Remove old-version dsl examples. (#2644)
This commit is contained in:
@ -1,314 +0,0 @@
|
||||
import os
|
||||
import torch
|
||||
import argparse
|
||||
from cuda import cuda
|
||||
from cuda.bindings import driver
|
||||
from typing import Type
|
||||
|
||||
import torch.distributed as dist
|
||||
import torch.distributed._symmetric_memory as symm_mem
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
import cutlass
|
||||
import cutlass.cute as cute
|
||||
from cutlass.cute.runtime import from_dlpack
|
||||
from cutlass._mlir.dialects import llvm, builtin, vector, arith
|
||||
|
||||
WORLD_SIZE = 8
|
||||
PING_PONG_SIZE = 3
|
||||
|
||||
|
||||
def setup(rank, world_size):
|
||||
# set environment variables for torch.distributed environment
|
||||
os.environ["MASTER_ADDR"] = "localhost"
|
||||
os.environ["MASTER_PORT"] = "12959"
|
||||
dist.init_process_group("nccl", rank=rank, world_size=world_size)
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
|
||||
def cleanup():
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
class AllReduceKernel:
|
||||
|
||||
@cute.jit
|
||||
def __call__(
|
||||
self,
|
||||
rank,
|
||||
signal,
|
||||
local_input: cute.Tensor,
|
||||
local_output: cute.Tensor,
|
||||
buffer0: cute.Tensor,
|
||||
buffer1: cute.Tensor,
|
||||
buffer2: cute.Tensor,
|
||||
buffer3: cute.Tensor,
|
||||
buffer4: cute.Tensor,
|
||||
buffer5: cute.Tensor,
|
||||
buffer6: cute.Tensor,
|
||||
buffer7: cute.Tensor,
|
||||
stream: cuda.CUstream,
|
||||
):
|
||||
# define constants for future use
|
||||
num_of_elements = cute.size(local_input.layout)
|
||||
# 128 threads per block and 4 elements per thread
|
||||
tv_layout = cute.make_layout(((128), (4)), stride=((1), (1)))
|
||||
tile = cute.size(tv_layout.shape)
|
||||
|
||||
buffers = [
|
||||
buffer0,
|
||||
buffer1,
|
||||
buffer2,
|
||||
buffer3,
|
||||
buffer4,
|
||||
buffer5,
|
||||
buffer6,
|
||||
buffer7,
|
||||
]
|
||||
tiled_buffers = [
|
||||
cute.logical_divide(buffer, (tile, None, None)) for buffer in buffers
|
||||
]
|
||||
|
||||
tiled_input = cute.zipped_divide(local_input, cute.make_layout(tile))
|
||||
tiled_output = cute.zipped_divide(local_output, cute.make_layout(tile))
|
||||
self.kernel(
|
||||
tiled_buffers[0],
|
||||
tiled_buffers[1],
|
||||
tiled_buffers[2],
|
||||
tiled_buffers[3],
|
||||
tiled_buffers[4],
|
||||
tiled_buffers[5],
|
||||
tiled_buffers[6],
|
||||
tiled_buffers[7],
|
||||
tiled_input,
|
||||
tiled_output,
|
||||
tv_layout,
|
||||
cutlass.Int32(signal),
|
||||
cutlass.Int32(rank),
|
||||
).launch(
|
||||
grid=[num_of_elements // tile, 1, 1],
|
||||
block=[tv_layout.shape[0], 1, 1],
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
# GPU device kernel
|
||||
@cute.kernel
|
||||
def kernel(
|
||||
self,
|
||||
buffer0: cute.Tensor,
|
||||
buffer1: cute.Tensor,
|
||||
buffer2: cute.Tensor,
|
||||
buffer3: cute.Tensor,
|
||||
buffer4: cute.Tensor,
|
||||
buffer5: cute.Tensor,
|
||||
buffer6: cute.Tensor,
|
||||
buffer7: cute.Tensor,
|
||||
local_input: cute.Tensor,
|
||||
local_output: cute.Tensor,
|
||||
tv_layout: cute.Layout,
|
||||
signal: cutlass.Int32,
|
||||
rank: cutlass.Int32,
|
||||
):
|
||||
tidx, _, _ = cute.arch.thread_idx()
