Compare commits
89 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 2e07c4cc2f | |||
| 9ac255863f | |||
| 59e2aa505a | |||
| 4e8af93da1 | |||
| 6c2f8f2fb8 | |||
| 598e35401c | |||
| a01feb93d9 | |||
| d36f331b44 | |||
| 69abafb85a | |||
| 68a078fbbf | |||
| 10709dbb64 | |||
| 1227351079 | |||
| a77c658439 | |||
| 4516b833ce | |||
| 64dd1e1915 | |||
| 1ac4559d12 | |||
| e5d51840e8 | |||
| 6c29fe20ba | |||
| e3c56b0d6b | |||
| 4647c57243 | |||
| 856d4db3fb | |||
| 6a1064093f | |||
| c5f1ef4dff | |||
| 47ebfccbec | |||
| ad9486684f | |||
| 1d8372a8e2 | |||
| 9cb7d63424 | |||
| da2f110906 | |||
| b68113f5be | |||
| a68d7cd6f1 | |||
| 38e8b29f56 | |||
| ee7349c94f | |||
| 8cdd4293d4 | |||
| f58b843951 | |||
| 5fc142296f | |||
| 233d69aa6d | |||
| 9840d25269 | |||
| b878c96421 | |||
| 8f8a80cad5 | |||
| a8f6f8eb07 | |||
| f4b0a33633 | |||
| 7c783adf53 | |||
| 4000df9567 | |||
| bb35a3ba6f | |||
| 7ec3a87f22 | |||
| 0b74c8f473 | |||
| 83036ed646 | |||
| b7e43f5eb9 | |||
| 5c62d892fa | |||
| 41a31b404b | |||
| 7320aee17d | |||
| 2142a05d9d | |||
| c77a524459 | |||
| fac6680f31 | |||
| 08993707da | |||
| c805593ebe | |||
| 26556d7206 | |||
| 4839b6cb61 | |||
| d97214987a | |||
| b0bbc6d548 | |||
| 7074047a54 | |||
| 75a4737cfe | |||
| 8a3e4b8d02 | |||
| 6a6b4028bd | |||
| 92393b2676 | |||
| 50bf00e5f2 | |||
| 4cd004ead1 | |||
| 6c4539e372 | |||
| a3639ab1a0 | |||
| 169181f30f | |||
| 0f1056390d | |||
| 34a42e5620 | |||
| 8f09b82b12 | |||
| 200a5a5146 | |||
| 746b7b3247 | |||
| abdf16a4d9 | |||
| 0e13748649 | |||
| ccb697bac7 | |||
| e6bcdc60cf | |||
| 6615010cd0 | |||
| c2b80ad4e4 | |||
| 37a8f9e598 | |||
| c53f3339bb | |||
| 4dac7490e6 | |||
| fd7e058d0c | |||
| 1ab1027954 | |||
| 86931fef85 | |||
| e33d90b361 | |||
| 96dab34ad9 |
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
# PyCache files
|
||||
__pycache__/
|
||||
118
CHANGELOG.md
118
CHANGELOG.md
@ -1,6 +1,116 @@
|
||||
# NVIDIA CUTLASS Changelog
|
||||
|
||||
# CUTLASS 2.0
|
||||
## [2.7.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.7.0) (2021-09-24)
|
||||
* Mainloop fusion for GEMM: [summation over A or B](/examples/23_ampere_gemm_operand_reduction_fusion/ampere_gemm_operand_reduction_fusion.cu)
|
||||
* [Strided DGRAD (optimized iterators)](/include/cutlass/conv/kernel/default_conv2d_dgrad.h)
|
||||
* [Half-precision GELU_taylor activation functions](/include/cutlass/epilogue/thread/activation.h#L196)
|
||||
* Use these when accumulation and epilogue compute types are all `cutlass::half_t`
|
||||
* Tuning and bug fixes to [fused GEMM + GEMM example](/examples/13_two_tensor_op_fusion/)
|
||||
* Support for smaller than 128b aligned Convolutions: [see examples](test/unit/conv/device/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu#L272)
|
||||
* Caching of results to accelerate Convolution [unit tests](test/unit/conv/device/cache_testbed_output.h)
|
||||
* Can be enabled or disabled by running `cmake .. -DCUTLASS_TEST_ENABLE_CACHED_RESULTS=OFF`
|
||||
* Corrections and bug fixes reported by the CUTLASS community
|
||||
* Thank you for filing these issues!
|
||||
|
||||
## [2.6.1](https://github.com/NVIDIA/cutlass/releases/tag/v2.6.1) (2021-09-03)
|
||||
* Arbitrary padding and striding for CUTLASS Strided DGRAD Convolution operator (Analytic Iterators)
|
||||
* Tuning for GEMMs fused with partial reductions
|
||||
* Corrections and bug fixes reported by the CUTLASS community
|
||||
* Thank you for filing these issues!
|
||||
|
||||
## [2.6.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.6.0) (2021-07-22)
|
||||
* Optimal performance when compiled with the [CUDA 11.4 Toolkit](https://developer.nvidia.com/cuda-toolkit)
|
||||
* Adopt the new L2 prefetch feature in [cp.async](/include/cutlass/arch/memory.h) and [global load](/include/cutlass/arch/memory_sm80.h)
|
||||
* Fused operators with GEMM and Convolution
|
||||
* [Fused broadcast in epilogue](test/unit/gemm/device/gemm_with_broadcast_f16n_f16n_f16n_tensorop_f32_sm75.cu)
|
||||
* [Fused partial reduction in epilogue](/test/unit/gemm/device/gemm_with_reduction_f16n_f16n_f16n_tensorop_f32_sm75.cu)
|
||||
* 64b tensor strides and leading dimensions support for GEMMs
|
||||
* Affine rank=2 matrix layouts
|
||||
* Row stride and column stride for matrices using [cutlass::layout::AffineRank2](/include/cutlass/layout/matrix.h)
|
||||
* Support [FP64 tensor core](/examples/18_ampere_fp64_tensorop_affine2_gemm/ampere_fp64_tensorop_affine2_gemm.cu) and SIMT GEMM.
|
||||
* [Batched GEMV](/test/unit/gemm/device/gemv.cu) preview implementation
|
||||
* [New strided Dgrad](test/unit/conv/device/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu) implementation
|
||||
* Accelerates over previous implementation by cutting down redundant math by 4x
|
||||
* Support using new `Dy` and `w` analytic iterators and existing `cutlass::conv::device::ImplicitGemmConvolution` interface
|
||||
* Quaternion-valued GEMM and Convolution in single- and double-precision (targeting CUDA Cores)
|
||||
* Updates to [quaternion.h](/include/cutlass/quaternion.h) and [functional.h](/include/cutlass/functional.h)
|
||||
* SDK Example for [GEMM](/examples/21_quaternion_gemm/quaternion_gemm.cu) and [Convolution](/examples/22_quaternion_gemm/quaternion_conv.cu)
|
||||
* [Unit tests for GEMM](/test/unit/gemm/device/simt_qgemm_nn_sm50.cu) and [Convolution](/test/unit/conv/device/conv2d_fprop_implicit_gemm_qf32nhwc_qf32nhwc_qf32nhwc_simt_f32_sm50.cu)
|
||||
* Many improvements to the epilogue.
|
||||
* Provide an [option](/include/cutlass/epilogue/threadblock/epilogue.h) to not fully unroll the epilogue to reduce the code size and improve the performance when using complicated elementwise operations
|
||||
* Performance improvement for FP16 tensor core kernels
|
||||
* Bug fixes
|
||||
* Enhanced Clang support and the combination of Clang 13 and CUDA 11.4 can build and run kernels from Pascal and Ampere.
|
||||
* Updated minimum CUDA Toolkit requirement to 10.2
|
||||
* [CUDA 11.4 Toolkit](https://developer.nvidia.com/cuda-toolkit) recommended
|
||||
* Corrections and bug fixes reported by the CUTLASS community
|
||||
* Thank you for filing these issues!
|
||||
|
||||
## [2.5.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.5.0) (2021-02-26)
|
||||
* Tensor reductions
|
||||
* _m_-to-_n_ reductions of tensors with affine layout
|
||||
* [Specializations](/test/unit/reduction/device/tensor_reduce_contiguous.cu) for reductions including contiguous dimension
|
||||
* [Specializations](/test/unit/reduction/device/tensor_reduce_strided.cu) for reductions excluding contiguous dimension
|
||||
* Custom reduction functors such as `cutlass::logical_and`
|
||||
* Large tensor support, up to 2^63 elements (however, each dimension is limited to an extent of 2^31)
|
||||
* Optimizations for 3-D convolution
|
||||
* [Optimized tile iterators](include/cutlass/conv/threadblock/conv3d_fprop_activation_tile_access_iterator_optimized.h) using precomputed delta table for 3-D convolution
|
||||
* Full coverage of [forward](test/unit/conv/device/conv3d_fprop_implicit_gemm_f16ndhwc_f16ndhwc_f32ndhwc_tensor_op_f32_sm80.cu) and [backwards](test/unit/conv/device/conv3d_dgrad_implicit_gemm_f16ndhwc_f16ndhwc_f32ndhwc_tensor_op_f32_sm80.cu) passes for 3D convolution
|
||||
* [Fused Convolution+Convolution example](/examples/13_two_tensor_op_fusion/README.md)
|
||||
* Corrections and bug fixes reported by the CUTLASS community
|
||||
* Thank you for filing these issues!
|
||||
|
||||
|
||||
## [2.4.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.4.0) (2020-11-19)
|
||||
* Implicit GEMM convolution kernels supporting CUDA and Tensor Cores on NVIDIA GPUs
|
||||
* Operators: forward (Fprop), backward data gradient (Dgrad), and backward weight gradient (Wgrad) convolution
|
||||
* Data type: FP32, complex<FP32>, Tensor Float 32 (TF32), BFloat16 (BF16), Float16, Int4, Int8, Int32
|
||||
* Spatial dimensions: 1-D, 2-D, and 3-D
|
||||
* Layout: NHWC, NCxHWx
|
||||
* Implicit GEMM convolution components:
|
||||
* Global memory iterators supporting Fprop, Dgrad, and Wgrad
|
||||
* `MmaMultistage` for implicit GEMM convolution for NVIDIA Ampere architecture
|
||||
* `MmaPipeline` for implicit GEMM convolution for NVIDIA Volta and Turing architectures
|
||||
* [Documentation](/media/docs/implicit_gemm_convolution.md) describing Implicit GEMM Convolution algorithm and implementation
|
||||
|
||||
## [2.3.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.3.0) (2020-09-23)
|
||||
* [NVIDIA Ampere Architecture features](https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/)
|
||||
* [Sparse Tensor Core GEMM kernels](test/unit/gemm/device/gemm_f16n_f16n_f32t_tensor_op_f32_sparse_sm80.cu):
|
||||
* Direct access to Sparse Tensor Cores and maximum performance via [`mma.sp.sync`](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends)
|
||||
* Fast SGEMM targeting GeForce RTX 30-series CUDA Cores
|
||||
* Minor Features:
|
||||
* [Activation functions](/include/cutlass/epilogue/thread/activation.h) such as [GeLU](/include/cutlass/epilogue/thread/linear_combination_gelu.h) and [Sigmoid](/include/cutlass/epilogue/thread/linear_combination_sigmoid.h)
|
||||
* Small [matrix](/include/cutlass/matrix.h) and [quaternion](/include/cutlass/quaternion.h) template classes in device code
|
||||
* [Floating-point constants](/include/cutlass/constants.h)
|
||||
* NVIDIA Ampere GPU Architecture examples and documentation:
|
||||
* [Tensor Float 32](/examples/14_ampere_tf32_tensorop_gemm/ampere_tf32_tensorop_gemm.cu) and
|
||||
* [Sparse Tensor Cores](/examples/15_ampere_sparse_tensorop_gemm/ampere_sparse_tensorop_gemm.cu)
|
||||
* Documentation added on CUTLASS [efficient row-major epilogue](/media/docs/gemm_api.md#efficient-epilogue)
|
||||
|
||||
## [2.2.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.2.0) (2020-06-08)
|
||||
* [NVIDIA Ampere Architecture features](https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/)
|
||||
* Fast Tensor Core operations:
|
||||
* Maximum performance via [`mma.sync`](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends)
|
||||
* Tensor Float 32, BFloat16, and double-precision data types
|
||||
* Mixed integer data types (int8, int4, bin1)
|
||||
* Asynchronous copy for deep software pipelines via [`cp.async`](https://docs.nvidia.com/cuda/parallel-thread-execution)
|
||||
* Described in [GTC 2020 Webinar (SR 21745)](https://developer.nvidia.com/gtc/2020/video/s21745) (free registration required)
|
||||
* Features:
|
||||
* SDK examples showing GEMM fused with bias+relu and fused GEMM+GEMM
|
||||
* Complex-valued GEMMs targeting NVIDIA Ampere Tensor Cores in double-precision and Tensor Float 32
|
||||
* Gaussian complex GEMMs using 3m complex multiply algorithm
|
||||
* Universal GEMM kernel supporting two batch modes and two algorithms for parallel reductions
|
||||
* Policy updates:
|
||||
* [CUDA 11 Toolkit](https://developer.nvidia.com/cuda-toolkit) needed to enable NVIDIA Ampere Architecture features
|
||||
* Disabled F16C by default for compatibility - enable on cmake command line with `-DCUTLASS_ENABLE_F16C=ON`
|
||||
|
||||
## [2.1.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.1.0) (2020-04-06)
|
||||
* BLAS-style host-side API added to [CUTLASS Library](/media/docs/quickstart.md#cutlass-library)
|
||||
* API to launch compiled kernel instances for GEMM and planar complex GEMM
|
||||
* Planar Complex GEMM kernels targeting Volta and Turing Tensor Cores
|
||||
* Computes complex matrix products on matrices stored as disjoint real and imaginary parts
|
||||
* [SDK Examples of Planar Complex GEMMs](/examples/10_planar_complex/planar_complex.cu)
|
||||
* Minor enhancements and bug fixes
|
||||
|
||||
## [2.0.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.0.0) (2019-11-19)
|
||||
* Substantially refactored for
|
||||
@ -22,7 +132,7 @@
|
||||
* Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions
|
||||
* Batched GEMM operations
|
||||
* Complex-valued GEMMs
|
||||
* Note: a host compiler supporting C++11 or greater is required.
|
||||
* **Note: a host compiler supporting C++11 or greater is required.**
|
||||
|
||||
# CUTLASS 1.x
|
||||
|
||||
@ -76,7 +186,7 @@
|
||||
|
||||
## Copyright
|
||||
|
||||
Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
|
||||
```
|
||||
Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
@ -96,7 +206,7 @@ Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
```
|
||||
|
||||
|
||||
531
CMakeLists.txt
Normal file → Executable file
531
CMakeLists.txt
Normal file → Executable file
@ -1,4 +1,4 @@
|
||||
# Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
@ -17,7 +17,7 @@
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cmake_minimum_required(VERSION 3.12.4 FATAL_ERROR)
|
||||
@ -32,15 +32,20 @@ endif()
|
||||
|
||||
message(STATUS "CMake Version: ${CMAKE_VERSION}")
|
||||
|
||||
project(CUTLASS VERSION 2.0.0 LANGUAGES CXX)
|
||||
project(CUTLASS VERSION 2.7.0 LANGUAGES CXX)
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/CUDA.cmake)
|
||||
|
||||
if (CUDA_VERSION VERSION_LESS 10.2)
|
||||
message(WARNING "CUTLASS ${CUTLASS_VERSION} requires CUDA 10.2 or higher, and strongly recommends CUDA 11.0 or higher.")
|
||||
elseif (CUDA_VERSION VERSION_LESS 11.0)
|
||||
message(WARNING "CUTLASS ${CUTLASS_VERSION} support for CUDA ${CUDA_VERSION} is deprecated, please use CUDA 11.0 or higher.")
|
||||
endif()
|
||||
|
||||
find_package(Doxygen QUIET)
|
||||
|
||||
#
|
||||
# CUTLASS 2.0 requires C++11
|
||||
# CUTLASS 2.x requires C++11
|
||||
#
|
||||
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
@ -49,7 +54,7 @@ if(CUTLASS_NATIVE_CUDA)
|
||||
set(CMAKE_CUDA_STANDARD 11)
|
||||
set(CMAKE_CUDA_STANDARD_REQUIRED ON)
|
||||
else()
|
||||
string(APPEND NVCC_FLAGS " --std=c++11")
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS --std=c++11)
|
||||
endif()
|
||||
|
||||
if(CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT)
|
||||
@ -58,13 +63,30 @@ endif()
|
||||
|
||||
message(STATUS "Default Install Location: ${CMAKE_INSTALL_PREFIX}")
|
||||
|
||||
if(${CMAKE_PROJECT_NAME} MATCHES ${PROJECT_NAME})
|
||||
set(_CUTLASS_ENABLE_TESTS ON)
|
||||
set(CUTLASS_ENABLE_HEADERS_ONLY OFF CACHE BOOL "Enable only the header library")
|
||||
|
||||
if(CUTLASS_ENABLE_HEADERS_ONLY)
|
||||
set(CUTLASS_ENABLE_EXAMPLES_INIT OFF)
|
||||
set(CUTLASS_ENABLE_TOOLS_INIT OFF)
|
||||
else()
|
||||
set(_CUTLASS_ENABLE_TESTS OFF)
|
||||
set(CUTLASS_ENABLE_EXAMPLES_INIT ON)
|
||||
set(CUTLASS_ENABLE_TOOLS_INIT ON)
|
||||
endif()
|
||||
|
||||
set(CUTLASS_ENABLE_TESTS ${_CUTLASS_ENABLE_TESTS} CACHE BOOL "Enable CUTLASS Tests")
|
||||
set(CUTLASS_TEST_UNIT_ENABLE_WARNINGS OFF CACHE BOOL "Enable warnings on waived unit tests.")
|
||||
|
||||
set(CUTLASS_ENABLE_EXAMPLES ${CUTLASS_ENABLE_EXAMPLES_INIT} CACHE BOOL "Enable CUTLASS Examples")
|
||||
set(CUTLASS_ENABLE_TOOLS ${CUTLASS_ENABLE_TOOLS_INIT} CACHE BOOL "Enable CUTLASS Tools")
|
||||
set(CUTLASS_ENABLE_LIBRARY ${CUTLASS_ENABLE_TOOLS} CACHE BOOL "Enable CUTLASS Library")
|
||||
set(CUTLASS_ENABLE_PROFILER ${CUTLASS_ENABLE_TOOLS} CACHE BOOL "Enable CUTLASS Profiler")
|
||||
|
||||
if(${CMAKE_PROJECT_NAME} STREQUAL ${PROJECT_NAME})
|
||||
set(CUTLASS_ENABLE_TESTS_INIT ${CUTLASS_ENABLE_TOOLS_INIT})
|
||||
else()
|
||||
set(CUTLASS_ENABLE_TESTS_INIT OFF)
|
||||
endif()
|
||||
|
||||
set(CUTLASS_ENABLE_TESTS ${CUTLASS_ENABLE_TESTS_INIT} CACHE BOOL "Enable CUTLASS Tests")
|
||||
|
||||
if (CUTLASS_ENABLE_TESTS)
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/googletest.cmake)
|
||||
@ -72,7 +94,7 @@ endif()
|
||||
|
||||
set(CUTLASS_NVCC_ARCHS_SUPPORTED "")
|
||||
if (NOT CUDA_VERSION VERSION_LESS 7.5)
|
||||
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 50)
|
||||
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 53)
|
||||
endif()
|
||||
if (NOT CUDA_VERSION VERSION_LESS 8.0)
|
||||
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 60 61)
|
||||
@ -86,31 +108,24 @@ endif()
|
||||
if (NOT CUDA_VERSION VERSION_LESS 10.0)
|
||||
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 75)
|
||||
endif()
|
||||
|
||||
if(CUDA_COMPILER MATCHES "[Cc]lang")
|
||||
if(NOT CMAKE_CXX_COMPILER_ID MATCHES "Clang" )
|
||||
message(FATAL_ERROR "Clang CUDA compilation requires Clang CXX compilation. Currently CMAKE_CXX_COMPILER is ${CMAKE_CXX_COMPILER_ID}" )
|
||||
endif()
|
||||
if (CMAKE_CXX_COMPILER_VERSION VERSION_LESS 7.0)
|
||||
message(FATAL_ERROR "Clang 7.0+ required for GPU compilation")
|
||||
endif()
|
||||
if (NOT CUDA_VERSION VERSION_LESS 11.0)
|
||||
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 80)
|
||||
endif()
|
||||
if (NOT CUDA_VERSION VERSION_LESS 11.1 AND NOT CUDA_COMPILER MATCHES "[Cc]lang")
|
||||
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 86)
|
||||
endif()
|
||||
|
||||
set(CUTLASS_NVCC_ARCHS ${CUTLASS_NVCC_ARCHS_SUPPORTED} CACHE STRING "The SM architectures requested.")
|
||||
set(CUTLASS_NVCC_ARCHS_ENABLED ${CUTLASS_NVCC_ARCHS} CACHE STRING "The SM architectures to build code for.")
|
||||
|
||||
# Special policy introduced in CMake 3.13
|
||||
if (POLICY CMP0076)
|
||||
cmake_policy(SET CMP0076 NEW)
|
||||
endif()
|
||||
|
||||
# check if the configuration is supported
|
||||
if(NOT CMAKE_SIZEOF_VOID_P EQUAL 8)
|
||||
message(FATAL_ERROR "CUTLASS requires a 64-bit compiler!")
|
||||
endif()
|
||||
|
||||
include(GNUInstallDirs)
|
||||
|
||||
link_directories(${CUDA_TOOLKIT_ROOT_DIR}/lib64/stubs)
|
||||
|
||||
###################################################################################################
|
||||
#
|
||||
# Configure CMake variables
|
||||
@ -120,11 +135,19 @@ include(GNUInstallDirs)
|
||||
message(STATUS "CUDA Compilation Architectures: ${CUTLASS_NVCC_ARCHS_ENABLED}")
|
||||
|
||||
if (NOT (CMAKE_BUILD_TYPE OR CONFIGURATION_TYPES))
|
||||
# By default we want to build in Release mode to ensure that we're getting best performance.
|
||||
# By default we want to build in Release mode to ensure that we're getting best performance.
|
||||
set(CMAKE_BUILD_TYPE Release CACHE STRING "Choose build level" FORCE)
|
||||
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "RelWithDebInfo" "Release")
|
||||
endif()
|
||||
|
||||
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
||||
if (DEFINED CMAKE_DEBUG_POSTFIX)
|
||||
set(CUTLASS_LIBRARY_DEBUG_POSTFIX_INIT ${CMAKE_DEBUG_POSTFIX})
|
||||
else()
|
||||
set(CUTLASS_LIBRARY_DEBUG_POSTFIX_INIT .debug)
|
||||
endif()
|
||||
set(CUTLASS_LIBRARY_DEBUG_POSTFIX ${CUTLASS_LIBRARY_DEBUG_POSTFIX_INIT} CACHE STRING "Default postfix value for debug libraries")
|
||||
|
||||
if(WIN32)
|
||||
# On Windows we link against the shared (DLL) runtime. Change gtest settings to match this.
|
||||
set(gtest_force_shared_crt ON CACHE BOOL "Use shared (DLL) run-time lib even when Google Test is built as static lib" FORCE)
|
||||
@ -132,29 +155,50 @@ endif()
|
||||
|
||||
if (WIN32)
|
||||
# Enable more warnings and treat as errors
|
||||
string(APPEND NVCC_FLAGS " -Xcompiler /W3 -Xcompiler /WX")
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -Xcompiler=/W3 -Xcompiler=/WX)
|
||||
|
||||
# Disable warning on Unicode characters
|
||||
string(APPEND NVCC_FLAGS " -Xcompiler /wd4819")
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -Xcompiler=/wd4819)
|
||||
|
||||
# Disable excess x86 floating point precision that can lead to results being labeled incorrectly
|
||||
string(APPEND NVCC_FLAGS " -Xcompiler /fp:strict")
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -Xcompiler=/fp:strict)
|
||||
endif(WIN32)
|
||||
|
||||
if (${CUTLASS_NVCC_VERBOSE})
|
||||
string(APPEND NVCC_FLAGS " -v")
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -v)
|
||||
endif()
|
||||
|
||||
#
|
||||
# CUTLASS NAMESPACE
|
||||
#
|
||||
set(CUTLASS_NAMESPACE "cutlass" CACHE STRING "Top level namespace of CUTLASS")
|
||||
|
||||
set(CUTLASS_NVCC_EMBED_CUBIN ON CACHE BOOL "Embed compiled CUDA kernel binaries into executables.")
|
||||
set(CUTLASS_NVCC_EMBED_PTX ON CACHE BOOL "Embed compiled PTX into executables.")
|
||||
set(CUTLASS_NVCC_KEEP OFF CACHE BOOL "Keep intermediate files generated by NVCC.")
|
||||
set(CUTLASS_ENABLE_F16C ON CACHE BOOL "Enable F16C x86 extensions in host code.")
|
||||
set(CUTLASS_LIBRARY_KERNELS "128x128" CACHE STRING "Comma delimited list of kernel name filters. Default '' means all kernels are enabled.")
|
||||
set(CUTLASS_ENABLE_F16C OFF CACHE BOOL "Enable F16C x86 extensions in host code.")
|
||||
|
||||
#
|
||||
# CUTLASS generator cmake configuration
|
||||
#
|
||||
set(CUTLASS_LIBRARY_OPERATIONS "all" CACHE STRING "Comma delimited list of operation name filters. Default '' means all operations are enabled.")
|
||||
set(CUTLASS_LIBRARY_KERNELS "" CACHE STRING "Comma delimited list of kernel name filters. If unspecified, only the largest tile size is enabled. If 'all' is specified, all kernels are enabled.")
|
||||
set(CUTLASS_LIBRARY_IGNORE_KERNELS "" CACHE STRING "Comma delimited list of kernel names to exclude from build.")
|
||||
|
||||
|
||||
# Test Levels L0, L1, L2
|
||||
set(CUTLASS_TEST_LEVEL "0" CACHE STRING "Level of tests to compile.")
|
||||
|
||||
|
||||
set(CUTLASS_TEST_ENABLE_CACHED_RESULTS ON CACHE BOOL "Enable caching and reuse of test results in unit tests")
|
||||
|
||||
set_property(CACHE CUTLASS_TEST_LEVEL PROPERTY STRINGS 0 1 2)
|
||||
string(APPEND NVCC_FLAGS " -DCUTLASS_TEST_LEVEL=${CUTLASS_TEST_LEVEL}")
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_TEST_LEVEL=${CUTLASS_TEST_LEVEL})
|
||||
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -DCUTLASS_TEST_LEVEL=${CUTLASS_TEST_LEVEL})
|
||||
|
||||
if (CUTLASS_TEST_ENABLE_CACHED_RESULTS)
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_TEST_ENABLE_CACHED_RESULTS=1)
|
||||
endif()
|
||||
|
||||
#
|
||||
# CUDA 10.1 introduces "mma" in PTX performing collective matrix multiply operations.
|
||||
@ -166,7 +210,11 @@ else()
|
||||
set(CUTLASS_ENABLE_TENSOR_CORE_MMA_DEFAULT ON)
|
||||
endif()
|
||||
|
||||
set(CUTLASS_ENABLE_TENSOR_CORE_MMA ${CUTLASS_ENABLE_TENSOR_CORE_MMA_DEFAULT} CACHE BOOL
|
||||
# Trace levels for debugging
|
||||
set(CUTLASS_DEBUG_TRACE_LEVEL "0" CACHE STRING "Level of debug tracing to perform.")
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_DEBUG_TRACE_LEVEL=${CUTLASS_DEBUG_TRACE_LEVEL})
|
||||
|
||||
set(CUTLASS_ENABLE_TENSOR_CORE_MMA ${CUTLASS_ENABLE_TENSOR_CORE_MMA_DEFAULT} CACHE BOOL
|
||||
"Enable PTX mma instruction for collective matrix multiply operations.")
|
||||
|
||||
#
|
||||
@ -182,7 +230,7 @@ set(CUTLASS_ENABLE_TENSOR_CORE_MMA ${CUTLASS_ENABLE_TENSOR_CORE_MMA_DEFAULT} CAC
|
||||
# ...
|
||||
#
|
||||
if(ENABLE_ASAN) # https://github.com/google/sanitizers/wiki/AddressSanitizer
|
||||
string(APPEND NVCC_FLAGS " --compiler-options -fsanitize=address --compiler-options -fno-omit-frame-pointer")
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS --compiler-options=-fsanitize=address --compiler-options=-fno-omit-frame-pointer)
|
||||
string(APPEND CMAKE_EXE_LINKER_FLAGS " -fsanitize=address")
|
||||
endif()
|
||||
|
||||
@ -192,86 +240,175 @@ endif()
|
||||
#
|
||||
###################################################################################################
|
||||
|
||||
foreach(ARCH ${CUTLASS_NVCC_ARCHS_ENABLED})
|
||||
if(CUTLASS_NVCC_EMBED_CUBIN)
|
||||
string(APPEND NVCC_GENCODE_FLAGS " -gencode=arch=compute_${ARCH},code=sm_${ARCH}")
|
||||
endif()
|
||||
if(CUTLASS_NVCC_EMBED_PTX)
|
||||
string(APPEND NVCC_GENCODE_FLAGS " -gencode=arch=compute_${ARCH},code=compute_${ARCH}")
|
||||
endif()
|
||||
string(APPEND CLANG_FLAGS " --cuda-gpu-arch=sm_${ARCH}")
|
||||
endforeach()
|
||||
|
||||
if(CUTLASS_NVCC_EMBED_PTX)
|
||||
string(APPEND CLANG_FLAGS " --cuda-include-ptx=all")
|
||||
list(APPEND CUTLASS_CUDA_CLANG_FLAGS --cuda-include-ptx=all)
|
||||
endif()
|
||||
|
||||
if (CUTLASS_ENABLE_TENSOR_CORE_MMA)
|
||||
string(APPEND COMMON_FLAGS " -DCUTLASS_ENABLE_TENSOR_CORE_MMA=1")
|
||||
list(APPEND CUTLASS_CUDA_FLAGS -DCUTLASS_ENABLE_TENSOR_CORE_MMA=1)
|
||||
endif()
|
||||
|
||||
if (NOT MSVC AND CUTLASS_NVCC_KEEP)
|
||||
# MSVC flow handles caching already, but for other generators we handle it here.
|
||||
set(CUTLASS_NVCC_KEEP_DIR ${CMAKE_CURRENT_BINARY_DIR}/tmp CACHE PATH "Location to store NVCC scratch files")
|
||||
file(MAKE_DIRECTORY ${CUTLASS_NVCC_KEEP_DIR})
|
||||
string(APPEND NVCC_FLAGS " --keep") # --keep-dir may not work with nvcc for some directories.
|
||||
string(APPEND CLANG_FLAGS " -save-temps=${CUTLASS_NVCC_KEEP_DIR}")
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS --keep -v) # --keep-dir may not work with nvcc for some directories.
