|
|
|
|
@ -0,0 +1,362 @@
|
|
|
|
|
/***************************************************************************************************
|
|
|
|
|
* Copyright (c) 2025 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
|
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
|
*
|
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
|
* modification, are permitted provided that the following conditions are met:
|
|
|
|
|
*
|
|
|
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
|
|
|
* list of conditions and the following disclaimer.
|
|
|
|
|
*
|
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
|
|
|
* and/or other materials provided with the distribution.
|
|
|
|
|
*
|
|
|
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
|
|
|
* contributors may be used to endorse or promote products derived from
|
|
|
|
|
* this software without specific prior written permission.
|
|
|
|
|
*
|
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
|
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
|
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
|
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
|
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
*
|
|
|
|
|
**************************************************************************************************/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*! \file
|
|
|
|
|
\brief Tests for device-wide grouped GEMM interface
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
|
|
#include "cutlass/cutlass.h"
|
|
|
|
|
#include "cute/tensor.hpp"
|
|
|
|
|
#include "cute/atom/mma_atom.hpp"
|
|
|
|
|
|
|
|
|
|
#include "cutlass/numeric_types.h"
|
|
|
|
|
|
|
|
|
|
#include "cutlass/gemm/device/gemm_universal_adapter.h"
|
|
|
|
|
#include "cutlass/gemm/kernel/gemm_universal.hpp"
|
|
|
|
|
#include "cutlass/epilogue/collective/collective_builder.hpp"
|
|
|
|
|
#include "cutlass/gemm/collective/collective_builder.hpp"
|
|
|
|
|
#include "cutlass/epilogue/collective/default_epilogue.hpp"
|
|
|
|
|
#include "cutlass/epilogue/thread/linear_combination.h"
|
|
|
|
|
#include "cutlass/gemm/dispatch_policy.hpp"
|
|
|
|
|
#include "cutlass/epilogue/thread/activation.h"
|
|
|
|
|
|
|
|
|
|
#include "../../../common/cutlass_unit_test.h"
|
|
|
|
|
#include "../gemm_testbed_3x_ptr_array.hpp"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
using namespace cute;
|
|
|
|
|
|
|
|
|
|
#if defined(CUTLASS_ARCH_MMA_SM120_SUPPORTED)
|
|
|
|
|
|
|
|
|
|
// Pingpong kernel schedule
|
|
|
|
|
TEST(SM120_Device_Gemm_e5m2t_e2m1n_e2m1t_tensorop_f32_epilogue_VS32_group_pingpong, row_sf) {
|
|
|
|
|
using ElementInputA = float_e5m2_t;
|
|
|
|
|
using ElementInputB = float_e2m1_t;
|
|
|
|
|
using ElementA = cutlass::mx_float8_t<ElementInputA>;
|
|
|
|
|
using ElementB = cutlass::mx_float4_t<ElementInputB>;
|
|
|
|
|
using ElementC = cutlass::half_t;
|
|
|
|
|
using ElementD = cutlass::float_e2m1_t;
|
|
|
|
|
using ElementCompute = float;
|
|
|
|
|
using ElementAccumulator = float;
|
|
|
|
|
using ElementSF = cutlass::float_ue8m0_t;
|
|
|
|
|
using ElementSFD = ElementSF;
|
|
|
|
|
using ElementAccumulator = float;
|
|
|
|
|
using GmemLayoutA = cutlass::layout::RowMajor;
|
|
|
|
|
using GmemLayoutB = cutlass::layout::ColumnMajor;
|
|
|
|
|
using GmemLayoutC = cutlass::layout::RowMajor;
|
|
|
|
|
constexpr int SFVectorSize = 32;
|
|
|
|
|
using TileShape_MNK = Shape<_128,_128,_128>;
|
|
|
|
|
using ClusterShape_MNK = Shape<_1,_1,_1>;
|
|
|
|
|
|
|
|
|
|
constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementInputA>::value;
|
|
|
|
|
constexpr int AlignmentB = 128;
|
|
|
|
|
constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;
|
|
|
|
|
constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// Construct CollectiveEpilogue
|
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
constexpr int OutputSFVectorSize = SFVectorSize;
|
|
|
|
|
// D = alpha * acc + beta * C
|
|
|
|
|
// With Row-major BlockScaleFactor generation.