|
||||
bidx, _, _ = cute.arch.block_idx()
|
||||
ping = signal % 3
|
||||
pong = (signal + 1) % 3
|
||||
|
||||
buffers = [
|
||||
buffer0,
|
||||
buffer1,
|
||||
buffer2,
|
||||
buffer3,
|
||||
buffer4,
|
||||
buffer5,
|
||||
buffer6,
|
||||
buffer7,
|
||||
]
|
||||
|
||||
def get_buffer():
|
||||
t = buffers[2]
|
||||
if rank == cutlass.Int32(0):
|
||||
t = buffers[0]
|
||||
if rank == cutlass.Int32(1):
|
||||
t = buffers[1]
|
||||
if rank == cutlass.Int32(2):
|
||||
t = buffers[2]
|
||||
if rank == cutlass.Int32(3):
|
||||
t = buffers[3]
|
||||
if rank == cutlass.Int32(4):
|
||||
t = buffers[4]
|
||||
if rank == cutlass.Int32(5):
|
||||
t = buffers[5]
|
||||
if rank == cutlass.Int32(6):
|
||||
t = buffers[6]
|
||||
if rank == cutlass.Int32(7):
|
||||
t = buffers[7]
|
||||
return t
|
||||
|
||||
buffer_local = get_buffer()
|
||||
cta_coord = (None, bidx)
|
||||
local_tile_in = local_input[cta_coord]
|
||||
local_tile_out = local_output[cta_coord]
|
||||
|
||||
ping_coord = ((None, bidx), None, ping)
|
||||
read_buffer = buffer_local[ping_coord]
|
||||
|
||||
pong_coord = ((None, bidx), None, pong)
|
||||
clear_buffer = buffer_local[pong_coord]
|
||||
|
||||
write_coord = ((None, bidx), rank, ping)
|
||||
write_buffers = [buffer[write_coord] for buffer in buffers]
|
||||
|
||||
# assume all buffers have the same element type with input
|
||||
copy_atom_load = cute.make_copy_atom(
|
||||
cute.nvgpu.CopyUniversalOp(),
|
||||
buffer0.element_type,
|
||||
num_bits_per_copy=64,
|
||||
memory_scope=cute.nvgpu.common.MemoryScope.SYS,
|
||||
memory_order=cute.nvgpu.common.MemoryOrder.VOLATILE,
|
||||
)
|
||||
copy_atom_store = cute.make_copy_atom(
|
||||
cute.nvgpu.CopyUniversalOp(),
|
||||
buffer0.element_type,
|
||||
num_bits_per_copy=64,
|
||||
memory_scope=cute.nvgpu.common.MemoryScope.SYS,
|
||||
memory_order=cute.nvgpu.common.MemoryOrder.VOLATILE,
|
||||
)
|
||||
tiled_copy = cute.make_tiled_copy_tv(copy_atom_load, tv_layout[0], tv_layout[1])
|
||||
thr_copy = tiled_copy.get_slice(tidx)
|
||||
|
||||
thr_write_buffer_list = [
|
||||
thr_copy.partition_D(tensor) for tensor in write_buffers
|
||||
]
|
||||
thr_read_buffer = thr_copy.partition_S(read_buffer)
|
||||
thr_clear_buffer = thr_copy.partition_D(clear_buffer)
|
||||
|
||||
thr_in = thr_copy.partition_S(local_tile_in)
|
||||
thr_out = thr_copy.partition_D(local_tile_out)
|
||||
|
||||
frg_in = cute.make_fragment_like(thr_in)
|
||||
frg_clear = cute.make_fragment_like(thr_clear_buffer)
|
||||
frg_acc = cute.make_fragment_like(thr_out)
|
||||
frg_acc.fill(0.0)
|
||||
|
||||
clear_tensor = frg_clear.load()
|
||||
frg_size = cute.size(clear_tensor.shape)
|
||||
neg0_i32_vec = cute.full_like(clear_tensor, 0x80000000, cutlass.Int32)
|
||||
neg0_f32_vec = vector.bitcast(T.vector(frg_size, T.f32()), neg0_i32_vec)
|
||||
neg0_f32_tensor = cute.TensorSSA(
|
||||
neg0_f32_vec, clear_tensor.shape, cutlass.Float32
|
||||
)
|
||||
frg_clear.store(neg0_f32_tensor)
|
||||
|
||||
cute.copy(copy_atom_load, thr_in, frg_in)
|
||||
|
||||
for thr_write_buffer in thr_write_buffer_list:
|
||||
cute.copy(copy_atom_store, frg_in, thr_write_buffer)
|
||||
|
||||
cute.copy(copy_atom_store, frg_clear, thr_clear_buffer)
