_to_asset(
asset_info_id=asset_info_id,
tags=data.tags,
origin="manual",
@ -444,7 +455,7 @@ async def add_asset_tags(request: web.Request) -> web.Response:
except (ValueError, PermissionError) as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
LOGGER.exception(
logging.exception(
"add_tags_to_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
@ -466,7 +477,7 @@ async def delete_asset_tags(request: web.Request) -> web.Response:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
try:
result = await manager.remove_tags_from_asset(
result = manager.remove_tags_from_asset(
asset_info_id=asset_info_id,
tags=data.tags,
owner_id=USER_MANAGER.get_request_user_id(request),
@ -474,7 +485,7 @@ async def delete_asset_tags(request: web.Request) -> web.Response:
except ValueError as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
LOGGER.exception(
logging.exception(
"remove_tags_from_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
@ -497,48 +508,8 @@ async def seed_assets(request: web.Request) -> web.Response:
return _validation_error_response("INVALID_BODY", ve)
try:
await scanner.sync_seed_assets(body.roots)
scanner.seed_assets(body.roots)
except Exception:
LOGGER.exception("sync_seed_assets failed for roots=%s", body.roots)
logging.exception("seed_assets failed for roots=%s", body.roots)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response({"synced": True, "roots": body.roots}, status=200)
@ROUTES.post("/api/assets/scan/schedule")
async def schedule_asset_scan(request: web.Request) -> web.Response:
try:
payload = await request.json()
except Exception:
payload = {}
try:
body = schemas_in.ScheduleAssetScanBody.model_validate(payload)
except ValidationError as ve:
return _validation_error_response("INVALID_BODY", ve)
states = await scanner.schedule_scans(body.roots)
return web.json_response(states.model_dump(mode="json"), status=202)
@ROUTES.get("/api/assets/scan")
async def get_asset_scan_status(request: web.Request) -> web.Response:
root = request.query.get("root", "").strip().lower()
states = scanner.current_statuses()
if root in {"models", "input", "output"}:
states = [s for s in states.scans if s.root == root] # type: ignore
states = schemas_out.AssetScanStatusResponse(scans=states)
return web.json_response(states.model_dump(mode="json"), status=200)
def register_assets_system(app: web.Application, user_manager_instance: user_manager.UserManager) -> None:
global USER_MANAGER
USER_MANAGER = user_manager_instance
app.add_routes(ROUTES)
def _error_response(status: int, code: str, message: str, details: Optional[dict] = None) -> web.Response:
return web.json_response({"error": {"code": code, "message": message, "details": details or {}}}, status=status)
def _validation_error_response(code: str, ve: ValidationError) -> web.Response:
return _error_response(400, code, "Validation failed.", {"errors": ve.json()})

View File

@ -1,6 +1,6 @@
import json
import uuid
from typing import Any, Literal, Optional
from typing import Any, Literal
from pydantic import (
BaseModel,
@ -11,14 +11,15 @@ from pydantic import (
model_validator,
)
from app.assets.helpers import RootType
class ListAssetsQuery(BaseModel):
include_tags: list[str] = Field(default_factory=list)
exclude_tags: list[str] = Field(default_factory=list)
name_contains: Optional[str] = None
name_contains: str | None = None
# Accept either a JSON string (query param) or a dict
metadata_filter: Optional[dict[str, Any]] = None
metadata_filter: dict[str, Any] | None = None
limit: conint(ge=1, le=500) = 20
offset: conint(ge=0) = 0
@ -59,9 +60,9 @@ class ListAssetsQuery(BaseModel):
class UpdateAssetBody(BaseModel):
name: Optional[str] = None
tags: Optional[list[str]] = None
user_metadata: Optional[dict[str, Any]] = None
name: str | None = None
tags: list[str] | None = None
user_metadata: dict[str, Any] | None = None
@model_validator(mode="after")
def _at_least_one(self):
@ -116,7 +117,7 @@ class CreateFromHashBody(BaseModel):
class TagsListQuery(BaseModel):
model_config = ConfigDict(extra="ignore", str_strip_whitespace=True)
prefix: Optional[str] = Field(None, min_length=1, max_length=256)
prefix: str | None = Field(None, min_length=1, max_length=256)
limit: int = Field(100, ge=1, le=1000)
offset: int = Field(0, ge=0, le=10_000_000)
order: Literal["count_desc", "name_asc"] = "count_desc"
@ -124,7 +125,7 @@ class TagsListQuery(BaseModel):
@field_validator("prefix")
@classmethod
def normalize_prefix(cls, v: Optional[str]) -> Optional[str]:
def normalize_prefix(cls, v: str | None) -> str | None:
if v is None:
return v
v = v.strip()
@ -158,14 +159,6 @@ class TagsRemove(TagsAdd):
pass
RootType = Literal["models", "input", "output"]
ALLOWED_ROOTS: tuple[RootType, ...] = ("models", "input", "output")
class ScheduleAssetScanBody(BaseModel):
roots: list[RootType] = Field(..., min_length=1)
class UploadAssetSpec(BaseModel):
"""Upload Asset operation.
- tags: ordered; first is root ('models'|'input'|'output');
@ -180,9 +173,9 @@ class UploadAssetSpec(BaseModel):
model_config = ConfigDict(extra="ignore", str_strip_whitespace=True)
tags: list[str] = Field(..., min_length=1)
name: Optional[str] = Field(default=None, max_length=512, description="Display Name")
name: str | None = Field(default=None, max_length=512, description="Display Name")
user_metadata: dict[str, Any] = Field(default_factory=dict)
hash: Optional[str] = Field(default=None)
hash: str | None = Field(default=None)
@field_validator("hash", mode="before")
@classmethod
@ -280,7 +273,7 @@ class UploadAssetSpec(BaseModel):
class SetPreviewBody(BaseModel):
"""Set or clear the preview for an AssetInfo. Provide an Asset.id or null."""
preview_id: Optional[str] = None
preview_id: str | None = None
@field_validator("preview_id", mode="before")
@classmethod
@ -295,3 +288,7 @@ class SetPreviewBody(BaseModel):
except Exception:
raise ValueError("preview_id must be a UUID")
return s
class ScheduleAssetScanBody(BaseModel):
roots: list[RootType] = Field(..., min_length=1)

View File

@ -1,5 +1,5 @@
from datetime import datetime
from typing import Any, Literal, Optional
from typing import Any
from pydantic import BaseModel, ConfigDict, Field, field_serializer
@ -7,19 +7,19 @@ from pydantic import BaseModel, ConfigDict, Field, field_serializer
class AssetSummary(BaseModel):
id: str
name: str
asset_hash: Optional[str]
size: Optional[int] = None
mime_type: Optional[str] = None
asset_hash: str | None = None
size: int | None = None
mime_type: str | None = None
tags: list[str] = Field(default_factory=list)
preview_url: Optional[str] = None
created_at: Optional[datetime] = None
updated_at: Optional[datetime] = None
last_access_time: Optional[datetime] = None
preview_url: str | None = None
created_at: datetime | None = None
updated_at: datetime | None = None
last_access_time: datetime | None = None
model_config = ConfigDict(from_attributes=True)
@field_serializer("created_at", "updated_at", "last_access_time")
def _ser_dt(self, v: Optional[datetime], _info):
def _ser_dt(self, v: datetime | None, _info):
return v.isoformat() if v else None
@ -32,34 +32,34 @@ class AssetsList(BaseModel):
class AssetUpdated(BaseModel):
id: str
name: str
asset_hash: Optional[str]
asset_hash: str | None = None
tags: list[str] = Field(default_factory=list)
user_metadata: dict[str, Any] = Field(default_factory=dict)
updated_at: Optional[datetime] = None
updated_at: datetime | None = None
model_config = ConfigDict(from_attributes=True)
@field_serializer("updated_at")
def _ser_updated(self, v: Optional[datetime], _info):
def _ser_updated(self, v: datetime | None, _info):
return v.isoformat() if v else None
class AssetDetail(BaseModel):
id: str
name: str
asset_hash: Optional[str]
size: Optional[int] = None
mime_type: Optional[str] = None
asset_hash: str | None = None
size: int | None = None
mime_type: str | None = None
tags: list[str] = Field(default_factory=list)
user_metadata: dict[str, Any] = Field(default_factory=dict)
preview_id: Optional[str] = None
created_at: Optional[datetime] = None
last_access_time: Optional[datetime] = None
preview_id: str | None = None
created_at: datetime | None = None
last_access_time: datetime | None = None
model_config = ConfigDict(from_attributes=True)
@field_serializer("created_at", "last_access_time")
def _ser_dt(self, v: Optional[datetime], _info):
def _ser_dt(self, v: datetime | None, _info):
return v.isoformat() if v else None
@ -91,25 +91,3 @@ class TagsRemove(BaseModel):
removed: list[str] = Field(default_factory=list)
not_present: list[str] = Field(default_factory=list)
total_tags: list[str] = Field(default_factory=list)
class AssetScanError(BaseModel):
path: str
message: str
at: Optional[str] = Field(None, description="ISO timestamp")
class AssetScanStatus(BaseModel):
scan_id: str
root: Literal["models", "input", "output"]
status: Literal["scheduled", "running", "completed", "failed", "cancelled"]
scheduled_at: Optional[str] = None
started_at: Optional[str] = None
finished_at: Optional[str] = None
discovered: int = 0
processed: int = 0
file_errors: list[AssetScanError] = Field(default_factory=list)
class AssetScanStatusResponse(BaseModel):
scans: list[AssetScanStatus] = Field(default_factory=list)

View File

@ -1,22 +1,34 @@
import os
import uuid
from typing import Iterable, Sequence
import sqlalchemy
from typing import Iterable
from sqlalchemy.orm import Session
from sqlalchemy.dialects import sqlite
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql as d_pg
from sqlalchemy.dialects import sqlite as d_sqlite
from sqlalchemy.ext.asyncio import AsyncSession
from ..models import Asset, AssetCacheState, AssetInfo, AssetInfoMeta, AssetInfoTag
from ..timeutil import utcnow
from app.assets.helpers import utcnow
from app.assets.database.models import Asset, AssetCacheState, AssetInfo, AssetInfoTag, AssetInfoMeta
MAX_BIND_PARAMS = 800
def _chunk_rows(rows: list[dict], cols_per_row: int, max_bind_params: int) -> Iterable[list[dict]]:
if not rows:
return []
rows_per_stmt = max(1, max_bind_params // max(1, cols_per_row))
for i in range(0, len(rows), rows_per_stmt):
yield rows[i:i + rows_per_stmt]
async def seed_from_paths_batch(
session: AsyncSession,
def _iter_chunks(seq, n: int):
for i in range(0, len(seq), n):
yield seq[i:i + n]
def _rows_per_stmt(cols: int) -> int:
return max(1, MAX_BIND_PARAMS // max(1, cols))
def seed_from_paths_batch(
session: Session,
*,
specs: Sequence[dict],
specs: list[dict],
owner_id: str = "",
) -> dict:
"""Each spec is a dict with keys:
@ -31,10 +43,6 @@ async def seed_from_paths_batch(
return {"inserted_infos": 0, "won_states": 0, "lost_states": 0}
now = utcnow()
dialect = session.bind.dialect.name
if dialect not in ("sqlite", "postgresql"):
raise NotImplementedError(f"Unsupported database dialect: {dialect}")
asset_rows: list[dict] = []
state_rows: list[dict] = []
path_to_asset: dict[str, str] = {}
@ -79,55 +87,57 @@ async def seed_from_paths_batch(
}
# insert all seed Assets (hash=NULL)
ins_asset = d_sqlite.insert(Asset) if dialect == "sqlite" else d_pg.insert(Asset)
ins_asset = sqlite.insert(Asset)
for chunk in _iter_chunks(asset_rows, _rows_per_stmt(5)):
await session.execute(ins_asset, chunk)
session.execute(ins_asset, chunk)
# try to claim AssetCacheState (file_path)
winners_by_path: set[str] = set()
if dialect == "sqlite":
ins_state = (
d_sqlite.insert(AssetCacheState)
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
.returning(AssetCacheState.file_path)
)
else:
ins_state = (
d_pg.insert(AssetCacheState)
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
.returning(AssetCacheState.file_path)
)
# Insert with ON CONFLICT DO NOTHING, then query to find which paths were actually inserted
ins_state = (
sqlite.insert(AssetCacheState)
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
)
for chunk in _iter_chunks(state_rows, _rows_per_stmt(3)):
winners_by_path.update((await session.execute(ins_state, chunk)).scalars().all())
session.execute(ins_state, chunk)
# Query to find which of our paths won (were actually inserted)
winners_by_path: set[str] = set()
for chunk in _iter_chunks(path_list, MAX_BIND_PARAMS):
result = session.execute(
sqlalchemy.select(AssetCacheState.file_path)
.where(AssetCacheState.file_path.in_(chunk))
.where(AssetCacheState.asset_id.in_([path_to_asset[p] for p in chunk]))
)
winners_by_path.update(result.scalars().all())
all_paths_set = set(path_list)
losers_by_path = all_paths_set - winners_by_path
lost_assets = [path_to_asset[p] for p in losers_by_path]
if lost_assets: # losers get their Asset removed
for id_chunk in _iter_chunks(lost_assets, MAX_BIND_PARAMS):
await session.execute(sa.delete(Asset).where(Asset.id.in_(id_chunk)))
session.execute(sqlalchemy.delete(Asset).where(Asset.id.in_(id_chunk)))
if not winners_by_path:
return {"inserted_infos": 0, "won_states": 0, "lost_states": len(losers_by_path)}
# insert AssetInfo only for winners
# Insert with ON CONFLICT DO NOTHING, then query to find which were actually inserted
winner_info_rows = [asset_to_info[path_to_asset[p]] for p in winners_by_path]
if dialect == "sqlite":
ins_info = (
d_sqlite.insert(AssetInfo)
.on_conflict_do_nothing(index_elements=[AssetInfo.asset_id, AssetInfo.owner_id, AssetInfo.name])
.returning(AssetInfo.id)
)
else:
ins_info = (
d_pg.insert(AssetInfo)
.on_conflict_do_nothing(index_elements=[AssetInfo.asset_id, AssetInfo.owner_id, AssetInfo.name])
.returning(AssetInfo.id)
)
inserted_info_ids: set[str] = set()
ins_info = (
sqlite.insert(AssetInfo)
.on_conflict_do_nothing(index_elements=[AssetInfo.asset_id, AssetInfo.owner_id, AssetInfo.name])
)
for chunk in _iter_chunks(winner_info_rows, _rows_per_stmt(9)):
inserted_info_ids.update((await session.execute(ins_info, chunk)).scalars().all())
session.execute(ins_info, chunk)
# Query to find which info rows were actually inserted (by matching our generated IDs)
all_info_ids = [row["id"] for row in winner_info_rows]
inserted_info_ids: set[str] = set()
for chunk in _iter_chunks(all_info_ids, MAX_BIND_PARAMS):
result = session.execute(
sqlalchemy.select(AssetInfo.id).where(AssetInfo.id.in_(chunk))
)
inserted_info_ids.update(result.scalars().all())
# build and insert tag + meta rows for the AssetInfo
tag_rows: list[dict] = []
@ -157,7 +167,7 @@ async def seed_from_paths_batch(
}
)
await bulk_insert_tags_and_meta(session, tag_rows=tag_rows, meta_rows=meta_rows, max_bind_params=MAX_BIND_PARAMS)
bulk_insert_tags_and_meta(session, tag_rows=tag_rows, meta_rows=meta_rows, max_bind_params=MAX_BIND_PARAMS)
return {
"inserted_infos": len(inserted_info_ids),
"won_states": len(winners_by_path),
@ -165,8 +175,8 @@ async def seed_from_paths_batch(
}
async def bulk_insert_tags_and_meta(
session: AsyncSession,
def bulk_insert_tags_and_meta(
session: Session,
*,
tag_rows: list[dict],
meta_rows: list[dict],
@ -176,55 +186,19 @@ async def bulk_insert_tags_and_meta(
- tag_rows keys: asset_info_id, tag_name, origin, added_at
- meta_rows keys: asset_info_id, key, ordinal, val_str, val_num, val_bool, val_json
"""
dialect = session.bind.dialect.name
if tag_rows:
if dialect == "sqlite":
ins_links = (
d_sqlite.insert(AssetInfoTag)
.on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name])
)
elif dialect == "postgresql":
ins_links = (
d_pg.insert(AssetInfoTag)
.on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name])
)
else:
raise NotImplementedError(f"Unsupported database dialect: {dialect}")
ins_links = (
sqlite.insert(AssetInfoTag)
.on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name])
)
for chunk in _chunk_rows(tag_rows, cols_per_row=4, max_bind_params=max_bind_params):
await session.execute(ins_links, chunk)
session.execute(ins_links, chunk)
if meta_rows:
if dialect == "sqlite":
ins_meta = (
d_sqlite.insert(AssetInfoMeta)
.on_conflict_do_nothing(
index_elements=[AssetInfoMeta.asset_info_id, AssetInfoMeta.key, AssetInfoMeta.ordinal]
)
ins_meta = (
sqlite.insert(AssetInfoMeta)
.on_conflict_do_nothing(
index_elements=[AssetInfoMeta.asset_info_id, AssetInfoMeta.key, AssetInfoMeta.ordinal]
)
elif dialect == "postgresql":
ins_meta = (
d_pg.insert(AssetInfoMeta)
.on_conflict_do_nothing(
index_elements=[AssetInfoMeta.asset_info_id, AssetInfoMeta.key, AssetInfoMeta.ordinal]
)
)
else:
raise NotImplementedError(f"Unsupported database dialect: {dialect}")
)
for chunk in _chunk_rows(meta_rows, cols_per_row=7, max_bind_params=max_bind_params):
await session.execute(ins_meta, chunk)
def _chunk_rows(rows: list[dict], cols_per_row: int, max_bind_params: int) -> Iterable[list[dict]]:
if not rows:
return []
rows_per_stmt = max(1, max_bind_params // max(1, cols_per_row))
for i in range(0, len(rows), rows_per_stmt):
yield rows[i:i + rows_per_stmt]
def _iter_chunks(seq, n: int):
for i in range(0, len(seq), n):
yield seq[i:i + n]
def _rows_per_stmt(cols: int) -> int:
return max(1, MAX_BIND_PARAMS // max(1, cols))
session.execute(ins_meta, chunk)

View File

@ -1,25 +0,0 @@
from .bulk_ops import seed_from_paths_batch
from .escape_like import escape_like_prefix
from .fast_check import fast_asset_file_check
from .filters import apply_metadata_filter, apply_tag_filters
from .ownership import visible_owner_clause
from .projection import is_scalar, project_kv
from .tags import (
add_missing_tag_for_asset_id,
ensure_tags_exist,
remove_missing_tag_for_asset_id,
)
__all__ = [
"apply_tag_filters",
"apply_metadata_filter",
"escape_like_prefix",
"fast_asset_file_check",
"is_scalar",
"project_kv",
"ensure_tags_exist",
"add_missing_tag_for_asset_id",
"remove_missing_tag_for_asset_id",
"seed_from_paths_batch",
"visible_owner_clause",
]

View File

@ -1,7 +0,0 @@
def escape_like_prefix(s: str, escape: str = "!") -> tuple[str, str]:
"""Escapes %, _ and the escape char itself in a LIKE prefix.
Returns (escaped_prefix, escape_char). Caller should append '%' and pass escape=escape_char to .like().
"""
s = s.replace(escape, escape + escape) # escape the escape char first
s = s.replace("%", escape + "%").replace("_", escape + "_") # escape LIKE wildcards
return s, escape

View File

@ -1,19 +0,0 @@
import os
from typing import Optional
def fast_asset_file_check(
*,
mtime_db: Optional[int],
size_db: Optional[int],
stat_result: os.stat_result,
) -> bool:
if mtime_db is None:
return False
actual_mtime_ns = getattr(stat_result, "st_mtime_ns", int(stat_result.st_mtime * 1_000_000_000))
if int(mtime_db) != int(actual_mtime_ns):
return False
sz = int(size_db or 0)
if sz > 0:
return int(stat_result.st_size) == sz
return True

View File

@ -1,87 +0,0 @@
from typing import Optional, Sequence
import sqlalchemy as sa
from sqlalchemy import exists
from ..._helpers import normalize_tags
from ..models import AssetInfo, AssetInfoMeta, AssetInfoTag
def apply_tag_filters(
stmt: sa.sql.Select,
include_tags: Optional[Sequence[str]],
exclude_tags: Optional[Sequence[str]],
) -> sa.sql.Select:
"""include_tags: every tag must be present; exclude_tags: none may be present."""
include_tags = normalize_tags(include_tags)
exclude_tags = normalize_tags(exclude_tags)
if include_tags:
for tag_name in include_tags:
stmt = stmt.where(
exists().where(
(AssetInfoTag.asset_info_id == AssetInfo.id)
& (AssetInfoTag.tag_name == tag_name)
)
)
if exclude_tags:
stmt = stmt.where(
~exists().where(
(AssetInfoTag.asset_info_id == AssetInfo.id)
& (AssetInfoTag.tag_name.in_(exclude_tags))
)
)
return stmt
def apply_metadata_filter(
stmt: sa.sql.Select,
metadata_filter: Optional[dict],
) -> sa.sql.Select:
"""Apply filters using asset_info_meta projection table."""
if not metadata_filter:
return stmt
def _exists_for_pred(key: str, *preds) -> sa.sql.ClauseElement:
return sa.exists().where(
AssetInfoMeta.asset_info_id == AssetInfo.id,
AssetInfoMeta.key == key,
*preds,
)
def _exists_clause_for_value(key: str, value) -> sa.sql.ClauseElement:
if value is None:
no_row_for_key = sa.not_(
sa.exists().where(
AssetInfoMeta.asset_info_id == AssetInfo.id,
AssetInfoMeta.key == key,
)
)
null_row = _exists_for_pred(
key,
AssetInfoMeta.val_json.is_(None),
AssetInfoMeta.val_str.is_(None),
AssetInfoMeta.val_num.is_(None),
AssetInfoMeta.val_bool.is_(None),
)
return sa.or_(no_row_for_key, null_row)
if isinstance(value, bool):
return _exists_for_pred(key, AssetInfoMeta.val_bool == bool(value))
if isinstance(value, (int, float)):
from decimal import Decimal
num = value if isinstance(value, Decimal) else Decimal(str(value))
return _exists_for_pred(key, AssetInfoMeta.val_num == num)
if isinstance(value, str):
return _exists_for_pred(key, AssetInfoMeta.val_str == value)
return _exists_for_pred(key, AssetInfoMeta.val_json == value)
for k, v in metadata_filter.items():
if isinstance(v, list):
ors = [_exists_clause_for_value(k, elem) for elem in v]
if ors:
stmt = stmt.where(sa.or_(*ors))
else:
stmt = stmt.where(_exists_clause_for_value(k, v))
return stmt

View File

@ -1,12 +0,0 @@
import sqlalchemy as sa
from ..models import AssetInfo
def visible_owner_clause(owner_id: str) -> sa.sql.ClauseElement:
"""Build owner visibility predicate for reads. Owner-less rows are visible to everyone."""
owner_id = (owner_id or "").strip()
if owner_id == "":
return AssetInfo.owner_id == ""
return AssetInfo.owner_id.in_(["", owner_id])

View File

@ -1,64 +0,0 @@
from decimal import Decimal
def is_scalar(v):
if v is None:
return True
if isinstance(v, bool):
return True
if isinstance(v, (int, float, Decimal, str)):
return True
return False
def project_kv(key: str, value):
"""
Turn a metadata key/value into typed projection rows.
Returns list[dict] with keys:
key, ordinal, and one of val_str / val_num / val_bool / val_json (others None)
"""
rows: list[dict] = []
def _null_row(ordinal: int) -> dict:
return {
"key": key, "ordinal": ordinal,
"val_str": None, "val_num": None, "val_bool": None, "val_json": None
}
if value is None:
rows.append(_null_row(0))
return rows
if is_scalar(value):
if isinstance(value, bool):
rows.append({"key": key, "ordinal": 0, "val_bool": bool(value)})
elif isinstance(value, (int, float, Decimal)):
num = value if isinstance(value, Decimal) else Decimal(str(value))
rows.append({"key": key, "ordinal": 0, "val_num": num})
elif isinstance(value, str):
rows.append({"key": key, "ordinal": 0, "val_str": value})
else:
rows.append({"key": key, "ordinal": 0, "val_json": value})
return rows
if isinstance(value, list):
if all(is_scalar(x) for x in value):
for i, x in enumerate(value):
if x is None:
rows.append(_null_row(i))
elif isinstance(x, bool):
rows.append({"key": key, "ordinal": i, "val_bool": bool(x)})
elif isinstance(x, (int, float, Decimal)):
num = x if isinstance(x, Decimal) else Decimal(str(x))
rows.append({"key": key, "ordinal": i, "val_num": num})
elif isinstance(x, str):
rows.append({"key": key, "ordinal": i, "val_str": x})
else:
rows.append({"key": key, "ordinal": i, "val_json": x})
return rows
for i, x in enumerate(value):
rows.append({"key": key, "ordinal": i, "val_json": x})
return rows
rows.append({"key": key, "ordinal": 0, "val_json": value})
return rows

View File

@ -1,90 +0,0 @@
from typing import Iterable
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql as d_pg
from sqlalchemy.dialects import sqlite as d_sqlite
from sqlalchemy.ext.asyncio import AsyncSession
from ..._helpers import normalize_tags
from ..models import AssetInfo, AssetInfoTag, Tag
from ..timeutil import utcnow
async def ensure_tags_exist(session: AsyncSession, names: Iterable[str], tag_type: str = "user") -> None:
wanted = normalize_tags(list(names))
if not wanted:
return
rows = [{"name": n, "tag_type": tag_type} for n in list(dict.fromkeys(wanted))]
dialect = session.bind.dialect.name
if dialect == "sqlite":
ins = (
d_sqlite.insert(Tag)
.values(rows)
.on_conflict_do_nothing(index_elements=[Tag.name])
)
elif dialect == "postgresql":
ins = (
d_pg.insert(Tag)
.values(rows)
.on_conflict_do_nothing(index_elements=[Tag.name])
)
else:
raise NotImplementedError(f"Unsupported database dialect: {dialect}")
await session.execute(ins)
async def add_missing_tag_for_asset_id(
session: AsyncSession,
*,
asset_id: str,
origin: str = "automatic",
) -> None:
select_rows = (
sa.select(
AssetInfo.id.label("asset_info_id"),
sa.literal("missing").label("tag_name"),
sa.literal(origin).label("origin"),
sa.literal(utcnow()).label("added_at"),
)
.where(AssetInfo.asset_id == asset_id)
.where(
sa.not_(
sa.exists().where((AssetInfoTag.asset_info_id == AssetInfo.id) & (AssetInfoTag.tag_name == "missing"))
)
)
)
dialect = session.bind.dialect.name
if dialect == "sqlite":
ins = (
d_sqlite.insert(AssetInfoTag)
.from_select(
["asset_info_id", "tag_name", "origin", "added_at"],
select_rows,
)
.on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name])
)
elif dialect == "postgresql":
ins = (
d_pg.insert(AssetInfoTag)
.from_select(
["asset_info_id", "tag_name", "origin", "added_at"],
select_rows,
)
.on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name])
)
else:
raise NotImplementedError(f"Unsupported database dialect: {dialect}")
await session.execute(ins)
async def remove_missing_tag_for_asset_id(
session: AsyncSession,
*,
asset_id: str,
) -> None:
await session.execute(
sa.delete(AssetInfoTag).where(
AssetInfoTag.asset_info_id.in_(sa.select(AssetInfo.id).where(AssetInfo.asset_id == asset_id)),
AssetInfoTag.tag_name == "missing",
)
)

View File

@ -1,7 +1,9 @@
from __future__ import annotations
import uuid
from datetime import datetime
from typing import Any, Optional
from typing import Any
from sqlalchemy import (
JSON,
BigInteger,
@ -16,44 +18,24 @@ from sqlalchemy import (
Text,
UniqueConstraint,
)
from sqlalchemy.dialects.postgresql import JSONB
from sqlalchemy.orm import DeclarativeBase, Mapped, foreign, mapped_column, relationship
from sqlalchemy.orm import Mapped, foreign, mapped_column, relationship
from .timeutil import utcnow
JSONB_V = JSON(none_as_null=True).with_variant(JSONB(none_as_null=True), 'postgresql')
class Base(DeclarativeBase):
pass
def to_dict(obj: Any, include_none: bool = False) -> dict[str, Any]:
fields = obj.__table__.columns.keys()
out: dict[str, Any] = {}
for field in fields:
val = getattr(obj, field)
if val is None and not include_none:
continue
if isinstance(val, datetime):
out[field] = val.isoformat()
else:
out[field] = val
return out
from app.assets.helpers import utcnow
from app.database.models import to_dict, Base
class Asset(Base):
__tablename__ = "assets"
id: Mapped[str] = mapped_column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()))
hash: Mapped[Optional[str]] = mapped_column(String(256), nullable=True)
hash: Mapped[str | None] = mapped_column(String(256), nullable=True)
size_bytes: Mapped[int] = mapped_column(BigInteger, nullable=False, default=0)
mime_type: Mapped[Optional[str]] = mapped_column(String(255))
mime_type: Mapped[str | None] = mapped_column(String(255))
created_at: Mapped[datetime] = mapped_column(
DateTime(timezone=False), nullable=False, default=utcnow
)
infos: Mapped[list["AssetInfo"]] = relationship(
infos: Mapped[list[AssetInfo]] = relationship(
"AssetInfo",
back_populates="asset",
primaryjoin=lambda: Asset.id == foreign(AssetInfo.asset_id),
@ -62,7 +44,7 @@ class Asset(Base):
passive_deletes=True,
)
preview_of: Mapped[list["AssetInfo"]] = relationship(
preview_of: Mapped[list[AssetInfo]] = relationship(
"AssetInfo",
back_populates="preview_asset",
primaryjoin=lambda: Asset.id == foreign(AssetInfo.preview_id),
@ -70,7 +52,7 @@ class Asset(Base):
viewonly=True,
)
cache_states: Mapped[list["AssetCacheState"]] = relationship(
cache_states: Mapped[list[AssetCacheState]] = relationship(
back_populates="asset",
cascade="all, delete-orphan",
passive_deletes=True,
@ -95,10 +77,10 @@ class AssetCacheState(Base):
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
asset_id: Mapped[str] = mapped_column(String(36), ForeignKey("assets.id", ondelete="CASCADE"), nullable=False)
file_path: Mapped[str] = mapped_column(Text, nullable=False)
mtime_ns: Mapped[Optional[int]] = mapped_column(BigInteger, nullable=True)
mtime_ns: Mapped[int | None] = mapped_column(BigInteger, nullable=True)
needs_verify: Mapped[bool] = mapped_column(Boolean, nullable=False, default=False)
asset: Mapped["Asset"] = relationship(back_populates="cache_states")
asset: Mapped[Asset] = relationship(back_populates="cache_states")
__table_args__ = (
Index("ix_asset_cache_state_file_path", "file_path"),
@ -121,8 +103,8 @@ class AssetInfo(Base):
owner_id: Mapped[str] = mapped_column(String(128), nullable=False, default="")
name: Mapped[str] = mapped_column(String(512), nullable=False)
asset_id: Mapped[str] = mapped_column(String(36), ForeignKey("assets.id", ondelete="RESTRICT"), nullable=False)
preview_id: Mapped[Optional[str]] = mapped_column(String(36), ForeignKey("assets.id", ondelete="SET NULL"))
user_metadata: Mapped[Optional[dict[str, Any]]] = mapped_column(JSON(none_as_null=True))
preview_id: Mapped[str | None] = mapped_column(String(36), ForeignKey("assets.id", ondelete="SET NULL"))
user_metadata: Mapped[dict[str, Any] | None] = mapped_column(JSON(none_as_null=True))
created_at: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow)
updated_at: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow)
last_access_time: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow)
@ -133,26 +115,26 @@ class AssetInfo(Base):
foreign_keys=[asset_id],
lazy="selectin",
)
preview_asset: Mapped[Optional[Asset]] = relationship(
preview_asset: Mapped[Asset | None] = relationship(
"Asset",
back_populates="preview_of",
foreign_keys=[preview_id],
)
metadata_entries: Mapped[list["AssetInfoMeta"]] = relationship(
metadata_entries: Mapped[list[AssetInfoMeta]] = relationship(
back_populates="asset_info",
cascade="all,delete-orphan",
passive_deletes=True,
)
tag_links: Mapped[list["AssetInfoTag"]] = relationship(
tag_links: Mapped[list[AssetInfoTag]] = relationship(
back_populates="asset_info",
cascade="all,delete-orphan",
passive_deletes=True,
overlaps="tags,asset_infos",
)
tags: Mapped[list["Tag"]] = relationship(
tags: Mapped[list[Tag]] = relationship(
secondary="asset_info_tags",
back_populates="asset_infos",
lazy="selectin",
@ -188,12 +170,12 @@ class AssetInfoMeta(Base):
key: Mapped[str] = mapped_column(String(256), primary_key=True)
ordinal: Mapped[int] = mapped_column(Integer, primary_key=True, default=0)
val_str: Mapped[Optional[str]] = mapped_column(String(2048), nullable=True)
val_num: Mapped[Optional[float]] = mapped_column(Numeric(38, 10), nullable=True)
val_bool: Mapped[Optional[bool]] = mapped_column(Boolean, nullable=True)
val_json: Mapped[Optional[Any]] = mapped_column(JSONB_V, nullable=True)
val_str: Mapped[str | None] = mapped_column(String(2048), nullable=True)
val_num: Mapped[float | None] = mapped_column(Numeric(38, 10), nullable=True)
val_bool: Mapped[bool | None] = mapped_column(Boolean, nullable=True)
val_json: Mapped[Any | None] = mapped_column(JSON(none_as_null=True), nullable=True)
asset_info: Mapped["AssetInfo"] = relationship(back_populates="metadata_entries")
asset_info: Mapped[AssetInfo] = relationship(back_populates="metadata_entries")
__table_args__ = (
Index("ix_asset_info_meta_key", "key"),
@ -217,8 +199,8 @@ class AssetInfoTag(Base):
DateTime(timezone=False), nullable=False, default=utcnow
)
asset_info: Mapped["AssetInfo"] = relationship(back_populates="tag_links")
tag: Mapped["Tag"] = relationship(back_populates="asset_info_links")
asset_info: Mapped[AssetInfo] = relationship(back_populates="tag_links")
tag: Mapped[Tag] = relationship(back_populates="asset_info_links")
__table_args__ = (
Index("ix_asset_info_tags_tag_name", "tag_name"),
@ -232,11 +214,11 @@ class Tag(Base):
name: Mapped[str] = mapped_column(String(512), primary_key=True)
tag_type: Mapped[str] = mapped_column(String(32), nullable=False, default="user")
asset_info_links: Mapped[list["AssetInfoTag"]] = relationship(
asset_info_links: Mapped[list[AssetInfoTag]] = relationship(
back_populates="tag",
overlaps="asset_infos,tags",
)
asset_infos: Mapped[list["AssetInfo"]] = relationship(
asset_infos: Mapped[list[AssetInfo]] = relationship(
secondary="asset_info_tags",
back_populates="tags",
viewonly=True,

