Compare commits

..

1 Commits

13 changed files with 142 additions and 164 deletions

View File

@ -7,8 +7,6 @@ on:
jobs:
send-webhook:
runs-on: ubuntu-latest
env:
DESKTOP_REPO_DISPATCH_TOKEN: ${{ secrets.DESKTOP_REPO_DISPATCH_TOKEN }}
steps:
- name: Send release webhook
env:
@ -108,37 +106,3 @@ jobs:
--fail --silent --show-error
echo "✅ Release webhook sent successfully"
- name: Send repository dispatch to desktop
env:
DISPATCH_TOKEN: ${{ env.DESKTOP_REPO_DISPATCH_TOKEN }}
RELEASE_TAG: ${{ github.event.release.tag_name }}
RELEASE_URL: ${{ github.event.release.html_url }}
run: |
set -euo pipefail
if [ -z "${DISPATCH_TOKEN:-}" ]; then
echo "::error::DESKTOP_REPO_DISPATCH_TOKEN is required but not set."
exit 1
fi
PAYLOAD="$(jq -n \
--arg release_tag "$RELEASE_TAG" \
--arg release_url "$RELEASE_URL" \
'{
event_type: "comfyui_release_published",
client_payload: {
release_tag: $release_tag,
release_url: $release_url
}
}')"
curl -fsSL \
-X POST \
-H "Accept: application/vnd.github+json" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer ${DISPATCH_TOKEN}" \
https://api.github.com/repos/Comfy-Org/desktop/dispatches \
-d "$PAYLOAD"
echo "✅ Dispatched ComfyUI release ${RELEASE_TAG} to Comfy-Org/desktop"

View File

@ -1,11 +1,12 @@
import math
import time
from functools import partial
from scipy import integrate
import torch
from torch import nn
import torchsde
from tqdm.auto import tqdm
from tqdm.auto import trange as trange_, tqdm
from . import utils
from . import deis
@ -14,7 +15,34 @@ import comfy.model_patcher
import comfy.model_sampling
import comfy.memory_management
from comfy.utils import model_trange as trange
def trange(*args, **kwargs):
if comfy.memory_management.aimdo_allocator is None:
return trange_(*args, **kwargs)
pbar = trange_(*args, **kwargs, smoothing=1.0)
pbar._i = 0
pbar.set_postfix_str(" Model Initializing ... ")
_update = pbar.update
def warmup_update(n=1):
pbar._i += 1
if pbar._i == 1:
pbar.i1_time = time.time()
pbar.set_postfix_str(" Model Initialization complete! ")
elif pbar._i == 2:
#bring forward the effective start time based the the diff between first and second iteration
#to attempt to remove load overhead from the final step rate estimate.
pbar.start_t = pbar.i1_time - (time.time() - pbar.i1_time)
pbar.set_postfix_str("")
_update(n)
pbar.update = warmup_update
return pbar
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])

View File

@ -1213,12 +1213,8 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str
signature = comfy_aimdo.model_vbar.vbar_fault(weight._v)
if signature is not None:
if comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature):
v_tensor = weight._v_tensor
else:
raw_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device)
v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, raw_tensor)[0]
weight._v_tensor = v_tensor
v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, weight._v_tensor)[0]
if not comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature):
weight._v_signature = signature
#Send it over
v_tensor.copy_(weight, non_blocking=non_blocking)

View File

@ -1525,7 +1525,7 @@ class ModelPatcherDynamic(ModelPatcher):
setattr(m, param_key + "_function", weight_function)
geometry = weight
if not isinstance(weight, QuantizedTensor):
model_dtype = getattr(m, param_key + "_comfy_model_dtype", None) or weight.dtype
model_dtype = getattr(m, param_key + "_comfy_model_dtype", weight.dtype)
weight._model_dtype = model_dtype
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
return comfy.memory_management.vram_aligned_size(geometry)
@ -1542,6 +1542,7 @@ class ModelPatcherDynamic(ModelPatcher):
if vbar is not None and not hasattr(m, "_v"):
m._v = vbar.alloc(v_weight_size)
m._v_tensor = comfy_aimdo.torch.aimdo_to_tensor(m._v, device_to)
allocated_size += v_weight_size
else:
@ -1551,11 +1552,12 @@ class ModelPatcherDynamic(ModelPatcher):
weight.seed_key = key
set_dirty(weight, dirty)
geometry = weight
model_dtype = getattr(m, param + "_comfy_model_dtype", None) or weight.dtype
model_dtype = getattr(m, param + "_comfy_model_dtype", weight.dtype)
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
weight_size = geometry.numel() * geometry.element_size()
if vbar is not None and not hasattr(weight, "_v"):
weight._v = vbar.alloc(weight_size)
weight._v_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device_to)
weight._model_dtype = model_dtype
allocated_size += weight_size
vbar.set_watermark_limit(allocated_size)

