Compare commits

..

6 Commits

25 changed files with 260 additions and 624 deletions

View File

@ -227,7 +227,7 @@ Put your VAE in: models/vae
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm7.1```
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.4```
This is the command to install the nightly with ROCm 7.1 which might have some performance improvements:

View File

@ -1,105 +0,0 @@
from __future__ import annotations
from aiohttp import web
from typing import TYPE_CHECKING, TypedDict
if TYPE_CHECKING:
from comfy_api.latest._node_replace import NodeReplace
from nodes import NODE_CLASS_MAPPINGS
class NodeStruct(TypedDict):
inputs: dict[str, str | int | float | bool | tuple[str, int]]
class_type: str
_meta: dict[str, str]
def copy_node_struct(node_struct: NodeStruct, empty_inputs: bool = False) -> NodeStruct:
new_node_struct = node_struct.copy()
if empty_inputs:
new_node_struct["inputs"] = {}
else:
new_node_struct["inputs"] = node_struct["inputs"].copy()
new_node_struct["_meta"] = node_struct["_meta"].copy()
return new_node_struct
class NodeReplaceManager:
"""Manages node replacement registrations."""
def __init__(self):
self._replacements: dict[str, list[NodeReplace]] = {}
def register(self, node_replace: NodeReplace):
"""Register a node replacement mapping."""
self._replacements.setdefault(node_replace.old_node_id, []).append(node_replace)
def get_replacement(self, old_node_id: str) -> list[NodeReplace] | None:
"""Get replacements for an old node ID."""
return self._replacements.get(old_node_id)
def has_replacement(self, old_node_id: str) -> bool:
"""Check if a replacement exists for an old node ID."""
return old_node_id in self._replacements
def apply_replacements(self, prompt: dict[str, NodeStruct]):
connections: dict[str, list[tuple[str, str, int]]] = {}
need_replacement: set[str] = set()
for node_number, node_struct in prompt.items():
class_type = node_struct["class_type"]
# need replacement if not in NODE_CLASS_MAPPINGS and has replacement
if class_type not in NODE_CLASS_MAPPINGS.keys() and self.has_replacement(class_type):
need_replacement.add(node_number)
# keep track of connections
for input_id, input_value in node_struct["inputs"].items():
if isinstance(input_value, list):
conn_number = input_value[0]
connections.setdefault(conn_number, []).append((node_number, input_id, input_value[1]))
if len(need_replacement) > 0:
for node_number in need_replacement:
node_struct = prompt[node_number]
class_type = node_struct["class_type"]
replacements = self.get_replacement(class_type)
if replacements is None:
continue
# just use the first replacement
replacement = replacements[0]
new_node_id = replacement.new_node_id
# if replacement is not a valid node, skip trying to replace it as will only cause confusion
if new_node_id not in NODE_CLASS_MAPPINGS.keys():
continue
# first, replace node id (class_type)
new_node_struct = copy_node_struct(node_struct, empty_inputs=True)
new_node_struct["class_type"] = new_node_id
# TODO: consider replacing display_name in _meta as well for error reporting purposes; would need to query node schema
# second, replace inputs
if replacement.input_mapping is not None:
for input_map in replacement.input_mapping:
if "set_value" in input_map:
new_node_struct["inputs"][input_map["new_id"]] = input_map["set_value"]
elif "old_id" in input_map:
new_node_struct["inputs"][input_map["new_id"]] = node_struct["inputs"][input_map["old_id"]]
# finalize input replacement
prompt[node_number] = new_node_struct
# third, replace outputs
if replacement.output_mapping is not None:
# re-mapping outputs requires changing the input values of nodes that receive connections from this one
if node_number in connections:
for conns in connections[node_number]:
conn_node_number, conn_input_id, old_output_idx = conns
for output_map in replacement.output_mapping:
if output_map["old_idx"] == old_output_idx:
new_output_idx = output_map["new_idx"]
previous_input = prompt[conn_node_number]["inputs"][conn_input_id]
previous_input[1] = new_output_idx
def as_dict(self):
"""Serialize all replacements to dict."""
return {
k: [v.as_dict() for v in v_list]
for k, v_list in self._replacements.items()
}
def add_routes(self, routes):
@routes.get("/node_replacements")
async def get_node_replacements(request):
return web.json_response(self.as_dict())

View File

@ -1,11 +1,12 @@
import math
import time
from functools import partial
from scipy import integrate
import torch
from torch import nn
import torchsde
from tqdm.auto import tqdm
from tqdm.auto import trange as trange_, tqdm
from . import utils
from . import deis
@ -14,7 +15,34 @@ import comfy.model_patcher
import comfy.model_sampling
import comfy.memory_management
from comfy.utils import model_trange as trange
def trange(*args, **kwargs):
if comfy.memory_management.aimdo_allocator is None:
return trange_(*args, **kwargs)
pbar = trange_(*args, **kwargs, smoothing=1.0)
pbar._i = 0
pbar.set_postfix_str(" Model Initializing ... ")
_update = pbar.update
def warmup_update(n=1):
pbar._i += 1
if pbar._i == 1:
pbar.i1_time = time.time()
pbar.set_postfix_str(" Model Initialization complete! ")
elif pbar._i == 2:
#bring forward the effective start time based the the diff between first and second iteration
#to attempt to remove load overhead from the final step rate estimate.
pbar.start_t = pbar.i1_time - (time.time() - pbar.i1_time)
pbar.set_postfix_str("")
_update(n)
pbar.update = warmup_update
return pbar
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])

View File

@ -1213,12 +1213,8 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str
signature = comfy_aimdo.model_vbar.vbar_fault(weight._v)
if signature is not None:
if comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature):
v_tensor = weight._v_tensor
else:
raw_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device)
v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, raw_tensor)[0]
weight._v_tensor = v_tensor
v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, weight._v_tensor)[0]
if not comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature):
weight._v_signature = signature
#Send it over
v_tensor.copy_(weight, non_blocking=non_blocking)