View File

@ -0,0 +1,975 @@
import os
import logging
import sqlalchemy as sa
from collections import defaultdict
from datetime import datetime
from typing import Iterable, Any
from sqlalchemy import select, delete, exists, func
from sqlalchemy.dialects import sqlite
from sqlalchemy.exc import IntegrityError
from sqlalchemy.orm import Session, contains_eager, noload
from app.assets.database.models import Asset, AssetInfo, AssetCacheState, AssetInfoMeta, AssetInfoTag, Tag
from app.assets.helpers import (
compute_relative_filename, escape_like_prefix, normalize_tags, project_kv, utcnow
)
from typing import Sequence
def visible_owner_clause(owner_id: str) -> sa.sql.ClauseElement:
"""Build owner visibility predicate for reads. Owner-less rows are visible to everyone."""
owner_id = (owner_id or "").strip()
if owner_id == "":
return AssetInfo.owner_id == ""
return AssetInfo.owner_id.in_(["", owner_id])
def pick_best_live_path(states: Sequence[AssetCacheState]) -> str:
"""
Return the best on-disk path among cache states:
1) Prefer a path that exists with needs_verify == False (already verified).
2) Otherwise, pick the first path that exists.
3) Otherwise return empty string.
"""
alive = [s for s in states if getattr(s, "file_path", None) and os.path.isfile(s.file_path)]
if not alive:
return ""
for s in alive:
if not getattr(s, "needs_verify", False):
return s.file_path
return alive[0].file_path
def apply_tag_filters(
stmt: sa.sql.Select,
include_tags: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
) -> sa.sql.Select:
"""include_tags: every tag must be present; exclude_tags: none may be present."""
include_tags = normalize_tags(include_tags)
exclude_tags = normalize_tags(exclude_tags)
if include_tags:
for tag_name in include_tags:
stmt = stmt.where(
exists().where(
(AssetInfoTag.asset_info_id == AssetInfo.id)
& (AssetInfoTag.tag_name == tag_name)
)
)
if exclude_tags:
stmt = stmt.where(
~exists().where(
(AssetInfoTag.asset_info_id == AssetInfo.id)
& (AssetInfoTag.tag_name.in_(exclude_tags))
)
)
return stmt
def apply_metadata_filter(
stmt: sa.sql.Select,
metadata_filter: dict | None = None,
) -> sa.sql.Select:
"""Apply filters using asset_info_meta projection table."""
if not metadata_filter:
return stmt
def _exists_for_pred(key: str, *preds) -> sa.sql.ClauseElement:
return sa.exists().where(
AssetInfoMeta.asset_info_id == AssetInfo.id,
AssetInfoMeta.key == key,
*preds,
)
def _exists_clause_for_value(key: str, value) -> sa.sql.ClauseElement:
if value is None:
no_row_for_key = sa.not_(
sa.exists().where(
AssetInfoMeta.asset_info_id == AssetInfo.id,
AssetInfoMeta.key == key,
)
)
null_row = _exists_for_pred(
key,
AssetInfoMeta.val_json.is_(None),
AssetInfoMeta.val_str.is_(None),
AssetInfoMeta.val_num.is_(None),
AssetInfoMeta.val_bool.is_(None),
)
return sa.or_(no_row_for_key, null_row)
if isinstance(value, bool):
return _exists_for_pred(key, AssetInfoMeta.val_bool == bool(value))
if isinstance(value, (int, float)):
from decimal import Decimal
num = value if isinstance(value, Decimal) else Decimal(str(value))
return _exists_for_pred(key, AssetInfoMeta.val_num == num)
if isinstance(value, str):
return _exists_for_pred(key, AssetInfoMeta.val_str == value)
return _exists_for_pred(key, AssetInfoMeta.val_json == value)
for k, v in metadata_filter.items():
if isinstance(v, list):
ors = [_exists_clause_for_value(k, elem) for elem in v]
if ors:
stmt = stmt.where(sa.or_(*ors))
else:
stmt = stmt.where(_exists_clause_for_value(k, v))
return stmt
def asset_exists_by_hash(
session: Session,
*,
asset_hash: str,
) -> bool:
"""
Check if an asset with a given hash exists in database.
"""
row = (
session.execute(
select(sa.literal(True)).select_from(Asset).where(Asset.hash == asset_hash).limit(1)
)
).first()
return row is not None
def asset_info_exists_for_asset_id(
session: Session,
*,
asset_id: str,
) -> bool:
q = (
select(sa.literal(True))
.select_from(AssetInfo)
.where(AssetInfo.asset_id == asset_id)
.limit(1)
)
return (session.execute(q)).first() is not None
def get_asset_by_hash(
session: Session,
*,
asset_hash: str,
) -> Asset | None:
return (
session.execute(select(Asset).where(Asset.hash == asset_hash).limit(1))
).scalars().first()
def get_asset_info_by_id(
session: Session,
*,
asset_info_id: str,
) -> AssetInfo | None:
return session.get(AssetInfo, asset_info_id)
def list_asset_infos_page(
session: Session,
owner_id: str = "",
include_tags: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
name_contains: str | None = None,
metadata_filter: dict | None = None,
limit: int = 20,
offset: int = 0,
sort: str = "created_at",
order: str = "desc",
) -> tuple[list[AssetInfo], dict[str, list[str]], int]:
base = (
select(AssetInfo)
.join(Asset, Asset.id == AssetInfo.asset_id)
.options(contains_eager(AssetInfo.asset), noload(AssetInfo.tags))
.where(visible_owner_clause(owner_id))
)
if name_contains:
escaped, esc = escape_like_prefix(name_contains)
base = base.where(AssetInfo.name.ilike(f"%{escaped}%", escape=esc))
base = apply_tag_filters(base, include_tags, exclude_tags)
base = apply_metadata_filter(base, metadata_filter)
sort = (sort or "created_at").lower()
order = (order or "desc").lower()
sort_map = {
"name": AssetInfo.name,
"created_at": AssetInfo.created_at,
"updated_at": AssetInfo.updated_at,
"last_access_time": AssetInfo.last_access_time,
"size": Asset.size_bytes,
}
sort_col = sort_map.get(sort, AssetInfo.created_at)
sort_exp = sort_col.desc() if order == "desc" else sort_col.asc()
base = base.order_by(sort_exp).limit(limit).offset(offset)
count_stmt = (
select(sa.func.count())
.select_from(AssetInfo)
.join(Asset, Asset.id == AssetInfo.asset_id)
.where(visible_owner_clause(owner_id))
)
if name_contains:
escaped, esc = escape_like_prefix(name_contains)
count_stmt = count_stmt.where(AssetInfo.name.ilike(f"%{escaped}%", escape=esc))
count_stmt = apply_tag_filters(count_stmt, include_tags, exclude_tags)
count_stmt = apply_metadata_filter(count_stmt, metadata_filter)
total = int((session.execute(count_stmt)).scalar_one() or 0)
infos = (session.execute(base)).unique().scalars().all()
id_list: list[str] = [i.id for i in infos]
tag_map: dict[str, list[str]] = defaultdict(list)
if id_list:
rows = session.execute(
select(AssetInfoTag.asset_info_id, Tag.name)
.join(Tag, Tag.name == AssetInfoTag.tag_name)
.where(AssetInfoTag.asset_info_id.in_(id_list))
)
for aid, tag_name in rows.all():
tag_map[aid].append(tag_name)
return infos, tag_map, total
def fetch_asset_info_asset_and_tags(
session: Session,
asset_info_id: str,
owner_id: str = "",
) -> tuple[AssetInfo, Asset, list[str]] | None:
stmt = (
select(AssetInfo, Asset, Tag.name)
.join(Asset, Asset.id == AssetInfo.asset_id)
.join(AssetInfoTag, AssetInfoTag.asset_info_id == AssetInfo.id, isouter=True)
.join(Tag, Tag.name == AssetInfoTag.tag_name, isouter=True)
.where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
.options(noload(AssetInfo.tags))
.order_by(Tag.name.asc())
)
rows = (session.execute(stmt)).all()
if not rows:
return None
first_info, first_asset, _ = rows[0]
tags: list[str] = []
seen: set[str] = set()
for _info, _asset, tag_name in rows:
if tag_name and tag_name not in seen:
seen.add(tag_name)
tags.append(tag_name)
return first_info, first_asset, tags
def fetch_asset_info_and_asset(
session: Session,
*,
asset_info_id: str,
owner_id: str = "",
) -> tuple[AssetInfo, Asset] | None:
stmt = (
select(AssetInfo, Asset)
.join(Asset, Asset.id == AssetInfo.asset_id)
.where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
.limit(1)
.options(noload(AssetInfo.tags))
)
row = session.execute(stmt)
pair = row.first()
if not pair:
return None
return pair[0], pair[1]
def list_cache_states_by_asset_id(
session: Session, *, asset_id: str
) -> Sequence[AssetCacheState]:
return (
session.execute(
select(AssetCacheState)
.where(AssetCacheState.asset_id == asset_id)
.order_by(AssetCacheState.id.asc())
)
).scalars().all()
def touch_asset_info_by_id(
session: Session,
*,
asset_info_id: str,
ts: datetime | None = None,
only_if_newer: bool = True,
) -> None:
ts = ts or utcnow()
stmt = sa.update(AssetInfo).where(AssetInfo.id == asset_info_id)
if only_if_newer:
stmt = stmt.where(
sa.or_(AssetInfo.last_access_time.is_(None), AssetInfo.last_access_time < ts)
)
session.execute(stmt.values(last_access_time=ts))
def create_asset_info_for_existing_asset(
session: Session,
*,
asset_hash: str,
name: str,
user_metadata: dict | None = None,
tags: Sequence[str] | None = None,
tag_origin: str = "manual",
owner_id: str = "",
) -> AssetInfo:
"""Create or return an existing AssetInfo for an Asset identified by asset_hash."""
now = utcnow()
asset = get_asset_by_hash(session, asset_hash=asset_hash)
if not asset:
raise ValueError(f"Unknown asset hash {asset_hash}")
info = AssetInfo(
owner_id=owner_id,
name=name,
asset_id=asset.id,
preview_id=None,
created_at=now,
updated_at=now,
last_access_time=now,
)
try:
with session.begin_nested():
session.add(info)
session.flush()
except IntegrityError:
existing = (
session.execute(
select(AssetInfo)
.options(noload(AssetInfo.tags))
.where(
AssetInfo.asset_id == asset.id,
AssetInfo.name == name,
AssetInfo.owner_id == owner_id,
)
.limit(1)
)
).unique().scalars().first()
if not existing:
raise RuntimeError("AssetInfo upsert failed to find existing row after conflict.")
return existing
# metadata["filename"] hack
new_meta = dict(user_metadata or {})
computed_filename = None
try:
p = pick_best_live_path(list_cache_states_by_asset_id(session, asset_id=asset.id))
if p:
computed_filename = compute_relative_filename(p)
except Exception:
computed_filename = None
if computed_filename:
new_meta["filename"] = computed_filename
if new_meta:
replace_asset_info_metadata_projection(
session,
asset_info_id=info.id,
user_metadata=new_meta,
)
if tags is not None:
set_asset_info_tags(
session,
asset_info_id=info.id,
tags=tags,
origin=tag_origin,
)
return info
def set_asset_info_tags(
session: Session,
*,
asset_info_id: str,
tags: Sequence[str],
origin: str = "manual",
) -> dict:
desired = normalize_tags(tags)
current = set(
tag_name for (tag_name,) in (
session.execute(select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id))
).all()
)
to_add = [t for t in desired if t not in current]
to_remove = [t for t in current if t not in desired]
if to_add:
ensure_tags_exist(session, to_add, tag_type="user")
session.add_all([
AssetInfoTag(asset_info_id=asset_info_id, tag_name=t, origin=origin, added_at=utcnow())
for t in to_add
])
session.flush()
if to_remove:
session.execute(
delete(AssetInfoTag)
.where(AssetInfoTag.asset_info_id == asset_info_id, AssetInfoTag.tag_name.in_(to_remove))
)
session.flush()
return {"added": to_add, "removed": to_remove, "total": desired}
def replace_asset_info_metadata_projection(
session: Session,
*,
asset_info_id: str,
user_metadata: dict | None = None,
) -> None:
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
info.user_metadata = user_metadata or {}
info.updated_at = utcnow()
session.flush()
session.execute(delete(AssetInfoMeta).where(AssetInfoMeta.asset_info_id == asset_info_id))
session.flush()
if not user_metadata:
return
rows: list[AssetInfoMeta] = []
for k, v in user_metadata.items():
for r in project_kv(k, v):
rows.append(
AssetInfoMeta(
asset_info_id=asset_info_id,
key=r["key"],
ordinal=int(r["ordinal"]),
val_str=r.get("val_str"),
val_num=r.get("val_num"),
val_bool=r.get("val_bool"),
val_json=r.get("val_json"),
)
)
if rows:
session.add_all(rows)
session.flush()
def ingest_fs_asset(
session: Session,
*,
asset_hash: str,
abs_path: str,
size_bytes: int,
mtime_ns: int,
mime_type: str | None = None,
info_name: str | None = None,
owner_id: str = "",
preview_id: str | None = None,
user_metadata: dict | None = None,
tags: Sequence[str] = (),
tag_origin: str = "manual",
require_existing_tags: bool = False,
) -> dict:
"""
Idempotently upsert:
- Asset by content hash (create if missing)
- AssetCacheState(file_path) pointing to asset_id
- Optionally AssetInfo + tag links and metadata projection
Returns flags and ids.
"""
locator = os.path.abspath(abs_path)
now = utcnow()
if preview_id:
if not session.get(Asset, preview_id):
preview_id = None
out: dict[str, Any] = {
"asset_created": False,
"asset_updated": False,
"state_created": False,
"state_updated": False,
"asset_info_id": None,
}
# 1) Asset by hash
asset = (
session.execute(select(Asset).where(Asset.hash == asset_hash).limit(1))
).scalars().first()
if not asset:
vals = {
"hash": asset_hash,
"size_bytes": int(size_bytes),
"mime_type": mime_type,
"created_at": now,
}
res = session.execute(
sqlite.insert(Asset)
.values(**vals)
.on_conflict_do_nothing(index_elements=[Asset.hash])
)
if int(res.rowcount or 0) > 0:
out["asset_created"] = True
asset = (
session.execute(
select(Asset).where(Asset.hash == asset_hash).limit(1)
)
).scalars().first()
if not asset:
raise RuntimeError("Asset row not found after upsert.")
else:
changed = False
if asset.size_bytes != int(size_bytes) and int(size_bytes) > 0:
asset.size_bytes = int(size_bytes)
changed = True
if mime_type and asset.mime_type != mime_type:
asset.mime_type = mime_type
changed = True
if changed:
out["asset_updated"] = True
# 2) AssetCacheState upsert by file_path (unique)
vals = {
"asset_id": asset.id,
"file_path": locator,
"mtime_ns": int(mtime_ns),
}
ins = (
sqlite.insert(AssetCacheState)
.values(**vals)
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
)
res = session.execute(ins)
if int(res.rowcount or 0) > 0:
out["state_created"] = True
else:
upd = (
sa.update(AssetCacheState)
.where(AssetCacheState.file_path == locator)
.where(
sa.or_(
AssetCacheState.asset_id != asset.id,
AssetCacheState.mtime_ns.is_(None),
AssetCacheState.mtime_ns != int(mtime_ns),
)
)
.values(asset_id=asset.id, mtime_ns=int(mtime_ns))
)
res2 = session.execute(upd)
if int(res2.rowcount or 0) > 0:
out["state_updated"] = True
# 3) Optional AssetInfo + tags + metadata
if info_name:
try:
with session.begin_nested():
info = AssetInfo(
owner_id=owner_id,
name=info_name,
asset_id=asset.id,
preview_id=preview_id,
created_at=now,
updated_at=now,
last_access_time=now,
)
session.add(info)
session.flush()
out["asset_info_id"] = info.id
except IntegrityError:
pass
existing_info = (
session.execute(
select(AssetInfo)
.where(
AssetInfo.asset_id == asset.id,
AssetInfo.name == info_name,
(AssetInfo.owner_id == owner_id),
)
.limit(1)
)
).unique().scalar_one_or_none()
if not existing_info:
raise RuntimeError("Failed to update or insert AssetInfo.")
if preview_id and existing_info.preview_id != preview_id:
existing_info.preview_id = preview_id
existing_info.updated_at = now
if existing_info.last_access_time < now:
existing_info.last_access_time = now
session.flush()
out["asset_info_id"] = existing_info.id
norm = [t.strip().lower() for t in (tags or []) if (t or "").strip()]
if norm and out["asset_info_id"] is not None:
if not require_existing_tags:
ensure_tags_exist(session, norm, tag_type="user")
existing_tag_names = set(
name for (name,) in (session.execute(select(Tag.name).where(Tag.name.in_(norm)))).all()
)
missing = [t for t in norm if t not in existing_tag_names]
if missing and require_existing_tags:
raise ValueError(f"Unknown tags: {missing}")
existing_links = set(
tag_name
for (tag_name,) in (
session.execute(
select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == out["asset_info_id"])
)
).all()
)
to_add = [t for t in norm if t in existing_tag_names and t not in existing_links]
if to_add:
session.add_all(
[
AssetInfoTag(
asset_info_id=out["asset_info_id"],
tag_name=t,
origin=tag_origin,
added_at=now,
)
for t in to_add
]
)
session.flush()
# metadata["filename"] hack
if out["asset_info_id"] is not None:
primary_path = pick_best_live_path(list_cache_states_by_asset_id(session, asset_id=asset.id))
computed_filename = compute_relative_filename(primary_path) if primary_path else None
current_meta = existing_info.user_metadata or {}
new_meta = dict(current_meta)
if user_metadata is not None:
for k, v in user_metadata.items():
new_meta[k] = v
if computed_filename:
new_meta["filename"] = computed_filename
if new_meta != current_meta:
replace_asset_info_metadata_projection(
session,
asset_info_id=out["asset_info_id"],
user_metadata=new_meta,
)
try:
remove_missing_tag_for_asset_id(session, asset_id=asset.id)
except Exception:
logging.exception("Failed to clear 'missing' tag for asset %s", asset.id)
return out
def update_asset_info_full(
session: Session,
*,
asset_info_id: str,
name: str | None = None,
tags: Sequence[str] | None = None,
user_metadata: dict | None = None,
tag_origin: str = "manual",
asset_info_row: Any = None,
) -> AssetInfo:
if not asset_info_row:
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
else:
info = asset_info_row
touched = False
if name is not None and name != info.name:
info.name = name
touched = True
computed_filename = None
try:
p = pick_best_live_path(list_cache_states_by_asset_id(session, asset_id=info.asset_id))
if p:
computed_filename = compute_relative_filename(p)
except Exception:
computed_filename = None
if user_metadata is not None:
new_meta = dict(user_metadata)
if computed_filename:
new_meta["filename"] = computed_filename
replace_asset_info_metadata_projection(
session, asset_info_id=asset_info_id, user_metadata=new_meta
)
touched = True
else:
if computed_filename:
current_meta = info.user_metadata or {}
if current_meta.get("filename") != computed_filename:
new_meta = dict(current_meta)
new_meta["filename"] = computed_filename
replace_asset_info_metadata_projection(
session, asset_info_id=asset_info_id, user_metadata=new_meta
)
touched = True
if tags is not None:
set_asset_info_tags(
session,
asset_info_id=asset_info_id,
tags=tags,
origin=tag_origin,
)
touched = True
if touched and user_metadata is None:
info.updated_at = utcnow()
session.flush()
return info
def delete_asset_info_by_id(
session: Session,
*,
asset_info_id: str,
owner_id: str,
) -> bool:
stmt = sa.delete(AssetInfo).where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
return int((session.execute(stmt)).rowcount or 0) > 0
def list_tags_with_usage(
session: Session,
prefix: str | None = None,
limit: int = 100,
offset: int = 0,
include_zero: bool = True,
order: str = "count_desc",
owner_id: str = "",
) -> tuple[list[tuple[str, str, int]], int]:
counts_sq = (
select(
AssetInfoTag.tag_name.label("tag_name"),
func.count(AssetInfoTag.asset_info_id).label("cnt"),
)
.select_from(AssetInfoTag)
.join(AssetInfo, AssetInfo.id == AssetInfoTag.asset_info_id)
.where(visible_owner_clause(owner_id))
.group_by(AssetInfoTag.tag_name)
.subquery()
)
q = (
select(
Tag.name,
Tag.tag_type,
func.coalesce(counts_sq.c.cnt, 0).label("count"),
)
.select_from(Tag)
.join(counts_sq, counts_sq.c.tag_name == Tag.name, isouter=True)
)
if prefix:
escaped, esc = escape_like_prefix(prefix.strip().lower())
q = q.where(Tag.name.like(escaped + "%", escape=esc))
if not include_zero:
q = q.where(func.coalesce(counts_sq.c.cnt, 0) > 0)
if order == "name_asc":
q = q.order_by(Tag.name.asc())
else:
q = q.order_by(func.coalesce(counts_sq.c.cnt, 0).desc(), Tag.name.asc())
total_q = select(func.count()).select_from(Tag)
if prefix:
escaped, esc = escape_like_prefix(prefix.strip().lower())
total_q = total_q.where(Tag.name.like(escaped + "%", escape=esc))
if not include_zero:
total_q = total_q.where(
Tag.name.in_(select(AssetInfoTag.tag_name).group_by(AssetInfoTag.tag_name))
)
rows = (session.execute(q.limit(limit).offset(offset))).all()
total = (session.execute(total_q)).scalar_one()
rows_norm = [(name, ttype, int(count or 0)) for (name, ttype, count) in rows]
return rows_norm, int(total or 0)
def ensure_tags_exist(session: Session, names: Iterable[str], tag_type: str = "user") -> None:
wanted = normalize_tags(list(names))
if not wanted:
return
rows = [{"name": n, "tag_type": tag_type} for n in list(dict.fromkeys(wanted))]
ins = (
sqlite.insert(Tag)
.values(rows)
.on_conflict_do_nothing(index_elements=[Tag.name])
)
session.execute(ins)
def get_asset_tags(session: Session, *, asset_info_id: str) -> list[str]:
return [
tag_name for (tag_name,) in (
session.execute(
select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
]
def add_tags_to_asset_info(
session: Session,
*,
asset_info_id: str,
tags: Sequence[str],
origin: str = "manual",
create_if_missing: bool = True,
asset_info_row: Any = None,
) -> dict:
if not asset_info_row:
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
norm = normalize_tags(tags)
if not norm:
total = get_asset_tags(session, asset_info_id=asset_info_id)
return {"added": [], "already_present": [], "total_tags": total}
if create_if_missing:
ensure_tags_exist(session, norm, tag_type="user")
current = {
tag_name
for (tag_name,) in (
session.execute(
sa.select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
}
want = set(norm)
to_add = sorted(want - current)
if to_add:
with session.begin_nested() as nested:
try:
session.add_all(
[
AssetInfoTag(
asset_info_id=asset_info_id,
tag_name=t,
origin=origin,
added_at=utcnow(),
)
for t in to_add
]
)
session.flush()
except IntegrityError:
nested.rollback()
after = set(get_asset_tags(session, asset_info_id=asset_info_id))
return {
"added": sorted(((after - current) & want)),
"already_present": sorted(want & current),
"total_tags": sorted(after),
}
def remove_tags_from_asset_info(
session: Session,
*,
asset_info_id: str,
tags: Sequence[str],
) -> dict:
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
norm = normalize_tags(tags)
if not norm:
total = get_asset_tags(session, asset_info_id=asset_info_id)
return {"removed": [], "not_present": [], "total_tags": total}
existing = {
tag_name
for (tag_name,) in (
session.execute(
sa.select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
}
to_remove = sorted(set(t for t in norm if t in existing))
not_present = sorted(set(t for t in norm if t not in existing))
if to_remove:
session.execute(
delete(AssetInfoTag)
.where(
AssetInfoTag.asset_info_id == asset_info_id,
AssetInfoTag.tag_name.in_(to_remove),
)
)
session.flush()
total = get_asset_tags(session, asset_info_id=asset_info_id)
return {"removed": to_remove, "not_present": not_present, "total_tags": total}
def remove_missing_tag_for_asset_id(
session: Session,
*,
asset_id: str,
) -> None:
session.execute(
sa.delete(AssetInfoTag).where(
AssetInfoTag.asset_info_id.in_(sa.select(AssetInfo.id).where(AssetInfo.asset_id == asset_id)),
AssetInfoTag.tag_name == "missing",
)
)
def set_asset_info_preview(
session: Session,
*,
asset_info_id: str,
preview_asset_id: str | None = None,
) -> None:
"""Set or clear preview_id and bump updated_at. Raises on unknown IDs."""
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if preview_asset_id is None:
info.preview_id = None
else:
# validate preview asset exists
if not session.get(Asset, preview_asset_id):
raise ValueError(f"Preview Asset {preview_asset_id} not found")
info.preview_id = preview_asset_id
info.updated_at = utcnow()
session.flush()

View File

@ -1,57 +0,0 @@
from .content import (
check_fs_asset_exists_quick,
compute_hash_and_dedup_for_cache_state,
ingest_fs_asset,
list_cache_states_with_asset_under_prefixes,
list_unhashed_candidates_under_prefixes,
list_verify_candidates_under_prefixes,
redirect_all_references_then_delete_asset,
touch_asset_infos_by_fs_path,
)
from .info import (
add_tags_to_asset_info,
create_asset_info_for_existing_asset,
delete_asset_info_by_id,
fetch_asset_info_and_asset,
fetch_asset_info_asset_and_tags,
get_asset_tags,
list_asset_infos_page,
list_tags_with_usage,
remove_tags_from_asset_info,
replace_asset_info_metadata_projection,
set_asset_info_preview,
set_asset_info_tags,
touch_asset_info_by_id,
update_asset_info_full,
)
from .queries import (
asset_exists_by_hash,
asset_info_exists_for_asset_id,
get_asset_by_hash,
get_asset_info_by_id,
get_cache_state_by_asset_id,
list_cache_states_by_asset_id,
pick_best_live_path,
)
__all__ = [
# queries
"asset_exists_by_hash", "get_asset_by_hash", "get_asset_info_by_id", "asset_info_exists_for_asset_id",
"get_cache_state_by_asset_id",
"list_cache_states_by_asset_id",
"pick_best_live_path",
# info
"list_asset_infos_page", "create_asset_info_for_existing_asset", "set_asset_info_tags",
"update_asset_info_full", "replace_asset_info_metadata_projection",
"touch_asset_info_by_id", "delete_asset_info_by_id",
"add_tags_to_asset_info", "remove_tags_from_asset_info",
"get_asset_tags", "list_tags_with_usage", "set_asset_info_preview",
"fetch_asset_info_and_asset", "fetch_asset_info_asset_and_tags",
# content
"check_fs_asset_exists_quick",
"redirect_all_references_then_delete_asset",
"compute_hash_and_dedup_for_cache_state",
"list_unhashed_candidates_under_prefixes", "list_verify_candidates_under_prefixes",
"ingest_fs_asset", "touch_asset_infos_by_fs_path",
"list_cache_states_with_asset_under_prefixes",
]

View File

@ -1,721 +0,0 @@
import contextlib
import logging
import os
from datetime import datetime
from typing import Any, Optional, Sequence, Union
import sqlalchemy as sa
from sqlalchemy import select
from sqlalchemy.dialects import postgresql as d_pg
from sqlalchemy.dialects import sqlite as d_sqlite
from sqlalchemy.exc import IntegrityError
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.orm import noload
from ..._helpers import compute_relative_filename
from ...storage import hashing as hashing_mod
from ..helpers import (
ensure_tags_exist,
escape_like_prefix,
remove_missing_tag_for_asset_id,
)
from ..models import Asset, AssetCacheState, AssetInfo, AssetInfoTag, Tag
from ..timeutil import utcnow
from .info import replace_asset_info_metadata_projection
from .queries import list_cache_states_by_asset_id, pick_best_live_path
async def check_fs_asset_exists_quick(
session: AsyncSession,
*,
file_path: str,
size_bytes: Optional[int] = None,
mtime_ns: Optional[int] = None,
) -> bool:
"""Returns True if we already track this absolute path with a HASHED asset and the cached mtime/size match."""
locator = os.path.abspath(file_path)
stmt = (
sa.select(sa.literal(True))
.select_from(AssetCacheState)
.join(Asset, Asset.id == AssetCacheState.asset_id)
.where(
AssetCacheState.file_path == locator,
Asset.hash.isnot(None),
AssetCacheState.needs_verify.is_(False),
)
.limit(1)
)
conds = []
if mtime_ns is not None:
conds.append(AssetCacheState.mtime_ns == int(mtime_ns))
if size_bytes is not None:
conds.append(sa.or_(Asset.size_bytes == 0, Asset.size_bytes == int(size_bytes)))
if conds:
stmt = stmt.where(*conds)
return (await session.execute(stmt)).first() is not None
async def redirect_all_references_then_delete_asset(
session: AsyncSession,
*,
duplicate_asset_id: str,
canonical_asset_id: str,
) -> None:
"""
Safely migrate all references from duplicate_asset_id to canonical_asset_id.
- If an AssetInfo for (owner_id, name) already exists on the canonical asset,
merge tags, metadata, times, and preview, then delete the duplicate AssetInfo.
- Otherwise, simply repoint the AssetInfo.asset_id.
- Always retarget AssetCacheState rows.
- Finally delete the duplicate Asset row.
"""
if duplicate_asset_id == canonical_asset_id:
return
# 1) Migrate AssetInfo rows one-by-one to avoid UNIQUE conflicts.
dup_infos = (
await session.execute(
select(AssetInfo).options(noload(AssetInfo.tags)).where(AssetInfo.asset_id == duplicate_asset_id)
)
).unique().scalars().all()
for info in dup_infos:
# Try to find an existing collision on canonical
existing = (
await session.execute(
select(AssetInfo)
.options(noload(AssetInfo.tags))
.where(
AssetInfo.asset_id == canonical_asset_id,
AssetInfo.owner_id == info.owner_id,
AssetInfo.name == info.name,
)
.limit(1)
)
).unique().scalars().first()
if existing:
merged_meta = dict(existing.user_metadata or {})
other_meta = info.user_metadata or {}
for k, v in other_meta.items():
if k not in merged_meta:
merged_meta[k] = v
if merged_meta != (existing.user_metadata or {}):
await replace_asset_info_metadata_projection(
session,
asset_info_id=existing.id,
user_metadata=merged_meta,
)
existing_tags = {
t for (t,) in (
await session.execute(
select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == existing.id)
)
).all()
}
from_tags = {
t for (t,) in (
await session.execute(
select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == info.id)
)
).all()
}
to_add = sorted(from_tags - existing_tags)
if to_add:
await ensure_tags_exist(session, to_add, tag_type="user")
now = utcnow()
session.add_all([
AssetInfoTag(asset_info_id=existing.id, tag_name=t, origin="automatic", added_at=now)
for t in to_add
])
await session.flush()
if existing.preview_id is None and info.preview_id is not None:
existing.preview_id = info.preview_id
if info.last_access_time and (
existing.last_access_time is None or info.last_access_time > existing.last_access_time
):
existing.last_access_time = info.last_access_time
existing.updated_at = utcnow()
await session.flush()
# Delete the duplicate AssetInfo (cascades will clean its tags/meta)
await session.delete(info)
await session.flush()
else:
# Simple retarget
info.asset_id = canonical_asset_id
info.updated_at = utcnow()
await session.flush()
# 2) Repoint cache states and previews
await session.execute(
sa.update(AssetCacheState)
.where(AssetCacheState.asset_id == duplicate_asset_id)
.values(asset_id=canonical_asset_id)
)
await session.execute(
sa.update(AssetInfo)
.where(AssetInfo.preview_id == duplicate_asset_id)
.values(preview_id=canonical_asset_id)
)
# 3) Remove duplicate Asset
dup = await session.get(Asset, duplicate_asset_id)
if dup:
await session.delete(dup)
await session.flush()
async def compute_hash_and_dedup_for_cache_state(
session: AsyncSession,
*,
state_id: int,
) -> Optional[str]:
"""
Compute hash for the given cache state, deduplicate, and settle verify cases.
Returns the asset_id that this state ends up pointing to, or None if file disappeared.
"""
state = await session.get(AssetCacheState, state_id)
if not state:
return None
path = state.file_path
try:
if not os.path.isfile(path):
# File vanished: drop the state. If the Asset has hash=NULL and has no other states, drop the Asset too.
asset = await session.get(Asset, state.asset_id)
await session.delete(state)
await session.flush()
if asset and asset.hash is None:
remaining = (
await session.execute(
sa.select(sa.func.count())
.select_from(AssetCacheState)
.where(AssetCacheState.asset_id == asset.id)
)
).scalar_one()
if int(remaining or 0) == 0:
await session.delete(asset)
await session.flush()
else:
await _recompute_and_apply_filename_for_asset(session, asset_id=asset.id)
return None
digest = await hashing_mod.blake3_hash(path)
new_hash = f"blake3:{digest}"
st = os.stat(path, follow_symlinks=True)
new_size = int(st.st_size)
mtime_ns = getattr(st, "st_mtime_ns", int(st.st_mtime * 1_000_000_000))
# Current asset of this state
this_asset = await session.get(Asset, state.asset_id)
# If the state got orphaned somehow (race), just reattach appropriately.
if not this_asset:
canonical = (
await session.execute(sa.select(Asset).where(Asset.hash == new_hash).limit(1))
).scalars().first()
if canonical:
state.asset_id = canonical.id
else:
now = utcnow()
new_asset = Asset(hash=new_hash, size_bytes=new_size, mime_type=None, created_at=now)
session.add(new_asset)
await session.flush()
state.asset_id = new_asset.id
state.mtime_ns = mtime_ns
state.needs_verify = False
with contextlib.suppress(Exception):
await remove_missing_tag_for_asset_id(session, asset_id=state.asset_id)
await session.flush()
return state.asset_id
# 1) Seed asset case (hash is NULL): claim or merge into canonical
if this_asset.hash is None:
canonical = (
await session.execute(sa.select(Asset).where(Asset.hash == new_hash).limit(1))
).scalars().first()
if canonical and canonical.id != this_asset.id:
# Merge seed asset into canonical (safe, collision-aware)
await redirect_all_references_then_delete_asset(
session,
duplicate_asset_id=this_asset.id,
canonical_asset_id=canonical.id,
)
state = await session.get(AssetCacheState, state_id)
if state:
state.mtime_ns = mtime_ns
state.needs_verify = False
with contextlib.suppress(Exception):
await remove_missing_tag_for_asset_id(session, asset_id=canonical.id)
await _recompute_and_apply_filename_for_asset(session, asset_id=canonical.id)
await session.flush()
return canonical.id
# No canonical: try to claim the hash; handle races with a SAVEPOINT
try:
async with session.begin_nested():
this_asset.hash = new_hash
if int(this_asset.size_bytes or 0) == 0 and new_size > 0:
this_asset.size_bytes = new_size
await session.flush()
except IntegrityError:
# Someone else claimed it concurrently; fetch canonical and merge
canonical = (
await session.execute(sa.select(Asset).where(Asset.hash == new_hash).limit(1))
).scalars().first()
if canonical and canonical.id != this_asset.id:
await redirect_all_references_then_delete_asset(
session,
duplicate_asset_id=this_asset.id,
canonical_asset_id=canonical.id,
)
state = await session.get(AssetCacheState, state_id)
if state:
state.mtime_ns = mtime_ns
state.needs_verify = False
with contextlib.suppress(Exception):
await remove_missing_tag_for_asset_id(session, asset_id=canonical.id)
await _recompute_and_apply_filename_for_asset(session, asset_id=canonical.id)
await session.flush()
return canonical.id
# If we got here, the integrity error was not about hash uniqueness
raise
# Claimed successfully
state.mtime_ns = mtime_ns
state.needs_verify = False
with contextlib.suppress(Exception):
await remove_missing_tag_for_asset_id(session, asset_id=this_asset.id)
await _recompute_and_apply_filename_for_asset(session, asset_id=this_asset.id)
await session.flush()
return this_asset.id
# 2) Verify case for hashed assets
if this_asset.hash == new_hash:
if int(this_asset.size_bytes or 0) == 0 and new_size > 0:
this_asset.size_bytes = new_size
state.mtime_ns = mtime_ns
state.needs_verify = False
with contextlib.suppress(Exception):
await remove_missing_tag_for_asset_id(session, asset_id=this_asset.id)
await _recompute_and_apply_filename_for_asset(session, asset_id=this_asset.id)
await session.flush()
return this_asset.id
# Content changed on this path only: retarget THIS state, do not move AssetInfo rows
canonical = (
await session.execute(sa.select(Asset).where(Asset.hash == new_hash).limit(1))
).scalars().first()
if canonical:
target_id = canonical.id
else:
now = utcnow()
new_asset = Asset(hash=new_hash, size_bytes=new_size, mime_type=None, created_at=now)
session.add(new_asset)
await session.flush()
target_id = new_asset.id
state.asset_id = target_id
state.mtime_ns = mtime_ns
state.needs_verify = False
with contextlib.suppress(Exception):
await remove_missing_tag_for_asset_id(session, asset_id=target_id)
await _recompute_and_apply_filename_for_asset(session, asset_id=target_id)
await session.flush()
return target_id
except Exception:
raise
async def list_unhashed_candidates_under_prefixes(session: AsyncSession, *, prefixes: list[str]) -> list[int]:
if not prefixes:
return []
conds = []
for p in prefixes:
base = os.path.abspath(p)
if not base.endswith(os.sep):
base += os.sep
escaped, esc = escape_like_prefix(base)
conds.append(AssetCacheState.file_path.like(escaped + "%", escape=esc))
path_filter = sa.or_(*conds) if len(conds) > 1 else conds[0]
if session.bind.dialect.name == "postgresql":
stmt = (
sa.select(AssetCacheState.id)
.join(Asset, Asset.id == AssetCacheState.asset_id)
.where(Asset.hash.is_(None), path_filter)
.order_by(AssetCacheState.asset_id.asc(), AssetCacheState.id.asc())
.distinct(AssetCacheState.asset_id)
)
else:
first_id = sa.func.min(AssetCacheState.id).label("first_id")
stmt = (
sa.select(first_id)
.join(Asset, Asset.id == AssetCacheState.asset_id)
.where(Asset.hash.is_(None), path_filter)
.group_by(AssetCacheState.asset_id)
.order_by(first_id.asc())
)
return [int(x) for x in (await session.execute(stmt)).scalars().all()]
async def list_verify_candidates_under_prefixes(
session: AsyncSession, *, prefixes: Sequence[str]
) -> Union[list[int], Sequence[int]]:
if not prefixes:
return []
conds = []
for p in prefixes:
base = os.path.abspath(p)
if not base.endswith(os.sep):
base += os.sep
escaped, esc = escape_like_prefix(base)
conds.append(AssetCacheState.file_path.like(escaped + "%", escape=esc))
return (
await session.execute(
sa.select(AssetCacheState.id)
.where(AssetCacheState.needs_verify.is_(True))
.where(sa.or_(*conds))
.order_by(AssetCacheState.id.asc())
)
).scalars().all()
async def ingest_fs_asset(
session: AsyncSession,
*,
asset_hash: str,
abs_path: str,
size_bytes: int,
mtime_ns: int,
mime_type: Optional[str] = None,
info_name: Optional[str] = None,
owner_id: str = "",
preview_id: Optional[str] = None,
user_metadata: Optional[dict] = None,
tags: Sequence[str] = (),
tag_origin: str = "manual",
require_existing_tags: bool = False,
) -> dict:
"""
Idempotently upsert:
- Asset by content hash (create if missing)
- AssetCacheState(file_path) pointing to asset_id
- Optionally AssetInfo + tag links and metadata projection
Returns flags and ids.
"""
locator = os.path.abspath(abs_path)
now = utcnow()
dialect = session.bind.dialect.name
if preview_id:
if not await session.get(Asset, preview_id):
preview_id = None
out: dict[str, Any] = {
"asset_created": False,
"asset_updated": False,
"state_created": False,
"state_updated": False,
"asset_info_id": None,
}
# 1) Asset by hash
asset = (
await session.execute(select(Asset).where(Asset.hash == asset_hash).limit(1))
).scalars().first()
if not asset:
vals = {
"hash": asset_hash,
"size_bytes": int(size_bytes),
"mime_type": mime_type,
"created_at": now,
}
if dialect == "sqlite":
res = await session.execute(
d_sqlite.insert(Asset)
.values(**vals)
.on_conflict_do_nothing(index_elements=[Asset.hash])
)
if int(res.rowcount or 0) > 0:
out["asset_created"] = True
asset = (
await session.execute(
select(Asset).where(Asset.hash == asset_hash).limit(1)
)
).scalars().first()
elif dialect == "postgresql":
res = await session.execute(
d_pg.insert(Asset)
.values(**vals)
.on_conflict_do_nothing(
index_elements=[Asset.hash],
index_where=Asset.__table__.c.hash.isnot(None),
)
.returning(Asset.id)
)
inserted_id = res.scalar_one_or_none()
if inserted_id:
out["asset_created"] = True
asset = await session.get(Asset, inserted_id)
else:
asset = (
await session.execute(
select(Asset).where(Asset.hash == asset_hash).limit(1)
)
).scalars().first()
else:
raise NotImplementedError(f"Unsupported database dialect: {dialect}")
if not asset:
raise RuntimeError("Asset row not found after upsert.")
else:
changed = False
if asset.size_bytes != int(size_bytes) and int(size_bytes) > 0:
asset.size_bytes = int(size_bytes)
changed = True
if mime_type and asset.mime_type != mime_type:
asset.mime_type = mime_type
changed = True
if changed:
out["asset_updated"] = True
# 2) AssetCacheState upsert by file_path (unique)
vals = {
"asset_id": asset.id,
"file_path": locator,
"mtime_ns": int(mtime_ns),
}
if dialect == "sqlite":
ins = (
d_sqlite.insert(AssetCacheState)
.values(**vals)
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
)
elif dialect == "postgresql":
ins = (
d_pg.insert(AssetCacheState)
.values(**vals)
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
)
else:
raise NotImplementedError(f"Unsupported database dialect: {dialect}")
res = await session.execute(ins)
if int(res.rowcount or 0) > 0:
out["state_created"] = True
else:
upd = (
sa.update(AssetCacheState)
.where(AssetCacheState.file_path == locator)
.where(
sa.or_(
AssetCacheState.asset_id != asset.id,
AssetCacheState.mtime_ns.is_(None),
AssetCacheState.mtime_ns != int(mtime_ns),
)
)
.values(asset_id=asset.id, mtime_ns=int(mtime_ns))
)
res2 = await session.execute(upd)
if int(res2.rowcount or 0) > 0:
out["state_updated"] = True
# 3) Optional AssetInfo + tags + metadata
if info_name:
try:
async with session.begin_nested():
info = AssetInfo(
owner_id=owner_id,
name=info_name,
asset_id=asset.id,
preview_id=preview_id,
created_at=now,
updated_at=now,
last_access_time=now,
)
session.add(info)
await session.flush()
out["asset_info_id"] = info.id
except IntegrityError:
pass
existing_info = (
await session.execute(
select(AssetInfo)
.where(
AssetInfo.asset_id == asset.id,
AssetInfo.name == info_name,
(AssetInfo.owner_id == owner_id),
)
.limit(1)
)
).unique().scalar_one_or_none()
if not existing_info:
raise RuntimeError("Failed to update or insert AssetInfo.")
if preview_id and existing_info.preview_id != preview_id:
existing_info.preview_id = preview_id
existing_info.updated_at = now
if existing_info.last_access_time < now:
existing_info.last_access_time = now
await session.flush()
out["asset_info_id"] = existing_info.id
norm = [t.strip().lower() for t in (tags or []) if (t or "").strip()]
if norm and out["asset_info_id"] is not None:
if not require_existing_tags:
await ensure_tags_exist(session, norm, tag_type="user")
existing_tag_names = set(
name for (name,) in (await session.execute(select(Tag.name).where(Tag.name.in_(norm)))).all()
)
missing = [t for t in norm if t not in existing_tag_names]
if missing and require_existing_tags:
raise ValueError(f"Unknown tags: {missing}")
existing_links = set(
tag_name
for (tag_name,) in (
await session.execute(
select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == out["asset_info_id"])
)
).all()
)
to_add = [t for t in norm if t in existing_tag_names and t not in existing_links]
if to_add:
session.add_all(
[
AssetInfoTag(
asset_info_id=out["asset_info_id"],
tag_name=t,
origin=tag_origin,
added_at=now,
)
for t in to_add
]
)
await session.flush()
# metadata["filename"] hack
if out["asset_info_id"] is not None:
primary_path = pick_best_live_path(await list_cache_states_by_asset_id(session, asset_id=asset.id))
computed_filename = compute_relative_filename(primary_path) if primary_path else None
current_meta = existing_info.user_metadata or {}
new_meta = dict(current_meta)
if user_metadata is not None:
for k, v in user_metadata.items():
new_meta[k] = v
if computed_filename:
new_meta["filename"] = computed_filename
if new_meta != current_meta:
await replace_asset_info_metadata_projection(
session,
asset_info_id=out["asset_info_id"],
user_metadata=new_meta,
)
try:
await remove_missing_tag_for_asset_id(session, asset_id=asset.id)
except Exception:
logging.exception("Failed to clear 'missing' tag for asset %s", asset.id)
return out
async def touch_asset_infos_by_fs_path(
session: AsyncSession,
*,
file_path: str,
ts: Optional[datetime] = None,
only_if_newer: bool = True,
) -> None:
locator = os.path.abspath(file_path)
ts = ts or utcnow()
stmt = sa.update(AssetInfo).where(
sa.exists(
sa.select(sa.literal(1))
.select_from(AssetCacheState)
.where(
AssetCacheState.asset_id == AssetInfo.asset_id,
AssetCacheState.file_path == locator,
)
)
)
if only_if_newer:
stmt = stmt.where(
sa.or_(
AssetInfo.last_access_time.is_(None),
AssetInfo.last_access_time < ts,
)
)
await session.execute(stmt.values(last_access_time=ts))
async def list_cache_states_with_asset_under_prefixes(
session: AsyncSession,
*,
prefixes: Sequence[str],
) -> list[tuple[AssetCacheState, Optional[str], int]]:
"""Return (AssetCacheState, asset_hash, size_bytes) for rows under any prefix."""
if not prefixes:
return []
conds = []
for p in prefixes:
if not p:
continue
base = os.path.abspath(p)
if not base.endswith(os.sep):
base = base + os.sep
escaped, esc = escape_like_prefix(base)
conds.append(AssetCacheState.file_path.like(escaped + "%", escape=esc))
if not conds:
return []
rows = (
await session.execute(
select(AssetCacheState, Asset.hash, Asset.size_bytes)
.join(Asset, Asset.id == AssetCacheState.asset_id)
.where(sa.or_(*conds))
.order_by(AssetCacheState.id.asc())
)
).all()
return [(r[0], r[1], int(r[2] or 0)) for r in rows]
async def _recompute_and_apply_filename_for_asset(session: AsyncSession, *, asset_id: str) -> None:
"""Compute filename from the first *existing* cache state path and apply it to all AssetInfo (if changed)."""
try:
primary_path = pick_best_live_path(await list_cache_states_by_asset_id(session, asset_id=asset_id))
if not primary_path:
return
new_filename = compute_relative_filename(primary_path)
if not new_filename:
return
infos = (
await session.execute(select(AssetInfo).where(AssetInfo.asset_id == asset_id))
).scalars().all()
for info in infos:
current_meta = info.user_metadata or {}
if current_meta.get("filename") == new_filename:
continue
updated = dict(current_meta)
updated["filename"] = new_filename
await replace_asset_info_metadata_projection(session, asset_info_id=info.id, user_metadata=updated)
except Exception:
logging.exception("Failed to recompute filename metadata for asset %s", asset_id)

View File

@ -1,586 +0,0 @@
from collections import defaultdict
from datetime import datetime
from typing import Any, Optional, Sequence
import sqlalchemy as sa
from sqlalchemy import delete, func, select
from sqlalchemy.exc import IntegrityError
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.orm import contains_eager, noload
from ..._helpers import compute_relative_filename, normalize_tags
from ..helpers import (
apply_metadata_filter,
apply_tag_filters,
ensure_tags_exist,
escape_like_prefix,
project_kv,
visible_owner_clause,
)
from ..models import Asset, AssetInfo, AssetInfoMeta, AssetInfoTag, Tag
from ..timeutil import utcnow
from .queries import (
get_asset_by_hash,
list_cache_states_by_asset_id,
pick_best_live_path,
)
async def list_asset_infos_page(
session: AsyncSession,
*,
owner_id: str = "",
include_tags: Optional[Sequence[str]] = None,
exclude_tags: Optional[Sequence[str]] = None,
name_contains: Optional[str] = None,
metadata_filter: Optional[dict] = None,
limit: int = 20,
offset: int = 0,
sort: str = "created_at",
order: str = "desc",
) -> tuple[list[AssetInfo], dict[str, list[str]], int]:
base = (
select(AssetInfo)
.join(Asset, Asset.id == AssetInfo.asset_id)
.options(contains_eager(AssetInfo.asset), noload(AssetInfo.tags))
.where(visible_owner_clause(owner_id))
)
if name_contains:
escaped, esc = escape_like_prefix(name_contains)
base = base.where(AssetInfo.name.ilike(f"%{escaped}%", escape=esc))
base = apply_tag_filters(base, include_tags, exclude_tags)
base = apply_metadata_filter(base, metadata_filter)
sort = (sort or "created_at").lower()
order = (order or "desc").lower()
sort_map = {
"name": AssetInfo.name,
"created_at": AssetInfo.created_at,
"updated_at": AssetInfo.updated_at,
"last_access_time": AssetInfo.last_access_time,
"size": Asset.size_bytes,
}
sort_col = sort_map.get(sort, AssetInfo.created_at)
sort_exp = sort_col.desc() if order == "desc" else sort_col.asc()
base = base.order_by(sort_exp).limit(limit).offset(offset)
count_stmt = (
select(func.count())
.select_from(AssetInfo)
.join(Asset, Asset.id == AssetInfo.asset_id)
.where(visible_owner_clause(owner_id))
)
if name_contains:
escaped, esc = escape_like_prefix(name_contains)
count_stmt = count_stmt.where(AssetInfo.name.ilike(f"%{escaped}%", escape=esc))
count_stmt = apply_tag_filters(count_stmt, include_tags, exclude_tags)
count_stmt = apply_metadata_filter(count_stmt, metadata_filter)
total = int((await session.execute(count_stmt)).scalar_one() or 0)
infos = (await session.execute(base)).unique().scalars().all()
id_list: list[str] = [i.id for i in infos]
tag_map: dict[str, list[str]] = defaultdict(list)
if id_list:
rows = await session.execute(
select(AssetInfoTag.asset_info_id, Tag.name)
.join(Tag, Tag.name == AssetInfoTag.tag_name)
.where(AssetInfoTag.asset_info_id.in_(id_list))
)
for aid, tag_name in rows.all():
tag_map[aid].append(tag_name)
return infos, tag_map, total
async def fetch_asset_info_and_asset(
session: AsyncSession,
*,
asset_info_id: str,
owner_id: str = "",
) -> Optional[tuple[AssetInfo, Asset]]:
stmt = (
select(AssetInfo, Asset)
.join(Asset, Asset.id == AssetInfo.asset_id)
.where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
.limit(1)
.options(noload(AssetInfo.tags))
)
row = await session.execute(stmt)
pair = row.first()
if not pair:
return None
return pair[0], pair[1]
async def fetch_asset_info_asset_and_tags(
session: AsyncSession,
*,
asset_info_id: str,
owner_id: str = "",
) -> Optional[tuple[AssetInfo, Asset, list[str]]]:
stmt = (
select(AssetInfo, Asset, Tag.name)
.join(Asset, Asset.id == AssetInfo.asset_id)
.join(AssetInfoTag, AssetInfoTag.asset_info_id == AssetInfo.id, isouter=True)
.join(Tag, Tag.name == AssetInfoTag.tag_name, isouter=True)
.where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
.options(noload(AssetInfo.tags))
.order_by(Tag.name.asc())
)
rows = (await session.execute(stmt)).all()
if not rows:
return None
first_info, first_asset, _ = rows[0]
tags: list[str] = []
seen: set[str] = set()
for _info, _asset, tag_name in rows:
if tag_name and tag_name not in seen:
seen.add(tag_name)
tags.append(tag_name)
return first_info, first_asset, tags
async def create_asset_info_for_existing_asset(
session: AsyncSession,
*,
asset_hash: str,
name: str,
user_metadata: Optional[dict] = None,
tags: Optional[Sequence[str]] = None,
tag_origin: str = "manual",
owner_id: str = "",
) -> AssetInfo:
"""Create or return an existing AssetInfo for an Asset identified by asset_hash."""
now = utcnow()
asset = await get_asset_by_hash(session, asset_hash=asset_hash)
if not asset:
raise ValueError(f"Unknown asset hash {asset_hash}")
info = AssetInfo(
owner_id=owner_id,
name=name,
asset_id=asset.id,
preview_id=None,
created_at=now,
updated_at=now,
last_access_time=now,
)
try:
async with session.begin_nested():
session.add(info)
await session.flush()
except IntegrityError:
existing = (
await session.execute(
select(AssetInfo)
.options(noload(AssetInfo.tags))
.where(
AssetInfo.asset_id == asset.id,
AssetInfo.name == name,
AssetInfo.owner_id == owner_id,
)
.limit(1)
)
).unique().scalars().first()
if not existing:
raise RuntimeError("AssetInfo upsert failed to find existing row after conflict.")
return existing
# metadata["filename"] hack
new_meta = dict(user_metadata or {})
computed_filename = None
try:
p = pick_best_live_path(await list_cache_states_by_asset_id(session, asset_id=asset.id))
if p:
computed_filename = compute_relative_filename(p)
except Exception:
computed_filename = None
if computed_filename:
new_meta["filename"] = computed_filename
if new_meta:
await replace_asset_info_metadata_projection(
session,
asset_info_id=info.id,
user_metadata=new_meta,
)
if tags is not None:
await set_asset_info_tags(
session,
asset_info_id=info.id,
tags=tags,
origin=tag_origin,
)
return info
async def set_asset_info_tags(
session: AsyncSession,
*,
asset_info_id: str,
tags: Sequence[str],
origin: str = "manual",
) -> dict:
desired = normalize_tags(tags)
current = set(
tag_name for (tag_name,) in (
await session.execute(select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id))
).all()
)
to_add = [t for t in desired if t not in current]
to_remove = [t for t in current if t not in desired]
if to_add:
await ensure_tags_exist(session, to_add, tag_type="user")
session.add_all([
AssetInfoTag(asset_info_id=asset_info_id, tag_name=t, origin=origin, added_at=utcnow())
for t in to_add
])
await session.flush()
if to_remove:
await session.execute(
delete(AssetInfoTag)
.where(AssetInfoTag.asset_info_id == asset_info_id, AssetInfoTag.tag_name.in_(to_remove))
)
await session.flush()
return {"added": to_add, "removed": to_remove, "total": desired}
async def update_asset_info_full(
session: AsyncSession,
*,
asset_info_id: str,
name: Optional[str] = None,
tags: Optional[Sequence[str]] = None,
user_metadata: Optional[dict] = None,
tag_origin: str = "manual",
asset_info_row: Any = None,
) -> AssetInfo:
if not asset_info_row:
info = await session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
else:
info = asset_info_row
touched = False
if name is not None and name != info.name:
info.name = name
touched = True
computed_filename = None
try:
p = pick_best_live_path(await list_cache_states_by_asset_id(session, asset_id=info.asset_id))
if p:
computed_filename = compute_relative_filename(p)
except Exception:
computed_filename = None
if user_metadata is not None:
new_meta = dict(user_metadata)
if computed_filename:
new_meta["filename"] = computed_filename
await replace_asset_info_metadata_projection(
session, asset_info_id=asset_info_id, user_metadata=new_meta
)
touched = True
else:
if computed_filename:
current_meta = info.user_metadata or {}
if current_meta.get("filename") != computed_filename:
new_meta = dict(current_meta)
new_meta["filename"] = computed_filename
await replace_asset_info_metadata_projection(
session, asset_info_id=asset_info_id, user_metadata=new_meta
)
touched = True
if tags is not None:
await set_asset_info_tags(
session,
asset_info_id=asset_info_id,
tags=tags,
origin=tag_origin,
)
touched = True
if touched and user_metadata is None:
info.updated_at = utcnow()
await session.flush()
return info
async def replace_asset_info_metadata_projection(
session: AsyncSession,
*,
asset_info_id: str,
user_metadata: Optional[dict],
) -> None:
info = await session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
info.user_metadata = user_metadata or {}
info.updated_at = utcnow()
await session.flush()
await session.execute(delete(AssetInfoMeta).where(AssetInfoMeta.asset_info_id == asset_info_id))
await session.flush()
if not user_metadata:
return
rows: list[AssetInfoMeta] = []
for k, v in user_metadata.items():
for r in project_kv(k, v):
rows.append(
AssetInfoMeta(
asset_info_id=asset_info_id,
key=r["key"],
ordinal=int(r["ordinal"]),
val_str=r.get("val_str"),
val_num=r.get("val_num"),
val_bool=r.get("val_bool"),
val_json=r.get("val_json"),
)
)
if rows:
session.add_all(rows)
await session.flush()
async def touch_asset_info_by_id(
session: AsyncSession,
*,
asset_info_id: str,
ts: Optional[datetime] = None,
only_if_newer: bool = True,
) -> None:
ts = ts or utcnow()
stmt = sa.update(AssetInfo).where(AssetInfo.id == asset_info_id)
if only_if_newer:
stmt = stmt.where(
sa.or_(AssetInfo.last_access_time.is_(None), AssetInfo.last_access_time < ts)
)
await session.execute(stmt.values(last_access_time=ts))
async def delete_asset_info_by_id(session: AsyncSession, *, asset_info_id: str, owner_id: str) -> bool:
stmt = sa.delete(AssetInfo).where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
return int((await session.execute(stmt)).rowcount or 0) > 0
async def add_tags_to_asset_info(
session: AsyncSession,
*,
asset_info_id: str,
tags: Sequence[str],
origin: str = "manual",
create_if_missing: bool = True,
asset_info_row: Any = None,
) -> dict:
if not asset_info_row:
info = await session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
norm = normalize_tags(tags)
if not norm:
total = await get_asset_tags(session, asset_info_id=asset_info_id)
return {"added": [], "already_present": [], "total_tags": total}
if create_if_missing:
await ensure_tags_exist(session, norm, tag_type="user")
current = {
tag_name
for (tag_name,) in (
await session.execute(
sa.select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
}
want = set(norm)
to_add = sorted(want - current)
if to_add:
async with session.begin_nested() as nested:
try:
session.add_all(
[
AssetInfoTag(
asset_info_id=asset_info_id,
tag_name=t,
origin=origin,
added_at=utcnow(),
)
for t in to_add
]
)
await session.flush()
except IntegrityError:
await nested.rollback()
after = set(await get_asset_tags(session, asset_info_id=asset_info_id))
return {
"added": sorted(((after - current) & want)),
"already_present": sorted(want & current),
"total_tags": sorted(after),
}
async def remove_tags_from_asset_info(
session: AsyncSession,
*,
asset_info_id: str,
tags: Sequence[str],
) -> dict:
info = await session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
norm = normalize_tags(tags)
if not norm:
total = await get_asset_tags(session, asset_info_id=asset_info_id)
return {"removed": [], "not_present": [], "total_tags": total}
existing = {
tag_name
for (tag_name,) in (
await session.execute(
sa.select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
}
to_remove = sorted(set(t for t in norm if t in existing))
not_present = sorted(set(t for t in norm if t not in existing))
if to_remove:
await session.execute(
delete(AssetInfoTag)
.where(
AssetInfoTag.asset_info_id == asset_info_id,
AssetInfoTag.tag_name.in_(to_remove),
)
)
await session.flush()
total = await get_asset_tags(session, asset_info_id=asset_info_id)
return {"removed": to_remove, "not_present": not_present, "total_tags": total}
async def list_tags_with_usage(
session: AsyncSession,
*,
prefix: Optional[str] = None,
limit: int = 100,
offset: int = 0,
include_zero: bool = True,
order: str = "count_desc",
owner_id: str = "",
) -> tuple[list[tuple[str, str, int]], int]:
counts_sq = (
select(
AssetInfoTag.tag_name.label("tag_name"),
func.count(AssetInfoTag.asset_info_id).label("cnt"),
)
.select_from(AssetInfoTag)
.join(AssetInfo, AssetInfo.id == AssetInfoTag.asset_info_id)
.where(visible_owner_clause(owner_id))
.group_by(AssetInfoTag.tag_name)
.subquery()
)
q = (
select(
Tag.name,
Tag.tag_type,
func.coalesce(counts_sq.c.cnt, 0).label("count"),
)
.select_from(Tag)
.join(counts_sq, counts_sq.c.tag_name == Tag.name, isouter=True)
)
if prefix:
escaped, esc = escape_like_prefix(prefix.strip().lower())
q = q.where(Tag.name.like(escaped + "%", escape=esc))
if not include_zero:
q = q.where(func.coalesce(counts_sq.c.cnt, 0) > 0)
if order == "name_asc":
q = q.order_by(Tag.name.asc())
else:
q = q.order_by(func.coalesce(counts_sq.c.cnt, 0).desc(), Tag.name.asc())
total_q = select(func.count()).select_from(Tag)
if prefix:
escaped, esc = escape_like_prefix(prefix.strip().lower())
total_q = total_q.where(Tag.name.like(escaped + "%", escape=esc))
if not include_zero:
total_q = total_q.where(
Tag.name.in_(select(AssetInfoTag.tag_name).group_by(AssetInfoTag.tag_name))
)
rows = (await session.execute(q.limit(limit).offset(offset))).all()
total = (await session.execute(total_q)).scalar_one()
rows_norm = [(name, ttype, int(count or 0)) for (name, ttype, count) in rows]
return rows_norm, int(total or 0)
async def get_asset_tags(session: AsyncSession, *, asset_info_id: str) -> list[str]:
return [
tag_name
for (tag_name,) in (
await session.execute(
sa.select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
]
async def set_asset_info_preview(
session: AsyncSession,
*,
asset_info_id: str,
preview_asset_id: Optional[str],
) -> None:
"""Set or clear preview_id and bump updated_at. Raises on unknown IDs."""
info = await session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if preview_asset_id is None:
info.preview_id = None
else:
# validate preview asset exists
if not await session.get(Asset, preview_asset_id):
raise ValueError(f"Preview Asset {preview_asset_id} not found")
info.preview_id = preview_asset_id
info.updated_at = utcnow()
await session.flush()