|
||||
|
||||
frg_in_vector_neg0_i32 = cute.full_like(
|
||||
frg_in, cutlass.Int32(0x80000000), cutlass.Int32
|
||||
)
|
||||
frg_in_size = cute.size(frg_in.shape)
|
||||
|
||||
for i in range(WORLD_SIZE):
|
||||
read_coord = (None, 0, i)
|
||||
cute.copy(copy_atom_load, thr_read_buffer[read_coord], frg_in[None, 0])
|
||||
frg_vector = frg_in.load()
|
||||
frg_vector_i32 = vector.bitcast(T.vector(frg_in_size, T.i32()), frg_vector)
|
||||
isNotNeg0 = cute.all_(frg_vector_i32 != frg_in_vector_neg0_i32)
|
||||
while not isNotNeg0:
|
||||
cute.copy(copy_atom_load, thr_read_buffer[read_coord], frg_in[None, 0])
|
||||
frg_vector = frg_in.load()
|
||||
frg_vector_i32 = vector.bitcast(
|
||||
T.vector(frg_in_size, T.i32()), frg_vector
|
||||
)
|
||||
isNotNeg0 = cute.all_(frg_vector_i32 != frg_in_vector_neg0_i32)
|
||||
frg_acc.store(frg_in.load() + frg_acc.load())
|
||||
|
||||
cute.copy(copy_atom_stg, frg_acc, thr_out)
|
||||
|
||||
|
||||
def run_all_reduce(rank, M, N, dtype: Type[cutlass.Numeric]):
|
||||
setup(rank, WORLD_SIZE)
|
||||
|
||||
input_tensor = torch.randn(M * N, device=f"cuda:{rank}")
|
||||
output_tensor = torch.zeros(M * N, device=f"cuda:{rank}")
|
||||
|
||||
# init tensors on different devices
|
||||
t = symm_mem.empty(
|
||||
[
|
||||
PING_PONG_SIZE,
|
||||
WORLD_SIZE,
|
||||
M * N,
|
||||
],
|
||||
device="cuda",
|
||||
).neg_()
|
||||
hdl = symm_mem.rendezvous(t, dist.group.WORLD)
|
||||
buffer_tensor_list = [
|
||||
hdl.get_buffer(rank, t.shape, t.dtype).permute(2, 1, 0)
|
||||
for rank in range(WORLD_SIZE)
|
||||
]
|
||||
|
||||
# enable peer access
|
||||
driver.cuInit(0)
|
||||
dev_list = [driver.cuDeviceGet(i)[1] for i in range(WORLD_SIZE)]
|
||||
ctx_list = [driver.cuDevicePrimaryCtxRetain(dev)[1] for dev in dev_list]
|
||||
for i in range(WORLD_SIZE):
|
||||
driver.cuCtxSetCurrent(ctx_list[i])
|
||||
for j in range(WORLD_SIZE):
|
||||
if i == j:
|
||||
continue
|
||||
driver.cuCtxEnablePeerAccess(ctx_list[j], 0)
|
||||
driver.cuCtxSetCurrent(ctx_list[rank])
|
||||
|
||||
stream = cutlass.cuda.default_stream()
|
||||
all_reduce_kernel = AllReduceKernel()
|
||||
dlpack_buffers = [from_dlpack(x, assumed_align=32) for x in buffer_tensor_list]
|
||||
all_reduce_kernel(
|
||||
rank,
|
||||
0,
|
||||
from_dlpack(input_tensor, assumed_align=32),
|
||||
from_dlpack(output_tensor, assumed_align=32),
|
||||
*dlpack_buffers,
|
||||
stream,
|
||||
)
|
||||
torch.cuda.synchronize(0)
|
||||
|
||||
# use torch api to get reference and inplace stored to input_tensor
|
||||
ref_tensor = input_tensor.clone()
|
||||
dist.all_reduce(ref_tensor, op=dist.ReduceOp.SUM)
|
||||
|
||||
# check result of output tensor, allow small error due to different accumulator datatypes
|
||||
equal_mask = (ref_tensor.cpu() - output_tensor.cpu()).abs() < 1e-4
|
||||
result = (equal_mask.sum()).item() == ref_tensor.numel()
|
||||
|
||||
if result:
|
||||
print(f"rank {rank} test passed")
|
||||
else:
|
||||
print(f"rank {rank} test failed")
|
||||
print(
|
||||
"ref_tensor[ref_tensor != output_tensor]: ",
|
||||
ref_tensor[ref_tensor != output_tensor],
|
||||
)
|
||||
print(
|
||||
"output_tensor[ref_tensor != output_tensor]: ",
|
||||