View File

@ -679,19 +679,18 @@ class ModelPatcher:
for key in list(self.pinned):
self.unpin_weight(key)
def _load_list(self, prio_comfy_cast_weights=False, default_device=None):
def _load_list(self, prio_comfy_cast_weights=False):
loading = []
for n, m in self.model.named_modules():
default = False
params = { name: param for name, param in m.named_parameters(recurse=False) }
params = []
skip = False
for name, param in m.named_parameters(recurse=False):
params.append(name)
for name, param in m.named_parameters(recurse=True):
if name not in params:
default = True # default random weights in non leaf modules
skip = True # skip random weights in non leaf modules
break
if default and default_device is not None:
for param in params.values():
param.data = param.data.to(device=default_device)
if not default and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
module_mem = comfy.model_management.module_size(m)
module_offload_mem = module_mem
if hasattr(m, "comfy_cast_weights"):
@ -1496,7 +1495,7 @@ class ModelPatcherDynamic(ModelPatcher):
#with pin and unpin syncrhonization which can be expensive for small weights
#with a high layer rate (e.g. autoregressive LLMs).
#prioritize the non-comfy weights (note the order reverse).
loading = self._load_list(prio_comfy_cast_weights=True, default_device=device_to)
loading = self._load_list(prio_comfy_cast_weights=True)
loading.sort(reverse=True)
for x in loading:
@ -1526,7 +1525,7 @@ class ModelPatcherDynamic(ModelPatcher):
setattr(m, param_key + "_function", weight_function)
geometry = weight
if not isinstance(weight, QuantizedTensor):
model_dtype = getattr(m, param_key + "_comfy_model_dtype", None) or weight.dtype
model_dtype = getattr(m, param_key + "_comfy_model_dtype", weight.dtype)
weight._model_dtype = model_dtype
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
return comfy.memory_management.vram_aligned_size(geometry)
@ -1543,6 +1542,7 @@ class ModelPatcherDynamic(ModelPatcher):
if vbar is not None and not hasattr(m, "_v"):
m._v = vbar.alloc(v_weight_size)
m._v_tensor = comfy_aimdo.torch.aimdo_to_tensor(m._v, device_to)
allocated_size += v_weight_size
else:
@ -1552,11 +1552,12 @@ class ModelPatcherDynamic(ModelPatcher):
weight.seed_key = key
set_dirty(weight, dirty)
geometry = weight
model_dtype = getattr(m, param + "_comfy_model_dtype", None) or weight.dtype
model_dtype = getattr(m, param + "_comfy_model_dtype", weight.dtype)
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
weight_size = geometry.numel() * geometry.element_size()
if vbar is not None and not hasattr(weight, "_v"):
weight._v = vbar.alloc(weight_size)
weight._v_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device_to)
weight._model_dtype = model_dtype
allocated_size += weight_size
vbar.set_watermark_limit(allocated_size)
@ -1580,7 +1581,7 @@ class ModelPatcherDynamic(ModelPatcher):
return 0 if vbar is None else vbar.free_memory(memory_to_free)
def partially_unload_ram(self, ram_to_unload):
loading = self._load_list(prio_comfy_cast_weights=True, default_device=self.offload_device)
loading = self._load_list(prio_comfy_cast_weights=True)
for x in loading:
_, _, _, _, m, _ = x
ram_to_unload -= comfy.pinned_memory.unpin_memory(m)

View File

@ -83,18 +83,14 @@ def cast_to_input(weight, input, non_blocking=False, copy=True):
def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype):
offload_stream = None
xfer_dest = None
cast_geometry = comfy.memory_management.tensors_to_geometries([ s.weight, s.bias ])
signature = comfy_aimdo.model_vbar.vbar_fault(s._v)
resident = comfy_aimdo.model_vbar.vbar_signature_compare(signature, s._v_signature)
if signature is not None:
if resident:
weight = s._v_weight
bias = s._v_bias
else:
xfer_dest = comfy_aimdo.torch.aimdo_to_tensor(s._v, device)
xfer_dest = s._v_tensor
resident = comfy_aimdo.model_vbar.vbar_signature_compare(signature, s._v_signature)
if not resident:
cast_geometry = comfy.memory_management.tensors_to_geometries([ s.weight, s.bias ])
cast_dest = None
xfer_source = [ s.weight, s.bias ]
@ -144,13 +140,9 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu
post_cast.copy_(pre_cast)
xfer_dest = cast_dest
params = comfy.memory_management.interpret_gathered_like(cast_geometry, xfer_dest)
weight = params[0]
bias = params[1]
if signature is not None:
s._v_weight = weight
s._v_bias = bias
s._v_signature=signature
params = comfy.memory_management.interpret_gathered_like(cast_geometry, xfer_dest)
weight = params[0]
bias = params[1]
def post_cast(s, param_key, x, dtype, resident, update_weight):
lowvram_fn = getattr(s, param_key + "_lowvram_function", None)
@ -190,6 +182,7 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu
weight = post_cast(s, "weight", weight, dtype, resident, update_weight)
if s.bias is not None:
bias = post_cast(s, "bias", bias, bias_dtype, resident, update_weight)
s._v_signature=signature
#FIXME: weird offload return protocol
return weight, bias, (offload_stream, device if signature is not None else None, None)