|
||||
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -save-temps=${CUTLASS_NVCC_KEEP_DIR})
|
||||
endif()
|
||||
|
||||
if (CUTLASS_ENABLE_F16C)
|
||||
string(APPEND COMPILER_FLAGS " -DCUTLASS_ENABLE_F16C=1")
|
||||
if (CUTLASS_ENABLE_F16C AND NOT CMAKE_CROSSCOMPILING)
|
||||
list(APPEND CUTLASS_CUDA_FLAGS -DCUTLASS_ENABLE_F16C=1)
|
||||
if ((CMAKE_CXX_COMPILER_ID MATCHES "GNU") OR (CMAKE_CXX_COMPILER_ID MATCHES "Clang"))
|
||||
string(APPEND NVCC_FLAGS " -Xcompiler -mf16c")
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -Xcompiler=-mf16c)
|
||||
elseif((CMAKE_CXX_COMPILER_ID MATCHES "MSVC"))
|
||||
string(APPEND NVCC_FLAGS " -Xcompiler /arch:AVX2")
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -Xcompiler=/arch:AVX2)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
string(APPEND NVCC_FLAGS " -lineinfo")
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS $<$<BOOL:${UNIX}>:-Xcompiler=-Wconversion>)
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS $<$<BOOL:${UNIX}>:-Xcompiler=-fno-strict-aliasing>)
|
||||
|
||||
string(APPEND CLANG_FLAGS " -gmlt")
|
||||
# Don't leak lineinfo in release builds
|
||||
if (NOT CMAKE_BUILD_TYPE MATCHES "Release")
|
||||
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -gmlt)
|
||||
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -lineinfo)
|
||||
endif()
|
||||
|
||||
if (UNIX)
|
||||
string(APPEND NVCC_FLAGS " -Xcompiler -Wconversion")
|
||||
string(APPEND NVCC_FLAGS " -Xcompiler -fno-strict-aliasing")
|
||||
#Report CUDA build flags
|
||||
if (CUDA_COMPILER MATCHES "[Cc]lang")
|
||||
if(CUTLASS_CUDA_CLANG_FLAGS)
|
||||
message(STATUS "Using CLANG flags: ${CUTLASS_CUDA_CLANG_FLAGS}")
|
||||
endif()
|
||||
else()
|
||||
if(CUTLASS_CUDA_NVCC_FLAGS)
|
||||
message(STATUS "Using NVCC flags: ${CUTLASS_CUDA_NVCC_FLAGS}")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(CUDA_COMPILER MATCHES "[Cc]lang")
|
||||
string(APPEND CLANG_FLAGS " --cuda-path=${CUDA_TOOLKIT_ROOT_DIR}")
|
||||
string(APPEND CLANG_FLAGS " -mllvm -pragma-unroll-threshold=100000")
|
||||
string(APPEND CLANG_FLAGS " -mllvm -unroll-threshold=5000")
|
||||
string(APPEND CLANG_FLAGS " -Wno-unused-command-line-argument")
|
||||
if( NOT CMAKE_CXX_COMPILER_ID MATCHES "Clang" )
|
||||
message(FATAL_ERROR "Clang CUDA compilation requires Clang CXX compilation. Currently CMAKE_CXX_COMPILER is ${CMAKE_CXX_COMPILER_ID}" )
|
||||
endif()
|
||||
|
||||
if (CMAKE_CXX_COMPILER_VERSION VERSION_LESS 7.0)
|
||||
message(FATAL_ERROR "Clang 7.0+ required for GPU compilation")
|
||||
endif()
|
||||
|
||||
# There are numerous Clang versions that can work with each CUDA toolkit and the
|
||||
# the checks are not very useful so we are turning them off and using testing to
|
||||
# ensure the various combinations work properly.
|
||||
|
||||
list(APPEND CUTLASS_CUDA_CLANG_FLAGS --cuda-path=${CUDA_TOOLKIT_ROOT_DIR})
|
||||
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -D__NV_NO_HOST_COMPILER_CHECK=1)
|
||||
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -Wno-unknown-cuda-version)
|
||||
|
||||
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -mllvm -pragma-unroll-threshold=100000)
|
||||
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -mllvm -unroll-threshold=5000)
|
||||
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -Wno-unused-command-line-argument)
|
||||
|
||||
string(REPLACE "." ";" CUDA_VERSION_PARTS ${CMAKE_CUDA_COMPILER_VERSION})
|
||||
list(GET CUDA_VERSION_PARTS 0 CUDA_VERSION_MAJOR)
|
||||
list(GET CUDA_VERSION_PARTS 1 CUDA_VERSION_MINOR)
|
||||
string(APPEND CLANG_FLAGS " -D__CUDACC_VER_MAJOR__=${CUDA_VERSION_MAJOR} -D__CUDACC_VER_MINOR__=${CUDA_VERSION_MINOR}")
|
||||
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -D__CUDACC_VER_MAJOR__=${CUDA_VERSION_MAJOR} -D__CUDACC_VER_MINOR__=${CUDA_VERSION_MINOR})
|
||||
|
||||
|
||||
# needed for libcublasLt.so in case it's installed in the same location as libcudart.so
|
||||
# dynamic linker can find it if linker sets RPATH (forced by --disable-new-tags)
|
||||
# Otherwise linker uses RUNPATH and that does not propagate to loaded libs.
|
||||
string(APPEND CLANG_FLAGS " -Wl,--disable-new-dtags")
|
||||
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -Wl,--disable-new-dtags)
|
||||
|
||||
link_libraries(nvidia::cudart)
|
||||
endif()
|
||||
|
||||
if(CUDA_COMPILER MATCHES "[Cc]lang")
|
||||
string(APPEND CMAKE_CXX_FLAGS "${COMMON_FLAGS} ${CLANG_FLAGS}")
|
||||
string(APPEND CMAKE_CXX_FLAGS_RELEASE "${COMMON_FLAGS_RELEASE} ${CLANG_FLAGS_RELEASE}")
|
||||
string(APPEND CMAKE_CXX_FLAGS_RELWITHDEBINFO "${COMMON_FLAGS_RELWITHDEBINFO} ${CLANG_FLAGS_RELWITHDEBINFO}")
|
||||
string(APPEND CMAKE_CXX_FLAGS_DEBUG "${COMMON_FLAGS_DEBUG} ${CLANG_FLAGS_DEBUG}")
|
||||
elseif (CUTLASS_NATIVE_CUDA)
|
||||
string(APPEND CMAKE_CUDA_FLAGS "${COMMON_FLAGS} ${NVCC_FLAGS} ${NVCC_GENCODE_FLAGS}")
|
||||
string(APPEND CMAKE_CUDA_FLAGS_RELEASE "${COMMON_FLAGS_RELEASE} ${NVCC_FLAGS_RELEASE}")
|
||||
string(APPEND CMAKE_CUDA_FLAGS_RELWITHDEBINFO "${COMMON_FLAGS_RELWITHDEBINFO} ${NVCC_FLAGS_RELWITHDEBINFO}")
|
||||
string(APPEND CMAKE_CUDA_FLAGS_DEBUG "${COMMON_FLAGS_DEBUG} ${NVCC_FLAGS_DEBUG}")
|
||||
else()
|
||||
string(APPEND CUDA_NVCC_FLAGS "${COMMON_FLAGS} ${NVCC_FLAGS} ${NVCC_GENCODE_FLAGS}")
|
||||
string(APPEND CUDA_NVCC_FLAGS_RELEASE "${COMMON_FLAGS_RELEASE} ${NVCC_FLAGS_RELEASE}")
|
||||
string(APPEND CUDA_NVCC_FLAGS_RELWITHDEBINFO "${COMMON_FLAGS_RELWITHDEBINFO} ${NVCC_FLAGS_RELWITHDEBINFO}")
|
||||
string(APPEND CUDA_NVCC_FLAGS_DEBUG "${COMMON_FLAGS_DEBUG} ${NVCC_FLAGS_DEBUG}")
|
||||
if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.18)
|
||||
# CMake 3.18 added support for CUDA_ARCHITECTURES target property. We will use this
|
||||
# property for CMake 3.18+, so we request the NEW behavior for correct compatibility.
|
||||
# https://cmake.org/cmake/help/v3.18/policy/CMP0104.html#policy:CMP0104
|
||||
cmake_policy(SET CMP0104 NEW)
|
||||
endif()
|
||||
|
||||
function(cutlass_apply_cuda_gencode_flags TARGET)
|
||||
|
||||
set(NVCC_FLAGS)
|
||||
set(CLANG_FLAGS)
|
||||
set(__CMAKE_CUDA_ARCHS)
|
||||
foreach(ARCH ${CUTLASS_NVCC_ARCHS_ENABLED})
|
||||
list(APPEND CLANG_FLAGS --cuda-gpu-arch=sm_${ARCH})
|
||||
set(CODES)
|
||||
if(CUTLASS_NVCC_EMBED_CUBIN)
|
||||
list(APPEND CODES sm_${ARCH})
|
||||
list(APPEND __CMAKE_CUDA_ARCHS ${ARCH}-real)
|
||||
endif()
|
||||
if(CUTLASS_NVCC_EMBED_PTX)
|
||||
list(APPEND CODES compute_${ARCH})
|
||||
list(APPEND __CMAKE_CUDA_ARCHS ${ARCH}-virtual)
|
||||
endif()
|
||||
list(JOIN CODES "," CODES_STR)
|
||||
list(APPEND NVCC_FLAGS -gencode=arch=compute_${ARCH},code=[${CODES_STR}])
|
||||
endforeach()
|
||||
|
||||
if (CUDA_COMPILER MATCHES "[Cc]lang")
|
||||
target_compile_options(
|
||||
${TARGET}
|
||||
PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:CXX>:${CLANG_FLAGS}>
|
||||
)
|
||||
elseif(CMAKE_VERSION GREATER_EQUAL 3.18)
|
||||
set_property(TARGET ${TARGET} PROPERTY CUDA_ARCHITECTURES ${__CMAKE_CUDA_ARCHS})
|
||||
else()
|
||||
target_compile_options(
|
||||
${TARGET}
|
||||
PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:CUDA>:${NVCC_FLAGS}>
|
||||
)
|
||||
endif()
|
||||
|
||||
endfunction()
|
||||
|
||||
# Cache the flags so they are available when the function below is called anywhere globally.
|
||||
|
||||
set(__CUTLASS_CUDA_FLAGS ${CUTLASS_CUDA_FLAGS} CACHE INTERNAL "")
|
||||
set(__CUTLASS_CUDA_FLAGS_RELEASE ${CUTLASS_CUDA_FLAGS_RELEASE} CACHE INTERNAL "")
|
||||
set(__CUTLASS_CUDA_FLAGS_RELWITHDEBINFO ${CUTLASS_CUDA_FLAGS_RELWITHDEBINFO} CACHE INTERNAL "")
|
||||
set(__CUTLASS_CUDA_FLAGS_DEBUG ${CUTLASS_CUDA_FLAGS_DEBUG} CACHE INTERNAL "")
|
||||
set(__CUTLASS_CUDA_CLANG_FLAGS ${CUTLASS_CUDA_CLANG_FLAGS} CACHE INTERNAL "")
|
||||
set(__CUTLASS_CUDA_CLANG_FLAGS_RELEASE ${CUTLASS_CUDA_CLANG_FLAGS_RELEASE} CACHE INTERNAL "")
|
||||
set(__CUTLASS_CUDA_CLANG_FLAGS_RELWITHDEBINFO ${CUTLASS_CUDA_CLANG_FLAGS_RELWITHDEBINFO} CACHE INTERNAL "")
|
||||
set(__CUTLASS_CUDA_CLANG_FLAGS_DEBUG ${CUTLASS_CUDA_CLANG_FLAGS_DEBUG} CACHE INTERNAL "")
|
||||
set(__CUTLASS_CUDA_NVCC_FLAGS ${CUTLASS_CUDA_NVCC_FLAGS} CACHE INTERNAL "")
|
||||
set(__CUTLASS_CUDA_NVCC_FLAGS_RELEASE ${CUTLASS_CUDA_NVCC_FLAGS_RELEASE} CACHE INTERNAL "")
|
||||
set(__CUTLASS_CUDA_NVCC_FLAGS_RELWITHDEBINFO ${CUTLASS_CUDA_NVCC_FLAGS_RELWITHDEBINFO} CACHE INTERNAL "")
|
||||
set(__CUTLASS_CUDA_NVCC_FLAGS_DEBUG ${CUTLASS_CUDA_NVCC_FLAGS_DEBUG} CACHE INTERNAL "")
|
||||
|
||||
function(cutlass_apply_standard_compile_options TARGET)
|
||||
|
||||
if(CUDA_COMPILER MATCHES "[Cc]lang")
|
||||
set(CUDA_COMPILE_LANGUAGE CXX)
|
||||
set(_FLAGS ${__CUTLASS_CUDA_FLAGS} ${__CUTLASS_CUDA_CLANG_FLAGS})
|
||||
set(_FLAGS_RELEASE ${__CUTLASS_CUDA_FLAGS_RELEASE} ${__CUTLASS_CUDA_CLANG_FLAGS_RELEASE})
|
||||
set(_FLAGS_RELWITHDEBINFO ${__CUTLASS_CUDA_FLAGS_RELWITHDEBINFO} ${__CUTLASS_CUDA_CLANG_FLAGS_RELWITHDEBINFO})
|
||||
set(_FLAGS_DEBUG ${__CUTLASS_CUDA_FLAGS_DEBUG} ${__CUTLASS_CUDA_CLANG_FLAGS_DEBUG})
|
||||
else()
|
||||
set(CUDA_COMPILE_LANGUAGE CUDA)
|
||||
set(_FLAGS ${__CUTLASS_CUDA_FLAGS} ${__CUTLASS_CUDA_NVCC_FLAGS})
|
||||
set(_FLAGS_RELEASE ${__CUTLASS_CUDA_FLAGS_RELEASE} ${__CUTLASS_CUDA_NVCC_FLAGS_RELEASE})
|
||||
set(_FLAGS_RELWITHDEBINFO ${__CUTLASS_CUDA_FLAGS_RELWITHDEBINFO} ${__CUTLASS_CUDA_NVCC_FLAGS_RELWITHDEBINFO})
|
||||
set(_FLAGS_DEBUG ${__CUTLASS_CUDA_FLAGS_DEBUG} ${__CUTLASS_CUDA_NVCC_FLAGS_DEBUG})
|
||||
endif()
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE CUTLASS)
|
||||
|
||||
target_compile_options(
|
||||
${TARGET}
|
||||
PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:${CUDA_COMPILE_LANGUAGE}>:${_FLAGS}>
|
||||
$<$<COMPILE_LANGUAGE:${CUDA_COMPILE_LANGUAGE}>:$<$<CONFIG:RELEASE>:${_FLAGS_RELEASE}>>
|
||||
$<$<COMPILE_LANGUAGE:${CUDA_COMPILE_LANGUAGE}>:$<$<CONFIG:RELWITHDEBINFO>:${_FLAGS_RELWITHDEBINFO}>>
|
||||
$<$<COMPILE_LANGUAGE:${CUDA_COMPILE_LANGUAGE}>:$<$<CONFIG:DEBUG>:${_FLAGS_DEBUG}>>
|
||||
)
|
||||
|
||||
endfunction()
|
||||
|
||||
#
|
||||
# The following items should eventually be pushed into cutlass/CMakeLists.txt
|
||||
#
|
||||
@ -295,7 +432,7 @@ set_target_properties(CUTLASS PROPERTIES EXPORT_NAME cutlass)
|
||||
|
||||
set(CUTLASS_INCLUDE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/include CACHE PATH "CUTLASS Header Library")
|
||||
|
||||
set(CUTLASS_GENERATOR_DIR ${CMAKE_CURRENT_SOURCE_DIR}/tools/library/)
|
||||
set(CUTLASS_GENERATOR_DIR ${CMAKE_CURRENT_SOURCE_DIR}/tools/library CACHE INTERNAL "Location of generator scripts")
|
||||
|
||||
# The following utility directory is needed even if the tools build is disabled, so it exists here.
|
||||
set(CUTLASS_TOOLS_UTIL_INCLUDE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/tools/util/include CACHE INTERNAL "")
|
||||
@ -303,6 +440,7 @@ set(CUTLASS_TOOLS_UTIL_INCLUDE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/tools/util/includ
|
||||
include_directories(${CUTLASS_INCLUDE_DIR})
|
||||
|
||||
target_compile_features(CUTLASS INTERFACE cxx_std_11)
|
||||
target_compile_definitions(CUTLASS INTERFACE CUTLASS_NAMESPACE=${CUTLASS_NAMESPACE})
|
||||
|
||||
if (NOT DEFINED CUTLASS_REVISION)
|
||||
|
||||
@ -324,8 +462,8 @@ if (NOT DEFINED CUTLASS_REVISION)
|
||||
endif()
|
||||
|
||||
configure_file(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cmake/version.h.in
|
||||
${CMAKE_CURRENT_BINARY_DIR}/include/cutlass/version.h
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cmake/version.h.in
|
||||
${CMAKE_CURRENT_BINARY_DIR}/include/cutlass/version.h
|
||||
@ONLY)
|
||||
|
||||
target_include_directories(
|
||||
@ -338,8 +476,8 @@ target_include_directories(
|
||||
)
|
||||
|
||||
install(
|
||||
DIRECTORY
|
||||
${CUTLASS_INCLUDE_DIR}/
|
||||
DIRECTORY
|
||||
${CUTLASS_INCLUDE_DIR}/
|
||||
${CMAKE_CURRENT_BINARY_DIR}/include/
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
|
||||
)
|
||||
@ -391,48 +529,231 @@ endif()
|
||||
|
||||
################################################################################
|
||||
|
||||
include(CTest)
|
||||
enable_testing()
|
||||
if (NOT TARGET test_all)
|
||||
add_custom_target(test_all)
|
||||
endif()
|
||||
|
||||
set(CUTLASS_INSTALL_TESTS ON CACHE BOOL "Install test executables")
|
||||
set(CUTLASS_TEST_EXECUTION_ENVIRONMENT "" CACHE BOOL "Environment in which to invoke unit test executables")
|
||||
|
||||
set(CMAKE_TEST_INSTALL_PREFIX test CACHE STRING "Test root install location, relative to CMAKE_INSTALL_PREFIX.")
|
||||
set(CUTLASS_TEST_INSTALL_PREFIX ${CMAKE_TEST_INSTALL_PREFIX}/cutlass CACHE STRING "Test root install location, relative to CMAKE_INSTALL_PREFIX.")
|
||||
set(CUTLASS_TEST_INSTALL_BINDIR ${CUTLASS_TEST_INSTALL_PREFIX}/${CMAKE_INSTALL_BINDIR} CACHE STRING "Test root install location, relative to CMAKE_INSTALL_PREFIX.")
|
||||
set(CUTLASS_TEST_INSTALL_LIBDIR ${CUTLASS_TEST_INSTALL_PREFIX}/${CMAKE_INSTALL_LIBDIR} CACHE STRING "Test root install location, relative to CMAKE_INSTALL_PREFIX.")
|
||||
|
||||
install(DIRECTORY DESTINATION ${CUTLASS_TEST_INSTALL_PREFIX})
|
||||
install(DIRECTORY DESTINATION ${CUTLASS_TEST_INSTALL_BINDIR})
|
||||
install(DIRECTORY DESTINATION ${CUTLASS_TEST_INSTALL_LIBDIR})
|
||||
install(DIRECTORY DESTINATION ${CUTLASS_TEST_INSTALL_PREFIX}/ctest)
|
||||
|
||||
################################################################################
|
||||
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cuBLAS.cmake)
|
||||
|
||||
if (CUTLASS_ENABLE_CUBLAS)
|
||||
target_compile_definitions(CUTLASS INTERFACE CUTLASS_ENABLE_CUBLAS=1)
|
||||
endif()
|
||||
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cuDNN.cmake)
|
||||
|
||||
if (CUTLASS_ENABLE_CUDNN)
|
||||
target_compile_definitions(CUTLASS INTERFACE CUTLASS_ENABLE_CUDNN=1)
|
||||
endif()
|
||||
|
||||
################################################################################
|
||||
|
||||
set(CUTLASS_ENABLE_HEADERS_ONLY OFF CACHE BOOL "Enable only the header library")
|
||||
set(CUTLASS_CTEST_TEMPLATE_FILE ${CMAKE_CURRENT_LIST_DIR}/cmake/CTestTestfile.config.cmake)
|
||||
set(CUTLASS_CTEST_GENERATED_FILES "" CACHE INTERNAL "")
|
||||
|
||||
if(CUTLASS_ENABLE_HEADERS_ONLY)
|
||||
set(CUTLASS_ENABLE_EXAMPLES_INIT OFF)
|
||||
set(CUTLASS_ENABLE_TOOLS_INIT OFF)
|
||||
else()
|
||||
set(CUTLASS_ENABLE_EXAMPLES_INIT ON)
|
||||
set(CUTLASS_ENABLE_TOOLS_INIT ON)
|
||||
endif()
|
||||
function(cutlass_add_executable_tests NAME TARGET)
|
||||
#
|
||||
# Generates test rules for `make test`, `make test_all`, and `ctest` invoked from either the
|
||||
# <CMAKE_BINARY_DIR> or the <CMAKE_INSTALL_PREFIX>/<CUTLASS_TEST_INSTALL_PREFIX> after installation.
|
||||
#
|
||||
# NAME: The base name for the test. Can be run with `make <NAME>` or `ctest -R 'c<NAME>'`.
|
||||
# TARGET: The target corresponding to the executable under test.
|
||||
# DISABLE_EXECUTABLE_INSTALL_RULE: An option, if given, that disables creating an install rule for TARGET.
|
||||
# DEPENDS: A list of targets or files on which this test is dependent.
|
||||
# DEPENDEES: A list of targets which should depend on this test.
|
||||
# TEST_COMMAND_OPTIONS: A list of variables (i.e. by reference params) which contain command line arguments
|
||||
# to pass to the test executable. A unique test with suffix _0, _1, ... is generated for each set of
|
||||
# options given. If this option is not used, a single test with no arguments is generated.
|
||||
# RESULT_CACHE_FILE: A file to be installed alongside the test executable with pre-computed
|
||||
# test results to speed up test runtime.
|
||||
#
|
||||
|
||||
set(CUTLASS_ENABLE_EXAMPLES ${CUTLASS_ENABLE_EXAMPLES_INIT} CACHE BOOL "Enable CUTLASS Examples")
|
||||
set(CUTLASS_ENABLE_TOOLS ${CUTLASS_ENABLE_TOOLS_INIT} CACHE BOOL "Enable CUTLASS Tools")
|
||||
set(options DISABLE_EXECUTABLE_INSTALL_RULE)
|
||||
set(oneValueArgs DISABLE_TESTS RESULT_CACHE_FILE)
|
||||
set(multiValueArgs DEPENDS DEPENDEES TEST_COMMAND_OPTIONS)
|
||||
cmake_parse_arguments(_ "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
||||
|
||||
if(${CMAKE_PROJECT_NAME} STREQUAL ${PROJECT_NAME})
|
||||
set(CUTLASS_ENABLE_TESTS_INIT ${CUTLASS_ENABLE_TOOLS_INIT})
|
||||
else()
|
||||
set(CUTLASS_ENABLE_TESTS_INIT OFF)
|
||||
endif()
|
||||
if (NOT DEFINED __DISABLE_TESTS)
|
||||
set(__DISABLE_TESTS OFF)
|
||||
endif()
|
||||
|
||||
set(CUTLASS_ENABLE_TESTS ${CUTLASS_ENABLE_TESTS_INIT} CACHE BOOL "Enable CUTLASS Tests")
|
||||
if (__RESULT_CACHE_FILE)
|
||||
|
||||
if(CUTLASS_ENABLE_TOOLS)
|
||||
add_custom_command(
|
||||
TARGET ${TARGET}
|
||||
POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND}
|
||||
ARGS -E copy ${__RESULT_CACHE_FILE} "$<TARGET_FILE_DIR:${TARGET}>"
|
||||
)
|
||||
|
||||
endif()
|
||||
|
||||
if (NOT __DISABLE_EXECUTABLE_INSTALL_RULE AND CUTLASS_INSTALL_TESTS)
|
||||
|
||||
# file(RELATIVE_PATH CMAKE_CURRENT_BINARY_RELATIVE_DIR ${CMAKE_BINARY_DIR} ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
install(
|
||||
TARGETS ${TARGET}
|
||||
RUNTIME DESTINATION ${CUTLASS_TEST_INSTALL_BINDIR}
|
||||
)
|
||||
|
||||
if (__RESULT_CACHE_FILE)
|
||||
|
||||
install(
|
||||
FILES ${__RESULT_CACHE_FILE}
|
||||
DESTINATION ${CUTLASS_TEST_INSTALL_BINDIR}/
|
||||
)
|
||||
|
||||
endif()
|
||||
|
||||
endif()
|
||||
|
||||
if (NOT __TEST_COMMAND_OPTIONS)
|
||||
set(__TEST_COMMAND_OPTIONS " ")
|
||||
endif()
|
||||
|
||||
list(LENGTH __TEST_COMMAND_OPTIONS CMD_COUNT)
|
||||
set(CMD_IDX 0)
|
||||
|
||||
if (CMD_COUNT GREATER 1)
|
||||
add_custom_target(${NAME} DEPENDS ${TARGET} ${__DEPENDS})
|
||||
foreach(DEPENDEE ${__DEPENDEES})
|
||||
add_dependencies(${DEPENDEE} ${NAME})
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
foreach(CMD_OPTIONS ${__TEST_COMMAND_OPTIONS})
|
||||
|
||||
if (CMD_COUNT GREATER 1)
|
||||
set(TEST_NAME ${NAME}_${CMD_IDX})
|
||||
else()
|
||||
set(TEST_NAME ${NAME})
|
||||
endif()
|
||||
|
||||
# The following rigmarole is needed to deal with spaces and possible quotes in
|
||||
# command line arguments. The options are passed "by reference" as the actual
|
||||
# variable names holding the real options. We then expand these in a way that
|
||||
# preserves any quotes. Note, they have to be in this order for it to work for
|
||||
# all the use cases below.
|
||||
|
||||
set(CMD_OPTIONS ${${CMD_OPTIONS}})
|
||||
list(JOIN CMD_OPTIONS " " TEST_COMMAND_OPTIONS)
|
||||
separate_arguments(CMD_OPTIONS)
|
||||
|
||||
add_custom_target(
|
||||
${TEST_NAME}
|
||||
COMMAND
|
||||
${CUTLASS_TEST_EXECUTION_ENVIRONMENT} $<TARGET_FILE:${TARGET}> ${CMD_OPTIONS}
|
||||
DEPENDS
|
||||
${TARGET}
|
||||
)
|
||||
|
||||
if (CMD_COUNT GREATER 1)
|
||||
add_dependencies(${NAME} ${TEST_NAME})
|
||||
endif()
|
||||
|
||||
foreach(DEPENDEE ${__DEPENDEES})
|
||||
add_dependencies(${DEPENDEE} ${TEST_NAME})
|
||||
endforeach()
|
||||
|
||||
add_test(
|
||||
NAME c${TEST_NAME}
|
||||
COMMAND ${CUTLASS_TEST_EXECUTION_ENVIRONMENT} $<TARGET_FILE:${TARGET}> ${CMD_OPTIONS}
|
||||
)
|
||||
|
||||
set_tests_properties(c${TEST_NAME} PROPERTIES DISABLED ${__DISABLE_TESTS})
|
||||
|
||||
if (CUTLASS_INSTALL_TESTS)
|
||||
|
||||
# To run the tests from an install package with tests enabled, we need to generate test files
|
||||
# that don't rely on the current directory structure in build.
|
||||
|
||||
set(TEST_NAME c${TEST_NAME})
|
||||
set(TEST_EXE $<TARGET_FILE_NAME:${TARGET}>)
|
||||
set(TEST_EXE_WORKING_DIRECTORY ./${CMAKE_INSTALL_BINDIR})
|
||||
configure_file("${CUTLASS_CTEST_TEMPLATE_FILE}" "${CMAKE_PROJECT_DIR}${CMAKE_CURRENT_BINARY_DIR}/CTestTestfile.${TEST_NAME}.config.cmake" @ONLY)
|
||||
|
||||
file(GENERATE
|
||||
OUTPUT "${CMAKE_PROJECT_DIR}${CMAKE_CURRENT_BINARY_DIR}/CTestTestfile.${TEST_NAME}.cmake"
|
||||
INPUT "${CMAKE_PROJECT_DIR}${CMAKE_CURRENT_BINARY_DIR}/CTestTestfile.${TEST_NAME}.config.cmake"
|
||||
)
|
||||
|
||||
install(
|
||||
FILES "${CMAKE_PROJECT_DIR}${CMAKE_CURRENT_BINARY_DIR}/CTestTestfile.${TEST_NAME}.cmake"
|
||||
DESTINATION ${CUTLASS_TEST_INSTALL_PREFIX}/ctest/
|
||||
)
|
||||
|
||||
set(CUTLASS_CTEST_GENERATED_FILES ${CUTLASS_CTEST_GENERATED_FILES};ctest/CTestTestfile.${TEST_NAME}.cmake CACHE INTERNAL "")
|
||||
|
||||
endif()
|
||||
|
||||
math(EXPR CMD_IDX "${CMD_IDX} + 1")
|
||||
|
||||
endforeach()
|
||||
|
||||
endfunction()
|
||||
|
||||
if (CUTLASS_ENABLE_TOOLS)
|
||||
add_subdirectory(tools)
|
||||
if (CUTLASS_ENABLE_PROFILER)
|
||||
add_dependencies(test_all test_profiler)
|
||||
endif()
|
||||
endif()
|
||||
if(CUTLASS_ENABLE_EXAMPLES)
|
||||
if (CUTLASS_ENABLE_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
add_dependencies(test_all test_examples)
|
||||
endif()
|
||||
|
||||
if(CUTLASS_ENABLE_TESTS)
|
||||
include(CTest)
|
||||
enable_testing()
|
||||
if (CUTLASS_ENABLE_TESTS)
|
||||
add_subdirectory(test)
|
||||
add_dependencies(test_all test_unit)
|
||||
endif()
|
||||
|
||||
if (CUTLASS_INSTALL_TESTS)
|
||||
|
||||
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/cmake")
|
||||
|
||||
file(WRITE "${CMAKE_BINARY_DIR}/cmake/CTestTestfile.cmake" "# Generated File\n")
|
||||
foreach(GENERATED_FILE ${CUTLASS_CTEST_GENERATED_FILES})
|
||||
file(APPEND "${CMAKE_BINARY_DIR}/cmake/CTestTestfile.cmake" "include(${GENERATED_FILE})\n")
|
||||
endforeach()
|
||||
|
||||
install(
|
||||
FILES "${CMAKE_BINARY_DIR}/cmake/CTestTestfile.cmake"
|
||||
DESTINATION ${CUTLASS_TEST_INSTALL_PREFIX}/
|
||||
)
|
||||
|
||||
endif()
|
||||
|
||||
#? install(
|
||||
#? FILES ${CMAKE_BINARY_DIR}/CTestTestfile.cmake
|
||||
#? DESTINATION ${CUTLASS_TEST_INSTALL_PREFIX}/
|
||||
#? )
|
||||
#?
|
||||
#? install(
|
||||
#? DIRECTORY
|
||||
#? ${CMAKE_BINARY_DIR}/tools
|
||||
#? ${CMAKE_BINARY_DIR}/test
|
||||
#? DESTINATION ${CUTLASS_TEST_INSTALL_PREFIX}/
|
||||
#? FILES_MATCHING PATTERN "CTestTestfile.cmake"
|
||||
#? )
|
||||
|
||||
################################################################################
|
||||
|
||||
install(
|
||||
|
||||
@ -9,15 +9,21 @@ This is the official list of CUTLASS developers and contributors.
|
||||
## DEVELOPERS
|
||||
Andrew Kerr
|
||||
Haicheng Wu
|
||||
Naila Farooqui
|
||||
Manish Gupta
|
||||
Dustyn Blasig
|
||||
Pradeep Ramani
|
||||
Manish Gupta
|
||||
Aditya Atluri
|
||||
Naila Farooqui
|
||||
Piotr Majcher
|
||||
Paul Springer
|
||||
David Tanner
|
||||
Scott Yokim
|
||||
Jin Wang
|
||||
Aniket Shivam
|
||||
Chinmay Talegaonkar
|
||||
Shang Zhang
|
||||
Scott Yokim
|
||||
Markus Hohnerbach
|
||||
Aditya Atluri
|
||||
David Tanner
|
||||
Manikandan Ananth
|
||||
|
||||
## CONTRIBUTORS
|
||||
Timothy Costa
|
||||
@ -25,12 +31,10 @@ Julien Demouth
|
||||
Brian Fahs
|
||||
Michael Goldfarb
|
||||
Mostafa Hagog
|
||||
Markus Hohnerbach
|
||||
Fei Hu
|
||||
Alan Kaatz
|
||||
Tina Li
|
||||
Timmy Liu
|
||||
Piotr Majcher
|
||||
Duane Merrill
|
||||
Kevin Siu
|
||||
Markus Tavenrath
|
||||
@ -52,6 +56,8 @@ Olivier Giroux
|
||||
Stephen Jones
|
||||
Rishkul Kulkarni
|
||||
Bryce Lelbach
|
||||
Matthew Nicely
|
||||
Joel McCormack
|
||||
Kyrylo Perelygin
|
||||
|
||||
|
||||
|
||||
174
CUDA.cmake
174
CUDA.cmake
@ -1,4 +1,4 @@
|
||||
# Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
@ -17,7 +17,7 @@
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
if(CUDA_COMPILER MATCHES "[Cc]lang")
|
||||
@ -39,23 +39,27 @@ if(CUTLASS_NATIVE_CUDA)
|
||||
|
||||
enable_language(CUDA)
|
||||
|
||||
if(NOT CUDA_VERSION)
|
||||
set(CUDA_VERSION ${CMAKE_CUDA_COMPILER_VERSION})
|
||||
endif()
|
||||
if(NOT CUDA_TOOLKIT_ROOT_DIR)
|
||||
get_filename_component(CUDA_TOOLKIT_ROOT_DIR "${CMAKE_CUDA_COMPILER}/../.." ABSOLUTE)
|
||||
endif()
|
||||
|
||||
else()
|
||||
|
||||
find_package(CUDA REQUIRED)
|
||||
# We workaround missing variables with the native flow by also finding the CUDA toolkit the old way.
|
||||
|
||||
endif()
|
||||
if(NOT CMAKE_CUDA_COMPILER_VERSION)
|
||||
set(CMAKE_CUDA_COMPILER_VERSION ${CUDA_VERSION})
|
||||
endif()
|
||||
|
||||
if(NOT CUDA_VERSION)
|
||||
set(CUDA_VERSION ${CMAKE_CUDA_COMPILER_VERSION})
|
||||
endif()
|
||||
if(NOT CUDA_TOOLKIT_ROOT_DIR)
|
||||
get_filename_component(CUDA_TOOLKIT_ROOT_DIR "${CMAKE_CUDA_COMPILER}/../.." ABSOLUTE)
|
||||
endif()
|
||||
|
||||
if (CUDA_VERSION VERSION_LESS 9.2)
|
||||
message(FATAL_ERROR "CUDA 9.2+ Required, Found ${CUDA_VERSION}.")
