Compare commits

..

45 Commits

Author SHA1 Message Date
96020c2cc7 Merge branch 'master' into assets-redo-part2 2026-01-30 23:09:25 -08:00
6b20d0e9f5 Fix test setup for assets_test after move 2026-01-30 23:09:00 -08:00
e8e1c13e83 Moved assets test to unit tests dir 2026-01-30 23:05:19 -08:00
942b2a6526 Add pruning of Assets not reachable through the current configs (#12168)
* Not sure about this one, but try removing assets from old sessions.

* Simplify _prune_orphaned_assets: merge functions, use list comprehensions

Amp-Thread-ID: https://ampcode.com/threads/T-019c0917-0dc3-75ab-870d-a32b3fdc1927
Co-authored-by: Amp <amp@ampcode.com>

* Refactor _prune_orphaned_assets for readability

Amp-Thread-ID: https://ampcode.com/threads/T-019c0917-0dc3-75ab-870d-a32b3fdc1927
Co-authored-by: Amp <amp@ampcode.com>

* Add unit tests for pruning

* Add unit tests for _prune_orphaned_assets

Tests cover:

- Orphaned seed assets pruned when file removed

- Seed assets with valid files survive

- Hashed assets not pruned even without file

- Multi-root pruning

- SQL LIKE escape handling for %, _, spaces

Amp-Thread-ID: https://ampcode.com/threads/T-019c0c7a-5c8a-7548-b6c3-823e9829ce74
Co-authored-by: Amp <amp@ampcode.com>