output_tensor[ref_tensor != output_tensor],
|
||||
)
|
||||
|
||||
cleanup()
|
||||
|
||||
|
||||
def main():
|
||||
M = 1024
|
||||
N = 1024
|
||||
|
||||
# each process will run run_all_reduce on different device
|
||||
mp.spawn(run_all_reduce, args=(M, N, cutlass.Float32), nprocs=WORLD_SIZE, join=True)
|
||||
|
||||
return
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -1,189 +0,0 @@
|
||||
import os
|
||||
import torch
|
||||
import argparse
|
||||
from typing import Type
|
||||
from cuda.bindings import driver
|
||||
|
||||
import torch.distributed as dist
|
||||
import torch.distributed._symmetric_memory as symm_mem
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
import cutlass
|
||||
import cutlass.cute as cute
|
||||
from cutlass.cute.runtime import from_dlpack
|
||||
|
||||
|
||||
def setup(rank, world_size):
|
||||
# set environment variables for torch.distributed environment
|
||||
os.environ["MASTER_ADDR"] = "localhost"
|
||||
os.environ["MASTER_PORT"] = "12995"
|
||||
dist.init_process_group("nccl", rank=rank, world_size=world_size)
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
|
||||
def cleanup():
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
@cute.kernel
|
||||
def vector_add_kernel(
|
||||
g0: cute.Tensor,
|
||||
g1: cute.Tensor,
|
||||
g2: cute.Tensor,
|
||||
g3: cute.Tensor,
|
||||
g4: cute.Tensor,
|
||||
g5: cute.Tensor,
|
||||
g6: cute.Tensor,
|
||||
g7: cute.Tensor,
|
||||
gOut: cute.Tensor,
|
||||
tv_layout: cute.Layout,
|
||||
):
|
||||
tidx, _, _ = cute.arch.thread_idx()
|
||||
bidx, _, _ = cute.arch.block_idx()
|
||||
cta_coord = (None, bidx)
|
||||
local_tile_out = gOut[cta_coord]
|
||||
local_tile_list = [
|
||||
g0[cta_coord],
|
||||
g1[cta_coord],
|
||||
g2[cta_coord],
|
||||
g3[cta_coord],
|
||||
g4[cta_coord],
|
||||
g5[cta_coord],
|
||||
g6[cta_coord],
|
||||
g7[cta_coord],
|
||||
]
|
||||
|
||||
copy_atom_load = cute.make_copy_atom(
|
||||
cute.nvgpu.CopyUniversalOp(),
|
||||
g0.element_type,
|
||||
memory_order=cute.nvgpu.common.MemoryOrder.VOLATILE,
|
||||
memory_scope=cute.nvgpu.common.MemoryScope.SYS,
|
||||
)
|
||||
copy_atom_store = cute.make_copy_atom(
|
||||
cute.nvgpu.CopyUniversalOp(),
|
||||
g0.element_type,
|
||||
memory_order=cute.nvgpu.common.MemoryOrder.VOLATILE,
|
||||
memory_scope=cute.nvgpu.common.MemoryScope.SYS,
|
||||
)
|
||||
tiled_copy = cute.make_tiled_copy_tv(copy_atom_load, tv_layout[0], tv_layout[1])
|
||||
thr_copy = tiled_copy.get_slice(tidx)
|
||||
|
||||
thr_tensor_list = [thr_copy.partition_S(tensor) for tensor in local_tile_list]
|
||||
thr_out = thr_copy.partition_D(local_tile_out)
|
||||
frg_tensor_list = [cute.make_fragment_like(tensor) for tensor in thr_tensor_list]
|
||||
frg_acc = cute.make_fragment_like(thr_out)
|
||||
frg_acc.fill(0.0)
|
||||
|
||||
for thr, frg in zip(thr_tensor_list, frg_tensor_list):
|
||||
cute.copy(copy_atom_load, thr, frg)
|
||||
tmp = frg.load() + frg_acc.load()
|
||||
frg_acc.store(tmp)
|
||||
|
||||
cute.copy(copy_atom_store, frg_acc, thr_out)
|
||||
|
||||
|
||||
@cute.jit
|
||||
def vector_add(
|
||||
m0: cute.Tensor,
|
||||
m1: cute.Tensor,
|
||||
m2: cute.Tensor,
|
||||
m3: cute.Tensor,
|
||||
m4: cute.Tensor,