View File

@ -83,18 +83,14 @@ def cast_to_input(weight, input, non_blocking=False, copy=True):
def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype):
offload_stream = None
xfer_dest = None
cast_geometry = comfy.memory_management.tensors_to_geometries([ s.weight, s.bias ])
signature = comfy_aimdo.model_vbar.vbar_fault(s._v)
resident = comfy_aimdo.model_vbar.vbar_signature_compare(signature, s._v_signature)
if signature is not None:
if resident:
weight = s._v_weight
bias = s._v_bias
else:
xfer_dest = comfy_aimdo.torch.aimdo_to_tensor(s._v, device)
xfer_dest = s._v_tensor
resident = comfy_aimdo.model_vbar.vbar_signature_compare(signature, s._v_signature)
if not resident:
cast_geometry = comfy.memory_management.tensors_to_geometries([ s.weight, s.bias ])
cast_dest = None
xfer_source = [ s.weight, s.bias ]
@ -144,13 +140,9 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu
post_cast.copy_(pre_cast)
xfer_dest = cast_dest
params = comfy.memory_management.interpret_gathered_like(cast_geometry, xfer_dest)
weight = params[0]
bias = params[1]
if signature is not None:
s._v_weight = weight
s._v_bias = bias
s._v_signature=signature
params = comfy.memory_management.interpret_gathered_like(cast_geometry, xfer_dest)
weight = params[0]
bias = params[1]
def post_cast(s, param_key, x, dtype, resident, update_weight):
lowvram_fn = getattr(s, param_key + "_lowvram_function", None)
@ -190,6 +182,7 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu
weight = post_cast(s, "weight", weight, dtype, resident, update_weight)
if s.bias is not None:
bias = post_cast(s, "bias", bias, bias_dtype, resident, update_weight)
s._v_signature=signature
#FIXME: weird offload return protocol
return weight, bias, (offload_stream, device if signature is not None else None, None)

View File

@ -3,6 +3,7 @@ import comfy.text_encoders.llama
from comfy import sd1_clip
import torch
import math
from tqdm.auto import trange
import yaml
import comfy.utils
@ -16,7 +17,6 @@ def sample_manual_loop_no_classes(
temperature: float = 0.85,
top_p: float = 0.9,
top_k: int = None,
min_p: float = 0.000,
seed: int = 1,
min_tokens: int = 1,
max_new_tokens: int = 2048,
@ -52,7 +52,7 @@ def sample_manual_loop_no_classes(
progress_bar = comfy.utils.ProgressBar(max_new_tokens)
for step in comfy.utils.model_trange(max_new_tokens, desc="LM sampling"):
for step in trange(max_new_tokens, desc="LM sampling"):
outputs = model.transformer(None, attention_mask, embeds=embeds.to(execution_dtype), num_tokens=num_tokens, intermediate_output=None, dtype=execution_dtype, embeds_info=embeds_info, past_key_values=past_key_values)
next_token_logits = model.transformer.logits(outputs[0])[:, -1]
past_key_values = outputs[2]
@ -81,12 +81,6 @@ def sample_manual_loop_no_classes(
min_val = top_k_vals[..., -1, None]
cfg_logits[cfg_logits < min_val] = remove_logit_value
if min_p is not None and min_p > 0:
probs = torch.softmax(cfg_logits, dim=-1)
p_max = probs.max(dim=-1, keepdim=True).values
indices_to_remove = probs < (min_p * p_max)
cfg_logits[indices_to_remove] = remove_logit_value
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(cfg_logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
@ -117,7 +111,7 @@ def sample_manual_loop_no_classes(
return output_audio_codes
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0, cfg_scale=2.0, temperature=0.85, top_p=0.9, top_k=0, min_p=0.000):
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0, cfg_scale=2.0, temperature=0.85, top_p=0.9, top_k=0):
positive = [[token for token, _ in inner_list] for inner_list in positive]
positive = positive[0]
@ -141,7 +135,7 @@ def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=102
paddings = []
ids = [positive]
return sample_manual_loop_no_classes(model, ids, paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
return sample_manual_loop_no_classes(model, ids, paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
@ -199,7 +193,6 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
temperature = kwargs.get("temperature", 0.85)
top_p = kwargs.get("top_p", 0.9)
top_k = kwargs.get("top_k", 0.0)
min_p = kwargs.get("min_p", 0.000)
duration = math.ceil(duration)
kwargs["duration"] = duration
@ -247,7 +240,6 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"min_p": min_p,
}
return out
@ -308,7 +300,7 @@ class ACE15TEModel(torch.nn.Module):
lm_metadata = token_weight_pairs["lm_metadata"]
if lm_metadata["generate_audio_codes"]:
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["min_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"], min_p=lm_metadata["min_p"])
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["max_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"])
out["audio_codes"] = [audio_codes]
return base_out, None, out

