mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-08 20:55:21 +08:00
Compare commits
1 Commits
master
...
v3/model_m
| Author | SHA1 | Date | |
|---|---|---|---|
| ac1073be99 |
@ -1110,7 +1110,7 @@ class AceStepConditionGenerationModel(nn.Module):
|
||||
|
||||
return encoder_hidden, encoder_mask, context_latents
|
||||
|
||||
def forward(self, x, timestep, context, lyric_embed=None, refer_audio=None, audio_codes=None, is_covers=None, replace_with_null_embeds=False, **kwargs):
|
||||
def forward(self, x, timestep, context, lyric_embed=None, refer_audio=None, audio_codes=None, is_covers=None, **kwargs):
|
||||
text_attention_mask = None
|
||||
lyric_attention_mask = None
|
||||
refer_audio_order_mask = None
|
||||
@ -1140,9 +1140,6 @@ class AceStepConditionGenerationModel(nn.Module):
|
||||
src_latents, chunk_masks, is_covers, precomputed_lm_hints_25Hz=precomputed_lm_hints_25Hz, audio_codes=audio_codes
|
||||
)
|
||||
|
||||
if replace_with_null_embeds:
|
||||
enc_hidden[:] = self.null_condition_emb.to(enc_hidden)
|
||||
|
||||
out = self.decoder(hidden_states=x,
|
||||
timestep=timestep,
|
||||
timestep_r=timestep,
|
||||
|
||||
@ -335,7 +335,7 @@ class FinalLayer(nn.Module):
|
||||
device=None, dtype=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.layer_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.layer_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.linear = operations.Linear(
|
||||
hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False, device=device, dtype=dtype
|
||||
)
|
||||
@ -463,8 +463,6 @@ class Block(nn.Module):
|
||||
extra_per_block_pos_emb: Optional[torch.Tensor] = None,
|
||||
transformer_options: Optional[dict] = {},
|
||||
) -> torch.Tensor:
|
||||
residual_dtype = x_B_T_H_W_D.dtype
|
||||
compute_dtype = emb_B_T_D.dtype
|
||||
if extra_per_block_pos_emb is not None:
|
||||
x_B_T_H_W_D = x_B_T_H_W_D + extra_per_block_pos_emb
|
||||
|
||||
@ -514,7 +512,7 @@ class Block(nn.Module):
|
||||
result_B_T_H_W_D = rearrange(
|
||||
self.self_attn(
|
||||
# normalized_x_B_T_HW_D,
|
||||
rearrange(normalized_x_B_T_H_W_D.to(compute_dtype), "b t h w d -> b (t h w) d"),
|
||||
rearrange(normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
|
||||
None,
|
||||
rope_emb=rope_emb_L_1_1_D,
|
||||
transformer_options=transformer_options,
|
||||
@ -524,7 +522,7 @@ class Block(nn.Module):
|
||||
h=H,
|
||||
w=W,
|
||||
)
|
||||
x_B_T_H_W_D = x_B_T_H_W_D + gate_self_attn_B_T_1_1_D.to(residual_dtype) * result_B_T_H_W_D.to(residual_dtype)
|
||||
x_B_T_H_W_D = x_B_T_H_W_D + gate_self_attn_B_T_1_1_D * result_B_T_H_W_D
|
||||
|
||||
def _x_fn(
|
||||
_x_B_T_H_W_D: torch.Tensor,
|
||||
@ -538,7 +536,7 @@ class Block(nn.Module):
|
||||
)
|
||||
_result_B_T_H_W_D = rearrange(
|
||||
self.cross_attn(
|
||||
rearrange(_normalized_x_B_T_H_W_D.to(compute_dtype), "b t h w d -> b (t h w) d"),
|
||||
rearrange(_normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
|
||||
crossattn_emb,
|
||||
rope_emb=rope_emb_L_1_1_D,
|
||||
transformer_options=transformer_options,
|
||||
@ -557,7 +555,7 @@ class Block(nn.Module):
|
||||
shift_cross_attn_B_T_1_1_D,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
x_B_T_H_W_D = result_B_T_H_W_D.to(residual_dtype) * gate_cross_attn_B_T_1_1_D.to(residual_dtype) + x_B_T_H_W_D
|
||||
x_B_T_H_W_D = result_B_T_H_W_D * gate_cross_attn_B_T_1_1_D + x_B_T_H_W_D
|
||||
|
||||
normalized_x_B_T_H_W_D = _fn(
|
||||
x_B_T_H_W_D,
|
||||
@ -565,8 +563,8 @@ class Block(nn.Module):
|
||||
scale_mlp_B_T_1_1_D,
|
||||
shift_mlp_B_T_1_1_D,
|
||||
)
|
||||
result_B_T_H_W_D = self.mlp(normalized_x_B_T_H_W_D.to(compute_dtype))
|
||||
x_B_T_H_W_D = x_B_T_H_W_D + gate_mlp_B_T_1_1_D.to(residual_dtype) * result_B_T_H_W_D.to(residual_dtype)
|
||||
result_B_T_H_W_D = self.mlp(normalized_x_B_T_H_W_D)
|
||||
x_B_T_H_W_D = x_B_T_H_W_D + gate_mlp_B_T_1_1_D * result_B_T_H_W_D
|
||||
return x_B_T_H_W_D
|
||||
|
||||
|
||||
@ -878,14 +876,6 @@ class MiniTrainDIT(nn.Module):
|
||||
"extra_per_block_pos_emb": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
|
||||
"transformer_options": kwargs.get("transformer_options", {}),
|
||||
}
|
||||
|
||||
# The residual stream for this model has large values. To make fp16 compute_dtype work, we keep the residual stream
|
||||
# in fp32, but run attention and MLP modules in fp16.
|
||||
# An alternate method that clamps fp16 values "works" in the sense that it makes coherent images, but there is noticeable