|
||||
endif()
|
||||
|
||||
if(NOT CUTLASS_NATIVE_CUDA OR CUDA_COMPILER MATCHES "[Cc]lang")
|
||||
set(CMAKE_CUDA_COMPILER ${CUDA_TOOLKIT_ROOT_DIR}/bin/nvcc)
|
||||
message(STATUS "CUDA Compiler: ${CMAKE_CUDA_COMPILER}")
|
||||
@ -74,7 +78,7 @@ find_library(
|
||||
# in the CUDA toolkit we're building against.
|
||||
)
|
||||
|
||||
if(CUDART_LIBRARY)
|
||||
if(NOT TARGET cudart AND CUDART_LIBRARY)
|
||||
|
||||
message(STATUS "CUDART: ${CUDART_LIBRARY}")
|
||||
|
||||
@ -95,6 +99,10 @@ if(CUDART_LIBRARY)
|
||||
${CUDART_LIBRARY}
|
||||
)
|
||||
|
||||
elseif(TARGET cudart)
|
||||
|
||||
message(STATUS "CUDART: Already Found")
|
||||
|
||||
else()
|
||||
|
||||
message(STATUS "CUDART: Not Found")
|
||||
@ -116,7 +124,7 @@ find_library(
|
||||
# in the CUDA toolkit we're building against.
|
||||
)
|
||||
|
||||
if(CUDA_DRIVER_LIBRARY)
|
||||
if(NOT TARGET cuda_driver AND CUDA_DRIVER_LIBRARY)
|
||||
|
||||
message(STATUS "CUDA Driver: ${CUDA_DRIVER_LIBRARY}")
|
||||
|
||||
@ -137,6 +145,10 @@ if(CUDA_DRIVER_LIBRARY)
|
||||
${CUDA_DRIVER_LIBRARY}
|
||||
)
|
||||
|
||||
elseif(TARGET cuda_driver)
|
||||
|
||||
message(STATUS "CUDA Driver: Already Found")
|
||||
|
||||
else()
|
||||
|
||||
message(STATUS "CUDA Driver: Not Found")
|
||||
@ -156,7 +168,7 @@ find_library(
|
||||
# in the CUDA toolkit we're building against.
|
||||
)
|
||||
|
||||
if(NVRTC_LIBRARY)
|
||||
if(NOT TARGET nvrtc AND NVRTC_LIBRARY)
|
||||
|
||||
message(STATUS "NVRTC: ${NVRTC_LIBRARY}")
|
||||
|
||||
@ -177,6 +189,10 @@ if(NVRTC_LIBRARY)
|
||||
${NVRTC_LIBRARY}
|
||||
)
|
||||
|
||||
elseif(TARGET nvrtc)
|
||||
|
||||
message(STATUS "NVRTC: Already Found")
|
||||
|
||||
else()
|
||||
|
||||
message(STATUS "NVRTC: Not Found")
|
||||
@ -188,57 +204,153 @@ include_directories(SYSTEM ${CUDA_INCLUDE_DIRS})
|
||||
# paths by default, so we add it explicitly here.
|
||||
|
||||
function(cutlass_correct_source_file_language_property)
|
||||
if(CUDA_COMPILER MATCHES "clang")
|
||||
if(CUDA_COMPILER MATCHES "[Cc]lang")
|
||||
foreach(File ${ARGN})
|
||||
if(${File} MATCHES ".*\.cu$")
|
||||
if(File MATCHES ".*\.cu$")
|
||||
set_source_files_properties(${File} PROPERTIES LANGUAGE CXX)
|
||||
endif()
|
||||
endforeach()
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
function(cutlass_add_library)
|
||||
# If building with all kernels, set UNITY build on by default.
|
||||
if (CUTLASS_LIBRARY_KERNELS MATCHES "all")
|
||||
set(CUTLASS_UNITY_BUILD_ENABLED_INIT ON)
|
||||
else()
|
||||
set(CUTLASS_UNITY_BUILD_ENABLED_INIT OFF)
|
||||
endif()
|
||||
|
||||
set(options INTERFACE STATIC SHARED OBJECT)
|
||||
set(oneValueArgs)
|
||||
set(CUTLASS_UNITY_BUILD_ENABLED ${CUTLASS_UNITY_BUILD_ENABLED_INIT} CACHE BOOL "Enable combined source compilation")
|
||||
set(CUTLASS_UNITY_BUILD_BATCH_SIZE 16 CACHE STRING "Batch size for unified source files")
|
||||
|
||||
function(cutlass_unify_source_files TARGET_ARGS_VAR)
|
||||
|
||||
set(options)
|
||||
set(oneValueArgs BATCH_SOURCES BATCH_SIZE)
|
||||
set(multiValueArgs)
|
||||
cmake_parse_arguments(_ "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
||||
|
||||
if(CUTLASS_NATIVE_CUDA OR CUDA_COMPILER MATCHES "clang" OR __INTERFACE)
|
||||
cutlass_correct_source_file_language_property(${ARGN})
|
||||
add_library(${ARGN})
|
||||
else()
|
||||
set(CUDA_LINK_LIBRARIES_KEYWORD PRIVATE)
|
||||
cuda_add_library(${ARGN})
|
||||
if (NOT DEFINED TARGET_ARGS_VAR)
|
||||
message(FATAL_ERROR "TARGET_ARGS_VAR parameter is required")
|
||||
endif()
|
||||
|
||||
if (__BATCH_SOURCES AND NOT DEFINED __BATCH_SIZE)
|
||||
set(__BATCH_SIZE ${CUTLASS_UNITY_BUILD_BATCH_SIZE})
|
||||
endif()
|
||||
|
||||
if (CUTLASS_UNITY_BUILD_ENABLED AND DEFINED __BATCH_SIZE AND __BATCH_SIZE GREATER 1)
|
||||
|
||||
set(CUDA_FILE_ARGS)
|
||||
set(TARGET_SOURCE_ARGS)
|
||||
|
||||
foreach(ARG ${__UNPARSED_ARGUMENTS})
|
||||
if(${ARG} MATCHES ".*\.cu$")
|
||||
list(APPEND CUDA_FILE_ARGS ${ARG})
|
||||
else()
|
||||
list(APPEND TARGET_SOURCE_ARGS ${ARG})
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
list(LENGTH CUDA_FILE_ARGS NUM_CUDA_FILE_ARGS)
|
||||
while(NUM_CUDA_FILE_ARGS GREATER 0)
|
||||
list(SUBLIST CUDA_FILE_ARGS 0 ${__BATCH_SIZE} CUDA_FILE_BATCH)
|
||||
string(SHA256 CUDA_FILE_BATCH_HASH "${CUDA_FILE_BATCH}")
|
||||
string(SUBSTRING ${CUDA_FILE_BATCH_HASH} 0 12 CUDA_FILE_BATCH_HASH)
|
||||
set(BATCH_FILE ${CMAKE_CURRENT_BINARY_DIR}/${NAME}.unity.${CUDA_FILE_BATCH_HASH}.cu)
|
||||
message(STATUS "Generating ${BATCH_FILE}")
|
||||
file(WRITE ${BATCH_FILE} "// Unity File - Auto Generated!\n")
|
||||
foreach(CUDA_FILE ${CUDA_FILE_BATCH})
|
||||
get_filename_component(CUDA_FILE_ABS_PATH ${CUDA_FILE} ABSOLUTE)
|
||||
file(APPEND ${BATCH_FILE} "#include \"${CUDA_FILE_ABS_PATH}\"\n")
|
||||
endforeach()
|
||||
list(APPEND TARGET_SOURCE_ARGS ${BATCH_FILE})
|
||||
if (NUM_CUDA_FILE_ARGS LESS_EQUAL __BATCH_SIZE)
|
||||
break()
|
||||
endif()
|
||||
list(SUBLIST CUDA_FILE_ARGS ${__BATCH_SIZE} -1 CUDA_FILE_ARGS)
|
||||
list(LENGTH CUDA_FILE_ARGS NUM_CUDA_FILE_ARGS)
|
||||
endwhile()
|
||||
|
||||
else()
|
||||
|
||||
set(TARGET_SOURCE_ARGS ${__UNPARSED_ARGUMENTS})
|
||||
|
||||
endif()
|
||||
|
||||
set(${TARGET_ARGS_VAR} ${TARGET_SOURCE_ARGS} PARENT_SCOPE)
|
||||
|
||||
endfunction()
|
||||
|
||||
function(cutlass_add_executable)
|
||||
function(cutlass_add_library NAME)
|
||||
|
||||
set(options)
|
||||
set(oneValueArgs)
|
||||
set(oneValueArgs EXPORT_NAME)
|
||||
set(multiValueArgs)
|
||||
cmake_parse_arguments(_ "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
||||
|
||||
cutlass_unify_source_files(TARGET_SOURCE_ARGS ${__UNPARSED_ARGUMENTS})
|
||||
|
||||
if(CUTLASS_NATIVE_CUDA OR CUDA_COMPILER MATCHES "clang")
|
||||
cutlass_correct_source_file_language_property(${ARGN})
|
||||
add_executable(${ARGN})
|
||||
cutlass_correct_source_file_language_property(${TARGET_SOURCE_ARGS})
|
||||
add_library(${NAME} ${TARGET_SOURCE_ARGS})
|
||||
else()
|
||||
set(CUDA_LINK_LIBRARIES_KEYWORD PRIVATE)
|
||||
cuda_add_executable(${ARGN})
|
||||
cuda_add_library(${NAME} ${TARGET_SOURCE_ARGS})
|
||||
endif()
|
||||
|
||||
cutlass_apply_standard_compile_options(${NAME})
|
||||
cutlass_apply_cuda_gencode_flags(${NAME})
|
||||
|
||||
target_compile_features(
|
||||
${NAME}
|
||||
INTERFACE
|
||||
cxx_std_11
|
||||
)
|
||||
|
||||
if(__EXPORT_NAME)
|
||||
add_library(nvidia::cutlass::${__EXPORT_NAME} ALIAS ${NAME})
|
||||
set_target_properties(${NAME} PROPERTIES EXPORT_NAME ${__EXPORT_NAME})
|
||||
endif()
|
||||
|
||||
endfunction()
|
||||
|
||||
function(cutlass_target_sources)
|
||||
function(cutlass_add_executable NAME)
|
||||
|
||||
set(options)
|
||||
set(oneValueArgs)
|
||||
set(multiValueArgs)
|
||||
cmake_parse_arguments(_ "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
||||
|
||||
cutlass_correct_source_file_language_property(${ARGN})
|
||||
target_sources(${ARGN})
|
||||
cutlass_unify_source_files(TARGET_SOURCE_ARGS ${__UNPARSED_ARGUMENTS})
|
||||
|
||||
if(CUTLASS_NATIVE_CUDA OR CUDA_COMPILER MATCHES "clang")
|
||||
cutlass_correct_source_file_language_property(${TARGET_SOURCE_ARGS})
|
||||
add_executable(${NAME} ${TARGET_SOURCE_ARGS})
|
||||
else()
|
||||
set(CUDA_LINK_LIBRARIES_KEYWORD PRIVATE)
|
||||
cuda_add_executable(${NAME} ${TARGET_SOURCE_ARGS})
|
||||
endif()
|
||||
|
||||
cutlass_apply_standard_compile_options(${NAME})
|
||||
cutlass_apply_cuda_gencode_flags(${NAME})
|
||||
|
||||
target_compile_features(
|
||||
${NAME}
|
||||
INTERFACE
|
||||
cxx_std_11
|
||||
)
|
||||
|
||||
endfunction()
|
||||
|
||||
function(cutlass_target_sources NAME)
|
||||
|
||||
set(options)
|
||||
set(oneValueArgs)
|
||||
set(multiValueArgs)
|
||||
cmake_parse_arguments(_ "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
||||
|
||||
cutlass_unify_source_files(TARGET_SOURCE_ARGS ${__UNPARSED_ARGUMENTS})
|
||||
cutlass_correct_source_file_language_property(${TARGET_SOURCE_ARGS})
|
||||
target_sources(${NAME} ${TARGET_SOURCE_ARGS})
|
||||
|
||||
endfunction()
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
Copyright (c) 2017 - 2019, NVIDIA CORPORATION. All rights reserved.
|
||||
Copyright (c) 2017 - 2020, NVIDIA CORPORATION. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
8
PUBLICATIONS.md
Normal file
8
PUBLICATIONS.md
Normal file
@ -0,0 +1,8 @@
|
||||
# Publications Using Cutlass
|
||||
|
||||
## 2020
|
||||
|
||||
- ["Scalable Knowledge Graph Analytics at 136 Petaflop/s"](https://www.computer.org/csdl/proceedings-article/sc/2020/999800a061/1oeORDgCM0g). Ramakrishnan Kannan, Piyush Sao, Hao Lu, Drahomira Herrmannova, Vijay Thakkar, Robert Patton, Richard Vuduc, Thomas Potok. _Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis_, November 2020.
|
||||
|
||||
- ["Accelerating Sparse DNN Models without Hardware-Support via Tile-Wise Sparsity
|
||||
"](https://arxiv.org/abs/2008.13006). Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, Zehuan Wang, Xiaoying Jia, Xipeng Li, Minyi Guo, Yuhao Zhu. _Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis_, November 2020.
|
||||
399
README.md
399
README.md
@ -1,15 +1,15 @@
|
||||

|
||||
|
||||
# CUTLASS 2.0
|
||||
# CUTLASS 2.7
|
||||
|
||||
_CUTLASS 2.0 - November 2019_
|
||||
_CUTLASS 2.7 - September 2021_
|
||||
|
||||
CUTLASS is a collection of CUDA C++ template abstractions for implementing
|
||||
high-performance matrix-multiplication (GEMM) at all levels and scales within CUDA.
|
||||
It incorporates strategies for hierarchical decomposition and data movement similar
|
||||
to those used to implement cuBLAS. CUTLASS decomposes these "moving parts" into
|
||||
reusable, modular software components abstracted by C++ template classes. These
|
||||
thread-wide, warp-wide, block-wide, and device-wide primitives can be specialized
|
||||
high-performance matrix-multiplication (GEMM) and related computations at all levels
|
||||
and scales within CUDA. It incorporates strategies for hierarchical decomposition and
|
||||
data movement similar to those used to implement cuBLAS and cuDNN. CUTLASS decomposes
|
||||
these "moving parts" into reusable, modular software components abstracted by C++ template
|
||||
classes. These thread-wide, warp-wide, block-wide, and device-wide primitives can be specialized
|
||||
and tuned via custom tiling sizes, data types, and other algorithmic policy. The
|
||||
resulting flexibility simplifies their use as building blocks within custom kernels
|
||||
and applications.
|
||||
@ -17,14 +17,85 @@ and applications.
|
||||
To support a wide variety of applications, CUTLASS provides extensive support for
|
||||
mixed-precision computations, providing specialized data-movement and
|
||||
multiply-accumulate abstractions for half-precision floating
|
||||
point (FP16), single-precision floating point (FP32), double-precision floating
|
||||
point (FP16), BFloat16 (BF16), Tensor Float 32 (TF32),
|
||||
single-precision floating point (FP32), double-precision floating
|
||||
point (FP64) types, integer data types (4b and 8b), and binary data types (1b).
|
||||
Furthermore, CUTLASS demonstrates warp-synchronous matrix multiply operations for
|
||||
CUTLASS demonstrates warp-synchronous matrix multiply operations
|
||||
targeting the programmable, high-throughput _Tensor Cores_ implemented by
|
||||
NVIDIA's Volta and Turing architectures.
|
||||
NVIDIA's Volta, Turing, and Ampere architectures.
|
||||
|
||||
CUTLASS implements high-performance Convolution via the implicit GEMM algorithm.
|
||||
Implicit GEMM is the formulation of a convolution operation as a GEMM thereby taking advantage of
|
||||
CUTLASS's modular GEMM pipeline.
|
||||
This allows CUTLASS to build convolutions by reusing highly optimized warp-wide GEMM components and below.
|
||||
|
||||
See the [Quick Start Guide](/media/docs/quickstart.md) to get started quickly.
|
||||
|
||||
See the [functionality listing](/media/docs/functionality.md) for the list of operations
|
||||
supported at each level of the execution model hierarchy.
|
||||
|
||||
See the [CHANGELOG](CHANGELOG.md) for descriptions of recent updates.
|
||||
|
||||
# What's New in CUTLASS 2.7
|
||||
CUTLASS 2.7 is a minor update to CUTLASS adding:
|
||||
- Mainloop fusion for GEMM: [summation over A or B](/examples/23_ampere_gemm_operand_reduction_fusion/ampere_gemm_operand_reduction_fusion.cu)
|
||||
- [Optimizations for strided DGRAD](/include/cutlass/conv/kernel/default_conv2d_dgrad.h)
|
||||
- [Half-precision GELU_taylor activation functions](/include/cutlass/epilogue/thread/activation.h#L196)
|
||||
- Tuning and bug fixes to [fused GEMM + GEMM example](/examples/13_two_tensor_op_fusion/)
|
||||
- Support for smaller than 128b aligned Convolutions: [see examples](test/unit/conv/device/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu#L272)
|
||||
- Caching of results to accelerate Convolution [unit tests](test/unit/conv/device/cache_testbed_output.h)
|
||||
- Numerous updates from the community (thanks!)
|
||||
|
||||
# What's New in CUTLASS 2.6
|
||||
CUTLASS 2.6 is a minor update to CUTLASS adding:
|
||||
- Fused [broadcast](test/unit/gemm/device/gemm_with_broadcast_f16n_f16n_f16n_tensorop_f32_sm75.cu) and [reductions](/test/unit/gemm/device/gemm_with_reduction_f16n_f16n_f16n_tensorop_f32_sm75.cu) in the epilogues of GEMM and Convolution
|
||||
- [Quaternion-valued GEMM](/examples/21_quaternion_gemm/quaternion_gemm.cu) and [Convolution](/examples/22_quaternion_conv/quaternion_conv.cu) in single-precision
|
||||
- [New strided Dgrad](test/unit/conv/device/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu) implementation offers up to 4x performance improvements over previous strided Dgrad
|
||||
- 64-bit strides for large tensor allocations
|
||||
- [General affine layouts](/examples/18_ampere_fp64_tensorop_affine2_gemm/ampere_fp64_tensorop_affine2_gemm.cu) fp64 tensor core and simt GEMM
|
||||
- [Batched GEMV](/test/unit/gemm/device/gemv.cu) preview implementation
|
||||
- Enhanced functionality, boosted performance, and bug fixes in the epilogue.
|
||||
- Optimal performance when compiled with the [CUDA 11.4 Toolkit](https://developer.nvidia.com/cuda-toolkit)
|
||||
- Adopt new L2 prefetch feature in [ptx instruction](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#ptx-isa-version-7-4).
|
||||
- Enhanced Clang support and the combination of Clang 13 and CUDA 11.4 can build and run kernels from Pascal and Ampere.
|
||||
- Numerous updates from the community (thanks!)
|
||||
|
||||
# What's New in CUTLASS 2.5
|
||||
CUTLASS 2.5 is a minor update to CUTLASS adding:
|
||||
- [Tensor reductions](/test/unit/reduction/device/tensor_reduce_contiguous.cu)
|
||||
- [Optimizations for 3-D convolution](include/cutlass/conv/threadblock/conv3d_fprop_activation_tile_access_iterator_optimized.h)
|
||||
- [Fused Convolution+Convolution example](/examples/13_two_tensor_op_fusion/README.md)
|
||||
|
||||
# What's New in CUTLASS 2.4
|
||||
CUTLASS 2.4 is a significant update to CUTLASS adding:
|
||||
- 1-D, 2-D, and 3-D convolution targeting Tensor and CUDA cores for NVIDIA Ampere, Turing, and Volta GPU architectures
|
||||
- CUTLASS profiler support for convolution
|
||||
- [Documentation](/media/docs/implicit_gemm_convolution.md) describing Implicit GEMM Convolution algorithm and implementation
|
||||
|
||||
# What's New in CUTLASS 2.3
|
||||
|
||||
CUTLASS 2.3 is a minor update to CUTLASS adding:
|
||||
- GEMMs targeting structured [Sparse Tensor Cores](test/unit/gemm/device/gemm_f16n_f16n_f32t_tensor_op_f32_sparse_sm80.cu) in NVIDIA Ampere Architecture GPUs
|
||||
- Fast SGEMM kernels targeting GeForce RTX 30-series CUDA Cores
|
||||
- Intended to be compiled with [CUDA 11.1 Toolkit](https://developer.nvidia.com/cuda-toolkit) or later
|
||||
|
||||
# What's New in CUTLASS 2.2
|
||||
|
||||
CUTLASS 2.2 is a significant update to CUTLASS adding:
|
||||
|
||||
- Coverage of [NVIDIA Ampere Architecture features](https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/)
|
||||
- Tensor Core-accelerated GEMMs targeting Tensor Float 32, BFloat16, and double-precision data types
|
||||
- Deep software pipelines using asynchronous copy
|
||||
- Described in [GTC 2020 Webinar (SR 21745)](https://developer.nvidia.com/gtc/2020/video/s21745)
|
||||
- Intended to be compiled with [CUDA 11 Toolkit](https://developer.nvidia.com/cuda-toolkit) or later
|
||||
|
||||
# What's New in CUTLASS 2.1
|
||||
|
||||
CUTLASS 2.1 is a minor update to CUTLASS adding:
|
||||
|
||||
- [Planar complex GEMM kernels](/examples/10_planar_complex/planar_complex.cu) targeting Volta and Turing Tensor Cores
|
||||
- BLAS-style API to launch kernels compiled into the [CUTLASS Library](/media/docs/quickstart.md#cutlass-library)
|
||||
|
||||
# What's New in CUTLASS 2.0
|
||||
|
||||
CUTLASS 2.0 is a substantial refactoring from the previous version, intended to offer:
|
||||
@ -33,10 +104,7 @@ CUTLASS 2.0 is a substantial refactoring from the previous version, intended to
|
||||
- Robust and durable templates that reliably span the design space
|
||||
- Encapsulated functionality that may be reusable in other contexts
|
||||
|
||||
See the [CHANGELOG](CHANGELOG.md) for more details.
|
||||
|
||||
See the [functionality listing](media/docs/functionality.md) for the list of operations
|
||||
supported at each level of the execution model hierarchy.
|
||||
**See the [CHANGELOG](CHANGELOG.md) for more details.**
|
||||
|
||||
# Performance
|
||||
|
||||
@ -45,15 +113,15 @@ supported at each level of the execution model hierarchy.
|
||||
CUTLASS primitives are very efficient. When used to construct device-wide GEMM kernels,
|
||||
they exhibit performance comparable to cuBLAS for scalar GEMM
|
||||
computations. The above figure shows CUTLASS performance relative to cuBLAS
|
||||
for large matrix dimensions on an NVIDIA GeForce 2080 Ti and an NVIDIA TitanV
|
||||
using CUDA 10.2. Tensor Core operations are implemented using CUDA's
|
||||
for large matrix dimensions on an NVIDIA GeForce 2080 Ti, an NVIDIA A100, and an NVIDIA TitanV
|
||||
using CUDA 11.0 Toolkit. Tensor Core operations are implemented using CUDA's
|
||||
[mma instruction](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma).
|
||||
|
||||
# Compatibility
|
||||
|
||||
CUTLASS requires a C++11 host compiler and
|
||||
performs best when built with the [CUDA 10.2 Toolkit](https://developer.nvidia.com/cuda-toolkit).
|
||||
It is compatible with CUDA 9.2, CUDA 10.0, and CUDA 10.1.
|
||||
performs best when built with the [CUDA 11.4 Toolkit](https://developer.nvidia.com/cuda-toolkit).
|
||||
It is also compatible with CUDA 10.2, CUDA 11.0, CUDA 11.1, CUDA 11.2, and CUDA 11.3.
|
||||
|
||||
We have tested the following environments.
|
||||
|
||||
@ -62,33 +130,40 @@ We have tested the following environments.
|
||||
| Windows 10 | Microsoft Visual Studio 2015|
|
||||
| | Microsoft Visual Studio 2017|
|
||||
| Ubuntu 16.04 | GCC 5.4.0 |
|
||||
| Ubuntu 18.04 | GCC 7.3.0 |
|
||||
| Ubuntu 18.04 | GCC 7.5.0 |
|
||||
| Ubuntu 20.04 | GCC 10.2.0 |
|
||||
|
||||
Additionally, CUTLASS may be built with clang.
|
||||
See [these instructions](media/docs/quickstart.md#clang) for more details.
|
||||
|
||||
CUTLASS runs successfully on the following NVIDIA GPUs, and it is expected to be efficient on
|
||||
any Maxwell-, Pascal-, Volta-, or Turing- architecture NVIDIA GPU.
|
||||
any Maxwell-, Pascal-, Volta-, Turing-, or NVIDIA Ampere- architecture NVIDIA GPU.
|
||||
|
||||
|**GPU**|**Minimum CUDA Toolkit**|**CUDA Toolkit Enabling Native Tensor Cores**|
|
||||
|---|---|---|
|
||||
|NVIDIA GeForce 1080|9.2| |
|
||||
|NVIDIA TitanXP|9.2| |
|
||||
|NVIDIA Tesla P100|9.2| |
|
||||
|NVIDIA Tesla V100|9.2|10.1|
|
||||
|NVIDIA TitanV|9.2|10.1|
|
||||
|NVIDIA GeForce RTX 2080 TI, 2080, 2070|10.0|10.2|
|
||||
|NVIDIA Tesla T4|10.0|10.2|
|
||||
For all GPUs, we recommend compiling with the [CUDA 11.4 Toolkit](https://developer.nvidia.com/cuda-toolkit)
|
||||
for best performance.
|
||||
|
||||
|**GPU**|**CUDA Compute Capability**|**Minimum CUDA Toolkit**|**CUDA Toolkit Enabling Native Tensor Cores**|
|
||||
|---|---|---|---|
|
||||
|NVIDIA Tesla P100|6.0|9.2| |
|
||||
|NVIDIA GeForce 1080|6.1|9.2| |
|
||||
|NVIDIA TitanXP|6.1|9.2| |
|
||||
|NVIDIA Tesla V100|7.0|9.2|10.1|
|
||||
|NVIDIA TitanV|7.0|9.2|10.1|
|
||||
|NVIDIA GeForce RTX 2080 TI, 2080, 2070|7.5|10.0|10.2|
|
||||
|NVIDIA Tesla T4|7.5|10.0|10.2|
|
||||
|NVIDIA A100|8.0|11.0|11.0|
|
||||
|NVIDIA GeForce 3090|8.6|11.1|11.1|
|
||||
|
||||
# Documentation
|
||||
|
||||
CUTLASS 2.0 is described in the following documents and the accompanying
|
||||
CUTLASS is described in the following documents and the accompanying
|
||||
[Doxygen documentation](https://nvidia.github.io/cutlass).
|
||||
|
||||
- [Quick Start Guide](/media/docs/quickstart.md) - build and run CUTLASS
|
||||
- [Functionality](/media/docs/functionality.md) - summarizes functionality available in CUTLASS
|
||||
- [Efficient GEMM in CUDA](media/docs/efficient_gemm.md) - describes how GEMM kernels may be implemented efficiently in CUDA
|
||||
- [GEMM API](media/docs/gemm_api.md) - describes the CUTLASS GEMM model and C++ template concepts
|
||||
- [Implicit GEMM Convolution](media/docs/implicit_gemm_convolution.md) - describes 2-D and 3-D convolution in CUTLASS
|
||||
- [Code Organization](media/docs/code_organization.md) - describes the organization and contents of the CUTLASS project
|
||||
- [Terminology](media/docs/terminology.md) - describes terms used in the code
|
||||
- [Programming Guidelines](media/docs/programming_guidelines.md) - guidelines for writing efficient modern CUDA C++
|
||||
@ -111,19 +186,19 @@ CUTLASS unit tests, examples, and utilities can be build with CMake starting ver
|
||||
Make sure the `CUDACXX` environment variable points to NVCC in the CUDA Toolkit installed
|
||||
on your system.
|
||||
|
||||
```
|
||||
```bash
|
||||
$ export CUDACXX=${CUDA_INSTALL_PATH}/bin/nvcc
|
||||
```
|
||||
|
||||
Create a build directory within the CUTLASS project, then run CMake. By default CUTLASS will build kernels
|
||||
for CUDA architecture versions 5.0, 6.0, 6.1, 7.0 and 7.5. To reduce compile time you can specify
|
||||
for CUDA architecture versions 5.0, 6.0, 6.1, 7.0, 7.5, 8.0, and 8.6. To reduce compile time you can specify
|
||||
the architectures to build CUTLASS for by changing the CMake configuration setting
|
||||
`CUTLASS_NVCC_ARCHS`.
|
||||
|
||||
```
|
||||
```bash
|
||||
$ mkdir build && cd build
|
||||
|
||||
$ cmake .. -DCUTLASS_NVCC_ARCHS=75 # compiles for NVIDIA's Turing GPU architecture
|
||||
$ cmake .. -DCUTLASS_NVCC_ARCHS=80 # compiles for NVIDIA's Ampere Architecture
|
||||
```
|
||||
|
||||
From the `build/` directory, compile and run the CUTLASS unit tests by building the target `test_unit` with make.
|
||||
@ -131,7 +206,7 @@ From the `build/` directory, compile and run the CUTLASS unit tests by building
|
||||
The unit tests are organized as several binaries mirroring the top-level namespaces of CUTLASS,
|
||||
and they may be executed in parallel via make's `-j` command line argument.
|
||||
|
||||
```
|
||||
```bash
|
||||
$ make test_unit -j
|
||||
...
|
||||
...
|
||||
@ -162,6 +237,8 @@ include/ # client applications should target this directory
|
||||
|
||||
arch/ # direct exposure of architecture features (including instruction-level GEMMs)
|
||||
|
||||
conv/ # code specialized for convolution
|
||||
|
||||
gemm/ # code specialized for general matrix product computations
|
||||
|
||||
layout/ # layout definitions for matrices, tensors, and other mathematical objects in memory
|
||||
@ -177,33 +254,49 @@ include/ # client applications should target this directory
|
||||
|
||||
### CUTLASS SDK Examples
|
||||
|
||||
CUTLASS SDK examples apply CUTLASS templates to implement basic computations.
|
||||
[CUTLASS SDK examples](/examples) apply CUTLASS templates to implement basic computations.