View File

@ -27,7 +27,6 @@ from PIL import Image
import logging
import itertools
from torch.nn.functional import interpolate
from tqdm.auto import trange
from einops import rearrange
from comfy.cli_args import args, enables_dynamic_vram
import json
@ -1156,32 +1155,6 @@ def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_am
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
return tiled_scale_multidim(samples, function, (tile_y, tile_x), overlap=overlap, upscale_amount=upscale_amount, out_channels=out_channels, output_device=output_device, pbar=pbar)
def model_trange(*args, **kwargs):
if comfy.memory_management.aimdo_allocator is None:
return trange(*args, **kwargs)
pbar = trange(*args, **kwargs, smoothing=1.0)
pbar._i = 0
pbar.set_postfix_str(" Model Initializing ... ")
_update = pbar.update
def warmup_update(n=1):
pbar._i += 1
if pbar._i == 1:
pbar.i1_time = time.time()
pbar.set_postfix_str(" Model Initialization complete! ")
elif pbar._i == 2:
#bring forward the effective start time based the the diff between first and second iteration
#to attempt to remove load overhead from the final step rate estimate.
pbar.start_t = pbar.i1_time - (time.time() - pbar.i1_time)
pbar.set_postfix_str("")
_update(n)
pbar.update = warmup_update
return pbar
PROGRESS_BAR_ENABLED = True
def set_progress_bar_enabled(enabled):
global PROGRESS_BAR_ENABLED

View File

@ -30,6 +30,46 @@ from comfy_execution.graph_utils import ExecutionBlocker
from ._util import MESH, VOXEL, SVG as _SVG, File3D
class EmptyInputSentinel:
"""
Sentinel class indicating an empty/missing input.
Use the class itself (not an instance) as the sentinel.
Compare using 'is' or 'is not' only.
"""
def __new__(cls):
raise TypeError("EmptyInputSentinel cannot be instantiated, use the class itself")
def __init_subclass__(cls, **kwargs):
raise TypeError("EmptyInputSentinel cannot be subclassed")
@classmethod
def __class_getitem__(cls, item):
raise TypeError("EmptyInputSentinel cannot be subscripted")
def __repr__(self):
return "<EmptyInput>"
def __bool__(self):
raise TypeError("EmptyInputSentinel cannot be used in boolean context")
def __eq__(self, other):
raise TypeError("EmptyInputSentinel cannot be compared with ==, use 'is' instead")
def __ne__(self, other):
raise TypeError("EmptyInputSentinel cannot be compared with !=, use 'is not' instead")
def __hash__(self):
raise TypeError("EmptyInputSentinel cannot be hashed")
def __iter__(self):
raise TypeError("EmptyInputSentinel cannot be iterated")
def __len__(self):
raise TypeError("EmptyInputSentinel has no length")
class FolderType(str, Enum):
input = "input"
output = "output"
@ -2110,6 +2150,7 @@ __all__ = [
"DynamicCombo",
"Autogrow",
# Other classes
"EmptyInputSentinel",
"HiddenHolder",
"Hidden",
"NodeInfoV1",