|
||||
# quality degradation and visual artifacts.
|
||||
if x_B_T_H_W_D.dtype == torch.float16:
|
||||
x_B_T_H_W_D = x_B_T_H_W_D.float()
|
||||
|
||||
for block in self.blocks:
|
||||
x_B_T_H_W_D = block(
|
||||
x_B_T_H_W_D,
|
||||
@ -894,6 +884,6 @@ class MiniTrainDIT(nn.Module):
|
||||
**block_kwargs,
|
||||
)
|
||||
|
||||
x_B_T_H_W_O = self.final_layer(x_B_T_H_W_D.to(crossattn_emb.dtype), t_embedding_B_T_D, adaln_lora_B_T_3D=adaln_lora_B_T_3D)
|
||||
x_B_T_H_W_O = self.final_layer(x_B_T_H_W_D, t_embedding_B_T_D, adaln_lora_B_T_3D=adaln_lora_B_T_3D)
|
||||
x_B_C_Tt_Hp_Wp = self.unpatchify(x_B_T_H_W_O)[:, :, :orig_shape[-3], :orig_shape[-2], :orig_shape[-1]]
|
||||
return x_B_C_Tt_Hp_Wp
|
||||
|
||||
@ -1552,8 +1552,6 @@ class ACEStep15(BaseModel):
|
||||
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
if torch.count_nonzero(cross_attn) == 0:
|
||||
out['replace_with_null_embeds'] = comfy.conds.CONDConstant(True)
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
|
||||
conditioning_lyrics = kwargs.get("conditioning_lyrics", None)
|
||||
@ -1577,10 +1575,6 @@ class ACEStep15(BaseModel):
|
||||
else:
|
||||
out['is_covers'] = comfy.conds.CONDConstant(False)
|
||||
|
||||
if refer_audio.shape[2] < noise.shape[2]:
|
||||
pad = comfy.ldm.ace.ace_step15.get_silence_latent(noise.shape[2], device)
|
||||
refer_audio = torch.cat([refer_audio.to(pad), pad[:, :, refer_audio.shape[2]:]], dim=2)
|
||||
|
||||
out['refer_audio'] = comfy.conds.CONDRegular(refer_audio)
|
||||
return out
|
||||
|
||||
|
||||
@ -993,7 +993,7 @@ class CosmosT2IPredict2(supported_models_base.BASE):
|
||||
|
||||
memory_usage_factor = 1.0
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
@ -1023,7 +1023,11 @@ class Anima(supported_models_base.BASE):
|
||||
|
||||
memory_usage_factor = 1.0
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.95
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Anima(self, device=device)
|
||||
@ -1034,12 +1038,6 @@ class Anima(supported_models_base.BASE):
|
||||
detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_06b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.anima.AnimaTokenizer, comfy.text_encoders.anima.te(**detect))
|
||||
|
||||
def set_inference_dtype(self, dtype, manual_cast_dtype, **kwargs):
|
||||
self.memory_usage_factor = (self.unet_config.get("model_channels", 2048) / 2048) * 0.95
|
||||
if dtype is torch.float16:
|
||||
self.memory_usage_factor *= 1.4
|
||||
return super().set_inference_dtype(dtype, manual_cast_dtype, **kwargs)
|
||||
|
||||
class CosmosI2VPredict2(CosmosT2IPredict2):
|
||||
unet_config = {
|
||||
"image_model": "cosmos_predict2",
|
||||
|
||||
@ -23,7 +23,7 @@ class AnimaTokenizer:
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
qwen_ids = self.qwen3_06b.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["qwen3_06b"] = [[(k[0], 1.0, k[2]) if return_word_ids else (k[0], 1.0) for k in inner_list] for inner_list in qwen_ids] # Set weights to 1.0
|
||||
out["qwen3_06b"] = [[(token, 1.0) for token, _ in inner_list] for inner_list in qwen_ids] # Set weights to 1.0
|
||||
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
|
||||
@ -25,7 +25,7 @@ def ltxv_te(*args, **kwargs):
|
||||
class Gemma3_12BTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, disable_weights=True, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
|
||||
@ -622,7 +622,6 @@ class SamplerSASolver(io.ComfyNode):
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SamplerSASolver",
|
||||
search_aliases=["sde"],
|
||||
category="sampling/custom_sampling/samplers",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
@ -667,7 +666,6 @@ class SamplerSEEDS2(io.ComfyNode):
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SamplerSEEDS2",
|
||||
search_aliases=["sde", "exp heun"],
|
||||
category="sampling/custom_sampling/samplers",
|
||||
inputs=[
|
||||
io.Combo.Input("solver_type", options=["phi_1", "phi_2"]),
|
||||
|
||||
@ -108,7 +108,7 @@ def lazycache_predict_noise_wrapper(executor, *args, **kwargs):
|
||||
easycache: LazyCacheHolder = model_options["transformer_options"]["easycache"]
|
||||
if easycache.is_past_end_timestep(timestep):
|
||||
return executor(*args, **kwargs)
|
||||
x: torch.Tensor = args[0][:, :easycache.output_channels]
|
||||
x: torch.Tensor = _extract_tensor(args[0], easycache.output_channels)
|
||||
# prepare next x_prev
|
||||
next_x_prev = x
|
||||
input_change = None
|
||||
|
||||
@ -10,146 +10,198 @@ import json
|
||||
import os
|
||||
|
||||
from comfy.cli_args import args
|
||||
from comfy_api.latest import io, ComfyExtension
|
||||
from typing_extensions import override
|
||||
|
||||
class ModelMergeSimple:
|
||||
|
||||
class ModelMergeSimple(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",),
|
||||
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "merge"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelMergeSimple",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("ratio", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "advanced/model_merging"
|
||||
|
||||
def merge(self, model1, model2, ratio):
|
||||
@classmethod
|
||||
def execute(cls, model1, model2, ratio) -> io.NodeOutput:
|
||||
m = model1.clone()
|
||||
kp = model2.get_key_patches("diffusion_model.")
|
||||
for k in kp:
|
||||
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
||||
return (m, )
|
||||
return io.NodeOutput(m)
|
||||
|
||||
class ModelSubtract:
|
||||
merge = execute # TODO: remove
|
||||
|
||||
|
||||
class ModelSubtract(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",),
|
||||
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "merge"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelMergeSubtract",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("multiplier", default=1.0, min=-10.0, max=10.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "advanced/model_merging"
|
||||
|
||||
def merge(self, model1, model2, multiplier):
|
||||
@classmethod
|
||||
def execute(cls, model1, model2, multiplier) -> io.NodeOutput:
|
||||
m = model1.clone()
|
||||
kp = model2.get_key_patches("diffusion_model.")
|
||||
for k in kp:
|
||||
m.add_patches({k: kp[k]}, - multiplier, multiplier)
|
||||
return (m, )
|
||||
return io.NodeOutput(m)
|
||||
|
||||
class ModelAdd:
|
||||
merge = execute # TODO: remove
|
||||
|
||||
|
||||
class ModelAdd(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "merge"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelMergeAdd",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "advanced/model_merging"
|
||||
|
||||
def merge(self, model1, model2):
|
||||
@classmethod
|
||||
def execute(cls, model1, model2) -> io.NodeOutput:
|
||||
m = model1.clone()
|
||||
kp = model2.get_key_patches("diffusion_model.")