|
||||
|
||||
```
|
||||
examples/
|
||||
00_basic_gemm/ # launches a basic GEMM with single precision inputs and outputs
|
||||
00_basic_gemm/ # launches a basic GEMM with single precision inputs and outputs
|
||||
|
||||
01_cutlass_utilities/ # demonstrates CUTLASS Utilities for allocating and initializing tensors
|
||||
01_cutlass_utilities/ # demonstrates CUTLASS Utilities for allocating and initializing tensors
|
||||
|
||||
02_dump_reg_smem/ # debugging utilities for printing register and shared memory contents
|
||||
02_dump_reg_smem/ # debugging utilities for printing register and shared memory contents
|
||||
|
||||
03_visualize_layout/ # utility for visualizing all layout functions in CUTLASS
|
||||
03_visualize_layout/ # utility for visualizing all layout functions in CUTLASS
|
||||
|
||||
04_tile_iterator/ # example demonstrating an iterator over tiles in memory
|
||||
04_tile_iterator/ # example demonstrating an iterator over tiles in memory
|
||||
|
||||
05_batched_gemm/ # example demonstrating CUTLASS's batched strided GEMM operation
|
||||
05_batched_gemm/ # example demonstrating CUTLASS's batched strided GEMM operation
|
||||
|
||||
06_splitK_gemm/ # exmaple demonstrating CUTLASS's Split-K parallel reduction kernel
|
||||
06_splitK_gemm/ # exmaple demonstrating CUTLASS's Split-K parallel reduction kernel
|
||||
|
||||
07_volta_tensorop_gemm/ # example demonstrating mixed precision GEMM using Volta Tensor Cores
|
||||
07_volta_tensorop_gemm/ # example demonstrating mixed precision GEMM using Volta Tensor Cores
|
||||
|
||||
08_turing_tensorop_gemm/ # example demonstrating integer GEMM using Turing Tensor Cores
|
||||
08_turing_tensorop_gemm/ # example demonstrating integer GEMM using Turing Tensor Cores
|
||||
|
||||
09_turing_tensorop_conv2dfprop/ # example demonstrating integer implicit GEMM convolution (forward propagation) using Turing Tensor Cores
|
||||
|
||||
10_planar_complex/ # example demonstrating planar complex GEMM kernels
|
||||
|
||||
11_planar_complex_array/ # example demonstrating planar complex kernels with batch-specific problem sizes
|
||||
|
||||
12_gemm_bias_relu/ # example demonstrating GEMM fused with bias and relu
|
||||
|
||||
13_fused_two_gemms/ # example demonstrating two GEMms fused in one kernel
|
||||
|
||||
22_ampere_tensorop_conv2dfprop/ # example demonstrating integer implicit GEMM convolution (forward propagation) using Ampere Tensor Cores
|
||||
```
|
||||
|
||||
### Tools
|
||||
|
||||
```
|
||||
tools/
|
||||
library/ # CUTLASS Instance Library - contains instantiations of all supported CUTLASS templates
|
||||
include/
|
||||
cutlass/
|
||||
library/
|
||||
|
||||
profiler/ # CUTLASS Profiler - command-line utility for executing operations in the
|
||||
# CUTLASS Library
|
||||
@ -226,46 +319,216 @@ Instructions for building and running the Unit tests are described in the [Quick
|
||||
The `tools/profiler/` directory contains a command-line utility for launching each of the GEMM kernels.
|
||||
It can be built as follows:
|
||||
|
||||
```bash
|
||||
$ make cutlass_profiler -j16
|
||||
```
|
||||
$ make cutlass_profiler -j
|
||||
```
|
||||
## Building all GEMM and Convolution kernels (_long_ build times)
|
||||
|
||||
To limit compilation time, only one tile size is instantiated for each data type, math instruction, and layout.
|
||||
By default, only one tile size is instantiated for each data type, math instruction, and layout.
|
||||
To instantiate all, set the following environment variable when running CMake from an empty `build/` directory.
|
||||
```
|
||||
Beware, this results in *thousands* of kernels and long build times.
|
||||
```bash
|
||||
$ cmake .. -DCUTLASS_NVCC_ARCHS=75 -DCUTLASS_LIBRARY_KERNELS=all
|
||||
...
|
||||
$ make cutlass_profiler -j
|
||||
$ make cutlass_profiler -j16
|
||||
```
|
||||
|
||||
Example command line for profiling SGEMM kernels is as follows:
|
||||
## Building a subset of GEMM and Convolution kernels (_reduced_ build times)
|
||||
|
||||
To compile strictly one kernel or a small set of kernels, a comma-delimited list of kernel names with
|
||||
wildcard characters may be used to reduce the set of kernels. The following examples show building exactly one
|
||||
or a subset of kernels for NVIDIA Ampere and Turing architecture:
|
||||
|
||||
### Building a subset Tensor Core GEMM kernels
|
||||
|
||||
To compile a subset of Tensor Core GEMM kernels with FP32 accumulation and FP16 input targetting NVIDIA Ampere and Turing architecture,
|
||||
use the below cmake command line:
|
||||
```bash
|
||||
$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_s*gemm_f16_*_nt_align8
|
||||
...
|
||||
$ make cutlass_profiler -j16
|
||||
```
|
||||
$ ./tools/profiler/cutlass_profiler --kernels=sgemm --m=4352 --n=4096 --k=4096
|
||||
|
||||
Example command line for profiling a subset of Tensor Core GEMM kernels is as follows:
|
||||
```bash
|
||||
./tools/profiler/cutlass_profiler --kernels=cutlass_tensorop_s*gemm_f16_*_nt_align8 --m=3456 --n=4096 --k=4096
|
||||
|
||||
...
|
||||
=============================
|
||||
Problem ID: 1
|
||||
|
||||
Provider: CUTLASS
|
||||
OperationKind: gemm
|
||||
Operation: cutlass_tensorop_s1688gemm_f16_256x128_32x2_nt_align8
|
||||
|
||||
Status: Success
|
||||
Verification: ON
|
||||
Disposition: Passed
|
||||
|
||||
reference_device: Passed
|
||||
cuBLAS: Passed
|
||||
|
||||
Arguments: --gemm_kind=universal --m=3456 --n=4096 --k=4096 --A=f16:column --B=f16:row --C=f32:column --alpha=1 \
|
||||
--beta=0 --split_k_slices=1 --batch_count=1 --op_class=tensorop --accum=f32 --cta_m=256 --cta_n=128 \
|
||||
--cta_k=32 --stages=2 --warps_m=4 --warps_n=2 --warps_k=1 --inst_m=16 --inst_n=8 --inst_k=8 --min_cc=75 \
|
||||
--max_cc=1024
|
||||
|
||||
Bytes: 118489088 bytes
|
||||
FLOPs: 115992428544 flops
|
||||
|
||||
Runtime: 1.55948 ms
|
||||
Memory: 70.7616 GiB/s
|
||||
|
||||
Math: 74378.8 GFLOP/s
|
||||
|
||||
|
||||
|
||||
=============================
|
||||
...
|
||||
```
|
||||
|
||||
### Building one CUDA Core GEMM kernel
|
||||
|
||||
To compile one SGEMM kernel targetting NVIDIA Ampere and Turing architecture, use the below cmake command line:
|
||||
```bash
|
||||
$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_simt_sgemm_128x128_8x2_nn_align1
|
||||
...
|
||||
$ make cutlass_profiler -j16
|
||||
```
|
||||
|
||||
Example command line for profiling single SGEMM CUDA kernel is as follows:
|
||||
```bash
|
||||
$ ./tools/profiler/cutlass_profiler --kernels=sgemm --m=3456 --n=4096 --k=4096
|
||||
|
||||
=============================
|
||||
Problem ID: 1
|
||||
|
||||
Provider: CUTLASS
|
||||
Operation: cutlass_simt_sgemm_128x128_nn
|
||||
Provider: CUTLASS
|
||||
OperationKind: gemm
|
||||
Operation: cutlass_simt_sgemm_128x128_8x2_nn_align1
|
||||
|
||||
Disposition: Passed
|
||||
Status: Success
|
||||
Status: Success
|
||||
Verification: ON
|
||||
Disposition: Passed
|
||||
|
||||
Arguments: --m=4352 --n=4096 --k=4096 --A=f32:column --B=f32:column --C=f32:column --alpha=1 --beta=0 \
|
||||
--split_k_slices=1 --batch_count=1 --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 \
|
||||
--stages=2 --warps_m=2 --warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 \
|
||||
--max_cc=1024
|
||||
cuBLAS: Passed
|
||||
|
||||
Bytes: 52428800 bytes
|
||||
FLOPs: 146064539648 flops
|
||||
Arguments: --m=3456 --n=4096 --k=4096 --A=f32:column --B=f32:column --C=f32:column --alpha=1 --beta=0 --split_k_slices=1 \
|
||||
--batch_count=1 --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 --stages=2 --warps_m=4 \
|
||||
--warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 --max_cc=1024
|
||||
|
||||
Runtime: 10.5424 ms
|
||||
Memory: 4.63158 GiB/s
|
||||
Bytes: 180355072 bytes
|
||||
FLOPs: 115992428544 flops
|
||||
|
||||
Math: 13854.9 GFLOP/s
|
||||
Runtime: 6.73655 ms
|
||||
Memory: 24.934 GiB/s
|
||||
|
||||
Math: 17218.4 GFLOP/s
|
||||
|
||||
=============================
|
||||
```
|
||||
|
||||
[Further details about the CUTLASS Profiler are described here.](media/docs/profiler.md)
|
||||
### Building a subset of Tensor Core Convolution kernels
|
||||
|
||||
To compile a subset of Tensor core convolution kernels implementing forward propagation (fprop) with FP32 accumulation
|
||||
and FP16 input targetting NVIDIA Ampere and Turing architecture, use the below cmake command line:
|
||||
```bash
|
||||
$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_s*fprop_optimized_f16
|
||||
...
|
||||
$ make cutlass_profiler -j16
|
||||
```
|
||||
|
||||
Example command line for profiling a subset of Tensor Core convolution kernels is as follows:
|
||||
|
||||
```bash
|
||||
$ ./tools/profiler/cutlass_profiler --kernels=cutlass_tensorop_s*fprop_optimized_f16 --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3
|
||||
|
||||
...
|
||||
=============================
|
||||
Problem ID: 1
|
||||
|
||||
Provider: CUTLASS
|
||||
OperationKind: conv2d
|
||||
Operation: cutlass_tensorop_s16816fprop_optimized_f16_128x128_32x5_nhwc
|
||||
|
||||
Status: Success
|
||||
Verification: ON
|
||||
Disposition: Passed
|
||||
|
||||
reference_device: Passed
|
||||
|
||||
Arguments: --conv_kind=fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --p=224 --q=224 --pad_h=1 --pad_w=1 \
|
||||
--stride_h=1 --stride_w=1 --dilation_h=1 --dilation_w=1 --Activation=f16:nhwc --Filter=f16:nhwc --Output=f32:nhwc \
|
||||
--conv_mode=cross --iterator_algorithm=optimized --alpha=1 --beta=0 --split_k_mode=serial --split_k_slices=1 \
|
||||
--eq_gemm_provider=none --op_class=tensorop --accum=f32 --cta_m=128 --cta_n=128 --cta_k=32 --stages=5 \
|
||||
--warps_m=2 --warps_n=2 --warps_k=1 --inst_m=16 --inst_n=8 --inst_k=16 --min_cc=80 --max_cc=1024
|
||||
|
||||
Bytes: 1130659840 bytes
|
||||
FLOPs: 118482796544 flops
|
||||
|
||||
Runtime: 0.711496 ms
|
||||
Memory: 1479.99 GiB/s
|
||||
|
||||
Math: 166526 GFLOP/s
|
||||
|
||||
=============================
|
||||
...
|
||||
```
|
||||
|
||||
|
||||
### Building one Convolution CUDA kernel
|
||||
|
||||
To compile and run one CUDA Core convolution kernel implementing forward propagation (fprop) with F32 accumulation
|
||||
and FP32 input targetting NVIDIA Ampere and Turing architecture, use the below cmake command line:
|
||||
```bash
|
||||
$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_simt_sfprop_optimized_128x128_8x2_nhwc
|
||||
...
|
||||
$ make cutlass_profiler -j16
|
||||
```
|
||||
|
||||
Example command line for profiling one CUDA Core convolution kernel:
|
||||
|
||||
```bash
|
||||
$ ./tools/profiler/cutlass_profiler --kernels=cutlass_simt_sfprop_optimized_128x128_8x2_nhwc --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3
|
||||
|
||||
|
||||
=============================
|
||||
Problem ID: 1
|
||||
|
||||
Provider: CUTLASS
|
||||
OperationKind: conv2d
|
||||
Operation: cutlass_simt_sfprop_optimized_128x128_8x2_nhwc
|
||||
|
||||
Status: Success
|
||||
Verification: ON
|
||||
Disposition: Passed
|
||||
|
||||
reference_device: Passed
|
||||
|
||||
Arguments: --conv_kind=fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --p=224 --q=224 --pad_h=1 --pad_w=1 \
|
||||
--stride_h=1 --stride_w=1 --dilation_h=1 --dilation_w=1 --Activation=f32:nhwc --Filter=f32:nhwc --Output=f32:nhwc \
|
||||
--conv_mode=cross --iterator_algorithm=optimized --alpha=1 --beta=0 --split_k_mode=serial --split_k_slices=1 \
|
||||
--eq_gemm_provider=none --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 --stages=2 --warps_m=4 \
|
||||
--warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 --max_cc=1024
|
||||
|
||||
Bytes: 2055798784 bytes
|
||||
FLOPs: 118482796544 flops
|
||||
|
||||
Runtime: 7.34266 ms
|
||||
Memory: 260.752 GiB/s
|
||||
|
||||
Math: 16136.2 GFLOP/s
|
||||
|
||||
|
||||
=============================
|
||||
|
||||
```
|
||||
|
||||
## More Details on Compiling CUTLASS Kernels and CUTLASS Profiler
|
||||
- Please follow the links for more CMake examples on selectively compiling CUTLASS kernels:
|
||||
- [GEMM CMake Examples](media/docs/quickstart.md#gemm-cmake-examples)
|
||||
- [Implicit GEMM conovlution CMake Examples](media/docs/quickstart.md#convolution-cmake-examples)
|
||||
- [Further details about the CUTLASS Profiler are described here.](media/docs/profiler.md)
|
||||
|
||||
|
||||
# About
|
||||
@ -279,7 +542,7 @@ The official list of CUTLASS developers and contributors is available here: [CON
|
||||
|
||||
# Copyright
|
||||
|
||||
Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
|
||||
```
|
||||
Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
@ -299,7 +562,7 @@ Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
```
|
||||
|
||||
|
||||
21
cmake/CTestTestfile.config.cmake
Normal file
21
cmake/CTestTestfile.config.cmake
Normal file
@ -0,0 +1,21 @@
|
||||
# Generated file
|
||||
|
||||
if (DEFINED ENV{CUTLASS_TEST_EXECUTION_ENVIRONMENT})
|
||||
set(_CUTLASS_TEST_EXECUTION_ENVIRONMENT $ENV{CUTLASS_TEST_EXECUTION_ENVIRONMENT})
|
||||
else()
|
||||
set(_CUTLASS_TEST_EXECUTION_ENVIRONMENT @CUTLASS_TEST_EXECUTION_ENVIRONMENT@)
|
||||
endif()
|
||||
|
||||
if (NOT "@TEST_EXE_DIR@" STREQUAL "")
|
||||
set(TEST_EXE_PATH @TEST_EXE_DIR@/@TEST_EXE@)
|
||||
else()
|
||||
set(TEST_EXE_PATH @TEST_EXE@)
|
||||
endif()
|
||||
|
||||
add_test("@TEST_NAME@" ${_CUTLASS_TEST_EXECUTION_ENVIRONMENT} "${TEST_EXE_PATH}" @TEST_COMMAND_OPTIONS@)
|
||||
|
||||
if (NOT "@TEST_EXE_WORKING_DIRECTORY@" STREQUAL "")
|
||||
set_tests_properties("@TEST_NAME@" PROPERTIES WORKING_DIRECTORY "@TEST_EXE_WORKING_DIRECTORY@")
|
||||
endif()
|
||||
|
||||
set_tests_properties(@TEST_NAME@ PROPERTIES DISABLED @__DISABLE_TESTS@)
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
|
||||
111
cuBLAS.cmake
111
cuBLAS.cmake
@ -1,7 +1,29 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
message(STATUS "Configuring cublas ...")
|
||||
|
||||
if(DEFINED CUTLASS_ENABLE_CUBLAS AND NOT CUTLASS_ENABLE_CUBLAS)
|
||||
if((DEFINED CUTLASS_ENABLE_CUBLAS AND NOT CUTLASS_ENABLE_CUBLAS) OR
|
||||
(DEFINED CUBLAS_ENABLED AND NOT CUBLAS_ENABLED))
|
||||
|
||||
# Don't add cuBLAS if it's defined and false, assume it's not found.
|
||||
|
||||
@ -9,28 +31,35 @@ if(DEFINED CUTLASS_ENABLE_CUBLAS AND NOT CUTLASS_ENABLE_CUBLAS)
|
||||
message(STATUS "cuBLAS Disabled.")
|
||||
|
||||
elseif(NOT TARGET cublas)
|
||||
|
||||
|
||||
find_path(
|
||||
_CUBLAS_INCLUDE_DIR cublas.h
|
||||
PATHS
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/include
|
||||
$ENV{CUBLAS_PATH}/include
|
||||
$ENV{CUDA_PATH}/include
|
||||
${CUBLAS_PATH}/include
|
||||
/usr/include)
|
||||
_CUBLAS_INCLUDE_DIR
|
||||
NAMES cublas.h
|
||||
HINTS
|
||||
${CUBLAS_INCLUDE_PATH}
|
||||
ENV CUBLAS_INCLUDE_PATH
|
||||
${CUBLAS_PATH}
|
||||
ENV CUBLAS_PATH
|
||||
${CUDA_TOOLKIT_ROOT_DIR}
|
||||
PATH_SUFFIXES
|
||||
include
|
||||
)
|
||||
|
||||
find_library(
|
||||
_CUBLAS_LIBRARY cublas
|
||||
_CUBLAS_LIBRARY
|
||||
NAMES cublas
|
||||
HINTS
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib64
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib/x64
|
||||
$ENV{CUBLAS_PATH}/lib64
|
||||
$ENV{CUBLAS_PATH}/lib/x64
|
||||
$ENV{CUDA_PATH}/lib64
|
||||
$ENV{CUDA_PATH}/lib/x64
|
||||
${CUBLAS_PATH}/lib64
|
||||
${CUBLAS_PATH}/lib/x64
|
||||
/usr/lib/x86_64-linux-gnu)
|
||||
${CUBLAS_LIBRARY_PATH}
|
||||
ENV CUBLAS_LIBRARY_PATH
|
||||
${_CUBLAS_INCLUDE_DIR}/..
|
||||
${CUBLAS_PATH}
|
||||
ENV CUBLAS_PATH
|
||||
${CUDA_TOOLKIT_ROOT_DIR}
|
||||
PATH_SUFFIXES
|
||||
lib64
|
||||
lib/x64
|
||||
lib
|
||||
)
|
||||
|
||||
if(_CUBLAS_INCLUDE_DIR AND _CUBLAS_LIBRARY)
|
||||
|
||||
@ -59,11 +88,13 @@ endif()
|
||||
if(CUTLASS_ENABLE_CUBLAS AND NOT TARGET cublas)
|
||||
|
||||
if(WIN32)
|
||||
add_library(cublas STATIC IMPORTED)
|
||||
add_library(cublas STATIC IMPORTED GLOBAL)
|
||||
else()
|
||||
add_library(cublas SHARED IMPORTED)
|
||||
add_library(cublas SHARED IMPORTED GLOBAL)
|
||||
endif()
|
||||
|
||||
add_library(nvidia::cublas ALIAS cublas)
|
||||
|
||||
set_property(
|
||||
TARGET cublas
|
||||
PROPERTY IMPORTED_LOCATION
|
||||
@ -76,35 +107,37 @@ if(CUTLASS_ENABLE_CUBLAS AND NOT TARGET cublas)
|
||||
$<BUILD_INTERFACE:${CUBLAS_INCLUDE_DIR}>)
|
||||
|
||||
find_library(
|
||||
_CUBLASLT_LIBRARY cublasLt
|
||||
_CUBLASLT_LIBRARY
|
||||
NAMES cublasLt
|
||||
HINTS
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib64
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib/x64
|
||||
$ENV{CUBLAS_PATH}/lib64
|
||||
$ENV{CUBLAS_PATH}/lib/x64
|
||||
$ENV{CUDA_PATH}/lib64
|
||||
$ENV{CUDA_PATH}/lib/x64
|
||||
${CUBLAS_PATH}/lib64
|
||||
${CUBLAS_PATH}/lib/x64
|
||||
/usr/lib/x86_64-linux-gnu)
|
||||
${CUBLAS_LIBRARY_PATH}
|
||||
ENV CUBLAS_LIBRARY_PATH
|
||||
${_CUBLAS_INCLUDE_DIR}/..
|
||||
${CUBLAS_PATH}
|
||||
ENV CUBLAS_PATH
|
||||
${CUDA_TOOLKIT_ROOT_DIR}
|
||||
PATH_SUFFIXES
|
||||
lib64
|
||||
lib/x64
|
||||
lib
|
||||
)
|
||||
|
||||
if(_CUBLASLT_LIBRARY)
|
||||
if(_CUBLASLT_LIBRARY AND NOT TARGET cublasLt)
|
||||
|
||||
if(WIN32)
|
||||
add_library(cublasLt STATIC IMPORTED)
|
||||
add_library(cublasLt STATIC IMPORTED GLOBAL)
|
||||
else()
|
||||
add_library(cublasLt SHARED IMPORTED)
|
||||
add_library(cublasLt SHARED IMPORTED GLOBAL)
|
||||
endif()
|
||||
|
||||
set_property(
|
||||
TARGET cublasLt
|
||||
PROPERTY IMPORTED_LOCATION
|
||||
${_CUBLASLT_LIBRARY})
|
||||
|
||||
target_link_libraries(
|
||||
cublas
|
||||
INTERFACE
|
||||
cublasLt)
|
||||
|
||||
add_library(nvidia::cublasLt ALIAS cublasLt)
|
||||
|
||||
target_link_libraries(cublas INTERFACE cublasLt)
|
||||
|
||||
endif()
|
||||
|
||||
|
||||
107
cuDNN.cmake
Normal file
107
cuDNN.cmake
Normal file
@ -0,0 +1,107 @@
|
||||
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
if(DEFINED CUDNN_ENABLED)
|
||||
set(CUTLASS_ENABLE_CUDNN ${CUDNN_ENABLED} CACHE BOOL "Enable CUTLASS to build with cuDNN library.")
|
||||
endif()
|
||||
|
||||
if(DEFINED CUTLASS_ENABLE_CUDNN AND NOT CUTLASS_ENABLE_CUDNN)
|
||||
return()
|
||||
endif()
|
||||
|
||||
message(STATUS "Configuring cuDNN ...")
|
||||
|
||||
find_path(
|
||||
_CUDNN_INCLUDE_DIR cudnn.h
|
||||
PATHS
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/include
|
||||
$ENV{CUDNN_PATH}/include
|
||||
$ENV{CUDA_PATH}/include
|
||||
${CUDNN_PATH}/include
|
||||
/usr/include)
|
||||
|
||||
find_library(
|
||||
_CUDNN_LIBRARY cudnn
|
||||
HINTS
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib64
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib/x64
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib
|
||||
$ENV{CUDNN_PATH}/lib64
|
||||
$ENV{CUDNN_PATH}/lib/x64
|
||||
$ENV{CUDNN_PATH}/lib
|
||||
$ENV{CUDA_PATH}/lib64
|
||||
$ENV{CUDA_PATH}/lib/x64
|
||||
$ENV{CUDA_PATH}/lib
|
||||
${CUDNN_PATH}/lib64
|
||||
${CUDNN_PATH}/lib/x64
|
||||
${CUDNN_PATH}/lib
|
||||
/usr/lib/x86_64-linux-gnu
|
||||
/usr/lib)
|
||||
|
||||
if(_CUDNN_INCLUDE_DIR AND _CUDNN_LIBRARY)
|
||||
|
||||
message(STATUS "cuDNN: ${_CUDNN_LIBRARY}")
|
||||
message(STATUS "cuDNN: ${_CUDNN_INCLUDE_DIR}")
|
||||
|
||||
set(CUDNN_FOUND ON CACHE INTERNAL "cuDNN Library Found")
|
||||
|
||||
else()
|
||||
|
||||
message(STATUS "cuDNN not found.")
|
||||
set(CUDNN_FOUND OFF CACHE INTERNAL "cuDNN Library Found")
|
||||
|
||||
endif()
|
||||
|
||||
set(CUTLASS_ENABLE_CUDNN ${CUDNN_FOUND} CACHE BOOL "Enable CUTLASS to build with cuDNN library.")
|
||||
|
||||
if (CUTLASS_ENABLE_CUDNN AND NOT TARGET cudnn)
|
||||
|
||||
set(CUDNN_INCLUDE_DIR ${_CUDNN_INCLUDE_DIR})
|
||||
set(CUDNN_LIBRARY ${_CUDNN_LIBRARY})
|
||||
|
||||
if(WIN32)
|
||||
add_library(cudnn STATIC IMPORTED GLOBAL)
|
||||
else()
|
||||
add_library(cudnn SHARED IMPORTED GLOBAL)
|
||||
endif()
|
||||
|
||||
add_library(nvidia::cudnn ALIAS cudnn)
|
||||
|
||||
set_property(
|
||||
TARGET cudnn
|
||||
PROPERTY IMPORTED_LOCATION
|
||||
${CUDNN_LIBRARY})
|
||||
|
||||
target_include_directories(
|
||||
cudnn
|
||||
INTERFACE
|
||||
$<INSTALL_INTERFACE:include>
|
||||
$<BUILD_INTERFACE:${CUDNN_INCLUDE_DIR}>)
|
||||
|
||||
endif()
|
||||
|
||||
if(CUTLASS_ENABLE_CUDNN AND NOT CUDNN_FOUND)
|
||||
message(FATAL_ERROR "CUTLASS_ENABLE_CUDNN enabled but cuDNN library could not be found.")
|
||||
endif()
|
||||
|
||||
message(STATUS "Configuring cuDNN ... done.")
|
||||
@ -1,4 +1,4 @@
|
||||
# Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
@ -17,7 +17,7 @@
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -148,7 +148,6 @@ cudaError_t CutlassSgemmNN(
|
||||
/// Kernel to initialize a matrix with small integers.
|
||||
__global__ void InitializeMatrix_kernel(
|
||||
float *matrix,
|
||||
int ldm,
|
||||
int rows,
|
||||
int columns,
|
||||
int seed = 0) {
|
||||
@ -157,7 +156,7 @@ __global__ void InitializeMatrix_kernel(
|
||||
int j = threadIdx.y + blockIdx.y * blockDim.y;
|
||||
|
||||
if (i < rows && j < columns) {
|
||||
int offset = i + j * ldm;
|
||||
int offset = i + j * rows;
|
||||
|
||||
// Generate arbitrary elements.
|
||||
int const k = 16807;
|
||||
@ -169,7 +168,7 @@ __global__ void InitializeMatrix_kernel(
|
||||
}
|
||||
|
||||
/// Simple function to initialize a matrix to arbitrary small integers.
|
||||
cudaError_t InitializeMatrix(float *matrix, int ldm, int rows, int columns, int seed = 0) {
|
||||
cudaError_t InitializeMatrix(float *matrix, int rows, int columns, int seed = 0) {
|
||||
|
||||
dim3 block(16, 16);
|
||||
dim3 grid(
|
||||
@ -177,7 +176,7 @@ cudaError_t InitializeMatrix(float *matrix, int ldm, int rows, int columns, int
|
||||
(columns + block.y - 1) / block.y
|
||||
);
|
||||
|
||||
InitializeMatrix_kernel<<< grid, block >>>(matrix, ldm, rows, columns, seed);
|
||||
InitializeMatrix_kernel<<< grid, block >>>(matrix, rows, columns, seed);
|
||||
|
||||
return cudaGetLastError();
|
||||
}
|
||||
@ -185,10 +184,10 @@ cudaError_t InitializeMatrix(float *matrix, int ldm, int rows, int columns, int
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Allocates device memory for a matrix then fills with arbitrary small integers.
|
||||
cudaError_t AllocateMatrix(float **matrix, int ldm, int rows, int columns, int seed = 0) {
|
||||
cudaError_t AllocateMatrix(float **matrix, int rows, int columns, int seed = 0) {
|
||||
cudaError_t result;
|
||||
|
||||
size_t sizeof_matrix = sizeof(float) * ldm * columns;
|
||||
size_t sizeof_matrix = sizeof(float) * rows * columns;
|
||||
|
||||
// Allocate device memory.
|
||||
result = cudaMalloc(reinterpret_cast<void **>(matrix), sizeof_matrix);
|
||||
@ -209,7 +208,7 @@ cudaError_t AllocateMatrix(float **matrix, int ldm, int rows, int columns, int s
|
||||
}
|
||||
|
||||
// Initialize matrix elements to arbitrary small integers.
|
||||
result = InitializeMatrix(*matrix, ldm, rows, columns, seed);
|
||||
result = InitializeMatrix(*matrix, rows, columns, seed);
|
||||
|
||||
if (result != cudaSuccess) {
|
||||
std::cerr << "Failed to initialize matrix: "
|
||||
@ -304,20 +303,20 @@ cudaError_t TestCutlassGemm(int M, int N, int K, float alpha, float beta) {
|
||||
// Allocate matrices in GPU device memory with arbitrary seeds.
|
||||
//
|
||||
|
||||
result = AllocateMatrix(&A, lda, M, K, 0);
|
||||
result = AllocateMatrix(&A, M, K, 0);
|
||||
|
||||
if (result != cudaSuccess) {
|
||||
return result;
|
||||
}
|
||||
|
||||
result = AllocateMatrix(&B, ldb, K, N, 17);
|
||||
result = AllocateMatrix(&B, K, N, 17);
|
||||
|
||||
if (result != cudaSuccess) {
|
||||
cudaFree(A);
|
||||
return result;
|
||||
}
|
||||
|
||||
result = AllocateMatrix(&C_cutlass, ldc, M, N, 101);
|
||||
result = AllocateMatrix(&C_cutlass, M, N, 101);
|
||||
|
||||
if (result != cudaSuccess) {
|
||||
cudaFree(A);
|
||||
@ -325,7 +324,7 @@ cudaError_t TestCutlassGemm(int M, int N, int K, float alpha, float beta) {
|
||||
return result;
|
||||
}
|
||||
|
||||
result = AllocateMatrix(&C_reference, ldc, M, N, 101);
|
||||
result = AllocateMatrix(&C_reference, M, N, 101);
|
||||
|
||||
if (result != cudaSuccess) {
|
||||
cudaFree(A);
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
# Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
@ -17,7 +17,7 @@
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -119,12 +119,12 @@ cudaError_t cutlass_hgemm_nn(
|
||||
int K,
|
||||
cutlass::half_t alpha,
|
||||
cutlass::half_t const *A,
|
||||
int lda,
|
||||
cutlass::layout::ColumnMajor::Stride::Index lda,
|
||||
cutlass::half_t const *B,
|
||||
int ldb,
|
||||
cutlass::layout::ColumnMajor::Stride::Index ldb,
|
||||
cutlass::half_t beta,
|
||||
cutlass::half_t *C,
|
||||
int ldc) {
|
||||
cutlass::layout::ColumnMajor::Stride::Index ldc) {
|
||||
|
||||
// Define the GEMM operation
|
||||
using Gemm = cutlass::gemm::device::Gemm<
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
# Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
@ -17,7 +17,7 @@
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
*modification, are permitted provided that the following conditions are met:
|
||||
@ -19,7 +19,7 @@
|
||||
*INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
*DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
*OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TOR (INCLUDING
|
||||
*OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
*NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||||
*EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
@ -69,7 +69,7 @@
|
||||
template <typename Element, typename GmemIterator, typename SmemIterator>
|
||||
__global__ void kernel_dump(typename GmemIterator::Params params,
|
||||
typename GmemIterator::TensorRef ref) {
|
||||
__shared__ Element shared_storage[EXAMPLE_MATRIX_ROW * EXAMPLE_MATRIX_COL];
|
||||
extern __shared__ Element shared_storage[];
|
||||
|
||||
// Construct the global iterator and load the data to the fragments.