View File

@ -3,6 +3,7 @@ import comfy.text_encoders.llama
from comfy import sd1_clip
import torch
import math
from tqdm.auto import trange
import yaml
import comfy.utils
@ -16,7 +17,6 @@ def sample_manual_loop_no_classes(
temperature: float = 0.85,
top_p: float = 0.9,
top_k: int = None,
min_p: float = 0.000,
seed: int = 1,
min_tokens: int = 1,
max_new_tokens: int = 2048,
@ -52,7 +52,7 @@ def sample_manual_loop_no_classes(
progress_bar = comfy.utils.ProgressBar(max_new_tokens)
for step in comfy.utils.model_trange(max_new_tokens, desc="LM sampling"):
for step in trange(max_new_tokens, desc="LM sampling"):
outputs = model.transformer(None, attention_mask, embeds=embeds.to(execution_dtype), num_tokens=num_tokens, intermediate_output=None, dtype=execution_dtype, embeds_info=embeds_info, past_key_values=past_key_values)
next_token_logits = model.transformer.logits(outputs[0])[:, -1]
past_key_values = outputs[2]
@ -81,12 +81,6 @@ def sample_manual_loop_no_classes(
min_val = top_k_vals[..., -1, None]
cfg_logits[cfg_logits < min_val] = remove_logit_value
if min_p is not None and min_p > 0:
probs = torch.softmax(cfg_logits, dim=-1)
p_max = probs.max(dim=-1, keepdim=True).values
indices_to_remove = probs < (min_p * p_max)
cfg_logits[indices_to_remove] = remove_logit_value
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(cfg_logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
@ -117,7 +111,7 @@ def sample_manual_loop_no_classes(
return output_audio_codes
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0, cfg_scale=2.0, temperature=0.85, top_p=0.9, top_k=0, min_p=0.000):
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0, cfg_scale=2.0, temperature=0.85, top_p=0.9, top_k=0):
positive = [[token for token, _ in inner_list] for inner_list in positive]
positive = positive[0]
@ -141,7 +135,7 @@ def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=102
paddings = []
ids = [positive]
return sample_manual_loop_no_classes(model, ids, paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
return sample_manual_loop_no_classes(model, ids, paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
@ -199,7 +193,6 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
temperature = kwargs.get("temperature", 0.85)
top_p = kwargs.get("top_p", 0.9)
top_k = kwargs.get("top_k", 0.0)
min_p = kwargs.get("min_p", 0.000)
duration = math.ceil(duration)
kwargs["duration"] = duration
@ -247,7 +240,6 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"min_p": min_p,
}
return out
@ -308,7 +300,7 @@ class ACE15TEModel(torch.nn.Module):
lm_metadata = token_weight_pairs["lm_metadata"]
if lm_metadata["generate_audio_codes"]:
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["min_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"], min_p=lm_metadata["min_p"])
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["max_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"])
out["audio_codes"] = [audio_codes]
return base_out, None, out

View File

@ -355,6 +355,13 @@ class RMSNorm(nn.Module):
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def precompute_freqs_cis(head_dim, position_ids, theta, rope_scale=None, rope_dims=None, device=None):
if not isinstance(theta, list):
theta = [theta]
@ -383,30 +390,20 @@ def precompute_freqs_cis(head_dim, position_ids, theta, rope_scale=None, rope_di
else:
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
sin_split = sin.shape[-1] // 2
out.append((cos, sin[..., : sin_split], -sin[..., sin_split :]))
out.append((cos, sin))
if len(out) == 1:
return out[0]
return out
def apply_rope(xq, xk, freqs_cis):
org_dtype = xq.dtype
cos = freqs_cis[0]
sin = freqs_cis[1]
nsin = freqs_cis[2]
q_embed = (xq * cos)
q_split = q_embed.shape[-1] // 2
q_embed[..., : q_split].addcmul_(xq[..., q_split :], nsin)
q_embed[..., q_split :].addcmul_(xq[..., : q_split], sin)
k_embed = (xk * cos)
k_split = k_embed.shape[-1] // 2
k_embed[..., : k_split].addcmul_(xk[..., k_split :], nsin)
k_embed[..., k_split :].addcmul_(xk[..., : k_split], sin)
q_embed = (xq * cos) + (rotate_half(xq) * sin)
k_embed = (xk * cos) + (rotate_half(xk) * sin)
return q_embed.to(org_dtype), k_embed.to(org_dtype)

View File

@ -27,7 +27,6 @@ from PIL import Image
import logging
import itertools
from torch.nn.functional import interpolate
from tqdm.auto import trange
from einops import rearrange
from comfy.cli_args import args, enables_dynamic_vram
import json
@ -1156,32 +1155,6 @@ def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_am
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
return tiled_scale_multidim(samples, function, (tile_y, tile_x), overlap=overlap, upscale_amount=upscale_amount, out_channels=out_channels, output_device=output_device, pbar=pbar)
def model_trange(*args, **kwargs):
if comfy.memory_management.aimdo_allocator is None:
return trange(*args, **kwargs)
pbar = trange(*args, **kwargs, smoothing=1.0)
pbar._i = 0
pbar.set_postfix_str(" Model Initializing ... ")
_update = pbar.update
def warmup_update(n=1):
pbar._i += 1
if pbar._i == 1:
pbar.i1_time = time.time()
pbar.set_postfix_str(" Model Initialization complete! ")
elif pbar._i == 2:
#bring forward the effective start time based the the diff between first and second iteration
#to attempt to remove load overhead from the final step rate estimate.
pbar.start_t = pbar.i1_time - (time.time() - pbar.i1_time)
pbar.set_postfix_str("")
_update(n)
pbar.update = warmup_update
return pbar
PROGRESS_BAR_ENABLED = True
def set_progress_bar_enabled(enabled):
global PROGRESS_BAR_ENABLED

View File

@ -14,7 +14,6 @@ SERVER_FEATURE_FLAGS: dict[str, Any] = {
"supports_preview_metadata": True,
"max_upload_size": args.max_upload_size * 1024 * 1024, # Convert MB to bytes
"extension": {"manager": {"supports_v4": True}},
"node_replacements": True,
}