|
||||
for k in kp:
|
||||
m.add_patches({k: kp[k]}, 1.0, 1.0)
|
||||
return (m, )
|
||||
return io.NodeOutput(m)
|
||||
|
||||
merge = execute # TODO: remove
|
||||
|
||||
|
||||
class CLIPMergeSimple:
|
||||
class CLIPMergeSimple(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "clip1": ("CLIP",),
|
||||
"clip2": ("CLIP",),
|
||||
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("CLIP",)
|
||||
FUNCTION = "merge"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPMergeSimple",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Clip.Input("clip1"),
|
||||
io.Clip.Input("clip2"),
|
||||
io.Float.Input("ratio", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Clip.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "advanced/model_merging"
|
||||
|
||||
def merge(self, clip1, clip2, ratio):
|
||||
@classmethod
|
||||
def execute(cls, clip1, clip2, ratio) -> io.NodeOutput:
|
||||
m = clip1.clone()
|
||||
kp = clip2.get_key_patches()
|
||||
for k in kp:
|
||||
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
|
||||
continue
|
||||
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
||||
return (m, )
|
||||
return io.NodeOutput(m)
|
||||
|
||||
merge = execute # TODO: remove
|
||||
|
||||
|
||||
class CLIPSubtract:
|
||||
SEARCH_ALIASES = ["clip difference", "text encoder subtract"]
|
||||
class CLIPSubtract(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "clip1": ("CLIP",),
|
||||
"clip2": ("CLIP",),
|
||||
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("CLIP",)
|
||||
FUNCTION = "merge"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPMergeSubtract",
|
||||
search_aliases=["clip difference", "text encoder subtract"],
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Clip.Input("clip1"),
|
||||
io.Clip.Input("clip2"),
|
||||
io.Float.Input("multiplier", default=1.0, min=-10.0, max=10.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Clip.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "advanced/model_merging"
|
||||
|
||||
def merge(self, clip1, clip2, multiplier):
|
||||
@classmethod
|
||||
def execute(cls, clip1, clip2, multiplier) -> io.NodeOutput:
|
||||
m = clip1.clone()
|
||||
kp = clip2.get_key_patches()
|
||||
for k in kp:
|
||||
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
|
||||
continue
|
||||
m.add_patches({k: kp[k]}, - multiplier, multiplier)
|
||||
return (m, )
|
||||
return io.NodeOutput(m)
|
||||
|
||||
merge = execute # TODO: remove
|
||||
|
||||
|
||||
class CLIPAdd:
|
||||
SEARCH_ALIASES = ["combine clip"]
|
||||
class CLIPAdd(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "clip1": ("CLIP",),
|
||||
"clip2": ("CLIP",),
|
||||
}}
|
||||
RETURN_TYPES = ("CLIP",)
|
||||
FUNCTION = "merge"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPMergeAdd",
|
||||
search_aliases=["combine clip"],
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Clip.Input("clip1"),
|
||||
io.Clip.Input("clip2"),
|
||||
],
|
||||
outputs=[
|
||||
io.Clip.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "advanced/model_merging"
|
||||
|
||||
def merge(self, clip1, clip2):
|
||||
@classmethod
|
||||
def execute(cls, clip1, clip2) -> io.NodeOutput:
|
||||
m = clip1.clone()
|
||||
kp = clip2.get_key_patches()
|
||||
for k in kp:
|
||||
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
|
||||
continue
|
||||
m.add_patches({k: kp[k]}, 1.0, 1.0)
|
||||
return (m, )
|
||||
return io.NodeOutput(m)
|
||||
|
||||
merge = execute # TODO: remove
|
||||
|
||||
|
||||
class ModelMergeBlocks:
|
||||
class ModelMergeBlocks(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",),
|
||||
"input": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
"middle": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "merge"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelMergeBlocks",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
io.Float.Input("input", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("middle", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("out", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "advanced/model_merging"
|
||||
|
||||
def merge(self, model1, model2, **kwargs):
|
||||
@classmethod
|
||||
def execute(cls, model1, model2, **kwargs) -> io.NodeOutput:
|
||||
m = model1.clone()
|
||||
kp = model2.get_key_patches("diffusion_model.")
|
||||
default_ratio = next(iter(kwargs.values()))
|
||||
@ -165,7 +217,10 @@ class ModelMergeBlocks:
|
||||
last_arg_size = len(arg)
|
||||
|
||||
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
||||
return (m, )
|
||||
return io.NodeOutput(m)
|
||||
|
||||
merge = execute # TODO: remove
|
||||
|
||||
|
||||
def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefix=None, output_dir=None, prompt=None, extra_pnginfo=None):
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, output_dir)
|
||||
@ -226,59 +281,65 @@ def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefi
|
||||
|
||||
comfy.sd.save_checkpoint(output_checkpoint, model, clip, vae, clip_vision, metadata=metadata, extra_keys=extra_keys)
|
||||
|
||||
class CheckpointSave:
|
||||
SEARCH_ALIASES = ["save model", "export checkpoint", "merge save"]
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
|
||||
class CheckpointSave(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CheckpointSave",
|
||||
display_name="Save Checkpoint",
|
||||
search_aliases=["save model", "export checkpoint", "merge save"],
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Clip.Input("clip"),
|
||||
io.Vae.Input("vae"),
|
||||
io.String.Input("filename_prefix", default="checkpoints/ComfyUI"),
|
||||
],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"clip": ("CLIP",),
|
||||
"vae": ("VAE",),
|
||||
"filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),},
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
||||
RETURN_TYPES = ()
|
||||
FUNCTION = "save"
|
||||
OUTPUT_NODE = True
|
||||
def execute(cls, model, clip, vae, filename_prefix) -> io.NodeOutput:
|
||||
save_checkpoint(model, clip=clip, vae=vae, filename_prefix=filename_prefix, output_dir=folder_paths.get_output_directory(), prompt=cls.hidden.prompt, extra_pnginfo=cls.hidden.extra_pnginfo)
|
||||
return io.NodeOutput()
|
||||
|
||||
CATEGORY = "advanced/model_merging"
|
||||
save = execute # TODO: remove
|
||||
|
||||
def save(self, model, clip, vae, filename_prefix, prompt=None, extra_pnginfo=None):
|
||||
save_checkpoint(model, clip=clip, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
|
||||
return {}
|
||||
|
||||
class CLIPSave:
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
class CLIPSave(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPSave",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.String.Input("filename_prefix", default="clip/ComfyUI"),
|
||||
],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "clip": ("CLIP",),
|
||||
"filename_prefix": ("STRING", {"default": "clip/ComfyUI"}),},
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
||||
RETURN_TYPES = ()
|
||||
FUNCTION = "save"
|
||||
OUTPUT_NODE = True
|
||||
|
||||
CATEGORY = "advanced/model_merging"
|
||||
|
||||
def save(self, clip, filename_prefix, prompt=None, extra_pnginfo=None):
|