* Ruff fix

---------

Co-authored-by: Amp <amp@ampcode.com>
2026-01-29 18:34:14 -08:00
a999cbcfbc Merge branch 'master' into assets-redo-part2 2026-01-29 17:44:25 -08:00
612893018c Use windows-latest runner for test-assets 2026-01-29 17:37:16 -08:00
c0e26b93cc Added test-assets.yml to github workflows, added a requirements.txt to test-assets (blake3 can eventually be removed from there when it becomes a core dependency) 2026-01-29 17:33:21 -08:00
11da0e6c46 Satisfy ruff 2026-01-29 17:00:52 -08:00
1e622d3923 Fixed issues in manager.py that had to do with creating a result after closing the db session 2026-01-29 16:58:48 -08:00
eb78ea0cff Added @ROUTES.post("/api/assets/seed") for now to help with tests 2026-01-29 16:57:37 -08:00
6840ad0bbe Added tests, rewritten from the ones present in the asset-management branch 2026-01-29 16:56:39 -08:00
2f0db0e680 Order the tags by when they were added (Ends up being directory depth order) 2026-01-28 22:17:52 -08:00
69f6c37868 Leave the preview_url blank, don't serialize it as null 2026-01-28 21:49:14 -08:00
f484d66eb0 Merge branch 'master' into assets-redo-part2 2026-01-28 19:15:32 -08:00
25f83d7401 Fixed resolve_asset_content_for_download accessing asset outside of session with statement 2026-01-28 18:57:54 -08:00
2aafb71388 Add node for custom node authors in routes.py 2026-01-28 17:01:29 -08:00
902e84d7ad Remove tags from body of @ROUTES.put(f"/api/assets/{{id:{UUID_RE}}}"), add note about blake3 requirement to test out 2026-01-28 16:04:19 -08:00
d5e6e2a81f Fixed inconsistent spacing in routes.py 2026-01-28 15:39:08 -08:00
e735a8fd85 Satisfy ruff 2026-01-28 15:34:19 -08:00
32ce7a70a7 Removed 501 early returns on endpoints intended to be released, removed @ROUTES.put(f"/api/assets/{{id:{UUID_RE}}}/preview") and @ROUTES.post("/api/assets/scan/seed") and their related schema_in objects 2026-01-28 15:31:06 -08:00
cf950e47ab Merge branch 'master' into assets-redo-part2 2026-01-28 15:05:24 -08:00
724145fb55 Merge branch 'master' into assets-redo-part2 2026-01-27 16:40:19 -08:00
32d4888d99 Fix import for currently unused upload_asset_from_temp_path function 2026-01-27 16:28:05 -08:00
b16390c2fd Made some routes returmn 501's while functionality is worked on 2026-01-26 21:02:05 -08:00
4866bbfd8c Comment out import for commented out code 2026-01-26 20:30:20 -08:00
e17542b5c7 Comment out @ROUTES.post("/api/assets/scan/seed") 2026-01-26 20:25:57 -08:00
0bb6d3a3e9 Merge branch 'master' into assets-redo-part2 2026-01-26 20:17:32 -08:00
6a450a8070 Revert seed_assets to only do models root, remove blake3 requirement for now, make posting assets endpoint inaccessible with a 501 2026-01-26 19:28:00 -08:00
702cfcde3a Merge branch 'master' into assets-redo-part2 2026-01-26 14:38:18 -08:00
8e9c801940 Add input + output roots to scans 2026-01-24 16:26:42 -08:00
facda426b4 Remove extra whitespace at end of routes.py 2026-01-16 01:04:26 -08:00
65a5992f2d Remove unnecessary logging statement used for testing 2026-01-16 01:02:40 -08:00
287da646e5 Finished @ROUTES.post("/api/assets/scan/seed") 2026-01-16 01:01:49 -08:00
63f9f1b11b Finish @ROUTES.delete(f"/api/assets/{{id:{UUID_RE}}}/tags") 2026-01-16 00:50:13 -08:00
9e3f559189 Finished @ROUTES.post(f"/api/assets/{{id:{UUID_RE}}}/tags") 2026-01-16 00:45:36 -08:00
63c98d0c75 Finished @ROUTES.delete(f"/api/assets/{{id:{UUID_RE}}}") 2026-01-16 00:31:06 -08:00
e69a5aa1be Finished @ROUTES.put(f"/api/assets/{{id:{UUID_RE}}}/preview") 2026-01-16 00:14:03 -08:00
e0c063f93e Finished @ROUTES.put(f"/api/assets/{{id:{UUID_RE}}}") 2026-01-15 23:57:23 -08:00
6db4f4e3f1 Finished @ROUTES.post("/api/assets") 2026-01-15 23:41:19 -08:00
41d364030b Finished @ROUTES.post("/api/assets/from-hash") 2026-01-15 23:09:54 -08:00
fab9b71f5d Finished @ROUTES.head("/api/assets/hash/{hash}") 2026-01-15 21:13:34 -08:00
e5c1de4777 Finished @ROUTES.get(f"/api/assets/{{id:{UUID_RE}}}/content") 2026-01-15 21:00:35 -08:00
a5ed151e51 Merge branch 'master' into assets-redo-part2 2026-01-15 20:34:44 -08:00
e527b72b09 more progress 2026-01-15 18:16:00 -08:00
f14129947c in progress GET /api/assets/{uuid}/content endpoint support 2026-01-14 22:54:21 -08:00
5 changed files with 18 additions and 211 deletions