View File

@ -10,7 +10,6 @@ from ._input_impl import VideoFromFile, VideoFromComponents
from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL, File3D
from . import _io_public as io
from . import _ui_public as ui
from . import _node_replace_public as node_replace
from comfy_execution.utils import get_executing_context
from comfy_execution.progress import get_progress_state, PreviewImageTuple
from PIL import Image
@ -22,14 +21,6 @@ class ComfyAPI_latest(ComfyAPIBase):
VERSION = "latest"
STABLE = False
class NodeReplacement(ProxiedSingleton):
async def register(self, node_replace: 'node_replace.NodeReplace') -> None:
"""Register a node replacement mapping."""
from server import PromptServer
PromptServer.instance.node_replace_manager.register(node_replace)
node_replacement: NodeReplacement
class Execution(ProxiedSingleton):
async def set_progress(
self,
@ -140,5 +131,4 @@ __all__ = [
"IO",
"ui",
"UI",
"node_replace",
]

View File

@ -1,69 +0,0 @@
from __future__ import annotations
from typing import Any, TypedDict
class InputMapOldId(TypedDict):
"""Map an old node input to a new node input by ID."""
new_id: str
old_id: str
class InputMapSetValue(TypedDict):
"""Set a specific value for a new node input."""
new_id: str
set_value: Any
InputMap = InputMapOldId | InputMapSetValue
"""
Input mapping for node replacement. Type is inferred by dictionary keys:
- {"new_id": str, "old_id": str} - maps old input to new input
- {"new_id": str, "set_value": Any} - sets a specific value for new input
"""
class OutputMap(TypedDict):
"""Map outputs of node replacement via indexes."""
new_idx: int
old_idx: int
class NodeReplace:
"""
Defines a possible node replacement, mapping inputs and outputs of the old node to the new node.
Also supports assigning specific values to the input widgets of the new node.
Args:
new_node_id: The class name of the new replacement node.
old_node_id: The class name of the deprecated node.
old_widget_ids: Ordered list of input IDs for widgets that may not have an input slot
connected. The workflow JSON stores widget values by their relative position index,
not by ID. This list maps those positional indexes to input IDs, enabling the
replacement system to correctly identify widget values during node migration.
input_mapping: List of input mappings from old node to new node.
output_mapping: List of output mappings from old node to new node.
"""
def __init__(self,
new_node_id: str,
old_node_id: str,
old_widget_ids: list[str] | None=None,
input_mapping: list[InputMap] | None=None,
output_mapping: list[OutputMap] | None=None,
):
self.new_node_id = new_node_id
self.old_node_id = old_node_id
self.old_widget_ids = old_widget_ids
self.input_mapping = input_mapping
self.output_mapping = output_mapping
def as_dict(self):
"""Create serializable representation of the node replacement."""
return {
"new_node_id": self.new_node_id,
"old_node_id": self.old_node_id,
"old_widget_ids": self.old_widget_ids,
"input_mapping": list(self.input_mapping) if self.input_mapping else None,
"output_mapping": list(self.output_mapping) if self.output_mapping else None,
}

View File

@ -1 +0,0 @@
from ._node_replace import * # noqa: F403

View File

@ -6,7 +6,7 @@ from comfy_api.latest import (
)
from typing import Type, TYPE_CHECKING
from comfy_api.internal.async_to_sync import create_sync_class
from comfy_api.latest import io, ui, IO, UI, ComfyExtension, node_replace #noqa: F401
from comfy_api.latest import io, ui, IO, UI, ComfyExtension #noqa: F401
class ComfyAPIAdapter_v0_0_2(ComfyAPI_latest):
@ -46,5 +46,4 @@ __all__ = [
"IO",
"ui",
"UI",
"node_replace",
]

View File

@ -30,30 +30,6 @@ from comfy_api_nodes.util import (
validate_image_dimensions,
)
_EUR_TO_USD = 1.19
def _tier_price_eur(megapixels: float) -> float:
"""Price in EUR for a single Magnific upscaling step based on input megapixels."""
if megapixels <= 1.3:
return 0.143
if megapixels <= 3.0:
return 0.286
if megapixels <= 6.4:
return 0.429
return 1.716
def _calculate_magnific_upscale_price_usd(width: int, height: int, scale: int) -> float:
"""Calculate total Magnific upscale price in USD for given input dimensions and scale factor."""
num_steps = int(math.log2(scale))
total_eur = 0.0
pixels = width * height
for _ in range(num_steps):
total_eur += _tier_price_eur(pixels / 1_000_000)
pixels *= 4
return round(total_eur * _EUR_TO_USD, 2)
class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
@classmethod
@ -127,20 +103,11 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor", "auto_downscale"]),
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]),
expr="""
(
$ad := widgets.auto_downscale;
$mins := $ad
? {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.515}
: {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.844};
$maxs := {"2x": 0.515, "4x": 0.844, "8x": 1.015, "16x": 1.187};
{
"type": "range_usd",
"min_usd": $lookup($mins, widgets.scale_factor),
"max_usd": $lookup($maxs, widgets.scale_factor),
"format": { "approximate": true }
}
$max := widgets.scale_factor = "2x" ? 1.326 : 1.657;
{"type": "range_usd", "min_usd": 0.11, "max_usd": $max}
)
""",
),
@ -201,10 +168,6 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
f"Use a smaller input image or lower scale factor."
)
final_height, final_width = get_image_dimensions(image)
actual_scale = int(scale_factor.rstrip("x"))
price_usd = _calculate_magnific_upscale_price_usd(final_width, final_height, actual_scale)
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler", method="POST"),
@ -226,7 +189,6 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler/{initial_res.task_id}"),
response_model=TaskResponse,
status_extractor=lambda x: x.status,
price_extractor=lambda _: price_usd,
poll_interval=10.0,
max_poll_attempts=480,
)
@ -295,14 +257,8 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]),
expr="""
(
$mins := {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.844};
$maxs := {"2x": 2.045, "4x": 2.545, "8x": 2.889, "16x": 3.06};
{
"type": "range_usd",
"min_usd": $lookup($mins, widgets.scale_factor),
"max_usd": $lookup($maxs, widgets.scale_factor),
"format": { "approximate": true }
}
$max := widgets.scale_factor = "2x" ? 1.326 : 1.657;
{"type": "range_usd", "min_usd": 0.11, "max_usd": $max}
)
""",
),
@ -365,9 +321,6 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
f"Use a smaller input image or lower scale factor."
)
final_height, final_width = get_image_dimensions(image)
price_usd = _calculate_magnific_upscale_price_usd(final_width, final_height, requested_scale)
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler-precision-v2", method="POST"),
@ -386,7 +339,6 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler-precision-v2/{initial_res.task_id}"),
response_model=TaskResponse,
status_extractor=lambda x: x.status,
price_extractor=lambda _: price_usd,
poll_interval=10.0,
max_poll_attempts=480,
)
@ -925,8 +877,8 @@ class MagnificExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
MagnificImageUpscalerCreativeNode,
MagnificImageUpscalerPreciseV2Node,
# MagnificImageUpscalerCreativeNode,
# MagnificImageUpscalerPreciseV2Node,
MagnificImageStyleTransferNode,
MagnificImageRelightNode,
MagnificImageSkinEnhancerNode,