||||
def execute(cls, clip, filename_prefix) -> io.NodeOutput:
|
||||
prompt_info = ""
|
||||
if prompt is not None:
|
||||
prompt_info = json.dumps(prompt)
|
||||
if cls.hidden.prompt is not None:
|
||||
prompt_info = json.dumps(cls.hidden.prompt)
|
||||
|
||||
metadata = {}
|
||||
if not args.disable_metadata:
|
||||
metadata["format"] = "pt"
|
||||
metadata["prompt"] = prompt_info
|
||||
if extra_pnginfo is not None:
|
||||
for x in extra_pnginfo:
|
||||
metadata[x] = json.dumps(extra_pnginfo[x])
|
||||
if cls.hidden.extra_pnginfo is not None:
|
||||
for x in cls.hidden.extra_pnginfo:
|
||||
metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
|
||||
|
||||
comfy.model_management.load_models_gpu([clip.load_model()], force_patch_weights=True)
|
||||
clip_sd = clip.get_sd()
|
||||
|
||||
output_dir = folder_paths.get_output_directory()
|
||||
for prefix in ["clip_l.", "clip_g.", "clip_h.", "t5xxl.", "pile_t5xl.", "mt5xl.", "umt5xxl.", "t5base.", "gemma2_2b.", "llama.", "hydit_clip.", ""]:
|
||||
k = list(filter(lambda a: a.startswith(prefix), clip_sd.keys()))
|
||||
current_clip_sd = {}
|
||||
@ -295,7 +356,7 @@ class CLIPSave:
|
||||
replace_prefix[prefix] = ""
|
||||
replace_prefix["transformer."] = ""
|
||||
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix_ = folder_paths.get_save_image_path(filename_prefix_, self.output_dir)
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix_ = folder_paths.get_save_image_path(filename_prefix_, output_dir)
|
||||
|
||||
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
||||
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
||||
@ -303,76 +364,88 @@ class CLIPSave:
|
||||
current_clip_sd = comfy.utils.state_dict_prefix_replace(current_clip_sd, replace_prefix)
|
||||
|
||||
comfy.utils.save_torch_file(current_clip_sd, output_checkpoint, metadata=metadata)
|
||||
return {}
|
||||
return io.NodeOutput()
|
||||
|
||||
class VAESave:
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
save = execute # TODO: remove
|
||||
|
||||
|
||||
class VAESave(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="VAESave",
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Vae.Input("vae"),
|
||||
io.String.Input("filename_prefix", default="vae/ComfyUI_vae"),
|
||||
],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "vae": ("VAE",),
|
||||
"filename_prefix": ("STRING", {"default": "vae/ComfyUI_vae"}),},
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
||||
RETURN_TYPES = ()
|
||||
FUNCTION = "save"
|
||||
OUTPUT_NODE = True
|
||||
|
||||
CATEGORY = "advanced/model_merging"
|
||||
|
||||
def save(self, vae, filename_prefix, prompt=None, extra_pnginfo=None):
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
||||
def execute(cls, vae, filename_prefix) -> io.NodeOutput:
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory())
|
||||
prompt_info = ""
|
||||
if prompt is not None:
|
||||
prompt_info = json.dumps(prompt)
|
||||
if cls.hidden.prompt is not None:
|
||||
prompt_info = json.dumps(cls.hidden.prompt)
|
||||
|
||||
metadata = {}
|
||||
if not args.disable_metadata:
|
||||
metadata["prompt"] = prompt_info
|
||||
if extra_pnginfo is not None:
|
||||
for x in extra_pnginfo:
|
||||
metadata[x] = json.dumps(extra_pnginfo[x])
|
||||
if cls.hidden.extra_pnginfo is not None:
|
||||
for x in cls.hidden.extra_pnginfo:
|
||||
metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
|
||||
|
||||
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
||||
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
||||
|
||||
comfy.utils.save_torch_file(vae.get_sd(), output_checkpoint, metadata=metadata)
|
||||
return {}
|
||||
return io.NodeOutput()
|
||||
|
||||
class ModelSave:
|
||||
SEARCH_ALIASES = ["export model", "checkpoint save"]
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
save = execute # TODO: remove
|
||||
|
||||
|
||||
class ModelSave(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ModelSave",
|
||||
search_aliases=["export model", "checkpoint save"],
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.String.Input("filename_prefix", default="diffusion_models/ComfyUI"),
|
||||
],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"filename_prefix": ("STRING", {"default": "diffusion_models/ComfyUI"}),},
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
||||
RETURN_TYPES = ()
|
||||
FUNCTION = "save"
|
||||
OUTPUT_NODE = True
|
||||
def execute(cls, model, filename_prefix) -> io.NodeOutput:
|
||||
save_checkpoint(model, filename_prefix=filename_prefix, output_dir=folder_paths.get_output_directory(), prompt=cls.hidden.prompt, extra_pnginfo=cls.hidden.extra_pnginfo)
|
||||
return io.NodeOutput()
|
||||
|
||||
CATEGORY = "advanced/model_merging"
|
||||
save = execute # TODO: remove
|
||||
|
||||
def save(self, model, filename_prefix, prompt=None, extra_pnginfo=None):
|
||||
save_checkpoint(model, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
|
||||
return {}
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ModelMergeSimple": ModelMergeSimple,
|
||||
"ModelMergeBlocks": ModelMergeBlocks,
|
||||
"ModelMergeSubtract": ModelSubtract,
|
||||
"ModelMergeAdd": ModelAdd,
|
||||
"CheckpointSave": CheckpointSave,
|
||||
"CLIPMergeSimple": CLIPMergeSimple,
|
||||
"CLIPMergeSubtract": CLIPSubtract,
|
||||
"CLIPMergeAdd": CLIPAdd,
|
||||
"CLIPSave": CLIPSave,
|
||||
"VAESave": VAESave,
|
||||
"ModelSave": ModelSave,
|
||||
}
|
||||
class ModelMergingExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
ModelMergeSimple,
|
||||
ModelMergeBlocks,
|
||||
ModelSubtract,
|
||||
ModelAdd,
|
||||
CheckpointSave,
|
||||
CLIPMergeSimple,
|
||||
CLIPSubtract,
|
||||
CLIPAdd,
|
||||
CLIPSave,
|
||||
VAESave,
|
||||
ModelSave,
|
||||
]
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"CheckpointSave": "Save Checkpoint",
|
||||
}
|
||||
|
||||
async def comfy_entrypoint() -> ModelMergingExtension:
|
||||
return ModelMergingExtension()
|
||||
|
||||
@ -1,356 +1,455 @@
|
||||
import comfy_extras.nodes_model_merging
|
||||
|
||||
from comfy_api.latest import io, ComfyExtension
|
||||
from typing_extensions import override
|
||||
|
||||
|
||||
class ModelMergeSD1(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
]
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
argument = dict(default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
|
||||
arg_dict["time_embed."] = argument
|
||||
arg_dict["label_emb."] = argument
|
||||
inputs.append(io.Float.Input("time_embed.", **argument))
|
||||
inputs.append(io.Float.Input("label_emb.", **argument))
|
||||
|
||||
for i in range(12):
|
||||
arg_dict["input_blocks.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("input_blocks.{}.".format(i), **argument))
|
||||
|
||||
for i in range(3):
|
||||
arg_dict["middle_block.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("middle_block.{}.".format(i), **argument))
|
||||
|
||||
for i in range(12):
|
||||
arg_dict["output_blocks.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("output_blocks.{}.".format(i), **argument))
|
||||
|
||||
arg_dict["out."] = argument
|
||||
inputs.append(io.Float.Input("out.", **argument))
|
||||
|
||||
return {"required": arg_dict}