View File

@ -1,7 +1,7 @@
import torch
import torch.nn as nn
from dataclasses import dataclass
from typing import Optional, Any, Tuple
from typing import Optional, Any
import math
from comfy.ldm.modules.attention import optimized_attention_for_device
@ -32,7 +32,6 @@ class Llama2Config:
k_norm = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Mistral3Small24BConfig:
@ -55,7 +54,6 @@ class Mistral3Small24BConfig:
k_norm = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen25_3BConfig:
@ -78,7 +76,6 @@ class Qwen25_3BConfig:
k_norm = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_06BConfig:
@ -101,7 +98,6 @@ class Qwen3_06BConfig:
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_4BConfig:
@ -124,7 +120,6 @@ class Qwen3_4BConfig:
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_8BConfig:
@ -147,7 +142,6 @@ class Qwen3_8BConfig:
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Ovis25_2BConfig:
@ -170,7 +164,6 @@ class Ovis25_2BConfig:
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen25_7BVLI_Config:
@ -193,7 +186,6 @@ class Qwen25_7BVLI_Config:
k_norm = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Gemma2_2B_Config:
@ -217,7 +209,6 @@ class Gemma2_2B_Config:
sliding_attention = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Gemma3_4B_Config:
@ -241,7 +232,6 @@ class Gemma3_4B_Config:
sliding_attention = [1024, 1024, 1024, 1024, 1024, False]
rope_scale = [8.0, 1.0]
final_norm: bool = True
lm_head: bool = False
@dataclass
class Gemma3_12B_Config:
@ -265,7 +255,6 @@ class Gemma3_12B_Config:
sliding_attention = [1024, 1024, 1024, 1024, 1024, False]
rope_scale = [8.0, 1.0]
final_norm: bool = True
lm_head: bool = False
vision_config = {"num_channels": 3, "hidden_act": "gelu_pytorch_tanh", "hidden_size": 1152, "image_size": 896, "intermediate_size": 4304, "model_type": "siglip_vision_model", "num_attention_heads": 16, "num_hidden_layers": 27, "patch_size": 14}
mm_tokens_per_image = 256
@ -367,7 +356,6 @@ class Attention(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[torch.Tensor] = None,
optimized_attention=None,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
):
batch_size, seq_length, _ = hidden_states.shape
xq = self.q_proj(hidden_states)
@ -385,30 +373,11 @@ class Attention(nn.Module):
xq, xk = apply_rope(xq, xk, freqs_cis=freqs_cis)
present_key_value = None
if past_key_value is not None:
index = 0
num_tokens = xk.shape[2]
if len(past_key_value) > 0:
past_key, past_value, index = past_key_value
if past_key.shape[2] >= (index + num_tokens):
past_key[:, :, index:index + xk.shape[2]] = xk
past_value[:, :, index:index + xv.shape[2]] = xv
xk = past_key[:, :, :index + xk.shape[2]]
xv = past_value[:, :, :index + xv.shape[2]]
present_key_value = (past_key, past_value, index + num_tokens)
else:
xk = torch.cat((past_key[:, :, :index], xk), dim=2)
xv = torch.cat((past_value[:, :, :index], xv), dim=2)
present_key_value = (xk, xv, index + num_tokens)
else:
present_key_value = (xk, xv, index + num_tokens)
xk = xk.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
xv = xv.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
output = optimized_attention(xq, xk, xv, self.num_heads, mask=attention_mask, skip_reshape=True)
return self.o_proj(output), present_key_value
return self.o_proj(output)
class MLP(nn.Module):
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
@ -439,17 +408,15 @@ class TransformerBlock(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[torch.Tensor] = None,
optimized_attention=None,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
):
# Self Attention
residual = x
x = self.input_layernorm(x)
x, present_key_value = self.self_attn(