|
|
|
|
|
using FusionOperation = cutlass::epilogue::fusion::LinCombBlockScaleFactor<
|
|
|
|
|
OutputSFVectorSize,
|
|
|
|
|
ElementD,
|
|
|
|
|
ElementCompute,
|
|
|
|
|
ElementSFD, GmemLayoutC,
|
|
|
|
|
ElementC>;
|
|
|
|
|
|
|
|
|
|
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
|
|
|
|
|
cutlass::arch::Sm120, cutlass::arch::OpClassBlockScaledTensorOp,
|
|
|
|
|
TileShape_MNK, ClusterShape_MNK,
|
|
|
|
|
cutlass::epilogue::collective::EpilogueTileAuto,
|
|
|
|
|
ElementAccumulator, ElementCompute,
|
|
|
|
|
ElementC, GmemLayoutC *, AlignmentC,
|
|
|
|
|
ElementD, GmemLayoutC *, AlignmentD,
|
|
|
|
|
cutlass::epilogue::collective::EpilogueScheduleAuto,
|
|
|
|
|
FusionOperation
|
|
|
|
|
>::CollectiveOp;
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// Construct CollectiveMainloop
|
|
|
|
|
//
|
|
|
|
|
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
|
|
|
|
|
cutlass::arch::Sm120, cutlass::arch::OpClassBlockScaledTensorOp,
|
|
|
|
|
ElementA, GmemLayoutA *, AlignmentA,
|
|
|
|
|
ElementB, GmemLayoutB *, AlignmentB,
|
|
|
|
|
ElementAccumulator,
|
|
|
|
|
TileShape_MNK, ClusterShape_MNK,
|
|
|
|
|
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
|
|
|
|
|
cutlass::gemm::KernelPtrArrayTmaWarpSpecializedPingpong
|
|
|
|
|
>::CollectiveOp;
|
|
|
|
|
|
|
|
|
|
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
|
|
|
|
|
cutlass::gemm::GroupProblemShape<Shape<int,int,int>>,
|
|
|
|
|
CollectiveMainloop,
|
|
|
|
|
CollectiveEpilogue
|
|
|
|
|
>;
|
|
|
|
|
|
|
|
|
|
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
|
|
|
|
|
auto pass = test::gemm::device::TestSmallFusion<Gemm>(1.0, 0.5);
|
|
|
|
|
EXPECT_TRUE(pass);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TEST(SM120_Device_Gemm_e5m2t_e2m1n_e2m1t_tensorop_f32_epilogue_VS32_group_pingpong, silu_row_sf) {
|
|
|
|
|
using ElementInputA = float_e5m2_t;
|
|
|
|
|
using ElementInputB = float_e2m1_t;
|
|
|
|
|
using ElementA = cutlass::mx_float8_t<ElementInputA>;
|
|
|
|
|
using ElementB = cutlass::mx_float4_t<ElementInputB>;
|
|
|
|
|
using ElementC = cutlass::half_t;
|
|
|
|
|
using ElementD = cutlass::float_e2m1_t;
|
|
|
|
|
using ElementCompute = float;
|
|
|
|
|
using ElementAccumulator = float;
|
|
|
|
|
using ElementSF = cutlass::float_ue4m3_t;
|
|
|
|
|
using ElementSFD = ElementSF;
|
|
|
|
|
using ElementAccumulator = float;
|
|
|
|
|
using GmemLayoutA = cutlass::layout::RowMajor;
|
|
|
|
|
using GmemLayoutB = cutlass::layout::ColumnMajor;
|
|
|
|
|
using GmemLayoutC = cutlass::layout::RowMajor;
|
|
|
|
|
constexpr int SFVectorSize = 32;
|
|
|
|
|
using TileShape_MNK = Shape<_128,_128,_128>;
|
|
|
|
|
using ClusterShape_MNK = Shape<_1,_1,_1>;
|
|
|
|
|
|
|
|
|
|
constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementInputA>::value;
|
|
|
|
|
constexpr int AlignmentB = 128;
|
|
|
|
|
constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;
|
|
|
|
|
constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// Construct CollectiveEpilogue
|
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
constexpr int OutputSFVectorSize = SFVectorSize;
|
|
|
|
|
// D = SiLu(alpha * acc + beta * C)
|
|
|
|
|
// With Row-major BlockScaleFactor generation.