|
||||
return io.Schema(
|
||||
node_id="ModelMergeSD1",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[io.Model.Output()],
|
||||
)
|
||||
|
||||
|
||||
class ModelMergeSD2(ModelMergeSD1):
|
||||
# SD1 and SD2 have the same blocks
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
schema = ModelMergeSD1.define_schema()
|
||||
schema.node_id = "ModelMergeSD2"
|
||||
return schema
|
||||
|
||||
|
||||
class ModelMergeSDXL(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
]
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
argument = dict(default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
|
||||
arg_dict["time_embed."] = argument
|
||||
arg_dict["label_emb."] = argument
|
||||
inputs.append(io.Float.Input("time_embed.", **argument))
|
||||
inputs.append(io.Float.Input("label_emb.", **argument))
|
||||
|
||||
for i in range(9):
|
||||
arg_dict["input_blocks.{}".format(i)] = argument
|
||||
inputs.append(io.Float.Input("input_blocks.{}".format(i), **argument))
|
||||
|
||||
for i in range(3):
|
||||
arg_dict["middle_block.{}".format(i)] = argument
|
||||
inputs.append(io.Float.Input("middle_block.{}".format(i), **argument))
|
||||
|
||||
for i in range(9):
|
||||
arg_dict["output_blocks.{}".format(i)] = argument
|
||||
inputs.append(io.Float.Input("output_blocks.{}".format(i), **argument))
|
||||
|
||||
arg_dict["out."] = argument
|
||||
inputs.append(io.Float.Input("out.", **argument))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeSDXL",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[io.Model.Output()],
|
||||
)
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
class ModelMergeSD3_2B(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
]
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
argument = dict(default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
|
||||
arg_dict["pos_embed."] = argument
|
||||
arg_dict["x_embedder."] = argument
|
||||
arg_dict["context_embedder."] = argument
|
||||
arg_dict["y_embedder."] = argument
|
||||
arg_dict["t_embedder."] = argument
|
||||
inputs.append(io.Float.Input("pos_embed.", **argument))
|
||||
inputs.append(io.Float.Input("x_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("context_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("y_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("t_embedder.", **argument))
|
||||
|
||||
for i in range(24):
|
||||
arg_dict["joint_blocks.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("joint_blocks.{}.".format(i), **argument))
|
||||
|
||||
arg_dict["final_layer."] = argument
|
||||
inputs.append(io.Float.Input("final_layer.", **argument))
|
||||
|
||||
return {"required": arg_dict}
|
||||
return io.Schema(
|
||||
node_id="ModelMergeSD3_2B",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[io.Model.Output()],
|
||||
)
|
||||
|
||||
|
||||
class ModelMergeAuraflow(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
]
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
argument = dict(default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
|
||||
arg_dict["init_x_linear."] = argument
|
||||
arg_dict["positional_encoding"] = argument
|
||||
arg_dict["cond_seq_linear."] = argument
|
||||
arg_dict["register_tokens"] = argument
|
||||
arg_dict["t_embedder."] = argument
|
||||
inputs.append(io.Float.Input("init_x_linear.", **argument))
|
||||
inputs.append(io.Float.Input("positional_encoding", **argument))
|
||||
inputs.append(io.Float.Input("cond_seq_linear.", **argument))
|
||||
inputs.append(io.Float.Input("register_tokens", **argument))
|
||||
inputs.append(io.Float.Input("t_embedder.", **argument))
|
||||
|
||||
for i in range(4):
|
||||
arg_dict["double_layers.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("double_layers.{}.".format(i), **argument))
|
||||
|
||||
for i in range(32):
|
||||
arg_dict["single_layers.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("single_layers.{}.".format(i), **argument))
|
||||
|
||||
arg_dict["modF."] = argument
|
||||
arg_dict["final_linear."] = argument
|
||||
inputs.append(io.Float.Input("modF.", **argument))
|
||||
inputs.append(io.Float.Input("final_linear.", **argument))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeAuraflow",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[io.Model.Output()],
|
||||
)
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
class ModelMergeFlux1(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
]
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
argument = dict(default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
|
||||
arg_dict["img_in."] = argument
|
||||
arg_dict["time_in."] = argument
|
||||
arg_dict["guidance_in"] = argument
|
||||
arg_dict["vector_in."] = argument
|
||||
arg_dict["txt_in."] = argument
|
||||
inputs.append(io.Float.Input("img_in.", **argument))
|
||||
inputs.append(io.Float.Input("time_in.", **argument))
|
||||
inputs.append(io.Float.Input("guidance_in", **argument))
|
||||
inputs.append(io.Float.Input("vector_in.", **argument))
|
||||
inputs.append(io.Float.Input("txt_in.", **argument))
|
||||
|
||||
for i in range(19):
|
||||
arg_dict["double_blocks.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("double_blocks.{}.".format(i), **argument))
|
||||
|
||||
for i in range(38):
|
||||
arg_dict["single_blocks.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("single_blocks.{}.".format(i), **argument))
|
||||
|
||||
arg_dict["final_layer."] = argument
|
||||
inputs.append(io.Float.Input("final_layer.", **argument))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeFlux1",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[io.Model.Output()],
|
||||
)
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
class ModelMergeSD35_Large(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
]
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
argument = dict(default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
|
||||
arg_dict["pos_embed."] = argument
|
||||
arg_dict["x_embedder."] = argument
|
||||
arg_dict["context_embedder."] = argument
|
||||
arg_dict["y_embedder."] = argument
|
||||
arg_dict["t_embedder."] = argument
|
||||
inputs.append(io.Float.Input("pos_embed.", **argument))
|
||||
inputs.append(io.Float.Input("x_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("context_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("y_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("t_embedder.", **argument))
|
||||
|
||||
for i in range(38):
|
||||
arg_dict["joint_blocks.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("joint_blocks.{}.".format(i), **argument))
|
||||
|
||||
arg_dict["final_layer."] = argument
|
||||
inputs.append(io.Float.Input("final_layer.", **argument))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeSD35_Large",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[io.Model.Output()],
|
||||
)
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
class ModelMergeMochiPreview(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
]
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
argument = dict(default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
|
||||