View File

@ -30,30 +30,6 @@ from comfy_api_nodes.util import (
validate_image_dimensions,
)
_EUR_TO_USD = 1.19
def _tier_price_eur(megapixels: float) -> float:
"""Price in EUR for a single Magnific upscaling step based on input megapixels."""
if megapixels <= 1.3:
return 0.143
if megapixels <= 3.0:
return 0.286
if megapixels <= 6.4:
return 0.429
return 1.716
def _calculate_magnific_upscale_price_usd(width: int, height: int, scale: int) -> float:
"""Calculate total Magnific upscale price in USD for given input dimensions and scale factor."""
num_steps = int(math.log2(scale))
total_eur = 0.0
pixels = width * height
for _ in range(num_steps):
total_eur += _tier_price_eur(pixels / 1_000_000)
pixels *= 4
return round(total_eur * _EUR_TO_USD, 2)
class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
@classmethod
@ -127,20 +103,11 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor", "auto_downscale"]),
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]),
expr="""
(
$ad := widgets.auto_downscale;
$mins := $ad
? {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.515}
: {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.844};
$maxs := {"2x": 0.515, "4x": 0.844, "8x": 1.015, "16x": 1.187};
{
"type": "range_usd",
"min_usd": $lookup($mins, widgets.scale_factor),
"max_usd": $lookup($maxs, widgets.scale_factor),
"format": { "approximate": true }
}
$max := widgets.scale_factor = "2x" ? 1.326 : 1.657;
{"type": "range_usd", "min_usd": 0.11, "max_usd": $max}
)
""",
),
@ -201,10 +168,6 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
f"Use a smaller input image or lower scale factor."
)
final_height, final_width = get_image_dimensions(image)
actual_scale = int(scale_factor.rstrip("x"))
price_usd = _calculate_magnific_upscale_price_usd(final_width, final_height, actual_scale)
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler", method="POST"),
@ -226,7 +189,6 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler/{initial_res.task_id}"),
response_model=TaskResponse,
status_extractor=lambda x: x.status,
price_extractor=lambda _: price_usd,
poll_interval=10.0,
max_poll_attempts=480,
)
@ -295,14 +257,8 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]),
expr="""
(
$mins := {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.844};
$maxs := {"2x": 2.045, "4x": 2.545, "8x": 2.889, "16x": 3.06};
{
"type": "range_usd",
"min_usd": $lookup($mins, widgets.scale_factor),
"max_usd": $lookup($maxs, widgets.scale_factor),
"format": { "approximate": true }
}
$max := widgets.scale_factor = "2x" ? 1.326 : 1.657;
{"type": "range_usd", "min_usd": 0.11, "max_usd": $max}
)
""",
),
@ -365,9 +321,6 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
f"Use a smaller input image or lower scale factor."
)
final_height, final_width = get_image_dimensions(image)
price_usd = _calculate_magnific_upscale_price_usd(final_width, final_height, requested_scale)
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler-precision-v2", method="POST"),
@ -386,7 +339,6 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler-precision-v2/{initial_res.task_id}"),
response_model=TaskResponse,
status_extractor=lambda x: x.status,
price_extractor=lambda _: price_usd,
poll_interval=10.0,
max_poll_attempts=480,
)
@ -925,8 +877,8 @@ class MagnificExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
MagnificImageUpscalerCreativeNode,
MagnificImageUpscalerPreciseV2Node,
# MagnificImageUpscalerCreativeNode,
# MagnificImageUpscalerPreciseV2Node,
MagnificImageStyleTransferNode,
MagnificImageRelightNode,
MagnificImageSkinEnhancerNode,

View File

@ -143,9 +143,9 @@ async def poll_op(
poll_interval: float = 5.0,
max_poll_attempts: int = 160,
timeout_per_poll: float = 120.0,
max_retries_per_poll: int = 10,
max_retries_per_poll: int = 3,
retry_delay_per_poll: float = 1.0,
retry_backoff_per_poll: float = 1.4,
retry_backoff_per_poll: float = 2.0,
estimated_duration: int | None = None,
cancel_endpoint: ApiEndpoint | None = None,
cancel_timeout: float = 10.0,
@ -240,9 +240,9 @@ async def poll_op_raw(
poll_interval: float = 5.0,
max_poll_attempts: int = 160,
timeout_per_poll: float = 120.0,
max_retries_per_poll: int = 10,
max_retries_per_poll: int = 3,
retry_delay_per_poll: float = 1.0,
retry_backoff_per_poll: float = 1.4,
retry_backoff_per_poll: float = 2.0,
estimated_duration: int | None = None,
cancel_endpoint: ApiEndpoint | None = None,
cancel_timeout: float = 10.0,