x = self.self_attn(
hidden_states=x,
attention_mask=attention_mask,
freqs_cis=freqs_cis,
optimized_attention=optimized_attention,
past_key_value=past_key_value,
)
x = residual + x
@ -459,7 +426,7 @@ class TransformerBlock(nn.Module):
x = self.mlp(x)
x = residual + x
return x, present_key_value
return x
class TransformerBlockGemma2(nn.Module):
def __init__(self, config: Llama2Config, index, device=None, dtype=None, ops: Any = None):
@ -484,7 +451,6 @@ class TransformerBlockGemma2(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[torch.Tensor] = None,
optimized_attention=None,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
):
if self.transformer_type == 'gemma3':
if self.sliding_attention:
@ -502,12 +468,11 @@ class TransformerBlockGemma2(nn.Module):
# Self Attention
residual = x
x = self.input_layernorm(x)
x, present_key_value = self.self_attn(
x = self.self_attn(
hidden_states=x,
attention_mask=attention_mask,
freqs_cis=freqs_cis,
optimized_attention=optimized_attention,
past_key_value=past_key_value,
)
x = self.post_attention_layernorm(x)
@ -520,7 +485,7 @@ class TransformerBlockGemma2(nn.Module):
x = self.post_feedforward_layernorm(x)
x = residual + x
return x, present_key_value
return x
class Llama2_(nn.Module):
def __init__(self, config, device=None, dtype=None, ops=None):
@ -551,10 +516,9 @@ class Llama2_(nn.Module):
else:
self.norm = None
if config.lm_head:
self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[], past_key_values=None):
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[]):
if embeds is not None:
x = embeds
else:
@ -563,13 +527,8 @@ class Llama2_(nn.Module):
if self.normalize_in:
x *= self.config.hidden_size ** 0.5
seq_len = x.shape[1]
past_len = 0
if past_key_values is not None and len(past_key_values) > 0:
past_len = past_key_values[0][2]
if position_ids is None:
position_ids = torch.arange(past_len, past_len + seq_len, device=x.device).unsqueeze(0)
position_ids = torch.arange(0, x.shape[1], device=x.device).unsqueeze(0)
freqs_cis = precompute_freqs_cis(self.config.head_dim,
position_ids,
@ -580,16 +539,14 @@ class Llama2_(nn.Module):
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, seq_len, attention_mask.shape[-1])
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
if seq_len > 1:
causal_mask = torch.empty(past_len + seq_len, past_len + seq_len, dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
if mask is not None:
mask += causal_mask
else:
mask = causal_mask
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
if mask is not None:
mask += causal_mask
else:
mask = causal_mask
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
intermediate = None
@ -605,27 +562,16 @@ class Llama2_(nn.Module):
elif intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
next_key_values = []
for i, layer in enumerate(self.layers):
if all_intermediate is not None:
if only_layers is None or (i in only_layers):
all_intermediate.append(x.unsqueeze(1).clone())
past_kv = None
if past_key_values is not None:
past_kv = past_key_values[i] if len(past_key_values) > 0 else []
x, current_kv = layer(
x = layer(
x=x,
attention_mask=mask,
freqs_cis=freqs_cis,
optimized_attention=optimized_attention,
past_key_value=past_kv,
)
if current_kv is not None:
next_key_values.append(current_kv)
if i == intermediate_output:
intermediate = x.clone()
@ -642,10 +588,7 @@ class Llama2_(nn.Module):
if intermediate is not None and final_layer_norm_intermediate and self.norm is not None:
intermediate = self.norm(intermediate)
if len(next_key_values) > 0:
return x, intermediate, next_key_values
else:
return x, intermediate
return x, intermediate
class Gemma3MultiModalProjector(torch.nn.Module):