arg_dict["pos_frequencies."] = argument
|
||||
arg_dict["t_embedder."] = argument
|
||||
arg_dict["t5_y_embedder."] = argument
|
||||
arg_dict["t5_yproj."] = argument
|
||||
inputs.append(io.Float.Input("pos_frequencies.", **argument))
|
||||
inputs.append(io.Float.Input("t_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("t5_y_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("t5_yproj.", **argument))
|
||||
|
||||
for i in range(48):
|
||||
arg_dict["blocks.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("blocks.{}.".format(i), **argument))
|
||||
|
||||
arg_dict["final_layer."] = argument
|
||||
inputs.append(io.Float.Input("final_layer.", **argument))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeMochiPreview",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[io.Model.Output()],
|
||||
)
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
class ModelMergeLTXV(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
]
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
argument = dict(default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
|
||||
arg_dict["patchify_proj."] = argument
|
||||
arg_dict["adaln_single."] = argument
|
||||
arg_dict["caption_projection."] = argument
|
||||
inputs.append(io.Float.Input("patchify_proj.", **argument))
|
||||
inputs.append(io.Float.Input("adaln_single.", **argument))
|
||||
inputs.append(io.Float.Input("caption_projection.", **argument))
|
||||
|
||||
for i in range(28):
|
||||
arg_dict["transformer_blocks.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("transformer_blocks.{}.".format(i), **argument))
|
||||
|
||||
arg_dict["scale_shift_table"] = argument
|
||||
arg_dict["proj_out."] = argument
|
||||
inputs.append(io.Float.Input("scale_shift_table", **argument))
|
||||
inputs.append(io.Float.Input("proj_out.", **argument))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeLTXV",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[io.Model.Output()],
|
||||
)
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
class ModelMergeCosmos7B(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
]
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
|
||||
arg_dict["pos_embedder."] = argument
|
||||
arg_dict["extra_pos_embedder."] = argument
|
||||
arg_dict["x_embedder."] = argument
|
||||
arg_dict["t_embedder."] = argument
|
||||
arg_dict["affline_norm."] = argument
|
||||
argument = dict(default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
|
||||
inputs.append(io.Float.Input("pos_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("extra_pos_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("x_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("t_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("affline_norm.", **argument))
|
||||
|
||||
for i in range(28):
|
||||
arg_dict["blocks.block{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("blocks.block{}.".format(i), **argument))
|
||||
|
||||
arg_dict["final_layer."] = argument
|
||||
inputs.append(io.Float.Input("final_layer.", **argument))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeCosmos7B",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[io.Model.Output()],
|
||||
)
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
class ModelMergeCosmos14B(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
]
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
|
||||
arg_dict["pos_embedder."] = argument
|
||||
arg_dict["extra_pos_embedder."] = argument
|
||||
arg_dict["x_embedder."] = argument
|
||||
arg_dict["t_embedder."] = argument
|
||||
arg_dict["affline_norm."] = argument
|
||||
argument = dict(default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
|
||||
inputs.append(io.Float.Input("pos_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("extra_pos_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("x_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("t_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("affline_norm.", **argument))
|
||||
|
||||
for i in range(36):
|
||||
arg_dict["blocks.block{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("blocks.block{}.".format(i), **argument))
|
||||
|
||||
arg_dict["final_layer."] = argument
|
||||
inputs.append(io.Float.Input("final_layer.", **argument))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeCosmos14B",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[io.Model.Output()],
|
||||
)
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
class ModelMergeWAN2_1(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
DESCRIPTION = "1.3B model has 30 blocks, 14B model has 40 blocks. Image to video model has the extra img_emb."
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
]
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
argument = dict(default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
|
||||
arg_dict["patch_embedding."] = argument
|
||||
arg_dict["time_embedding."] = argument
|
||||
arg_dict["time_projection."] = argument
|
||||
arg_dict["text_embedding."] = argument
|
||||
arg_dict["img_emb."] = argument
|
||||
inputs.append(io.Float.Input("patch_embedding.", **argument))
|
||||
inputs.append(io.Float.Input("time_embedding.", **argument))
|
||||
inputs.append(io.Float.Input("time_projection.", **argument))
|
||||
inputs.append(io.Float.Input("text_embedding.", **argument))
|
||||
inputs.append(io.Float.Input("img_emb.", **argument))
|
||||
|
||||
for i in range(40):
|
||||
arg_dict["blocks.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("blocks.{}.".format(i), **argument))
|
||||
|
||||
arg_dict["head."] = argument
|
||||
inputs.append(io.Float.Input("head.", **argument))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeWAN2_1",
|
||||
category="advanced/model_merging/model_specific",
|
||||
description="1.3B model has 30 blocks, 14B model has 40 blocks. Image to video model has the extra img_emb.",
|
||||
inputs=inputs,
|
||||
outputs=[io.Model.Output()],
|
||||
)
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
class ModelMergeCosmosPredict2_2B(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
]
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
|
||||
arg_dict["pos_embedder."] = argument
|
||||
arg_dict["x_embedder."] = argument
|
||||
arg_dict["t_embedder."] = argument
|
||||
arg_dict["t_embedding_norm."] = argument
|
||||
argument = dict(default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
|
||||
inputs.append(io.Float.Input("pos_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("x_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("t_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("t_embedding_norm.", **argument))
|
||||
|
||||
for i in range(28):
|
||||
arg_dict["blocks.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("blocks.{}.".format(i), **argument))
|
||||
|
||||
arg_dict["final_layer."] = argument
|
||||
inputs.append(io.Float.Input("final_layer.", **argument))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeCosmosPredict2_2B",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[io.Model.Output()],
|
||||
)
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