|
||||
m5: cute.Tensor,
|
||||
m6: cute.Tensor,
|
||||
m7: cute.Tensor,
|
||||
output: cute.Tensor,
|
||||
):
|
||||
# define constants for future use
|
||||
num_of_elements = cute.size(m0.layout)
|
||||
# 128 threads per block and 4 elements per thread
|
||||
tv_layout = cute.make_layout(((128), (4)), stride=((1), (1)))
|
||||
tile = cute.size(tv_layout.shape)
|
||||
|
||||
tensors = [m0, m1, m2, m3, m4, m5, m6, m7]
|
||||
divided_tensors = [
|
||||
cute.zipped_divide(tensor, cute.make_layout(tile)) for tensor in tensors
|
||||
]
|
||||
gOut = cute.zipped_divide(output, cute.make_layout(tile)) # ((Tile),(Rest))
|
||||
vector_add_kernel(
|
||||
divided_tensors[0],
|
||||
divided_tensors[1],
|
||||
divided_tensors[2],
|
||||
divided_tensors[3],
|
||||
divided_tensors[4],
|
||||
divided_tensors[5],
|
||||
divided_tensors[6],
|
||||
divided_tensors[7],
|
||||
gOut,
|
||||
tv_layout,
|
||||
).launch(
|
||||
grid=[num_of_elements // tile, 1, 1],
|
||||
block=[tv_layout.shape[0], 1, 1],
|
||||
)
|
||||
|
||||
|
||||
def run_vector_add(rank, world_size, M, N, dtype: Type[cutlass.Numeric]):
|
||||
setup(rank, world_size)
|
||||
|
||||
t = symm_mem.empty(M * N, device="cuda")
|
||||
hdl = symm_mem.rendezvous(t, dist.group.WORLD)
|
||||
# get tensors from other devices from the symmetric memory
|
||||
tensor_list = [hdl.get_buffer(rank, t.shape, t.dtype) for rank in range(world_size)]
|
||||
tensor_list[rank].random_(0, 100)
|
||||
|
||||
# enable peer access
|
||||
driver.cuInit(0)
|
||||
dev_list = [driver.cuDeviceGet(i)[1] for i in range(world_size)]
|
||||
ctx_list = [driver.cuDevicePrimaryCtxRetain(dev)[1] for dev in dev_list]
|
||||
driver.cuCtxSetCurrent(ctx_list[rank])
|
||||
for i in range(world_size):
|
||||
if i == rank:
|
||||
continue
|
||||
driver.cuCtxEnablePeerAccess(ctx_list[i], 0)
|
||||
|
||||
output = torch.zeros(M * N, device=f"cuda:{rank}")
|
||||
|
||||
# we have to explicitly pass each tensor instead of a list of tensors
|
||||
vector_add(
|
||||
from_dlpack(tensor_list[0], assumed_align=32),
|
||||
from_dlpack(tensor_list[1], assumed_align=32),
|
||||
from_dlpack(tensor_list[2], assumed_align=32),
|
||||
from_dlpack(tensor_list[3], assumed_align=32),
|
||||
from_dlpack(tensor_list[4], assumed_align=32),
|
||||
from_dlpack(tensor_list[5], assumed_align=32),
|
||||
from_dlpack(tensor_list[6], assumed_align=32),
|
||||
from_dlpack(tensor_list[7], assumed_align=32),
|
||||
from_dlpack(output, assumed_align=32),
|
||||
)
|
||||
|
||||
sum_tensor = sum([tensor.cpu() for tensor in tensor_list])
|
||||
|
||||
if sum(sum_tensor.cpu() == output.cpu()) == sum_tensor.numel():
|
||||
print("test passed")
|
||||
else:
|
||||
print("test failed")
|
||||
print(sum_tensor.cpu())
|
||||
print(output.cpu())
|
||||
|
||||
cleanup()
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
world_size = torch.cuda.device_count()
|
||||
M = 1024
|
||||
N = 1024
|
||||
|
||||
# each process will run run_vector_add on different device
|
||||
mp.spawn(
|
||||
run_vector_add,
|
||||
args=(world_size, M, N, cutlass.Float32),
|
||||
nprocs=world_size,
|
||||
join=True,
|
||||
)
|
||||
|
||||
return
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user