|
|
|
|
|
using FusionOperation = cutlass::epilogue::fusion::LinCombEltActBlockScaleFactor<
|
|
|
|
|
cutlass::epilogue::thread::SiLu,
|
|
|
|
|
OutputSFVectorSize,
|
|
|
|
|
ElementD,
|
|
|
|
|
ElementCompute,
|
|
|
|
|
ElementSFD, GmemLayoutC,
|
|
|
|
|
ElementC>;
|
|
|
|
|
|
|
|
|
|
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
|
|
|
|
|
cutlass::arch::Sm120, cutlass::arch::OpClassBlockScaledTensorOp,
|
|
|
|
|
TileShape_MNK, ClusterShape_MNK,
|
|
|
|
|
cutlass::epilogue::collective::EpilogueTileAuto,
|
|
|
|
|
ElementAccumulator, ElementCompute,
|
|
|
|
|
ElementC, GmemLayoutC *, AlignmentC,
|
|
|
|
|
ElementD, GmemLayoutC *, AlignmentD,
|
|
|
|
|
cutlass::epilogue::collective::EpilogueScheduleAuto,
|
|
|
|
|
FusionOperation
|
|
|
|
|
>::CollectiveOp;
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// Construct CollectiveMainloop
|
|
|
|
|
//
|
|
|
|
|
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
|
|
|
|
|
cutlass::arch::Sm120, cutlass::arch::OpClassBlockScaledTensorOp,
|
|
|
|
|
ElementA, GmemLayoutA *, AlignmentA,
|
|
|
|
|
ElementB, GmemLayoutB *, AlignmentB,
|
|
|
|
|
ElementAccumulator,
|
|
|
|
|
TileShape_MNK, ClusterShape_MNK,
|
|
|
|
|
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
|
|
|
|
|
cutlass::gemm::KernelPtrArrayTmaWarpSpecializedPingpong
|
|
|
|
|
>::CollectiveOp;
|
|
|
|
|
|
|
|
|
|
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
|
|
|
|
|
cutlass::gemm::GroupProblemShape<Shape<int,int,int>>,
|
|
|
|
|
CollectiveMainloop,
|
|
|
|
|
CollectiveEpilogue
|
|
|
|
|
>;
|
|
|
|
|
|
|
|
|
|
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
|
|
|
|
|
auto pass = test::gemm::device::TestSmallFusion<Gemm>(1.0, 0.5);
|
|
|
|
|
EXPECT_TRUE(pass);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Cooperative kenel schedule
|
|
|
|
|
TEST(SM120_Device_Gemm_e5m2t_e2m1n_e2m1t_tensorop_f32_epilogue_VS32_group_cooperative, row_sf) {
|
|
|
|
|
using ElementInputA = float_e5m2_t;
|
|
|
|
|
using ElementInputB = float_e2m1_t;
|
|
|
|
|
using ElementA = cutlass::mx_float8_t<ElementInputA>;
|
|
|
|
|
using ElementB = cutlass::mx_float4_t<ElementInputB>;
|
|
|
|
|
using ElementC = cutlass::half_t;
|
|
|
|
|
using ElementD = cutlass::float_e2m1_t;
|
|
|
|
|
using ElementCompute = float;
|
|
|
|
|
using ElementAccumulator = float;
|
|
|
|
|
using ElementSF = cutlass::float_ue4m3_t;
|
|
|
|
|
using ElementSFD = ElementSF;
|
|
|
|
|
using ElementAccumulator = float;
|
|
|
|
|
using GmemLayoutA = cutlass::layout::RowMajor;
|
|
|
|
|
using GmemLayoutB = cutlass::layout::ColumnMajor;
|
|
|
|
|
using GmemLayoutC = cutlass::layout::RowMajor;
|
|
|
|
|
constexpr int SFVectorSize = 32;
|
|
|
|
|
using TileShape_MNK = Shape<_128,_128,_128>;
|
|
|
|
|
using ClusterShape_MNK = Shape<_1,_1,_1>;
|
|
|
|
|
|
|
|
|
|
constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementInputA>::value;
|
|
|
|
|
constexpr int AlignmentB = 128;
|
|
|
|
|
constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;
|
|
|
|
|
constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// Construct CollectiveEpilogue
|
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
constexpr int OutputSFVectorSize = SFVectorSize;
|
|
|
|
|
// D = alpha * acc + beta * C
|
|
|
|
|
// With Row-major BlockScaleFactor generation.