class ModelMergeCosmosPredict2_14B(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
]
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
|
||||
arg_dict["pos_embedder."] = argument
|
||||
arg_dict["x_embedder."] = argument
|
||||
arg_dict["t_embedder."] = argument
|
||||
arg_dict["t_embedding_norm."] = argument
|
||||
argument = dict(default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
|
||||
inputs.append(io.Float.Input("pos_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("x_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("t_embedder.", **argument))
|
||||
inputs.append(io.Float.Input("t_embedding_norm.", **argument))
|
||||
|
||||
for i in range(36):
|
||||
arg_dict["blocks.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("blocks.{}.".format(i), **argument))
|
||||
|
||||
arg_dict["final_layer."] = argument
|
||||
inputs.append(io.Float.Input("final_layer.", **argument))
|
||||
|
||||
return io.Schema(
|
||||
node_id="ModelMergeCosmosPredict2_14B",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[io.Model.Output()],
|
||||
)
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
class ModelMergeQwenImage(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
def define_schema(cls):
|
||||
inputs = [
|
||||
io.Model.Input("model1"),
|
||||
io.Model.Input("model2"),
|
||||
]
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
argument = dict(default=1.0, min=0.0, max=1.0, step=0.01)
|
||||
|
||||
arg_dict["pos_embeds."] = argument
|
||||
arg_dict["img_in."] = argument
|
||||
arg_dict["txt_norm."] = argument
|
||||
arg_dict["txt_in."] = argument
|
||||
arg_dict["time_text_embed."] = argument
|
||||
inputs.append(io.Float.Input("pos_embeds.", **argument))
|
||||
inputs.append(io.Float.Input("img_in.", **argument))
|
||||
inputs.append(io.Float.Input("txt_norm.", **argument))
|
||||
inputs.append(io.Float.Input("txt_in.", **argument))
|
||||
inputs.append(io.Float.Input("time_text_embed.", **argument))
|
||||
|
||||
for i in range(60):
|
||||
arg_dict["transformer_blocks.{}.".format(i)] = argument
|
||||
inputs.append(io.Float.Input("transformer_blocks.{}.".format(i), **argument))
|
||||
|
||||
arg_dict["proj_out."] = argument
|
||||
inputs.append(io.Float.Input("proj_out.", **argument))
|
||||
|
||||
return {"required": arg_dict}
|
||||
return io.Schema(
|
||||
node_id="ModelMergeQwenImage",
|
||||
category="advanced/model_merging/model_specific",
|
||||
inputs=inputs,
|
||||
outputs=[io.Model.Output()],
|
||||
)
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ModelMergeSD1": ModelMergeSD1,
|
||||
"ModelMergeSD2": ModelMergeSD1, #SD1 and SD2 have the same blocks
|
||||
"ModelMergeSDXL": ModelMergeSDXL,
|
||||
"ModelMergeSD3_2B": ModelMergeSD3_2B,
|
||||
"ModelMergeAuraflow": ModelMergeAuraflow,
|
||||
"ModelMergeFlux1": ModelMergeFlux1,
|
||||
"ModelMergeSD35_Large": ModelMergeSD35_Large,
|
||||
"ModelMergeMochiPreview": ModelMergeMochiPreview,
|
||||
"ModelMergeLTXV": ModelMergeLTXV,
|
||||
"ModelMergeCosmos7B": ModelMergeCosmos7B,
|
||||
"ModelMergeCosmos14B": ModelMergeCosmos14B,
|
||||
"ModelMergeWAN2_1": ModelMergeWAN2_1,
|
||||
"ModelMergeCosmosPredict2_2B": ModelMergeCosmosPredict2_2B,
|
||||
"ModelMergeCosmosPredict2_14B": ModelMergeCosmosPredict2_14B,
|
||||
"ModelMergeQwenImage": ModelMergeQwenImage,
|
||||
}
|
||||
|
||||
class ModelMergingModelSpecificExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
ModelMergeSD1,
|
||||
ModelMergeSD2,
|
||||
ModelMergeSDXL,
|
||||
ModelMergeSD3_2B,
|
||||
ModelMergeAuraflow,
|
||||
ModelMergeFlux1,
|
||||
ModelMergeSD35_Large,
|
||||
ModelMergeMochiPreview,
|
||||
ModelMergeLTXV,
|
||||
ModelMergeCosmos7B,
|
||||
ModelMergeCosmos14B,
|
||||
ModelMergeWAN2_1,
|
||||
ModelMergeCosmosPredict2_2B,
|
||||
ModelMergeCosmosPredict2_14B,
|
||||
ModelMergeQwenImage,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> ModelMergingModelSpecificExtension:
|
||||
return ModelMergingModelSpecificExtension()
|
||||
|
||||
@ -6,44 +6,62 @@ import folder_paths
|
||||
import comfy_extras.nodes_model_merging
|
||||
import node_helpers
|
||||
|
||||
from comfy_api.latest import io, ComfyExtension
|
||||
from typing_extensions import override
|
||||
|
||||
class ImageOnlyCheckpointLoader:
|
||||
|
||||
class ImageOnlyCheckpointLoader(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL", "CLIP_VISION", "VAE")
|
||||
FUNCTION = "load_checkpoint"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ImageOnlyCheckpointLoader",
|
||||
display_name="Image Only Checkpoint Loader (img2vid model)",
|
||||
category="loaders/video_models",
|
||||
inputs=[
|
||||
io.Combo.Input("ckpt_name", options=folder_paths.get_filename_list("checkpoints")),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
io.ClipVision.Output(),
|
||||
io.Vae.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "loaders/video_models"
|
||||
|
||||
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
|
||||
@classmethod
|
||||
def execute(cls, ckpt_name, output_vae=True, output_clip=True) -> io.NodeOutput:
|
||||
ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
|
||||
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=False, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
||||
return (out[0], out[3], out[2])
|
||||
return io.NodeOutput(out[0], out[3], out[2])
|
||||
|
||||
load_checkpoint = execute # TODO: remove
|
||||
|
||||
|
||||
class SVD_img2vid_Conditioning:
|
||||
class SVD_img2vid_Conditioning(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "clip_vision": ("CLIP_VISION",),
|
||||
"init_image": ("IMAGE",),
|
||||
"vae": ("VAE",),
|
||||
"width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
||||
"height": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
||||
"video_frames": ("INT", {"default": 14, "min": 1, "max": 4096}),
|
||||
"motion_bucket_id": ("INT", {"default": 127, "min": 1, "max": 1023}),
|
||||
"fps": ("INT", {"default": 6, "min": 1, "max": 1024}),
|
||||
"augmentation_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01})
|
||||
}}
|
||||
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
||||
RETURN_NAMES = ("positive", "negative", "latent")
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SVD_img2vid_Conditioning",
|
||||
category="conditioning/video_models",
|
||||
inputs=[
|
||||
io.ClipVision.Input("clip_vision"),
|
||||
io.Image.Input("init_image"),
|
||||
io.Vae.Input("vae"),
|
||||
io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("height", default=576, min=16, max=nodes.MAX_RESOLUTION, step=8),
|
||||
io.Int.Input("video_frames", default=14, min=1, max=4096),
|
||||
io.Int.Input("motion_bucket_id", default=127, min=1, max=1023),
|
||||
io.Int.Input("fps", default=6, min=1, max=1024),
|
||||
io.Float.Input("augmentation_level", default=0.0, min=0.0, max=10.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(display_name="positive"),
|
||||
io.Conditioning.Output(display_name="negative"),
|
||||
io.Latent.Output(display_name="latent"),
|
||||
],
|
||||
)
|
||||
|
||||
FUNCTION = "encode"
|
||||
|
||||
CATEGORY = "conditioning/video_models"
|
||||
|
||||
def encode(self, clip_vision, init_image, vae, width, height, video_frames, motion_bucket_id, fps, augmentation_level):