|
||||
int tb_thread_id = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
@ -164,8 +164,11 @@ int main() {
|
||||
dim3 grid(1, 1);
|
||||
dim3 block(32, 1, 1);
|
||||
|
||||
int smem_size =
|
||||
int(sizeof(Element) * EXAMPLE_MATRIX_ROW * EXAMPLE_MATRIX_COL);
|
||||
|
||||
kernel_dump<Element, GmemIterator, SmemIterator>
|
||||
<<<grid, block>>>(params, matrix.device_ref());
|
||||
<<<grid, block, smem_size, 0>>>(params, matrix.device_ref());
|
||||
|
||||
cudaError_t result = cudaDeviceSynchronize();
|
||||
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
# Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
@ -17,18 +17,18 @@
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_add_executable(
|
||||
set(TEST_COMMAND_00 RowMajor --extent=16,16)
|
||||
set(TEST_COMMAND_01 \"ColumnMajorInterleaved<4>\" --extent=32,8 --output-shape=16 --vectorize=4)
|
||||
|
||||
cutlass_example_add_executable(
|
||||
03_visualize_layout
|
||||
visualize_layout.cpp
|
||||
register_layout.cu
|
||||
TEST_COMMAND_OPTIONS
|
||||
TEST_COMMAND_00
|
||||
TEST_COMMAND_01
|
||||
)
|
||||
|
||||
target_link_libraries(
|
||||
03_visualize_layout
|
||||
PRIVATE
|
||||
CUTLASS
|
||||
cutlass_tools_util_includes
|
||||
)
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -34,6 +34,8 @@
|
||||
#include "cutlass/layout/pitch_linear.h"
|
||||
#include "cutlass/layout/tensor_op_multiplicand_sm70.h"
|
||||
#include "cutlass/layout/tensor_op_multiplicand_sm75.h"
|
||||
#include "cutlass/layout/tensor_op_multiplicand_sm80.h"
|
||||
|
||||
#include "visualize_layout.h"
|
||||
#include "register_layout.h"
|
||||
|
||||
@ -59,18 +61,40 @@ void RegisterLayouts(std::map<std::string, std::unique_ptr<VisualizeLayoutBase>
|
||||
// Integer matrix multiply.int4 8832 TN kblock128
|
||||
{"TensorOpMultiplicand<4,128>",
|
||||
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<4, 128>>},
|
||||
// Integer matrix multiply.int4 16864 TN kblock256
|
||||
{"TensorOpMultiplicand<4,256>",
|
||||
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<4, 256>>},
|
||||
// Integer matrix multiply 8816 Interleaved-32
|
||||
{"TensorOpMultiplicand<8,32>",
|
||||
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<8, 32>>},
|
||||
// Integer matrix multiply 8816 TN kblock64
|
||||
{"TensorOpMultiplicand<8,64>",
|
||||
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<8, 64>>},
|
||||
{"TensorOpMultiplicand<8,128>",
|
||||
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<8, 128>>},
|
||||
// Matrix Multiply 1688 TN kblock32
|
||||
{"TensorOpMultiplicand<16,32>",
|
||||
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<16, 32>>},
|
||||
// Matrix multiply 1688 NT
|
||||
{"TensorOpMultiplicand<16,64>",
|
||||
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<16, 64>>},
|
||||
// Matrix multiply 1688.TF32 TN kblock16
|
||||
{"TensorOpMultiplicand<32,16>",
|
||||
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<32, 16>>},
|
||||
// Matrix multiply 1688.TF32 TN kblock32
|
||||
{"TensorOpMultiplicand<32,32>",
|
||||
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<32, 32>>},
|
||||
// Matrix multiply 1688 NT
|
||||
{"TensorOpMultiplicandCongruous<32,32>",
|
||||
new VisualizeLayout<
|
||||
cutlass::layout::TensorOpMultiplicandCongruous<32, 32>>},
|
||||
// Matrix multiply 884 NT
|
||||
{"TensorOpMultiplicandCongruous<64,16>",
|
||||
new VisualizeLayout<
|
||||
cutlass::layout::TensorOpMultiplicandCongruous<64, 16>>},
|
||||
// Matrix multiply 884 TN
|
||||
{"TensorOpMultiplicand64bCrosswise",
|
||||
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand64bCrosswise>},
|
||||
{"TensorOpMultiplicandCongruous<128,4>",
|
||||
new VisualizeLayout<
|
||||
cutlass::layout::TensorOpMultiplicandCongruous<128, 4>>},
|
||||
@ -82,7 +106,7 @@ void RegisterLayouts(std::map<std::string, std::unique_ptr<VisualizeLayoutBase>
|
||||
cutlass::layout::VoltaTensorOpMultiplicandCongruous<16>>},
|
||||
{"VoltaTensorOpMultiplicandCrosswise<16,32>",
|
||||
new VisualizeLayout<
|
||||
cutlass::layout::VoltaTensorOpMultiplicandCrosswise<16, 32>>},
|
||||
cutlass::layout::VoltaTensorOpMultiplicandCrosswise<16, 32>>}
|
||||
};
|
||||
|
||||
for (auto layout : layout_pairs) {
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -32,6 +32,8 @@
|
||||
#include <iomanip>
|
||||
#include <memory>
|
||||
|
||||
#include <cutlass/cutlass.h>
|
||||
|
||||
#include "options.h"
|
||||
#include "register_layout.h"
|
||||
|
||||
@ -65,14 +67,26 @@ void print_usage(std::ostream &out) {
|
||||
"--extent=64,64 --vectorize=32 --output-shape=256,4\n"
|
||||
<< "$ 03_visualize_layout \"TensorOpMultiplicand<4,128>\" "
|
||||
"--extent=128,32 --vectorize=32 --output-shape=256,4\n"
|
||||
<< "$ 03_visualize_layout \"TensorOpMultiplicand<4,256>\" "
|
||||
"--extent=256,16 --vectorize=32 --output-shape=256,4\n"
|
||||
<< "$ 03_visualize_layout \"TensorOpMultiplicand<8,32>\" "
|
||||
"--extent=32,64 --vectorize=16 --output-shape=128,4\n"
|
||||
<< "$ 03_visualize_layout \"TensorOpMultiplicand<8,64>\" "
|
||||
"--extent=64,32 --vectorize=16 --output-shape=128,4\n"
|
||||
<< "$ 03_visualize_layout \"TensorOpMultiplicand<8,128>\" "
|
||||
"--extent=128,16 --vectorize=16 --output-shape=128,4\n"
|
||||
<< "$ 03_visualize_layout \"TensorOpMultiplicand<16,32>\" "
|
||||
"--extent=32,32 --vectorize=8 --output-shape=64,4\n"
|
||||
<< "$ 03_visualize_layout \"TensorOpMultiplicand<16,64>\" "
|
||||
"--extent=64,16 --vectorize=8 --output-shape=64,4\n"
|
||||
<< "$ 03_visualize_layout \"TensorOpMultiplicand<32,16>\" "
|
||||
"--extent=16,32 --vectorize=4 --output-shape=32,4\n"
|
||||
<< "$ 03_visualize_layout \"TensorOpMultiplicand<32,32>\" "
|
||||
"--extent=32,16 --vectorize=4 --output-shape=32,4\n"
|
||||
<< "$ 03_visualize_layout \"TensorOpMultiplicandCongruous<32,32>\" "
|
||||
"--extent=32,16 --vectorize=4 --output-shape=32,4\n"
|
||||
<< "$ 03_visualize_layout \"TensorOpMultiplicandCongruous<64, 16>\" "
|
||||
"--extent=16,16 --vectorize=2 --output-shape=16,4\n"
|
||||
<< "$ 03_visualize_layout \"VoltaTensorOpMultiplicandCrosswise<16,32>\" "
|
||||
"--extent=32,64 --vectorize=4 --output-shape=64,4\n"
|
||||
<< "$ 03_visualize_layout \"VotlaTensorOpMultiplicandCongruous<16>\" "
|
||||
@ -121,6 +135,8 @@ int main(int argc, char const *arg[]) {
|
||||
|
||||
layout_it->second->print_csv(std::cout);
|
||||
|
||||
cudaFree(0); // Ensure CUDA is available.
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
# Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
@ -17,7 +17,7 @@
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
# Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
@ -17,7 +17,7 @@
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
# Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
@ -17,7 +17,7 @@
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -39,7 +39,7 @@ inner product (1/16th of output), they accumulate to single output matrix.
|
||||
|
||||
Writing a single high performance matrix multiplication kernel is hard but do-able. Whereas writing
|
||||
high performance kernels at scale which works for multiple problem sizes with good abstractions is
|
||||
really hard. CUTLASS solves this problem by providing simplified abstractions (knobs) to compose
|
||||
really hard. CUTLASS solves this problem by providing simplified abstractions to compose
|
||||
multiple sections of gemm kernel. When used properly, the kernels can hit peak performance of GPU
|
||||
easily.
|
||||
|
||||
@ -144,7 +144,7 @@ using ShapeMMAWarp = cutlass::gemm::GemmShape<64, 64, 32>; // <- warp tile M =
|
||||
using ShapeMMAOp = cutlass::gemm::GemmShape<8, 8, 4>; // <- MMA Op tile M = 8, N = 8, K = 4
|
||||
|
||||
// This code section describes how threadblocks are scheduled on GPU
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle; // <- ??
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>; // <- ??
|
||||
|
||||
// This code section describes ?
|
||||
using EpilogueOp = cutlass::epilogue::thread::LinearCombination<
|
||||
@ -172,15 +172,28 @@ using Gemm = cutlass::gemm::device::GemmSplitKParallel<ElementInputA,
|
||||
ShapeMMAOp,
|
||||
EpilogueOp>;
|
||||
|
||||
int main() {
|
||||
int run() {
|
||||
|
||||
cudaDeviceProp props;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&props, 0));
|
||||
if (!(props.major >= 7)) {
|
||||
std::cerr << "Volta Tensor Ops must be run on a machine with compute capability at least 70."
|
||||
|
||||
cudaError_t error = cudaGetDeviceProperties(&props, 0);
|
||||
if (error != cudaSuccess) {
|
||||
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (props.major != 7) {
|
||||
std::cerr << "Volta Tensor Ops must be run on a machine with compute capability of 70, 72, or 75."
|
||||
<< std::endl;
|
||||
|
||||
// Return 0 so tests pass if run on unsupported architectures or CUDA Toolkits.
|
||||
return 0;
|
||||
}
|
||||
|
||||
//
|
||||
// Define problem size
|
||||
//
|
||||
|
||||
const int length_m = 5120;
|
||||
const int length_n = 4096;
|
||||
const int length_k = 4096;
|
||||
@ -192,7 +205,7 @@ int main() {
|
||||
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(
|
||||
problem_size.mk()); // <- Create matrix A with dimensions M x K
|
||||
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(
|
||||
problem_size.nk()); // <- Create matrix B with dimensions N x K
|
||||
problem_size.kn()); // <- Create matrix B with dimensions K x N
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c(
|
||||
problem_size.mn()); // <- Create matrix C with dimensions M x N
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_d(
|
||||
@ -295,11 +308,30 @@ int main() {
|
||||
tensor_ref_d.sync_host();
|
||||
|
||||
// Check if output from CUTLASS kernel and reference kernel are equal or not
|
||||
std::cout << (cutlass::reference::host::TensorEquals(tensor_d.host_view(),
|
||||
tensor_ref_d.host_view())
|
||||
? "Passed"
|
||||
: "Failed")
|
||||
<< std::endl;
|
||||
bool passed = cutlass::reference::host::TensorEquals(
|
||||
tensor_d.host_view(),
|
||||
tensor_ref_d.host_view());
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
std::cout << (passed ? "Passed" : "Failed") << std::endl;
|
||||
|
||||
return (passed ? 0 : -1);
|
||||
}
|
||||
|
||||
int main() {
|
||||
|
||||
//
|
||||
// Volta Tensor Core operations exposed with mma.sync are first available in CUDA 10.1.
|
||||
//
|
||||
// CUTLASS must be compiled with CUDA 10.1 Toolkit to run these examples.
|
||||
//
|
||||
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 1))) {
|
||||
std::cerr << "Volta Tensor Core operations must be compiled with CUDA 10.1 Toolkit or later." << std::endl;
|
||||
|
||||
// Returning zero, so this test passes when built with older CUDA Toolkits. Its action are no-op.
|
||||
return 0;
|
||||
}
|
||||
else {
|
||||
return run();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
# Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
@ -17,7 +17,7 @@
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -29,7 +29,7 @@ provided by CUTLASS using tensor cores; which we run on a NVIDIA Volta GPU.
|
||||
|
||||
Writing a single high performance matrix multiplication kernel is hard but do-able. Whereas writing
|
||||
high performance kernels at scale which works for multiple problem sizes with good abstractions is
|
||||
really hard. CUTLASS solves this problem by providing simplified abstractions (knobs) to compose
|
||||
really hard. CUTLASS solves this problem by providing simplified abstractions to compose
|
||||
multiple sections of gemm kernel. When used properly, the kernels can hit peak performance of GPU
|
||||
easily.
|
||||
|
||||
@ -67,7 +67,7 @@ beta * C).
|
||||
Now that we setup the properties of data, we have to setup properties of computation.
|
||||
|
||||
Second, we create template variables of tile sizes for thread-block, warp and mma-op to 128x128x32,
|
||||
64x64x4, 8x8x4 (MxNxK) respectively. When passed to instantiate CUTLASS GEMM kernel, it internally
|
||||
64x64x32, 8x8x4 (MxNxK) respectively. When passed to instantiate CUTLASS GEMM kernel, it internally
|
||||
deduce the amount of threads needed per thread-block, amount of shared memory, storing data in
|
||||
bank-conflict free manner, and ton of other variables required to compose, intialize and launch a
|
||||
high performance GEMM kernel. This is the beauty of CUTLASS, it relieves developer from
|
||||
@ -156,7 +156,7 @@ using ShapeMMAWarp = cutlass::gemm::GemmShape<64, 64, 32>; // <- warp tile M =
|
||||
using ShapeMMAOp = cutlass::gemm::GemmShape<8, 8, 4>; // <- MMA Op tile M = 8, N = 8, K = 4
|
||||
|
||||
// This code section describes how threadblocks are scheduled on GPU
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle; // <- ??
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>; // <- ??
|
||||
|
||||
// This code section describes ?
|
||||
using EpilogueOp = cutlass::epilogue::thread::LinearCombination<
|
||||
@ -188,13 +188,21 @@ using Gemm = cutlass::gemm::device::Gemm<ElementInputA,
|
||||
SwizzleThreadBlock,
|
||||
NumStages>;
|
||||
|
||||
int main() {
|
||||
cudaDeviceProp props;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&props, 0));
|
||||
int run() {
|
||||
|
||||
if (!(props.major >= 7)) {
|
||||
std::cerr << "Volta Tensor Ops must be run on a machine with compute capability at least 70."
|
||||
cudaDeviceProp props;
|
||||
|
||||
cudaError_t error = cudaGetDeviceProperties(&props, 0);
|
||||
if (error != cudaSuccess) {
|
||||
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (props.major != 7) {
|
||||
std::cerr << "Volta Tensor Ops must be run on a machine with compute capability of 70, 72, or 75."
|
||||
<< std::endl;
|
||||
|
||||
// Return 0 so tests are considered passing if run on unsupported architectures or CUDA Toolkits.
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -209,7 +217,7 @@ int main() {
|
||||
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(
|
||||
problem_size.mk()); // <- Create matrix A with dimensions M x K
|
||||
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(
|
||||
problem_size.nk()); // <- Create matrix B with dimensions N x K
|
||||
problem_size.kn()); // <- Create matrix B with dimensions K x N
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c(
|
||||
problem_size.mn()); // <- Create matrix C with dimensions M x N
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_d(
|
||||
@ -276,8 +284,12 @@ int main() {
|
||||
// Instantiate CUTLASS kernel depending on templates
|
||||
Gemm gemm_op;
|
||||
|
||||
// Check the problem size is supported or not
|
||||
cutlass::Status status = gemm_op.can_implement(arguments);
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Initialize CUTLASS kernel with arguments and workspace pointer
|
||||
cutlass::Status status = gemm_op.initialize(arguments, workspace.get());
|
||||
status = gemm_op.initialize(arguments, workspace.get());
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Launch initialized CUTLASS kernel
|
||||
@ -312,12 +324,28 @@ int main() {
|
||||
tensor_ref_d.sync_host();
|
||||
|
||||
// Check if output from CUTLASS kernel and reference kernel are equal or not
|
||||
std::cout << (cutlass::reference::host::TensorEquals(tensor_d.host_view(),
|
||||
tensor_ref_d.host_view())
|
||||
? "Passed"
|
||||
: "Failed")
|
||||
<< std::endl;
|
||||
bool passed = cutlass::reference::host::TensorEquals(
|
||||
tensor_d.host_view(),
|
||||
tensor_ref_d.host_view());
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
return 0;
|
||||
std::cout << (passed ? "Passed" : "Failed") << std::endl;
|
||||
|
||||
return (passed ? 0 : -1);
|
||||
}
|
||||
|
||||
int main() {
|
||||
|
||||
// Volta Tensor Core operations exposed with mma.sync are first available in CUDA 10.1.
|
||||
//
|
||||
// CUTLASS must be compiled with CUDA 10.1 Toolkit to run these examples.
|
||||
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 1))) {
|
||||
std::cerr << "Volta Tensor Core operations must be compiled with CUDA 10.1 Toolkit or later." << std::endl;
|
||||
|
||||
// Returning zero when built on older Toolkits so tests pass. The actions of this SDK example are no-op.
|
||||
return 0;
|
||||
}
|
||||
else {
|
||||
return run();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
# Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
@ -17,7 +17,7 @@
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -29,7 +29,7 @@ provided by CUTLASS using tensor cores; which we run on a NVIDIA Turing GPU.
|
||||
|
||||
Writing a single high performance matrix multiplication kernel is hard but do-able. Whereas writing
|
||||
high performance kernels at scale which works for multiple problem sizes with good abstractions is
|
||||
really hard. CUTLASS solves this problem by providing simplified abstractions (knobs) to compose
|
||||
really hard. CUTLASS solves this problem by providing simplified abstractions to compose
|
||||
multiple sections of gemm kernel. When used properly, the kernels can hit peak performance of GPU
|
||||
easily.
|
||||
|
||||
@ -150,12 +150,12 @@ using SmArch = cutlass::arch::Sm75;
|
||||
using ShapeMMAThreadBlock =
|
||||
cutlass::gemm::GemmShape<128, 256, 64>; // <- threadblock tile M = 128, N = 256, K = 64
|
||||
// This code section describes tile size a warp will compute
|
||||
using ShapeMMAWarp = cutlass::gemm::GemmShape<64, 64, 64>; // <- warp tile M = 64, N = 64, K = 16
|
||||
using ShapeMMAWarp = cutlass::gemm::GemmShape<64, 64, 64>; // <- warp tile M = 64, N = 64, K = 64
|
||||
// This code section describes the size of MMA op
|
||||
using ShapeMMAOp = cutlass::gemm::GemmShape<8, 8, 16>; // <- MMA Op tile M = 8, N = 8, K = 16
|
||||
|
||||
// This code section describes how threadblocks are scheduled on GPU
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle; // <- ??
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>; // <- ??
|
||||
|
||||
// This code section describes the epilogue part of the kernel
|
||||
using EpilogueOp = cutlass::epilogue::thread::LinearCombination<
|
||||
@ -186,15 +186,7 @@ using Gemm = cutlass::gemm::device::Gemm<ElementInputA,
|
||||
SwizzleThreadBlock,
|
||||
NumStages>;
|
||||
|
||||
int main() {
|
||||
cudaDeviceProp props;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&props, 0));
|
||||
|
||||
if (!(props.major >= 7 && props.minor >= 5)) {
|
||||
std::cerr << "Turing Tensor Ops must be run on a machine with compute capability at least 75."
|
||||
<< std::endl;
|
||||
return 0;
|
||||
}
|
||||
int run() {
|
||||
|
||||
const int length_m = 5120;
|
||||
const int length_n = 4096;
|
||||
@ -207,7 +199,7 @@ int main() {
|
||||
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(
|
||||
problem_size.mk()); // <- Create matrix A with dimensions M x K
|
||||
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(
|
||||
problem_size.nk()); // <- Create matrix B with dimensions N x K
|
||||
problem_size.kn()); // <- Create matrix B with dimensions K x N
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c(
|
||||
problem_size.mn()); // <- Create matrix C with dimensions M x N
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_d(
|
||||
@ -274,8 +266,12 @@ int main() {
|
||||
// Instantiate CUTLASS kernel depending on templates
|
||||
Gemm gemm_op;
|
||||
|
||||
// Check the problem size is supported or not
|
||||
cutlass::Status status = gemm_op.can_implement(arguments);
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Initialize CUTLASS kernel with arguments and workspace pointer
|
||||
cutlass::Status status = gemm_op.initialize(arguments, workspace.get());
|
||||
status = gemm_op.initialize(arguments, workspace.get());
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Launch initialized CUTLASS kernel
|
||||
@ -310,12 +306,47 @@ int main() {
|
||||
tensor_ref_d.sync_host();
|
||||
|
||||
// Check if output from CUTLASS kernel and reference kernel are equal or not
|
||||
std::cout << (cutlass::reference::host::TensorEquals(tensor_d.host_view(),
|
||||
tensor_ref_d.host_view())
|
||||
? "Passed"
|
||||
: "Failed")
|
||||
<< std::endl;
|
||||
bool passed = cutlass::reference::host::TensorEquals(
|
||||
tensor_d.host_view(),
|
||||
tensor_ref_d.host_view());
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
return 0;
|
||||
std::cout << (passed ? "Passed" : "Failed") << std::endl;
|
||||
|
||||
return (passed ? 0 : -1);
|
||||
}
|
||||
|
||||
int main() {
|
||||
bool notSupported = false;
|
||||
|
||||
// Turing Tensor Core operations exposed with mma.sync and ldmatrix are first available
|
||||
// in CUDA 10.2.
|
||||
//
|
||||
// CUTLASS must be compiled with CUDA 10.2 Toolkit to run these examples.
|
||||
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2))) {
|
||||
std::cerr << "Turing Tensor Core operations must be compiled with CUDA 10.2 Toolkit or later." << std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
cudaDeviceProp props;
|
||||
|
||||
cudaError_t error = cudaGetDeviceProperties(&props, 0);
|
||||
if (error != cudaSuccess) {
|
||||
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!((props.major * 10 + props.minor) >= 75)) {
|
||||
std::cerr << "Turing Tensor Core operations must be run on a machine with compute capability at least 75."
|
||||
<< std::endl;
|
||||
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
if (notSupported) {
|
||||
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
|
||||
return 0;
|
||||
}
|
||||
|
||||
return run();
|
||||
}
|
||||
|
||||
|
||||
28
examples/09_turing_tensorop_conv2dfprop/CMakeLists.txt
Normal file
28
examples/09_turing_tensorop_conv2dfprop/CMakeLists.txt
Normal file
@ -0,0 +1,28 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
cutlass_example_add_executable(
|
||||
09_turing_tensorop_conv2dfprop
|
||||
turing_tensorop_conv2dfprop.cu
|
||||
)
|
||||
|
||||
@ -0,0 +1,764 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
/**
|
||||
|
||||
|
||||
This example shows how to run convolution kernels using functions and data structures
|
||||
provided by CUTLASS using tensor cores; which we run on a NVIDIA Turing GPU.
|
||||
|
||||
Writing a single high performance convolution kernel is hard but do-able. Whereas writing
|
||||
high performance kernels at scale which works for multiple problem sizes with good abstractions is
|
||||
really hard. CUTLASS solves this problem by providing simplified abstractions to compose
|
||||
multiple sections of implicit gemm kernel. When used properly, the kernels can hit peak performance
|
||||
of GPU easily.
|
||||
|
||||
CUTLASS divides a kernel into hierarchical composable sections. Which means, at each thread, warp
|
||||
and thread-block level, they compute on their own tile-size with higher level of tile sizes being
|
||||
composed from lower level ones. Multiple thread-tiles (tile size each thread computes) can be used
|
||||
to form warp-tiles (tile size each warp computes) and multiple warp tiles can be used to compute
|
||||
threadblock-tile (tile size computed by a threadblock).
|
||||
|
||||
In thie example, we split variable initialization into
|
||||
1. Setting up data properties : describes how tensors are laid out in the memory and how the kernel
|
||||
can view them (logical to physical mapping)
|
||||
2. Setting up computation properties : describes how the above set tensors will be used to compute
|
||||
output of convolution.
|
||||
|
||||
First, we setup the data types of the input tensor A, weights' tensor B and output tensor C along
|
||||
with alpha, beta as the equation for convolution is C = alpha * Conv(A, B) + beta * C. In CUTLASS,
|
||||
the kernels first compute Conv(A, B) and leave the rest of the computation to end of the kernel as
|
||||
alpha * X + beta * C is a simple element-wise operation on X (Conv(A, B)) and C. We call this as
|
||||
epilogue of kernel. Hence, we setup data types for alpha and beta to be equal to
|
||||
ElementComputeEpilogue = float. We want to use MMA instructions on Turing and they support 4-bit
|
||||
signed integer. But int4b_t is not fully supported by Nvidia software stack, so CUTLASS introduces
|
||||
cutlass::int4b_t. We use the data type for elements in input tensor A and B as cutlass::int4b_t. We
|
||||
convey this to CUTLASS kernel by initializing template variables ElementAccumulator (int32_t),
|
||||
ElementComputeEpilogue (float), ElementInputA (cutlass::int4b_t), ElementInputB (cutlass::int4b_t),
|
||||
ElementOutput (int32_t). Communicating just the data type is not enough. As the data is laid out
|
||||
linearly in memory, we have to convey the layout of tensors. We do that by initializing template
|
||||
variables LayoutInputA, LayoutInputB and LayoutOutput to TensorNHWC cutlass variable. Next, we setup
|
||||
rules to comptue alpha * X + beta * C which is called epilogue of the kernel. We initialize template
|
||||
variable EpilogueOp, which takes the data type of output ElementOutput (int32_t), the number of
|
||||
elements per vector memory access (32), data type of accumulator (int32_t) and data type of
|
||||
computation of linear combination (alpha * X + beta * C).
|
||||
|
||||
Now that we setup the properties of data, we have to setup properties of computation.
|
||||
|
||||
Second, we create template variables of tile sizes for thread-block, warp and mma-op to 128x128x128,
|
||||
64x64x128, 8x8x32 (MxNxK) respectively. When passed to instantiate CUTLASS Implicit GEMM kernel, it
|
||||
internally deduces the amount of threads needed per thread-block, amount of shared memory, storing
|
||||
data in bank-conflict free manner, and ton of other variables required to compose, intialize and
|
||||
launch a high performance Implicit GEMM kernel. This is the beauty of CUTLASS, it relieves developer
|
||||
from understanding and coding complicated hardware optimizations which can easily go wrong.
|
||||
|
||||
CUTLASS also supports multiple MMA pipelines in a threadblock. What are MMA pipelines? MMA pipelines
|
||||
constitute the whole process of loading input data from global memory to shared memory, loading data
|
||||
from shared memory to registers, doing matrix multiplication, store to global memory. The below flow
|
||||
sequence shows a typical mma pipeline.
|
||||
|
||||
tensor in global memory -> registers -> tile in shared memory -> registers -> mma -> registers ->
|
||||
output to global memory
|
||||
|
||||
The problem with single pipeline is, each stage is synchronous which means, each stage has to wait
|
||||
until the previous finished executing. There are stages in the pipeline which do not have fixed
|
||||
latency, for example, the loads from global memory and shared memory. Therefore, we can add one more
|
||||
pipeline with a phase shift in mma kernel to hide latency from global and shared memory loads.
|
||||
Finally, the pipeline in a kernel looks like
|
||||
|
||||
(1) tensor in global memory -> (2) registers -> (3) tile in shared memory -> (4) registers -> (5)
|
||||
mma -> (6) registers -> (7) output to global memory (1) <null> -> (2) <null> -> (3) tensor in global
|
||||
memory -> (4) registers -> (5) tile in shared memory -> (6) registers -> (7) mma -> (8) registers ->
|
||||
(9) output to global memory
|
||||
|
||||
This way, you can hide the second global memory load latency by doing computation on already loaded
|
||||
input data.
|
||||
|
||||
There are few more template variables initialized such as, which threadblock tile of output matrix
|
||||
is done which threadblock launched on an SM, CUDA SM architecture of GPU you want to run on.
|
||||
|
||||
These are all put together to create a template variable which describes CUTLASS Implicit GEMM
|
||||
kernel using cutlass::conv::device::ImplicitGemm template.
|
||||
|
||||
The next step is to intialize physical data, instantiate and initialize CUTLASS kernel and run it.
|
||||
We use CUTLASS utilities to initialize, fill, compare tensors as they are simple and doesn't come
|
||||
in the way of learning CUTLASS.
|
||||
|
||||
Once all the tensors are initialized and filled with data, create arguments tuple to launch CUTLASS
|
||||
kernel which takes problem size (N = 1, H = 64, W = 64, C = 128), filter size (K = 64,
|
||||
R = 3, S = 3, C = 128 ), padding, strides, dilation, tensors, alpha, beta and the
|
||||
important one, split k-dimension factor. Along with that, we query CUTLASS if any scratch-space
|
||||
memory required by the kernel we instantiated. If yes, we create it and pass it along with other
|
||||
arguments created to intialize CUTLASS kernel then, the kernel is launched.
|
||||
|
||||
In this example, we later on launch a reference convolution kernel (from CUTLASS utilities) to
|
||||
compare if the output from CUTLASS kernel is same as the reference implicit GEMM kernel.