|
|
|
|
|
using FusionOperation = cutlass::epilogue::fusion::LinCombBlockScaleFactor<
|
|
|
|
|
OutputSFVectorSize,
|
|
|
|
|
ElementD,
|
|
|
|
|
ElementCompute,
|
|
|
|
|
ElementSFD, GmemLayoutC,
|
|
|
|
|
ElementC>;
|
|
|
|
|
|
|
|
|
|
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
|
|
|
|
|
cutlass::arch::Sm120, cutlass::arch::OpClassBlockScaledTensorOp,
|
|
|
|
|
TileShape_MNK, ClusterShape_MNK,
|
|
|
|
|
cutlass::epilogue::collective::EpilogueTileAuto,
|
|
|
|
|
ElementAccumulator, ElementCompute,
|
|
|
|
|
ElementC, GmemLayoutC *, AlignmentC,
|
|
|
|
|
ElementD, GmemLayoutC *, AlignmentD,
|
|
|
|
|
cutlass::epilogue::collective::EpilogueScheduleAuto,
|
|
|
|
|
FusionOperation
|
|
|
|
|
>::CollectiveOp;
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// Construct CollectiveMainloop
|
|
|
|
|
//
|
|
|
|
|
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
|
|
|
|
|
cutlass::arch::Sm120, cutlass::arch::OpClassBlockScaledTensorOp,
|
|
|
|
|
ElementA, GmemLayoutA *, AlignmentA,
|
|
|
|
|
ElementB, GmemLayoutB *, AlignmentB,
|
|
|
|
|
ElementAccumulator,
|
|
|
|
|
TileShape_MNK, ClusterShape_MNK,
|
|
|
|
|
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
|
|
|
|
|
cutlass::gemm::collective::KernelScheduleAuto
|
|
|
|
|
>::CollectiveOp;
|
|
|
|
|
|
|
|
|
|
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
|
|
|
|
|
cutlass::gemm::GroupProblemShape<Shape<int,int,int>>,
|
|
|
|
|
CollectiveMainloop,
|
|
|
|
|
CollectiveEpilogue
|
|
|
|
|
>;
|
|
|
|
|
|
|
|
|
|
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
|
|
|
|
|
auto pass = test::gemm::device::TestSmallFusion<Gemm>(1.0, 0.5);
|
|
|
|
|
EXPECT_TRUE(pass);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TEST(SM120_Device_Gemm_e5m2t_e2m1n_e2m1t_tensorop_f32_epilogue_VS32_group_cooperative, silu_row_sf) {
|
|
|
|
|
using ElementInputA = float_e5m2_t;
|
|
|
|
|
using ElementInputB = float_e2m1_t;
|
|
|
|
|
using ElementA = cutlass::mx_float8_t<ElementInputA>;
|
|
|
|
|
using ElementB = cutlass::mx_float4_t<ElementInputB>;
|
|
|
|
|
using ElementC = cutlass::half_t;
|
|
|
|
|
using ElementD = cutlass::float_e2m1_t;
|
|
|
|
|
using ElementCompute = float;
|
|
|
|
|
using ElementAccumulator = float;
|
|
|
|
|
using ElementSF = cutlass::float_ue4m3_t;
|
|
|
|
|
using ElementSFD = ElementSF;
|
|
|
|
|
using ElementAccumulator = float;
|
|
|
|
|
using GmemLayoutA = cutlass::layout::RowMajor;
|
|
|
|
|
using GmemLayoutB = cutlass::layout::ColumnMajor;
|
|
|
|
|