View File

@ -57,7 +57,6 @@ class _RequestConfig:
files: dict[str, Any] | list[tuple[str, Any]] | None
multipart_parser: Callable | None
max_retries: int
max_retries_on_rate_limit: int
retry_delay: float
retry_backoff: float
wait_label: str = "Waiting"
@ -66,7 +65,6 @@ class _RequestConfig:
final_label_on_success: str | None = "Completed"
progress_origin_ts: float | None = None
price_extractor: Callable[[dict[str, Any]], float | None] | None = None
is_rate_limited: Callable[[int, Any], bool] | None = None
@dataclass
@ -80,7 +78,7 @@ class _PollUIState:
active_since: float | None = None # start time of current active interval (None if queued)
_RETRY_STATUS = {408, 500, 502, 503, 504} # status 429 is handled separately
_RETRY_STATUS = {408, 429, 500, 502, 503, 504}
COMPLETED_STATUSES = ["succeeded", "succeed", "success", "completed", "finished", "done", "complete"]
FAILED_STATUSES = ["cancelled", "canceled", "canceling", "fail", "failed", "error"]
QUEUED_STATUSES = ["created", "queued", "queueing", "submitted", "initializing"]
@ -105,8 +103,6 @@ async def sync_op(
final_label_on_success: str | None = "Completed",
progress_origin_ts: float | None = None,
monitor_progress: bool = True,
max_retries_on_rate_limit: int = 16,
is_rate_limited: Callable[[int, Any], bool] | None = None,
) -> M:
raw = await sync_op_raw(
cls,
@ -126,8 +122,6 @@ async def sync_op(
final_label_on_success=final_label_on_success,
progress_origin_ts=progress_origin_ts,
monitor_progress=monitor_progress,
max_retries_on_rate_limit=max_retries_on_rate_limit,
is_rate_limited=is_rate_limited,
)
if not isinstance(raw, dict):
raise Exception("Expected JSON response to validate into a Pydantic model, got non-JSON (binary or text).")
@ -200,8 +194,6 @@ async def sync_op_raw(
final_label_on_success: str | None = "Completed",
progress_origin_ts: float | None = None,
monitor_progress: bool = True,
max_retries_on_rate_limit: int = 16,
is_rate_limited: Callable[[int, Any], bool] | None = None,
) -> dict[str, Any] | bytes:
"""
Make a single network request.
@ -230,8 +222,6 @@ async def sync_op_raw(
final_label_on_success=final_label_on_success,
progress_origin_ts=progress_origin_ts,
price_extractor=price_extractor,
max_retries_on_rate_limit=max_retries_on_rate_limit,
is_rate_limited=is_rate_limited,
)
return await _request_base(cfg, expect_binary=as_binary)
@ -516,7 +506,7 @@ def _friendly_http_message(status: int, body: Any) -> str:
if status == 409:
return "There is a problem with your account. Please contact support@comfy.org."
if status == 429:
return "Rate Limit Exceeded: The server returned 429 after all retry attempts. Please wait and try again."
return "Rate Limit Exceeded: Please try again later."
try:
if isinstance(body, dict):
err = body.get("error")
@ -596,8 +586,6 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
start_time = cfg.progress_origin_ts if cfg.progress_origin_ts is not None else time.monotonic()
attempt = 0
delay = cfg.retry_delay
rate_limit_attempts = 0
rate_limit_delay = cfg.retry_delay
operation_succeeded: bool = False
final_elapsed_seconds: int | None = None
extracted_price: float | None = None
@ -665,14 +653,17 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
payload_headers["Content-Type"] = "application/json"
payload_kw["json"] = cfg.data or {}
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
request_headers=dict(payload_headers) if payload_headers else None,
request_params=dict(params) if params else None,
request_data=request_body_log,
)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
request_headers=dict(payload_headers) if payload_headers else None,
request_params=dict(params) if params else None,
request_data=request_body_log,
)
except Exception as _log_e:
logging.debug("[DEBUG] request logging failed: %s", _log_e)
req_coro = sess.request(method, url, params=params, **payload_kw)
req_task = asyncio.create_task(req_coro)
@ -697,33 +688,41 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
body = await resp.json()
except (ContentTypeError, json.JSONDecodeError):
body = await resp.text()
should_retry = False
wait_time = 0.0
retry_label = ""
is_rl = resp.status == 429 or (
cfg.is_rate_limited is not None and cfg.is_rate_limited(resp.status, body)
)
if is_rl and rate_limit_attempts < cfg.max_retries_on_rate_limit:
rate_limit_attempts += 1
wait_time = min(rate_limit_delay, 30.0)
rate_limit_delay *= cfg.retry_backoff
retry_label = f"rate-limit retry {rate_limit_attempts} of {cfg.max_retries_on_rate_limit}"
should_retry = True
elif resp.status in _RETRY_STATUS and (attempt - rate_limit_attempts) <= cfg.max_retries:
wait_time = delay
delay *= cfg.retry_backoff
retry_label = f"retry {attempt - rate_limit_attempts} of {cfg.max_retries}"
should_retry = True
if should_retry:
if resp.status in _RETRY_STATUS and attempt <= cfg.max_retries:
logging.warning(
"HTTP %s %s -> %s. Waiting %.2fs (%s).",
"HTTP %s %s -> %s. Retrying in %.2fs (retry %d of %d).",
method,