View File

@ -1,76 +0,0 @@
import os
from typing import Optional, Sequence, Union
import sqlalchemy as sa
from sqlalchemy import select
from sqlalchemy.ext.asyncio import AsyncSession
from ..models import Asset, AssetCacheState, AssetInfo
async def asset_exists_by_hash(session: AsyncSession, *, asset_hash: str) -> bool:
row = (
await session.execute(
select(sa.literal(True)).select_from(Asset).where(Asset.hash == asset_hash).limit(1)
)
).first()
return row is not None
async def get_asset_by_hash(session: AsyncSession, *, asset_hash: str) -> Optional[Asset]:
return (
await session.execute(select(Asset).where(Asset.hash == asset_hash).limit(1))
).scalars().first()
async def get_asset_info_by_id(session: AsyncSession, *, asset_info_id: str) -> Optional[AssetInfo]:
return await session.get(AssetInfo, asset_info_id)
async def asset_info_exists_for_asset_id(session: AsyncSession, *, asset_id: str) -> bool:
q = (
select(sa.literal(True))
.select_from(AssetInfo)
.where(AssetInfo.asset_id == asset_id)
.limit(1)
)
return (await session.execute(q)).first() is not None
async def get_cache_state_by_asset_id(session: AsyncSession, *, asset_id: str) -> Optional[AssetCacheState]:
return (
await session.execute(
select(AssetCacheState)
.where(AssetCacheState.asset_id == asset_id)
.order_by(AssetCacheState.id.asc())
.limit(1)
)
).scalars().first()
async def list_cache_states_by_asset_id(
session: AsyncSession, *, asset_id: str
) -> Union[list[AssetCacheState], Sequence[AssetCacheState]]:
return (
await session.execute(
select(AssetCacheState)
.where(AssetCacheState.asset_id == asset_id)
.order_by(AssetCacheState.id.asc())
)
).scalars().all()
def pick_best_live_path(states: Union[list[AssetCacheState], Sequence[AssetCacheState]]) -> str:
"""
Return the best on-disk path among cache states:
1) Prefer a path that exists with needs_verify == False (already verified).
2) Otherwise, pick the first path that exists.
3) Otherwise return empty string.
"""
alive = [s for s in states if getattr(s, "file_path", None) and os.path.isfile(s.file_path)]
if not alive:
return ""
for s in alive:
if not getattr(s, "needs_verify", False):
return s.file_path
return alive[0].file_path

View File

@ -0,0 +1,62 @@
from typing import Iterable
import sqlalchemy
from sqlalchemy.orm import Session
from sqlalchemy.dialects import sqlite
from app.assets.helpers import normalize_tags, utcnow
from app.assets.database.models import Tag, AssetInfoTag, AssetInfo
def ensure_tags_exist(session: Session, names: Iterable[str], tag_type: str = "user") -> None:
wanted = normalize_tags(list(names))
if not wanted:
return
rows = [{"name": n, "tag_type": tag_type} for n in list(dict.fromkeys(wanted))]
ins = (
sqlite.insert(Tag)
.values(rows)
.on_conflict_do_nothing(index_elements=[Tag.name])
)
return session.execute(ins)
def add_missing_tag_for_asset_id(
session: Session,
*,
asset_id: str,
origin: str = "automatic",
) -> None:
select_rows = (
sqlalchemy.select(
AssetInfo.id.label("asset_info_id"),
sqlalchemy.literal("missing").label("tag_name"),
sqlalchemy.literal(origin).label("origin"),
sqlalchemy.literal(utcnow()).label("added_at"),
)
.where(AssetInfo.asset_id == asset_id)
.where(
sqlalchemy.not_(
sqlalchemy.exists().where((AssetInfoTag.asset_info_id == AssetInfo.id) & (AssetInfoTag.tag_name == "missing"))
)
)
)
session.execute(
sqlite.insert(AssetInfoTag)
.from_select(
["asset_info_id", "tag_name", "origin", "added_at"],
select_rows,
)
.on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name])
)
def remove_missing_tag_for_asset_id(
session: Session,
*,
asset_id: str,
) -> None:
session.execute(
sqlalchemy.delete(AssetInfoTag).where(
AssetInfoTag.asset_info_id.in_(sqlalchemy.select(AssetInfo.id).where(AssetInfo.asset_id == asset_id)),
AssetInfoTag.tag_name == "missing",
)
)

View File

@ -1,6 +0,0 @@
from datetime import datetime, timezone
def utcnow() -> datetime:
"""Naive UTC timestamp (no tzinfo). We always treat DB datetimes as UTC."""
return datetime.now(timezone.utc).replace(tzinfo=None)

View File

@ -1,26 +1,65 @@
import asyncio
import os
from typing import IO, Union
from blake3 import blake3
DEFAULT_CHUNK = 8 * 1024 * 1024 # 8 MiB
from typing import IO
import os
import asyncio
def _hash_file_obj_sync(file_obj: IO[bytes], chunk_size: int) -> str:
"""Hash an already-open binary file object by streaming in chunks.
DEFAULT_CHUNK = 8 * 1024 *1024 # 8MB
# NOTE: this allows hashing different representations of a file-like object
def blake3_hash(
fp: str | IO[bytes],
chunk_size: int = DEFAULT_CHUNK,
) -> str:
"""
Returns a BLAKE3 hex digest for ``fp``, which may be:
- a filename (str/bytes) or PathLike
- an open binary file object
If ``fp`` is a file object, it must be opened in **binary** mode and support
``read``, ``seek``, and ``tell``. The function will seek to the start before
reading and will attempt to restore the original position afterward.
"""
# duck typing to check if input is a file-like object
if hasattr(fp, "read"):
return _hash_file_obj(fp, chunk_size)
with open(os.fspath(fp), "rb") as f:
return _hash_file_obj(f, chunk_size)
async def blake3_hash_async(
fp: str | IO[bytes],
chunk_size: int = DEFAULT_CHUNK,
) -> str:
"""Async wrapper for ``blake3_hash_sync``.
Uses a worker thread so the event loop remains responsive.
"""
# If it is a path, open inside the worker thread to keep I/O off the loop.
if hasattr(fp, "read"):
return await asyncio.to_thread(blake3_hash, fp, chunk_size)
def _worker() -> str:
with open(os.fspath(fp), "rb") as f:
return _hash_file_obj(f, chunk_size)
return await asyncio.to_thread(_worker)
def _hash_file_obj(file_obj: IO, chunk_size: int = DEFAULT_CHUNK) -> str:
"""
Hash an already-open binary file object by streaming in chunks.
- Seeks to the beginning before reading (if supported).
- Restores the original position afterward (if tell/seek are supported).
"""
if chunk_size <= 0:
chunk_size = DEFAULT_CHUNK
orig_pos = None
if hasattr(file_obj, "tell"):
orig_pos = file_obj.tell()
# in case file object is already open and not at the beginning, track so can be restored after hashing
orig_pos = file_obj.tell()
try:
if hasattr(file_obj, "seek"):
# seek to the beginning before reading
if orig_pos != 0:
file_obj.seek(0)
h = blake3()
@ -31,42 +70,6 @@ def _hash_file_obj_sync(file_obj: IO[bytes], chunk_size: int) -> str:
h.update(chunk)
return h.hexdigest()
finally:
if hasattr(file_obj, "seek") and orig_pos is not None:
# restore original position in file object, if needed
if orig_pos != 0:
file_obj.seek(orig_pos)
def blake3_hash_sync(
fp: Union[str, bytes, os.PathLike[str], os.PathLike[bytes], IO[bytes]],
chunk_size: int = DEFAULT_CHUNK,
) -> str:
"""Returns a BLAKE3 hex digest for ``fp``, which may be:
- a filename (str/bytes) or PathLike
- an open binary file object
If ``fp`` is a file object, it must be opened in **binary** mode and support
``read``, ``seek``, and ``tell``. The function will seek to the start before
reading and will attempt to restore the original position afterward.
"""
if hasattr(fp, "read"):
return _hash_file_obj_sync(fp, chunk_size)
with open(os.fspath(fp), "rb") as f:
return _hash_file_obj_sync(f, chunk_size)
async def blake3_hash(
fp: Union[str, bytes, os.PathLike[str], os.PathLike[bytes], IO[bytes]],
chunk_size: int = DEFAULT_CHUNK,
) -> str:
"""Async wrapper for ``blake3_hash_sync``.
Uses a worker thread so the event loop remains responsive.
"""
# If it is a path, open inside the worker thread to keep I/O off the loop.
if hasattr(fp, "read"):
return await asyncio.to_thread(blake3_hash_sync, fp, chunk_size)
def _worker() -> str:
with open(os.fspath(fp), "rb") as f:
return _hash_file_obj_sync(f, chunk_size)
return await asyncio.to_thread(_worker)

View File

@ -1,14 +1,78 @@
import contextlib
import os
import uuid
from decimal import Decimal
from aiohttp import web
from datetime import datetime, timezone
from pathlib import Path
from typing import Literal, Optional, Sequence
from typing import Literal, Any
import folder_paths
from .api import schemas_in
RootType = Literal["models", "input", "output"]
ALLOWED_ROOTS: tuple[RootType, ...] = ("models", "input", "output")
def get_query_dict(request: web.Request) -> dict[str, Any]:
"""
Gets a dictionary of query parameters from the request.
'request.query' is a MultiMapping[str], needs to be converted to a dictionary to be validated by Pydantic.
"""
query_dict = {
key: request.query.getall(key) if len(request.query.getall(key)) > 1 else request.query.get(key)
for key in request.query.keys()
}
return query_dict
def list_tree(base_dir: str) -> list[str]:
out: list[str] = []
base_abs = os.path.abspath(base_dir)
if not os.path.isdir(base_abs):
return out
for dirpath, _subdirs, filenames in os.walk(base_abs, topdown=True, followlinks=False):
for name in filenames:
out.append(os.path.abspath(os.path.join(dirpath, name)))
return out
def prefixes_for_root(root: RootType) -> list[str]:
if root == "models":
bases: list[str] = []
for _bucket, paths in get_comfy_models_folders():
bases.extend(paths)
return [os.path.abspath(p) for p in bases]
if root == "input":
return [os.path.abspath(folder_paths.get_input_directory())]
if root == "output":
return [os.path.abspath(folder_paths.get_output_directory())]
return []
def escape_like_prefix(s: str, escape: str = "!") -> tuple[str, str]:
"""Escapes %, _ and the escape char itself in a LIKE prefix.
Returns (escaped_prefix, escape_char). Caller should append '%' and pass escape=escape_char to .like().
"""
s = s.replace(escape, escape + escape) # escape the escape char first
s = s.replace("%", escape + "%").replace("_", escape + "_") # escape LIKE wildcards
return s, escape
def fast_asset_file_check(
*,
mtime_db: int | None,
size_db: int | None,
stat_result: os.stat_result,
) -> bool:
if mtime_db is None:
return False
actual_mtime_ns = getattr(stat_result, "st_mtime_ns", int(stat_result.st_mtime * 1_000_000_000))
if int(mtime_db) != int(actual_mtime_ns):
return False
sz = int(size_db or 0)
if sz > 0:
return int(stat_result.st_size) == sz
return True
def utcnow() -> datetime:
"""Naive UTC timestamp (no tzinfo). We always treat DB datetimes as UTC."""
return datetime.now(timezone.utc).replace(tzinfo=None)
def get_comfy_models_folders() -> list[tuple[str, list[str]]]:
"""Build a list of (folder_name, base_paths[]) categories that are configured for model locations.
@ -18,11 +82,71 @@ def get_comfy_models_folders() -> list[tuple[str, list[str]]]:
"""
targets: list[tuple[str, list[str]]] = []
models_root = os.path.abspath(folder_paths.models_dir)
for name, (paths, _exts) in folder_paths.folder_names_and_paths.items():
for name, values in folder_paths.folder_names_and_paths.items():
paths, _exts = values[0], values[1] # NOTE: this prevents nodepacks that hackily edit folder_... from breaking ComfyUI
if any(os.path.abspath(p).startswith(models_root + os.sep) for p in paths):
targets.append((name, paths))
return targets
def resolve_destination_from_tags(tags: list[str]) -> tuple[str, list[str]]:
"""Validates and maps tags -> (base_dir, subdirs_for_fs)"""
root = tags[0]
if root == "models":
if len(tags) < 2:
raise ValueError("at least two tags required for model asset")
try:
bases = folder_paths.folder_names_and_paths[tags[1]][0]
except KeyError:
raise ValueError(f"unknown model category '{tags[1]}'")
if not bases:
raise ValueError(f"no base path configured for category '{tags[1]}'")
base_dir = os.path.abspath(bases[0])
raw_subdirs = tags[2:]
else:
base_dir = os.path.abspath(
folder_paths.get_input_directory() if root == "input" else folder_paths.get_output_directory()
)
raw_subdirs = tags[1:]
for i in raw_subdirs:
if i in (".", ".."):
raise ValueError("invalid path component in tags")
return base_dir, raw_subdirs if raw_subdirs else []
def ensure_within_base(candidate: str, base: str) -> None:
cand_abs = os.path.abspath(candidate)
base_abs = os.path.abspath(base)
try:
if os.path.commonpath([cand_abs, base_abs]) != base_abs:
raise ValueError("destination escapes base directory")
except Exception:
raise ValueError("invalid destination path")
def compute_relative_filename(file_path: str) -> str | None:
"""
Return the model's path relative to the last well-known folder (the model category),
using forward slashes, eg:
/.../models/checkpoints/flux/123/flux.safetensors -> "flux/123/flux.safetensors"
/.../models/text_encoders/clip_g.safetensors -> "clip_g.safetensors"
For non-model paths, returns None.
NOTE: this is a temporary helper, used only for initializing metadata["filename"] field.
"""
try:
root_category, rel_path = get_relative_to_root_category_path_of_asset(file_path)
except ValueError:
return None
p = Path(rel_path)
parts = [seg for seg in p.parts if seg not in (".", "..", p.anchor)]
if not parts:
return None
if root_category == "models":
# parts[0] is the category ("checkpoints", "vae", etc) drop it
inside = parts[1:] if len(parts) > 1 else [parts[0]]
return "/".join(inside)
return "/".join(parts) # input/output: keep all parts
def get_relative_to_root_category_path_of_asset(file_path: str) -> tuple[Literal["input", "output", "models"], str]:
"""Given an absolute or relative file path, determine which root category the path belongs to:
@ -60,7 +184,7 @@ def get_relative_to_root_category_path_of_asset(file_path: str) -> tuple[Literal
return "output", _rel(fp_abs, output_base)
# 3) models (check deepest matching base to avoid ambiguity)
best: Optional[tuple[int, str, str]] = None # (base_len, bucket, rel_inside_bucket)
best: tuple[int, str, str] | None = None # (base_len, bucket, rel_inside_bucket)
for bucket, bases in get_comfy_models_folders():
for b in bases:
base_abs = os.path.abspath(b)
@ -77,7 +201,6 @@ def get_relative_to_root_category_path_of_asset(file_path: str) -> tuple[Literal
raise ValueError(f"Path is not within input, output, or configured model bases: {file_path}")
def get_name_and_tags_from_asset_path(file_path: str) -> tuple[str, list[str]]:
"""Return a tuple (name, tags) derived from a filesystem path.
@ -99,111 +222,14 @@ def get_name_and_tags_from_asset_path(file_path: str) -> tuple[str, list[str]]:
parent_parts = [part for part in p.parent.parts if part not in (".", "..", p.anchor)]
return p.name, list(dict.fromkeys(normalize_tags([root_category, *parent_parts])))
def normalize_tags(tags: Optional[Sequence[str]]) -> list[str]:
def normalize_tags(tags: list[str] | None) -> list[str]:
"""
Normalize a list of tags by:
- Stripping whitespace and converting to lowercase.
- Removing duplicates.
"""
return [t.strip().lower() for t in (tags or []) if (t or "").strip()]
def resolve_destination_from_tags(tags: list[str]) -> tuple[str, list[str]]:
"""Validates and maps tags -> (base_dir, subdirs_for_fs)"""
root = tags[0]
if root == "models":
if len(tags) < 2:
raise ValueError("at least two tags required for model asset")
try:
bases = folder_paths.folder_names_and_paths[tags[1]][0]
except KeyError:
raise ValueError(f"unknown model category '{tags[1]}'")
if not bases:
raise ValueError(f"no base path configured for category '{tags[1]}'")
base_dir = os.path.abspath(bases[0])
raw_subdirs = tags[2:]
else:
base_dir = os.path.abspath(
folder_paths.get_input_directory() if root == "input" else folder_paths.get_output_directory()
)
raw_subdirs = tags[1:]
for i in raw_subdirs:
if i in (".", ".."):
raise ValueError("invalid path component in tags")
return base_dir, raw_subdirs if raw_subdirs else []
def ensure_within_base(candidate: str, base: str) -> None:
cand_abs = os.path.abspath(candidate)
base_abs = os.path.abspath(base)
try:
if os.path.commonpath([cand_abs, base_abs]) != base_abs:
raise ValueError("destination escapes base directory")
except Exception:
raise ValueError("invalid destination path")
def compute_relative_filename(file_path: str) -> Optional[str]:
"""
Return the model's path relative to the last well-known folder (the model category),
using forward slashes, eg:
/.../models/checkpoints/flux/123/flux.safetensors -> "flux/123/flux.safetensors"
/.../models/text_encoders/clip_g.safetensors -> "clip_g.safetensors"
For non-model paths, returns None.
NOTE: this is a temporary helper, used only for initializing metadata["filename"] field.
"""
try:
root_category, rel_path = get_relative_to_root_category_path_of_asset(file_path)
except ValueError:
return None
p = Path(rel_path)
parts = [seg for seg in p.parts if seg not in (".", "..", p.anchor)]
if not parts:
return None
if root_category == "models":
# parts[0] is the category ("checkpoints", "vae", etc) drop it
inside = parts[1:] if len(parts) > 1 else [parts[0]]
return "/".join(inside)
return "/".join(parts) # input/output: keep all parts
def list_tree(base_dir: str) -> list[str]:
out: list[str] = []
base_abs = os.path.abspath(base_dir)
if not os.path.isdir(base_abs):
return out
for dirpath, _subdirs, filenames in os.walk(base_abs, topdown=True, followlinks=False):
for name in filenames:
out.append(os.path.abspath(os.path.join(dirpath, name)))
return out
def prefixes_for_root(root: schemas_in.RootType) -> list[str]:
if root == "models":
bases: list[str] = []
for _bucket, paths in get_comfy_models_folders():
bases.extend(paths)
return [os.path.abspath(p) for p in bases]
if root == "input":
return [os.path.abspath(folder_paths.get_input_directory())]
if root == "output":
return [os.path.abspath(folder_paths.get_output_directory())]
return []
def ts_to_iso(ts: Optional[float]) -> Optional[str]:
if ts is None:
return None
try:
return datetime.fromtimestamp(float(ts), tz=timezone.utc).replace(tzinfo=None).isoformat()
except Exception:
return None
def new_scan_id(root: schemas_in.RootType) -> str:
return f"scan-{root}-{uuid.uuid4().hex[:8]}"
def collect_models_files() -> list[str]:
out: list[str] = []
for folder_name, bases in get_comfy_models_folders():
@ -223,3 +249,64 @@ def collect_models_files() -> list[str]:
if allowed:
out.append(abs_path)
return out
def is_scalar(v):
if v is None:
return True
if isinstance(v, bool):
return True
if isinstance(v, (int, float, Decimal, str)):
return True
return False
def project_kv(key: str, value):
"""
Turn a metadata key/value into typed projection rows.
Returns list[dict] with keys:
key, ordinal, and one of val_str / val_num / val_bool / val_json (others None)
"""
rows: list[dict] = []
def _null_row(ordinal: int) -> dict:
return {
"key": key, "ordinal": ordinal,
"val_str": None, "val_num": None, "val_bool": None, "val_json": None
}
if value is None:
rows.append(_null_row(0))
return rows
if is_scalar(value):
if isinstance(value, bool):
rows.append({"key": key, "ordinal": 0, "val_bool": bool(value)})
elif isinstance(value, (int, float, Decimal)):
num = value if isinstance(value, Decimal) else Decimal(str(value))
rows.append({"key": key, "ordinal": 0, "val_num": num})
elif isinstance(value, str):
rows.append({"key": key, "ordinal": 0, "val_str": value})
else:
rows.append({"key": key, "ordinal": 0, "val_json": value})
return rows
if isinstance(value, list):
if all(is_scalar(x) for x in value):
for i, x in enumerate(value):
if x is None:
rows.append(_null_row(i))
elif isinstance(x, bool):
rows.append({"key": key, "ordinal": i, "val_bool": bool(x)})
elif isinstance(x, (int, float, Decimal)):
num = x if isinstance(x, Decimal) else Decimal(str(x))
rows.append({"key": key, "ordinal": i, "val_num": num})
elif isinstance(x, str):
rows.append({"key": key, "ordinal": i, "val_str": x})
else:
rows.append({"key": key, "ordinal": i, "val_json": x})
return rows
for i, x in enumerate(value):
rows.append({"key": key, "ordinal": i, "val_json": x})
return rows
rows.append({"key": key, "ordinal": 0, "val_json": value})
return rows

View File

@ -1,100 +1,71 @@
import contextlib
import logging
import mimetypes
import os
from typing import Optional, Sequence
import mimetypes
import contextlib
from typing import Sequence
from comfy_api.internal import async_to_sync
from ..db import create_session
from ._helpers import (
ensure_within_base,
get_name_and_tags_from_asset_path,
resolve_destination_from_tags,
)
from .api import schemas_in, schemas_out
from .database.models import Asset
from .database.services import (
add_tags_to_asset_info,
from app.database.db import create_session
from app.assets.api import schemas_out, schemas_in
from app.assets.database.queries import (
asset_exists_by_hash,
asset_info_exists_for_asset_id,
check_fs_asset_exists_quick,
create_asset_info_for_existing_asset,
delete_asset_info_by_id,
fetch_asset_info_and_asset,
fetch_asset_info_asset_and_tags,
get_asset_by_hash,
get_asset_info_by_id,
get_asset_tags,
ingest_fs_asset,
list_asset_infos_page,
list_cache_states_by_asset_id,
list_tags_with_usage,
pick_best_live_path,
remove_tags_from_asset_info,
set_asset_info_preview,
fetch_asset_info_asset_and_tags,
fetch_asset_info_and_asset,
create_asset_info_for_existing_asset,
touch_asset_info_by_id,
touch_asset_infos_by_fs_path,
update_asset_info_full,
delete_asset_info_by_id,
list_cache_states_by_asset_id,
list_asset_infos_page,
list_tags_with_usage,
get_asset_tags,
add_tags_to_asset_info,
remove_tags_from_asset_info,
pick_best_live_path,
ingest_fs_asset,
set_asset_info_preview,
)
from .storage import hashing
from app.assets.helpers import resolve_destination_from_tags, ensure_within_base
from app.assets.database.models import Asset
import app.assets.hashing as hashing
async def asset_exists(*, asset_hash: str) -> bool:
async with await create_session() as session:
return await asset_exists_by_hash(session, asset_hash=asset_hash)
def _safe_sort_field(requested: str | None) -> str:
if not requested:
return "created_at"
v = requested.lower()
if v in {"name", "created_at", "updated_at", "size", "last_access_time"}:
return v
return "created_at"
def populate_db_with_asset(file_path: str, tags: Optional[list[str]] = None) -> None:
if tags is None:
tags = []
try:
asset_name, path_tags = get_name_and_tags_from_asset_path(file_path)
async_to_sync.AsyncToSyncConverter.run_async_in_thread(
add_local_asset,
tags=list(dict.fromkeys([*path_tags, *tags])),
file_name=asset_name,
file_path=file_path,
)
except ValueError as e:
logging.warning("Skipping non-asset path %s: %s", file_path, e)
def _get_size_mtime_ns(path: str) -> tuple[int, int]:
st = os.stat(path, follow_symlinks=True)
return st.st_size, getattr(st, "st_mtime_ns", int(st.st_mtime * 1_000_000_000))
async def add_local_asset(tags: list[str], file_name: str, file_path: str) -> None:
abs_path = os.path.abspath(file_path)
size_bytes, mtime_ns = _get_size_mtime_ns(abs_path)
if not size_bytes:
return
async with await create_session() as session:
if await check_fs_asset_exists_quick(session, file_path=abs_path, size_bytes=size_bytes, mtime_ns=mtime_ns):
await touch_asset_infos_by_fs_path(session, file_path=abs_path)
await session.commit()
return
asset_hash = hashing.blake3_hash_sync(abs_path)
async with await create_session() as session:
await ingest_fs_asset(
session,
asset_hash="blake3:" + asset_hash,
abs_path=abs_path,
size_bytes=size_bytes,
mtime_ns=mtime_ns,
mime_type=None,
info_name=file_name,
tag_origin="automatic",
tags=tags,
)
await session.commit()
def _safe_filename(name: str | None, fallback: str) -> str:
n = os.path.basename((name or "").strip() or fallback)
if n:
return n
return fallback
async def list_assets(
def asset_exists(*, asset_hash: str) -> bool:
"""
Check if an asset with a given hash exists in database.
"""
with create_session() as session:
return asset_exists_by_hash(session, asset_hash=asset_hash)
def list_assets(
*,
include_tags: Optional[Sequence[str]] = None,
exclude_tags: Optional[Sequence[str]] = None,
name_contains: Optional[str] = None,
metadata_filter: Optional[dict] = None,
include_tags: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
name_contains: str | None = None,
metadata_filter: dict | None = None,
limit: int = 20,
offset: int = 0,
sort: str = "created_at",
@ -104,8 +75,8 @@ async def list_assets(
sort = _safe_sort_field(sort)
order = "desc" if (order or "desc").lower() not in {"asc", "desc"} else order.lower()
async with await create_session() as session:
infos, tag_map, total = await list_asset_infos_page(
with create_session() as session:
infos, tag_map, total = list_asset_infos_page(
session,
owner_id=owner_id,
include_tags=include_tags,
@ -144,9 +115,13 @@ async def list_assets(
)
async def get_asset(*, asset_info_id: str, owner_id: str = "") -> schemas_out.AssetDetail:
async with await create_session() as session:
res = await fetch_asset_info_asset_and_tags(session, asset_info_id=asset_info_id, owner_id=owner_id)
def get_asset(
*,
asset_info_id: str,
owner_id: str = "",
) -> schemas_out.AssetDetail:
with create_session() as session:
res = fetch_asset_info_asset_and_tags(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not res:
raise ValueError(f"AssetInfo {asset_info_id} not found")
info, asset, tag_names = res
@ -166,40 +141,40 @@ async def get_asset(*, asset_info_id: str, owner_id: str = "") -> schemas_out.As
)
async def resolve_asset_content_for_download(
def resolve_asset_content_for_download(
*,
asset_info_id: str,
owner_id: str = "",
) -> tuple[str, str, str]:
async with await create_session() as session:
pair = await fetch_asset_info_and_asset(session, asset_info_id=asset_info_id, owner_id=owner_id)
with create_session() as session:
pair = fetch_asset_info_and_asset(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not pair:
raise ValueError(f"AssetInfo {asset_info_id} not found")
info, asset = pair
states = await list_cache_states_by_asset_id(session, asset_id=asset.id)
states = list_cache_states_by_asset_id(session, asset_id=asset.id)
abs_path = pick_best_live_path(states)
if not abs_path:
raise FileNotFoundError
await touch_asset_info_by_id(session, asset_info_id=asset_info_id)
await session.commit()
touch_asset_info_by_id(session, asset_info_id=asset_info_id)
session.commit()
ctype = asset.mime_type or mimetypes.guess_type(info.name or abs_path)[0] or "application/octet-stream"
download_name = info.name or os.path.basename(abs_path)
return abs_path, ctype, download_name
async def upload_asset_from_temp_path(
def upload_asset_from_temp_path(
spec: schemas_in.UploadAssetSpec,
*,
temp_path: str,
client_filename: Optional[str] = None,
client_filename: str | None = None,
owner_id: str = "",
expected_asset_hash: Optional[str] = None,
expected_asset_hash: str | None = None,
) -> schemas_out.AssetCreated:
try:
digest = await hashing.blake3_hash(temp_path)
digest = hashing.blake3_hash(temp_path)
except Exception as e:
raise RuntimeError(f"failed to hash uploaded file: {e}")
asset_hash = "blake3:" + digest
@ -207,15 +182,15 @@ async def upload_asset_from_temp_path(
if expected_asset_hash and asset_hash != expected_asset_hash.strip().lower():
raise ValueError("HASH_MISMATCH")
async with await create_session() as session:
existing = await get_asset_by_hash(session, asset_hash=asset_hash)
with create_session() as session:
existing = get_asset_by_hash(session, asset_hash=asset_hash)
if existing is not None:
with contextlib.suppress(Exception):
if temp_path and os.path.exists(temp_path):
os.remove(temp_path)
display_name = _safe_filename(spec.name or (client_filename or ""), fallback=digest)
info = await create_asset_info_for_existing_asset(
info = create_asset_info_for_existing_asset(
session,
asset_hash=asset_hash,
name=display_name,
@ -224,8 +199,8 @@ async def upload_asset_from_temp_path(
tag_origin="manual",
owner_id=owner_id,
)
tag_names = await get_asset_tags(session, asset_info_id=info.id)
await session.commit()
tag_names = get_asset_tags(session, asset_info_id=info.id)
session.commit()
return schemas_out.AssetCreated(
id=info.id,
@ -268,8 +243,8 @@ async def upload_asset_from_temp_path(
except OSError as e:
raise RuntimeError(f"failed to stat destination file: {e}")
async with await create_session() as session:
result = await ingest_fs_asset(
with create_session() as session:
result = ingest_fs_asset(
session,
asset_hash=asset_hash,
abs_path=dest_abs,
@ -288,12 +263,12 @@ async def upload_asset_from_temp_path(
if not info_id:
raise RuntimeError("failed to create asset metadata")
pair = await fetch_asset_info_and_asset(session, asset_info_id=info_id, owner_id=owner_id)
pair = fetch_asset_info_and_asset(session, asset_info_id=info_id, owner_id=owner_id)
if not pair:
raise RuntimeError("inconsistent DB state after ingest")
info, asset = pair
tag_names = await get_asset_tags(session, asset_info_id=info.id)
await session.commit()
tag_names = get_asset_tags(session, asset_info_id=info.id)
session.commit()
return schemas_out.AssetCreated(
id=info.id,
@ -310,22 +285,22 @@ async def upload_asset_from_temp_path(
)
async def update_asset(
def update_asset(
*,
asset_info_id: str,
name: Optional[str] = None,
tags: Optional[list[str]] = None,
user_metadata: Optional[dict] = None,
name: str | None = None,
tags: list[str] | None = None,
user_metadata: dict | None = None,
owner_id: str = "",
) -> schemas_out.AssetUpdated:
async with await create_session() as session:
info_row = await get_asset_info_by_id(session, asset_info_id=asset_info_id)
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
info = await update_asset_info_full(
info = update_asset_info_full(
session,
asset_info_id=asset_info_id,
name=name,
@ -335,8 +310,8 @@ async def update_asset(
asset_info_row=info_row,
)
tag_names = await get_asset_tags(session, asset_info_id=asset_info_id)
await session.commit()
tag_names = get_asset_tags(session, asset_info_id=asset_info_id)
session.commit()
return schemas_out.AssetUpdated(
id=info.id,
@ -348,30 +323,30 @@ async def update_asset(
)
async def set_asset_preview(
def set_asset_preview(
*,
asset_info_id: str,
preview_asset_id: Optional[str],
preview_asset_id: str | None = None,
owner_id: str = "",
) -> schemas_out.AssetDetail:
async with await create_session() as session:
info_row = await get_asset_info_by_id(session, asset_info_id=asset_info_id)
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
await set_asset_info_preview(
set_asset_info_preview(
session,
asset_info_id=asset_info_id,
preview_asset_id=preview_asset_id,
)
res = await fetch_asset_info_asset_and_tags(session, asset_info_id=asset_info_id, owner_id=owner_id)
res = fetch_asset_info_asset_and_tags(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not res:
raise RuntimeError("State changed during preview update")
info, asset, tags = res
await session.commit()
session.commit()
return schemas_out.AssetDetail(
id=info.id,
@ -387,32 +362,32 @@ async def set_asset_preview(
)
async def delete_asset_reference(*, asset_info_id: str, owner_id: str, delete_content_if_orphan: bool = True) -> bool:
async with await create_session() as session:
info_row = await get_asset_info_by_id(session, asset_info_id=asset_info_id)
def delete_asset_reference(*, asset_info_id: str, owner_id: str, delete_content_if_orphan: bool = True) -> bool:
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
asset_id = info_row.asset_id if info_row else None
deleted = await delete_asset_info_by_id(session, asset_info_id=asset_info_id, owner_id=owner_id)
deleted = delete_asset_info_by_id(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not deleted:
await session.commit()
session.commit()
return False
if not delete_content_if_orphan or not asset_id:
await session.commit()
session.commit()
return True
still_exists = await asset_info_exists_for_asset_id(session, asset_id=asset_id)
still_exists = asset_info_exists_for_asset_id(session, asset_id=asset_id)
if still_exists:
await session.commit()
session.commit()
return True
states = await list_cache_states_by_asset_id(session, asset_id=asset_id)
states = list_cache_states_by_asset_id(session, asset_id=asset_id)
file_paths = [s.file_path for s in (states or []) if getattr(s, "file_path", None)]
asset_row = await session.get(Asset, asset_id)
asset_row = session.get(Asset, asset_id)
if asset_row is not None:
await session.delete(asset_row)
session.delete(asset_row)
await session.commit()
session.commit()
for p in file_paths:
with contextlib.suppress(Exception):
if p and os.path.isfile(p):
@ -420,21 +395,21 @@ async def delete_asset_reference(*, asset_info_id: str, owner_id: str, delete_co
return True
async def create_asset_from_hash(
def create_asset_from_hash(
*,
hash_str: str,
name: str,
tags: Optional[list[str]] = None,
user_metadata: Optional[dict] = None,
tags: list[str] | None = None,
user_metadata: dict | None = None,
owner_id: str = "",
) -> Optional[schemas_out.AssetCreated]:
) -> schemas_out.AssetCreated | None:
canonical = hash_str.strip().lower()
async with await create_session() as session:
asset = await get_asset_by_hash(session, asset_hash=canonical)
with create_session() as session:
asset = get_asset_by_hash(session, asset_hash=canonical)
if not asset:
return None
info = await create_asset_info_for_existing_asset(
info = create_asset_info_for_existing_asset(
session,
asset_hash=canonical,
name=_safe_filename(name, fallback=canonical.split(":", 1)[1]),
@ -443,8 +418,8 @@ async def create_asset_from_hash(
tag_origin="manual",
owner_id=owner_id,
)
tag_names = await get_asset_tags(session, asset_info_id=info.id)
await session.commit()
tag_names = get_asset_tags(session, asset_info_id=info.id)
session.commit()
return schemas_out.AssetCreated(
id=info.id,
@ -461,9 +436,55 @@ async def create_asset_from_hash(
)
async def list_tags(
def add_tags_to_asset(
*,
prefix: Optional[str] = None,
asset_info_id: str,
tags: list[str],
origin: str = "manual",
owner_id: str = "",
) -> schemas_out.TagsAdd:
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
data = add_tags_to_asset_info(
session,
asset_info_id=asset_info_id,
tags=tags,
origin=origin,
create_if_missing=True,
asset_info_row=info_row,
)
session.commit()
return schemas_out.TagsAdd(**data)
def remove_tags_from_asset(
*,
asset_info_id: str,
tags: list[str],
owner_id: str = "",
) -> schemas_out.TagsRemove:
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
data = remove_tags_from_asset_info(
session,
asset_info_id=asset_info_id,
tags=tags,
)
session.commit()
return schemas_out.TagsRemove(**data)
def list_tags(
prefix: str | None = None,
limit: int = 100,
offset: int = 0,
order: str = "count_desc",
@ -473,8 +494,8 @@ async def list_tags(
limit = max(1, min(1000, limit))
offset = max(0, offset)
async with await create_session() as session:
rows, total = await list_tags_with_usage(
with create_session() as session:
rows, total = list_tags_with_usage(
session,
prefix=prefix,
limit=limit,
@ -486,71 +507,3 @@ async def list_tags(
tags = [schemas_out.TagUsage(name=name, count=count, type=tag_type) for (name, tag_type, count) in rows]
return schemas_out.TagsList(tags=tags, total=total, has_more=(offset + len(tags)) < total)
async def add_tags_to_asset(
*,
asset_info_id: str,
tags: list[str],
origin: str = "manual",
owner_id: str = "",
) -> schemas_out.TagsAdd:
async with await create_session() as session:
info_row = await get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
data = await add_tags_to_asset_info(
session,
asset_info_id=asset_info_id,
tags=tags,
origin=origin,
create_if_missing=True,
asset_info_row=info_row,
)
await session.commit()
return schemas_out.TagsAdd(**data)
async def remove_tags_from_asset(
*,
asset_info_id: str,
tags: list[str],
owner_id: str = "",
) -> schemas_out.TagsRemove:
async with await create_session() as session:
info_row = await get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
data = await remove_tags_from_asset_info(
session,
asset_info_id=asset_info_id,
tags=tags,
)
await session.commit()
return schemas_out.TagsRemove(**data)
def _safe_sort_field(requested: Optional[str]) -> str:
if not requested:
return "created_at"
v = requested.lower()
if v in {"name", "created_at", "updated_at", "size", "last_access_time"}:
return v
return "created_at"
def _get_size_mtime_ns(path: str) -> tuple[int, int]:
st = os.stat(path, follow_symlinks=True)
return st.st_size, getattr(st, "st_mtime_ns", int(st.st_mtime * 1_000_000_000))
def _safe_filename(name: Optional[str], fallback: str) -> str:
n = os.path.basename((name or "").strip() or fallback)
if n:
return n
return fallback