using GmemLayoutC = cutlass::layout::RowMajor;
|
|
|
|
|
constexpr int SFVectorSize = 32;
|
|
|
|
|
using TileShape_MNK = Shape<_128,_128,_128>;
|
|
|
|
|
using ClusterShape_MNK = Shape<_1,_1,_1>;
|
|
|
|
|
|
|
|
|
|
constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementInputA>::value;
|
|
|
|
|
constexpr int AlignmentB = 128;
|
|
|
|
|
constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;
|
|
|
|
|
constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// Construct CollectiveEpilogue
|
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
constexpr int OutputSFVectorSize = SFVectorSize;
|
|
|
|
|
// D = SiLu(alpha * acc + beta * C)
|
|
|
|
|
// With Row-major BlockScaleFactor generation.
|
|
|
|
|
using FusionOperation = cutlass::epilogue::fusion::LinCombEltActBlockScaleFactor<
|
|
|
|
|
cutlass::epilogue::thread::SiLu,
|
|
|
|
|
OutputSFVectorSize,
|
|
|
|
|
ElementD,
|
|
|
|
|
ElementCompute,
|
|
|
|
|
ElementSFD, GmemLayoutC,
|
|
|
|
|
ElementC>;
|
|
|
|
|
|
|
|
|
|
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
|
|
|
|
|
cutlass::arch::Sm120, cutlass::arch::OpClassBlockScaledTensorOp,
|
|
|
|
|
TileShape_MNK, ClusterShape_MNK,
|
|
|
|
|
cutlass::epilogue::collective::EpilogueTileAuto,
|
|
|
|
|
ElementAccumulator, ElementCompute,
|
|
|
|
|
ElementC, GmemLayoutC *, AlignmentC,
|
|
|
|
|
ElementD, GmemLayoutC *, AlignmentD,
|
|
|
|
|
cutlass::epilogue::collective::EpilogueScheduleAuto,
|
|
|
|
|
FusionOperation
|
|
|
|
|
>::CollectiveOp;
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// Construct CollectiveMainloop
|
|
|
|
|
//
|
|
|
|
|
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
|
|
|
|
|
cutlass::arch::Sm120, cutlass::arch::OpClassBlockScaledTensorOp,
|
|
|
|
|
ElementA, GmemLayoutA *, AlignmentA,
|
|
|
|
|
ElementB, GmemLayoutB *, AlignmentB,
|
|
|
|
|
ElementAccumulator,
|
|
|
|
|
TileShape_MNK, ClusterShape_MNK,
|
|
|
|
|
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
|
|
|
|
|
cutlass::gemm::collective::KernelScheduleAuto
|
|
|
|
|
>::CollectiveOp;
|
|
|
|
|
|
|
|
|
|
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
|
|
|
|
|
cutlass::gemm::GroupProblemShape<Shape<int,int,int>>,
|
|
|
|
|
CollectiveMainloop,
|
|
|
|
|
CollectiveEpilogue
|
|
|
|
|
>;
|
|
|
|
|
|
|
|
|
|
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
|
|
|
|
|
auto pass = test::gemm::device::TestSmallFusion<Gemm>(1.0, 0.5);
|
|
|
|
|
EXPECT_TRUE(pass);
|
|
|
|
|
}
|
|
|
|
|
#endif // #if defined(CUTLASS_ARCH_MMA_SM120_SUPPORTED)
|