View File

@ -1248,7 +1248,6 @@ class Hidden(str, Enum):
class NodeInfoV1:
input: dict=None
input_order: dict[str, list[str]]=None
is_input_list: bool=None
output: list[str]=None
output_is_list: list[bool]=None
output_name: list[str]=None
@ -1475,7 +1474,6 @@ class Schema:
info = NodeInfoV1(
input=input,
input_order={key: list(value.keys()) for (key, value) in input.items()},
is_input_list=self.is_input_list,
output=output,
output_is_list=output_is_list,
output_name=output_name,

View File

@ -1,132 +0,0 @@
from __future__ import annotations
import hashlib
import os
import numpy as np
import torch
from PIL import Image
import folder_paths
import node_helpers
from comfy_api.latest import ComfyExtension, io
from typing_extensions import override
def hex_to_rgb(hex_color: str) -> tuple[float, float, float]:
hex_color = hex_color.lstrip("#")
if len(hex_color) != 6:
return (0.0, 0.0, 0.0)
r = int(hex_color[0:2], 16) / 255.0
g = int(hex_color[2:4], 16) / 255.0
b = int(hex_color[4:6], 16) / 255.0
return (r, g, b)
class PainterNode(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="Painter",
display_name="Painter",
category="image",
inputs=[
io.Image.Input(
"image",
optional=True,
tooltip="Optional base image to paint over",
),
io.String.Input(
"mask",
default="",
socketless=True,
extra_dict={"widgetType": "PAINTER", "image_upload": True},
),
io.Int.Input(
"width",
default=512,
min=64,
max=4096,
step=64,
socketless=True,
extra_dict={"hidden": True},
),
io.Int.Input(
"height",
default=512,
min=64,
max=4096,
step=64,
socketless=True,
extra_dict={"hidden": True},
),
io.String.Input(
"bg_color",
default="#000000",
socketless=True,
extra_dict={"hidden": True, "widgetType": "COLOR"},
),
],
outputs=[
io.Image.Output("IMAGE"),
io.Mask.Output("MASK"),
],
)
@classmethod
def execute(cls, mask, width, height, bg_color="#000000", image=None) -> io.NodeOutput:
if image is not None:
h, w = image.shape[1], image.shape[2]
base_image = image
else:
h, w = height, width
r, g, b = hex_to_rgb(bg_color)
base_image = torch.zeros((1, h, w, 3), dtype=torch.float32)
base_image[0, :, :, 0] = r
base_image[0, :, :, 1] = g
base_image[0, :, :, 2] = b
if mask and mask.strip():
mask_path = folder_paths.get_annotated_filepath(mask)
painter_img = node_helpers.pillow(Image.open, mask_path)
painter_img = painter_img.convert("RGBA")
if painter_img.size != (w, h):
painter_img = painter_img.resize((w, h), Image.LANCZOS)
painter_np = np.array(painter_img).astype(np.float32) / 255.0
painter_rgb = painter_np[:, :, :3]
painter_alpha = painter_np[:, :, 3:4]
mask_tensor = torch.from_numpy(painter_np[:, :, 3]).unsqueeze(0)
base_np = base_image[0].cpu().numpy()
composited = painter_rgb * painter_alpha + base_np * (1.0 - painter_alpha)
out_image = torch.from_numpy(composited).unsqueeze(0)
else:
mask_tensor = torch.zeros((1, h, w), dtype=torch.float32)
out_image = base_image
return io.NodeOutput(out_image, mask_tensor)
@classmethod
def fingerprint_inputs(cls, mask, width, height, bg_color="#000000", image=None):
if mask and mask.strip():
mask_path = folder_paths.get_annotated_filepath(mask)
if os.path.exists(mask_path):
m = hashlib.sha256()
with open(mask_path, "rb") as f:
m.update(f.read())
return m.digest().hex()
return ""
class PainterExtension(ComfyExtension):
@override
async def get_node_list(self):
return [PainterNode]
async def comfy_entrypoint():
return PainterExtension()

View File

@ -2433,8 +2433,7 @@ async def init_builtin_extra_nodes():
"nodes_image_compare.py",
"nodes_zimage.py",
"nodes_lora_debug.py",
"nodes_color.py",
"nodes_painter.py"
"nodes_color.py"
]
import_failed = []

View File

@ -656,7 +656,6 @@ class PromptServer():
info = {}
info['input'] = obj_class.INPUT_TYPES()
info['input_order'] = {key: list(value.keys()) for (key, value) in obj_class.INPUT_TYPES().items()}
info['is_input_list'] = getattr(obj_class, "INPUT_IS_LIST", False)
info['output'] = obj_class.RETURN_TYPES
info['output_is_list'] = obj_class.OUTPUT_IS_LIST if hasattr(obj_class, 'OUTPUT_IS_LIST') else [False] * len(obj_class.RETURN_TYPES)
info['output_name'] = obj_class.RETURN_NAMES if hasattr(obj_class, 'RETURN_NAMES') else info['output']