url,
resp.status,
wait_time,
retry_label,
delay,
attempt,
cfg.max_retries,
)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=body,
error_message=_friendly_http_message(resp.status, body),
)
except Exception as _log_e:
logging.debug("[DEBUG] response logging failed: %s", _log_e)
await sleep_with_interrupt(
delay,
cfg.node_cls,
cfg.wait_label if cfg.monitor_progress else None,
start_time if cfg.monitor_progress else None,
cfg.estimated_total,
display_callback=_display_time_progress if cfg.monitor_progress else None,
)
delay *= cfg.retry_backoff
continue
msg = _friendly_http_message(resp.status, body)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
@ -731,27 +730,10 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=body,
error_message=f"HTTP {resp.status} ({retry_label}, will retry in {wait_time:.1f}s)",
error_message=msg,
)
await sleep_with_interrupt(
wait_time,
cfg.node_cls,
cfg.wait_label if cfg.monitor_progress else None,
start_time if cfg.monitor_progress else None,
cfg.estimated_total,
display_callback=_display_time_progress if cfg.monitor_progress else None,
)
continue
msg = _friendly_http_message(resp.status, body)
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=body,
error_message=msg,
)
except Exception as _log_e:
logging.debug("[DEBUG] response logging failed: %s", _log_e)
raise Exception(msg)
if expect_binary:
@ -771,14 +753,17 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
bytes_payload = bytes(buff)
operation_succeeded = True
final_elapsed_seconds = int(time.monotonic() - start_time)
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=bytes_payload,
)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=bytes_payload,
)
except Exception as _log_e:
logging.debug("[DEBUG] response logging failed: %s", _log_e)
return bytes_payload
else:
try:
@ -795,39 +780,45 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
extracted_price = cfg.price_extractor(payload) if cfg.price_extractor else None
operation_succeeded = True
final_elapsed_seconds = int(time.monotonic() - start_time)
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=response_content_to_log,
)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=response_content_to_log,
)
except Exception as _log_e:
logging.debug("[DEBUG] response logging failed: %s", _log_e)
return payload
except ProcessingInterrupted:
logging.debug("Polling was interrupted by user")
raise
except (ClientError, OSError) as e:
if (attempt - rate_limit_attempts) <= cfg.max_retries:
if attempt <= cfg.max_retries:
logging.warning(
"Connection error calling %s %s. Retrying in %.2fs (%d/%d): %s",
method,
url,
delay,
attempt - rate_limit_attempts,
attempt,
cfg.max_retries,
str(e),
)
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
request_headers=dict(payload_headers) if payload_headers else None,
request_params=dict(params) if params else None,
request_data=request_body_log,
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
request_headers=dict(payload_headers) if payload_headers else None,
request_params=dict(params) if params else None,
request_data=request_body_log,
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
)
except Exception as _log_e:
logging.debug("[DEBUG] request error logging failed: %s", _log_e)
await sleep_with_interrupt(
delay,
cfg.node_cls,
@ -840,6 +831,23 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
continue
diag = await _diagnose_connectivity()
if not diag["internet_accessible"]:
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
request_headers=dict(payload_headers) if payload_headers else None,
request_params=dict(params) if params else None,
request_data=request_body_log,
error_message=f"LocalNetworkError: {str(e)}",
)
except Exception as _log_e:
logging.debug("[DEBUG] final error logging failed: %s", _log_e)
raise LocalNetworkError(
"Unable to connect to the API server due to local network issues. "
"Please check your internet connection and try again."
) from e
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
@ -847,21 +855,10 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
request_headers=dict(payload_headers) if payload_headers else None,
request_params=dict(params) if params else None,
request_data=request_body_log,
error_message=f"LocalNetworkError: {str(e)}",
error_message=f"ApiServerError: {str(e)}",
)
raise LocalNetworkError(
"Unable to connect to the API server due to local network issues. "
"Please check your internet connection and try again."
) from e
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
request_headers=dict(payload_headers) if payload_headers else None,
request_params=dict(params) if params else None,
request_data=request_body_log,
error_message=f"ApiServerError: {str(e)}",
)
except Exception as _log_e:
logging.debug("[DEBUG] final error logging failed: %s", _log_e)
raise ApiServerError(
f"The API server at {default_base_url()} is currently unreachable. "
f"The service may be experiencing issues."