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/device/gemm.h"
|
||||
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
|
||||
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
||||
|
||||
#include "cutlass/util/command_line.h"
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "cutlass/util/reference/device/gemm.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/reference/host/convolution.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
|
||||
#include "helper.h"
|
||||
|
||||
// The code section below describes datatype for input, output tensors and computation between
|
||||
// elements
|
||||
using ElementAccumulator = int32_t; // Data type of accumulator
|
||||
using ElementComputeEpilogue = float; // Data type of epilogue computation (alpha, beta)
|
||||
using ElementInputA = cutlass::int4b_t; // Data type of elements in input tensor
|
||||
using ElementInputB = cutlass::int4b_t; // Data type of elements in input tensor
|
||||
using ElementOutput = cutlass::int4b_t; // Data type of elements in output tensor
|
||||
|
||||
using LayoutInputA = cutlass::layout::TensorNHWC;
|
||||
using LayoutInputB = cutlass::layout::TensorNHWC;
|
||||
using LayoutOutput = cutlass::layout::TensorNHWC;
|
||||
|
||||
// This code section describes whether you want to use tensor cores or regular SIMT cores on GPU SM
|
||||
using MMAOp = cutlass::arch::OpClassTensorOp;
|
||||
|
||||
// This code section describes CUDA SM architecture number
|
||||
using SmArch = cutlass::arch::Sm75;
|
||||
|
||||
// This code section describes the tile size a thread block will compute
|
||||
using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 128>; // Threadblock tile shape
|
||||
|
||||
// This code section describes tile size a warp will compute
|
||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; // Warp tile shape
|
||||
|
||||
// This code section describes the size of MMA op
|
||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; // TensorCore instruction shape
|
||||
|
||||
// This code section describes how threadblocks are scheduled on GPU
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>;
|
||||
|
||||
// Number of pipelines you want to use
|
||||
constexpr int NumStages = 2;
|
||||
|
||||
// This code section describes the epilogue part of the kernel, we use default value
|
||||
using EpilogueOp = cutlass::epilogue::thread::LinearCombinationClamp<
|
||||
ElementOutput, // Data type of output matrix.
|
||||
8, // The number of elements per vectorized.
|
||||
// memory access. This becomes the vector width of
|
||||
// math instructions in the epilogue too.
|
||||
ElementAccumulator, // Data type of accumulator
|
||||
ElementComputeEpilogue>; // Data type for alpha/beta in linear combination
|
||||
|
||||
|
||||
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementInputA, LayoutInputA,
|
||||
ElementInputB, LayoutInputB,
|
||||
ElementOutput, LayoutOutput,
|
||||
ElementAccumulator,
|
||||
MMAOp,
|
||||
SmArch,
|
||||
ThreadblockShape,
|
||||
WarpShape,
|
||||
InstructionShape,
|
||||
EpilogueOp,
|
||||
SwizzleThreadBlock,
|
||||
NumStages,
|
||||
cutlass::arch::OpMultiplyAddSaturate,
|
||||
cutlass::conv::IteratorAlgorithm::kAnalytic
|
||||
>::Kernel;
|
||||
|
||||
using ImplicitGemm = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Command line options parsing
|
||||
struct Options {
|
||||
|
||||
bool help;
|
||||
cutlass::Tensor4DCoord input_size;
|
||||
cutlass::Tensor4DCoord filter_size;
|
||||
cutlass::Tensor4DCoord padding;
|
||||
cutlass::MatrixCoord conv_stride;
|
||||
cutlass::MatrixCoord dilation;
|
||||
bool reference_check;
|
||||
bool measure_performance;
|
||||
int iterations;
|
||||
bool save_workspace;
|
||||
ElementComputeEpilogue alpha;
|
||||
ElementComputeEpilogue beta;
|
||||
bool benchmark;
|
||||
std::string tag;
|
||||
|
||||
Options():
|
||||
help(false),
|
||||
input_size(1, 32, 32, 32),
|
||||
filter_size(32, 3, 3, 32),
|
||||
padding(1, 1, 1, 1),
|
||||
conv_stride(1, 1),
|
||||
dilation(1, 1),
|
||||
reference_check(false),
|
||||
measure_performance(true),
|
||||
iterations(20),
|
||||
save_workspace(false),
|
||||
alpha(1),
|
||||
beta(0),
|
||||
benchmark(false) { }
|
||||
|
||||
// Verify the problem size is compatible with the CUTLASS Convolution implementation.
|
||||
bool valid() {
|
||||
|
||||
//
|
||||
// CUTLASS attempts to load 128b vectors of int4b_t elements. Consequently,
|
||||
// all pointers, strides, and tensor extents must be divisible by 32 elements.
|
||||
//
|
||||
int const kAlignment = 32;
|
||||
|
||||
if ((input_size.c() % kAlignment) ||
|
||||
(filter_size.n() % kAlignment)) {
|
||||
|
||||
// misaligned tensors
|
||||
return false;
|
||||
}
|
||||
|
||||
// Invalid padding
|
||||
if ((padding.h() != filter_size.h() / 2) ||
|
||||
(padding.w() != filter_size.w() / 2)) {
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Updates input and filter sizes
|
||||
void update(
|
||||
cutlass::Tensor4DCoord input_size,
|
||||
cutlass::Tensor4DCoord filter_size) {
|
||||
|
||||
this->input_size = input_size;
|
||||
this->filter_size = filter_size;
|
||||
|
||||
padding.n() = filter_size.h() / 2;
|
||||
padding.h() = filter_size.h() / 2;
|
||||
padding.w() = filter_size.w() / 2;
|
||||
padding.c() = filter_size.w() / 2;
|
||||
}
|
||||
|
||||
// Parses the command line
|
||||
void parse(int argc, char const **args) {
|
||||
cutlass::CommandLine cmd(argc, args);
|
||||
|
||||
if (cmd.check_cmd_line_flag("help")) {
|
||||
help = true;
|
||||
}
|
||||
|
||||
if (cmd.check_cmd_line_flag("ref-check")) {
|
||||
reference_check = true;
|
||||
}
|
||||
|
||||
if (cmd.check_cmd_line_flag("perf-check")) {
|
||||
measure_performance = true;
|
||||
}
|
||||
|
||||
if (cmd.check_cmd_line_flag("save-workspace")) {
|
||||
save_workspace = true;
|
||||
}
|
||||
|
||||
if (cmd.check_cmd_line_flag("benchmark")) {
|
||||
benchmark = true;
|
||||
}
|
||||
|
||||
cmd.get_cmd_line_argument("n", input_size.n());
|
||||
cmd.get_cmd_line_argument("h", input_size.h());
|
||||
cmd.get_cmd_line_argument("w", input_size.w());
|
||||
cmd.get_cmd_line_argument("c", input_size.c());
|
||||
|
||||
cmd.get_cmd_line_argument("k", filter_size.n());
|
||||
cmd.get_cmd_line_argument("r", filter_size.h());
|
||||
cmd.get_cmd_line_argument("s", filter_size.w());
|
||||
filter_size.c() = input_size.c();
|
||||
|
||||
cmd.get_cmd_line_argument("alpha", alpha);
|
||||
cmd.get_cmd_line_argument("beta", beta);
|
||||
|
||||
cmd.get_cmd_line_argument("iterations", iterations);
|
||||
cmd.get_cmd_line_argument("tag", tag);
|
||||
|
||||
if (filter_size.h() == 3 && filter_size.w() == 3) {
|
||||
padding = {1, 1, 1, 1};
|
||||
}
|
||||
else {
|
||||
filter_size.h() = 1;
|
||||
filter_size.w() = 1;
|
||||
padding = {0, 0, 0, 0};
|
||||
}
|
||||
}
|
||||
|
||||
/// Prints the usage statement.
|
||||
std::ostream & print_usage(std::ostream &out) const {
|
||||
|
||||
out << "09_turing_tensorop_conv2dfprop example\n\n"
|
||||
<< " This example uses Turing's Tensor Core operators on int4 data types to compute\n"
|
||||
<< " forward convolution on tensors of layout NHWC.\n\n"
|
||||
<< "Options:\n\n"
|
||||
<< " --help If specified, displays this usage statement.\n\n"
|
||||
<< " --n <int> Input tensor extent N\n"
|
||||
<< " --h <int> Input tensor extent H\n"
|
||||
<< " --w <int> Input tensor extent W\n"
|
||||
<< " --c <int> Input tensor extent C\n"
|
||||
<< " --k <int> Filter extent K\n"
|
||||
<< " --r <int> Filter extent R\n"
|
||||
<< " --s <int> Filter extent S\n\n"
|
||||
<< " --alpha <float> Epilogue scalar alpha\n"
|
||||
<< " --beta <float> Epilogue scalar beta\n\n"
|
||||
<< " --ref-check If set (true), reference check on the host is computed\n"
|
||||
<< " --perf-check If set (true), performance is measured.\n"
|
||||
<< " --benchmark If set (true), performance benchmarking on several layers and batch-size.\n"
|
||||
<< " --iterations <int> Number of profiling iterations to perform.\n"
|
||||
<< " --save-workspace If set, workspace is written to a text file.\n"
|
||||
<< " --tag <string> String to replicate across the first column in the results table\n";
|
||||
|
||||
out << "\n\nExamples:\n\n"
|
||||
<< "$ ./examples/09_turing_tensorop_conv2dfprop/09_turing_tensorop_conv2dfprop --n=32 --h=224 --w=224 --c=128 --k=256 --r=1 --s=1\n\n"
|
||||
<< "$ ./examples/09_turing_tensorop_conv2dfprop/09_turing_tensorop_conv2dfprop --n=1 --h=224 --w=224 --c=32 --k=32 --r=3 --s=3 --ref-check\n\n";
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
/// Computes the output tensor size (NPQK)
|
||||
cutlass::Tensor4DCoord output_size() const {
|
||||
return cutlass::Tensor4DCoord(
|
||||
input_size.n(),
|
||||
(input_size.h() + padding.n() + padding.h() - filter_size.h()) / conv_stride.row() + 1,
|
||||
(input_size.w() + padding.w() + padding.c() - filter_size.w()) / conv_stride.column() + 1,
|
||||
filter_size.n());
|
||||
}
|
||||
|
||||
/// Compute performance in GFLOP/s
|
||||
double gflops(double runtime_s) const {
|
||||
|
||||
// Number of multiply-adds = NPQK * CRS
|
||||
int64_t fmas = output_size().product() * int64_t(filter_size.h() * filter_size.w() * filter_size.c());
|
||||
|
||||
// Two flops per multiply-add
|
||||
return 2.0 * double(fmas) / double(1.0e9) / runtime_s;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
struct Result {
|
||||
double runtime_ms;
|
||||
double gflops;
|
||||
cutlass::Status status;
|
||||
cutlass::Status reference_check;
|
||||
cudaError_t error;
|
||||
|
||||
Result():
|
||||
runtime_ms(0),
|
||||
gflops(0),
|
||||
status(cutlass::Status::kSuccess),
|
||||
reference_check(cutlass::Status::kInvalid),
|
||||
error(cudaSuccess) { }
|
||||
|
||||
static std::ostream & print_header(std::ostream &out, Options const &options) {
|
||||
|
||||
if (!options.tag.empty()) {
|
||||
out << "Name,";
|
||||
}
|
||||
|
||||
out << "Layer,N,H,W,C,K,R,S,Runtime,GFLOPs";
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream & print(std::ostream &out, int idx, Options const &options) {
|
||||
|
||||
if (!options.tag.empty()) {
|
||||
out << options.tag << ",";
|
||||
}
|
||||
|
||||
out
|
||||
<< "conv_" << idx << ","
|
||||
<< options.input_size.n() << ","
|
||||
<< options.input_size.h() << ","
|
||||
<< options.input_size.w() << ","
|
||||
<< options.input_size.c() << ","
|
||||
<< options.filter_size.n() << ","
|
||||
<< options.filter_size.h() << ","
|
||||
<< options.filter_size.w() << ","
|
||||
<< runtime_ms << ","
|
||||
<< gflops;
|
||||
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Runs one benchmark
|
||||
Result profile_convolution(Options const &options) {
|
||||
|
||||
Result result;
|
||||
|
||||
//
|
||||
// Allocate host-device tensors using the CUTLASS Utilities.
|
||||
//
|
||||
|
||||
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(options.input_size);
|
||||
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(options.filter_size);
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c(options.output_size());
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_ref_c(options.output_size());
|
||||
|
||||
//
|
||||
// Initialize tensors
|
||||
//
|
||||
|
||||
// Fill tensor A on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_a.host_view(),
|
||||
1,
|
||||
ElementInputA(7),
|
||||
ElementInputA(-8),
|
||||
0);
|
||||
|
||||
// Fill tensor B on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_b.host_view(),
|
||||
1,
|
||||
ElementInputB(7),
|
||||
ElementInputB(-8),
|
||||
0);
|
||||
|
||||
// Fill tensor C on host with zeros
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_c.host_view());
|
||||
|
||||
// Fill tensor C for reference on host with zeros
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_ref_c.host_view());
|
||||
|
||||
// Copy data from host to GPU
|
||||
tensor_a.sync_device();
|
||||
tensor_b.sync_device();
|
||||
tensor_c.sync_device();
|
||||
tensor_ref_c.sync_device();
|
||||
|
||||
//
|
||||
// Define arguments for CUTLASS Convolution
|
||||
//
|
||||
|
||||
// mode (kCrossCorrelation or kConvolution)
|
||||
cutlass::conv::Mode mode = cutlass::conv::Mode::kCrossCorrelation;
|
||||
|
||||
// Split K dimension into 1 partitions
|
||||
int split_k_slices = 1;
|
||||
|
||||
// Construct Conv2dProblemSize with user defined output size
|
||||
cutlass::conv::Conv2dProblemSize problem_size(
|
||||
options.input_size,
|
||||
options.filter_size,
|
||||
options.padding,
|
||||
options.conv_stride,
|
||||
options.dilation,
|
||||
options.output_size(),
|
||||
mode,
|
||||
split_k_slices);
|
||||
|
||||
// Construct ImplicitGemm::Argument structure with conv2d
|
||||
// problem size, data pointers, and epilogue values
|
||||
typename ImplicitGemm::Arguments arguments{
|
||||
problem_size,
|
||||
tensor_a.device_ref(),
|
||||
tensor_b.device_ref(),
|
||||
tensor_c.device_ref(),
|
||||
tensor_c.device_ref(),
|
||||
{options.alpha, options.beta},
|
||||
};
|
||||
|
||||
//
|
||||
// Initialize CUTLASS Convolution
|
||||
//
|
||||
|
||||
ImplicitGemm implicit_gemm_op;
|
||||
|
||||
size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments);
|
||||
|
||||
// Allocate workspace memory
|
||||
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
||||
|
||||
result.status = implicit_gemm_op.can_implement(arguments);
|
||||
CUTLASS_CHECK(result.status);
|
||||
|
||||
result.status = implicit_gemm_op.initialize(arguments, workspace.get());
|
||||
CUTLASS_CHECK(result.status);
|
||||
|
||||
//
|
||||
// Launch initialized CUTLASS kernel
|
||||
//
|
||||
result.status = implicit_gemm_op();
|
||||
|
||||
CUTLASS_CHECK(result.status);
|
||||
|
||||
//
|
||||
// Optional reference check
|
||||
//
|
||||
|
||||
if (options.reference_check) {
|
||||
std::cout << "Verification on host...\n";
|
||||
|
||||
// Compute with reference implementation
|
||||
cutlass::reference::host::Conv2dFprop<
|
||||
ElementInputA,
|
||||
LayoutInputA,
|
||||
ElementInputB,
|
||||
LayoutInputB,
|
||||
ElementOutput,
|
||||
LayoutOutput,
|
||||
ElementComputeEpilogue,
|
||||
ElementAccumulator,
|
||||
cutlass::NumericConverterClamp<ElementOutput, ElementComputeEpilogue>
|
||||
>(
|
||||
problem_size,
|
||||
tensor_a.host_ref(),
|
||||
tensor_b.host_ref(),
|
||||
tensor_c.host_ref(),
|
||||
tensor_ref_c.host_ref(),
|
||||
options.alpha,
|
||||
options.beta
|
||||
);
|
||||
|
||||
// Check if output from CUTLASS kernel and reference kernel are equal or not
|
||||
tensor_c.sync_host();
|
||||
|
||||
bool passed = cutlass::reference::host::TensorEquals(
|
||||
tensor_c.host_view(),
|
||||
tensor_ref_c.host_view());
|
||||
|
||||
if (!passed) {
|
||||
result.reference_check = cutlass::Status::kErrorInternal;
|
||||
std::cout << "ERROR - results miscompared.\n";
|
||||
}
|
||||
else {
|
||||
result.reference_check = cutlass::Status::kSuccess;
|
||||
std::cout << "Passed.\n";
|
||||
}
|
||||
}
|
||||
else {
|
||||
result.reference_check = cutlass::Status::kInvalid;
|
||||
}
|
||||
|
||||
if (options.save_workspace) {
|
||||
|
||||
std::stringstream ss;
|
||||
|
||||
ss << "09_tensor_conv_workspace_conv2dfprop_"
|
||||
<< options.input_size.n() << "x" << options.input_size.h() << "x" << options.input_size.w() << "x" << options.input_size.c()
|
||||
<< "_"
|
||||
<< options.filter_size.n() << "x" << options.filter_size.h() << "x" << options.filter_size.w() << "x" << options.filter_size.c()
|
||||
<< ".dat";
|
||||
|
||||
std::ofstream output_workspace(ss.str());
|
||||
|
||||
output_workspace
|
||||
<< "Input = \n" << tensor_a.host_view() << "\n\n"
|
||||
<< "Filters = \n" << tensor_b.host_view() << "\n\n";
|
||||
|
||||
if (options.reference_check) {
|
||||
output_workspace << "Reference = \n" << tensor_ref_c.host_view() << "\n\n";
|
||||
}
|
||||
|
||||
output_workspace << "Computed = \n" << tensor_c.host_view() << std::endl;
|
||||
|
||||
std::cout << "Results written to '" << ss.str() << "'." << std::endl;
|
||||
}
|
||||
|
||||
//
|
||||
// Performance measurement
|
||||
//
|
||||
|
||||
if (options.measure_performance) {
|
||||
|
||||
cudaEvent_t events[2];
|
||||
|
||||
for (auto & event : events) {
|
||||
result.error = cudaEventCreate(&event);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventCreate() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
// Record an event at the start of a series of convolution operations.
|
||||
result.error = cudaEventRecord(events[0]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Launch a sequence of implicit GEMM operations on the device
|
||||
for (int iteration = 0; iteration < options.iterations; ++iteration) {
|
||||
result.status = implicit_gemm_op();
|
||||
CUTLASS_CHECK(result.status);
|
||||
}
|
||||
|
||||
// Record an event when the convolutions have been launched.
|
||||
result.error = cudaEventRecord(events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Wait for work on the device to complete.
|
||||
result.error = cudaEventSynchronize(events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventSynchronize() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Measure elapsed runtime
|
||||
float runtime_ms = 0;
|
||||
result.error = cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventElapsed() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Print average runtime and GFLOPs.
|
||||
result.runtime_ms = double(runtime_ms) / double(options.iterations);
|
||||
result.gflops = options.gflops(result.runtime_ms / 1000.0);
|
||||
|
||||
// Cleanup
|
||||
for (auto event : events) {
|
||||
(void)cudaEventDestroy(event);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
int main(int argc, char const **args) {
|
||||
|
||||
// Turing Tensor Core operations exposed with mma.sync are first available in CUDA 10.2.
|
||||
//
|
||||
// CUTLASS must be compiled with CUDA 10.2 Toolkit to run these examples.
|
||||
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2))) {
|
||||
std::cerr << "Turing Tensor Core operations must be compiled with CUDA 10.2 Toolkit or later." << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
cudaDeviceProp props;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&props, 0));
|
||||
|
||||
if (!(props.major > 7 || (props.major == 7 && props.minor >= 5))) {
|
||||
std::cerr << "Turing Tensor Ops must be run on a machine with compute capability at least 75."
|
||||
<< std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
Options options;
|
||||
|
||||
options.parse(argc, args);
|
||||
|
||||
if (options.help) {
|
||||
options.print_usage(std::cout) << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (options.benchmark) {
|
||||
// Benchmark several layers
|
||||
|
||||
int batch_sizes[] = {1, 32, 64, 128, 256, 512};
|
||||
|
||||
struct Benchmark {
|
||||
int h, w, c, k, r, s;
|
||||
} layers[] = {
|
||||
{56, 56, 64, 256, 1, 1},
|
||||
{56, 56, 64, 64, 1, 1},
|
||||
{56, 56, 64, 64, 3, 3},
|
||||
{56, 56, 256, 64, 1, 1},
|
||||
{56, 56, 256, 512, 1, 1},
|
||||
{56, 56, 256, 128, 1, 1},
|
||||
{28, 28, 128, 128, 3, 3},
|
||||
{28, 28, 128, 512, 1, 1},
|
||||
{28, 28, 512, 128, 1, 1},
|
||||
{28, 28, 512, 1024, 1, 1},
|
||||
{28, 28, 512, 256, 1, 1},
|
||||
{14, 14, 256, 256, 3, 3},
|
||||
{14, 14, 256, 1024, 1, 1},
|
||||
{14, 14, 1024, 256, 1, 1},
|
||||
{14, 14, 1024, 2048, 1, 1},
|
||||
{14, 14, 1024, 512, 1, 1},
|
||||
{7, 7, 512, 512, 3, 3},
|
||||
};
|
||||
|
||||
Result::print_header(std::cout, options) << std::endl;
|
||||
|
||||
int idx = 1;
|
||||
|
||||
for (auto const &layer : layers) {
|
||||
for (auto N : batch_sizes) {
|
||||
|
||||
options.update({N, layer.h, layer.w, layer.c}, {layer.k, layer.r, layer.s, layer.c});
|
||||
|
||||
Result result = profile_convolution(options);
|
||||
result.print(std::cout, idx, options) << std::endl;
|
||||
}
|
||||
|
||||
++idx;
|
||||
}
|
||||
}
|
||||
else {
|
||||
|
||||
// Execute one problem size
|
||||
if (!options.valid()) {
|
||||
std::cerr << "Invalid problem." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
Result result = profile_convolution(options);
|
||||
|
||||
Result::print_header(std::cout, options) << std::endl;
|
||||
result.print(std::cout, 1, options) << std::endl;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
|
||||
41
examples/10_planar_complex/CMakeLists.txt
Normal file
41
examples/10_planar_complex/CMakeLists.txt
Normal file
@ -0,0 +1,41 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
# Planar Complex GEMM example
|
||||
cutlass_example_add_executable(
|
||||
10_planar_complex
|
||||
planar_complex.cu
|
||||
)
|
||||
|
||||
|
||||
#
|
||||
# This example depends on the CUTLASS Library
|
||||
#
|
||||
|
||||
target_link_libraries(
|
||||
10_planar_complex
|
||||
PRIVATE
|
||||
cutlass_lib
|
||||
cutlass_tools_util_includes
|
||||
)
|
||||
|
||||
562
examples/10_planar_complex/planar_complex.cu
Normal file
562
examples/10_planar_complex/planar_complex.cu
Normal file
@ -0,0 +1,562 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Planar Complex GEMM
|
||||
|
||||
This example demonstrates the CUTLASS Library's exposure of planar complex GEMM kernels supporting
|
||||
the batched strided mode.
|
||||
|
||||
These kernels represent complex matrices by storing the real and imaginary parts of the matrix in
|
||||
disjoint regions in memory. These real-valued matrices are stored using existing cuBLAS layouts
|
||||
as either column-major or row-major layouts with a single leading dimension indicating the stride
|
||||
between columns or rows.
|
||||
|
||||
The CUTLASS Library collects multiple template instantiations in a data structure and offers
|
||||
a BLAS-like dispatch API to invoke the appropriate kernel on the Volta or Turing architectures.
|
||||
|
||||
CUTLASS decouples matrix layout from complex transformation, so four possible transformations
|
||||
are possible on the A and B operands:
|
||||
|
||||
n: column-major
|
||||
c: column-major complex conjugate
|
||||
t: row-major
|
||||
h: row-major complex conjugate
|
||||
|
||||
The CUTLASS Library contains many kernel instances specialized for architecture, data type, tile
|
||||
size, and alignment. This can result in long compile times.
|
||||
|
||||
To build strictly the planar complex kernels needed for general application, execute the following
|
||||
CMake command in an empty build directory.
|
||||
|
||||
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" \
|
||||
-DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_*gemm_planar_complex
|
||||
|
||||
This builds all planar complex GEMM variants for Volta and Turing architectures.
|
||||
|
||||
To build strictly the kernels needed for this example, an even narrower filter string may be
|
||||
specified as follows. This only builds planar complex GEMMs targeting Tensor Cores for
|
||||
the 'CN' layout configuration (conjugate A operand with both A and B as column-major).
|
||||
|
||||
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" \
|
||||
-DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_f16_s*gemm_planar_complex_f16*cn
|
||||
|
||||
$ make 10_planar_complex
|
||||
|
||||
$ ./examples/10_planar_complex/10_planar_complex --m=2048 --n=1024 --k=512 --batch=10
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/gemm.h"
|
||||
|
||||
#include "cutlass/util/command_line.h"
|
||||
#include "cutlass/util/distribution.h"
|
||||
#include "cutlass/util/device_memory.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "cutlass/util/host_tensor_planar_complex.h"
|
||||
|
||||
#include "cutlass/util/reference/device/tensor_fill.h"
|
||||
|
||||
#include "cutlass/util/reference/device/gemm_planar_complex.h"
|
||||
#include "cutlass/util/reference/device/tensor_compare.h"
|
||||
|
||||
#include "cutlass/library/handle.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Result structure
|
||||
struct Result {
|
||||
|
||||
double runtime_ms;
|
||||
double gflops;
|
||||
cutlass::Status status;
|
||||
cudaError_t error;
|
||||
bool passed;
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
Result(
|
||||
double runtime_ms = 0,
|
||||
double gflops = 0,
|
||||
cutlass::Status status = cutlass::Status::kSuccess,
|
||||
cudaError_t error = cudaSuccess
|
||||
):
|
||||
runtime_ms(runtime_ms), gflops(gflops), status(status), error(error), passed(true) { }
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Command line options parsing
|
||||
struct Options {
|
||||
|
||||
bool help;
|
||||
|
||||
cutlass::gemm::GemmCoord problem_size;
|
||||
int batch_count;
|
||||
cutlass::complex<float> alpha;
|
||||
cutlass::complex<float> beta;
|
||||
|
||||
bool reference_check;
|
||||
int iterations;
|
||||
|
||||
Options():
|
||||
help(false),
|
||||
problem_size({1024, 1024, 1024}),
|
||||
batch_count(1),
|
||||
reference_check(true),
|
||||
iterations(20),
|
||||
alpha(1),
|
||||
beta() { }
|
||||
|
||||
bool valid() {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Parses the command line
|
||||
void parse(int argc, char const **args) {
|
||||
cutlass::CommandLine cmd(argc, args);
|
||||
|
||||
if (cmd.check_cmd_line_flag("help")) {
|
||||
help = true;
|
||||
}
|
||||
|
||||
cmd.get_cmd_line_argument("m", problem_size.m());
|
||||
cmd.get_cmd_line_argument("n", problem_size.n());
|
||||
cmd.get_cmd_line_argument("k", problem_size.k());
|
||||
cmd.get_cmd_line_argument("batch", batch_count);
|
||||
|
||||
cmd.get_cmd_line_argument("alpha", alpha.real());
|
||||
cmd.get_cmd_line_argument("alpha_i", alpha.imag());
|
||||
cmd.get_cmd_line_argument("beta", beta.real());
|
||||
cmd.get_cmd_line_argument("beta_i", beta.imag());
|
||||
|
||||
cmd.get_cmd_line_argument("iterations", iterations);
|
||||
}
|
||||
|
||||
/// Prints the usage statement.
|
||||
std::ostream & print_usage(std::ostream &out) const {
|
||||
|
||||
out << "10_planar_complex example\n\n"
|
||||
<< " This example uses the CUTLASS Library to execute Planar Complex GEMM computations.\n\n"
|
||||
<< "Options:\n\n"
|
||||
<< " --help If specified, displays this usage statement.\n\n"
|
||||
<< " --m <int> GEMM M dimension\n"
|
||||
<< " --n <int> GEMM N dimension\n"
|
||||
<< " --k <int> GEMM K dimension\n"
|
||||
<< " --batch <int> Number of GEMM operations executed in one batch\n"
|
||||
<< " --alpha <f32> Epilogue scalar alpha (real part)\n"
|
||||
<< " --alpha_i <f32> Epilogue scalar alpha (imaginary part)\n"
|
||||
<< " --beta <f32> Epilogue scalar beta (real part)\n\n"
|
||||
<< " --beta_i <f32> Epilogue scalar beta (imaginary part)\n\n"
|
||||
<< " --iterations <int> Number of profiling iterations to perform.\n\n";
|
||||
|
||||
out << "\n\nExamples:\n\n"
|
||||
<< "$ ./examples/10_planar_complex/10_planar_complex --batch=7 --m=1024 --n=512 --k=1024 \\\n"
|
||||
<< " --alpha=2 --alpha_i=-2 --beta=0.707 --beta_i=-.707\n\n";
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
/// Compute performance in GFLOP/s
|
||||
double gflops(double runtime_s) const {
|
||||
|
||||
// Number of real-valued multiply-adds
|
||||
int64_t fmas = problem_size.product() * batch_count * 4;
|
||||
|
||||
// Two flops per multiply-add
|
||||
return 2.0 * double(fmas) / double(1.0e9) / runtime_s;
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Performance test environment for planar complex
|
||||
class TestbedPlanarComplex {
|
||||
public:
|
||||
|
||||
using ElementA = cutlass::half_t;
|
||||
using LayoutA = cutlass::layout::ColumnMajor;
|
||||
using ElementB = cutlass::half_t;
|
||||
using LayoutB = cutlass::layout::ColumnMajor;
|
||||
using ElementC = cutlass::half_t;
|
||||
using LayoutC = cutlass::layout::ColumnMajor;
|
||||
using ElementCompute = float;
|
||||
using ElementAccumulator = float;
|
||||
|
||||
//
|
||||
// Data members
|
||||
//
|
||||
|
||||
cutlass::library::Handle handle;
|
||||
|
||||
cutlass::gemm::GemmCoord problem_size;
|
||||
int batch_count;
|
||||
cutlass::DeviceAllocation<ElementA> tensor_A;
|
||||
cutlass::DeviceAllocation<ElementB> tensor_B;
|
||||
cutlass::DeviceAllocation<ElementC> tensor_C;
|
||||
cutlass::DeviceAllocation<ElementC> tensor_D;
|
||||
cutlass::DeviceAllocation<ElementC> tensor_D_ref;
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
TestbedPlanarComplex(
|
||||
Options const &options
|
||||
):
|
||||
problem_size(options.problem_size), batch_count(options.batch_count) {
|
||||
|
||||
// Allocate device memory for batched strided GEMM
|
||||
tensor_A.reset(int64_t(problem_size.m()) * problem_size.k() * batch_count * 2);
|
||||
tensor_B.reset(int64_t(problem_size.k()) * problem_size.n() * batch_count * 2);
|
||||
tensor_C.reset(int64_t(problem_size.m()) * problem_size.n() * batch_count * 2);
|
||||
tensor_D.reset(int64_t(problem_size.m()) * problem_size.n() * batch_count * 2);
|
||||
tensor_D_ref.reset(int64_t(problem_size.m()) * problem_size.n() * batch_count * 2);
|
||||
}
|
||||
|
||||
void initialize() {
|
||||
|
||||
uint64_t seed = 1073;
|
||||
|
||||
// Use small integers to simplify correctness checking
|
||||
int scope_max = 6;
|
||||
int scope_min = -6;
|
||||
|
||||
cutlass::reference::device::BlockFillRandomUniform(
|
||||
tensor_A.get(), tensor_A.size(), seed, ElementA(scope_max), ElementA(scope_min), 0);
|
||||
|
||||
cutlass::reference::device::BlockFillRandomUniform(
|
||||
tensor_B.get(), tensor_B.size(), seed * 2019, ElementB(scope_max), ElementB(scope_min), 0);
|
||||
|
||||
cutlass::reference::device::BlockFillRandomUniform(
|
||||
tensor_C.get(), tensor_C.size(), seed * 2020, ElementC(scope_max), ElementC(scope_min), 0);
|
||||
}
|
||||
|
||||
Result profile(Options const &options) {
|
||||
|
||||
Result result;
|
||||
|
||||
initialize();
|
||||
|
||||
ElementA *ptr_A = tensor_A.get();
|
||||
ElementB *ptr_B = tensor_B.get();
|
||||
ElementC *ptr_C = tensor_C.get();
|
||||
ElementC *ptr_D = tensor_D.get();
|
||||
|
||||
int64_t batch_stride_A = int64_t(problem_size.m()) * problem_size.k() * 2;
|
||||
int64_t batch_stride_B = int64_t(problem_size.k()) * problem_size.n() * 2;
|
||||
int64_t batch_stride_C = int64_t(problem_size.m()) * problem_size.n() * 2;
|
||||
int64_t batch_stride_D = int64_t(problem_size.m()) * problem_size.n() * 2;
|
||||
|
||||
typename LayoutA::Stride::Index lda = LayoutA::packed({problem_size.m(), problem_size.k()}).stride(0);
|
||||
typename LayoutB::Stride::Index ldb = LayoutB::packed({problem_size.k(), problem_size.n()}).stride(0);
|
||||
typename LayoutC::Stride::Index ldc = LayoutC::packed({problem_size.m(), problem_size.n()}).stride(0);
|
||||
typename LayoutC::Stride::Index ldd = LayoutC::packed({problem_size.m(), problem_size.n()}).stride(0);
|
||||
|
||||
int64_t imag_stride_A = int64_t(problem_size.m()) * problem_size.k();
|
||||
int64_t imag_stride_B = int64_t(problem_size.k()) * problem_size.n();
|
||||
int64_t imag_stride_C = int64_t(problem_size.m()) * problem_size.n();
|
||||
int64_t imag_stride_D = int64_t(problem_size.m()) * problem_size.n();
|
||||
|
||||
//
|
||||
// Construct events
|
||||
//
|
||||
|
||||
cudaEvent_t events[2];
|
||||
|
||||
for (auto & event : events) {
|
||||
result.error = cudaEventCreate(&event);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventCreate() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Record an event at the start of a series of GEMMs
|
||||
result.error = cudaEventRecord(events[0]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
//
|
||||
// Run profiling loop
|
||||
//
|
||||
|
||||
for (int iter = 0; iter < options.iterations; ++iter) {
|
||||
|
||||
//
|
||||
// Execute the planar complex GEMM kernel via the CUTLASS Library's
|
||||
// dispatch routines.
|
||||
//
|
||||
// Note, for planar complex GEMM kernels, all numeric type arguments
|
||||
// specify the data type of the base real types. These are understood to
|
||||
// apply to planar complex representations of matrices in memory and to complex<T>
|
||||
// structures for scalars.
|
||||
//
|
||||
// See tools/library/include/cutlass/library/handle.h for more details.