View File

@ -1,105 +1,30 @@
import asyncio
import contextlib
import time
import logging
import os
import time
from dataclasses import dataclass, field
from typing import Literal, Optional
import sqlalchemy as sa
import sqlalchemy
import folder_paths
from ..db import create_session
from ._helpers import (
collect_models_files,
compute_relative_filename,
get_comfy_models_folders,
get_name_and_tags_from_asset_path,
list_tree,
new_scan_id,
prefixes_for_root,
ts_to_iso,
from app.database.db import create_session, dependencies_available
from app.assets.helpers import (
collect_models_files, compute_relative_filename, fast_asset_file_check, get_name_and_tags_from_asset_path,
list_tree,prefixes_for_root, escape_like_prefix,
RootType
)
from .api import schemas_in, schemas_out
from .database.helpers import (
add_missing_tag_for_asset_id,
ensure_tags_exist,
escape_like_prefix,
fast_asset_file_check,
remove_missing_tag_for_asset_id,
seed_from_paths_batch,
)
from .database.models import Asset, AssetCacheState, AssetInfo
from .database.services import (
compute_hash_and_dedup_for_cache_state,
list_cache_states_by_asset_id,
list_cache_states_with_asset_under_prefixes,
list_unhashed_candidates_under_prefixes,
list_verify_candidates_under_prefixes,
)
LOGGER = logging.getLogger(__name__)
SLOW_HASH_CONCURRENCY = 1
from app.assets.database.tags import add_missing_tag_for_asset_id, ensure_tags_exist, remove_missing_tag_for_asset_id
from app.assets.database.bulk_ops import seed_from_paths_batch
from app.assets.database.models import Asset, AssetCacheState, AssetInfo
@dataclass
class ScanProgress:
scan_id: str
root: schemas_in.RootType
status: Literal["scheduled", "running", "completed", "failed", "cancelled"] = "scheduled"
scheduled_at: float = field(default_factory=lambda: time.time())
started_at: Optional[float] = None
finished_at: Optional[float] = None
discovered: int = 0
processed: int = 0
file_errors: list[dict] = field(default_factory=list)
@dataclass
class SlowQueueState:
queue: asyncio.Queue
workers: list[asyncio.Task] = field(default_factory=list)
closed: bool = False
RUNNING_TASKS: dict[schemas_in.RootType, asyncio.Task] = {}
PROGRESS_BY_ROOT: dict[schemas_in.RootType, ScanProgress] = {}
SLOW_STATE_BY_ROOT: dict[schemas_in.RootType, SlowQueueState] = {}
def current_statuses() -> schemas_out.AssetScanStatusResponse:
scans = []
for root in schemas_in.ALLOWED_ROOTS:
prog = PROGRESS_BY_ROOT.get(root)
if not prog:
continue
scans.append(_scan_progress_to_scan_status_model(prog))
return schemas_out.AssetScanStatusResponse(scans=scans)
async def schedule_scans(roots: list[schemas_in.RootType]) -> schemas_out.AssetScanStatusResponse:
results: list[ScanProgress] = []
for root in roots:
if root in RUNNING_TASKS and not RUNNING_TASKS[root].done():
results.append(PROGRESS_BY_ROOT[root])
continue
prog = ScanProgress(scan_id=new_scan_id(root), root=root, status="scheduled")
PROGRESS_BY_ROOT[root] = prog
state = SlowQueueState(queue=asyncio.Queue())
SLOW_STATE_BY_ROOT[root] = state
RUNNING_TASKS[root] = asyncio.create_task(
_run_hash_verify_pipeline(root, prog, state),
name=f"asset-scan:{root}",
)
results.append(prog)
return _status_response_for(results)
async def sync_seed_assets(roots: list[schemas_in.RootType]) -> None:
t_total = time.perf_counter()
def seed_assets(roots: tuple[RootType, ...], enable_logging: bool = False) -> None:
"""
Scan the given roots and seed the assets into the database.
"""
if not dependencies_available():
if enable_logging:
logging.warning("Database dependencies not available, skipping assets scan")
return
t_start = time.perf_counter()
created = 0
skipped_existing = 0
paths: list[str] = []
@ -107,11 +32,11 @@ async def sync_seed_assets(roots: list[schemas_in.RootType]) -> None:
existing_paths: set[str] = set()
for r in roots:
try:
survivors = await _fast_db_consistency_pass(r, collect_existing_paths=True, update_missing_tags=True)
survivors: set[str] = _fast_db_consistency_pass(r, collect_existing_paths=True, update_missing_tags=True)
if survivors:
existing_paths.update(survivors)
except Exception as ex:
LOGGER.exception("fast DB reconciliation failed for %s: %s", r, ex)
except Exception as e:
logging.exception("fast DB scan failed for %s: %s", r, e)
if "models" in roots:
paths.extend(collect_models_files())
@ -123,255 +48,58 @@ async def sync_seed_assets(roots: list[schemas_in.RootType]) -> None:
specs: list[dict] = []
tag_pool: set[str] = set()
for p in paths:
ap = os.path.abspath(p)
if ap in existing_paths:
abs_p = os.path.abspath(p)
if abs_p in existing_paths:
skipped_existing += 1
continue
try:
st = os.stat(ap, follow_symlinks=True)
stat_p = os.stat(abs_p, follow_symlinks=False)
except OSError:
continue
if not st.st_size:
# skip empty files
if not stat_p.st_size:
continue
name, tags = get_name_and_tags_from_asset_path(ap)
name, tags = get_name_and_tags_from_asset_path(abs_p)
specs.append(
{
"abs_path": ap,
"size_bytes": st.st_size,
"mtime_ns": getattr(st, "st_mtime_ns", int(st.st_mtime * 1_000_000_000)),
"abs_path": abs_p,
"size_bytes": stat_p.st_size,
"mtime_ns": getattr(stat_p, "st_mtime_ns", int(stat_p.st_mtime * 1_000_000_000)),
"info_name": name,
"tags": tags,
"fname": compute_relative_filename(ap),
"fname": compute_relative_filename(abs_p),
}
)
for t in tags:
tag_pool.add(t)
# if no file specs, nothing to do
if not specs:
return
async with await create_session() as sess:
with create_session() as sess:
if tag_pool:
await ensure_tags_exist(sess, tag_pool, tag_type="user")
ensure_tags_exist(sess, tag_pool, tag_type="user")
result = await seed_from_paths_batch(sess, specs=specs, owner_id="")
result = seed_from_paths_batch(sess, specs=specs, owner_id="")
created += result["inserted_infos"]
await sess.commit()
sess.commit()
finally:
LOGGER.info(
"Assets scan(roots=%s) completed in %.3fs (created=%d, skipped_existing=%d, total_seen=%d)",
roots,
time.perf_counter() - t_total,
created,
skipped_existing,
len(paths),
)
def _status_response_for(progresses: list[ScanProgress]) -> schemas_out.AssetScanStatusResponse:
return schemas_out.AssetScanStatusResponse(scans=[_scan_progress_to_scan_status_model(p) for p in progresses])
def _scan_progress_to_scan_status_model(progress: ScanProgress) -> schemas_out.AssetScanStatus:
return schemas_out.AssetScanStatus(
scan_id=progress.scan_id,
root=progress.root,
status=progress.status,
scheduled_at=ts_to_iso(progress.scheduled_at),
started_at=ts_to_iso(progress.started_at),
finished_at=ts_to_iso(progress.finished_at),
discovered=progress.discovered,
processed=progress.processed,
file_errors=[
schemas_out.AssetScanError(
path=e.get("path", ""),
message=e.get("message", ""),
at=e.get("at"),
if enable_logging:
logging.info(
"Assets scan(roots=%s) completed in %.3fs (created=%d, skipped_existing=%d, total_seen=%d)",
roots,
time.perf_counter() - t_start,
created,
skipped_existing,
len(paths),
)
for e in (progress.file_errors or [])
],
)
async def _run_hash_verify_pipeline(root: schemas_in.RootType, prog: ScanProgress, state: SlowQueueState) -> None:
prog.status = "running"
prog.started_at = time.time()
try:
prefixes = prefixes_for_root(root)
await _fast_db_consistency_pass(root)
# collect candidates from DB
async with await create_session() as sess:
verify_ids = await list_verify_candidates_under_prefixes(sess, prefixes=prefixes)
unhashed_ids = await list_unhashed_candidates_under_prefixes(sess, prefixes=prefixes)
# dedupe: prioritize verification first
seen = set()
ordered: list[int] = []
for lst in (verify_ids, unhashed_ids):
for sid in lst:
if sid not in seen:
seen.add(sid)
ordered.append(sid)
prog.discovered = len(ordered)
# queue up work
for sid in ordered:
await state.queue.put(sid)
state.closed = True
_start_state_workers(root, prog, state)
await _await_state_workers_then_finish(root, prog, state)
except asyncio.CancelledError:
prog.status = "cancelled"
raise
except Exception as exc:
_append_error(prog, path="", message=str(exc))
prog.status = "failed"
prog.finished_at = time.time()
LOGGER.exception("Asset scan failed for %s", root)
finally:
RUNNING_TASKS.pop(root, None)
async def _reconcile_missing_tags_for_root(root: schemas_in.RootType, prog: ScanProgress) -> None:
"""
Detect missing files quickly and toggle 'missing' tag per asset_id.
Rules:
- Only hashed assets (assets.hash != NULL) participate in missing tagging.
- We consider ALL cache states of the asset (across roots) before tagging.
"""
if root == "models":
bases: list[str] = []
for _bucket, paths in get_comfy_models_folders():
bases.extend(paths)
elif root == "input":
bases = [folder_paths.get_input_directory()]
else:
bases = [folder_paths.get_output_directory()]
try:
async with await create_session() as sess:
# state + hash + size for the current root
rows = await list_cache_states_with_asset_under_prefixes(sess, prefixes=bases)
# Track fast_ok within the scanned root and whether the asset is hashed
by_asset: dict[str, dict[str, bool]] = {}
for state, a_hash, size_db in rows:
aid = state.asset_id
acc = by_asset.get(aid)
if acc is None:
acc = {"any_fast_ok_here": False, "hashed": (a_hash is not None), "size_db": int(size_db or 0)}
by_asset[aid] = acc
try:
if acc["hashed"]:
st = os.stat(state.file_path, follow_symlinks=True)
if fast_asset_file_check(mtime_db=state.mtime_ns, size_db=acc["size_db"], stat_result=st):
acc["any_fast_ok_here"] = True
except FileNotFoundError:
pass
except OSError as e:
_append_error(prog, path=state.file_path, message=str(e))
# Decide per asset, considering ALL its states (not just this root)
for aid, acc in by_asset.items():
try:
if not acc["hashed"]:
# Never tag seed assets as missing
continue
any_fast_ok_global = acc["any_fast_ok_here"]
if not any_fast_ok_global:
# Check other states outside this root
others = await list_cache_states_by_asset_id(sess, asset_id=aid)
for st in others:
try:
any_fast_ok_global = fast_asset_file_check(
mtime_db=st.mtime_ns,
size_db=acc["size_db"],
stat_result=os.stat(st.file_path, follow_symlinks=True),
)
except OSError:
continue
if any_fast_ok_global:
await remove_missing_tag_for_asset_id(sess, asset_id=aid)
else:
await add_missing_tag_for_asset_id(sess, asset_id=aid, origin="automatic")
except Exception as ex:
_append_error(prog, path="", message=f"reconcile {aid[:8]}: {ex}")
await sess.commit()
except Exception as e:
_append_error(prog, path="", message=f"reconcile failed: {e}")
def _start_state_workers(root: schemas_in.RootType, prog: ScanProgress, state: SlowQueueState) -> None:
if state.workers:
return
async def _worker(_wid: int):
while True:
sid = await state.queue.get()
try:
if sid is None:
return
try:
async with await create_session() as sess:
# Optional: fetch path for better error messages
st = await sess.get(AssetCacheState, sid)
try:
await compute_hash_and_dedup_for_cache_state(sess, state_id=sid)
await sess.commit()
except Exception as e:
path = st.file_path if st else f"state:{sid}"
_append_error(prog, path=path, message=str(e))
raise
except Exception:
pass
finally:
prog.processed += 1
finally:
state.queue.task_done()
state.workers = [
asyncio.create_task(_worker(i), name=f"asset-hash:{root}:{i}")
for i in range(SLOW_HASH_CONCURRENCY)
]
async def _close_when_ready():
while not state.closed:
await asyncio.sleep(0.05)
for _ in range(SLOW_HASH_CONCURRENCY):
await state.queue.put(None)
asyncio.create_task(_close_when_ready())
async def _await_state_workers_then_finish(
root: schemas_in.RootType, prog: ScanProgress, state: SlowQueueState
) -> None:
if state.workers:
await asyncio.gather(*state.workers, return_exceptions=True)
await _reconcile_missing_tags_for_root(root, prog)
prog.finished_at = time.time()
prog.status = "completed"
def _append_error(prog: ScanProgress, *, path: str, message: str) -> None:
prog.file_errors.append({
"path": path,
"message": message,
"at": ts_to_iso(time.time()),
})
async def _fast_db_consistency_pass(
root: schemas_in.RootType,
def _fast_db_consistency_pass(
root: RootType,
*,
collect_existing_paths: bool = False,
update_missing_tags: bool = False,
) -> Optional[set[str]]:
) -> set[str] | None:
"""Fast DB+FS pass for a root:
- Toggle needs_verify per state using fast check
- For hashed assets with at least one fast-ok state in this root: delete stale missing states
@ -391,10 +119,10 @@ async def _fast_db_consistency_pass(
escaped, esc = escape_like_prefix(base)
conds.append(AssetCacheState.file_path.like(escaped + "%", escape=esc))
async with await create_session() as sess:
with create_session() as sess:
rows = (
await sess.execute(
sa.select(
sess.execute(
sqlalchemy.select(
AssetCacheState.id,
AssetCacheState.file_path,
AssetCacheState.mtime_ns,
@ -404,7 +132,7 @@ async def _fast_db_consistency_pass(
Asset.size_bytes,
)
.join(Asset, Asset.id == AssetCacheState.asset_id)
.where(sa.or_(*conds))
.where(sqlalchemy.or_(*conds))
.order_by(AssetCacheState.asset_id.asc(), AssetCacheState.id.asc())
)
).all()
@ -458,10 +186,10 @@ async def _fast_db_consistency_pass(
if a_hash is None:
if states and all_missing: # remove seed Asset completely, if no valid AssetCache exists
await sess.execute(sa.delete(AssetInfo).where(AssetInfo.asset_id == aid))
asset = await sess.get(Asset, aid)
sess.execute(sqlalchemy.delete(AssetInfo).where(AssetInfo.asset_id == aid))
asset = sess.get(Asset, aid)
if asset:
await sess.delete(asset)
sess.delete(asset)
else:
for s in states:
if s["exists"]:
@ -474,28 +202,28 @@ async def _fast_db_consistency_pass(
stale_state_ids.append(s["sid"])
if update_missing_tags:
with contextlib.suppress(Exception):
await remove_missing_tag_for_asset_id(sess, asset_id=aid)
remove_missing_tag_for_asset_id(sess, asset_id=aid)
elif update_missing_tags:
with contextlib.suppress(Exception):
await add_missing_tag_for_asset_id(sess, asset_id=aid, origin="automatic")
add_missing_tag_for_asset_id(sess, asset_id=aid, origin="automatic")
for s in states:
if s["exists"]:
survivors.add(os.path.abspath(s["fp"]))
if stale_state_ids:
await sess.execute(sa.delete(AssetCacheState).where(AssetCacheState.id.in_(stale_state_ids)))
sess.execute(sqlalchemy.delete(AssetCacheState).where(AssetCacheState.id.in_(stale_state_ids)))
if to_set_verify:
await sess.execute(
sa.update(AssetCacheState)
sess.execute(
sqlalchemy.update(AssetCacheState)
.where(AssetCacheState.id.in_(to_set_verify))
.values(needs_verify=True)
)
if to_clear_verify:
await sess.execute(
sa.update(AssetCacheState)
sess.execute(
sqlalchemy.update(AssetCacheState)
.where(AssetCacheState.id.in_(to_clear_verify))
.values(needs_verify=False)
)
await sess.commit()
sess.commit()
return survivors if collect_existing_paths else None

112
app/database/db.py Normal file
View File

@ -0,0 +1,112 @@
import logging
import os
import shutil
from app.logger import log_startup_warning
from utils.install_util import get_missing_requirements_message
from comfy.cli_args import args
_DB_AVAILABLE = False
Session = None
try:
from alembic import command
from alembic.config import Config
from alembic.runtime.migration import MigrationContext
from alembic.script import ScriptDirectory
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
_DB_AVAILABLE = True
except ImportError as e:
log_startup_warning(
f"""
------------------------------------------------------------------------
Error importing dependencies: {e}
{get_missing_requirements_message()}
This error is happening because ComfyUI now uses a local sqlite database.
------------------------------------------------------------------------
""".strip()
)
def dependencies_available():
"""
Temporary function to check if the dependencies are available
"""
return _DB_AVAILABLE
def can_create_session():
"""
Temporary function to check if the database is available to create a session
During initial release there may be environmental issues (or missing dependencies) that prevent the database from being created
"""
return dependencies_available() and Session is not None
def get_alembic_config():
root_path = os.path.join(os.path.dirname(__file__), "../..")
config_path = os.path.abspath(os.path.join(root_path, "alembic.ini"))
scripts_path = os.path.abspath(os.path.join(root_path, "alembic_db"))
config = Config(config_path)
config.set_main_option("script_location", scripts_path)
config.set_main_option("sqlalchemy.url", args.database_url)
return config
def get_db_path():
url = args.database_url
if url.startswith("sqlite:///"):
return url.split("///")[1]
else:
raise ValueError(f"Unsupported database URL '{url}'.")
def init_db():
db_url = args.database_url
logging.debug(f"Database URL: {db_url}")
db_path = get_db_path()
db_exists = os.path.exists(db_path)
config = get_alembic_config()
# Check if we need to upgrade
engine = create_engine(db_url)
conn = engine.connect()
context = MigrationContext.configure(conn)
current_rev = context.get_current_revision()
script = ScriptDirectory.from_config(config)
target_rev = script.get_current_head()
if target_rev is None:
logging.warning("No target revision found.")
elif current_rev != target_rev:
# Backup the database pre upgrade
backup_path = db_path + ".bkp"
if db_exists:
shutil.copy(db_path, backup_path)
else:
backup_path = None
try:
command.upgrade(config, target_rev)
logging.info(f"Database upgraded from {current_rev} to {target_rev}")
except Exception as e:
if backup_path:
# Restore the database from backup if upgrade fails
shutil.copy(backup_path, db_path)
os.remove(backup_path)
logging.exception("Error upgrading database: ")
raise e
global Session
Session = sessionmaker(bind=engine)
def create_session():
return Session()

21
app/database/models.py Normal file
View File

@ -0,0 +1,21 @@
from typing import Any
from datetime import datetime
from sqlalchemy.orm import DeclarativeBase
class Base(DeclarativeBase):
pass
def to_dict(obj: Any, include_none: bool = False) -> dict[str, Any]:
fields = obj.__table__.columns.keys()
out: dict[str, Any] = {}
for field in fields:
val = getattr(obj, field)
if val is None and not include_none:
continue
if isinstance(val, datetime):
out[field] = val.isoformat()
else:
out[field] = val
return out
# TODO: Define models here

255
app/db.py
View File

@ -1,255 +0,0 @@
import logging
import os
import shutil
from contextlib import asynccontextmanager
from typing import Optional
from alembic import command
from alembic.config import Config
from alembic.runtime.migration import MigrationContext
from alembic.script import ScriptDirectory
from sqlalchemy import create_engine, text
from sqlalchemy.engine import make_url
from sqlalchemy.ext.asyncio import (
AsyncEngine,
AsyncSession,
async_sessionmaker,
create_async_engine,
)
from comfy.cli_args import args
LOGGER = logging.getLogger(__name__)
ENGINE: Optional[AsyncEngine] = None
SESSION: Optional[async_sessionmaker] = None
def _root_paths():
"""Resolve alembic.ini and migrations script folder."""
root_path = os.path.abspath(os.path.dirname(__file__))
config_path = os.path.abspath(os.path.join(root_path, "../alembic.ini"))
scripts_path = os.path.abspath(os.path.join(root_path, "alembic_db"))
return config_path, scripts_path
def _absolutize_sqlite_url(db_url: str) -> str:
"""Make SQLite database path absolute. No-op for non-SQLite URLs."""
try:
u = make_url(db_url)
except Exception:
return db_url
if not u.drivername.startswith("sqlite"):
return db_url
db_path: str = u.database or ""
if isinstance(db_path, str) and db_path.startswith("file:"):
return str(u) # Do not touch SQLite URI databases like: "file:xxx?mode=memory&cache=shared"
if not os.path.isabs(db_path):
db_path = os.path.abspath(os.path.join(os.getcwd(), db_path))
u = u.set(database=db_path)
return str(u)
def _normalize_sqlite_memory_url(db_url: str) -> tuple[str, bool]:
"""
If db_url points at an in-memory SQLite DB (":memory:" or file:... mode=memory),
rewrite it to a *named* shared in-memory URI and ensure 'uri=true' is present.
Returns: (normalized_url, is_memory)
"""
try:
u = make_url(db_url)
except Exception:
return db_url, False
if not u.drivername.startswith("sqlite"):
return db_url, False
db = u.database or ""
if db == ":memory:":
u = u.set(database=f"file:comfyui_db_{os.getpid()}?mode=memory&cache=shared&uri=true")
return str(u), True
if isinstance(db, str) and db.startswith("file:") and "mode=memory" in db:
if "uri=true" not in db:
u = u.set(database=(db + ("&" if "?" in db else "?") + "uri=true"))
return str(u), True
return str(u), False
def _get_sqlite_file_path(sync_url: str) -> Optional[str]:
"""Return the on-disk path for a SQLite URL, else None."""
try:
u = make_url(sync_url)
except Exception:
return None
if not u.drivername.startswith("sqlite"):
return None
db_path = u.database
if isinstance(db_path, str) and db_path.startswith("file:"):
return None # Not a real file if it is a URI like "file:...?"
return db_path
def _get_alembic_config(sync_url: str) -> Config:
"""Prepare Alembic Config with script location and DB URL."""
config_path, scripts_path = _root_paths()
cfg = Config(config_path)
cfg.set_main_option("script_location", scripts_path)
cfg.set_main_option("sqlalchemy.url", sync_url)
return cfg
async def init_db_engine() -> None:
"""Initialize async engine + sessionmaker and run migrations to head.
This must be called once on application startup before any DB usage.
"""
global ENGINE, SESSION
if ENGINE is not None:
return
raw_url = args.database_url
if not raw_url:
raise RuntimeError("Database URL is not configured.")
db_url, is_mem = _normalize_sqlite_memory_url(raw_url)
db_url = _absolutize_sqlite_url(db_url)
# Prepare async engine
connect_args = {}
if db_url.startswith("sqlite"):
connect_args = {
"check_same_thread": False,
"timeout": 12,
}
if is_mem:
connect_args["uri"] = True
ENGINE = create_async_engine(
db_url,
connect_args=connect_args,
pool_pre_ping=True,
future=True,
)
# Enforce SQLite pragmas on the async engine
if db_url.startswith("sqlite"):
async with ENGINE.begin() as conn:
if not is_mem:
# WAL for concurrency and durability, Foreign Keys for referential integrity
current_mode = (await conn.execute(text("PRAGMA journal_mode;"))).scalar()
if str(current_mode).lower() != "wal":
new_mode = (await conn.execute(text("PRAGMA journal_mode=WAL;"))).scalar()
if str(new_mode).lower() != "wal":
raise RuntimeError("Failed to set SQLite journal mode to WAL.")
LOGGER.info("SQLite journal mode set to WAL.")
await conn.execute(text("PRAGMA foreign_keys = ON;"))
await conn.execute(text("PRAGMA synchronous = NORMAL;"))
await _run_migrations(database_url=db_url, connect_args=connect_args)
SESSION = async_sessionmaker(
bind=ENGINE,
class_=AsyncSession,
expire_on_commit=False,
autoflush=False,
autocommit=False,
)
async def _run_migrations(database_url: str, connect_args: dict) -> None:
if database_url.find("postgresql+psycopg") == -1:
"""SQLite: Convert an async SQLAlchemy URL to a sync URL for Alembic."""
u = make_url(database_url)
driver = u.drivername
if not driver.startswith("sqlite+aiosqlite"):
raise ValueError(f"Unsupported DB driver: {driver}")
database_url, is_mem = _normalize_sqlite_memory_url(str(u.set(drivername="sqlite")))
database_url = _absolutize_sqlite_url(database_url)
cfg = _get_alembic_config(database_url)
engine = create_engine(database_url, future=True, connect_args=connect_args)
with engine.connect() as conn:
context = MigrationContext.configure(conn)
current_rev = context.get_current_revision()
script = ScriptDirectory.from_config(cfg)
target_rev = script.get_current_head()
if target_rev is None:
LOGGER.warning("Alembic: no target revision found.")
return
if current_rev == target_rev:
LOGGER.debug("Alembic: database already at head %s", target_rev)
return
LOGGER.info("Alembic: upgrading database from %s to %s", current_rev, target_rev)
# Optional backup for SQLite file DBs
backup_path = None
sqlite_path = _get_sqlite_file_path(database_url)
if sqlite_path and os.path.exists(sqlite_path):
backup_path = sqlite_path + ".bkp"
try:
shutil.copy(sqlite_path, backup_path)
except Exception as exc:
LOGGER.warning("Failed to create SQLite backup before migration: %s", exc)
try:
command.upgrade(cfg, target_rev)
except Exception:
if backup_path and os.path.exists(backup_path):
LOGGER.exception("Error upgrading database, attempting restore from backup.")
try:
shutil.copy(backup_path, sqlite_path) # restore
os.remove(backup_path)
except Exception as re:
LOGGER.error("Failed to restore SQLite backup: %s", re)
else:
LOGGER.exception("Error upgrading database, backup is not available.")
raise
def get_engine():
"""Return the global async engine (initialized after init_db_engine())."""
if ENGINE is None:
raise RuntimeError("Engine is not initialized. Call init_db_engine() first.")
return ENGINE
def get_session_maker():
"""Return the global async_sessionmaker (initialized after init_db_engine())."""
if SESSION is None:
raise RuntimeError("Session maker is not initialized. Call init_db_engine() first.")
return SESSION
@asynccontextmanager
async def session_scope():
"""Async context manager for a unit of work:
async with session_scope() as sess:
... use sess ...
"""
maker = get_session_maker()
async with maker() as sess:
try:
yield sess
await sess.commit()
except Exception:
await sess.rollback()
raise
async def create_session():
"""Convenience helper to acquire a single AsyncSession instance.
Typical usage:
async with (await create_session()) as sess:
...
"""
maker = get_session_maker()
return maker()

View File

@ -10,7 +10,8 @@ import importlib
from dataclasses import dataclass
from functools import cached_property
from pathlib import Path
from typing import TypedDict, Optional
from typing import Dict, TypedDict, Optional
from aiohttp import web
from importlib.metadata import version
import requests
@ -42,6 +43,7 @@ def get_installed_frontend_version():
frontend_version_str = version("comfyui-frontend-package")
return frontend_version_str
def get_required_frontend_version():
"""Get the required frontend version from requirements.txt."""
try:
@ -63,6 +65,7 @@ def get_required_frontend_version():
logging.error(f"Error reading requirements.txt: {e}")
return None
def check_frontend_version():
"""Check if the frontend version is up to date."""
@ -196,17 +199,6 @@ def download_release_asset_zip(release: Release, destination_path: str) -> None:
class FrontendManager:
"""
A class to manage ComfyUI frontend versions and installations.
This class handles the initialization and management of different frontend versions,
including the default frontend from the pip package and custom frontend versions
from GitHub repositories.
Attributes:
CUSTOM_FRONTENDS_ROOT (str): The root directory where custom frontend versions are stored.
"""
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
@classmethod
@ -214,17 +206,39 @@ class FrontendManager:
"""Get the required frontend package version."""
return get_required_frontend_version()
@classmethod
def get_installed_templates_version(cls) -> str:
"""Get the currently installed workflow templates package version."""
try:
templates_version_str = version("comfyui-workflow-templates")
return templates_version_str
except Exception:
return None
@classmethod
def get_required_templates_version(cls) -> str:
"""Get the required workflow templates version from requirements.txt."""
try:
with open(requirements_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if line.startswith("comfyui-workflow-templates=="):
version_str = line.split("==")[-1]
if not is_valid_version(version_str):
logging.error(f"Invalid templates version format in requirements.txt: {version_str}")
return None
return version_str
logging.error("comfyui-workflow-templates not found in requirements.txt")
return None
except FileNotFoundError:
logging.error("requirements.txt not found. Cannot determine required templates version.")
return None
except Exception as e:
logging.error(f"Error reading requirements.txt: {e}")
return None
@classmethod
def default_frontend_path(cls) -> str:
"""
Get the path to the default frontend installation from the pip package.
Returns:
str: The path to the default frontend static files.
Raises:
SystemExit: If the comfyui-frontend-package is not installed.
"""
try:
import comfyui_frontend_package
@ -244,16 +258,54 @@ comfyui-frontend-package is not installed.
sys.exit(-1)
@classmethod
def templates_path(cls) -> str:
"""
Get the path to the workflow templates.
def template_asset_map(cls) -> Optional[Dict[str, str]]:
"""Return a mapping of template asset names to their absolute paths."""
try:
from comfyui_workflow_templates import (
get_asset_path,
iter_templates,
)
except ImportError:
logging.error(
f"""
********** ERROR ***********
Returns:
str: The path to the workflow templates directory.
comfyui-workflow-templates is not installed.
Raises:
SystemExit: If the comfyui-workflow-templates package is not installed.
"""
{frontend_install_warning_message()}
********** ERROR ***********
""".strip()
)
return None
try:
template_entries = list(iter_templates())
except Exception as exc:
logging.error(f"Failed to enumerate workflow templates: {exc}")
return None
asset_map: Dict[str, str] = {}
try:
for entry in template_entries:
for asset in entry.assets:
asset_map[asset.filename] = get_asset_path(
entry.template_id, asset.filename
)
except Exception as exc:
logging.error(f"Failed to resolve template asset paths: {exc}")
return None
if not asset_map:
logging.error("No workflow template assets found. Did the packages install correctly?")
return None
return asset_map
@classmethod
def legacy_templates_path(cls) -> Optional[str]:
"""Return the legacy templates directory shipped inside the meta package."""
try:
import comfyui_workflow_templates
@ -272,6 +324,7 @@ comfyui-workflow-templates is not installed.
********** ERROR ***********
""".strip()
)
return None
@classmethod
def embedded_docs_path(cls) -> str:
@ -289,16 +342,11 @@ comfyui-workflow-templates is not installed.
@classmethod
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
"""
Parse a version string into its components.
The version string should be in the format: 'owner/repo@version'
where version can be either a semantic version (v1.2.3) or 'latest'.
Args:
value (str): The version string to parse.
Returns:
tuple[str, str, str]: A tuple containing (owner, repo, version).
tuple[str, str]: A tuple containing provider name and version.
Raises:
argparse.ArgumentTypeError: If the version string is invalid.
@ -315,22 +363,18 @@ comfyui-workflow-templates is not installed.
cls, version_string: str, provider: Optional[FrontEndProvider] = None
) -> str:
"""
Initialize a frontend version without error handling.
This method attempts to initialize a specific frontend version, either from
the default pip package or from a custom GitHub repository. It will download
and extract the frontend files if necessary.
Initializes the frontend for the specified version.
Args:
version_string (str): The version string specifying which frontend to use.
provider (FrontEndProvider, optional): The provider to use for custom frontends.
version_string (str): The version string.
provider (FrontEndProvider, optional): The provider to use. Defaults to None.
Returns:
str: The path to the initialized frontend.
Raises:
Exception: If there is an error during initialization (e.g., network timeout,
invalid URL, or missing assets).
Exception: If there is an error during the initialization process.
main error source might be request timeout or invalid URL.
"""
if version_string == DEFAULT_VERSION_STRING:
check_frontend_version()
@ -382,17 +426,13 @@ comfyui-workflow-templates is not installed.
@classmethod
def init_frontend(cls, version_string: str) -> str:
"""
Initialize a frontend version with error handling.
This is the main method to initialize a frontend version. It wraps init_frontend_unsafe
with error handling, falling back to the default frontend if initialization fails.
Initializes the frontend with the specified version string.
Args:
version_string (str): The version string specifying which frontend to use.
version_string (str): The version string to initialize the frontend with.
Returns:
str: The path to the initialized frontend. If initialization fails,
returns the path to the default frontend.
str: The path of the initialized frontend.
"""
try:
return cls.init_frontend_unsafe(version_string)
@ -401,3 +441,17 @@ comfyui-workflow-templates is not installed.
logging.info("Falling back to the default frontend.")
check_frontend_version()
return cls.default_frontend_path()
@classmethod
def template_asset_handler(cls):
assets = cls.template_asset_map()
if not assets:
return None
async def serve_template(request: web.Request) -> web.StreamResponse:
rel_path = request.match_info.get("path", "")
target = assets.get(rel_path)
if target is None:
raise web.HTTPNotFound()
return web.FileResponse(target)
return serve_template

View File

@ -44,7 +44,7 @@ class ModelFileManager:
@routes.get("/experiment/models/{folder}")
async def get_all_models(request):
folder = request.match_info.get("folder", None)
if not folder in folder_paths.folder_names_and_paths:
if folder not in folder_paths.folder_names_and_paths:
return web.Response(status=404)
files = self.get_model_file_list(folder)
return web.json_response(files)
@ -55,7 +55,7 @@ class ModelFileManager:
path_index = int(request.match_info.get("path_index", None))
filename = request.match_info.get("filename", None)
if not folder_name in folder_paths.folder_names_and_paths:
if folder_name not in folder_paths.folder_names_and_paths:
return web.Response(status=404)
folders = folder_paths.folder_names_and_paths[folder_name]

132
app/subgraph_manager.py Normal file
View File

@ -0,0 +1,132 @@
from __future__ import annotations
from typing import TypedDict
import os
import folder_paths
import glob
from aiohttp import web
import hashlib
class Source:
custom_node = "custom_node"
templates = "templates"
class SubgraphEntry(TypedDict):
source: str
"""
Source of subgraph - custom_nodes vs templates.
"""
path: str
"""
Relative path of the subgraph file.
For custom nodes, will be the relative directory like <custom_node_dir>/subgraphs/<name>.json
"""
name: str
"""
Name of subgraph file.
"""
info: CustomNodeSubgraphEntryInfo
"""
Additional info about subgraph; in the case of custom_nodes, will contain nodepack name
"""
data: str
class CustomNodeSubgraphEntryInfo(TypedDict):
node_pack: str
"""Node pack name."""
class SubgraphManager:
def __init__(self):
self.cached_custom_node_subgraphs: dict[SubgraphEntry] | None = None
self.cached_blueprint_subgraphs: dict[SubgraphEntry] | None = None
def _create_entry(self, file: str, source: str, node_pack: str) -> tuple[str, SubgraphEntry]:
"""Create a subgraph entry from a file path. Expects normalized path (forward slashes)."""
entry_id = hashlib.sha256(f"{source}{file}".encode()).hexdigest()
entry: SubgraphEntry = {
"source": source,
"name": os.path.splitext(os.path.basename(file))[0],
"path": file,
"info": {"node_pack": node_pack},
}
return entry_id, entry
async def load_entry_data(self, entry: SubgraphEntry):
with open(entry['path'], 'r') as f:
entry['data'] = f.read()
return entry
async def sanitize_entry(self, entry: SubgraphEntry | None, remove_data=False) -> SubgraphEntry | None:
if entry is None:
return None
entry = entry.copy()
entry.pop('path', None)
if remove_data:
entry.pop('data', None)
return entry
async def sanitize_entries(self, entries: dict[str, SubgraphEntry], remove_data=False) -> dict[str, SubgraphEntry]:
entries = entries.copy()
for key in list(entries.keys()):
entries[key] = await self.sanitize_entry(entries[key], remove_data)
return entries
async def get_custom_node_subgraphs(self, loadedModules, force_reload=False):
"""Load subgraphs from custom nodes."""
if not force_reload and self.cached_custom_node_subgraphs is not None:
return self.cached_custom_node_subgraphs
subgraphs_dict: dict[SubgraphEntry] = {}
for folder in folder_paths.get_folder_paths("custom_nodes"):
pattern = os.path.join(folder, "*/subgraphs/*.json")
for file in glob.glob(pattern):
file = file.replace('\\', '/')
node_pack = "custom_nodes." + file.split('/')[-3]
entry_id, entry = self._create_entry(file, Source.custom_node, node_pack)
subgraphs_dict[entry_id] = entry
self.cached_custom_node_subgraphs = subgraphs_dict
return subgraphs_dict
async def get_blueprint_subgraphs(self, force_reload=False):
"""Load subgraphs from the blueprints directory."""
if not force_reload and self.cached_blueprint_subgraphs is not None:
return self.cached_blueprint_subgraphs
subgraphs_dict: dict[SubgraphEntry] = {}
blueprints_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'blueprints')
if os.path.exists(blueprints_dir):
for file in glob.glob(os.path.join(blueprints_dir, "*.json")):
file = file.replace('\\', '/')
entry_id, entry = self._create_entry(file, Source.templates, "comfyui")
subgraphs_dict[entry_id] = entry
self.cached_blueprint_subgraphs = subgraphs_dict
return subgraphs_dict
async def get_all_subgraphs(self, loadedModules, force_reload=False):
"""Get all subgraphs from all sources (custom nodes and blueprints)."""
custom_node_subgraphs = await self.get_custom_node_subgraphs(loadedModules, force_reload)
blueprint_subgraphs = await self.get_blueprint_subgraphs(force_reload)
return {**custom_node_subgraphs, **blueprint_subgraphs}
async def get_subgraph(self, id: str, loadedModules):
"""Get a specific subgraph by ID from any source."""
entry = (await self.get_all_subgraphs(loadedModules)).get(id)
if entry is not None and entry.get('data') is None:
await self.load_entry_data(entry)
return entry
def add_routes(self, routes, loadedModules):
@routes.get("/global_subgraphs")
async def get_global_subgraphs(request):
subgraphs_dict = await self.get_all_subgraphs(loadedModules)
return web.json_response(await self.sanitize_entries(subgraphs_dict, remove_data=True))
@routes.get("/global_subgraphs/{id}")
async def get_global_subgraph(request):
id = request.match_info.get("id", None)
subgraph = await self.get_subgraph(id, loadedModules)
return web.json_response(await self.sanitize_entry(subgraph))

View File

@ -59,6 +59,9 @@ class UserManager():
user = "default"
if args.multi_user and "comfy-user" in request.headers:
user = request.headers["comfy-user"]
# Block System Users (use same error message to prevent probing)
if user.startswith(folder_paths.SYSTEM_USER_PREFIX):
raise KeyError("Unknown user: " + user)
if user not in self.users:
raise KeyError("Unknown user: " + user)
@ -66,15 +69,16 @@ class UserManager():
return user
def get_request_user_filepath(self, request, file, type="userdata", create_dir=True):
user_directory = folder_paths.get_user_directory()
if type == "userdata":
root_dir = user_directory
root_dir = folder_paths.get_user_directory()
else:
raise KeyError("Unknown filepath type:" + type)
user = self.get_request_user_id(request)
path = user_root = os.path.abspath(os.path.join(root_dir, user))
user_root = folder_paths.get_public_user_directory(user)
if user_root is None:
return None
path = user_root
# prevent leaving /{type}
if os.path.commonpath((root_dir, user_root)) != root_dir:
@ -101,7 +105,11 @@ class UserManager():
name = name.strip()
if not name:
raise ValueError("username not provided")
if name.startswith(folder_paths.SYSTEM_USER_PREFIX):
raise ValueError("System User prefix not allowed")
user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name)
if user_id.startswith(folder_paths.SYSTEM_USER_PREFIX):
raise ValueError("System User prefix not allowed")
user_id = user_id + "_" + str(uuid.uuid4())
self.users[user_id] = name
@ -132,7 +140,10 @@ class UserManager():
if username in self.users.values():
return web.json_response({"error": "Duplicate username."}, status=400)
user_id = self.add_user(username)
try:
user_id = self.add_user(username)
except ValueError as e:
return web.json_response({"error": str(e)}, status=400)
return web.json_response(user_id)
@routes.get("/userdata")
@ -424,7 +435,7 @@ class UserManager():
return source
dest = get_user_data_path(request, check_exists=False, param="dest")
if not isinstance(source, str):
if not isinstance(dest, str):
return dest
overwrite = request.query.get("overwrite", 'true') != "false"

View File

@ -413,7 +413,8 @@ class ControlNet(nn.Module):
out_middle = []
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
if y is None:
raise ValueError("y is None, did you try using a controlnet for SDXL on SD1?")
emb = emb + self.label_emb(y)
h = x

View File

@ -97,6 +97,13 @@ class LatentPreviewMethod(enum.Enum):
Latent2RGB = "latent2rgb"
TAESD = "taesd"
@classmethod
def from_string(cls, value: str):
for member in cls:
if member.value == value:
return member
return None
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
@ -105,6 +112,7 @@ cache_group = parser.add_mutually_exclusive_group()
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
cache_group.add_argument("--cache-ram", nargs='?', const=4.0, type=float, default=0, help="Use RAM pressure caching with the specified headroom threshold. If available RAM drops below the threhold the cache remove large items to free RAM. Default 4GB")
attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
@ -120,6 +128,12 @@ upcast.add_argument("--force-upcast-attention", action="store_true", help="Force
upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
parser.add_argument("--enable-manager", action="store_true", help="Enable the ComfyUI-Manager feature.")
manager_group = parser.add_mutually_exclusive_group()
manager_group.add_argument("--disable-manager-ui", action="store_true", help="Disables only the ComfyUI-Manager UI and endpoints. Scheduled installations and similar background tasks will still operate.")
manager_group.add_argument("--enable-manager-legacy-ui", action="store_true", help="Enables the legacy UI of ComfyUI-Manager")
vram_group = parser.add_mutually_exclusive_group()
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
@ -130,7 +144,8 @@ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for e
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
parser.add_argument("--async-offload", nargs='?', const=2, type=int, default=None, metavar="NUM_STREAMS", help="Use async weight offloading. An optional argument controls the amount of offload streams. Default is 2. Enabled by default on Nvidia.")
parser.add_argument("--disable-async-offload", action="store_true", help="Disable async weight offloading.")
parser.add_argument("--force-non-blocking", action="store_true", help="Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.")
@ -145,7 +160,9 @@ class PerformanceFeature(enum.Enum):
CublasOps = "cublas_ops"
AutoTune = "autotune"
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. This is used to test new features so using it might crash your comfyui. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
parser.add_argument("--disable-pinned-memory", action="store_true", help="Disable pinned memory use.")
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
parser.add_argument("--disable-mmap", action="store_true", help="Don't use mmap when loading safetensors.")
@ -157,13 +174,14 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
parser.add_argument("--whitelist-custom-nodes", type=str, nargs='+', default=[], help="Specify custom node folders to load even when --disable-all-custom-nodes is enabled.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes. Also prevents the frontend from communicating with the internet.")
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).")
# The default built-in provider hosted under web/
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
@ -212,7 +230,7 @@ parser.add_argument(
database_default_path = os.path.abspath(
os.path.join(os.path.dirname(__file__), "..", "user", "comfyui.db")
)
parser.add_argument("--database-url", type=str, default=f"sqlite+aiosqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite+aiosqlite:///:memory:'.")
parser.add_argument("--database-url", type=str, default=f"sqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite:///:memory:'.")
parser.add_argument("--disable-assets-autoscan", action="store_true", help="Disable asset scanning on startup for database synchronization.")
if comfy.options.args_parsing:

View File

@ -1,6 +1,59 @@
import torch
from comfy.ldm.modules.attention import optimized_attention_for_device
import comfy.ops
import math
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
image = image[:, :, :, :3] if image.shape[3] > 3 else image
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
std = torch.tensor(std, device=image.device, dtype=image.dtype)
image = image.movedim(-1, 1)
if not (image.shape[2] == size and image.shape[3] == size):
if crop:
scale = (size / min(image.shape[2], image.shape[3]))
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
else:
scale_size = (size, size)
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
h = (image.shape[2] - size)//2
w = (image.shape[3] - size)//2
image = image[:,:,h:h+size,w:w+size]
image = torch.clip((255. * image), 0, 255).round() / 255.0
return (image - mean.view([3,1,1])) / std.view([3,1,1])
def siglip2_flex_calc_resolution(oh, ow, patch_size, max_num_patches, eps=1e-5):
def scale_dim(size, scale):
scaled = math.ceil(size * scale / patch_size) * patch_size
return max(patch_size, int(scaled))
# Binary search for optimal scale
lo, hi = eps / 10, 100.0
while hi - lo >= eps:
mid = (lo + hi) / 2
h, w = scale_dim(oh, mid), scale_dim(ow, mid)
if (h // patch_size) * (w // patch_size) <= max_num_patches:
lo = mid
else:
hi = mid
return scale_dim(oh, lo), scale_dim(ow, lo)
def siglip2_preprocess(image, size, patch_size, num_patches, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], crop=True):
if size > 0:
return clip_preprocess(image, size=size, mean=mean, std=std, crop=crop)
image = image[:, :, :, :3] if image.shape[3] > 3 else image
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
std = torch.tensor(std, device=image.device, dtype=image.dtype)
image = image.movedim(-1, 1)
b, c, h, w = image.shape
h, w = siglip2_flex_calc_resolution(h, w, patch_size, num_patches)
image = torch.nn.functional.interpolate(image, size=(h, w), mode="bilinear", antialias=True)
image = torch.clip((255. * image), 0, 255).round() / 255.0
return (image - mean.view([3, 1, 1])) / std.view([3, 1, 1])
class CLIPAttention(torch.nn.Module):
def __init__(self, embed_dim, heads, dtype, device, operations):
@ -156,6 +209,27 @@ class CLIPTextModel(torch.nn.Module):
out = self.text_projection(x[2])
return (x[0], x[1], out, x[2])
def siglip2_pos_embed(embed_weight, embeds, orig_shape):
embed_weight_len = round(embed_weight.shape[0] ** 0.5)
embed_weight = comfy.ops.cast_to_input(embed_weight, embeds).movedim(1, 0).reshape(1, -1, embed_weight_len, embed_weight_len)
embed_weight = torch.nn.functional.interpolate(embed_weight, size=orig_shape, mode="bilinear", align_corners=False, antialias=True)
embed_weight = embed_weight.reshape(-1, embed_weight.shape[-2] * embed_weight.shape[-1]).movedim(0, 1)
return embeds + embed_weight
class Siglip2Embeddings(torch.nn.Module):
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", num_patches=None, dtype=None, device=None, operations=None):
super().__init__()
self.patch_embedding = operations.Linear(num_channels * patch_size * patch_size, embed_dim, dtype=dtype, device=device)
self.position_embedding = operations.Embedding(num_patches, embed_dim, dtype=dtype, device=device)
self.patch_size = patch_size
def forward(self, pixel_values):
b, c, h, w = pixel_values.shape
img = pixel_values.movedim(1, -1).reshape(b, h // self.patch_size, self.patch_size, w // self.patch_size, self.patch_size, c)
img = img.permute(0, 1, 3, 2, 4, 5)
img = img.reshape(b, img.shape[1] * img.shape[2], -1)
img = self.patch_embedding(img)
return siglip2_pos_embed(self.position_embedding.weight, img, (h // self.patch_size, w // self.patch_size))
class CLIPVisionEmbeddings(torch.nn.Module):
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", dtype=None, device=None, operations=None):
@ -199,8 +273,11 @@ class CLIPVision(torch.nn.Module):
intermediate_activation = config_dict["hidden_act"]
model_type = config_dict["model_type"]
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
if model_type == "siglip_vision_model":
if model_type in ["siglip2_vision_model"]:
self.embeddings = Siglip2Embeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, num_patches=config_dict.get("num_patches", None), dtype=dtype, device=device, operations=operations)
else:
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
if model_type in ["siglip_vision_model", "siglip2_vision_model"]:
self.pre_layrnorm = lambda a: a
self.output_layernorm = True
else:

View File

@ -1,6 +1,5 @@
from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
import os
import torch
import json
import logging
@ -17,28 +16,12 @@ class Output:
def __setitem__(self, key, item):
setattr(self, key, item)
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
image = image[:, :, :, :3] if image.shape[3] > 3 else image
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
std = torch.tensor(std, device=image.device, dtype=image.dtype)
image = image.movedim(-1, 1)
if not (image.shape[2] == size and image.shape[3] == size):
if crop:
scale = (size / min(image.shape[2], image.shape[3]))
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
else:
scale_size = (size, size)
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
h = (image.shape[2] - size)//2
w = (image.shape[3] - size)//2
image = image[:,:,h:h+size,w:w+size]
image = torch.clip((255. * image), 0, 255).round() / 255.0
return (image - mean.view([3,1,1])) / std.view([3,1,1])
clip_preprocess = comfy.clip_model.clip_preprocess # Prevent some stuff from breaking, TODO: remove eventually
IMAGE_ENCODERS = {
"clip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
"siglip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
"siglip2_vision_model": comfy.clip_model.CLIPVisionModelProjection,
"dinov2": comfy.image_encoders.dino2.Dinov2Model,
}
@ -50,9 +33,10 @@ class ClipVisionModel():
self.image_size = config.get("image_size", 224)
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
model_type = config.get("model_type", "clip_vision_model")
model_class = IMAGE_ENCODERS.get(model_type)
if model_type == "siglip_vision_model":
self.model_type = config.get("model_type", "clip_vision_model")
self.config = config.copy()
model_class = IMAGE_ENCODERS.get(self.model_type)
if self.model_type == "siglip_vision_model":
self.return_all_hidden_states = True
else:
self.return_all_hidden_states = False
@ -73,12 +57,16 @@ class ClipVisionModel():
def encode_image(self, image, crop=True):
comfy.model_management.load_model_gpu(self.patcher)
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
if self.model_type == "siglip2_vision_model":
pixel_values = comfy.clip_model.siglip2_preprocess(image.to(self.load_device), size=self.image_size, patch_size=self.config.get("patch_size", 16), num_patches=self.config.get("num_patches", 256), mean=self.image_mean, std=self.image_std, crop=crop).float()
else:
pixel_values = comfy.clip_model.clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2)
outputs = Output()
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
outputs["image_sizes"] = [pixel_values.shape[1:]] * pixel_values.shape[0]
if self.return_all_hidden_states:
all_hs = out[1].to(comfy.model_management.intermediate_device())
outputs["penultimate_hidden_states"] = all_hs[:, -2]
@ -125,10 +113,14 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
embed_shape = sd["vision_model.embeddings.position_embedding.weight"].shape[0]
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
if embed_shape == 729:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
elif embed_shape == 1024:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
patch_embedding_shape = sd["vision_model.embeddings.patch_embedding.weight"].shape
if len(patch_embedding_shape) == 2:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip2_base_naflex.json")
else:
if embed_shape == 729:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
elif embed_shape == 1024:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
elif embed_shape == 577:
if "multi_modal_projector.linear_1.bias" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")

View File

@ -0,0 +1,14 @@
{
"num_channels": 3,
"hidden_act": "gelu_pytorch_tanh",
"hidden_size": 1152,
"image_size": -1,
"intermediate_size": 4304,
"model_type": "siglip2_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 16,
"num_patches": 256,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5]
}

View File

@ -51,32 +51,43 @@ class ContextHandlerABC(ABC):
class IndexListContextWindow(ContextWindowABC):
def __init__(self, index_list: list[int], dim: int=0):
def __init__(self, index_list: list[int], dim: int=0, total_frames: int=0):
self.index_list = index_list
self.context_length = len(index_list)
self.dim = dim
self.total_frames = total_frames
self.center_ratio = (min(index_list) + max(index_list)) / (2 * total_frames)
def get_tensor(self, full: torch.Tensor, device=None, dim=None) -> torch.Tensor:
def get_tensor(self, full: torch.Tensor, device=None, dim=None, retain_index_list=[]) -> torch.Tensor:
if dim is None:
dim = self.dim
if dim == 0 and full.shape[dim] == 1:
return full
idx = [slice(None)] * dim + [self.index_list]
return full[idx].to(device)
idx = tuple([slice(None)] * dim + [self.index_list])
window = full[idx]
if retain_index_list:
idx = tuple([slice(None)] * dim + [retain_index_list])
window[idx] = full[idx]
return window.to(device)
def add_window(self, full: torch.Tensor, to_add: torch.Tensor, dim=None) -> torch.Tensor:
if dim is None:
dim = self.dim
idx = [slice(None)] * dim + [self.index_list]
idx = tuple([slice(None)] * dim + [self.index_list])
full[idx] += to_add
return full
def get_region_index(self, num_regions: int) -> int:
region_idx = int(self.center_ratio * num_regions)
return min(max(region_idx, 0), num_regions - 1)
class IndexListCallbacks:
EVALUATE_CONTEXT_WINDOWS = "evaluate_context_windows"
COMBINE_CONTEXT_WINDOW_RESULTS = "combine_context_window_results"
EXECUTE_START = "execute_start"
EXECUTE_CLEANUP = "execute_cleanup"
RESIZE_COND_ITEM = "resize_cond_item"
def init_callbacks(self):
return {}
@ -94,7 +105,8 @@ class ContextFuseMethod:
ContextResults = collections.namedtuple("ContextResults", ['window_idx', 'sub_conds_out', 'sub_conds', 'window'])
class IndexListContextHandler(ContextHandlerABC):
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, closed_loop=False, dim=0):
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1,
closed_loop: bool=False, dim:int=0, freenoise: bool=False, cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False):
self.context_schedule = context_schedule
self.fuse_method = fuse_method
self.context_length = context_length
@ -103,13 +115,18 @@ class IndexListContextHandler(ContextHandlerABC):
self.closed_loop = closed_loop
self.dim = dim
self._step = 0
self.freenoise = freenoise
self.cond_retain_index_list = [int(x.strip()) for x in cond_retain_index_list.split(",")] if cond_retain_index_list else []
self.split_conds_to_windows = split_conds_to_windows
self.callbacks = {}
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
# for now, assume first dim is batch - should have stored on BaseModel in actual implementation
if x_in.size(self.dim) > self.context_length:
logging.info(f"Using context windows {self.context_length} for {x_in.size(self.dim)} frames.")
logging.info(f"Using context windows {self.context_length} with overlap {self.context_overlap} for {x_in.size(self.dim)} frames.")
if self.cond_retain_index_list:
logging.info(f"Retaining original cond for indexes: {self.cond_retain_index_list}")
return True
return False
@ -123,6 +140,11 @@ class IndexListContextHandler(ContextHandlerABC):
return None
# reuse or resize cond items to match context requirements
resized_cond = []
# if multiple conds, split based on primary region
if self.split_conds_to_windows and len(cond_in) > 1:
region = window.get_region_index(len(cond_in))
logging.info(f"Splitting conds to windows; using region {region} for window {window.index_list[0]}-{window.index_list[-1]} with center ratio {window.center_ratio:.3f}")
cond_in = [cond_in[region]]
# cond object is a list containing a dict - outer list is irrelevant, so just loop through it
for actual_cond in cond_in:
resized_actual_cond = actual_cond.copy()
@ -145,13 +167,38 @@ class IndexListContextHandler(ContextHandlerABC):
new_cond_item = cond_item.copy()
# when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor)
for cond_key, cond_value in new_cond_item.items():
# Allow callbacks to handle custom conditioning items
handled = False
for callback in comfy.patcher_extension.get_all_callbacks(
IndexListCallbacks.RESIZE_COND_ITEM, self.callbacks
):
result = callback(cond_key, cond_value, window, x_in, device, new_cond_item)
if result is not None:
new_cond_item[cond_key] = result
handled = True
break
if handled:
continue
if isinstance(cond_value, torch.Tensor):
if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim):
if (self.dim < cond_value.ndim and cond_value(self.dim) == x_in.size(self.dim)) or \
(cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim)):
new_cond_item[cond_key] = window.get_tensor(cond_value, device)
# Handle audio_embed (temporal dim is 1)
elif cond_key == "audio_embed" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
audio_cond = cond_value.cond
if audio_cond.ndim > 1 and audio_cond.size(1) == x_in.size(self.dim):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(audio_cond, device, dim=1))
# Handle vace_context (temporal dim is 3)
elif cond_key == "vace_context" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
vace_cond = cond_value.cond
if vace_cond.ndim >= 4 and vace_cond.size(3) == x_in.size(self.dim):
sliced_vace = window.get_tensor(vace_cond, device, dim=3, retain_index_list=self.cond_retain_index_list)
new_cond_item[cond_key] = cond_value._copy_with(sliced_vace)
# if has cond that is a Tensor, check if needs to be subset
elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device))
if (self.dim < cond_value.cond.ndim and cond_value.cond.size(self.dim) == x_in.size(self.dim)) or \
(cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim)):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device, retain_index_list=self.cond_retain_index_list))
elif cond_key == "num_video_frames": # for SVD
new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond)
new_cond_item[cond_key].cond = window.context_length
@ -164,7 +211,7 @@ class IndexListContextHandler(ContextHandlerABC):
return resized_cond
def set_step(self, timestep: torch.Tensor, model_options: dict[str]):
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep, rtol=0.0001)
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep[0], rtol=0.0001)
matches = torch.nonzero(mask)
if torch.numel(matches) == 0:
raise Exception("No sample_sigmas matched current timestep; something went wrong.")
@ -173,7 +220,7 @@ class IndexListContextHandler(ContextHandlerABC):
def get_context_windows(self, model: BaseModel, x_in: torch.Tensor, model_options: dict[str]) -> list[IndexListContextWindow]:
full_length = x_in.size(self.dim) # TODO: choose dim based on model
context_windows = self.context_schedule.func(full_length, self, model_options)
context_windows = [IndexListContextWindow(window, dim=self.dim) for window in context_windows]
context_windows = [IndexListContextWindow(window, dim=self.dim, total_frames=full_length) for window in context_windows]
return context_windows
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
@ -250,8 +297,8 @@ class IndexListContextHandler(ContextHandlerABC):
prev_weight = (bias_total / (bias_total + bias))
new_weight = (bias / (bias_total + bias))
# account for dims of tensors
idx_window = [slice(None)] * self.dim + [idx]
pos_window = [slice(None)] * self.dim + [pos]
idx_window = tuple([slice(None)] * self.dim + [idx])
pos_window = tuple([slice(None)] * self.dim + [pos])
# apply new values
conds_final[i][idx_window] = conds_final[i][idx_window] * prev_weight + sub_conds_out[i][pos_window] * new_weight
biases_final[i][idx] = bias_total + bias
@ -287,6 +334,28 @@ def create_prepare_sampling_wrapper(model: ModelPatcher):
)
def _sampler_sample_wrapper(executor, guider, sigmas, extra_args, callback, noise, *args, **kwargs):
model_options = extra_args.get("model_options", None)
if model_options is None:
raise Exception("model_options not found in sampler_sample_wrapper; this should never happen, something went wrong.")
handler: IndexListContextHandler = model_options.get("context_handler", None)
if handler is None:
raise Exception("context_handler not found in sampler_sample_wrapper; this should never happen, something went wrong.")
if not handler.freenoise:
return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs)
noise = apply_freenoise(noise, handler.dim, handler.context_length, handler.context_overlap, extra_args["seed"])
return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs)
def create_sampler_sample_wrapper(model: ModelPatcher):
model.add_wrapper_with_key(
comfy.patcher_extension.WrappersMP.SAMPLER_SAMPLE,
"ContextWindows_sampler_sample",
_sampler_sample_wrapper
)
def match_weights_to_dim(weights: list[float], x_in: torch.Tensor, dim: int, device=None) -> torch.Tensor:
total_dims = len(x_in.shape)
weights_tensor = torch.Tensor(weights).to(device=device)
@ -538,3 +607,29 @@ def shift_window_to_end(window: list[int], num_frames: int):
for i in range(len(window)):
# 2) add end_delta to each val to slide windows to end
window[i] = window[i] + end_delta
# https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved/blob/90fb1331201a4b29488089e4fbffc0d82cc6d0a9/animatediff/sample_settings.py#L465
def apply_freenoise(noise: torch.Tensor, dim: int, context_length: int, context_overlap: int, seed: int):
logging.info("Context windows: Applying FreeNoise")
generator = torch.Generator(device='cpu').manual_seed(seed)
latent_video_length = noise.shape[dim]
delta = context_length - context_overlap
for start_idx in range(0, latent_video_length - context_length, delta):
place_idx = start_idx + context_length
actual_delta = min(delta, latent_video_length - place_idx)
if actual_delta <= 0:
break
list_idx = torch.randperm(actual_delta, generator=generator, device='cpu') + start_idx
source_slice = [slice(None)] * noise.ndim
source_slice[dim] = list_idx
target_slice = [slice(None)] * noise.ndim
target_slice[dim] = slice(place_idx, place_idx + actual_delta)
noise[tuple(target_slice)] = noise[tuple(source_slice)]
return noise

View File

@ -310,11 +310,13 @@ class ControlLoraOps:
self.bias = None
def forward(self, input):
weight, bias = comfy.ops.cast_bias_weight(self, input)
weight, bias, offload_stream = comfy.ops.cast_bias_weight(self, input, offloadable=True)
if self.up is not None:
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
x = torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
else:
return torch.nn.functional.linear(input, weight, bias)
x = torch.nn.functional.linear(input, weight, bias)
comfy.ops.uncast_bias_weight(self, weight, bias, offload_stream)
return x
class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
def __init__(
@ -350,12 +352,13 @@ class ControlLoraOps:
def forward(self, input):
weight, bias = comfy.ops.cast_bias_weight(self, input)
weight, bias, offload_stream = comfy.ops.cast_bias_weight(self, input, offloadable=True)
if self.up is not None:
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
x = torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
else:
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
x = torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
comfy.ops.uncast_bias_weight(self, weight, bias, offload_stream)
return x
class ControlLora(ControlNet):
def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options

View File

@ -65,3 +65,147 @@ def stochastic_rounding(value, dtype, seed=0):
return output
return value.to(dtype=dtype)
# TODO: improve this?
def stochastic_float_to_fp4_e2m1(x, generator):
orig_shape = x.shape
sign = torch.signbit(x).to(torch.uint8)
exp = torch.floor(torch.log2(x.abs()) + 1.0).clamp(0, 3)
x += (torch.rand(x.size(), dtype=x.dtype, layout=x.layout, device=x.device, generator=generator) - 0.5) * (2 ** (exp - 2.0)) * 1.25
x = x.abs()
exp = torch.floor(torch.log2(x) + 1.1925).clamp(0, 3)
mantissa = torch.where(
exp > 0,
(x / (2.0 ** (exp - 1)) - 1.0) * 2.0,
(x * 2.0),
out=x
).round().to(torch.uint8)
del x
exp = exp.to(torch.uint8)
fp4 = (sign << 3) | (exp << 1) | mantissa
del sign, exp, mantissa
fp4_flat = fp4.view(-1)
packed = (fp4_flat[0::2] << 4) | fp4_flat[1::2]
return packed.reshape(list(orig_shape)[:-1] + [-1])
def to_blocked(input_matrix, flatten: bool = True) -> torch.Tensor:
"""
Rearrange a large matrix by breaking it into blocks and applying the rearrangement pattern.
See:
https://docs.nvidia.com/cuda/cublas/index.html#d-block-scaling-factors-layout
Args:
input_matrix: Input tensor of shape (H, W)
Returns:
Rearranged tensor of shape (32*ceil_div(H,128), 16*ceil_div(W,4))
"""
def ceil_div(a, b):
return (a + b - 1) // b
rows, cols = input_matrix.shape
n_row_blocks = ceil_div(rows, 128)
n_col_blocks = ceil_div(cols, 4)
# Calculate the padded shape
padded_rows = n_row_blocks * 128
padded_cols = n_col_blocks * 4
padded = input_matrix
if (rows, cols) != (padded_rows, padded_cols):
padded = torch.zeros(
(padded_rows, padded_cols),
device=input_matrix.device,
dtype=input_matrix.dtype,
)
padded[:rows, :cols] = input_matrix
# Rearrange the blocks
blocks = padded.view(n_row_blocks, 128, n_col_blocks, 4).permute(0, 2, 1, 3)
rearranged = blocks.reshape(-1, 4, 32, 4).transpose(1, 2).reshape(-1, 32, 16)
if flatten:
return rearranged.flatten()
return rearranged.reshape(padded_rows, padded_cols)
def stochastic_round_quantize_nvfp4_block(x, per_tensor_scale, generator):
F4_E2M1_MAX = 6.0
F8_E4M3_MAX = 448.0
orig_shape = x.shape
block_size = 16
x = x.reshape(orig_shape[0], -1, block_size)
scaled_block_scales_fp8 = torch.clamp(((torch.amax(torch.abs(x), dim=-1)) / F4_E2M1_MAX) / per_tensor_scale.to(x.dtype), max=F8_E4M3_MAX).to(torch.float8_e4m3fn)
x = x / (per_tensor_scale.to(x.dtype) * scaled_block_scales_fp8.to(x.dtype)).unsqueeze(-1)
x = x.view(orig_shape).nan_to_num()
data_lp = stochastic_float_to_fp4_e2m1(x, generator=generator)
return data_lp, scaled_block_scales_fp8
def stochastic_round_quantize_nvfp4(x, per_tensor_scale, pad_16x, seed=0):
def roundup(x: int, multiple: int) -> int:
"""Round up x to the nearest multiple."""
return ((x + multiple - 1) // multiple) * multiple
generator = torch.Generator(device=x.device)
generator.manual_seed(seed)
# Handle padding
if pad_16x:
rows, cols = x.shape
padded_rows = roundup(rows, 16)
padded_cols = roundup(cols, 16)
if padded_rows != rows or padded_cols != cols:
x = torch.nn.functional.pad(x, (0, padded_cols - cols, 0, padded_rows - rows))
x, blocked_scaled = stochastic_round_quantize_nvfp4_block(x, per_tensor_scale, generator)
return x, to_blocked(blocked_scaled, flatten=False)
def stochastic_round_quantize_nvfp4_by_block(x, per_tensor_scale, pad_16x, seed=0, block_size=4096 * 4096):
def roundup(x: int, multiple: int) -> int:
"""Round up x to the nearest multiple."""
return ((x + multiple - 1) // multiple) * multiple
orig_shape = x.shape
# Handle padding
if pad_16x:
rows, cols = x.shape
padded_rows = roundup(rows, 16)
padded_cols = roundup(cols, 16)
if padded_rows != rows or padded_cols != cols:
x = torch.nn.functional.pad(x, (0, padded_cols - cols, 0, padded_rows - rows))
# Note: We update orig_shape because the output tensor logic below assumes x.shape matches
# what we want to produce. If we pad here, we want the padded output.
orig_shape = x.shape
orig_shape = list(orig_shape)
output_fp4 = torch.empty(orig_shape[:-1] + [orig_shape[-1] // 2], dtype=torch.uint8, device=x.device)
output_block = torch.empty(orig_shape[:-1] + [orig_shape[-1] // 16], dtype=torch.float8_e4m3fn, device=x.device)
generator = torch.Generator(device=x.device)
generator.manual_seed(seed)
num_slices = max(1, (x.numel() / block_size))
slice_size = max(1, (round(x.shape[0] / num_slices)))
for i in range(0, x.shape[0], slice_size):
fp4, block = stochastic_round_quantize_nvfp4_block(x[i: i + slice_size], per_tensor_scale, generator=generator)
output_fp4[i:i + slice_size].copy_(fp4)
output_block[i:i + slice_size].copy_(block)
return output_fp4, to_blocked(output_block, flatten=False)

View File

@ -527,7 +527,8 @@ class HookKeyframeGroup:
if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0:
break
# if eval_c is outside the percent range, stop looking further
else: break
else:
break
# update steps current context is used
self._current_used_steps += 1
# update current timestep this was performed on

View File

@ -74,6 +74,9 @@ def get_ancestral_step(sigma_from, sigma_to, eta=1.):
def default_noise_sampler(x, seed=None):
if seed is not None:
if x.device == torch.device("cpu"):
seed += 1
generator = torch.Generator(device=x.device)
generator.manual_seed(seed)
else:
@ -1557,10 +1560,13 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5, solver_type="phi_1"):
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
"""
if solver_type not in {"phi_1", "phi_2"}:
raise ValueError("solver_type must be 'phi_1' or 'phi_2'")
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
@ -1600,8 +1606,14 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
denoised_d = torch.lerp(denoised, denoised_2, fac)
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
if solver_type == "phi_1":
denoised_d = torch.lerp(denoised, denoised_2, fac)
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
elif solver_type == "phi_2":
b2 = ei_h_phi_2(-h_eta) / r
b1 = ei_h_phi_1(-h_eta) - b2
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b2 * denoised_2)
if inject_noise:
segment_factor = (r - 1) * h * eta
sde_noise = sde_noise * segment_factor.exp()
@ -1609,6 +1621,17 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
x = x + sde_noise * sigmas[i + 1] * s_noise
return x
@torch.no_grad()
def sample_exp_heun_2_x0(model, x, sigmas, extra_args=None, callback=None, disable=None, solver_type="phi_2"):
"""Deterministic exponential Heun second order method in data prediction (x0) and logSNR time."""
return sample_seeds_2(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=0.0, s_noise=0.0, noise_sampler=None, r=1.0, solver_type=solver_type)
@torch.no_grad()
def sample_exp_heun_2_x0_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type="phi_2"):
"""Stochastic exponential Heun second order method in data prediction (x0) and logSNR time."""
return sample_seeds_2(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=1.0, solver_type=solver_type)
@torch.no_grad()
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
@ -1756,7 +1779,7 @@ def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=F
# Predictor
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
x_pred = denoised
else:
tau_t = tau_func(sigmas[i + 1])
curr_lambdas = lambdas[i - predictor_order_used + 1:i + 1]
@ -1777,7 +1800,7 @@ def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=F
if tau_t > 0 and s_noise > 0:
noise = noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * tau_t ** 2 * h).expm1().neg().sqrt() * s_noise
x_pred = x_pred + noise
return x
return x_pred
@torch.no_grad()

View File

@ -6,7 +6,9 @@ class LatentFormat:
latent_dimensions = 2
latent_rgb_factors = None
latent_rgb_factors_bias = None
latent_rgb_factors_reshape = None
taesd_decoder_name = None
spacial_downscale_ratio = 8
def process_in(self, latent):
return latent * self.scale_factor
@ -178,6 +180,55 @@ class Flux(SD3):
def process_out(self, latent):
return (latent / self.scale_factor) + self.shift_factor
class Flux2(LatentFormat):
latent_channels = 128
spacial_downscale_ratio = 16
def __init__(self):
self.latent_rgb_factors =[
[0.0058, 0.0113, 0.0073],
[0.0495, 0.0443, 0.0836],
[-0.0099, 0.0096, 0.0644],
[0.2144, 0.3009, 0.3652],
[0.0166, -0.0039, -0.0054],
[0.0157, 0.0103, -0.0160],
[-0.0398, 0.0902, -0.0235],
[-0.0052, 0.0095, 0.0109],
[-0.3527, -0.2712, -0.1666],
[-0.0301, -0.0356, -0.0180],
[-0.0107, 0.0078, 0.0013],
[0.0746, 0.0090, -0.0941],
[0.0156, 0.0169, 0.0070],
[-0.0034, -0.0040, -0.0114],
[0.0032, 0.0181, 0.0080],
[-0.0939, -0.0008, 0.0186],
[0.0018, 0.0043, 0.0104],
[0.0284, 0.0056, -0.0127],
[-0.0024, -0.0022, -0.0030],
[0.1207, -0.0026, 0.0065],
[0.0128, 0.0101, 0.0142],
[0.0137, -0.0072, -0.0007],
[0.0095, 0.0092, -0.0059],
[0.0000, -0.0077, -0.0049],
[-0.0465, -0.0204, -0.0312],
[0.0095, 0.0012, -0.0066],
[0.0290, -0.0034, 0.0025],
[0.0220, 0.0169, -0.0048],
[-0.0332, -0.0457, -0.0468],
[-0.0085, 0.0389, 0.0609],
[-0.0076, 0.0003, -0.0043],
[-0.0111, -0.0460, -0.0614],
]
self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
self.latent_rgb_factors_reshape = lambda t: t.reshape(t.shape[0], 32, 2, 2, t.shape[-2], t.shape[-1]).permute(0, 1, 4, 2, 5, 3).reshape(t.shape[0], 32, t.shape[-2] * 2, t.shape[-1] * 2)
def process_in(self, latent):
return latent
def process_out(self, latent):
return latent
class Mochi(LatentFormat):
latent_channels = 12
latent_dimensions = 3
@ -358,6 +409,11 @@ class LTXV(LatentFormat):
self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512]
class LTXAV(LTXV):
def __init__(self):
self.latent_rgb_factors = None
self.latent_rgb_factors_bias = None
class HunyuanVideo(LatentFormat):
latent_channels = 16
latent_dimensions = 3
@ -382,6 +438,7 @@ class HunyuanVideo(LatentFormat):
]
latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761]
taesd_decoder_name = "taehv"
class Cosmos1CV8x8x8(LatentFormat):
latent_channels = 16
@ -445,7 +502,7 @@ class Wan21(LatentFormat):
]).view(1, self.latent_channels, 1, 1, 1)
self.taesd_decoder_name = None #TODO
self.taesd_decoder_name = "lighttaew2_1"
def process_in(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
@ -516,6 +573,7 @@ class Wan22(Wan21):
def __init__(self):
self.scale_factor = 1.0
self.taesd_decoder_name = "lighttaew2_2"
self.latents_mean = torch.tensor([
-0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557,
-0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825,
@ -611,6 +669,67 @@ class HunyuanImage21Refiner(LatentFormat):
latent_dimensions = 3
scale_factor = 1.03682
def process_in(self, latent):
out = latent * self.scale_factor
out = torch.cat((out[:, :, :1], out), dim=2)
out = out.permute(0, 2, 1, 3, 4)
b, f_times_2, c, h, w = out.shape
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
out = out.permute(0, 2, 1, 3, 4).contiguous()
return out
def process_out(self, latent):
z = latent / self.scale_factor
z = z.permute(0, 2, 1, 3, 4)
b, f, c, h, w = z.shape
z = z.reshape(b, f, 2, c // 2, h, w)
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
z = z.permute(0, 2, 1, 3, 4)
z = z[:, :, 1:]
return z
class HunyuanVideo15(LatentFormat):
latent_rgb_factors = [
[ 0.0568, -0.0521, -0.0131],
[ 0.0014, 0.0735, 0.0326],
[ 0.0186, 0.0531, -0.0138],
[-0.0031, 0.0051, 0.0288],
[ 0.0110, 0.0556, 0.0432],
[-0.0041, -0.0023, -0.0485],
[ 0.0530, 0.0413, 0.0253],
[ 0.0283, 0.0251, 0.0339],
[ 0.0277, -0.0372, -0.0093],
[ 0.0393, 0.0944, 0.1131],
[ 0.0020, 0.0251, 0.0037],
[-0.0017, 0.0012, 0.0234],
[ 0.0468, 0.0436, 0.0203],
[ 0.0354, 0.0439, -0.0233],
[ 0.0090, 0.0123, 0.0346],
[ 0.0382, 0.0029, 0.0217],
[ 0.0261, -0.0300, 0.0030],
[-0.0088, -0.0220, -0.0283],
[-0.0272, -0.0121, -0.0363],
[-0.0664, -0.0622, 0.0144],
[ 0.0414, 0.0479, 0.0529],
[ 0.0355, 0.0612, -0.0247],
[ 0.0147, 0.0264, 0.0174],
[ 0.0438, 0.0038, 0.0542],
[ 0.0431, -0.0573, -0.0033],
[-0.0162, -0.0211, -0.0406],
[-0.0487, -0.0295, -0.0393],
[ 0.0005, -0.0109, 0.0253],
[ 0.0296, 0.0591, 0.0353],
[ 0.0119, 0.0181, -0.0306],
[-0.0085, -0.0362, 0.0229],
[ 0.0005, -0.0106, 0.0242]
]
latent_rgb_factors_bias = [ 0.0456, -0.0202, -0.0644]
latent_channels = 32
latent_dimensions = 3
scale_factor = 1.03682
taesd_decoder_name = "lighttaehy1_5"
class Hunyuan3Dv2(LatentFormat):
latent_channels = 64
latent_dimensions = 1
@ -632,6 +751,7 @@ class ACEAudio(LatentFormat):
class ChromaRadiance(LatentFormat):
latent_channels = 3
spacial_downscale_ratio = 1
def __init__(self):
self.latent_rgb_factors = [

View File

@ -23,8 +23,6 @@ class MusicDCAE(torch.nn.Module):
else:
self.source_sample_rate = source_sample_rate
# self.resampler = torchaudio.transforms.Resample(source_sample_rate, 44100)
self.transform = transforms.Compose([
transforms.Normalize(0.5, 0.5),
])
@ -37,10 +35,6 @@ class MusicDCAE(torch.nn.Module):
self.scale_factor = 0.1786
self.shift_factor = -1.9091
def load_audio(self, audio_path):
audio, sr = torchaudio.load(audio_path)
return audio, sr
def forward_mel(self, audios):
mels = []
for i in range(len(audios)):
@ -73,10 +67,8 @@ class MusicDCAE(torch.nn.Module):
latent = self.dcae.encoder(mel.unsqueeze(0))
latents.append(latent)
latents = torch.cat(latents, dim=0)
# latent_lengths = (audio_lengths / sr * 44100 / 512 / self.time_dimention_multiple).long()
latents = (latents - self.shift_factor) * self.scale_factor
return latents
# return latents, latent_lengths
@torch.no_grad()
def decode(self, latents, audio_lengths=None, sr=None):
@ -91,9 +83,7 @@ class MusicDCAE(torch.nn.Module):
wav = self.vocoder.decode(mels[0]).squeeze(1)
if sr is not None:
# resampler = torchaudio.transforms.Resample(44100, sr).to(latents.device).to(latents.dtype)
wav = torchaudio.functional.resample(wav, 44100, sr)
# wav = resampler(wav)
else:
sr = 44100
pred_wavs.append(wav)
@ -101,7 +91,6 @@ class MusicDCAE(torch.nn.Module):
if audio_lengths is not None:
pred_wavs = [wav[:, :length].cpu() for wav, length in zip(pred_wavs, audio_lengths)]
return torch.stack(pred_wavs)
# return sr, pred_wavs
def forward(self, audios, audio_lengths=None, sr=None):
latents, latent_lengths = self.encode(audios=audios, audio_lengths=audio_lengths, sr=sr)

202
comfy/ldm/anima/model.py Normal file
View File

@ -0,0 +1,202 @@
from comfy.ldm.cosmos.predict2 import MiniTrainDIT
import torch
from torch import nn
import torch.nn.functional as F
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(x, cos, sin, unsqueeze_dim=1):
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
x_embed = (x * cos) + (rotate_half(x) * sin)
return x_embed
class RotaryEmbedding(nn.Module):
def __init__(self, head_dim):
super().__init__()
self.rope_theta = 10000
inv_freq = 1.0 / (self.rope_theta ** (torch.arange(0, head_dim, 2, dtype=torch.int64).to(dtype=torch.float) / head_dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
@torch.no_grad()
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class Attention(nn.Module):
def __init__(self, query_dim, context_dim, n_heads, head_dim, device=None, dtype=None, operations=None):
super().__init__()
inner_dim = head_dim * n_heads
self.n_heads = n_heads
self.head_dim = head_dim
self.query_dim = query_dim
self.context_dim = context_dim
self.q_proj = operations.Linear(query_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.q_norm = operations.RMSNorm(self.head_dim, eps=1e-6, device=device, dtype=dtype)
self.k_proj = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.k_norm = operations.RMSNorm(self.head_dim, eps=1e-6, device=device, dtype=dtype)
self.v_proj = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.o_proj = operations.Linear(inner_dim, query_dim, bias=False, device=device, dtype=dtype)
def forward(self, x, mask=None, context=None, position_embeddings=None, position_embeddings_context=None):
context = x if context is None else context
input_shape = x.shape[:-1]
q_shape = (*input_shape, self.n_heads, self.head_dim)
context_shape = context.shape[:-1]
kv_shape = (*context_shape, self.n_heads, self.head_dim)
query_states = self.q_norm(self.q_proj(x).view(q_shape)).transpose(1, 2)
key_states = self.k_norm(self.k_proj(context).view(kv_shape)).transpose(1, 2)
value_states = self.v_proj(context).view(kv_shape).transpose(1, 2)
if position_embeddings is not None:
assert position_embeddings_context is not None
cos, sin = position_embeddings
query_states = apply_rotary_pos_emb(query_states, cos, sin)
cos, sin = position_embeddings_context
key_states = apply_rotary_pos_emb(key_states, cos, sin)
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=mask)
attn_output = attn_output.transpose(1, 2).reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output
def init_weights(self):
torch.nn.init.zeros_(self.o_proj.weight)
class TransformerBlock(nn.Module):
def __init__(self, source_dim, model_dim, num_heads=16, mlp_ratio=4.0, use_self_attn=False, layer_norm=False, device=None, dtype=None, operations=None):
super().__init__()
self.use_self_attn = use_self_attn
if self.use_self_attn:
self.norm_self_attn = operations.LayerNorm(model_dim, device=device, dtype=dtype) if layer_norm else operations.RMSNorm(model_dim, eps=1e-6, device=device, dtype=dtype)
self.self_attn = Attention(
query_dim=model_dim,
context_dim=model_dim,
n_heads=num_heads,
head_dim=model_dim//num_heads,
device=device,
dtype=dtype,
operations=operations,
)
self.norm_cross_attn = operations.LayerNorm(model_dim, device=device, dtype=dtype) if layer_norm else operations.RMSNorm(model_dim, eps=1e-6, device=device, dtype=dtype)
self.cross_attn = Attention(
query_dim=model_dim,
context_dim=source_dim,
n_heads=num_heads,
head_dim=model_dim//num_heads,
device=device,
dtype=dtype,
operations=operations,
)
self.norm_mlp = operations.LayerNorm(model_dim, device=device, dtype=dtype) if layer_norm else operations.RMSNorm(model_dim, eps=1e-6, device=device, dtype=dtype)
self.mlp = nn.Sequential(
operations.Linear(model_dim, int(model_dim * mlp_ratio), device=device, dtype=dtype),
nn.GELU(),
operations.Linear(int(model_dim * mlp_ratio), model_dim, device=device, dtype=dtype)
)
def forward(self, x, context, target_attention_mask=None, source_attention_mask=None, position_embeddings=None, position_embeddings_context=None):
if self.use_self_attn:
normed = self.norm_self_attn(x)
attn_out = self.self_attn(normed, mask=target_attention_mask, position_embeddings=position_embeddings, position_embeddings_context=position_embeddings)
x = x + attn_out
normed = self.norm_cross_attn(x)
attn_out = self.cross_attn(normed, mask=source_attention_mask, context=context, position_embeddings=position_embeddings, position_embeddings_context=position_embeddings_context)
x = x + attn_out
x = x + self.mlp(self.norm_mlp(x))
return x
def init_weights(self):
torch.nn.init.zeros_(self.mlp[2].weight)
self.cross_attn.init_weights()
class LLMAdapter(nn.Module):
def __init__(
self,
source_dim=1024,
target_dim=1024,
model_dim=1024,
num_layers=6,
num_heads=16,
use_self_attn=True,
layer_norm=False,
device=None,
dtype=None,
operations=None,
):
super().__init__()
self.embed = operations.Embedding(32128, target_dim, device=device, dtype=dtype)
if model_dim != target_dim:
self.in_proj = operations.Linear(target_dim, model_dim, device=device, dtype=dtype)
else:
self.in_proj = nn.Identity()
self.rotary_emb = RotaryEmbedding(model_dim//num_heads)
self.blocks = nn.ModuleList([
TransformerBlock(source_dim, model_dim, num_heads=num_heads, use_self_attn=use_self_attn, layer_norm=layer_norm, device=device, dtype=dtype, operations=operations) for _ in range(num_layers)
])
self.out_proj = operations.Linear(model_dim, target_dim, device=device, dtype=dtype)
self.norm = operations.RMSNorm(target_dim, eps=1e-6, device=device, dtype=dtype)
def forward(self, source_hidden_states, target_input_ids, target_attention_mask=None, source_attention_mask=None):
if target_attention_mask is not None:
target_attention_mask = target_attention_mask.to(torch.bool)
if target_attention_mask.ndim == 2:
target_attention_mask = target_attention_mask.unsqueeze(1).unsqueeze(1)
if source_attention_mask is not None:
source_attention_mask = source_attention_mask.to(torch.bool)
if source_attention_mask.ndim == 2:
source_attention_mask = source_attention_mask.unsqueeze(1).unsqueeze(1)
x = self.in_proj(self.embed(target_input_ids))
context = source_hidden_states
position_ids = torch.arange(x.shape[1], device=x.device).unsqueeze(0)
position_ids_context = torch.arange(context.shape[1], device=x.device).unsqueeze(0)
position_embeddings = self.rotary_emb(x, position_ids)
position_embeddings_context = self.rotary_emb(x, position_ids_context)
for block in self.blocks:
x = block(x, context, target_attention_mask=target_attention_mask, source_attention_mask=source_attention_mask, position_embeddings=position_embeddings, position_embeddings_context=position_embeddings_context)
return self.norm(self.out_proj(x))
class Anima(MiniTrainDIT):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.llm_adapter = LLMAdapter(device=kwargs.get("device"), dtype=kwargs.get("dtype"), operations=kwargs.get("operations"))
def preprocess_text_embeds(self, text_embeds, text_ids):
if text_ids is not None:
return self.llm_adapter(text_embeds, text_ids)
else:
return text_embeds

View File

@ -1,15 +1,15 @@
import torch
from torch import Tensor, nn
from comfy.ldm.flux.math import attention
from comfy.ldm.flux.layers import (
MLPEmbedder,
RMSNorm,
QKNorm,
SelfAttention,
ModulationOut,
)
# TODO: remove this in a few months
SingleStreamBlock = None
DoubleStreamBlock = None
class ChromaModulationOut(ModulationOut):
@ -48,124 +48,6 @@ class Approximator(nn.Module):
return x
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}):
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
img_modulated = torch.addcmul(img_mod1.shift, 1 + img_mod1.scale, self.img_norm1(img))
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = torch.addcmul(txt_mod1.shift, 1 + txt_mod1.scale, self.txt_norm1(txt))
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask, transformer_options=transformer_options)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img.addcmul_(img_mod1.gate, self.img_attn.proj(img_attn))
img.addcmul_(img_mod2.gate, self.img_mlp(torch.addcmul(img_mod2.shift, 1 + img_mod2.scale, self.img_norm2(img))))
# calculate the txt bloks
txt.addcmul_(txt_mod1.gate, self.txt_attn.proj(txt_attn))
txt.addcmul_(txt_mod2.gate, self.txt_mlp(torch.addcmul(txt_mod2.shift, 1 + txt_mod2.scale, self.txt_norm2(txt))))
if txt.dtype == torch.float16:
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float = None,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
# proj and mlp_out
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.hidden_size = hidden_size
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.mlp_act = nn.GELU(approximate="tanh")
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}) -> Tensor:
mod = vec
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x.addcmul_(mod.gate, output)
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()

View File

@ -11,12 +11,12 @@ import comfy.ldm.common_dit
from comfy.ldm.flux.layers import (
EmbedND,
timestep_embedding,
DoubleStreamBlock,
SingleStreamBlock,
)
from .layers import (
DoubleStreamBlock,
LastLayer,
SingleStreamBlock,
Approximator,
ChromaModulationOut,
)
@ -40,7 +40,8 @@ class ChromaParams:
out_dim: int
hidden_dim: int
n_layers: int
txt_ids_dims: list
vec_in_dim: int
@ -90,6 +91,7 @@ class Chroma(nn.Module):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
modulation=False,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@ -98,7 +100,7 @@ class Chroma(nn.Module):
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=False, dtype=dtype, device=device, operations=operations)
for _ in range(params.depth_single_blocks)
]
)
@ -178,7 +180,10 @@ class Chroma(nn.Module):
pe = self.pe_embedder(ids)
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.double_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.double_blocks):
transformer_options["block_index"] = i
if i not in self.skip_mmdit:
double_mod = (
self.get_modulations(mod_vectors, "double_img", idx=i),
@ -221,7 +226,10 @@ class Chroma(nn.Module):
img = torch.cat((txt, img), 1)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
for i, block in enumerate(self.single_blocks):
transformer_options["block_index"] = i
if i not in self.skip_dit:
single_mod = self.get_modulations(mod_vectors, "single", idx=i)
if ("single_block", i) in blocks_replace:

View File

@ -10,12 +10,10 @@ from torch import Tensor, nn
from einops import repeat
import comfy.ldm.common_dit
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.layers import EmbedND, DoubleStreamBlock, SingleStreamBlock
from comfy.ldm.chroma.model import Chroma, ChromaParams
from comfy.ldm.chroma.layers import (
DoubleStreamBlock,
SingleStreamBlock,
Approximator,
)
from .layers import (
@ -39,7 +37,7 @@ class ChromaRadianceParams(ChromaParams):
nerf_final_head_type: str
# None means use the same dtype as the model.
nerf_embedder_dtype: Optional[torch.dtype]
use_x0: bool
class ChromaRadiance(Chroma):
"""
@ -89,7 +87,6 @@ class ChromaRadiance(Chroma):
dtype=dtype, device=device, operations=operations
)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
@ -97,6 +94,7 @@ class ChromaRadiance(Chroma):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
modulation=False,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@ -109,6 +107,7 @@ class ChromaRadiance(Chroma):
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
modulation=False,
dtype=dtype, device=device, operations=operations,
)
for _ in range(params.depth_single_blocks)
@ -160,6 +159,9 @@ class ChromaRadiance(Chroma):
self.skip_dit = []
self.lite = False
if params.use_x0:
self.register_buffer("__x0__", torch.tensor([]))
@property
def _nerf_final_layer(self) -> nn.Module:
if self.params.nerf_final_head_type == "linear":
@ -189,15 +191,15 @@ class ChromaRadiance(Chroma):
nerf_pixels = nn.functional.unfold(img_orig, kernel_size=patch_size, stride=patch_size)
nerf_pixels = nerf_pixels.transpose(1, 2) # -> [B, NumPatches, C * P * P]
# Reshape for per-patch processing
nerf_hidden = img_out.reshape(B * num_patches, params.hidden_size)
nerf_pixels = nerf_pixels.reshape(B * num_patches, C, patch_size**2).transpose(1, 2)
if params.nerf_tile_size > 0 and num_patches > params.nerf_tile_size:
# Enable tiling if nerf_tile_size isn't 0 and we actually have more patches than
# the tile size.
img_dct = self.forward_tiled_nerf(img_out, nerf_pixels, B, C, num_patches, patch_size, params)
img_dct = self.forward_tiled_nerf(nerf_hidden, nerf_pixels, B, C, num_patches, patch_size, params)
else:
# Reshape for per-patch processing
nerf_hidden = img_out.reshape(B * num_patches, params.hidden_size)
nerf_pixels = nerf_pixels.reshape(B * num_patches, C, patch_size**2).transpose(1, 2)
# Get DCT-encoded pixel embeddings [pixel-dct]
img_dct = self.nerf_image_embedder(nerf_pixels)
@ -240,17 +242,8 @@ class ChromaRadiance(Chroma):
end = min(i + tile_size, num_patches)
# Slice the current tile from the input tensors
nerf_hidden_tile = nerf_hidden[:, i:end, :]
nerf_pixels_tile = nerf_pixels[:, i:end, :]
# Get the actual number of patches in this tile (can be smaller for the last tile)
num_patches_tile = nerf_hidden_tile.shape[1]
# Reshape the tile for per-patch processing
# [B, NumPatches_tile, D] -> [B * NumPatches_tile, D]
nerf_hidden_tile = nerf_hidden_tile.reshape(batch * num_patches_tile, params.hidden_size)
# [B, NumPatches_tile, C*P*P] -> [B*NumPatches_tile, C, P*P] -> [B*NumPatches_tile, P*P, C]
nerf_pixels_tile = nerf_pixels_tile.reshape(batch * num_patches_tile, channels, patch_size**2).transpose(1, 2)
nerf_hidden_tile = nerf_hidden[i * batch:end * batch]
nerf_pixels_tile = nerf_pixels[i * batch:end * batch]
# get DCT-encoded pixel embeddings [pixel-dct]
img_dct_tile = self.nerf_image_embedder(nerf_pixels_tile)
@ -277,7 +270,7 @@ class ChromaRadiance(Chroma):
bad_keys = tuple(
k
for k, v in overrides.items()
if type(v) != type(getattr(params, k)) and (v is not None or k not in nullable_keys)
if not isinstance(v, type(getattr(params, k))) and (v is not None or k not in nullable_keys)
)
if bad_keys:
e = f"Invalid value(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}"
@ -286,6 +279,12 @@ class ChromaRadiance(Chroma):
params_dict |= overrides
return params.__class__(**params_dict)
def _apply_x0_residual(self, predicted, noisy, timesteps):
# non zero during training to prevent 0 div
eps = 0.0
return (noisy - predicted) / (timesteps.view(-1,1,1,1) + eps)
def _forward(
self,
x: Tensor,
@ -326,4 +325,11 @@ class ChromaRadiance(Chroma):
transformer_options,
attn_mask=kwargs.get("attention_mask", None),
)
return self.forward_nerf(img, img_out, params)[:, :, :h, :w]
out = self.forward_nerf(img, img_out, params)[:, :, :h, :w]
# If x0 variant → v-pred, just return this instead
if hasattr(self, "__x0__"):
out = self._apply_x0_residual(out, img, timestep)
return out