View File

@ -167,25 +167,27 @@ async def download_url_to_bytesio(
with contextlib.suppress(Exception):
dest.seek(0)
request_logger.log_request_response(
operation_id=op_id,
request_method="GET",
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=f"[streamed {written} bytes to dest]",
)
with contextlib.suppress(Exception):
request_logger.log_request_response(
operation_id=op_id,
request_method="GET",
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=f"[streamed {written} bytes to dest]",
)
return
except asyncio.CancelledError:
raise ProcessingInterrupted("Task cancelled") from None
except (ClientError, OSError) as e:
if attempt <= max_retries:
request_logger.log_request_response(
operation_id=op_id,
request_method="GET",
request_url=url,
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
)
with contextlib.suppress(Exception):
request_logger.log_request_response(
operation_id=op_id,
request_method="GET",
request_url=url,
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
)
await sleep_with_interrupt(delay, cls, None, None, None)
delay *= retry_backoff
continue

View File

@ -8,6 +8,7 @@ from typing import Any
import folder_paths
# Get the logger instance
logger = logging.getLogger(__name__)
@ -90,41 +91,38 @@ def log_request_response(
Filenames are sanitized and length-limited for cross-platform safety.
If we still fail to write, we fall back to appending into api.log.
"""
log_dir = get_log_directory()
filepath = _build_log_filepath(log_dir, operation_id, request_url)
log_content: list[str] = []
log_content.append(f"Timestamp: {datetime.datetime.now().isoformat()}")
log_content.append(f"Operation ID: {operation_id}")
log_content.append("-" * 30 + " REQUEST " + "-" * 30)
log_content.append(f"Method: {request_method}")
log_content.append(f"URL: {request_url}")
if request_headers:
log_content.append(f"Headers:\n{_format_data_for_logging(request_headers)}")
if request_params:
log_content.append(f"Params:\n{_format_data_for_logging(request_params)}")
if request_data is not None:
log_content.append(f"Data/Body:\n{_format_data_for_logging(request_data)}")
log_content.append("\n" + "-" * 30 + " RESPONSE " + "-" * 30)
if response_status_code is not None:
log_content.append(f"Status Code: {response_status_code}")
if response_headers:
log_content.append(f"Headers:\n{_format_data_for_logging(response_headers)}")
if response_content is not None:
log_content.append(f"Content:\n{_format_data_for_logging(response_content)}")
if error_message:
log_content.append(f"Error:\n{error_message}")
try:
log_dir = get_log_directory()
filepath = _build_log_filepath(log_dir, operation_id, request_url)
log_content: list[str] = []
log_content.append(f"Timestamp: {datetime.datetime.now().isoformat()}")
log_content.append(f"Operation ID: {operation_id}")
log_content.append("-" * 30 + " REQUEST " + "-" * 30)
log_content.append(f"Method: {request_method}")
log_content.append(f"URL: {request_url}")
if request_headers:
log_content.append(f"Headers:\n{_format_data_for_logging(request_headers)}")
if request_params:
log_content.append(f"Params:\n{_format_data_for_logging(request_params)}")
if request_data is not None:
log_content.append(f"Data/Body:\n{_format_data_for_logging(request_data)}")
log_content.append("\n" + "-" * 30 + " RESPONSE " + "-" * 30)
if response_status_code is not None:
log_content.append(f"Status Code: {response_status_code}")
if response_headers:
log_content.append(f"Headers:\n{_format_data_for_logging(response_headers)}")
if response_content is not None:
log_content.append(f"Content:\n{_format_data_for_logging(response_content)}")
if error_message:
log_content.append(f"Error:\n{error_message}")
try:
with open(filepath, "w", encoding="utf-8") as f:
f.write("\n".join(log_content))
logger.debug("API log saved to: %s", filepath)
except Exception as e:
logger.error("Error writing API log to %s: %s", filepath, str(e))
except Exception as _log_e:
logging.debug("[DEBUG] log_request_response failed: %s", _log_e)
with open(filepath, "w", encoding="utf-8") as f:
f.write("\n".join(log_content))
logger.debug("API log saved to: %s", filepath)
except Exception as e:
logger.error("Error writing API log to %s: %s", filepath, str(e))
if __name__ == '__main__':

View File

@ -255,14 +255,17 @@ async def upload_file(
monitor_task = asyncio.create_task(_monitor())
sess: aiohttp.ClientSession | None = None
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
request_headers=headers or None,
request_params=None,
request_data=f"[File data {len(data)} bytes]",
)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
request_headers=headers or None,
request_params=None,
request_data=f"[File data {len(data)} bytes]",
)
except Exception as e:
logging.debug("[DEBUG] upload request logging failed: %s", e)
sess = aiohttp.ClientSession(timeout=timeout)
req = sess.put(upload_url, data=data, headers=headers, skip_auto_headers=skip_auto_headers)
@ -308,27 +311,31 @@ async def upload_file(
delay *= retry_backoff
continue
raise Exception(f"Failed to upload (HTTP {resp.status}).")
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content="File uploaded successfully.",
)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content="File uploaded successfully.",
)
except Exception as e:
logging.debug("[DEBUG] upload response logging failed: %s", e)
return
except asyncio.CancelledError:
raise ProcessingInterrupted("Task cancelled") from None
except (aiohttp.ClientError, OSError) as e:
if attempt <= max_retries:
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
request_headers=headers or None,
request_data=f"[File data {len(data)} bytes]",
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
)
with contextlib.suppress(Exception):
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
request_headers=headers or None,
request_data=f"[File data {len(data)} bytes]",
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
)
await sleep_with_interrupt(
delay,
cls,

View File

@ -49,14 +49,13 @@ class TextEncodeAceStepAudio15(io.ComfyNode):
io.Float.Input("temperature", default=0.85, min=0.0, max=2.0, step=0.01, advanced=True),
io.Float.Input("top_p", default=0.9, min=0.0, max=2000.0, step=0.01, advanced=True),
io.Int.Input("top_k", default=0, min=0, max=100, advanced=True),
io.Float.Input("min_p", default=0.000, min=0.0, max=1.0, step=0.001, advanced=True),
],
outputs=[io.Conditioning.Output()],
)
@classmethod
def execute(cls, clip, tags, lyrics, seed, bpm, duration, timesignature, language, keyscale, generate_audio_codes, cfg_scale, temperature, top_p, top_k, min_p) -> io.NodeOutput:
tokens = clip.tokenize(tags, lyrics=lyrics, bpm=bpm, duration=duration, timesignature=int(timesignature), language=language, keyscale=keyscale, seed=seed, generate_audio_codes=generate_audio_codes, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p)
def execute(cls, clip, tags, lyrics, seed, bpm, duration, timesignature, language, keyscale, generate_audio_codes, cfg_scale, temperature, top_p, top_k) -> io.NodeOutput:
tokens = clip.tokenize(tags, lyrics=lyrics, bpm=bpm, duration=duration, timesignature=int(timesignature), language=language, keyscale=keyscale, seed=seed, generate_audio_codes=generate_audio_codes, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k)
conditioning = clip.encode_from_tokens_scheduled(tokens)
return io.NodeOutput(conditioning)

View File

@ -655,7 +655,6 @@ class BatchImagesMasksLatentsNode(io.ComfyNode):
batched = batch_masks(values)
return io.NodeOutput(batched)
class PostProcessingExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:

View File

@ -1,103 +0,0 @@
from comfy_api.latest import ComfyExtension, io, node_replace
from server import PromptServer
def _register(nr: node_replace.NodeReplace):
"""Helper to register replacements via PromptServer."""
PromptServer.instance.node_replace_manager.register(nr)
async def register_replacements():
"""Register all built-in node replacements."""
register_replacements_longeredge()
register_replacements_batchimages()
register_replacements_upscaleimage()
register_replacements_controlnet()
register_replacements_load3d()
register_replacements_preview3d()
register_replacements_svdimg2vid()
register_replacements_conditioningavg()
def register_replacements_longeredge():
# No dynamic inputs here
_register(node_replace.NodeReplace(
new_node_id="ImageScaleToMaxDimension",
old_node_id="ResizeImagesByLongerEdge",
old_widget_ids=["longer_edge"],
input_mapping=[
{"new_id": "image", "old_id": "images"},
{"new_id": "largest_size", "old_id": "longer_edge"},
{"new_id": "upscale_method", "set_value": "lanczos"},
],
# just to test the frontend output_mapping code, does nothing really here
output_mapping=[{"new_idx": 0, "old_idx": 0}],
))
def register_replacements_batchimages():
# BatchImages node uses Autogrow
_register(node_replace.NodeReplace(
new_node_id="BatchImagesNode",
old_node_id="ImageBatch",
input_mapping=[
{"new_id": "images.image0", "old_id": "image1"},
{"new_id": "images.image1", "old_id": "image2"},
],
))
def register_replacements_upscaleimage():
# ResizeImageMaskNode uses DynamicCombo
_register(node_replace.NodeReplace(
new_node_id="ResizeImageMaskNode",
old_node_id="ImageScaleBy",
old_widget_ids=["upscale_method", "scale_by"],
input_mapping=[
{"new_id": "input", "old_id": "image"},
{"new_id": "resize_type", "set_value": "scale by multiplier"},
{"new_id": "resize_type.multiplier", "old_id": "scale_by"},
{"new_id": "scale_method", "old_id": "upscale_method"},
],
))
def register_replacements_controlnet():
# T2IAdapterLoader → ControlNetLoader
_register(node_replace.NodeReplace(
new_node_id="ControlNetLoader",
old_node_id="T2IAdapterLoader",
input_mapping=[
{"new_id": "control_net_name", "old_id": "t2i_adapter_name"},
],
))
def register_replacements_load3d():
# Load3DAnimation merged into Load3D
_register(node_replace.NodeReplace(
new_node_id="Load3D",
old_node_id="Load3DAnimation",
))
def register_replacements_preview3d():
# Preview3DAnimation merged into Preview3D
_register(node_replace.NodeReplace(
new_node_id="Preview3D",
old_node_id="Preview3DAnimation",
))
def register_replacements_svdimg2vid():
# Typo fix: SDV → SVD
_register(node_replace.NodeReplace(
new_node_id="SVD_img2vid_Conditioning",
old_node_id="SDV_img2vid_Conditioning",
))
def register_replacements_conditioningavg():
# Typo fix: trailing space in node name
_register(node_replace.NodeReplace(
new_node_id="ConditioningAverage",
old_node_id="ConditioningAverage ",
))
class NodeReplacementsExtension(ComfyExtension):
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return []
async def comfy_entrypoint() -> NodeReplacementsExtension:
await register_replacements()
return NodeReplacementsExtension()

View File

@ -623,8 +623,6 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
logging.info("Memory summary: {}".format(comfy.model_management.debug_memory_summary()))
logging.error("Got an OOM, unloading all loaded models.")
comfy.model_management.unload_all_models()
elif isinstance(ex, RuntimeError) and ("mat1 and mat2 shapes" in str(ex)) and "Sampler" in class_type:
tips = "\n\nTIPS: If you have any \"Load CLIP\" or \"*CLIP Loader\" nodes in your workflow connected to this sampler node make sure the correct file(s) and type is selected."
error_details = {
"node_id": real_node_id,

View File

@ -2435,7 +2435,6 @@ async def init_builtin_extra_nodes():
"nodes_lora_debug.py",
"nodes_color.py",
"nodes_toolkit.py",
"nodes_replacements.py",
]
import_failed = []

View File

@ -40,7 +40,6 @@ from app.user_manager import UserManager
from app.model_manager import ModelFileManager
from app.custom_node_manager import CustomNodeManager
from app.subgraph_manager import SubgraphManager
from app.node_replace_manager import NodeReplaceManager
from typing import Optional, Union
from api_server.routes.internal.internal_routes import InternalRoutes
from protocol import BinaryEventTypes
@ -205,7 +204,6 @@ class PromptServer():
self.model_file_manager = ModelFileManager()
self.custom_node_manager = CustomNodeManager()
self.subgraph_manager = SubgraphManager()
self.node_replace_manager = NodeReplaceManager()
self.internal_routes = InternalRoutes(self)
self.supports = ["custom_nodes_from_web"]
self.prompt_queue = execution.PromptQueue(self)
@ -889,8 +887,6 @@ class PromptServer():
if "partial_execution_targets" in json_data:
partial_execution_targets = json_data["partial_execution_targets"]
self.node_replace_manager.apply_replacements(prompt)
valid = await execution.validate_prompt(prompt_id, prompt, partial_execution_targets)
extra_data = {}
if "extra_data" in json_data:
@ -999,7 +995,6 @@ class PromptServer():
self.model_file_manager.add_routes(self.routes)
self.custom_node_manager.add_routes(self.routes, self.app, nodes.LOADED_MODULE_DIRS.items())
self.subgraph_manager.add_routes(self.routes, nodes.LOADED_MODULE_DIRS.items())
self.node_replace_manager.add_routes(self.routes)
self.app.add_subapp('/internal', self.internal_routes.get_app())
# Prefix every route with /api for easier matching for delegation.