|
||||
//
|
||||
|
||||
result.status = handle.gemm_planar_complex(
|
||||
problem_size.m(), // GEMM M dimension
|
||||
problem_size.n(), // GEMM N dimension
|
||||
problem_size.k(), // GEMM K dimension
|
||||
|
||||
cutlass::library::NumericTypeID::kF32, // Base data type of complex-valued accumulation
|
||||
cutlass::library::NumericTypeID::kF32, // Base data type of complex-valued alpha/beta scalars
|
||||
|
||||
&options.alpha, // Pointer to alpha scalar, of type complex<T>
|
||||
|
||||
cutlass::library::NumericTypeID::kF16, // Base data type of complex-valued A matrix
|
||||
cutlass::library::LayoutTypeID::kColumnMajor, // Layout of A matrix
|
||||
cutlass::library::ComplexTransform::kConjugate, // Complex transformation on A matrix operand
|
||||
ptr_A, // Pointer to real part of A matrix
|
||||
ptr_A + imag_stride_A, // Pointer to imaginary part of A matrix
|
||||
lda, // Leading dimension of real part of A matrix
|
||||
lda, // Leading dimension of imaginary part of A matrix
|
||||
|
||||
cutlass::library::NumericTypeID::kF16, // Base data type of complex-valued B matrix
|
||||
cutlass::library::LayoutTypeID::kColumnMajor, // Layout of B matrix
|
||||
cutlass::library::ComplexTransform::kNone, // Complex transformation on B matrix operand
|
||||
ptr_B, // Pointer to real part of B matrix
|
||||
ptr_B + imag_stride_B, // Pointer to imaginary part of B matrix
|
||||
ldb, // Leading dimension of real part of B matrix
|
||||
ldb, // Leading dimension of imaginary part of B matrix
|
||||
|
||||
&options.beta, // Pointer to beta scalar, of type complex<T>
|
||||
|
||||
cutlass::library::NumericTypeID::kF16, // Base data type of complex valued C and D matrices
|
||||
|
||||
ptr_C, // Pointer to real part of C matrix
|
||||
ptr_C + imag_stride_C, // Pointer to imaginary part of C matrix
|
||||
ldc, // Leading dimension of real part of C matrix
|
||||
ldc, // Leading dimension of imaginary part of C matrix
|
||||
|
||||
ptr_D, // Pointer to real part of D matrix
|
||||
ptr_D + imag_stride_D, // Pointer to imaginary part of D matrix
|
||||
ldd, // Leading dimension of real part of D matrix
|
||||
ldd, // Leading dimension of imaginary part of D matrix
|
||||
|
||||
batch_count, // Number of batched elements
|
||||
|
||||
batch_stride_A, // Stride between batches of real parts of A matrix
|
||||
batch_stride_A, // Stride between batches of imaginary parts of A matrix
|
||||
|
||||
batch_stride_B, // Stride between batches of real parts of B matrix
|
||||
batch_stride_B, // Stride between batches of imaginary parts of B matrix
|
||||
|
||||
batch_stride_C, // Stride between batches of real parts of C matrix
|
||||
batch_stride_C, // Stride between batches of imaginary parts of C matrix
|
||||
|
||||
batch_stride_D, // Stride between batches of real parts of D matrix
|
||||
batch_stride_D // Stride between batches of imaginary parts of D matrix
|
||||
);
|
||||
|
||||
if (result.status != cutlass::Status::kSuccess) {
|
||||
std::cerr << "CUTLASS internal error - configuration not supported" << std::endl;
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Stop profiling loop
|
||||
//
|
||||
|
||||
// Record an event when the GEMMs are complete
|
||||
result.error = cudaEventRecord(events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Wait for work on the device to complete.
|
||||
result.error = cudaEventSynchronize(events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventSynchronize() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Measure elapsed runtime
|
||||
float runtime_ms = 0;
|
||||
result.error = cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventElapsed() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Compute average runtime and GFLOPs.
|
||||
result.runtime_ms = double(runtime_ms) / double(options.iterations);
|
||||
result.gflops = options.gflops(result.runtime_ms / 1000.0);
|
||||
|
||||
// Cleanup
|
||||
for (auto event : events) {
|
||||
(void)cudaEventDestroy(event);
|
||||
}
|
||||
|
||||
if (handle.get_last_operation()) {
|
||||
std::cout << "Recently executed '" << handle.get_last_operation()->description().name << "'" << std::endl;
|
||||
}
|
||||
|
||||
//
|
||||
// Compute reference in device code
|
||||
//
|
||||
|
||||
if (options.reference_check) {
|
||||
|
||||
result.passed = true;
|
||||
|
||||
for (int64_t idx = 0; result.passed && idx < int64_t(batch_count); ++idx) {
|
||||
cutlass::reference::device::GemmPlanarComplex<
|
||||
ElementA, LayoutA,
|
||||
ElementB, LayoutB,
|
||||
ElementC, LayoutC,
|
||||
ElementAccumulator
|
||||
>(
|
||||
problem_size,
|
||||
options.alpha,
|
||||
{tensor_A.get() + idx * batch_stride_A, lda, imag_stride_A},
|
||||
cutlass::ComplexTransform::kConjugate,
|
||||
{tensor_B.get() + idx * batch_stride_B, ldb, imag_stride_B},
|
||||
cutlass::ComplexTransform::kNone,
|
||||
options.beta,
|
||||
{tensor_C.get() + idx * batch_stride_C, ldc, imag_stride_C},
|
||||
{tensor_D_ref.get() + idx * batch_stride_D, ldd, imag_stride_D}
|
||||
);
|
||||
|
||||
ElementC epsilon = 0.1_hf;
|
||||
ElementC nonzero_floor = 0.1_hf;
|
||||
|
||||
result.passed = cutlass::reference::device::BlockCompareRelativelyEqual(
|
||||
tensor_D.get() + idx * batch_stride_D,
|
||||
tensor_D_ref.get() + idx * batch_stride_D,
|
||||
batch_stride_D,
|
||||
epsilon,
|
||||
nonzero_floor
|
||||
);
|
||||
}
|
||||
|
||||
if (result.passed) {
|
||||
std::cout << "Reference check passed." << std::endl;
|
||||
}
|
||||
else {
|
||||
std::cerr << "Error - reference check failed." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Runtime: " << result.runtime_ms << " ms" << std::endl;
|
||||
std::cout << " GFLOPs: " << result.gflops << std::endl;
|
||||
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
int main(int argc, char const **args) {
|
||||
|
||||
//
|
||||
// This example uses mma.sync to directly access Tensor Cores to achieve peak performance.
|
||||
//
|
||||
// Volta Tensor Core operations are first available in CUDA 10.1 Toolkit.
|
||||
//
|
||||
// Turing Tensor Core operations are first available in CUDA 10.2 Toolkit.
|
||||
//
|
||||
|
||||
cudaDeviceProp props;
|
||||
|
||||
cudaError_t error = cudaGetDeviceProperties(&props, 0);
|
||||
if (error != cudaSuccess) {
|
||||
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (props.major < 7) {
|
||||
std::cerr << "Volta Tensor Core operations must be run on a machine with compute capability at least 70."
|
||||
<< std::endl;
|
||||
|
||||
// Returning zero so this test passes on older architectures even though its actions are no-op.
|
||||
return 0;
|
||||
}
|
||||
else if (props.major == 7 && props.minor <= 2) {
|
||||
//
|
||||
// If running on the Volta architecture, at least CUDA 10.1 Toolkit is required to run this example.
|
||||
//
|
||||
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 1))) {
|
||||
std::cerr << "Volta Tensor Core operations must be compiled with CUDA 10.1 Toolkit or later." << std::endl;
|
||||
|
||||
// Returning zero so this test passes on older Toolkits even though its actions are no-op.
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
else if (props.major == 7 && props.minor >= 5) {
|
||||
//
|
||||
// If running on the Turing architecture, at least CUDA 10.2 Toolkit is required to run this example.
|
||||
//
|
||||
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2))) {
|
||||
std::cerr << "Turing Tensor Core operations must be compiled with CUDA 10.2 Toolkit or later." << std::endl;
|
||||
|
||||
// Returning zero so this test passes on older Toolkits even though its actions are no-op.
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
else {
|
||||
// NVIDIA Ampere Architecture GPUs (SM80 and later) are fully supported on CUDA 11 Toolkit and beyond.
|
||||
//
|
||||
// fall through
|
||||
}
|
||||
|
||||
//
|
||||
// Parse options
|
||||
//
|
||||
|
||||
Options options;
|
||||
|
||||
options.parse(argc, args);
|
||||
|
||||
if (options.help) {
|
||||
options.print_usage(std::cout) << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Execute one problem size
|
||||
if (!options.valid()) {
|
||||
std::cerr << "Invalid problem." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
TestbedPlanarComplex testbed(options);
|
||||
|
||||
Result result = testbed.profile(options);
|
||||
|
||||
return result.passed ? 0 : -1;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
41
examples/11_planar_complex_array/CMakeLists.txt
Normal file
41
examples/11_planar_complex_array/CMakeLists.txt
Normal file
@ -0,0 +1,41 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
# Planar Complex Array GEMM example
|
||||
cutlass_example_add_executable(
|
||||
11_planar_complex_array
|
||||
planar_complex_array.cu
|
||||
)
|
||||
|
||||
|
||||
#
|
||||
# This example depends on the CUTLASS Library
|
||||
#
|
||||
|
||||
target_link_libraries(
|
||||
11_planar_complex_array
|
||||
PRIVATE
|
||||
cutlass_lib
|
||||
cutlass_tools_util_includes
|
||||
)
|
||||
|
||||
623
examples/11_planar_complex_array/planar_complex_array.cu
Normal file
623
examples/11_planar_complex_array/planar_complex_array.cu
Normal file
@ -0,0 +1,623 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Planar Complex Array Example
|
||||
|
||||
This example demonstrates the CUTLASS Library's exposure of planar complex GEMM kernels which
|
||||
execute a batch of matrix products, loading problem sizes and matrix base pointers from arrays
|
||||
in global memory.
|
||||
|
||||
These kernels represent complex matrices by storing the real and imaginary parts of the matrix in
|
||||
disjoint regions in memory. These real-valued matrices are stored using existing cuBLAS layouts
|
||||
as either column-major or row-major layouts with a single leading dimension indicating the stride
|
||||
between columns or rows.
|
||||
|
||||
The CUTLASS Library collects multiple template instantiations in a data structure and offers
|
||||
a BLAS-like dispatch API to invoke the appropriate kernel on the Volta or Turing architectures.
|
||||
|
||||
CUTLASS decouples matrix layout from complex transformation, so four possible transformations
|
||||
are possible on the A and B operands:
|
||||
|
||||
n: column-major
|
||||
c: column-major complex conjugate
|
||||
t: row-major
|
||||
h: row-major complex conjugate
|
||||
|
||||
To build strictly the planar complex kernels needed for general application, execute the following
|
||||
CMake command in an empty build directory.
|
||||
|
||||
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" \
|
||||
-DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_*gemm_planar_complex
|
||||
|
||||
This builds all planar complex GEMM variants for Volta and Turing architectures.
|
||||
|
||||
To build strictly the kernels needed for this example, an even narrower filter string may be
|
||||
specified as follows. This only builds planar complex GEMMs targeting Tensor Cores for
|
||||
the 'CN' layout configuration (conjugate A operand with both A and B as column-major).
|
||||
|
||||
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" \
|
||||
-DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_f16_s*gemm_planar_complex_array_f16*cn
|
||||
|
||||
$ make 11_planar_complex_array
|
||||
|
||||
$ ./examples/11_planar_complex_array/11_planar_complex_array --m=2048 --n=1024 --k=512 --batch=10
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/gemm.h"
|
||||
|
||||
#include "cutlass/util/command_line.h"
|
||||
#include "cutlass/util/distribution.h"
|
||||
#include "cutlass/util/device_memory.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "cutlass/util/host_tensor_planar_complex.h"
|
||||
|
||||
#include "cutlass/util/reference/device/tensor_fill.h"
|
||||
|
||||
#include "cutlass/util/reference/device/gemm_planar_complex.h"
|
||||
#include "cutlass/util/reference/device/tensor_compare.h"
|
||||
|
||||
#include "cutlass/library/handle.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Result structure
|
||||
struct Result {
|
||||
|
||||
double runtime_ms;
|
||||
double gflops;
|
||||
cutlass::Status status;
|
||||
cudaError_t error;
|
||||
bool passed;
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
Result(
|
||||
double runtime_ms = 0,
|
||||
double gflops = 0,
|
||||
cutlass::Status status = cutlass::Status::kSuccess,
|
||||
cudaError_t error = cudaSuccess
|
||||
):
|
||||
runtime_ms(runtime_ms), gflops(gflops), status(status), error(error), passed(true) { }
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Command line options parsing
|
||||
struct Options {
|
||||
|
||||
bool help;
|
||||
|
||||
cutlass::gemm::GemmCoord problem_size;
|
||||
int batch_count;
|
||||
cutlass::complex<float> alpha;
|
||||
cutlass::complex<float> beta;
|
||||
|
||||
bool reference_check;
|
||||
int iterations;
|
||||
|
||||
Options():
|
||||
help(false),
|
||||
problem_size({1024, 1024, 1024}),
|
||||
batch_count(1),
|
||||
reference_check(true),
|
||||
iterations(20),
|
||||
alpha(1),
|
||||
beta() { }
|
||||
|
||||
bool valid() {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Parses the command line
|
||||
void parse(int argc, char const **args) {
|
||||
cutlass::CommandLine cmd(argc, args);
|
||||
|
||||
if (cmd.check_cmd_line_flag("help")) {
|
||||
help = true;
|
||||
}
|
||||
|
||||
cmd.get_cmd_line_argument("m", problem_size.m());
|
||||
cmd.get_cmd_line_argument("n", problem_size.n());
|
||||
cmd.get_cmd_line_argument("k", problem_size.k());
|
||||
cmd.get_cmd_line_argument("batch", batch_count);
|
||||
|
||||
cmd.get_cmd_line_argument("alpha", alpha.real());
|
||||
cmd.get_cmd_line_argument("alpha_i", alpha.imag());
|
||||
cmd.get_cmd_line_argument("beta", beta.real());
|
||||
cmd.get_cmd_line_argument("beta_i", beta.imag());
|
||||
|
||||
cmd.get_cmd_line_argument("iterations", iterations);
|
||||
}
|
||||
|
||||
/// Prints the usage statement.
|
||||
std::ostream & print_usage(std::ostream &out) const {
|
||||
|
||||
out << "11_planar_complex_array example\n\n"
|
||||
<< " This example uses the CUTLASS Library to execute Planar Complex Array GEMM computations.\n\n"
|
||||
<< "Options:\n\n"
|
||||
<< " --help If specified, displays this usage statement.\n\n"
|
||||
<< " --m <int> GEMM M dimension\n"
|
||||
<< " --n <int> GEMM N dimension\n"
|
||||
<< " --k <int> GEMM K dimension\n"
|
||||
<< " --batch <int> Number of GEMM operations executed in one batch\n"
|
||||
<< " --alpha <f32> Epilogue scalar alpha (real part)\n"
|
||||
<< " --alpha_i <f32> Epilogue scalar alpha (imaginary part)\n"
|
||||
<< " --beta <f32> Epilogue scalar beta (real part)\n\n"
|
||||
<< " --beta_i <f32> Epilogue scalar beta (imaginary part)\n\n"
|
||||
<< " --iterations <int> Number of profiling iterations to perform.\n";
|
||||
|
||||
out << "\n\nExamples:\n\n"
|
||||
<< "$ ./examples/11_planar_complex_array/11_planar_complex_array\n\n";
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
/// Compute performance in GFLOP/s
|
||||
double gflops(double runtime_s) const {
|
||||
|
||||
// Number of real-valued multiply-adds
|
||||
int64_t fmas = problem_size.product() * batch_count * 4;
|
||||
|
||||
// Two flops per multiply-add
|
||||
return 2.0 * double(fmas) / double(1.0e9) / runtime_s;
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Performance test environment for planar complex
|
||||
class TestbedPlanarComplex {
|
||||
public:
|
||||
|
||||
// Half-precision input and output
|
||||
using Element = cutlass::half_t;
|
||||
|
||||
// Configurations for layouts and internal computation
|
||||
using LayoutA = cutlass::layout::ColumnMajor;
|
||||
using LayoutB = cutlass::layout::ColumnMajor;
|
||||
using LayoutC = cutlass::layout::ColumnMajor;
|
||||
using ElementCompute = float;
|
||||
using ElementAccumulator = float;
|
||||
|
||||
//
|
||||
// Data members
|
||||
//
|
||||
|
||||
cutlass::library::Handle handle;
|
||||
|
||||
cutlass::gemm::GemmCoord problem_size;
|
||||
int batch_count;
|
||||
cutlass::DeviceAllocation<Element> tensor_A;
|
||||
cutlass::DeviceAllocation<Element> tensor_B;
|
||||
cutlass::DeviceAllocation<Element> tensor_C;
|
||||
cutlass::DeviceAllocation<Element> tensor_D;
|
||||
cutlass::DeviceAllocation<Element> tensor_D_ref;
|
||||
|
||||
cutlass::DeviceAllocation<void *> ptr_A_real;
|
||||
cutlass::DeviceAllocation<void *> ptr_A_imag;
|
||||
cutlass::DeviceAllocation<void *> ptr_B_real;
|
||||
cutlass::DeviceAllocation<void *> ptr_B_imag;
|
||||
cutlass::DeviceAllocation<void *> ptr_C_real;
|
||||
cutlass::DeviceAllocation<void *> ptr_C_imag;
|
||||
cutlass::DeviceAllocation<void *> ptr_D_real;
|
||||
cutlass::DeviceAllocation<void *> ptr_D_imag;
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
TestbedPlanarComplex(
|
||||
Options const &options
|
||||
):
|
||||
problem_size(options.problem_size), batch_count(options.batch_count) {
|
||||
|
||||
// Allocate device memory for batched planar complex GEMM
|
||||
tensor_A.reset(int64_t(problem_size.m()) * problem_size.k() * batch_count * 2);
|
||||
tensor_B.reset(int64_t(problem_size.k()) * problem_size.n() * batch_count * 2);
|
||||
tensor_C.reset(int64_t(problem_size.m()) * problem_size.n() * batch_count * 2);
|
||||
tensor_D.reset(int64_t(problem_size.m()) * problem_size.n() * batch_count * 2);
|
||||
tensor_D_ref.reset(int64_t(problem_size.m()) * problem_size.n() * batch_count * 2);
|
||||
|
||||
ptr_A_real.reset(batch_count);
|
||||
ptr_A_imag.reset(batch_count);
|
||||
ptr_B_real.reset(batch_count);
|
||||
ptr_B_imag.reset(batch_count);
|
||||
ptr_C_real.reset(batch_count);
|
||||
ptr_C_imag.reset(batch_count);
|
||||
ptr_D_real.reset(batch_count);
|
||||
ptr_D_imag.reset(batch_count);
|
||||
|
||||
}
|
||||
|
||||
void initialize() {
|
||||
|
||||
uint64_t seed = 1073;
|
||||
|
||||
// Use small integers to simplify correctness checking
|
||||
int scope_max = 6;
|
||||
int scope_min = -6;
|
||||
|
||||
cutlass::reference::device::BlockFillRandomUniform(
|
||||
tensor_A.get(), tensor_A.size(), seed, Element(scope_max), Element(scope_min), 0);
|
||||
|
||||
cutlass::reference::device::BlockFillRandomUniform(
|
||||
tensor_B.get(), tensor_B.size(), seed * 2019, Element(scope_max), Element(scope_min), 0);
|
||||
|
||||
cutlass::reference::device::BlockFillRandomUniform(
|
||||
tensor_C.get(), tensor_C.size(), seed * 2020, Element(scope_max), Element(scope_min), 0);
|
||||
}
|
||||
|
||||
Result profile(Options const &options) {
|
||||
|
||||
Result result;
|
||||
|
||||
initialize();
|
||||
|
||||
Element *ptr_A = tensor_A.get();
|
||||
Element *ptr_B = tensor_B.get();
|
||||
Element *ptr_C = tensor_C.get();
|
||||
Element *ptr_D = tensor_D.get();
|
||||
|
||||
int64_t batch_stride_A = int64_t(problem_size.m()) * problem_size.k() * 2;
|
||||
int64_t batch_stride_B = int64_t(problem_size.k()) * problem_size.n() * 2;
|
||||
int64_t batch_stride_C = int64_t(problem_size.m()) * problem_size.n() * 2;
|
||||
int64_t batch_stride_D = int64_t(problem_size.m()) * problem_size.n() * 2;
|
||||
|
||||
typename LayoutA::Stride::Index lda = LayoutA::packed({problem_size.m(), problem_size.k()}).stride(0);
|
||||
typename LayoutB::Stride::Index ldb = LayoutB::packed({problem_size.k(), problem_size.n()}).stride(0);
|
||||
typename LayoutC::Stride::Index ldc = LayoutC::packed({problem_size.m(), problem_size.n()}).stride(0);
|
||||
typename LayoutC::Stride::Index ldd = LayoutC::packed({problem_size.m(), problem_size.n()}).stride(0);
|
||||
|
||||
|
||||
int64_t imag_stride_A = int64_t(problem_size.m()) * problem_size.k();
|
||||
int64_t imag_stride_B = int64_t(problem_size.k()) * problem_size.n();
|
||||
int64_t imag_stride_C = int64_t(problem_size.m()) * problem_size.n();
|
||||
int64_t imag_stride_D = int64_t(problem_size.m()) * problem_size.n();
|
||||
|
||||
//
|
||||
// Configure pointers in global memory
|
||||
//
|
||||
|
||||
struct {
|
||||
Element *base;
|
||||
void **ptr_real;
|
||||
void **ptr_imag;
|
||||
int64_t batch_stride;
|
||||
int64_t imag_stride;
|
||||
} tensors[] = {
|
||||
{ tensor_A.get(), ptr_A_real.get(), ptr_A_imag.get(), batch_stride_A, imag_stride_A},
|
||||
{ tensor_B.get(), ptr_B_real.get(), ptr_B_imag.get(), batch_stride_B, imag_stride_B},
|
||||
{ tensor_C.get(), ptr_C_real.get(), ptr_C_imag.get(), batch_stride_C, imag_stride_C},
|
||||
{ tensor_D.get(), ptr_D_real.get(), ptr_D_imag.get(), batch_stride_D, imag_stride_D}
|
||||
};
|
||||
|
||||
for (auto const &tensor : tensors) {
|
||||
for (int idx = 0; idx < batch_count; ++idx) {
|
||||
|
||||
void *ptr_real = tensor.base + idx * tensor.batch_stride;
|
||||
void *ptr_imag = tensor.base + idx * tensor.batch_stride + tensor.imag_stride;
|
||||
|
||||
cudaError_t error = cudaMemcpy(
|
||||
tensor.ptr_real + idx,
|
||||
&ptr_real,
|
||||
sizeof(void *),
|
||||
cudaMemcpyHostToDevice);
|
||||
|
||||
if (error != cudaSuccess) {
|
||||
throw std::runtime_error("Failed to copy pointer to device memory");
|
||||
}
|
||||
|
||||
error = cudaMemcpy(
|
||||
tensor.ptr_imag + idx,
|
||||
&ptr_imag,
|
||||
sizeof(void *),
|
||||
cudaMemcpyHostToDevice);
|
||||
|
||||
if (error != cudaSuccess) {
|
||||
throw std::runtime_error("Failed to copy pointer to device memory");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Construct events
|
||||
//
|
||||
|
||||
cudaEvent_t events[2];
|
||||
|
||||
for (auto & event : events) {
|
||||
result.error = cudaEventCreate(&event);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventCreate() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Record an event at the start of a series of GEMM operations
|
||||
result.error = cudaEventRecord(events[0]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
//
|
||||
// Run profiling loop
|
||||
//
|
||||
|
||||
for (int iter = 0; iter < options.iterations; ++iter) {
|
||||
|
||||
//
|
||||
// Execute the planar complex array GEMM kernel via the CUTLASS Library's
|
||||
// dispatch routines.
|
||||
//
|
||||
// Note, for planar complex array GEMM kernels, all numeric type arguments
|
||||
// specify the data type of the base real types. These are understood to
|
||||
// apply to planar complex representations of matrices in memory and to complex<T>
|
||||
// structures for scalars.
|
||||
//
|
||||
// See tools/library/include/cutlass/library/handle.h for more details.
|
||||
//
|
||||
|
||||
result.status = handle.gemm_planar_complex_array(
|
||||
|
||||
problem_size.m(), // expected GEMM M dimension
|
||||
problem_size.n(), // expected GEMM N dimension
|
||||
problem_size.k(), // expected GEMM K dimension
|
||||
batch_count, // Number of batched elements
|
||||
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
|
||||
cutlass::library::NumericTypeID::kF32, // Base data type of complex-valued accumulation
|
||||
cutlass::library::NumericTypeID::kF32, // Base data type of complex-valued alpha/beta scalars
|
||||
|
||||
&options.alpha, // Pointer to alpha scalar, of type complex<T>
|
||||
|
||||
cutlass::library::NumericTypeID::kF16, // Base data type of complex-valued A matrix
|
||||
cutlass::library::LayoutTypeID::kColumnMajor, // Layout of A matrix
|
||||
cutlass::library::ComplexTransform::kConjugate, // Complex transformation on A matrix operand
|
||||
|
||||
ptr_A_real.get(), // Pointer to array of pointers to real part of A matrix
|
||||
ptr_A_imag.get(), // Pointer to array of pointers to imaginary part of A matrix
|
||||
|
||||
lda, // Leading dimension of real part of A matrix
|
||||
lda, // Leading dimension of imaginary part of A matrix
|
||||
|
||||
cutlass::library::NumericTypeID::kF16, // Base data type of complex-valued B matrix
|
||||
cutlass::library::LayoutTypeID::kColumnMajor, // Layout of B matrix
|
||||
cutlass::library::ComplexTransform::kNone, // Complex transformation on B matrix operand
|
||||
|
||||
ptr_B_real.get(), // Pointer to array of pointers to real part of B matrix
|
||||
ptr_B_imag.get(), // Pointer to array of pointers to imaginary part of B matrix
|
||||
|
||||
ldb, // Leading dimension of real part of B matrix
|
||||
ldb, // Leading dimension of imaginary part of B matrix
|
||||
|
||||
&options.beta, // Pointer to beta scalar, of type complex<T>
|
||||
|
||||
cutlass::library::NumericTypeID::kF16, // Base data type of complex valued C and D matrices
|
||||
|
||||
ptr_C_real.get(), // Pointer to array of pointers to real part of C matrix
|
||||
ptr_C_imag.get(), // Pointer to array of pointers to imaginary part of C matrix
|
||||
|
||||
ldc, // Leading dimension of real part of C matrix
|
||||
ldc, // Leading dimension of imaginary part of C matrix
|
||||
|
||||
ptr_D_real.get(), // Pointer to array of pointers to real part of D matrix
|
||||
ptr_D_imag.get(), // Pointer to array of pointers to imaginary part of D matrix
|
||||
|
||||
ldd, // Leading dimension of real part of D matrix
|
||||
ldd // Leading dimension of imaginary part of D matrix
|
||||
);
|
||||
|
||||
if (result.status != cutlass::Status::kSuccess) {
|
||||
std::cerr << "CUTLASS internal error - configuration not supported" << std::endl;
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Stop profiling loop
|
||||
//
|
||||
|
||||
// Record an event when the GEMM operations have been launched.
|
||||
result.error = cudaEventRecord(events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Wait for work on the device to complete.
|
||||
result.error = cudaEventSynchronize(events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventSynchronize() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Measure elapsed runtime
|
||||
float runtime_ms = 0;
|
||||
result.error = cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventElapsed() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Compute average runtime and GFLOPs.
|
||||
result.runtime_ms = double(runtime_ms) / double(options.iterations);
|
||||
result.gflops = options.gflops(result.runtime_ms / 1000.0);
|
||||
|
||||
// Cleanup
|
||||
for (auto event : events) {
|
||||
(void)cudaEventDestroy(event);
|
||||
}
|
||||
|
||||
if (handle.get_last_operation()) {
|
||||
std::cout << "Recently executed '" << handle.get_last_operation()->description().name << "'" << std::endl;
|
||||
}
|
||||
|
||||
//
|
||||
// Compute reference in device code
|
||||
//
|
||||
|
||||
if (options.reference_check) {
|
||||
|
||||
result.passed = true;
|
||||
|
||||
for (int64_t idx = 0; result.passed && idx < int64_t(batch_count); ++idx) {
|
||||
cutlass::reference::device::GemmPlanarComplex<
|
||||
Element, LayoutA,
|
||||
Element, LayoutB,
|
||||
Element, LayoutC,
|
||||
ElementAccumulator
|
||||
>(
|
||||
problem_size,
|
||||
options.alpha,
|
||||
{tensor_A.get() + idx * batch_stride_A, lda, imag_stride_A},
|
||||
cutlass::ComplexTransform::kConjugate,
|
||||
{tensor_B.get() + idx * batch_stride_B, ldb, imag_stride_B},
|
||||
cutlass::ComplexTransform::kNone,
|
||||
options.beta,
|
||||
{tensor_C.get() + idx * batch_stride_C, ldc, imag_stride_C},
|
||||
{tensor_D_ref.get() + idx * batch_stride_D, ldd, imag_stride_D}
|
||||
);
|
||||
|
||||
Element epsilon = 0.1_hf;
|
||||
Element nonzero_floor = 0.1_hf;
|
||||
|
||||
result.passed = cutlass::reference::device::BlockCompareRelativelyEqual(
|
||||
tensor_D.get() + idx * batch_stride_D,
|
||||
tensor_D_ref.get() + idx * batch_stride_D,
|
||||
batch_stride_D,
|
||||
epsilon,
|
||||
nonzero_floor
|
||||
);
|
||||
}
|
||||
|
||||
if (result.passed) {
|
||||
std::cout << "Reference check passed." << std::endl;
|
||||
}
|
||||
else {
|
||||
std::cerr << "Error - reference check failed." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Runtime: " << result.runtime_ms << " ms" << std::endl;
|
||||
std::cout << " GFLOPs: " << result.gflops << std::endl;
|
||||
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
int main(int argc, char const **args) {
|
||||
|
||||
//
|
||||
// This example uses mma.sync to directly access Tensor Cores to achieve peak performance.
|
||||
//
|
||||
// Volta Tensor Core operations are first available in CUDA 10.1 Toolkit.
|
||||
//
|
||||
// Turing Tensor Core operations are first available in CUDA 10.2 Toolkit.
|
||||
//
|
||||
|
||||
cudaDeviceProp props;
|
||||
|
||||
cudaError_t error = cudaGetDeviceProperties(&props, 0);
|
||||
if (error != cudaSuccess) {
|
||||
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (props.major < 7) {
|
||||
std::cerr << "Tensor Core operations must be run on a machine with compute capability at least 70."
|
||||
<< std::endl;
|
||||
|
||||
// Returning zero so this passes on older architectures. Its actions are no-op.
|
||||
return 0;
|
||||
}
|
||||
else if (props.major == 7 && props.minor <= 2) {
|
||||
//
|
||||
// If running on the Volta architecture, at least CUDA 10.1 Toolkit is required to run this example.
|
||||
//
|
||||
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 1))) {
|
||||
std::cerr << "Volta Tensor Core operations must be compiled with CUDA 10.1 Toolkit or later." << std::endl;
|
||||
|
||||
// Returning zero so this passes on older Toolkits. Its actions are no-op.
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
else if (props.major == 7 && props.minor >= 5) {
|
||||
//
|
||||
// If running on the Turing architecture, at least CUDA 10.2 Toolkit is required to run this example.
|
||||
//
|
||||
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2))) {
|
||||
std::cerr << "Turing Tensor Core operations must be compiled with CUDA 10.2 Toolkit or later." << std::endl;
|
||||
|
||||
// Returning zero so this passes on older Toolkits. Its actions are no-op.