View File

@ -48,15 +48,44 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
def __init__(self, in_dim: int, hidden_dim: int, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=bias, dtype=dtype, device=device)
self.silu = nn.SiLU()
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device)
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=bias, dtype=dtype, device=device)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class YakMLP(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, dtype=None, device=None, operations=None):
super().__init__()
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.gate_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device)
self.up_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device)
self.down_proj = operations.Linear(self.intermediate_size, self.hidden_size, bias=True, dtype=dtype, device=device)
self.act_fn = nn.SiLU()
def forward(self, x: Tensor) -> Tensor:
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=False, yak_mlp=False, dtype=None, device=None, operations=None):
if yak_mlp:
return YakMLP(hidden_size, mlp_hidden_dim, dtype=dtype, device=device, operations=operations)
if mlp_silu_act:
return nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device),
SiLUActivation(),
operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device),
)
else:
return nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, dtype=None, device=None, operations=None):
@ -80,14 +109,14 @@ class QKNorm(torch.nn.Module):
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, dtype=None, device=None, operations=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
self.proj = operations.Linear(dim, dim, bias=proj_bias, dtype=dtype, device=device)
@dataclass
@ -98,11 +127,11 @@ class ModulationOut:
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None):
def __init__(self, dim: int, double: bool, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
self.lin = operations.Linear(dim, self.multiplier * dim, bias=bias, dtype=dtype, device=device)
def forward(self, vec: Tensor) -> tuple:
if vec.ndim == 2:
@ -129,77 +158,107 @@ def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
return tensor
class SiLUActivation(nn.Module):
def __init__(self):
super().__init__()
self.gate_fn = nn.SiLU()
def forward(self, x: Tensor) -> Tensor:
x1, x2 = x.chunk(2, dim=-1)
return self.gate_fn(x1) * x2
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.modulation = modulation
if self.modulation:
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations)
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.img_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations)
if self.modulation:
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations)
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
if self.modulation:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
else:
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = apply_mod(img_modulated, (1 + img_mod1.scale), img_mod1.shift, modulation_dims_img)
img_qkv = self.img_attn.qkv(img_modulated)
del img_modulated
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del img_qkv
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = apply_mod(txt_modulated, (1 + txt_mod1.scale), txt_mod1.shift, modulation_dims_txt)
txt_qkv = self.txt_attn.qkv(txt_modulated)
del txt_modulated
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del txt_qkv
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
if self.flipped_img_txt:
q = torch.cat((img_q, txt_q), dim=2)
del img_q, txt_q
k = torch.cat((img_k, txt_k), dim=2)
del img_k, txt_k
v = torch.cat((img_v, txt_v), dim=2)
del img_v, txt_v
# run actual attention
attn = attention(torch.cat((img_q, txt_q), dim=2),
torch.cat((img_k, txt_k), dim=2),
torch.cat((img_v, txt_v), dim=2),
attn = attention(q, k, v,
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
else:
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
# run actual attention
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
attn = attention(q, k, v,
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
# calculate the img bloks
img = img + apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
img = img + apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
img += apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
del img_attn
img += apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
# calculate the txt bloks
txt += apply_mod(self.txt_attn.proj(txt_attn), txt_mod1.gate, None, modulation_dims_txt)
del txt_attn
txt += apply_mod(self.txt_mlp(apply_mod(self.txt_norm2(txt), (1 + txt_mod2.scale), txt_mod2.shift, modulation_dims_txt)), txt_mod2.gate, None, modulation_dims_txt)
if txt.dtype == torch.float16:
@ -220,6 +279,10 @@ class SingleStreamBlock(nn.Module):
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float = None,
modulation=True,
mlp_silu_act=False,
bias=True,
yak_mlp=False,
dtype=None,
device=None,
operations=None
@ -231,30 +294,55 @@ class SingleStreamBlock(nn.Module):
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.mlp_hidden_dim_first = self.mlp_hidden_dim
self.yak_mlp = yak_mlp
if mlp_silu_act:
self.mlp_hidden_dim_first = int(hidden_size * mlp_ratio * 2)
self.mlp_act = SiLUActivation()
else:
self.mlp_act = nn.GELU(approximate="tanh")
if self.yak_mlp:
self.mlp_hidden_dim_first *= 2
self.mlp_act = nn.SiLU()
# qkv and mlp_in
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim_first, bias=bias, dtype=dtype, device=device)
# proj and mlp_out
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, bias=bias, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.hidden_size = hidden_size
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
if modulation:
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
else:
self.modulation = None
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor:
mod, _ = self.modulation(vec)
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
if self.modulation:
mod, _ = self.modulation(vec)
else:
mod = vec
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim_first], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del qkv
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
if self.yak_mlp:
mlp = self.mlp_act(mlp[..., self.mlp_hidden_dim_first // 2:]) * mlp[..., :self.mlp_hidden_dim_first // 2]
else:
mlp = self.mlp_act(mlp)
output = self.linear2(torch.cat((attn, mlp), 2))
x += apply_mod(output, mod.gate, None, modulation_dims)
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
@ -262,11 +350,11 @@ class SingleStreamBlock(nn.Module):
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=bias, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=bias, dtype=dtype, device=device))
def forward(self, x: Tensor, vec: Tensor, modulation_dims=None) -> Tensor:
if vec.ndim == 2:

View File

@ -4,23 +4,16 @@ from torch import Tensor
from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
import logging
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor:
q_shape = q.shape
k_shape = k.shape
if pe is not None:
q = q.to(dtype=pe.dtype).reshape(*q.shape[:-1], -1, 1, 2)
k = k.to(dtype=pe.dtype).reshape(*k.shape[:-1], -1, 1, 2)
q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v)
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
q, k = apply_rope(q, k, pe)
heads = q.shape[1]
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options)
return x
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
assert dim % 2 == 0
if comfy.model_management.is_device_mps(pos.device) or comfy.model_management.is_intel_xpu() or comfy.model_management.is_directml_enabled():
@ -35,10 +28,20 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.to(dtype=torch.float32, device=pos.device)
def apply_rope1(x: Tensor, freqs_cis: Tensor):
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
x_out = freqs_cis[..., 0] * x_[..., 0] + freqs_cis[..., 1] * x_[..., 1]
return x_out.reshape(*x.shape).type_as(x)
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)
try:
import comfy.quant_ops
apply_rope = comfy.quant_ops.ck.apply_rope
apply_rope1 = comfy.quant_ops.ck.apply_rope1
except:
logging.warning("No comfy kitchen, using old apply_rope functions.")
def apply_rope1(x: Tensor, freqs_cis: Tensor):
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
x_out = freqs_cis[..., 0] * x_[..., 0]
x_out.addcmul_(freqs_cis[..., 1], x_[..., 1])
return x_out.reshape(*x.shape).type_as(x)
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)

View File

@ -15,6 +15,8 @@ from .layers import (
MLPEmbedder,
SingleStreamBlock,
timestep_embedding,
Modulation,
RMSNorm
)
@dataclass
@ -33,6 +35,14 @@ class FluxParams:
patch_size: int
qkv_bias: bool
guidance_embed: bool
txt_ids_dims: list
global_modulation: bool = False
mlp_silu_act: bool = False
ops_bias: bool = True
default_ref_method: str = "offset"
ref_index_scale: float = 1.0
yak_mlp: bool = False
txt_norm: bool = False
class Flux(nn.Module):
@ -58,13 +68,22 @@ class Flux(nn.Module):
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device, operations=operations)
if params.vec_in_dim is not None:
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
else:
self.vector_in = None
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
)
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
if params.txt_norm:
self.txt_norm = RMSNorm(params.context_in_dim, dtype=dtype, device=device, operations=operations)
else:
self.txt_norm = None
self.double_blocks = nn.ModuleList(
[
@ -73,6 +92,10 @@ class Flux(nn.Module):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
modulation=params.global_modulation is False,
mlp_silu_act=params.mlp_silu_act,
proj_bias=params.ops_bias,
yak_mlp=params.yak_mlp,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@ -81,13 +104,30 @@ class Flux(nn.Module):
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=params.global_modulation is False, mlp_silu_act=params.mlp_silu_act, bias=params.ops_bias, yak_mlp=params.yak_mlp, dtype=dtype, device=device, operations=operations)
for _ in range(params.depth_single_blocks)
]
)
if final_layer:
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, bias=params.ops_bias, dtype=dtype, device=device, operations=operations)
if params.global_modulation:
self.double_stream_modulation_img = Modulation(
self.hidden_size,
double=True,
bias=False,
dtype=dtype, device=device, operations=operations
)
self.double_stream_modulation_txt = Modulation(
self.hidden_size,
double=True,
bias=False,
dtype=dtype, device=device, operations=operations
)
self.single_stream_modulation = Modulation(
self.hidden_size, double=False, bias=False, dtype=dtype, device=device, operations=operations
)
def forward_orig(
self,
@ -103,9 +143,6 @@ class Flux(nn.Module):
attn_mask: Tensor = None,
) -> Tensor:
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
patches = transformer_options.get("patches", {})
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
@ -118,9 +155,19 @@ class Flux(nn.Module):
if guidance is not None:
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
if self.vector_in is not None:
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
if self.txt_norm is not None:
txt = self.txt_norm(txt)
txt = self.txt_in(txt)
vec_orig = vec
if self.params.global_modulation:
vec = (self.double_stream_modulation_img(vec_orig), self.double_stream_modulation_txt(vec_orig))
if "post_input" in patches:
for p in patches["post_input"]:
out = p({"img": img, "txt": txt, "img_ids": img_ids, "txt_ids": txt_ids})
@ -136,7 +183,10 @@ class Flux(nn.Module):
pe = None
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.double_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.double_blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@ -177,7 +227,13 @@ class Flux(nn.Module):
img = torch.cat((txt, img), 1)
if self.params.global_modulation:
vec, _ = self.single_stream_modulation(vec_orig)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
for i, block in enumerate(self.single_blocks):
transformer_options["block_index"] = i
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@ -207,10 +263,10 @@ class Flux(nn.Module):
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
img = self.final_layer(img, vec_orig) # (N, T, patch_size ** 2 * out_channels)
return img
def process_img(self, x, index=0, h_offset=0, w_offset=0):
def process_img(self, x, index=0, h_offset=0, w_offset=0, transformer_options={}):
bs, c, h, w = x.shape
patch_size = self.patch_size
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
@ -222,10 +278,22 @@ class Flux(nn.Module):
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
steps_h = h_len
steps_w = w_len
rope_options = transformer_options.get("rope_options", None)
if rope_options is not None:
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
index += rope_options.get("shift_t", 0.0)
h_offset += rope_options.get("shift_y", 0.0)
w_offset += rope_options.get("shift_x", 0.0)
img_ids = torch.zeros((steps_h, steps_w, len(self.params.axes_dim)), device=x.device, dtype=torch.float32)
img_ids[:, :, 0] = img_ids[:, :, 1] + index
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=steps_h, device=x.device, dtype=torch.float32).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=steps_w, device=x.device, dtype=torch.float32).unsqueeze(0)
return img, repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
@ -241,16 +309,16 @@ class Flux(nn.Module):
h_len = ((h_orig + (patch_size // 2)) // patch_size)
w_len = ((w_orig + (patch_size // 2)) // patch_size)
img, img_ids = self.process_img(x)
img, img_ids = self.process_img(x, transformer_options=transformer_options)
img_tokens = img.shape[1]
if ref_latents is not None:
h = 0
w = 0
index = 0
ref_latents_method = kwargs.get("ref_latents_method", "offset")
ref_latents_method = kwargs.get("ref_latents_method", self.params.default_ref_method)
for ref in ref_latents:
if ref_latents_method == "index":
index += 1
index += self.params.ref_index_scale
h_offset = 0
w_offset = 0
elif ref_latents_method == "uxo":
@ -274,7 +342,12 @@ class Flux(nn.Module):
img = torch.cat([img, kontext], dim=1)
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
txt_ids = torch.zeros((bs, context.shape[1], len(self.params.axes_dim)), device=x.device, dtype=torch.float32)
if len(self.params.txt_ids_dims) > 0:
for i in self.params.txt_ids_dims:
txt_ids[:, :, i] = torch.linspace(0, context.shape[1] - 1, steps=context.shape[1], device=x.device, dtype=torch.float32)
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
out = out[:, :img_tokens]
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h_orig,:w_orig]
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=self.patch_size, pw=self.patch_size)[:,:,:h_orig,:w_orig]

View File

@ -6,7 +6,6 @@ import comfy.ldm.flux.layers
import comfy.ldm.modules.diffusionmodules.mmdit
from comfy.ldm.modules.attention import optimized_attention
from dataclasses import dataclass
from einops import repeat
@ -42,6 +41,9 @@ class HunyuanVideoParams:
guidance_embed: bool
byt5: bool
meanflow: bool
use_cond_type_embedding: bool
vision_in_dim: int
meanflow_sum: bool
class SelfAttentionRef(nn.Module):
@ -157,7 +159,10 @@ class TokenRefiner(nn.Module):
t = self.t_embedder(timestep_embedding(timesteps, 256, time_factor=1.0).to(x.dtype))
# m = mask.float().unsqueeze(-1)
# c = (x.float() * m).sum(dim=1) / m.sum(dim=1) #TODO: the following works when the x.shape is the same length as the tokens but might break otherwise
c = x.sum(dim=1) / x.shape[1]
if x.dtype == torch.float16:
c = x.float().sum(dim=1) / x.shape[1]
else:
c = x.sum(dim=1) / x.shape[1]
c = t + self.c_embedder(c.to(x.dtype))
x = self.input_embedder(x)
@ -196,11 +201,15 @@ class HunyuanVideo(nn.Module):
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
super().__init__()
self.dtype = dtype
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
params = HunyuanVideoParams(**kwargs)
self.params = params
self.patch_size = params.patch_size
self.in_channels = params.in_channels
self.out_channels = params.out_channels
self.use_cond_type_embedding = params.use_cond_type_embedding
self.vision_in_dim = params.vision_in_dim
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
@ -266,6 +275,18 @@ class HunyuanVideo(nn.Module):
if final_layer:
self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations)
# HunyuanVideo 1.5 specific modules
if self.vision_in_dim is not None:
from comfy.ldm.wan.model import MLPProj
self.vision_in = MLPProj(in_dim=self.vision_in_dim, out_dim=self.hidden_size, operation_settings=operation_settings)
else:
self.vision_in = None
if self.use_cond_type_embedding:
# 0: text_encoder feature 1: byt5 feature 2: vision_encoder feature
self.cond_type_embedding = nn.Embedding(3, self.hidden_size)
else:
self.cond_type_embedding = None
def forward_orig(
self,
img: Tensor,
@ -276,6 +297,7 @@ class HunyuanVideo(nn.Module):
timesteps: Tensor,
y: Tensor = None,
txt_byt5=None,
clip_fea=None,
guidance: Tensor = None,
guiding_frame_index=None,
ref_latent=None,
@ -296,7 +318,7 @@ class HunyuanVideo(nn.Module):
timesteps_r = transformer_options['sample_sigmas'][w[0] + 1]
timesteps_r = timesteps_r.unsqueeze(0).to(device=timesteps.device, dtype=timesteps.dtype)
vec_r = self.time_r_in(timestep_embedding(timesteps_r, 256, time_factor=1000.0).to(img.dtype))
vec = (vec + vec_r) / 2
vec = (vec + vec_r) if self.params.meanflow_sum else (vec + vec_r) / 2
if ref_latent is not None:
ref_latent_ids = self.img_ids(ref_latent)
@ -331,12 +353,31 @@ class HunyuanVideo(nn.Module):
txt = self.txt_in(txt, timesteps, txt_mask, transformer_options=transformer_options)
if self.cond_type_embedding is not None:
self.cond_type_embedding.to(txt.device)
cond_emb = self.cond_type_embedding(torch.zeros_like(txt[:, :, 0], device=txt.device, dtype=torch.long))
txt = txt + cond_emb.to(txt.dtype)
if self.byt5_in is not None and txt_byt5 is not None:
txt_byt5 = self.byt5_in(txt_byt5)
if self.cond_type_embedding is not None:
cond_emb = self.cond_type_embedding(torch.ones_like(txt_byt5[:, :, 0], device=txt_byt5.device, dtype=torch.long))
txt_byt5 = txt_byt5 + cond_emb.to(txt_byt5.dtype)
txt = torch.cat((txt_byt5, txt), dim=1) # byt5 first for HunyuanVideo1.5
else:
txt = torch.cat((txt, txt_byt5), dim=1)
txt_byt5_ids = torch.zeros((txt_ids.shape[0], txt_byt5.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt = torch.cat((txt, txt_byt5), dim=1)
txt_ids = torch.cat((txt_ids, txt_byt5_ids), dim=1)
if clip_fea is not None:
txt_vision_states = self.vision_in(clip_fea)
if self.cond_type_embedding is not None:
cond_emb = self.cond_type_embedding(2 * torch.ones_like(txt_vision_states[:, :, 0], dtype=torch.long, device=txt_vision_states.device))
txt_vision_states = txt_vision_states + cond_emb
txt = torch.cat((txt_vision_states.to(txt.dtype), txt), dim=1)
extra_txt_ids = torch.zeros((txt_ids.shape[0], txt_vision_states.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt_ids = torch.cat((txt_ids, extra_txt_ids), dim=1)
ids = torch.cat((img_ids, txt_ids), dim=1)
pe = self.pe_embedder(ids)
@ -349,7 +390,10 @@ class HunyuanVideo(nn.Module):
attn_mask = None
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.double_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.double_blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@ -371,7 +415,10 @@ class HunyuanVideo(nn.Module):
img = torch.cat((img, txt), 1)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
for i, block in enumerate(self.single_blocks):
transformer_options["block_index"] = i
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@ -430,14 +477,14 @@ class HunyuanVideo(nn.Module):
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
return repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
def forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, y, txt_byt5, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs)
).execute(x, timestep, context, y, txt_byt5, clip_fea, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs)
def _forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
def _forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
bs = x.shape[0]
if len(self.patch_size) == 3:
img_ids = self.img_ids(x)
@ -445,5 +492,5 @@ class HunyuanVideo(nn.Module):
else:
img_ids = self.img_ids_2d(x)
txt_ids = torch.zeros((bs, context.shape[1], 2), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, clip_fea, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options)
return out

View File

@ -0,0 +1,122 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, VideoConv3d
from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm
import comfy.model_management
import comfy.model_patcher
class SRResidualCausalBlock3D(nn.Module):
def __init__(self, channels: int):
super().__init__()
self.block = nn.Sequential(
VideoConv3d(channels, channels, kernel_size=3),
nn.SiLU(inplace=True),
VideoConv3d(channels, channels, kernel_size=3),
nn.SiLU(inplace=True),
VideoConv3d(channels, channels, kernel_size=3),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.block(x)
class SRModel3DV2(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
hidden_channels: int = 64,
num_blocks: int = 6,
global_residual: bool = False,
):
super().__init__()
self.in_conv = VideoConv3d(in_channels, hidden_channels, kernel_size=3)
self.blocks = nn.ModuleList([SRResidualCausalBlock3D(hidden_channels) for _ in range(num_blocks)])
self.out_conv = VideoConv3d(hidden_channels, out_channels, kernel_size=3)
self.global_residual = bool(global_residual)
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
y = self.in_conv(x)
for blk in self.blocks:
y = blk(y)
y = self.out_conv(y)
if self.global_residual and (y.shape == residual.shape):
y = y + residual
return y
class Upsampler(nn.Module):
def __init__(
self,
z_channels: int,
out_channels: int,
block_out_channels: tuple[int, ...],
num_res_blocks: int = 2,
):
super().__init__()
self.num_res_blocks = num_res_blocks
self.block_out_channels = block_out_channels
self.z_channels = z_channels
ch = block_out_channels[0]
self.conv_in = VideoConv3d(z_channels, ch, kernel_size=3)
self.up = nn.ModuleList()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_shortcut=False,
conv_op=VideoConv3d, norm_op=RMS_norm)
for j in range(num_res_blocks + 1)])
ch = tgt
self.up.append(stage)
self.norm_out = RMS_norm(ch)
self.conv_out = VideoConv3d(ch, out_channels, kernel_size=3)
def forward(self, z):
"""
Args:
z: (B, C, T, H, W)
target_shape: (H, W)
"""
# z to block_in
repeats = self.block_out_channels[0] // (self.z_channels)
x = self.conv_in(z) + z.repeat_interleave(repeats=repeats, dim=1)
# upsampling
for stage in self.up:
for blk in stage.block:
x = blk(x)
out = self.conv_out(F.silu(self.norm_out(x)))
return out
UPSAMPLERS = {
"720p": SRModel3DV2,
"1080p": Upsampler,
}
class HunyuanVideo15SRModel():
def __init__(self, model_type, config):
self.load_device = comfy.model_management.vae_device()
offload_device = comfy.model_management.vae_offload_device()
self.dtype = comfy.model_management.vae_dtype(self.load_device)
self.model_class = UPSAMPLERS.get(model_type)
self.model = self.model_class(**config).eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=True)
def get_sd(self):
return self.model.state_dict()
def resample_latent(self, latent):
comfy.model_management.load_model_gpu(self.patcher)
return self.model(latent.to(self.load_device))

View File

@ -1,11 +1,13 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, CarriedConv3d, Normalize, conv_carry_causal_3d, torch_cat_if_needed
import comfy.ops
import comfy.ldm.models.autoencoder
import comfy.model_management
ops = comfy.ops.disable_weight_init
class RMS_norm(nn.Module):
def __init__(self, dim):
super().__init__()
@ -14,23 +16,25 @@ class RMS_norm(nn.Module):
self.gamma = nn.Parameter(torch.empty(shape))
def forward(self, x):
return F.normalize(x, dim=1) * self.scale * self.gamma
return F.normalize(x, dim=1) * self.scale * comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device)
class DnSmpl(nn.Module):
def __init__(self, ic, oc, tds=True):
def __init__(self, ic, oc, tds, refiner_vae, op):
super().__init__()
fct = 2 * 2 * 2 if tds else 1 * 2 * 2
assert oc % fct == 0
self.conv = VideoConv3d(ic, oc // fct, kernel_size=3)
self.conv = op(ic, oc // fct, kernel_size=3, stride=1, padding=1)
self.refiner_vae = refiner_vae
self.tds = tds
self.gs = fct * ic // oc
def forward(self, x):
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
r1 = 2 if self.tds else 1
h = self.conv(x)
h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
if self.tds and self.refiner_vae and conv_carry_in is None:
if self.tds:
hf = h[:, :, :1, :, :]
b, c, f, ht, wd = hf.shape
hf = hf.reshape(b, c, f, ht // 2, 2, wd // 2, 2)
@ -38,14 +42,7 @@ class DnSmpl(nn.Module):
hf = hf.reshape(b, 2 * 2 * c, f, ht // 2, wd // 2)
hf = torch.cat([hf, hf], dim=1)
hn = h[:, :, 1:, :, :]
b, c, frms, ht, wd = hn.shape
nf = frms // r1
hn = hn.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
hn = hn.permute(0, 3, 5, 7, 1, 2, 4, 6)
hn = hn.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
h = torch.cat([hf, hn], dim=2)
h = h[:, :, 1:, :, :]
xf = x[:, :, :1, :, :]
b, ci, f, ht, wd = xf.shape
@ -53,49 +50,49 @@ class DnSmpl(nn.Module):
xf = xf.permute(0, 4, 6, 1, 2, 3, 5)
xf = xf.reshape(b, 2 * 2 * ci, f, ht // 2, wd // 2)
B, C, T, H, W = xf.shape
xf = xf.view(B, h.shape[1], self.gs // 2, T, H, W).mean(dim=2)
xf = xf.view(B, hf.shape[1], self.gs // 2, T, H, W).mean(dim=2)
xn = x[:, :, 1:, :, :]
b, ci, frms, ht, wd = xn.shape
nf = frms // r1
xn = xn.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
xn = xn.permute(0, 3, 5, 7, 1, 2, 4, 6)
xn = xn.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = xn.shape
xn = xn.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
sc = torch.cat([xf, xn], dim=2)
else:
b, c, frms, ht, wd = h.shape
nf = frms // r1
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
x = x[:, :, 1:, :, :]
b, ci, frms, ht, wd = x.shape
nf = frms // r1
sc = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
sc = sc.permute(0, 3, 5, 7, 1, 2, 4, 6)
sc = sc.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = sc.shape
sc = sc.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
if h.shape[2] == 0:
return hf + xf
return h + sc
b, c, frms, ht, wd = h.shape
nf = frms // r1
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
b, ci, frms, ht, wd = x.shape
nf = frms // r1
x = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
x = x.permute(0, 3, 5, 7, 1, 2, 4, 6)
x = x.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = x.shape
x = x.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
if self.tds and self.refiner_vae and conv_carry_in is None:
h = torch.cat([hf, h], dim=2)
x = torch.cat([xf, x], dim=2)
return h + x
class UpSmpl(nn.Module):
def __init__(self, ic, oc, tus=True):
def __init__(self, ic, oc, tus, refiner_vae, op):
super().__init__()
fct = 2 * 2 * 2 if tus else 1 * 2 * 2
self.conv = VideoConv3d(ic, oc * fct, kernel_size=3)
self.conv = op(ic, oc * fct, kernel_size=3, stride=1, padding=1)
self.refiner_vae = refiner_vae
self.tus = tus
self.rp = fct * oc // ic
def forward(self, x):
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
r1 = 2 if self.tus else 1
h = self.conv(x)
h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
if self.tus:
if self.tus and self.refiner_vae and conv_carry_in is None:
hf = h[:, :, :1, :, :]
b, c, f, ht, wd = hf.shape
nc = c // (2 * 2)
@ -104,14 +101,7 @@ class UpSmpl(nn.Module):
hf = hf.reshape(b, nc, f, ht * 2, wd * 2)
hf = hf[:, : hf.shape[1] // 2]
hn = h[:, :, 1:, :, :]
b, c, frms, ht, wd = hn.shape
nc = c // (r1 * 2 * 2)
hn = hn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
hn = hn.permute(0, 4, 5, 1, 6, 2, 7, 3)
hn = hn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
h = torch.cat([hf, hn], dim=2)
h = h[:, :, 1:, :, :]
xf = x[:, :, :1, :, :]
b, ci, f, ht, wd = xf.shape
@ -122,109 +112,147 @@ class UpSmpl(nn.Module):
xf = xf.permute(0, 3, 4, 5, 1, 6, 2)
xf = xf.reshape(b, nc, f, ht * 2, wd * 2)
xn = x[:, :, 1:, :, :]
xn = xn.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = xn.shape
nc = c // (r1 * 2 * 2)
xn = xn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
xn = xn.permute(0, 4, 5, 1, 6, 2, 7, 3)
xn = xn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
sc = torch.cat([xf, xn], dim=2)
else:
b, c, frms, ht, wd = h.shape
nc = c // (r1 * 2 * 2)
h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd)
h = h.permute(0, 4, 5, 1, 6, 2, 7, 3)
h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2)
x = x[:, :, 1:, :, :]
sc = x.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = sc.shape
nc = c // (r1 * 2 * 2)
sc = sc.reshape(b, r1, 2, 2, nc, frms, ht, wd)
sc = sc.permute(0, 4, 5, 1, 6, 2, 7, 3)
sc = sc.reshape(b, nc, frms * r1, ht * 2, wd * 2)
b, c, frms, ht, wd = h.shape
nc = c // (r1 * 2 * 2)
h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd)
h = h.permute(0, 4, 5, 1, 6, 2, 7, 3)
h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2)
return h + sc
x = x.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = x.shape
nc = c // (r1 * 2 * 2)
x = x.reshape(b, r1, 2, 2, nc, frms, ht, wd)
x = x.permute(0, 4, 5, 1, 6, 2, 7, 3)
x = x.reshape(b, nc, frms * r1, ht * 2, wd * 2)
if self.tus and self.refiner_vae and conv_carry_in is None:
h = torch.cat([hf, h], dim=2)
x = torch.cat([xf, x], dim=2)
return h + x
class Encoder(nn.Module):
def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks,
ffactor_spatial, ffactor_temporal, downsample_match_channel=True, **_):
ffactor_spatial, ffactor_temporal, downsample_match_channel=True, refiner_vae=True, **_):
super().__init__()
self.z_channels = z_channels
self.block_out_channels = block_out_channels
self.num_res_blocks = num_res_blocks
self.conv_in = VideoConv3d(in_channels, block_out_channels[0], 3, 1, 1)
self.ffactor_temporal = ffactor_temporal
self.refiner_vae = refiner_vae
if self.refiner_vae:
conv_op = CarriedConv3d
norm_op = RMS_norm
else:
conv_op = ops.Conv3d
norm_op = Normalize
self.conv_in = conv_op(in_channels, block_out_channels[0], 3, 1, 1)
self.down = nn.ModuleList()
ch = block_out_channels[0]
depth = (ffactor_spatial >> 1).bit_length()
depth_temporal = ((ffactor_spatial // ffactor_temporal) >> 1).bit_length()
depth_temporal = ((ffactor_spatial // self.ffactor_temporal) >> 1).bit_length()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_op=VideoConv3d, norm_op=RMS_norm)
conv_op=conv_op, norm_op=norm_op)
for j in range(num_res_blocks)])
ch = tgt
if i < depth:
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and downsample_match_channel else ch
stage.downsample = DnSmpl(ch, nxt, tds=i >= depth_temporal)
stage.downsample = DnSmpl(ch, nxt, tds=i >= depth_temporal, refiner_vae=self.refiner_vae, op=conv_op)
ch = nxt
self.down.append(stage)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=RMS_norm)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.norm_out = RMS_norm(ch)
self.conv_out = VideoConv3d(ch, z_channels << 1, 3, 1, 1)
self.norm_out = norm_op(ch)
self.conv_out = conv_op(ch, z_channels << 1, 3, 1, 1)
self.regul = comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer()
def forward(self, x):
x = self.conv_in(x)
if not self.refiner_vae and x.shape[2] == 1:
x = x.expand(-1, -1, self.ffactor_temporal, -1, -1)
for stage in self.down:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'downsample'):
x = stage.downsample(x)
if self.refiner_vae:
xl = [x[:, :, :1, :, :]]
if x.shape[2] > self.ffactor_temporal:
xl += torch.split(x[:, :, 1: 1 + ((x.shape[2] - 1) // self.ffactor_temporal) * self.ffactor_temporal, :, :], self.ffactor_temporal * 2, dim=2)
x = xl
else:
x = [x]
out = []
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
conv_carry_in = None
for i, x1 in enumerate(x):
conv_carry_out = []
if i == len(x) - 1:
conv_carry_out = None
x1 = [ x1 ]
x1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out)
for stage in self.down:
for blk in stage.block:
x1 = blk(x1, None, conv_carry_in, conv_carry_out)
if hasattr(stage, 'downsample'):
x1 = stage.downsample(x1, conv_carry_in, conv_carry_out)
out.append(x1)
conv_carry_in = conv_carry_out
out = torch_cat_if_needed(out, dim=2)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(out)))
del out
b, c, t, h, w = x.shape
grp = c // (self.z_channels << 1)
skip = x.view(b, c // grp, grp, t, h, w).mean(2)
out = self.conv_out(F.silu(self.norm_out(x))) + skip
out = self.regul(out)[0]
out = conv_carry_causal_3d([F.silu(self.norm_out(x))], self.conv_out) + skip
if self.refiner_vae:
out = self.regul(out)[0]
out = torch.cat((out[:, :, :1], out), dim=2)
out = out.permute(0, 2, 1, 3, 4)
b, f_times_2, c, h, w = out.shape
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
out = out.permute(0, 2, 1, 3, 4).contiguous()
return out
class Decoder(nn.Module):
def __init__(self, z_channels, out_channels, block_out_channels, num_res_blocks,
ffactor_spatial, ffactor_temporal, upsample_match_channel=True, **_):
ffactor_spatial, ffactor_temporal, upsample_match_channel=True, refiner_vae=True, **_):
super().__init__()
block_out_channels = block_out_channels[::-1]
self.z_channels = z_channels
self.block_out_channels = block_out_channels
self.num_res_blocks = num_res_blocks
self.refiner_vae = refiner_vae
if self.refiner_vae:
conv_op = CarriedConv3d
norm_op = RMS_norm
else:
conv_op = ops.Conv3d
norm_op = Normalize
ch = block_out_channels[0]
self.conv_in = VideoConv3d(z_channels, ch, 3)
self.conv_in = conv_op(z_channels, ch, kernel_size=3, stride=1, padding=1)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=RMS_norm)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.up = nn.ModuleList()
depth = (ffactor_spatial >> 1).bit_length()
@ -235,33 +263,51 @@ class Decoder(nn.Module):
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_op=VideoConv3d, norm_op=RMS_norm)
conv_op=conv_op, norm_op=norm_op)
for j in range(num_res_blocks + 1)])
ch = tgt
if i < depth:
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and upsample_match_channel else ch
stage.upsample = UpSmpl(ch, nxt, tus=i < depth_temporal)
stage.upsample = UpSmpl(ch, nxt, tus=i < depth_temporal, refiner_vae=self.refiner_vae, op=conv_op)
ch = nxt
self.up.append(stage)
self.norm_out = RMS_norm(ch)
self.conv_out = VideoConv3d(ch, out_channels, 3)
self.norm_out = norm_op(ch)
self.conv_out = conv_op(ch, out_channels, 3, stride=1, padding=1)
def forward(self, z):
z = z.permute(0, 2, 1, 3, 4)
b, f, c, h, w = z.shape
z = z.reshape(b, f, 2, c // 2, h, w)
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
z = z.permute(0, 2, 1, 3, 4)
z = z[:, :, 1:]
x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
x = conv_carry_causal_3d([z], self.conv_in) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
for stage in self.up:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'upsample'):
x = stage.upsample(x)
if self.refiner_vae:
x = torch.split(x, 2, dim=2)
else:
x = [ x ]
out = []
conv_carry_in = None
for i, x1 in enumerate(x):
conv_carry_out = []
if i == len(x) - 1:
conv_carry_out = None
for stage in self.up:
for blk in stage.block:
x1 = blk(x1, None, conv_carry_in, conv_carry_out)
if hasattr(stage, 'upsample'):
x1 = stage.upsample(x1, conv_carry_in, conv_carry_out)
x1 = [ F.silu(self.norm_out(x1)) ]
x1 = conv_carry_causal_3d(x1, self.conv_out, conv_carry_in, conv_carry_out)
out.append(x1)
conv_carry_in = conv_carry_out
del x
out = torch_cat_if_needed(out, dim=2)
if not self.refiner_vae:
if z.shape[-3] == 1:
out = out[:, :, -1:]
return out
return self.conv_out(F.silu(self.norm_out(x)))

View File

@ -0,0 +1,413 @@
import torch
from torch import nn
import math
import comfy.ldm.common_dit
from comfy.ldm.modules.attention import optimized_attention
from comfy.ldm.flux.math import apply_rope1
from comfy.ldm.flux.layers import EmbedND
def attention(q, k, v, heads, transformer_options={}):
return optimized_attention(
q.transpose(1, 2),
k.transpose(1, 2),
v.transpose(1, 2),
heads=heads,
skip_reshape=True,
transformer_options=transformer_options
)
def apply_scale_shift_norm(norm, x, scale, shift):
return torch.addcmul(shift, norm(x), scale + 1.0)
def apply_gate_sum(x, out, gate):
return torch.addcmul(x, gate, out)
def get_shift_scale_gate(params):
shift, scale, gate = torch.chunk(params, 3, dim=-1)
return tuple(x.unsqueeze(1) for x in (shift, scale, gate))
def get_freqs(dim, max_period=10000.0):
return torch.exp(-math.log(max_period) * torch.arange(start=0, end=dim, dtype=torch.float32) / dim)
class TimeEmbeddings(nn.Module):
def __init__(self, model_dim, time_dim, max_period=10000.0, operation_settings=None):
super().__init__()
assert model_dim % 2 == 0
self.model_dim = model_dim
self.max_period = max_period
self.register_buffer("freqs", get_freqs(model_dim // 2, max_period), persistent=False)
operations = operation_settings.get("operations")
self.in_layer = operations.Linear(model_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.activation = nn.SiLU()
self.out_layer = operations.Linear(time_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, timestep, dtype):
args = torch.outer(timestep, self.freqs.to(device=timestep.device))
time_embed = torch.cat([torch.cos(args), torch.sin(args)], dim=-1).to(dtype)
time_embed = self.out_layer(self.activation(self.in_layer(time_embed)))
return time_embed
class TextEmbeddings(nn.Module):
def __init__(self, text_dim, model_dim, operation_settings=None):
super().__init__()
operations = operation_settings.get("operations")
self.in_layer = operations.Linear(text_dim, model_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.norm = operations.LayerNorm(model_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, text_embed):
text_embed = self.in_layer(text_embed)
return self.norm(text_embed).type_as(text_embed)
class VisualEmbeddings(nn.Module):
def __init__(self, visual_dim, model_dim, patch_size, operation_settings=None):
super().__init__()
self.patch_size = patch_size
operations = operation_settings.get("operations")
self.in_layer = operations.Linear(visual_dim, model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, x):
x = x.movedim(1, -1) # B C T H W -> B T H W C
B, T, H, W, dim = x.shape
pt, ph, pw = self.patch_size
x = x.view(
B,
T // pt, pt,
H // ph, ph,
W // pw, pw,
dim,
).permute(0, 1, 3, 5, 2, 4, 6, 7).flatten(4, 7)
return self.in_layer(x)
class Modulation(nn.Module):
def __init__(self, time_dim, model_dim, num_params, operation_settings=None):
super().__init__()
self.activation = nn.SiLU()
self.out_layer = operation_settings.get("operations").Linear(time_dim, num_params * model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, x):
return self.out_layer(self.activation(x))
class SelfAttention(nn.Module):
def __init__(self, num_channels, head_dim, operation_settings=None):
super().__init__()
assert num_channels % head_dim == 0
self.num_heads = num_channels // head_dim
self.head_dim = head_dim
operations = operation_settings.get("operations")
self.to_query = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.to_key = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.to_value = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.query_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.key_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.out_layer = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.num_chunks = 2
def _compute_qk(self, x, freqs, proj_fn, norm_fn):
result = proj_fn(x).view(*x.shape[:-1], self.num_heads, -1)
return apply_rope1(norm_fn(result), freqs)
def _forward(self, x, freqs, transformer_options={}):
q = self._compute_qk(x, freqs, self.to_query, self.query_norm)
k = self._compute_qk(x, freqs, self.to_key, self.key_norm)
v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1)
out = attention(q, k, v, self.num_heads, transformer_options=transformer_options)
return self.out_layer(out)
def _forward_chunked(self, x, freqs, transformer_options={}):
def process_chunks(proj_fn, norm_fn):
x_chunks = torch.chunk(x, self.num_chunks, dim=1)
freqs_chunks = torch.chunk(freqs, self.num_chunks, dim=1)
chunks = []
for x_chunk, freqs_chunk in zip(x_chunks, freqs_chunks):
chunks.append(self._compute_qk(x_chunk, freqs_chunk, proj_fn, norm_fn))
return torch.cat(chunks, dim=1)
q = process_chunks(self.to_query, self.query_norm)
k = process_chunks(self.to_key, self.key_norm)
v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1)
out = attention(q, k, v, self.num_heads, transformer_options=transformer_options)
return self.out_layer(out)
def forward(self, x, freqs, transformer_options={}):
if x.shape[1] > 8192:
return self._forward_chunked(x, freqs, transformer_options=transformer_options)
else:
return self._forward(x, freqs, transformer_options=transformer_options)
class CrossAttention(SelfAttention):
def get_qkv(self, x, context):
q = self.to_query(x).view(*x.shape[:-1], self.num_heads, -1)
k = self.to_key(context).view(*context.shape[:-1], self.num_heads, -1)
v = self.to_value(context).view(*context.shape[:-1], self.num_heads, -1)
return q, k, v
def forward(self, x, context, transformer_options={}):
q, k, v = self.get_qkv(x, context)
out = attention(self.query_norm(q), self.key_norm(k), v, self.num_heads, transformer_options=transformer_options)
return self.out_layer(out)
class FeedForward(nn.Module):
def __init__(self, dim, ff_dim, operation_settings=None):
super().__init__()
operations = operation_settings.get("operations")
self.in_layer = operations.Linear(dim, ff_dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.activation = nn.GELU()
self.out_layer = operations.Linear(ff_dim, dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.num_chunks = 4
def _forward(self, x):
return self.out_layer(self.activation(self.in_layer(x)))
def _forward_chunked(self, x):
chunks = torch.chunk(x, self.num_chunks, dim=1)
output_chunks = []
for chunk in chunks:
output_chunks.append(self._forward(chunk))
return torch.cat(output_chunks, dim=1)
def forward(self, x):
if x.shape[1] > 8192:
return self._forward_chunked(x)
else:
return self._forward(x)
class OutLayer(nn.Module):
def __init__(self, model_dim, time_dim, visual_dim, patch_size, operation_settings=None):
super().__init__()
self.patch_size = patch_size
self.modulation = Modulation(time_dim, model_dim, 2, operation_settings=operation_settings)
operations = operation_settings.get("operations")
self.norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.out_layer = operations.Linear(model_dim, math.prod(patch_size) * visual_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, visual_embed, time_embed):
B, T, H, W, _ = visual_embed.shape
shift, scale = torch.chunk(self.modulation(time_embed), 2, dim=-1)
scale = scale[:, None, None, None, :]
shift = shift[:, None, None, None, :]
visual_embed = apply_scale_shift_norm(self.norm, visual_embed, scale, shift)
x = self.out_layer(visual_embed)
out_dim = x.shape[-1] // (self.patch_size[0] * self.patch_size[1] * self.patch_size[2])
x = x.view(
B, T, H, W,
out_dim,
self.patch_size[0], self.patch_size[1], self.patch_size[2]
)
return x.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(2, 3).flatten(3, 4).flatten(4, 5)
class TransformerEncoderBlock(nn.Module):
def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None):
super().__init__()
self.text_modulation = Modulation(time_dim, model_dim, 6, operation_settings=operation_settings)
operations = operation_settings.get("operations")
self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings)
self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings)
def forward(self, x, time_embed, freqs, transformer_options={}):
self_attn_params, ff_params = torch.chunk(self.text_modulation(time_embed), 2, dim=-1)
shift, scale, gate = get_shift_scale_gate(self_attn_params)
out = apply_scale_shift_norm(self.self_attention_norm, x, scale, shift)
out = self.self_attention(out, freqs, transformer_options=transformer_options)
x = apply_gate_sum(x, out, gate)
shift, scale, gate = get_shift_scale_gate(ff_params)
out = apply_scale_shift_norm(self.feed_forward_norm, x, scale, shift)
out = self.feed_forward(out)
x = apply_gate_sum(x, out, gate)
return x
class TransformerDecoderBlock(nn.Module):
def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None):
super().__init__()
self.visual_modulation = Modulation(time_dim, model_dim, 9, operation_settings=operation_settings)
operations = operation_settings.get("operations")
self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings)
self.cross_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.cross_attention = CrossAttention(model_dim, head_dim, operation_settings=operation_settings)
self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings)
def forward(self, visual_embed, text_embed, time_embed, freqs, transformer_options={}):
self_attn_params, cross_attn_params, ff_params = torch.chunk(self.visual_modulation(time_embed), 3, dim=-1)
# self attention
shift, scale, gate = get_shift_scale_gate(self_attn_params)
visual_out = apply_scale_shift_norm(self.self_attention_norm, visual_embed, scale, shift)
visual_out = self.self_attention(visual_out, freqs, transformer_options=transformer_options)
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
# cross attention
shift, scale, gate = get_shift_scale_gate(cross_attn_params)
visual_out = apply_scale_shift_norm(self.cross_attention_norm, visual_embed, scale, shift)
visual_out = self.cross_attention(visual_out, text_embed, transformer_options=transformer_options)
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
# feed forward
shift, scale, gate = get_shift_scale_gate(ff_params)
visual_out = apply_scale_shift_norm(self.feed_forward_norm, visual_embed, scale, shift)
visual_out = self.feed_forward(visual_out)
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
return visual_embed
class Kandinsky5(nn.Module):
def __init__(
self,
in_visual_dim=16, out_visual_dim=16, in_text_dim=3584, in_text_dim2=768, time_dim=512,
model_dim=1792, ff_dim=7168, visual_embed_dim=132, patch_size=(1, 2, 2), num_text_blocks=2, num_visual_blocks=32,
axes_dims=(16, 24, 24), rope_scale_factor=(1.0, 2.0, 2.0),
dtype=None, device=None, operations=None, **kwargs
):
super().__init__()
head_dim = sum(axes_dims)
self.rope_scale_factor = rope_scale_factor
self.in_visual_dim = in_visual_dim
self.model_dim = model_dim
self.patch_size = patch_size
self.visual_embed_dim = visual_embed_dim
self.dtype = dtype
self.device = device
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
self.time_embeddings = TimeEmbeddings(model_dim, time_dim, operation_settings=operation_settings)
self.text_embeddings = TextEmbeddings(in_text_dim, model_dim, operation_settings=operation_settings)
self.pooled_text_embeddings = TextEmbeddings(in_text_dim2, time_dim, operation_settings=operation_settings)
self.visual_embeddings = VisualEmbeddings(visual_embed_dim, model_dim, patch_size, operation_settings=operation_settings)
self.text_transformer_blocks = nn.ModuleList(
[TransformerEncoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_text_blocks)]
)
self.visual_transformer_blocks = nn.ModuleList(
[TransformerDecoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_visual_blocks)]
)
self.out_layer = OutLayer(model_dim, time_dim, out_visual_dim, patch_size, operation_settings=operation_settings)
self.rope_embedder_3d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=axes_dims)
self.rope_embedder_1d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=[head_dim])
def rope_encode_1d(self, seq_len, seq_start=0, steps=None, device=None, dtype=None, transformer_options={}):
steps = seq_len if steps is None else steps
seq_ids = torch.linspace(seq_start, seq_start + (seq_len - 1), steps=steps, device=device, dtype=dtype)
seq_ids = seq_ids.reshape(-1, 1).unsqueeze(0) # Shape: (1, steps, 1)
freqs = self.rope_embedder_1d(seq_ids).movedim(1, 2)
return freqs
def rope_encode_3d(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None, transformer_options={}):
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
if steps_t is None:
steps_t = t_len
if steps_h is None:
steps_h = h_len
if steps_w is None:
steps_w = w_len
h_start = 0
w_start = 0
rope_options = transformer_options.get("rope_options", None)
if rope_options is not None:
t_len = (t_len - 1.0) * rope_options.get("scale_t", 1.0) + 1.0
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
t_start += rope_options.get("shift_t", 0.0)
h_start += rope_options.get("shift_y", 0.0)
w_start += rope_options.get("shift_x", 0.0)
else:
rope_scale_factor = self.rope_scale_factor
if self.model_dim == 4096: # pro video model uses different rope scaling at higher resolutions
if h * w >= 14080:
rope_scale_factor = (1.0, 3.16, 3.16)
t_len = (t_len - 1.0) / rope_scale_factor[0] + 1.0
h_len = (h_len - 1.0) / rope_scale_factor[1] + 1.0
w_len = (w_len - 1.0) / rope_scale_factor[2] + 1.0
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_start, h_start + (h_len - 1), steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_start, w_start + (w_len - 1), steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
freqs = self.rope_embedder_3d(img_ids).movedim(1, 2)
return freqs
def forward_orig(self, x, timestep, context, y, freqs, freqs_text, transformer_options={}, **kwargs):
patches_replace = transformer_options.get("patches_replace", {})
context = self.text_embeddings(context)
time_embed = self.time_embeddings(timestep, x.dtype) + self.pooled_text_embeddings(y)
for block in self.text_transformer_blocks:
context = block(context, time_embed, freqs_text, transformer_options=transformer_options)
visual_embed = self.visual_embeddings(x)
visual_shape = visual_embed.shape[:-1]
visual_embed = visual_embed.flatten(1, -2)
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.visual_transformer_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.visual_transformer_blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
return block(x=args["x"], context=args["context"], time_embed=args["time_embed"], freqs=args["freqs"], transformer_options=args.get("transformer_options"))
visual_embed = blocks_replace[("double_block", i)]({"x": visual_embed, "context": context, "time_embed": time_embed, "freqs": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})["x"]
else:
visual_embed = block(visual_embed, context, time_embed, freqs=freqs, transformer_options=transformer_options)
visual_embed = visual_embed.reshape(*visual_shape, -1)
return self.out_layer(visual_embed, time_embed)
def _forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs):
original_dims = x.ndim
if original_dims == 4:
x = x.unsqueeze(2)
bs, c, t_len, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
if time_dim_replace is not None:
time_dim_replace = comfy.ldm.common_dit.pad_to_patch_size(time_dim_replace, self.patch_size)
x[:, :time_dim_replace.shape[1], :time_dim_replace.shape[2]] = time_dim_replace
freqs = self.rope_encode_3d(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options)
freqs_text = self.rope_encode_1d(context.shape[1], device=x.device, dtype=x.dtype, transformer_options=transformer_options)
out = self.forward_orig(x, timestep, context, y, freqs, freqs_text, transformer_options=transformer_options, **kwargs)
if original_dims == 4:
out = out.squeeze(2)
return out
def forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, y, time_dim_replace=time_dim_replace, transformer_options=transformer_options, **kwargs)