View File

@ -49,14 +49,13 @@ class TextEncodeAceStepAudio15(io.ComfyNode):
io.Float.Input("temperature", default=0.85, min=0.0, max=2.0, step=0.01, advanced=True),
io.Float.Input("top_p", default=0.9, min=0.0, max=2000.0, step=0.01, advanced=True),
io.Int.Input("top_k", default=0, min=0, max=100, advanced=True),
io.Float.Input("min_p", default=0.000, min=0.0, max=1.0, step=0.001, advanced=True),
],
outputs=[io.Conditioning.Output()],
)
@classmethod
def execute(cls, clip, tags, lyrics, seed, bpm, duration, timesignature, language, keyscale, generate_audio_codes, cfg_scale, temperature, top_p, top_k, min_p) -> io.NodeOutput:
tokens = clip.tokenize(tags, lyrics=lyrics, bpm=bpm, duration=duration, timesignature=int(timesignature), language=language, keyscale=keyscale, seed=seed, generate_audio_codes=generate_audio_codes, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p)
def execute(cls, clip, tags, lyrics, seed, bpm, duration, timesignature, language, keyscale, generate_audio_codes, cfg_scale, temperature, top_p, top_k) -> io.NodeOutput:
tokens = clip.tokenize(tags, lyrics=lyrics, bpm=bpm, duration=duration, timesignature=int(timesignature), language=language, keyscale=keyscale, seed=seed, generate_audio_codes=generate_audio_codes, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k)
conditioning = clip.encode_from_tokens_scheduled(tokens)
return io.NodeOutput(conditioning)

View File

@ -91,6 +91,41 @@ class SoftSwitchNode(io.ComfyNode):
return io.NodeOutput(on_true if switch else on_false)
class OptionalSwitchNode(io.ComfyNode):
@classmethod
def define_schema(cls):
template = io.MatchType.Template("switch")
return io.Schema(
node_id="ComfyOptionalSwitchNode",
display_name="Optional Switch",
category="logic",
is_experimental=True,
inputs=[
io.Boolean.Input("switch"),
io.MatchType.Input("on_false", template=template, lazy=True, optional=True),
io.MatchType.Input("on_true", template=template, lazy=True, optional=True),
],
outputs=[
io.MatchType.Output(template=template, display_name="output"),
],
)
@classmethod
def check_lazy_status(cls, switch, on_false=MISSING, on_true=MISSING):
# Only evaluate the input that corresponds to the switch value
if switch and on_true is None:
return ["on_true"]
if not switch and on_false is None:
return ["on_false"]
@classmethod
def execute(cls, switch, on_true=MISSING, on_false=MISSING) -> io.NodeOutput:
selected = on_true if switch else on_false
if selected is MISSING:
return io.NodeOutput(io.EmptyInputSentinel)
return io.NodeOutput(selected)
class CustomComboNode(io.ComfyNode):
"""
Frontend node that allows user to write their own options for a combo.
@ -260,6 +295,7 @@ class LogicExtension(ComfyExtension):
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
SwitchNode,
OptionalSwitchNode,
CustomComboNode,
# SoftSwitchNode,
# ConvertStringToComboNode,

View File

@ -623,8 +623,6 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
logging.info("Memory summary: {}".format(comfy.model_management.debug_memory_summary()))
logging.error("Got an OOM, unloading all loaded models.")
comfy.model_management.unload_all_models()
elif isinstance(ex, RuntimeError) and ("mat1 and mat2 shapes" in str(ex)) and "Sampler" in class_type:
tips = "\n\nTIPS: If you have any \"Load CLIP\" or \"*CLIP Loader\" nodes in your workflow connected to this sampler node make sure the correct file(s) and type is selected."
error_details = {
"node_id": real_node_id,
@ -982,6 +980,10 @@ async def validate_inputs(prompt_id, prompt, item, validated):
input_filtered[x] = input_data_all[x]
if 'input_types' in validate_function_inputs:
input_filtered['input_types'] = [received_types]
for x in list(input_filtered.keys()):
if input_filtered[x] is io.EmptyInputSentinel:
del input_filtered[x]
ret = await _async_map_node_over_list(prompt_id, unique_id, obj_class, input_filtered, validate_function_name, v3_data=v3_data)
ret = await resolve_map_node_over_list_results(ret)