|
||||
@classmethod
|
||||
def execute(cls, clip_vision, init_image, vae, width, height, video_frames, motion_bucket_id, fps, augmentation_level) -> io.NodeOutput:
|
||||
output = clip_vision.encode_image(init_image)
|
||||
pooled = output.image_embeds.unsqueeze(0)
|
||||
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
||||
@ -54,20 +72,28 @@ class SVD_img2vid_Conditioning:
|
||||
positive = [[pooled, {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": t}]]
|
||||
negative = [[torch.zeros_like(pooled), {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": torch.zeros_like(t)}]]
|
||||
latent = torch.zeros([video_frames, 4, height // 8, width // 8])
|
||||
return (positive, negative, {"samples":latent})
|
||||
return io.NodeOutput(positive, negative, {"samples":latent})
|
||||
|
||||
class VideoLinearCFGGuidance:
|
||||
encode = execute # TODO: remove
|
||||
|
||||
|
||||
class VideoLinearCFGGuidance(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="VideoLinearCFGGuidance",
|
||||
category="sampling/video_models",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("min_cfg", default=1.0, min=0.0, max=100.0, step=0.5, round=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "sampling/video_models"
|
||||
|
||||
def patch(self, model, min_cfg):
|
||||
@classmethod
|
||||
def execute(cls, model, min_cfg) -> io.NodeOutput:
|
||||
def linear_cfg(args):
|
||||
cond = args["cond"]
|
||||
uncond = args["uncond"]
|
||||
@ -78,20 +104,28 @@ class VideoLinearCFGGuidance:
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_sampler_cfg_function(linear_cfg)
|
||||
return (m, )
|
||||
return io.NodeOutput(m)
|
||||
|
||||
class VideoTriangleCFGGuidance:
|
||||
patch = execute # TODO: remove
|
||||
|
||||
|
||||
class VideoTriangleCFGGuidance(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="VideoTriangleCFGGuidance",
|
||||
category="sampling/video_models",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("min_cfg", default=1.0, min=0.0, max=100.0, step=0.5, round=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "sampling/video_models"
|
||||
|
||||
def patch(self, model, min_cfg):
|
||||
@classmethod
|
||||
def execute(cls, model, min_cfg) -> io.NodeOutput:
|
||||
def linear_cfg(args):
|
||||
cond = args["cond"]
|
||||
uncond = args["uncond"]
|
||||
@ -105,57 +139,79 @@ class VideoTriangleCFGGuidance:
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_sampler_cfg_function(linear_cfg)
|
||||
return (m, )
|
||||
return io.NodeOutput(m)
|
||||
|
||||
class ImageOnlyCheckpointSave(comfy_extras.nodes_model_merging.CheckpointSave):
|
||||
CATEGORY = "advanced/model_merging"
|
||||
patch = execute # TODO: remove
|
||||
|
||||
|
||||
class ImageOnlyCheckpointSave(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ImageOnlyCheckpointSave",
|
||||
search_aliases=["save model", "export checkpoint", "merge save"],
|
||||
category="advanced/model_merging",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.ClipVision.Input("clip_vision"),
|
||||
io.Vae.Input("vae"),
|
||||
io.String.Input("filename_prefix", default="checkpoints/ComfyUI"),
|
||||
],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"clip_vision": ("CLIP_VISION",),
|
||||
"vae": ("VAE",),
|
||||
"filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),},
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
||||
def execute(cls, model, clip_vision, vae, filename_prefix) -> io.NodeOutput:
|
||||
comfy_extras.nodes_model_merging.save_checkpoint(model, clip_vision=clip_vision, vae=vae, filename_prefix=filename_prefix, output_dir=folder_paths.get_output_directory(), prompt=cls.hidden.prompt, extra_pnginfo=cls.hidden.extra_pnginfo)
|
||||
return io.NodeOutput()
|
||||
|
||||
def save(self, model, clip_vision, vae, filename_prefix, prompt=None, extra_pnginfo=None):
|
||||
comfy_extras.nodes_model_merging.save_checkpoint(model, clip_vision=clip_vision, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
|
||||
return {}
|
||||
save = execute # TODO: remove
|
||||
|
||||
|
||||
class ConditioningSetAreaPercentageVideo:
|
||||
class ConditioningSetAreaPercentageVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"conditioning": ("CONDITIONING", ),
|
||||
"width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
||||
"height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
||||
"temporal": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
||||
"x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
|
||||
"y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
|
||||
"z": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
|
||||
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
FUNCTION = "append"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ConditioningSetAreaPercentageVideo",
|
||||
category="conditioning",
|
||||
inputs=[
|
||||
io.Conditioning.Input("conditioning"),
|
||||
io.Float.Input("width", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("height", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("temporal", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("x", default=0.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("y", default=0.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("z", default=0.0, min=0.0, max=1.0, step=0.01),
|
||||
io.Float.Input("strength", default=1.0, min=0.0, max=10.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "conditioning"
|
||||
|
||||
def append(self, conditioning, width, height, temporal, x, y, z, strength):
|
||||
@classmethod
|
||||
def execute(cls, conditioning, width, height, temporal, x, y, z, strength) -> io.NodeOutput:
|
||||
c = node_helpers.conditioning_set_values(conditioning, {"area": ("percentage", temporal, height, width, z, y, x),
|
||||
"strength": strength,
|
||||
"set_area_to_bounds": False})
|
||||
return (c, )
|
||||
return io.NodeOutput(c)
|
||||
|
||||
append = execute # TODO: remove
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ImageOnlyCheckpointLoader": ImageOnlyCheckpointLoader,
|
||||
"SVD_img2vid_Conditioning": SVD_img2vid_Conditioning,
|
||||
"VideoLinearCFGGuidance": VideoLinearCFGGuidance,
|
||||
"VideoTriangleCFGGuidance": VideoTriangleCFGGuidance,
|
||||
"ImageOnlyCheckpointSave": ImageOnlyCheckpointSave,
|
||||
"ConditioningSetAreaPercentageVideo": ConditioningSetAreaPercentageVideo,
|
||||
}
|
||||
class VideoModelExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
ImageOnlyCheckpointLoader,
|
||||
SVD_img2vid_Conditioning,
|
||||
VideoLinearCFGGuidance,
|
||||
VideoTriangleCFGGuidance,
|
||||
ImageOnlyCheckpointSave,
|
||||
ConditioningSetAreaPercentageVideo,
|
||||
]
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"ImageOnlyCheckpointLoader": "Image Only Checkpoint Loader (img2vid model)",
|
||||
}
|
||||
|
||||
async def comfy_entrypoint() -> VideoModelExtension:
|
||||
return VideoModelExtension()
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
comfyui-frontend-package==1.38.13
|
||||
comfyui-workflow-templates==0.8.31
|
||||
comfyui-embedded-docs==0.4.1
|
||||
comfyui-embedded-docs==0.4.0
|
||||
torch
|
||||
torchsde
|
||||
torchvision
|
||||
|
||||
Reference in New Issue
Block a user