View File

@ -0,0 +1,871 @@
from typing import Tuple
import torch
import torch.nn as nn
from comfy.ldm.lightricks.model import (
CrossAttention,
FeedForward,
AdaLayerNormSingle,
PixArtAlphaTextProjection,
LTXVModel,
)
from comfy.ldm.lightricks.symmetric_patchifier import AudioPatchifier
import comfy.ldm.common_dit
class CompressedTimestep:
"""Store video timestep embeddings in compressed form using per-frame indexing."""
__slots__ = ('data', 'batch_size', 'num_frames', 'patches_per_frame', 'feature_dim')
def __init__(self, tensor: torch.Tensor, patches_per_frame: int):
"""
tensor: [batch_size, num_tokens, feature_dim] tensor where num_tokens = num_frames * patches_per_frame
patches_per_frame: Number of spatial patches per frame (height * width in latent space), or None to disable compression
"""
self.batch_size, num_tokens, self.feature_dim = tensor.shape
# Check if compression is valid (num_tokens must be divisible by patches_per_frame)
if patches_per_frame is not None and num_tokens % patches_per_frame == 0 and num_tokens >= patches_per_frame:
self.patches_per_frame = patches_per_frame
self.num_frames = num_tokens // patches_per_frame
# Reshape to [batch, frames, patches_per_frame, feature_dim] and store one value per frame
# All patches in a frame are identical, so we only keep the first one
reshaped = tensor.view(self.batch_size, self.num_frames, patches_per_frame, self.feature_dim)
self.data = reshaped[:, :, 0, :].contiguous() # [batch, frames, feature_dim]
else:
# Not divisible or too small - store directly without compression
self.patches_per_frame = 1
self.num_frames = num_tokens
self.data = tensor
def expand(self):
"""Expand back to original tensor."""
if self.patches_per_frame == 1:
return self.data
# [batch, frames, feature_dim] -> [batch, frames, patches_per_frame, feature_dim] -> [batch, tokens, feature_dim]
expanded = self.data.unsqueeze(2).expand(self.batch_size, self.num_frames, self.patches_per_frame, self.feature_dim)
return expanded.reshape(self.batch_size, -1, self.feature_dim)
def expand_for_computation(self, scale_shift_table: torch.Tensor, batch_size: int, indices: slice = slice(None, None)):
"""Compute ada values on compressed per-frame data, then expand spatially."""
num_ada_params = scale_shift_table.shape[0]
# No compression - compute directly
if self.patches_per_frame == 1:
num_tokens = self.data.shape[1]
dim_per_param = self.feature_dim // num_ada_params
reshaped = self.data.reshape(batch_size, num_tokens, num_ada_params, dim_per_param)[:, :, indices, :]
table_values = scale_shift_table[indices].unsqueeze(0).unsqueeze(0).to(device=self.data.device, dtype=self.data.dtype)
ada_values = (table_values + reshaped).unbind(dim=2)
return ada_values
# Compressed: compute on per-frame data then expand spatially
# Reshape: [batch, frames, feature_dim] -> [batch, frames, num_ada_params, dim_per_param]
frame_reshaped = self.data.reshape(batch_size, self.num_frames, num_ada_params, -1)[:, :, indices, :]
table_values = scale_shift_table[indices].unsqueeze(0).unsqueeze(0).to(
device=self.data.device, dtype=self.data.dtype
)
frame_ada = (table_values + frame_reshaped).unbind(dim=2)
# Expand each ada parameter spatially: [batch, frames, dim] -> [batch, frames, patches, dim] -> [batch, tokens, dim]
return tuple(
frame_val.unsqueeze(2).expand(batch_size, self.num_frames, self.patches_per_frame, -1)
.reshape(batch_size, -1, frame_val.shape[-1])
for frame_val in frame_ada
)
class BasicAVTransformerBlock(nn.Module):
def __init__(
self,
v_dim,
a_dim,
v_heads,
a_heads,
vd_head,
ad_head,
v_context_dim=None,
a_context_dim=None,
attn_precision=None,
dtype=None,
device=None,
operations=None,
):
super().__init__()
self.attn_precision = attn_precision
self.attn1 = CrossAttention(
query_dim=v_dim,
heads=v_heads,
dim_head=vd_head,
context_dim=None,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.audio_attn1 = CrossAttention(
query_dim=a_dim,
heads=a_heads,
dim_head=ad_head,
context_dim=None,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.attn2 = CrossAttention(
query_dim=v_dim,
context_dim=v_context_dim,
heads=v_heads,
dim_head=vd_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.audio_attn2 = CrossAttention(
query_dim=a_dim,
context_dim=a_context_dim,
heads=a_heads,
dim_head=ad_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
# Q: Video, K,V: Audio
self.audio_to_video_attn = CrossAttention(
query_dim=v_dim,
context_dim=a_dim,
heads=a_heads,
dim_head=ad_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
# Q: Audio, K,V: Video
self.video_to_audio_attn = CrossAttention(
query_dim=a_dim,
context_dim=v_dim,
heads=a_heads,
dim_head=ad_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.ff = FeedForward(
v_dim, dim_out=v_dim, glu=True, dtype=dtype, device=device, operations=operations
)
self.audio_ff = FeedForward(
a_dim, dim_out=a_dim, glu=True, dtype=dtype, device=device, operations=operations
)
self.scale_shift_table = nn.Parameter(torch.empty(6, v_dim, device=device, dtype=dtype))
self.audio_scale_shift_table = nn.Parameter(
torch.empty(6, a_dim, device=device, dtype=dtype)
)
self.scale_shift_table_a2v_ca_audio = nn.Parameter(
torch.empty(5, a_dim, device=device, dtype=dtype)
)
self.scale_shift_table_a2v_ca_video = nn.Parameter(
torch.empty(5, v_dim, device=device, dtype=dtype)
)
def get_ada_values(
self, scale_shift_table: torch.Tensor, batch_size: int, timestep: torch.Tensor, indices: slice = slice(None, None)
):
if isinstance(timestep, CompressedTimestep):
return timestep.expand_for_computation(scale_shift_table, batch_size, indices)
num_ada_params = scale_shift_table.shape[0]
ada_values = (
scale_shift_table[indices].unsqueeze(0).unsqueeze(0).to(device=timestep.device, dtype=timestep.dtype)
+ timestep.reshape(batch_size, timestep.shape[1], num_ada_params, -1)[:, :, indices, :]
).unbind(dim=2)
return ada_values
def get_av_ca_ada_values(
self,
scale_shift_table: torch.Tensor,
batch_size: int,
scale_shift_timestep: torch.Tensor,
gate_timestep: torch.Tensor,
num_scale_shift_values: int = 4,
):
scale_shift_ada_values = self.get_ada_values(
scale_shift_table[:num_scale_shift_values, :],
batch_size,
scale_shift_timestep,
)
gate_ada_values = self.get_ada_values(
scale_shift_table[num_scale_shift_values:, :],
batch_size,
gate_timestep,
)
return (*scale_shift_ada_values, *gate_ada_values)
def forward(
self, x: Tuple[torch.Tensor, torch.Tensor], v_context=None, a_context=None, attention_mask=None, v_timestep=None, a_timestep=None,
v_pe=None, a_pe=None, v_cross_pe=None, a_cross_pe=None, v_cross_scale_shift_timestep=None, a_cross_scale_shift_timestep=None,
v_cross_gate_timestep=None, a_cross_gate_timestep=None, transformer_options=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
run_vx = transformer_options.get("run_vx", True)
run_ax = transformer_options.get("run_ax", True)
vx, ax = x
run_ax = run_ax and ax.numel() > 0
run_a2v = run_vx and transformer_options.get("a2v_cross_attn", True) and ax.numel() > 0
run_v2a = run_ax and transformer_options.get("v2a_cross_attn", True)
# video
if run_vx:
# video self-attention
vshift_msa, vscale_msa = (self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(0, 2)))
norm_vx = comfy.ldm.common_dit.rms_norm(vx) * (1 + vscale_msa) + vshift_msa
del vshift_msa, vscale_msa
attn1_out = self.attn1(norm_vx, pe=v_pe, transformer_options=transformer_options)
del norm_vx
# video cross-attention
vgate_msa = self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(2, 3))[0]
vx.addcmul_(attn1_out, vgate_msa)
del vgate_msa, attn1_out
vx.add_(self.attn2(comfy.ldm.common_dit.rms_norm(vx), context=v_context, mask=attention_mask, transformer_options=transformer_options))
# audio
if run_ax:
# audio self-attention
ashift_msa, ascale_msa = (self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(0, 2)))
norm_ax = comfy.ldm.common_dit.rms_norm(ax) * (1 + ascale_msa) + ashift_msa
del ashift_msa, ascale_msa
attn1_out = self.audio_attn1(norm_ax, pe=a_pe, transformer_options=transformer_options)
del norm_ax
# audio cross-attention
agate_msa = self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(2, 3))[0]
ax.addcmul_(attn1_out, agate_msa)
del agate_msa, attn1_out
ax.add_(self.audio_attn2(comfy.ldm.common_dit.rms_norm(ax), context=a_context, mask=attention_mask, transformer_options=transformer_options))
# video - audio cross attention.
if run_a2v or run_v2a:
vx_norm3 = comfy.ldm.common_dit.rms_norm(vx)
ax_norm3 = comfy.ldm.common_dit.rms_norm(ax)
# audio to video cross attention
if run_a2v:
scale_ca_audio_hidden_states_a2v, shift_ca_audio_hidden_states_a2v = self.get_ada_values(
self.scale_shift_table_a2v_ca_audio[:4, :], ax.shape[0], a_cross_scale_shift_timestep)[:2]
scale_ca_video_hidden_states_a2v_v, shift_ca_video_hidden_states_a2v_v = self.get_ada_values(
self.scale_shift_table_a2v_ca_video[:4, :], vx.shape[0], v_cross_scale_shift_timestep)[:2]
vx_scaled = vx_norm3 * (1 + scale_ca_video_hidden_states_a2v_v) + shift_ca_video_hidden_states_a2v_v
ax_scaled = ax_norm3 * (1 + scale_ca_audio_hidden_states_a2v) + shift_ca_audio_hidden_states_a2v
del scale_ca_video_hidden_states_a2v_v, shift_ca_video_hidden_states_a2v_v, scale_ca_audio_hidden_states_a2v, shift_ca_audio_hidden_states_a2v
a2v_out = self.audio_to_video_attn(vx_scaled, context=ax_scaled, pe=v_cross_pe, k_pe=a_cross_pe, transformer_options=transformer_options)
del vx_scaled, ax_scaled
gate_out_a2v = self.get_ada_values(self.scale_shift_table_a2v_ca_video[4:, :], vx.shape[0], v_cross_gate_timestep)[0]
vx.addcmul_(a2v_out, gate_out_a2v)
del gate_out_a2v, a2v_out
# video to audio cross attention
if run_v2a:
scale_ca_audio_hidden_states_v2a, shift_ca_audio_hidden_states_v2a = self.get_ada_values(
self.scale_shift_table_a2v_ca_audio[:4, :], ax.shape[0], a_cross_scale_shift_timestep)[2:4]
scale_ca_video_hidden_states_v2a, shift_ca_video_hidden_states_v2a = self.get_ada_values(
self.scale_shift_table_a2v_ca_video[:4, :], vx.shape[0], v_cross_scale_shift_timestep)[2:4]
ax_scaled = ax_norm3 * (1 + scale_ca_audio_hidden_states_v2a) + shift_ca_audio_hidden_states_v2a
vx_scaled = vx_norm3 * (1 + scale_ca_video_hidden_states_v2a) + shift_ca_video_hidden_states_v2a
del scale_ca_video_hidden_states_v2a, shift_ca_video_hidden_states_v2a, scale_ca_audio_hidden_states_v2a, shift_ca_audio_hidden_states_v2a
v2a_out = self.video_to_audio_attn(ax_scaled, context=vx_scaled, pe=a_cross_pe, k_pe=v_cross_pe, transformer_options=transformer_options)
del ax_scaled, vx_scaled
gate_out_v2a = self.get_ada_values(self.scale_shift_table_a2v_ca_audio[4:, :], ax.shape[0], a_cross_gate_timestep)[0]
ax.addcmul_(v2a_out, gate_out_v2a)
del gate_out_v2a, v2a_out
del vx_norm3, ax_norm3
# video feedforward
if run_vx:
vshift_mlp, vscale_mlp = self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(3, 5))
vx_scaled = comfy.ldm.common_dit.rms_norm(vx) * (1 + vscale_mlp) + vshift_mlp
del vshift_mlp, vscale_mlp
ff_out = self.ff(vx_scaled)
del vx_scaled
vgate_mlp = self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(5, 6))[0]
vx.addcmul_(ff_out, vgate_mlp)
del vgate_mlp, ff_out
# audio feedforward
if run_ax:
ashift_mlp, ascale_mlp = self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(3, 5))
ax_scaled = comfy.ldm.common_dit.rms_norm(ax) * (1 + ascale_mlp) + ashift_mlp
del ashift_mlp, ascale_mlp
ff_out = self.audio_ff(ax_scaled)
del ax_scaled
agate_mlp = self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(5, 6))[0]
ax.addcmul_(ff_out, agate_mlp)
del agate_mlp, ff_out
return vx, ax
class LTXAVModel(LTXVModel):
"""LTXAV model for audio-video generation."""
def __init__(
self,
in_channels=128,
audio_in_channels=128,
cross_attention_dim=4096,
audio_cross_attention_dim=2048,
attention_head_dim=128,
audio_attention_head_dim=64,
num_attention_heads=32,
audio_num_attention_heads=32,
caption_channels=3840,
num_layers=48,
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[20, 2048, 2048],
audio_positional_embedding_max_pos=[20],
causal_temporal_positioning=False,
vae_scale_factors=(8, 32, 32),
use_middle_indices_grid=False,
timestep_scale_multiplier=1000.0,
av_ca_timestep_scale_multiplier=1.0,
dtype=None,
device=None,
operations=None,
**kwargs,
):
# Store audio-specific parameters
self.audio_in_channels = audio_in_channels
self.audio_cross_attention_dim = audio_cross_attention_dim
self.audio_attention_head_dim = audio_attention_head_dim
self.audio_num_attention_heads = audio_num_attention_heads
self.audio_positional_embedding_max_pos = audio_positional_embedding_max_pos
# Calculate audio dimensions
self.audio_inner_dim = audio_num_attention_heads * audio_attention_head_dim
self.audio_out_channels = audio_in_channels
# Audio-specific constants
self.num_audio_channels = 8
self.audio_frequency_bins = 16
self.av_ca_timestep_scale_multiplier = av_ca_timestep_scale_multiplier
super().__init__(
in_channels=in_channels,
cross_attention_dim=cross_attention_dim,
attention_head_dim=attention_head_dim,
num_attention_heads=num_attention_heads,
caption_channels=caption_channels,
num_layers=num_layers,
positional_embedding_theta=positional_embedding_theta,
positional_embedding_max_pos=positional_embedding_max_pos,
causal_temporal_positioning=causal_temporal_positioning,
vae_scale_factors=vae_scale_factors,
use_middle_indices_grid=use_middle_indices_grid,
timestep_scale_multiplier=timestep_scale_multiplier,
dtype=dtype,
device=device,
operations=operations,
**kwargs,
)
def _init_model_components(self, device, dtype, **kwargs):
"""Initialize LTXAV-specific components."""
# Audio-specific projections
self.audio_patchify_proj = self.operations.Linear(
self.audio_in_channels, self.audio_inner_dim, bias=True, dtype=dtype, device=device
)
# Audio-specific AdaLN
self.audio_adaln_single = AdaLayerNormSingle(
self.audio_inner_dim,
use_additional_conditions=False,
dtype=dtype,
device=device,
operations=self.operations,
)
num_scale_shift_values = 4
self.av_ca_video_scale_shift_adaln_single = AdaLayerNormSingle(
self.inner_dim,
use_additional_conditions=False,
embedding_coefficient=num_scale_shift_values,
dtype=dtype,
device=device,
operations=self.operations,
)
self.av_ca_a2v_gate_adaln_single = AdaLayerNormSingle(
self.inner_dim,
use_additional_conditions=False,
embedding_coefficient=1,
dtype=dtype,
device=device,
operations=self.operations,
)
self.av_ca_audio_scale_shift_adaln_single = AdaLayerNormSingle(
self.audio_inner_dim,
use_additional_conditions=False,
embedding_coefficient=num_scale_shift_values,
dtype=dtype,
device=device,
operations=self.operations,
)
self.av_ca_v2a_gate_adaln_single = AdaLayerNormSingle(
self.audio_inner_dim,
use_additional_conditions=False,
embedding_coefficient=1,
dtype=dtype,
device=device,
operations=self.operations,
)
# Audio caption projection
self.audio_caption_projection = PixArtAlphaTextProjection(
in_features=self.caption_channels,
hidden_size=self.audio_inner_dim,
dtype=dtype,
device=device,
operations=self.operations,
)
def _init_transformer_blocks(self, device, dtype, **kwargs):
"""Initialize transformer blocks for LTXAV."""
self.transformer_blocks = nn.ModuleList(
[
BasicAVTransformerBlock(
v_dim=self.inner_dim,
a_dim=self.audio_inner_dim,
v_heads=self.num_attention_heads,
a_heads=self.audio_num_attention_heads,
vd_head=self.attention_head_dim,
ad_head=self.audio_attention_head_dim,
v_context_dim=self.cross_attention_dim,
a_context_dim=self.audio_cross_attention_dim,
dtype=dtype,
device=device,
operations=self.operations,
)
for _ in range(self.num_layers)
]
)
def _init_output_components(self, device, dtype):
"""Initialize output components for LTXAV."""
# Video output components
super()._init_output_components(device, dtype)
# Audio output components
self.audio_scale_shift_table = nn.Parameter(
torch.empty(2, self.audio_inner_dim, dtype=dtype, device=device)
)
self.audio_norm_out = self.operations.LayerNorm(
self.audio_inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device
)
self.audio_proj_out = self.operations.Linear(
self.audio_inner_dim, self.audio_out_channels, dtype=dtype, device=device
)
self.a_patchifier = AudioPatchifier(1, start_end=True)
def separate_audio_and_video_latents(self, x, audio_length):
"""Separate audio and video latents from combined input."""
# vx = x[:, : self.in_channels]
# ax = x[:, self.in_channels :]
#
# ax = ax.reshape(ax.shape[0], -1)
# ax = ax[:, : audio_length * self.num_audio_channels * self.audio_frequency_bins]
#
# ax = ax.reshape(
# ax.shape[0], self.num_audio_channels, audio_length, self.audio_frequency_bins
# )
vx = x[0]
ax = x[1] if len(x) > 1 else torch.zeros(
(vx.shape[0], self.num_audio_channels, 0, self.audio_frequency_bins),
device=vx.device, dtype=vx.dtype
)
return vx, ax
def recombine_audio_and_video_latents(self, vx, ax, target_shape=None):
if ax.numel() == 0:
return vx
else:
return [vx, ax]
"""Recombine audio and video latents for output."""
# if ax.device != vx.device or ax.dtype != vx.dtype:
# logging.warning("Audio and video latents are on different devices or dtypes.")
# ax = ax.to(device=vx.device, dtype=vx.dtype)
# logging.warning(f"Audio audio latent moved to device: {ax.device}, dtype: {ax.dtype}")
#
# ax = ax.reshape(ax.shape[0], -1)
# # pad to f x h x w of the video latents
# divisor = vx.shape[-1] * vx.shape[-2] * vx.shape[-3]
# if target_shape is None:
# repetitions = math.ceil(ax.shape[-1] / divisor)
# else:
# repetitions = target_shape[1] - vx.shape[1]
# padded_len = repetitions * divisor
# ax = F.pad(ax, (0, padded_len - ax.shape[-1]))
# ax = ax.reshape(ax.shape[0], -1, vx.shape[-3], vx.shape[-2], vx.shape[-1])
# return torch.cat([vx, ax], dim=1)
def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs):
"""Process input for LTXAV - separate audio and video, then patchify."""
audio_length = kwargs.get("audio_length", 0)
# Separate audio and video latents
vx, ax = self.separate_audio_and_video_latents(x, audio_length)
has_spatial_mask = False
if denoise_mask is not None:
# check if any frame has spatial variation (inpainting)
for frame_idx in range(denoise_mask.shape[2]):
frame_mask = denoise_mask[0, 0, frame_idx]
if frame_mask.numel() > 0 and frame_mask.min() != frame_mask.max():
has_spatial_mask = True
break
[vx, v_pixel_coords, additional_args] = super()._process_input(
vx, keyframe_idxs, denoise_mask, **kwargs
)
additional_args["has_spatial_mask"] = has_spatial_mask
ax, a_latent_coords = self.a_patchifier.patchify(ax)
ax = self.audio_patchify_proj(ax)
# additional_args.update({"av_orig_shape": list(x.shape)})
return [vx, ax], [v_pixel_coords, a_latent_coords], additional_args
def _prepare_timestep(self, timestep, batch_size, hidden_dtype, **kwargs):
"""Prepare timestep embeddings."""
# TODO: some code reuse is needed here.
grid_mask = kwargs.get("grid_mask", None)
if grid_mask is not None:
timestep = timestep[:, grid_mask]
timestep_scaled = timestep * self.timestep_scale_multiplier
v_timestep, v_embedded_timestep = self.adaln_single(
timestep_scaled.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
# Calculate patches_per_frame from orig_shape: [batch, channels, frames, height, width]
# Video tokens are arranged as (frames * height * width), so patches_per_frame = height * width
orig_shape = kwargs.get("orig_shape")
has_spatial_mask = kwargs.get("has_spatial_mask", None)
v_patches_per_frame = None
if not has_spatial_mask and orig_shape is not None and len(orig_shape) == 5:
# orig_shape[3] = height, orig_shape[4] = width (in latent space)
v_patches_per_frame = orig_shape[3] * orig_shape[4]
# Reshape to [batch_size, num_tokens, dim] and compress for storage
v_timestep = CompressedTimestep(v_timestep.view(batch_size, -1, v_timestep.shape[-1]), v_patches_per_frame)
v_embedded_timestep = CompressedTimestep(v_embedded_timestep.view(batch_size, -1, v_embedded_timestep.shape[-1]), v_patches_per_frame)
# Prepare audio timestep
a_timestep = kwargs.get("a_timestep")
if a_timestep is not None:
a_timestep_scaled = a_timestep * self.timestep_scale_multiplier
a_timestep_flat = a_timestep_scaled.flatten()
timestep_flat = timestep_scaled.flatten()
av_ca_factor = self.av_ca_timestep_scale_multiplier / self.timestep_scale_multiplier
# Cross-attention timesteps - compress these too
av_ca_audio_scale_shift_timestep, _ = self.av_ca_audio_scale_shift_adaln_single(
a_timestep_flat,
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
av_ca_video_scale_shift_timestep, _ = self.av_ca_video_scale_shift_adaln_single(
timestep_flat,
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
av_ca_a2v_gate_noise_timestep, _ = self.av_ca_a2v_gate_adaln_single(
timestep_flat * av_ca_factor,
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
av_ca_v2a_gate_noise_timestep, _ = self.av_ca_v2a_gate_adaln_single(
a_timestep_flat * av_ca_factor,
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
# Compress cross-attention timesteps (only video side, audio is too small to benefit)
# v_patches_per_frame is None for spatial masks, set for temporal masks or no mask
cross_av_timestep_ss = [
av_ca_audio_scale_shift_timestep.view(batch_size, -1, av_ca_audio_scale_shift_timestep.shape[-1]),
CompressedTimestep(av_ca_video_scale_shift_timestep.view(batch_size, -1, av_ca_video_scale_shift_timestep.shape[-1]), v_patches_per_frame), # video - compressed if possible
CompressedTimestep(av_ca_a2v_gate_noise_timestep.view(batch_size, -1, av_ca_a2v_gate_noise_timestep.shape[-1]), v_patches_per_frame), # video - compressed if possible
av_ca_v2a_gate_noise_timestep.view(batch_size, -1, av_ca_v2a_gate_noise_timestep.shape[-1]),
]
a_timestep, a_embedded_timestep = self.audio_adaln_single(
a_timestep_flat,
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
# Audio timesteps
a_timestep = a_timestep.view(batch_size, -1, a_timestep.shape[-1])
a_embedded_timestep = a_embedded_timestep.view(batch_size, -1, a_embedded_timestep.shape[-1])
else:
a_timestep = timestep_scaled
a_embedded_timestep = kwargs.get("embedded_timestep")
cross_av_timestep_ss = []
return [v_timestep, a_timestep, cross_av_timestep_ss], [
v_embedded_timestep,
a_embedded_timestep,
]
def _prepare_context(self, context, batch_size, x, attention_mask=None):
vx = x[0]
ax = x[1]
v_context, a_context = torch.split(
context, int(context.shape[-1] / 2), len(context.shape) - 1
)
v_context, attention_mask = super()._prepare_context(
v_context, batch_size, vx, attention_mask
)
if self.audio_caption_projection is not None:
a_context = self.audio_caption_projection(a_context)
a_context = a_context.view(batch_size, -1, ax.shape[-1])
return [v_context, a_context], attention_mask
def _prepare_positional_embeddings(self, pixel_coords, frame_rate, x_dtype):
v_pixel_coords = pixel_coords[0]
v_pe = super()._prepare_positional_embeddings(v_pixel_coords, frame_rate, x_dtype)
a_latent_coords = pixel_coords[1]
a_pe = self._precompute_freqs_cis(
a_latent_coords,
dim=self.audio_inner_dim,
out_dtype=x_dtype,
max_pos=self.audio_positional_embedding_max_pos,
use_middle_indices_grid=self.use_middle_indices_grid,
num_attention_heads=self.audio_num_attention_heads,
)
# calculate positional embeddings for the middle of the token duration, to use in av cross attention layers.
max_pos = max(
self.positional_embedding_max_pos[0], self.audio_positional_embedding_max_pos[0]
)
v_pixel_coords = v_pixel_coords.to(torch.float32)
v_pixel_coords[:, 0] = v_pixel_coords[:, 0] * (1.0 / frame_rate)
av_cross_video_freq_cis = self._precompute_freqs_cis(
v_pixel_coords[:, 0:1, :],
dim=self.audio_cross_attention_dim,
out_dtype=x_dtype,
max_pos=[max_pos],
use_middle_indices_grid=True,
num_attention_heads=self.audio_num_attention_heads,
)
av_cross_audio_freq_cis = self._precompute_freqs_cis(
a_latent_coords[:, 0:1, :],
dim=self.audio_cross_attention_dim,
out_dtype=x_dtype,
max_pos=[max_pos],
use_middle_indices_grid=True,
num_attention_heads=self.audio_num_attention_heads,
)
return [(v_pe, av_cross_video_freq_cis), (a_pe, av_cross_audio_freq_cis)]
def _process_transformer_blocks(
self, x, context, attention_mask, timestep, pe, transformer_options={}, **kwargs
):
vx = x[0]
ax = x[1]
v_context = context[0]
a_context = context[1]
v_timestep = timestep[0]
a_timestep = timestep[1]
v_pe, av_cross_video_freq_cis = pe[0]
a_pe, av_cross_audio_freq_cis = pe[1]
(
av_ca_audio_scale_shift_timestep,
av_ca_video_scale_shift_timestep,
av_ca_a2v_gate_noise_timestep,
av_ca_v2a_gate_noise_timestep,
) = timestep[2]
"""Process transformer blocks for LTXAV."""
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
# Process transformer blocks
for i, block in enumerate(self.transformer_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(
args["img"],
v_context=args["v_context"],
a_context=args["a_context"],
attention_mask=args["attention_mask"],
v_timestep=args["v_timestep"],
a_timestep=args["a_timestep"],
v_pe=args["v_pe"],
a_pe=args["a_pe"],
v_cross_pe=args["v_cross_pe"],
a_cross_pe=args["a_cross_pe"],
v_cross_scale_shift_timestep=args["v_cross_scale_shift_timestep"],
a_cross_scale_shift_timestep=args["a_cross_scale_shift_timestep"],
v_cross_gate_timestep=args["v_cross_gate_timestep"],
a_cross_gate_timestep=args["a_cross_gate_timestep"],
transformer_options=args["transformer_options"],
)
return out
out = blocks_replace[("double_block", i)](
{
"img": (vx, ax),
"v_context": v_context,
"a_context": a_context,
"attention_mask": attention_mask,
"v_timestep": v_timestep,
"a_timestep": a_timestep,
"v_pe": v_pe,
"a_pe": a_pe,
"v_cross_pe": av_cross_video_freq_cis,
"a_cross_pe": av_cross_audio_freq_cis,
"v_cross_scale_shift_timestep": av_ca_video_scale_shift_timestep,
"a_cross_scale_shift_timestep": av_ca_audio_scale_shift_timestep,
"v_cross_gate_timestep": av_ca_a2v_gate_noise_timestep,
"a_cross_gate_timestep": av_ca_v2a_gate_noise_timestep,
"transformer_options": transformer_options,
},
{"original_block": block_wrap},
)
vx, ax = out["img"]
else:
vx, ax = block(
(vx, ax),
v_context=v_context,
a_context=a_context,
attention_mask=attention_mask,
v_timestep=v_timestep,
a_timestep=a_timestep,
v_pe=v_pe,
a_pe=a_pe,
v_cross_pe=av_cross_video_freq_cis,
a_cross_pe=av_cross_audio_freq_cis,
v_cross_scale_shift_timestep=av_ca_video_scale_shift_timestep,
a_cross_scale_shift_timestep=av_ca_audio_scale_shift_timestep,
v_cross_gate_timestep=av_ca_a2v_gate_noise_timestep,
a_cross_gate_timestep=av_ca_v2a_gate_noise_timestep,
transformer_options=transformer_options,
)
return [vx, ax]
def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs):
vx = x[0]
ax = x[1]
v_embedded_timestep = embedded_timestep[0]
a_embedded_timestep = embedded_timestep[1]
# Expand compressed video timestep if needed
if isinstance(v_embedded_timestep, CompressedTimestep):
v_embedded_timestep = v_embedded_timestep.expand()
vx = super()._process_output(vx, v_embedded_timestep, keyframe_idxs, **kwargs)
# Process audio output
a_scale_shift_values = (
self.audio_scale_shift_table[None, None].to(device=a_embedded_timestep.device, dtype=a_embedded_timestep.dtype)
+ a_embedded_timestep[:, :, None]
)
a_shift, a_scale = a_scale_shift_values[:, :, 0], a_scale_shift_values[:, :, 1]
ax = self.audio_norm_out(ax)
ax = ax * (1 + a_scale) + a_shift
ax = self.audio_proj_out(ax)
# Unpatchify audio
ax = self.a_patchifier.unpatchify(
ax, channels=self.num_audio_channels, freq=self.audio_frequency_bins
)
# Recombine audio and video
original_shape = kwargs.get("av_orig_shape")
return self.recombine_audio_and_video_latents(vx, ax, original_shape)
def forward(
self,
x,
timestep,
context,
attention_mask=None,
frame_rate=25,
transformer_options={},
keyframe_idxs=None,
**kwargs,
):
"""
Forward pass for LTXAV model.
Args:
x: Combined audio-video input tensor
timestep: Tuple of (video_timestep, audio_timestep) or single timestep
context: Context tensor (e.g., text embeddings)
attention_mask: Attention mask tensor
frame_rate: Frame rate for temporal processing
transformer_options: Additional options for transformer blocks
keyframe_idxs: Keyframe indices for temporal processing
**kwargs: Additional keyword arguments including audio_length
Returns:
Combined audio-video output tensor
"""
# Handle timestep format
if isinstance(timestep, (tuple, list)) and len(timestep) == 2:
v_timestep, a_timestep = timestep
kwargs["a_timestep"] = a_timestep
timestep = v_timestep
else:
kwargs["a_timestep"] = timestep
# Call parent forward method
return super().forward(
x,
timestep,
context,
attention_mask,
frame_rate,
transformer_options,
keyframe_idxs,
**kwargs,
)

View File

@ -0,0 +1,305 @@
import math
from typing import Optional
import comfy.ldm.common_dit
import torch
from comfy.ldm.lightricks.model import (
CrossAttention,
FeedForward,
generate_freq_grid_np,
interleaved_freqs_cis,
split_freqs_cis,
)
from torch import nn
class BasicTransformerBlock1D(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
standardization_norm (`str`, *optional*, defaults to `"layer_norm"`): The type of pre-normalization to use. Can be `"layer_norm"` or `"rms_norm"`.
norm_eps (`float`, *optional*, defaults to 1e-5): Epsilon value for normalization layers.
qk_norm (`str`, *optional*, defaults to None):
Set to 'layer_norm' or `rms_norm` to perform query and key normalization.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
ff_inner_dim (`int`, *optional*): Dimension of the inner feed-forward layer. If not provided, defaults to `dim * 4`.
ff_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the feed-forward layer.
attention_out_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the attention output layer.
use_rope (`bool`, *optional*, defaults to `False`): Whether to use Rotary Position Embeddings (RoPE).
ffn_dim_mult (`int`, *optional*, defaults to 4): Multiplier for the inner dimension of the feed-forward layer.
"""
def __init__(
self,
dim,
n_heads,
d_head,
context_dim=None,
attn_precision=None,
dtype=None,
device=None,
operations=None,
):
super().__init__()
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
self.attn1 = CrossAttention(
query_dim=dim,
heads=n_heads,
dim_head=d_head,
context_dim=None,
dtype=dtype,
device=device,
operations=operations,
)
# 3. Feed-forward
self.ff = FeedForward(
dim,
dim_out=dim,
glu=True,
dtype=dtype,
device=device,
operations=operations,
)
def forward(self, hidden_states, attention_mask=None, pe=None) -> torch.FloatTensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Normalization Before Self-Attention
norm_hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states)
norm_hidden_states = norm_hidden_states.squeeze(1)
# 2. Self-Attention
attn_output = self.attn1(norm_hidden_states, mask=attention_mask, pe=pe)
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 3. Normalization before Feed-Forward
norm_hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states)
# 4. Feed-forward
ff_output = self.ff(norm_hidden_states)
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
class Embeddings1DConnector(nn.Module):
_supports_gradient_checkpointing = True
def __init__(
self,
in_channels=128,
cross_attention_dim=2048,
attention_head_dim=128,
num_attention_heads=30,
num_layers=2,
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[4096],
causal_temporal_positioning=False,
num_learnable_registers: Optional[int] = 128,
dtype=None,
device=None,
operations=None,
split_rope=False,
double_precision_rope=False,
**kwargs,
):
super().__init__()
self.dtype = dtype
self.out_channels = in_channels
self.num_attention_heads = num_attention_heads
self.inner_dim = num_attention_heads * attention_head_dim
self.causal_temporal_positioning = causal_temporal_positioning
self.positional_embedding_theta = positional_embedding_theta
self.positional_embedding_max_pos = positional_embedding_max_pos
self.split_rope = split_rope
self.double_precision_rope = double_precision_rope
self.transformer_1d_blocks = nn.ModuleList(
[
BasicTransformerBlock1D(
self.inner_dim,
num_attention_heads,
attention_head_dim,
context_dim=cross_attention_dim,
dtype=dtype,
device=device,
operations=operations,
)
for _ in range(num_layers)
]
)
inner_dim = num_attention_heads * attention_head_dim
self.num_learnable_registers = num_learnable_registers
if self.num_learnable_registers:
self.learnable_registers = nn.Parameter(
torch.rand(
self.num_learnable_registers, inner_dim, dtype=dtype, device=device
)
* 2.0
- 1.0
)
def get_fractional_positions(self, indices_grid):
fractional_positions = torch.stack(
[
indices_grid[:, i] / self.positional_embedding_max_pos[i]
for i in range(1)
],
dim=-1,
)
return fractional_positions
def precompute_freqs(self, indices_grid, spacing):
source_dtype = indices_grid.dtype
dtype = (
torch.float32
if source_dtype in (torch.bfloat16, torch.float16)
else source_dtype
)
fractional_positions = self.get_fractional_positions(indices_grid)
indices = (
generate_freq_grid_np(
self.positional_embedding_theta,
indices_grid.shape[1],
self.inner_dim,
)
if self.double_precision_rope
else self.generate_freq_grid(spacing, dtype, fractional_positions.device)
).to(device=fractional_positions.device)
if spacing == "exp_2":
freqs = (
(indices * fractional_positions.unsqueeze(-1))
.transpose(-1, -2)
.flatten(2)
)
else:
freqs = (
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
.transpose(-1, -2)
.flatten(2)
)
return freqs
def generate_freq_grid(self, spacing, dtype, device):
dim = self.inner_dim
theta = self.positional_embedding_theta
n_pos_dims = 1
n_elem = 2 * n_pos_dims # 2 for cos and sin e.g. x 3 = 6
start = 1
end = theta
if spacing == "exp":
indices = theta ** (torch.arange(0, dim, n_elem, device="cpu", dtype=torch.float32) / (dim - n_elem))
indices = indices.to(dtype=dtype, device=device)
elif spacing == "exp_2":
indices = 1.0 / theta ** (torch.arange(0, dim, n_elem, device=device) / dim)
indices = indices.to(dtype=dtype)
elif spacing == "linear":
indices = torch.linspace(
start, end, dim // n_elem, device=device, dtype=dtype
)
elif spacing == "sqrt":
indices = torch.linspace(
start**2, end**2, dim // n_elem, device=device, dtype=dtype
).sqrt()
indices = indices * math.pi / 2
return indices
def precompute_freqs_cis(self, indices_grid, spacing="exp"):
dim = self.inner_dim
n_elem = 2 # 2 because of cos and sin
freqs = self.precompute_freqs(indices_grid, spacing)
if self.split_rope:
expected_freqs = dim // 2
current_freqs = freqs.shape[-1]
pad_size = expected_freqs - current_freqs
cos_freq, sin_freq = split_freqs_cis(
freqs, pad_size, self.num_attention_heads
)
else:
cos_freq, sin_freq = interleaved_freqs_cis(freqs, dim % n_elem)
return cos_freq.to(self.dtype), sin_freq.to(self.dtype), self.split_rope
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
):
"""
The [`Transformer2DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`):
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# 1. Input
if self.num_learnable_registers:
num_registers_duplications = math.ceil(
max(1024, hidden_states.shape[1]) / self.num_learnable_registers
)
learnable_registers = torch.tile(
self.learnable_registers.to(hidden_states), (num_registers_duplications, 1)
)
hidden_states = torch.cat((hidden_states, learnable_registers[hidden_states.shape[1]:].unsqueeze(0).repeat(hidden_states.shape[0], 1, 1)), dim=1)
if attention_mask is not None:
attention_mask = torch.zeros([1, 1, 1, hidden_states.shape[1]], dtype=attention_mask.dtype, device=attention_mask.device)
indices_grid = torch.arange(
hidden_states.shape[1], dtype=torch.float32, device=hidden_states.device
)
indices_grid = indices_grid[None, None, :]
freqs_cis = self.precompute_freqs_cis(indices_grid)
# 2. Blocks
for block_idx, block in enumerate(self.transformer_1d_blocks):
hidden_states = block(
hidden_states, attention_mask=attention_mask, pe=freqs_cis
)
# 3. Output
# if self.output_scale is not None:
# hidden_states = hidden_states / self.output_scale
hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states)
return hidden_states, attention_mask

View File

@ -0,0 +1,292 @@
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
def _rational_for_scale(scale: float) -> Tuple[int, int]:
mapping = {0.75: (3, 4), 1.5: (3, 2), 2.0: (2, 1), 4.0: (4, 1)}
if float(scale) not in mapping:
raise ValueError(
f"Unsupported spatial_scale {scale}. Choose from {list(mapping.keys())}"
)
return mapping[float(scale)]
class PixelShuffleND(nn.Module):
def __init__(self, dims, upscale_factors=(2, 2, 2)):
super().__init__()
assert dims in [1, 2, 3], "dims must be 1, 2, or 3"
self.dims = dims
self.upscale_factors = upscale_factors
def forward(self, x):
if self.dims == 3:
return rearrange(
x,
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
p1=self.upscale_factors[0],
p2=self.upscale_factors[1],
p3=self.upscale_factors[2],
)
elif self.dims == 2:
return rearrange(
x,
"b (c p1 p2) h w -> b c (h p1) (w p2)",
p1=self.upscale_factors[0],
p2=self.upscale_factors[1],
)
elif self.dims == 1:
return rearrange(
x,
"b (c p1) f h w -> b c (f p1) h w",
p1=self.upscale_factors[0],
)
class BlurDownsample(nn.Module):
"""
Anti-aliased spatial downsampling by integer stride using a fixed separable binomial kernel.
Applies only on H,W. Works for dims=2 or dims=3 (per-frame).
"""
def __init__(self, dims: int, stride: int):
super().__init__()
assert dims in (2, 3)
assert stride >= 1 and isinstance(stride, int)
self.dims = dims
self.stride = stride
# 5x5 separable binomial kernel [1,4,6,4,1] (outer product), normalized
k = torch.tensor([1.0, 4.0, 6.0, 4.0, 1.0])
k2d = k[:, None] @ k[None, :]
k2d = (k2d / k2d.sum()).float() # shape (5,5)
self.register_buffer("kernel", k2d[None, None, :, :]) # (1,1,5,5)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.stride == 1:
return x
def _apply_2d(x2d: torch.Tensor) -> torch.Tensor:
# x2d: (B, C, H, W)
B, C, H, W = x2d.shape
weight = self.kernel.expand(C, 1, 5, 5) # depthwise
x2d = F.conv2d(
x2d, weight=weight, bias=None, stride=self.stride, padding=2, groups=C
)
return x2d
if self.dims == 2:
return _apply_2d(x)
else:
# dims == 3: apply per-frame on H,W
b, c, f, h, w = x.shape
x = rearrange(x, "b c f h w -> (b f) c h w")
x = _apply_2d(x)
h2, w2 = x.shape[-2:]
x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f, h=h2, w=w2)
return x
class SpatialRationalResampler(nn.Module):
"""
Fully-learned rational spatial scaling: up by 'num' via PixelShuffle, then anti-aliased
downsample by 'den' using fixed blur + stride. Operates on H,W only.
For dims==3, work per-frame for spatial scaling (temporal axis untouched).
"""
def __init__(self, mid_channels: int, scale: float):
super().__init__()
self.scale = float(scale)
self.num, self.den = _rational_for_scale(self.scale)
self.conv = nn.Conv2d(
mid_channels, (self.num**2) * mid_channels, kernel_size=3, padding=1
)
self.pixel_shuffle = PixelShuffleND(2, upscale_factors=(self.num, self.num))
self.blur_down = BlurDownsample(dims=2, stride=self.den)
def forward(self, x: torch.Tensor) -> torch.Tensor:
b, c, f, h, w = x.shape
x = rearrange(x, "b c f h w -> (b f) c h w")
x = self.conv(x)
x = self.pixel_shuffle(x)
x = self.blur_down(x)
x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f)
return x
class ResBlock(nn.Module):
def __init__(
self, channels: int, mid_channels: Optional[int] = None, dims: int = 3
):
super().__init__()
if mid_channels is None:
mid_channels = channels
Conv = nn.Conv2d if dims == 2 else nn.Conv3d
self.conv1 = Conv(channels, mid_channels, kernel_size=3, padding=1)
self.norm1 = nn.GroupNorm(32, mid_channels)
self.conv2 = Conv(mid_channels, channels, kernel_size=3, padding=1)
self.norm2 = nn.GroupNorm(32, channels)
self.activation = nn.SiLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
x = self.conv1(x)
x = self.norm1(x)
x = self.activation(x)
x = self.conv2(x)
x = self.norm2(x)
x = self.activation(x + residual)
return x
class LatentUpsampler(nn.Module):
"""
Model to spatially upsample VAE latents.
Args:
in_channels (`int`): Number of channels in the input latent
mid_channels (`int`): Number of channels in the middle layers
num_blocks_per_stage (`int`): Number of ResBlocks to use in each stage (pre/post upsampling)
dims (`int`): Number of dimensions for convolutions (2 or 3)
spatial_upsample (`bool`): Whether to spatially upsample the latent
temporal_upsample (`bool`): Whether to temporally upsample the latent
"""
def __init__(
self,
in_channels: int = 128,
mid_channels: int = 512,
num_blocks_per_stage: int = 4,
dims: int = 3,
spatial_upsample: bool = True,
temporal_upsample: bool = False,
spatial_scale: float = 2.0,
rational_resampler: bool = False,
):
super().__init__()
self.in_channels = in_channels
self.mid_channels = mid_channels
self.num_blocks_per_stage = num_blocks_per_stage
self.dims = dims
self.spatial_upsample = spatial_upsample
self.temporal_upsample = temporal_upsample
self.spatial_scale = float(spatial_scale)
self.rational_resampler = rational_resampler
Conv = nn.Conv2d if dims == 2 else nn.Conv3d
self.initial_conv = Conv(in_channels, mid_channels, kernel_size=3, padding=1)
self.initial_norm = nn.GroupNorm(32, mid_channels)
self.initial_activation = nn.SiLU()
self.res_blocks = nn.ModuleList(
[ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)]
)
if spatial_upsample and temporal_upsample:
self.upsampler = nn.Sequential(
nn.Conv3d(mid_channels, 8 * mid_channels, kernel_size=3, padding=1),
PixelShuffleND(3),
)
elif spatial_upsample:
if rational_resampler:
self.upsampler = SpatialRationalResampler(
mid_channels=mid_channels, scale=self.spatial_scale
)
else:
self.upsampler = nn.Sequential(
nn.Conv2d(mid_channels, 4 * mid_channels, kernel_size=3, padding=1),
PixelShuffleND(2),
)
elif temporal_upsample:
self.upsampler = nn.Sequential(
nn.Conv3d(mid_channels, 2 * mid_channels, kernel_size=3, padding=1),
PixelShuffleND(1),
)
else:
raise ValueError(
"Either spatial_upsample or temporal_upsample must be True"
)
self.post_upsample_res_blocks = nn.ModuleList(
[ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)]
)
self.final_conv = Conv(mid_channels, in_channels, kernel_size=3, padding=1)
def forward(self, latent: torch.Tensor) -> torch.Tensor:
b, c, f, h, w = latent.shape
if self.dims == 2:
x = rearrange(latent, "b c f h w -> (b f) c h w")
x = self.initial_conv(x)
x = self.initial_norm(x)
x = self.initial_activation(x)
for block in self.res_blocks:
x = block(x)
x = self.upsampler(x)
for block in self.post_upsample_res_blocks:
x = block(x)
x = self.final_conv(x)
x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f)
else:
x = self.initial_conv(latent)
x = self.initial_norm(x)
x = self.initial_activation(x)
for block in self.res_blocks:
x = block(x)
if self.temporal_upsample:
x = self.upsampler(x)
x = x[:, :, 1:, :, :]
else:
if isinstance(self.upsampler, SpatialRationalResampler):
x = self.upsampler(x)
else:
x = rearrange(x, "b c f h w -> (b f) c h w")
x = self.upsampler(x)
x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f)
for block in self.post_upsample_res_blocks:
x = block(x)
x = self.final_conv(x)
return x
@classmethod
def from_config(cls, config):
return cls(
in_channels=config.get("in_channels", 4),
mid_channels=config.get("mid_channels", 128),
num_blocks_per_stage=config.get("num_blocks_per_stage", 4),
dims=config.get("dims", 2),
spatial_upsample=config.get("spatial_upsample", True),
temporal_upsample=config.get("temporal_upsample", False),
spatial_scale=config.get("spatial_scale", 2.0),
rational_resampler=config.get("rational_resampler", False),
)
def config(self):
return {
"_class_name": "LatentUpsampler",
"in_channels": self.in_channels,
"mid_channels": self.mid_channels,
"num_blocks_per_stage": self.num_blocks_per_stage,
"dims": self.dims,
"spatial_upsample": self.spatial_upsample,
"temporal_upsample": self.temporal_upsample,
"spatial_scale": self.spatial_scale,
"rational_resampler": self.rational_resampler,
}

View File

@ -1,14 +1,47 @@
from abc import ABC, abstractmethod
from enum import Enum
import functools
import math
from typing import Dict, Optional, Tuple
from einops import rearrange
import numpy as np
import torch
from torch import nn
import comfy.patcher_extension
import comfy.ldm.modules.attention
import comfy.ldm.common_dit
from einops import rearrange
import math
from typing import Dict, Optional, Tuple
from .symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords
def _log_base(x, base):
return np.log(x) / np.log(base)
class LTXRopeType(str, Enum):
INTERLEAVED = "interleaved"
SPLIT = "split"
KEY = "rope_type"
@classmethod
def from_dict(cls, kwargs, default=None):
if default is None:
default = cls.INTERLEAVED
return cls(kwargs.get(cls.KEY, default))
class LTXFrequenciesPrecision(str, Enum):
FLOAT32 = "float32"
FLOAT64 = "float64"
KEY = "frequencies_precision"
@classmethod
def from_dict(cls, kwargs, default=None):
if default is None:
default = cls.FLOAT32
return cls(kwargs.get(cls.KEY, default))
def get_timestep_embedding(
timesteps: torch.Tensor,
@ -40,9 +73,7 @@ def get_timestep_embedding(
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
@ -74,7 +105,9 @@ class TimestepEmbedding(nn.Module):
post_act_fn: Optional[str] = None,
cond_proj_dim=None,
sample_proj_bias=True,
dtype=None, device=None, operations=None,
dtype=None,
device=None,
operations=None,
):
super().__init__()
@ -91,7 +124,9 @@ class TimestepEmbedding(nn.Module):
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device)
self.linear_2 = operations.Linear(
time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device
)
if post_act_fn is None:
self.post_act = None
@ -140,12 +175,22 @@ class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
"""
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
def __init__(
self,
embedding_dim,
size_emb_dim,
use_additional_conditions: bool = False,
dtype=None,
device=None,
operations=None,
):
super().__init__()
self.outdim = size_emb_dim
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations)
self.timestep_embedder = TimestepEmbedding(
in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations
)
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
timesteps_proj = self.time_proj(timestep)
@ -164,15 +209,22 @@ class AdaLayerNormSingle(nn.Module):
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
"""
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
def __init__(
self, embedding_dim: int, embedding_coefficient: int = 6, use_additional_conditions: bool = False, dtype=None, device=None, operations=None
):
super().__init__()
self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions, dtype=dtype, device=device, operations=operations
embedding_dim,
size_emb_dim=embedding_dim // 3,
use_additional_conditions=use_additional_conditions,
dtype=dtype,
device=device,
operations=operations,
)
self.silu = nn.SiLU()
self.linear = operations.Linear(embedding_dim, 6 * embedding_dim, bias=True, dtype=dtype, device=device)
self.linear = operations.Linear(embedding_dim, embedding_coefficient * embedding_dim, bias=True, dtype=dtype, device=device)
def forward(
self,
@ -186,6 +238,7 @@ class AdaLayerNormSingle(nn.Module):
embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype)
return self.linear(self.silu(embedded_timestep)), embedded_timestep
class PixArtAlphaTextProjection(nn.Module):
"""
Projects caption embeddings. Also handles dropout for classifier-free guidance.
@ -193,18 +246,24 @@ class PixArtAlphaTextProjection(nn.Module):
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None):
def __init__(
self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None
):
super().__init__()
if out_features is None:
out_features = hidden_size
self.linear_1 = operations.Linear(in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device)
self.linear_1 = operations.Linear(
in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device
)
if act_fn == "gelu_tanh":
self.act_1 = nn.GELU(approximate="tanh")
elif act_fn == "silu":
self.act_1 = nn.SiLU()
else:
raise ValueError(f"Unknown activation function: {act_fn}")
self.linear_2 = operations.Linear(in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device)
self.linear_2 = operations.Linear(
in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device
)
def forward(self, caption):
hidden_states = self.linear_1(caption)
@ -223,25 +282,28 @@ class GELU_approx(nn.Module):
class FeedForward(nn.Module):
def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=None):
def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0.0, dtype=None, device=None, operations=None):
super().__init__()
inner_dim = int(dim * mult)
project_in = GELU_approx(dim, inner_dim, dtype=dtype, device=device, operations=operations)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
project_in, nn.Dropout(dropout), operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
)
def forward(self, x):
return self.net(x)
def apply_rotary_emb(input_tensor, freqs_cis):
cos_freqs, sin_freqs = freqs_cis[0], freqs_cis[1]
split_pe = freqs_cis[2] if len(freqs_cis) > 2 else False
return (
apply_split_rotary_emb(input_tensor, cos_freqs, sin_freqs)
if split_pe else
apply_interleaved_rotary_emb(input_tensor, cos_freqs, sin_freqs)
)
def apply_rotary_emb(input_tensor, freqs_cis): #TODO: remove duplicate funcs and pick the best/fastest one
cos_freqs = freqs_cis[0]
sin_freqs = freqs_cis[1]
def apply_interleaved_rotary_emb(input_tensor, cos_freqs, sin_freqs): # TODO: remove duplicate funcs and pick the best/fastest one
t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
t1, t2 = t_dup.unbind(dim=-1)
t_dup = torch.stack((-t2, t1), dim=-1)
@ -251,9 +313,37 @@ def apply_rotary_emb(input_tensor, freqs_cis): #TODO: remove duplicate funcs and
return out
def apply_split_rotary_emb(input_tensor, cos, sin):
needs_reshape = False
if input_tensor.ndim != 4 and cos.ndim == 4:
B, H, T, _ = cos.shape
input_tensor = input_tensor.reshape(B, T, H, -1).swapaxes(1, 2)
needs_reshape = True
split_input = rearrange(input_tensor, "... (d r) -> ... d r", d=2)
first_half_input = split_input[..., :1, :]
second_half_input = split_input[..., 1:, :]
output = split_input * cos.unsqueeze(-2)
first_half_output = output[..., :1, :]
second_half_output = output[..., 1:, :]
first_half_output.addcmul_(-sin.unsqueeze(-2), second_half_input)
second_half_output.addcmul_(sin.unsqueeze(-2), first_half_input)
output = rearrange(output, "... d r -> ... (d r)")
return output.swapaxes(1, 2).reshape(B, T, -1) if needs_reshape else output
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None):
def __init__(
self,
query_dim,
context_dim=None,
heads=8,
dim_head=64,
dropout=0.0,
attn_precision=None,
dtype=None,
device=None,
operations=None,
):
super().__init__()
inner_dim = dim_head * heads
context_dim = query_dim if context_dim is None else context_dim
@ -269,9 +359,11 @@ class CrossAttention(nn.Module):
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
self.to_out = nn.Sequential(
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None, pe=None, transformer_options={}):
def forward(self, x, context=None, mask=None, pe=None, k_pe=None, transformer_options={}):
q = self.to_q(x)
context = x if context is None else context
k = self.to_k(context)
@ -282,7 +374,7 @@ class CrossAttention(nn.Module):
if pe is not None:
q = apply_rotary_emb(q, pe)
k = apply_rotary_emb(k, pe)
k = apply_rotary_emb(k, pe if k_pe is None else k_pe)
if mask is None:
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
@ -292,146 +384,495 @@ class CrossAttention(nn.Module):
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None):
def __init__(
self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None
):
super().__init__()
self.attn_precision = attn_precision
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, context_dim=None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
self.attn1 = CrossAttention(
query_dim=dim,
heads=n_heads,
dim_head=d_head,
context_dim=None,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.ff = FeedForward(dim, dim_out=dim, glu=True, dtype=dtype, device=device, operations=operations)
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
self.attn2 = CrossAttention(
query_dim=dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype))
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None, transformer_options={}):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe, transformer_options=transformer_options) * gate_msa
attn1_input = comfy.ldm.common_dit.rms_norm(x)
attn1_input = torch.addcmul(attn1_input, attn1_input, scale_msa).add_(shift_msa)
attn1_input = self.attn1(attn1_input, pe=pe, transformer_options=transformer_options)
x.addcmul_(attn1_input, gate_msa)
del attn1_input
x += self.attn2(x, context=context, mask=attention_mask, transformer_options=transformer_options)
y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
x += self.ff(y) * gate_mlp
y = comfy.ldm.common_dit.rms_norm(x)
y = torch.addcmul(y, y, scale_mlp).add_(shift_mlp)
x.addcmul_(self.ff(y), gate_mlp)
return x
def get_fractional_positions(indices_grid, max_pos):
n_pos_dims = indices_grid.shape[1]
assert n_pos_dims == len(max_pos), f'Number of position dimensions ({n_pos_dims}) must match max_pos length ({len(max_pos)})'
fractional_positions = torch.stack(
[
indices_grid[:, i] / max_pos[i]
for i in range(3)
],
dim=-1,
[indices_grid[:, i] / max_pos[i] for i in range(n_pos_dims)],
axis=-1,
)
return fractional_positions
def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]):
dtype = torch.float32 #self.dtype
fractional_positions = get_fractional_positions(indices_grid, max_pos)
@functools.lru_cache(maxsize=5)
def generate_freq_grid_np(positional_embedding_theta, positional_embedding_max_pos_count, inner_dim, _ = None):
theta = positional_embedding_theta
start = 1
end = theta
device = fractional_positions.device
n_elem = 2 * positional_embedding_max_pos_count
pow_indices = np.power(
theta,
np.linspace(
_log_base(start, theta),
_log_base(end, theta),
inner_dim // n_elem,
dtype=np.float64,
),
)
return torch.tensor(pow_indices * math.pi / 2, dtype=torch.float32)
def generate_freq_grid_pytorch(positional_embedding_theta, positional_embedding_max_pos_count, inner_dim, device):
theta = positional_embedding_theta
start = 1
end = theta
n_elem = 2 * positional_embedding_max_pos_count
indices = theta ** (
torch.linspace(
math.log(start, theta),
math.log(end, theta),
dim // 6,
inner_dim // n_elem,
device=device,
dtype=dtype,
dtype=torch.float32,
)
)
indices = indices.to(dtype=dtype)
indices = indices.to(dtype=torch.float32)
indices = indices * math.pi / 2
return indices
def generate_freqs(indices, indices_grid, max_pos, use_middle_indices_grid):
if use_middle_indices_grid:
assert(len(indices_grid.shape) == 4 and indices_grid.shape[-1] ==2)
indices_grid_start, indices_grid_end = indices_grid[..., 0], indices_grid[..., 1]
indices_grid = (indices_grid_start + indices_grid_end) / 2.0
elif len(indices_grid.shape) == 4:
indices_grid = indices_grid[..., 0]
# Get fractional positions and compute frequency indices
fractional_positions = get_fractional_positions(indices_grid, max_pos)
indices = indices.to(device=fractional_positions.device)
freqs = (
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
.transpose(-1, -2)
.flatten(2)
)
return freqs
def interleaved_freqs_cis(freqs, pad_size):
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
if dim % 6 != 0:
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
if pad_size != 0:
cos_padding = torch.ones_like(cos_freq[:, :, : pad_size])
sin_padding = torch.zeros_like(cos_freq[:, :, : pad_size])
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
return cos_freq.to(out_dtype), sin_freq.to(out_dtype)
return cos_freq, sin_freq
def split_freqs_cis(freqs, pad_size, num_attention_heads):
cos_freq = freqs.cos()
sin_freq = freqs.sin()
class LTXVModel(torch.nn.Module):
def __init__(self,
in_channels=128,
cross_attention_dim=2048,
attention_head_dim=64,
num_attention_heads=32,
if pad_size != 0:
cos_padding = torch.ones_like(cos_freq[:, :, :pad_size])
sin_padding = torch.zeros_like(sin_freq[:, :, :pad_size])
caption_channels=4096,
num_layers=28,
cos_freq = torch.concatenate([cos_padding, cos_freq], axis=-1)
sin_freq = torch.concatenate([sin_padding, sin_freq], axis=-1)
# Reshape freqs to be compatible with multi-head attention
B , T, half_HD = cos_freq.shape
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[20, 2048, 2048],
causal_temporal_positioning=False,
vae_scale_factors=(8, 32, 32),
dtype=None, device=None, operations=None, **kwargs):
cos_freq = cos_freq.reshape(B, T, num_attention_heads, half_HD // num_attention_heads)
sin_freq = sin_freq.reshape(B, T, num_attention_heads, half_HD // num_attention_heads)
cos_freq = torch.swapaxes(cos_freq, 1, 2) # (B,H,T,D//2)
sin_freq = torch.swapaxes(sin_freq, 1, 2) # (B,H,T,D//2)
return cos_freq, sin_freq
class LTXBaseModel(torch.nn.Module, ABC):
"""
Abstract base class for LTX models (Lightricks Transformer models).
This class defines the common interface and shared functionality for all LTX models,
including LTXV (video) and LTXAV (audio-video) variants.
"""
def __init__(
self,
in_channels: int,
cross_attention_dim: int,
attention_head_dim: int,
num_attention_heads: int,
caption_channels: int,
num_layers: int,
positional_embedding_theta: float = 10000.0,
positional_embedding_max_pos: list = [20, 2048, 2048],
causal_temporal_positioning: bool = False,
vae_scale_factors: tuple = (8, 32, 32),
use_middle_indices_grid=False,
timestep_scale_multiplier = 1000.0,
dtype=None,
device=None,
operations=None,
**kwargs,
):
super().__init__()
self.generator = None
self.vae_scale_factors = vae_scale_factors
self.use_middle_indices_grid = use_middle_indices_grid
self.dtype = dtype
self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.in_channels = in_channels
self.cross_attention_dim = cross_attention_dim
self.attention_head_dim = attention_head_dim
self.num_attention_heads = num_attention_heads
self.caption_channels = caption_channels
self.num_layers = num_layers
self.positional_embedding_theta = positional_embedding_theta
self.positional_embedding_max_pos = positional_embedding_max_pos
self.split_positional_embedding = LTXRopeType.from_dict(kwargs)
self.freq_grid_generator = (
generate_freq_grid_np if LTXFrequenciesPrecision.from_dict(kwargs) == LTXFrequenciesPrecision.FLOAT64
else generate_freq_grid_pytorch
)
self.causal_temporal_positioning = causal_temporal_positioning
self.operations = operations
self.timestep_scale_multiplier = timestep_scale_multiplier
self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device)
# Common dimensions
self.inner_dim = num_attention_heads * attention_head_dim
self.out_channels = in_channels
# Initialize common components
self._init_common_components(device, dtype)
# Initialize model-specific components
self._init_model_components(device, dtype, **kwargs)
# Initialize transformer blocks
self._init_transformer_blocks(device, dtype, **kwargs)
# Initialize output components
self._init_output_components(device, dtype)
def _init_common_components(self, device, dtype):
"""Initialize components common to all LTX models
- patchify_proj: Linear projection for patchifying input
- adaln_single: AdaLN layer for timestep embedding
- caption_projection: Linear projection for caption embedding
"""
self.patchify_proj = self.operations.Linear(
self.in_channels, self.inner_dim, bias=True, dtype=dtype, device=device
)
self.adaln_single = AdaLayerNormSingle(
self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=operations
self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=self.operations
)
# self.adaln_single.linear = operations.Linear(self.inner_dim, 4 * self.inner_dim, bias=True, dtype=dtype, device=device)
self.caption_projection = PixArtAlphaTextProjection(
in_features=caption_channels, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations
in_features=self.caption_channels,
hidden_size=self.inner_dim,
dtype=dtype,
device=device,
operations=self.operations,
)
@abstractmethod
def _init_model_components(self, device, dtype, **kwargs):
"""Initialize model-specific components. Must be implemented by subclasses."""
pass
@abstractmethod
def _init_transformer_blocks(self, device, dtype, **kwargs):
"""Initialize transformer blocks. Must be implemented by subclasses."""
pass
@abstractmethod
def _init_output_components(self, device, dtype):
"""Initialize output components. Must be implemented by subclasses."""
pass
@abstractmethod
def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs):
"""Process input data. Must be implemented by subclasses."""
pass
@abstractmethod
def _process_transformer_blocks(self, x, context, attention_mask, timestep, pe, **kwargs):
"""Process transformer blocks. Must be implemented by subclasses."""
pass
@abstractmethod
def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs):
"""Process output data. Must be implemented by subclasses."""
pass
def _prepare_timestep(self, timestep, batch_size, hidden_dtype, **kwargs):
"""Prepare timestep embeddings."""
grid_mask = kwargs.get("grid_mask", None)
if grid_mask is not None:
timestep = timestep[:, grid_mask]
timestep = timestep * self.timestep_scale_multiplier
timestep, embedded_timestep = self.adaln_single(
timestep.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
# Second dimension is 1 or number of tokens (if timestep_per_token)
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.shape[-1])
return timestep, embedded_timestep
def _prepare_context(self, context, batch_size, x, attention_mask=None):
"""Prepare context for transformer blocks."""
if self.caption_projection is not None:
context = self.caption_projection(context)
context = context.view(batch_size, -1, x.shape[-1])
return context, attention_mask
def _precompute_freqs_cis(
self,
indices_grid,
dim,
out_dtype,
theta=10000.0,
max_pos=[20, 2048, 2048],
use_middle_indices_grid=False,
num_attention_heads=32,
):
split_mode = self.split_positional_embedding == LTXRopeType.SPLIT
indices = self.freq_grid_generator(theta, indices_grid.shape[1], dim, indices_grid.device)
freqs = generate_freqs(indices, indices_grid, max_pos, use_middle_indices_grid)
if split_mode:
expected_freqs = dim // 2
current_freqs = freqs.shape[-1]
pad_size = expected_freqs - current_freqs
cos_freq, sin_freq = split_freqs_cis(freqs, pad_size, num_attention_heads)
else:
# 2 because of cos and sin by 3 for (t, x, y), 1 for temporal only
n_elem = 2 * indices_grid.shape[1]
cos_freq, sin_freq = interleaved_freqs_cis(freqs, dim % n_elem)
return cos_freq.to(out_dtype), sin_freq.to(out_dtype), split_mode
def _prepare_positional_embeddings(self, pixel_coords, frame_rate, x_dtype):
"""Prepare positional embeddings."""
fractional_coords = pixel_coords.to(torch.float32)
fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
pe = self._precompute_freqs_cis(
fractional_coords,
dim=self.inner_dim,
out_dtype=x_dtype,
max_pos=self.positional_embedding_max_pos,
use_middle_indices_grid=self.use_middle_indices_grid,
num_attention_heads=self.num_attention_heads,
)
return pe
def _prepare_attention_mask(self, attention_mask, x_dtype):
"""Prepare attention mask."""
if attention_mask is not None and not torch.is_floating_point(attention_mask):
attention_mask = (attention_mask - 1).to(x_dtype).reshape(
(attention_mask.shape[0], 1, -1, attention_mask.shape[-1])
) * torch.finfo(x_dtype).max
return attention_mask
def forward(
self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, denoise_mask=None, **kwargs
):
"""
Forward pass for LTX models.
Args:
x: Input tensor
timestep: Timestep tensor
context: Context tensor (e.g., text embeddings)
attention_mask: Attention mask tensor
frame_rate: Frame rate for temporal processing
transformer_options: Additional options for transformer blocks
keyframe_idxs: Keyframe indices for temporal processing
**kwargs: Additional keyword arguments
Returns:
Processed output tensor
"""
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(
comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options
),
).execute(x, timestep, context, attention_mask, frame_rate, transformer_options, keyframe_idxs, denoise_mask=denoise_mask, **kwargs)
def _forward(
self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, denoise_mask=None, **kwargs
):
"""
Internal forward pass for LTX models.
Args:
x: Input tensor
timestep: Timestep tensor
context: Context tensor (e.g., text embeddings)
attention_mask: Attention mask tensor
frame_rate: Frame rate for temporal processing
transformer_options: Additional options for transformer blocks
keyframe_idxs: Keyframe indices for temporal processing
**kwargs: Additional keyword arguments
Returns:
Processed output tensor
"""
if isinstance(x, list):
input_dtype = x[0].dtype
batch_size = x[0].shape[0]
else:
input_dtype = x.dtype
batch_size = x.shape[0]
# Process input
merged_args = {**transformer_options, **kwargs}
x, pixel_coords, additional_args = self._process_input(x, keyframe_idxs, denoise_mask, **merged_args)
merged_args.update(additional_args)
# Prepare timestep and context
timestep, embedded_timestep = self._prepare_timestep(timestep, batch_size, input_dtype, **merged_args)
context, attention_mask = self._prepare_context(context, batch_size, x, attention_mask)
# Prepare attention mask and positional embeddings
attention_mask = self._prepare_attention_mask(attention_mask, input_dtype)
pe = self._prepare_positional_embeddings(pixel_coords, frame_rate, input_dtype)
# Process transformer blocks
x = self._process_transformer_blocks(
x, context, attention_mask, timestep, pe, transformer_options=transformer_options, **merged_args
)
# Process output
x = self._process_output(x, embedded_timestep, keyframe_idxs, **merged_args)
return x
class LTXVModel(LTXBaseModel):
"""LTXV model for video generation."""
def __init__(
self,
in_channels=128,
cross_attention_dim=2048,
attention_head_dim=64,
num_attention_heads=32,
caption_channels=4096,
num_layers=28,
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[20, 2048, 2048],
causal_temporal_positioning=False,
vae_scale_factors=(8, 32, 32),
use_middle_indices_grid=False,
timestep_scale_multiplier = 1000.0,
dtype=None,
device=None,
operations=None,
**kwargs,
):
super().__init__(
in_channels=in_channels,
cross_attention_dim=cross_attention_dim,
attention_head_dim=attention_head_dim,
num_attention_heads=num_attention_heads,
caption_channels=caption_channels,
num_layers=num_layers,
positional_embedding_theta=positional_embedding_theta,
positional_embedding_max_pos=positional_embedding_max_pos,
causal_temporal_positioning=causal_temporal_positioning,
vae_scale_factors=vae_scale_factors,
use_middle_indices_grid=use_middle_indices_grid,
timestep_scale_multiplier=timestep_scale_multiplier,
dtype=dtype,
device=device,
operations=operations,
**kwargs,
)
def _init_model_components(self, device, dtype, **kwargs):
"""Initialize LTXV-specific components."""
# No additional components needed for LTXV beyond base class
pass
def _init_transformer_blocks(self, device, dtype, **kwargs):
"""Initialize transformer blocks for LTXV."""
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
self.inner_dim,
num_attention_heads,
attention_head_dim,
context_dim=cross_attention_dim,
# attn_precision=attn_precision,
dtype=dtype, device=device, operations=operations
self.num_attention_heads,
self.attention_head_dim,
context_dim=self.cross_attention_dim,
dtype=dtype,
device=device,
operations=self.operations,
)
for d in range(num_layers)
for _ in range(self.num_layers)
]
)
def _init_output_components(self, device, dtype):
"""Initialize output components for LTXV."""
self.scale_shift_table = nn.Parameter(torch.empty(2, self.inner_dim, dtype=dtype, device=device))
self.norm_out = operations.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.proj_out = operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device)
self.patchifier = SymmetricPatchifier(1)
def forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, attention_mask, frame_rate, transformer_options, keyframe_idxs, **kwargs)
def _forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs):
patches_replace = transformer_options.get("patches_replace", {})
orig_shape = list(x.shape)
self.norm_out = self.operations.LayerNorm(
self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device
)
self.proj_out = self.operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device)
self.patchifier = SymmetricPatchifier(1, start_end=True)
def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs):
"""Process input for LTXV."""
additional_args = {"orig_shape": list(x.shape)}
x, latent_coords = self.patchifier.patchify(x)
pixel_coords = latent_to_pixel_coords(
latent_coords=latent_coords,
@ -439,44 +880,30 @@ class LTXVModel(torch.nn.Module):
causal_fix=self.causal_temporal_positioning,
)
grid_mask = None
if keyframe_idxs is not None:
pixel_coords[:, :, -keyframe_idxs.shape[2]:] = keyframe_idxs
additional_args.update({ "orig_patchified_shape": list(x.shape)})
denoise_mask = self.patchifier.patchify(denoise_mask)[0]
grid_mask = ~torch.any(denoise_mask < 0, dim=-1)[0]
additional_args.update({"grid_mask": grid_mask})
x = x[:, grid_mask, :]
pixel_coords = pixel_coords[:, :, grid_mask, ...]
fractional_coords = pixel_coords.to(torch.float32)
fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
kf_grid_mask = grid_mask[-keyframe_idxs.shape[2]:]
keyframe_idxs = keyframe_idxs[..., kf_grid_mask, :]
pixel_coords[:, :, -keyframe_idxs.shape[2]:, :] = keyframe_idxs
x = self.patchify_proj(x)
timestep = timestep * 1000.0
if attention_mask is not None and not torch.is_floating_point(attention_mask):
attention_mask = (attention_mask - 1).to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) * torch.finfo(x.dtype).max
pe = precompute_freqs_cis(fractional_coords, dim=self.inner_dim, out_dtype=x.dtype)
batch_size = x.shape[0]
timestep, embedded_timestep = self.adaln_single(
timestep.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=x.dtype,
)
# Second dimension is 1 or number of tokens (if timestep_per_token)
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
embedded_timestep = embedded_timestep.view(
batch_size, -1, embedded_timestep.shape[-1]
)
# 2. Blocks
if self.caption_projection is not None:
batch_size = x.shape[0]
context = self.caption_projection(context)
context = context.view(
batch_size, -1, x.shape[-1]
)
return x, pixel_coords, additional_args
def _process_transformer_blocks(self, x, context, attention_mask, timestep, pe, transformer_options={}, **kwargs):
"""Process transformer blocks for LTXV."""
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.transformer_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"], transformer_options=args["transformer_options"])
@ -494,16 +921,28 @@ class LTXVModel(torch.nn.Module):
transformer_options=transformer_options,
)
# 3. Output
return x
def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs):
"""Process output for LTXV."""
# Apply scale-shift modulation
scale_shift_values = (
self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + embedded_timestep[:, :, None]
)
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
x = self.norm_out(x)
# Modulation
x = x * (1 + scale) + shift
x = self.proj_out(x)
if keyframe_idxs is not None:
grid_mask = kwargs["grid_mask"]
orig_patchified_shape = kwargs["orig_patchified_shape"]
full_x = torch.zeros(orig_patchified_shape, dtype=x.dtype, device=x.device)
full_x[:, grid_mask, :] = x
x = full_x
# Unpatchify to restore original dimensions
orig_shape = kwargs["orig_shape"]
x = self.patchifier.unpatchify(
latents=x,
output_height=orig_shape[3],

View File

@ -21,20 +21,23 @@ def latent_to_pixel_coords(
Returns:
Tensor: A tensor of pixel coordinates corresponding to the input latent coordinates.
"""
shape = [1] * latent_coords.ndim
shape[1] = -1
pixel_coords = (
latent_coords
* torch.tensor(scale_factors, device=latent_coords.device)[None, :, None]
* torch.tensor(scale_factors, device=latent_coords.device).view(*shape)
)
if causal_fix:
# Fix temporal scale for first frame to 1 due to causality
pixel_coords[:, 0] = (pixel_coords[:, 0] + 1 - scale_factors[0]).clamp(min=0)
pixel_coords[:, 0, ...] = (pixel_coords[:, 0, ...] + 1 - scale_factors[0]).clamp(min=0)
return pixel_coords
class Patchifier(ABC):
def __init__(self, patch_size: int):
def __init__(self, patch_size: int, start_end: bool=False):
super().__init__()
self._patch_size = (1, patch_size, patch_size)
self.start_end = start_end
@abstractmethod
def patchify(
@ -71,11 +74,23 @@ class Patchifier(ABC):
torch.arange(0, latent_width, self._patch_size[2], device=device),
indexing="ij",
)
latent_sample_coords = torch.stack(latent_sample_coords, dim=0)
latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
latent_coords = rearrange(
latent_coords, "b c f h w -> b c (f h w)", b=batch_size
latent_sample_coords_start = torch.stack(latent_sample_coords, dim=0)
delta = torch.tensor(self._patch_size, device=latent_sample_coords_start.device, dtype=latent_sample_coords_start.dtype)[:, None, None, None]
latent_sample_coords_end = latent_sample_coords_start + delta
latent_sample_coords_start = latent_sample_coords_start.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
latent_sample_coords_start = rearrange(
latent_sample_coords_start, "b c f h w -> b c (f h w)", b=batch_size
)
if self.start_end:
latent_sample_coords_end = latent_sample_coords_end.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
latent_sample_coords_end = rearrange(
latent_sample_coords_end, "b c f h w -> b c (f h w)", b=batch_size
)
latent_coords = torch.stack((latent_sample_coords_start, latent_sample_coords_end), dim=-1)
else:
latent_coords = latent_sample_coords_start
return latent_coords
@ -115,3 +130,61 @@ class SymmetricPatchifier(Patchifier):
q=self._patch_size[2],
)
return latents
class AudioPatchifier(Patchifier):
def __init__(self, patch_size: int,
sample_rate=16000,
hop_length=160,
audio_latent_downsample_factor=4,
is_causal=True,
start_end=False,
shift = 0
):
super().__init__(patch_size, start_end=start_end)
self.hop_length = hop_length
self.sample_rate = sample_rate
self.audio_latent_downsample_factor = audio_latent_downsample_factor
self.is_causal = is_causal
self.shift = shift
def copy_with_shift(self, shift):
return AudioPatchifier(
self.patch_size, self.sample_rate, self.hop_length, self.audio_latent_downsample_factor,
self.is_causal, self.start_end, shift
)
def _get_audio_latent_time_in_sec(self, start_latent, end_latent: int, dtype: torch.dtype, device=torch.device):
audio_latent_frame = torch.arange(start_latent, end_latent, dtype=dtype, device=device)
audio_mel_frame = audio_latent_frame * self.audio_latent_downsample_factor
if self.is_causal:
audio_mel_frame = (audio_mel_frame + 1 - self.audio_latent_downsample_factor).clip(min=0)
return audio_mel_frame * self.hop_length / self.sample_rate
def patchify(self, audio_latents: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
# audio_latents: (batch, channels, time, freq)
b, _, t, _ = audio_latents.shape
audio_latents = rearrange(
audio_latents,
"b c t f -> b t (c f)",
)
audio_latents_start_timings = self._get_audio_latent_time_in_sec(self.shift, t + self.shift, torch.float32, audio_latents.device)
audio_latents_start_timings = audio_latents_start_timings.unsqueeze(0).expand(b, -1).unsqueeze(1)
if self.start_end:
audio_latents_end_timings = self._get_audio_latent_time_in_sec(self.shift + 1, t + self.shift + 1, torch.float32, audio_latents.device)
audio_latents_end_timings = audio_latents_end_timings.unsqueeze(0).expand(b, -1).unsqueeze(1)
audio_latents_timings = torch.stack([audio_latents_start_timings, audio_latents_end_timings], dim=-1)
else:
audio_latents_timings = audio_latents_start_timings
return audio_latents, audio_latents_timings
def unpatchify(self, audio_latents: torch.Tensor, channels: int, freq: int) -> torch.Tensor:
# audio_latents: (batch, time, freq * channels)
audio_latents = rearrange(
audio_latents, "b t (c f) -> b c t f", c=channels, f=freq
)
return audio_latents

View File

@ -0,0 +1,279 @@
import json
from dataclasses import dataclass
import math
import torch
import torchaudio
import comfy.model_management
import comfy.model_patcher
import comfy.utils as utils
from comfy.ldm.mmaudio.vae.distributions import DiagonalGaussianDistribution
from comfy.ldm.lightricks.symmetric_patchifier import AudioPatchifier
from comfy.ldm.lightricks.vae.causal_audio_autoencoder import (
CausalityAxis,
CausalAudioAutoencoder,
)
from comfy.ldm.lightricks.vocoders.vocoder import Vocoder
LATENT_DOWNSAMPLE_FACTOR = 4
@dataclass(frozen=True)
class AudioVAEComponentConfig:
"""Container for model component configuration extracted from metadata."""
autoencoder: dict
vocoder: dict
@classmethod
def from_metadata(cls, metadata: dict) -> "AudioVAEComponentConfig":
assert metadata is not None and "config" in metadata, "Metadata is required for audio VAE"
raw_config = metadata["config"]
if isinstance(raw_config, str):
parsed_config = json.loads(raw_config)
else:
parsed_config = raw_config
audio_config = parsed_config.get("audio_vae")
vocoder_config = parsed_config.get("vocoder")
assert audio_config is not None, "Audio VAE config is required for audio VAE"
assert vocoder_config is not None, "Vocoder config is required for audio VAE"
return cls(autoencoder=audio_config, vocoder=vocoder_config)
class ModelDeviceManager:
"""Manages device placement and GPU residency for the composed model."""
def __init__(self, module: torch.nn.Module):
load_device = comfy.model_management.get_torch_device()
offload_device = comfy.model_management.vae_offload_device()
self.patcher = comfy.model_patcher.ModelPatcher(module, load_device, offload_device)
def ensure_model_loaded(self) -> None:
comfy.model_management.free_memory(
self.patcher.model_size(),
self.patcher.load_device,
)
comfy.model_management.load_model_gpu(self.patcher)
def move_to_load_device(self, tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(self.patcher.load_device)
@property
def load_device(self):
return self.patcher.load_device
class AudioLatentNormalizer:
"""Applies per-channel statistics in patch space and restores original layout."""
def __init__(self, patchfier: AudioPatchifier, statistics_processor: torch.nn.Module):
self.patchifier = patchfier
self.statistics = statistics_processor
def normalize(self, latents: torch.Tensor) -> torch.Tensor:
channels = latents.shape[1]
freq = latents.shape[3]
patched, _ = self.patchifier.patchify(latents)
normalized = self.statistics.normalize(patched)
return self.patchifier.unpatchify(normalized, channels=channels, freq=freq)
def denormalize(self, latents: torch.Tensor) -> torch.Tensor:
channels = latents.shape[1]
freq = latents.shape[3]
patched, _ = self.patchifier.patchify(latents)
denormalized = self.statistics.un_normalize(patched)
return self.patchifier.unpatchify(denormalized, channels=channels, freq=freq)
class AudioPreprocessor:
"""Prepares raw waveforms for the autoencoder by matching training conditions."""
def __init__(self, target_sample_rate: int, mel_bins: int, mel_hop_length: int, n_fft: int):
self.target_sample_rate = target_sample_rate
self.mel_bins = mel_bins
self.mel_hop_length = mel_hop_length
self.n_fft = n_fft
def resample(self, waveform: torch.Tensor, source_rate: int) -> torch.Tensor:
if source_rate == self.target_sample_rate:
return waveform
return torchaudio.functional.resample(waveform, source_rate, self.target_sample_rate)
def waveform_to_mel(
self, waveform: torch.Tensor, waveform_sample_rate: int, device
) -> torch.Tensor:
waveform = self.resample(waveform, waveform_sample_rate)
mel_transform = torchaudio.transforms.MelSpectrogram(
sample_rate=self.target_sample_rate,
n_fft=self.n_fft,
win_length=self.n_fft,
hop_length=self.mel_hop_length,
f_min=0.0,
f_max=self.target_sample_rate / 2.0,
n_mels=self.mel_bins,
window_fn=torch.hann_window,
center=True,
pad_mode="reflect",
power=1.0,
mel_scale="slaney",
norm="slaney",
).to(device)
mel = mel_transform(waveform)
mel = torch.log(torch.clamp(mel, min=1e-5))
return mel.permute(0, 1, 3, 2).contiguous()
class AudioVAE(torch.nn.Module):
"""High-level Audio VAE wrapper exposing encode and decode entry points."""
def __init__(self, state_dict: dict, metadata: dict):
super().__init__()
component_config = AudioVAEComponentConfig.from_metadata(metadata)
vae_sd = utils.state_dict_prefix_replace(state_dict, {"audio_vae.": ""}, filter_keys=True)
vocoder_sd = utils.state_dict_prefix_replace(state_dict, {"vocoder.": ""}, filter_keys=True)
self.autoencoder = CausalAudioAutoencoder(config=component_config.autoencoder)
self.vocoder = Vocoder(config=component_config.vocoder)
self.autoencoder.load_state_dict(vae_sd, strict=False)
self.vocoder.load_state_dict(vocoder_sd, strict=False)
autoencoder_config = self.autoencoder.get_config()
self.normalizer = AudioLatentNormalizer(
AudioPatchifier(
patch_size=1,
audio_latent_downsample_factor=LATENT_DOWNSAMPLE_FACTOR,
sample_rate=autoencoder_config["sampling_rate"],
hop_length=autoencoder_config["mel_hop_length"],
is_causal=autoencoder_config["is_causal"],
),
self.autoencoder.per_channel_statistics,
)
self.preprocessor = AudioPreprocessor(
target_sample_rate=autoencoder_config["sampling_rate"],
mel_bins=autoencoder_config["mel_bins"],
mel_hop_length=autoencoder_config["mel_hop_length"],
n_fft=autoencoder_config["n_fft"],
)
self.device_manager = ModelDeviceManager(self)
def encode(self, audio: dict) -> torch.Tensor:
"""Encode a waveform dictionary into normalized latent tensors."""
waveform = audio["waveform"]
waveform_sample_rate = audio["sample_rate"]
input_device = waveform.device
# Ensure that Audio VAE is loaded on the correct device.
self.device_manager.ensure_model_loaded()
waveform = self.device_manager.move_to_load_device(waveform)
expected_channels = self.autoencoder.encoder.in_channels
if waveform.shape[1] != expected_channels:
if waveform.shape[1] == 1:
waveform = waveform.expand(-1, expected_channels, *waveform.shape[2:])
else:
raise ValueError(
f"Input audio must have {expected_channels} channels, got {waveform.shape[1]}"
)
mel_spec = self.preprocessor.waveform_to_mel(
waveform, waveform_sample_rate, device=self.device_manager.load_device
)
latents = self.autoencoder.encode(mel_spec)
posterior = DiagonalGaussianDistribution(latents)
latent_mode = posterior.mode()
normalized = self.normalizer.normalize(latent_mode)
return normalized.to(input_device)
def decode(self, latents: torch.Tensor) -> torch.Tensor:
"""Decode normalized latent tensors into an audio waveform."""
original_shape = latents.shape
# Ensure that Audio VAE is loaded on the correct device.
self.device_manager.ensure_model_loaded()
latents = self.device_manager.move_to_load_device(latents)
latents = self.normalizer.denormalize(latents)
target_shape = self.target_shape_from_latents(original_shape)
mel_spec = self.autoencoder.decode(latents, target_shape=target_shape)
waveform = self.run_vocoder(mel_spec)
return self.device_manager.move_to_load_device(waveform)
def target_shape_from_latents(self, latents_shape):
batch, _, time, _ = latents_shape
target_length = time * LATENT_DOWNSAMPLE_FACTOR
if self.autoencoder.causality_axis != CausalityAxis.NONE:
target_length -= LATENT_DOWNSAMPLE_FACTOR - 1
return (
batch,
self.autoencoder.decoder.out_ch,
target_length,
self.autoencoder.mel_bins,
)
def num_of_latents_from_frames(self, frames_number: int, frame_rate: int) -> int:
return math.ceil((float(frames_number) / frame_rate) * self.latents_per_second)
def run_vocoder(self, mel_spec: torch.Tensor) -> torch.Tensor:
audio_channels = self.autoencoder.decoder.out_ch
vocoder_input = mel_spec.transpose(2, 3)
if audio_channels == 1:
vocoder_input = vocoder_input.squeeze(1)
elif audio_channels != 2:
raise ValueError(f"Unsupported audio_channels: {audio_channels}")
return self.vocoder(vocoder_input)
@property
def sample_rate(self) -> int:
return int(self.autoencoder.sampling_rate)
@property
def mel_hop_length(self) -> int:
return int(self.autoencoder.mel_hop_length)
@property
def mel_bins(self) -> int:
return int(self.autoencoder.mel_bins)
@property
def latent_channels(self) -> int:
return int(self.autoencoder.decoder.z_channels)
@property
def latent_frequency_bins(self) -> int:
return int(self.mel_bins // LATENT_DOWNSAMPLE_FACTOR)
@property
def latents_per_second(self) -> float:
return self.sample_rate / self.mel_hop_length / LATENT_DOWNSAMPLE_FACTOR
@property
def output_sample_rate(self) -> int:
output_rate = getattr(self.vocoder, "output_sample_rate", None)
if output_rate is not None:
return int(output_rate)
upsample_factor = getattr(self.vocoder, "upsample_factor", None)
if upsample_factor is None:
raise AttributeError(
"Vocoder is missing upsample_factor; cannot infer output sample rate"
)
return int(self.sample_rate * upsample_factor / self.mel_hop_length)
def memory_required(self, input_shape):
return self.device_manager.patcher.model_size()

Some files were not shown because too many files have changed in this diff Show More