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
else {
|
||||
// NVIDIA Ampere Architecture GPUs (SM80 and later) are fully supported on CUDA 11 Toolkit and beyond.
|
||||
//
|
||||
// fall through
|
||||
}
|
||||
|
||||
//
|
||||
// Parse options
|
||||
//
|
||||
|
||||
Options options;
|
||||
|
||||
options.parse(argc, args);
|
||||
|
||||
if (options.help) {
|
||||
options.print_usage(std::cout) << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Execute one problem size
|
||||
if (!options.valid()) {
|
||||
std::cerr << "Invalid problem." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
TestbedPlanarComplex testbed(options);
|
||||
|
||||
Result result = testbed.profile(options);
|
||||
|
||||
return result.passed ? 0 : -1;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
27
examples/12_gemm_bias_relu/CMakeLists.txt
Normal file
27
examples/12_gemm_bias_relu/CMakeLists.txt
Normal file
@ -0,0 +1,27 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
12_gemm_bias_relu
|
||||
gemm_bias_relu.cu
|
||||
)
|
||||
|
||||
297
examples/12_gemm_bias_relu/gemm_bias_relu.cu
Normal file
297
examples/12_gemm_bias_relu/gemm_bias_relu.cu
Normal file
@ -0,0 +1,297 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
/**
|
||||
*/
|
||||
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/device/gemm.h"
|
||||
#include "cutlass/epilogue/thread/linear_combination_relu.h"
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/reference/device/gemm.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "helper.h"
|
||||
|
||||
// The code section below describes datatype for input, output matrices and computation between
|
||||
// elements in input matrices.
|
||||
using ElementAccumulator = float; // <- data type of accumulator
|
||||
using ElementComputeEpilogue = ElementAccumulator; // <- data type of epilogue operations
|
||||
using ElementInputA = cutlass::half_t; // <- data type of elements in input matrix A
|
||||
using ElementInputB = cutlass::half_t; // <- data type of elements in input matrix B
|
||||
using ElementOutput = float; // <- data type of elements in output matrix D
|
||||
|
||||
// The code section below describes matrix layout of input and output matrices.
|
||||
// Column Major for Matrix A, B and C.
|
||||
//
|
||||
// Note this example only works for ColumnMajor output because
|
||||
// 1) we only have row major epilogue.
|
||||
// 2) we swap A and B if the output is column major then we can still use the
|
||||
// row major epilogue.
|
||||
// 3) Mx1 bias vector becomes 1xM after the swapping/transposing.
|
||||
// 4) we can use the existing OutputIterator to load 1xM bias vector.
|
||||
|
||||
using LayoutInputA = cutlass::layout::ColumnMajor;
|
||||
using LayoutInputB = cutlass::layout::ColumnMajor;
|
||||
using LayoutOutput = cutlass::layout::ColumnMajor;
|
||||
|
||||
// This code section describes whether you want to use tensor cores or regular SIMT cores on GPU SM
|
||||
using MMAOp = cutlass::arch::OpClassTensorOp;
|
||||
|
||||
// This code section describes CUDA SM architecture number
|
||||
using SmArch = cutlass::arch::Sm75;
|
||||
|
||||
// This code section describes the tile size a thread block will compute
|
||||
using ShapeMMAThreadBlock =
|
||||
cutlass::gemm::GemmShape<128, 128, 32>; // <- threadblock tile M = 128, N = 128, K = 32
|
||||
// This code section describes tile size a warp will compute
|
||||
using ShapeMMAWarp = cutlass::gemm::GemmShape<64, 64, 32>; // <- warp tile M = 64, N = 64, K = 32
|
||||
// This code section describes the size of MMA op
|
||||
using ShapeMMAOp = cutlass::gemm::GemmShape<16, 8, 8>; // <- MMA Op tile M = 8, N = 8, K = 4
|
||||
|
||||
// This code section describes how threadblocks are scheduled on GPU
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>; // <- ??
|
||||
|
||||
// Define the epilogue operation as LinearCombinationRelu. This is approximately equal to
|
||||
//
|
||||
// d_ij = max(0, alpha * sum_k(a_ik * b_kj) + c_ij )
|
||||
//
|
||||
using EpilogueOp = cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput, // <- data type of output matrix
|
||||
128 / cutlass::sizeof_bits<ElementOutput>::value, // <- this is the number of elements per
|
||||
// vectorized memory access. For half
|
||||
// precision, it's 8 elements. This becomes
|
||||
// the vector width of math instructions in
|
||||
// epilogue too
|
||||
ElementAccumulator, // <- data type of accumulator
|
||||
ElementComputeEpilogue, // <- data type for alpha in linear combination function
|
||||
cutlass::epilogue::thread::ScaleType::NoBetaScaling>; // <- alpha x C + bias
|
||||
|
||||
// Number of pipelines you want to use
|
||||
constexpr int NumStages = 2;
|
||||
|
||||
using Gemm = cutlass::gemm::device::Gemm<ElementInputA,
|
||||
LayoutInputA,
|
||||
ElementInputB,
|
||||
LayoutInputB,
|
||||
ElementOutput,
|
||||
LayoutOutput,
|
||||
ElementAccumulator,
|
||||
MMAOp,
|
||||
SmArch,
|
||||
ShapeMMAThreadBlock,
|
||||
ShapeMMAWarp,
|
||||
ShapeMMAOp,
|
||||
EpilogueOp,
|
||||
SwizzleThreadBlock,
|
||||
NumStages>;
|
||||
|
||||
int run() {
|
||||
|
||||
const int length_m = 5120;
|
||||
const int length_n = 4096;
|
||||
const int length_k = 4096;
|
||||
|
||||
// Create a tuple of problem size for matrix multiplication
|
||||
cutlass::gemm::GemmCoord problem_size(length_m, length_n, length_k);
|
||||
|
||||
// Initialize tensors using CUTLASS helper functions
|
||||
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(
|
||||
problem_size.mk()); // <- Create matrix A with dimensions M x K
|
||||
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(
|
||||
problem_size.kn()); // <- Create matrix B with dimensions K x N
|
||||
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c_bias(
|
||||
{problem_size.m(), 1}); // <- Create matrix C with dimensions M x 1
|
||||
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_d(
|
||||
problem_size.mn()); // <- Create matrix D with dimensions M x N used to store output from
|
||||
// CUTLASS kernel
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_ref_d(
|
||||
problem_size.mn()); // <- Create matrix D with dimensions M x N used to store output from
|
||||
// reference kernel
|
||||
|
||||
// Fill input and output matrices on host using CUTLASS helper functions
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_a.host_view(),
|
||||
1,
|
||||
ElementInputA(4),
|
||||
ElementInputA(-4),
|
||||
0); // <- Fill matrix A on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_b.host_view(),
|
||||
1,
|
||||
ElementInputB(4),
|
||||
ElementInputB(-4),
|
||||
0); // <- Fill matrix B on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_c_bias.host_view(),
|
||||
1,
|
||||
ElementOutput(4),
|
||||
ElementOutput(-4),
|
||||
0); // <- Fill matrix C on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_d.host_view()); // <- fill matrix D on host with zeros
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_ref_d.host_view()); // <- fill matrix D for reference on host with zeros
|
||||
|
||||
// Copy data from host to GPU
|
||||
tensor_a.sync_device();
|
||||
tensor_b.sync_device();
|
||||
tensor_c_bias.sync_device();
|
||||
tensor_d.sync_device();
|
||||
tensor_ref_d.sync_device();
|
||||
|
||||
// Initialize alpha for dot product computation
|
||||
ElementComputeEpilogue alpha = ElementComputeEpilogue(1);
|
||||
|
||||
// Split K dimension into 1 partitions
|
||||
int split_k_slices = 1;
|
||||
|
||||
// Create a tuple of gemm kernel arguments. This is later passed as arguments to launch
|
||||
// instantiated CUTLASS kernel
|
||||
typename Gemm::Arguments arguments{
|
||||
problem_size, // <- problem size of matrix multiplication
|
||||
tensor_a.device_ref(), // <- reference to matrix A on device
|
||||
tensor_b.device_ref(), // <- reference to matrix B on device
|
||||
|
||||
{tensor_c_bias.device_data(), 0}, // <- the C matrix is treated as the bias vector. We can enable the GEMM
|
||||
// to project away the N dimension by setting the stride to zero.
|
||||
|
||||
tensor_d.device_ref(), // <- reference to matrix D on device
|
||||
{alpha}, // <- alpha
|
||||
split_k_slices}; // <- k-dimension split factor
|
||||
|
||||
// Using the arguments, query for extra workspace required for matrix multiplication computation
|
||||
size_t workspace_size = Gemm::get_workspace_size(arguments);
|
||||
|
||||
// Allocate workspace memory
|
||||
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
||||
|
||||
// Instantiate CUTLASS kernel depending on templates
|
||||
Gemm gemm_op;
|
||||
|
||||
// Check the problem size is supported or not
|
||||
cutlass::Status status = gemm_op.can_implement(arguments);
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Initialize CUTLASS kernel with arguments and workspace pointer
|
||||
status = gemm_op.initialize(arguments, workspace.get());
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Launch initialized CUTLASS kernel
|
||||
status = gemm_op();
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
//
|
||||
// Create instantiation for device reference gemm kernel
|
||||
//
|
||||
|
||||
cutlass::reference::device::Gemm<ElementInputA,
|
||||
LayoutInputA,
|
||||
ElementInputB,
|
||||
LayoutInputB,
|
||||
ElementOutput,
|
||||
LayoutOutput,
|
||||
ElementComputeEpilogue,
|
||||
ElementComputeEpilogue>
|
||||
gemm_device_reference;
|
||||
|
||||
// Launch device reference to compute strictly the product A * B
|
||||
gemm_device_reference(
|
||||
problem_size,
|
||||
alpha,
|
||||
tensor_a.device_ref(),
|
||||
tensor_b.device_ref(),
|
||||
0,
|
||||
tensor_ref_d.device_ref());
|
||||
|
||||
// Wait for kernels to finish
|
||||
cudaDeviceSynchronize();
|
||||
|
||||
// Copy output data from CUTLASS and reference kernel to host for comparison
|
||||
tensor_d.sync_host();
|
||||
tensor_ref_d.sync_host();
|
||||
|
||||
// Compute bias + relu in host code
|
||||
for (int i = 0; i < problem_size.m(); ++i) {
|
||||
for (int j = 0; j < problem_size.n(); ++j) {
|
||||
tensor_ref_d.at({i, j}) = std::max(
|
||||
ElementOutput(0),
|
||||
ElementOutput(tensor_ref_d.at({i, j}) + tensor_c_bias.at({i, 0}))
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// Check if output from CUTLASS kernel and reference kernel are equal or not
|
||||
std::cout << (cutlass::reference::host::TensorEquals(tensor_d.host_view(),
|
||||
tensor_ref_d.host_view())
|
||||
? "Passed"
|
||||
: "Failed")
|
||||
<< std::endl;
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main() {
|
||||
|
||||
bool notSupported = false;
|
||||
|
||||
// Turing Tensor Core operations exposed with mma.sync are first available in CUDA 10.2.
|
||||
//
|
||||
// CUTLASS must be compiled with CUDA 10.1 Toolkit to run these examples.
|
||||
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2))) {
|
||||
std::cerr << "Turing Tensor Core operations must be compiled with CUDA 10.2 Toolkit or later." << std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
cudaDeviceProp props;
|
||||
|
||||
cudaError_t error = cudaGetDeviceProperties(&props, 0);
|
||||
if (error != cudaSuccess) {
|
||||
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!(props.major * 10 + props.minor >= 75)) {
|
||||
std::cerr << "Turing Tensor Ops must be run on a machine with compute capability at least 75."
|
||||
<< std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
if (notSupported) {
|
||||
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
|
||||
return 0;
|
||||
}
|
||||
|
||||
return run();
|
||||
}
|
||||
|
||||
45
examples/13_two_tensor_op_fusion/CMakeLists.txt
Normal file
45
examples/13_two_tensor_op_fusion/CMakeLists.txt
Normal file
@ -0,0 +1,45 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
13_fused_two_gemms
|
||||
fused_gemm.cu
|
||||
)
|
||||
|
||||
cutlass_example_add_executable(
|
||||
13_fused_two_convs
|
||||
fused_conv2d.cu
|
||||
)
|
||||
|
||||
|
||||
target_include_directories(
|
||||
13_fused_two_gemms
|
||||
PRIVATE
|
||||
.
|
||||
)
|
||||
|
||||
target_include_directories(
|
||||
13_fused_two_convs
|
||||
PRIVATE
|
||||
.
|
||||
)
|
||||
|
||||
80
examples/13_two_tensor_op_fusion/README.md
Normal file
80
examples/13_two_tensor_op_fusion/README.md
Normal file
@ -0,0 +1,80 @@
|
||||
# Introduction
|
||||
|
||||
This example shows fusing two back-to-back GEMMs/Convolutions into one kernel.
|
||||
|
||||
<p align="center"><img src=/media/images/13_example_fusion.png></p>
|
||||
|
||||
When running two unfused GEMM/Conv operations, each operation loads one input
|
||||
activation matrix, one weight matrix (or filter matrix) from the memory and then
|
||||
stores the result activation matrix back to the memory.
|
||||
|
||||
When the two GEMM/Conv operations are fused together, the mainloops of the two
|
||||
GEMMs/Convs run back to back in a single kernel. The output accumulator of the
|
||||
1st GEMM/Conv will be stored in the register file and reused as the activation
|
||||
input of the 2nd GEMM/Conv. This saves a round trip to memory for the activation
|
||||
matrix.
|
||||
|
||||
|
||||
This example computes the following:
|
||||
- 1st GEMM/Conv: D0 = relu(alpha0 .\* A0 \*\* B0)
|
||||
- 2nd GEMM/Conv: D1 = relu(alpha1 .\* D0 \*\* B1 + beta1 .\* C1)
|
||||
|
||||
In the above equation, operator \*\* can be matrix multiplication or convolution operation.
|
||||
|
||||
# Implementation Details
|
||||
|
||||
In order to run two GEMM/Convs in a single kernel, the example requires the same number of
|
||||
threadblocks are used across 2 GEMMs/Convs. This also ensures the same threadblock tile M across
|
||||
2 GEMMs/Convs.
|
||||
|
||||
In order to reuse the output accumulator (stored in register-file) of the 1st GEMM as the
|
||||
input activation, the example enforces the following two constraints:
|
||||
|
||||
- thread_block_tile_N = problem_N
|
||||
|
||||
<p align="center"><img src=/media/images/13_example_block_resident_fusion.png></p>
|
||||
|
||||
This constraint ensures that each threadblock loads the entire weight/filter matrix in
|
||||
addition to its own input activation tile. Therefore the input activation tile of the
|
||||
2nd GEMM/Conv only depends on the output activation tile of the 1st GEMM/Conv, and the
|
||||
operation can be fully block-resident.
|
||||
|
||||
- warp_tile_N = thread_block_tile_N
|
||||
|
||||
<p align="center"><img src=/media/images/13_example_rf_resident_fusion.png></p>
|
||||
|
||||
This constraint ensures that each warp loads the entire weight/filter kBlock in
|
||||
addition to its own input activation tile. Therefore the input activation warp tile of the
|
||||
2nd GEMM/Conv only depends on the output warp accumulator of the 1st GEMM/Conv in the
|
||||
register file, and the operation can be fully register-file-resident.
|
||||
|
||||
When applying the above constraint to convolutions, it is required that the 2nd Convolution
|
||||
kernel doesn't have halos such that data used by each threadblock doesn't depend on any other
|
||||
threadblock. Typically this requires the 2nd Convolution uses 1x1 filter without any paddings.
|
||||
|
||||
# Copyright
|
||||
|
||||
Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
|
||||
```
|
||||
Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
provided that the following conditions are met:
|
||||
* Redistributions of source code must retain the above copyright notice, this list of
|
||||
conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
conditions and the following disclaimer in the documentation and/or other materials
|
||||
provided with the distribution.
|
||||
* Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
to endorse or promote products derived from this software without specific prior written
|
||||
permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
```
|
||||
|
||||
@ -0,0 +1,371 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Tests for device-wide GEMM interface
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
|
||||
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
|
||||
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
||||
|
||||
#include "device/b2b_implicit_gemm_convolution.h"
|
||||
#include "b2b_conv2d_run.h"
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
cutlass::conv::Conv2dProblemSize conv2d_f16_sm75_problem_size_0 (
|
||||
{128, 56, 56, 64}, // input size (NHWC)
|
||||
{64, 3, 3, 64}, // filter size (KRSC)
|
||||
{1, 1, 1, 1}, // padding (pad_h, _, pad_w, _)
|
||||
{1, 1}, // stride (stride_h, stride_w)
|
||||
{1, 1}, // dilation (dilation_h, dilation_w)
|
||||
{128, 56, 56, 64} // output size (NPQK)
|
||||
);
|
||||
cutlass::conv::Conv2dProblemSize conv2d_f16_sm75_problem_size_1 (
|
||||
{128, 56, 56, 64}, // input size (NHWC)
|
||||
{64, 1, 1, 64}, // filter size (KRSC)
|
||||
{0, 0, 0, 0}, // padding (pad_h, _, pad_w, _)
|
||||
{1, 1}, // stride (stride_h, stride_w)
|
||||
{1, 1}, // dilation (dilation_h, dilation_w)
|
||||
{128, 56, 56, 64} // output size (NPQK)
|
||||
);
|
||||
|
||||
bool run_nonfused_conv2d_fprop_f16_sm75() {
|
||||
|
||||
using ElementA = cutlass::half_t;
|
||||
using ElementB = cutlass::half_t;
|
||||
using ElementC = cutlass::half_t;
|
||||
using ElementAccumulator = cutlass::half_t;
|
||||
using ElementCompute = cutlass::half_t;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 32>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 32>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
||||
|
||||
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNHWC,
|
||||
ElementB, cutlass::layout::TensorNHWC,
|
||||
ElementC, cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape0,
|
||||
WarpShape0,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
128 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kAnalytic
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop0 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel0>;
|
||||
|
||||
using Conv2dFpropKernel1 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNHWC,
|
||||
ElementB, cutlass::layout::TensorNHWC,
|
||||
ElementC, cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape1,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
128 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kAnalytic
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop1 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel1>;
|
||||
|
||||
B2bNonFusedConv2dRun<Conv2dFprop0, Conv2dFprop1> nonFusedConv2d;
|
||||
|
||||
std::cout << "Running Non-fused back-to-back FP16 Analytic Convolution Fprops...\n";
|
||||
bool pass = nonFusedConv2d.run(conv2d_f16_sm75_problem_size_0, conv2d_f16_sm75_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_fused_conv2d_fprop_f16_sm75() {
|
||||
|
||||
using ElementA = cutlass::half_t;
|
||||
using ElementB = cutlass::half_t;
|
||||
using ElementC = cutlass::half_t;
|
||||
using ElementAccumulator = cutlass::half_t;
|
||||
using ElementCompute = cutlass::half_t;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 32>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 32>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
||||
|
||||
using EpilogueOutputOp0 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
InstructionShape::kM * InstructionShape::kN / 32,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>;
|
||||
|
||||
using EpilogueOutputOp1 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
128 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>;
|
||||
|
||||
|
||||
|
||||
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNHWC,
|
||||
ElementB, cutlass::layout::TensorNHWC,
|
||||
ElementC, cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp0,
|
||||
EpilogueOutputOp1,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kAnalytic
|
||||
>::Kernel;
|
||||
|
||||
using B2bConv2dFprop = cutlass::conv::device::B2bImplicitGemmConvolution<B2bConv2dFpropKernel>;
|
||||
|
||||
B2bFusedConv2dRun<B2bConv2dFprop> fusedConv2d;
|
||||
|
||||
std::cout << "Running Fused back-to-back FP16 Analytic Convolution Fprops...\n";
|
||||
bool pass = fusedConv2d.run(conv2d_f16_sm75_problem_size_0, conv2d_f16_sm75_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_nonfused_conv2d_fprop_optimized_f16_sm75() {
|
||||
|
||||
using ElementA = cutlass::half_t;
|
||||
using ElementB = cutlass::half_t;
|
||||
using ElementC = cutlass::half_t;
|
||||
using ElementAccumulator = cutlass::half_t;
|
||||
using ElementCompute = cutlass::half_t;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 32>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 32>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
||||
|
||||
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNHWC,
|
||||
ElementB, cutlass::layout::TensorNHWC,
|
||||
ElementC, cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape0,
|
||||
WarpShape0,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
128 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop0 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel0>;
|
||||
|
||||
using Conv2dFpropKernel1 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNHWC,
|
||||
ElementB, cutlass::layout::TensorNHWC,
|
||||
ElementC, cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape1,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
128 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop1 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel1>;
|
||||
|
||||
B2bNonFusedConv2dRun<Conv2dFprop0, Conv2dFprop1> nonFusedConv2d;
|
||||
|
||||
std::cout << "Running Non-fused back-to-back FP16 Optimized Convolution Fprops...\n";
|
||||
bool pass = nonFusedConv2d.run(conv2d_f16_sm75_problem_size_0, conv2d_f16_sm75_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_fused_conv2d_fprop_optimized_f16_sm75() {
|
||||
|
||||
using ElementA = cutlass::half_t;
|
||||
using ElementB = cutlass::half_t;
|
||||
using ElementC = cutlass::half_t;
|
||||
using ElementAccumulator = cutlass::half_t;
|
||||
using ElementCompute = cutlass::half_t;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 32>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 32>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
||||
|
||||
using EpilogueOutputOp0 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
InstructionShape::kM * InstructionShape::kN / 32,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>;
|
||||
|
||||
using EpilogueOutputOp1 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
128 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>;
|
||||
|
||||
|
||||
|
||||
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNHWC,
|
||||
ElementB, cutlass::layout::TensorNHWC,
|
||||
ElementC, cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp0,
|
||||
EpilogueOutputOp1,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using B2bConv2dFprop = cutlass::conv::device::B2bImplicitGemmConvolution<B2bConv2dFpropKernel>;
|
||||
|
||||
B2bFusedConv2dRun<B2bConv2dFprop> fusedConv2d;
|
||||
|
||||
std::cout << "Running Fused back-to-back FP16 Optimized Convolution Fprops...\n";
|
||||
bool pass = fusedConv2d.run(conv2d_f16_sm75_problem_size_0, conv2d_f16_sm75_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
@ -0,0 +1,367 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Tests for device-wide GEMM interface
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
|
||||
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
|
||||
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
||||
|
||||
#include "device/b2b_implicit_gemm_convolution.h"
|
||||
#include "b2b_conv2d_run.h"
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
cutlass::conv::Conv2dProblemSize conv2d_f16_sm80_problem_size_0 (
|
||||
{128, 56, 56, 64}, // input size (NHWC)
|
||||
{64, 3, 3, 64}, // filter size (KRSC)
|
||||
{1, 1, 1, 1}, // padding (pad_h, _, pad_w, _)
|
||||
{1, 1}, // stride (stride_h, stride_w)
|
||||
{1, 1}, // dilation (dilation_h, dilation_w)
|
||||
{128, 56, 56, 64} // output size (NPQK)
|
||||
);
|
||||
cutlass::conv::Conv2dProblemSize conv2d_f16_sm80_problem_size_1 (
|
||||
{128, 56, 56, 64}, // input size (NHWC)
|
||||
{64, 1, 1, 64}, // filter size (KRSC)
|
||||
{0, 0, 0, 0}, // padding (pad_h, _, pad_w, _)
|
||||
{1, 1}, // stride (stride_h, stride_w)
|
||||
{1, 1}, // dilation (dilation_h, dilation_w)
|
||||
{128, 56, 56, 64} // output size (NPQK)
|
||||
);
|
||||
|
||||
bool run_nonfused_conv2d_fprop_f16_sm80() {
|
||||
|
||||
using ElementA = cutlass::half_t;
|
||||
using ElementB = cutlass::half_t;
|
||||
using ElementC = cutlass::half_t;
|
||||
using ElementAccumulator = cutlass::half_t;
|
||||
using ElementCompute = cutlass::half_t;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
|
||||
|
||||
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNHWC,
|
||||
ElementB, cutlass::layout::TensorNHWC,
|
||||
ElementC, cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape0,
|
||||
WarpShape0,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
128 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kAnalytic
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop0 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel0>;
|
||||
|
||||
using Conv2dFpropKernel1 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNHWC,
|
||||
ElementB, cutlass::layout::TensorNHWC,
|
||||
ElementC, cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape1,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
128 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kAnalytic
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop1 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel1>;
|
||||
|
||||
B2bNonFusedConv2dRun<Conv2dFprop0, Conv2dFprop1> nonFusedConv2d;
|
||||
|
||||
std::cout << "Running Non-fused back-to-back FP16 Analytic Convolution Fprops...\n";
|
||||
bool pass = nonFusedConv2d.run(conv2d_f16_sm80_problem_size_0, conv2d_f16_sm80_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_fused_conv2d_fprop_f16_sm80() {
|
||||
|
||||
using ElementA = cutlass::half_t;
|
||||
using ElementB = cutlass::half_t;
|
||||
using ElementC = cutlass::half_t;
|
||||
using ElementAccumulator = cutlass::half_t;
|
||||
using ElementCompute = cutlass::half_t;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
|
||||
|
||||
using EpilogueOutputOp0 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
InstructionShape::kM * InstructionShape::kN / 32,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>;
|
||||
|
||||
using EpilogueOutputOp1 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
128 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>;
|
||||
|
||||
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNHWC,
|
||||
ElementB, cutlass::layout::TensorNHWC,
|
||||
ElementC, cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp0,
|
||||
EpilogueOutputOp1,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kAnalytic
|
||||
>::Kernel;
|
||||
|
||||
using B2bConv2dFprop = cutlass::conv::device::B2bImplicitGemmConvolution<B2bConv2dFpropKernel>;
|
||||
|
||||
B2bFusedConv2dRun<B2bConv2dFprop> fusedConv2d;
|
||||
|
||||
std::cout << "Running Fused back-to-back FP16 Analytic Convolution Fprops...\n";
|
||||
bool pass = fusedConv2d.run(conv2d_f16_sm80_problem_size_0, conv2d_f16_sm80_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_nonfused_conv2d_fprop_optimized_f16_sm80() {
|
||||
|
||||
using ElementA = cutlass::half_t;
|
||||
using ElementB = cutlass::half_t;
|
||||
using ElementC = cutlass::half_t;
|
||||
using ElementAccumulator = cutlass::half_t;
|
||||
using ElementCompute = cutlass::half_t;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
|
||||
|
||||
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNHWC,
|
||||
ElementB, cutlass::layout::TensorNHWC,
|
||||
ElementC, cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape0,
|
||||
WarpShape0,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
128 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop0 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel0>;
|
||||
|
||||
using Conv2dFpropKernel1 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNHWC,
|
||||
ElementB, cutlass::layout::TensorNHWC,
|
||||
ElementC, cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape1,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
128 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop1 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel1>;
|
||||
|
||||
B2bNonFusedConv2dRun<Conv2dFprop0, Conv2dFprop1> nonFusedConv2d;
|
||||
|
||||
std::cout << "Running Non-fused back-to-back FP16 Optimized Convolution Fprops...\n";
|
||||
bool pass = nonFusedConv2d.run(conv2d_f16_sm80_problem_size_0, conv2d_f16_sm80_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_fused_conv2d_fprop_optimized_f16_sm80() {
|
||||
|
||||
using ElementA = cutlass::half_t;
|
||||
using ElementB = cutlass::half_t;
|
||||
using ElementC = cutlass::half_t;
|
||||
using ElementAccumulator = cutlass::half_t;
|
||||
using ElementCompute = cutlass::half_t;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
|
||||
|
||||
using EpilogueOutputOp0 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
InstructionShape::kM * InstructionShape::kN / 32,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>;
|
||||
|
||||
using EpilogueOutputOp1 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
128 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>;
|
||||
|
||||
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNHWC,
|
||||
ElementB, cutlass::layout::TensorNHWC,
|
||||
ElementC, cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp0,
|
||||
EpilogueOutputOp1,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using B2bConv2dFprop = cutlass::conv::device::B2bImplicitGemmConvolution<B2bConv2dFpropKernel>;
|
||||
|
||||
B2bFusedConv2dRun<B2bConv2dFprop> fusedConv2d;
|
||||
|
||||
std::cout << "Running Fused back-to-back FP16 Optimized Convolution Fprops...\n";
|
||||
bool pass = fusedConv2d.run(conv2d_f16_sm80_problem_size_0, conv2d_f16_sm80_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -0,0 +1,371 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Tests for device-wide GEMM interface
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
|
||||
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
|
||||
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
||||
|
||||
#include "device/b2b_implicit_gemm_convolution.h"
|
||||
#include "b2b_interleaved_conv2d_run.h"
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
cutlass::conv::Conv2dProblemSize conv2d_s8_sm75_problem_size_0 (
|
||||
{128, 56, 56, 64}, // input size (NHWC)
|
||||
{64, 3, 3, 64}, // filter size (KRSC)
|
||||
{1, 1, 1, 1}, // padding (pad_h, _, pad_w, _)
|
||||
{1, 1}, // stride (stride_h, stride_w)
|
||||
{1, 1}, // dilation (dilation_h, dilation_w)
|
||||
{128, 56, 56, 64} // output size (NPQK)
|
||||
);
|
||||
cutlass::conv::Conv2dProblemSize conv2d_s8_sm75_problem_size_1 (
|
||||
{128, 56, 56, 64}, // input size (NHWC)
|
||||
{64, 1, 1, 64}, // filter size (KRSC)
|
||||
{0, 0, 0, 0}, // padding (pad_h, _, pad_w, _)
|
||||
{1, 1}, // stride (stride_h, stride_w)
|
||||
{1, 1}, // dilation (dilation_h, dilation_w)
|
||||
{128, 56, 56, 64} // output size (NPQK)
|
||||
);
|
||||
|
||||
bool run_nonfused_conv2d_fprop_s8_sm75() {
|
||||
|
||||
using ElementA = int8_t;
|
||||
using ElementB = int8_t;
|
||||
using ElementC = int8_t;
|
||||
using ElementAccumulator = int32_t;
|
||||
using ElementCompute = float;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
||||
|
||||
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementB, cutlass::layout::TensorCxRSKx<32>,
|
||||
ElementC, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape0,
|
||||
WarpShape0,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
64 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAddSaturate,
|
||||
cutlass::conv::IteratorAlgorithm::kAnalytic
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop0 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel0>;
|
||||
|
||||
using Conv2dFpropKernel1 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementB, cutlass::layout::TensorCxRSKx<32>,
|
||||
ElementC, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape1,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
64 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAddSaturate,
|
||||
cutlass::conv::IteratorAlgorithm::kAnalytic
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop1 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel1>;
|
||||
|
||||
B2bInterleavedNonFusedConv2dRun<Conv2dFprop0, Conv2dFprop1, 32> nonFusedConv2d;
|
||||
|
||||
std::cout << "Running Non-fused back-to-back INT8 interleaved Analytic Convolution Fprops...\n";
|
||||
bool pass = nonFusedConv2d.run(conv2d_s8_sm75_problem_size_0, conv2d_s8_sm75_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_fused_conv2d_fprop_s8_sm75() {
|
||||
|
||||
using ElementA = int8_t;
|
||||
using ElementB = int8_t;
|
||||
using ElementC = int8_t;
|
||||
using ElementAccumulator = int32_t;
|
||||
using ElementCompute = float;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
||||
|
||||
using EpilogueOutputOp0 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
InstructionShape::kM * InstructionShape::kN / 32,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>;
|
||||
|
||||
using EpilogueOutputOp1 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
64 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>;
|
||||
|
||||
|
||||
|
||||
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementB, cutlass::layout::TensorCxRSKx<32>,
|
||||
ElementC, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp0,
|
||||
EpilogueOutputOp1,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAddSaturate,
|
||||
cutlass::conv::IteratorAlgorithm::kAnalytic
|
||||
>::Kernel;
|
||||
|
||||
using B2bConv2dFprop = cutlass::conv::device::B2bImplicitGemmConvolution<B2bConv2dFpropKernel>;
|
||||
|
||||
B2bInterleavedFusedConv2dRun<B2bConv2dFprop, 32> fusedConv2d;
|
||||
|
||||
std::cout << "Running Fused back-to-back INT8 interleaved Analytic Convolution Fprops...\n";
|
||||
bool pass = fusedConv2d.run(conv2d_s8_sm75_problem_size_0, conv2d_s8_sm75_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_nonfused_conv2d_fprop_optimized_s8_sm75() {
|
||||
|
||||
using ElementA = int8_t;
|
||||
using ElementB = int8_t;
|
||||
using ElementC = int8_t;
|
||||
using ElementAccumulator = int32_t;
|
||||
using ElementCompute = float;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
||||
|
||||
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementB, cutlass::layout::TensorCxRSKx<32>,
|
||||
ElementC, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape0,
|
||||
WarpShape0,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
64 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAddSaturate,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop0 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel0>;
|
||||
|
||||
using Conv2dFpropKernel1 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementB, cutlass::layout::TensorCxRSKx<32>,
|
||||
ElementC, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape1,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
64 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAddSaturate,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop1 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel1>;
|
||||
|
||||
B2bInterleavedNonFusedConv2dRun<Conv2dFprop0, Conv2dFprop1, 32> nonFusedConv2d;
|
||||
|
||||
std::cout << "Running Non-fused back-to-back INT8 interleaved Optimized Convolution Fprops...\n";
|
||||
bool pass = nonFusedConv2d.run(conv2d_s8_sm75_problem_size_0, conv2d_s8_sm75_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_fused_conv2d_fprop_optimized_s8_sm75() {
|
||||
|
||||
using ElementA = int8_t;
|
||||
using ElementB = int8_t;
|
||||
using ElementC = int8_t;
|
||||
using ElementAccumulator = int32_t;
|
||||
using ElementCompute = float;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
||||
|
||||
using EpilogueOutputOp0 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
InstructionShape::kM * InstructionShape::kN / 32,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>;
|
||||
|
||||
using EpilogueOutputOp1 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
64 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>;
|
||||
|
||||
|
||||
|
||||
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementB, cutlass::layout::TensorCxRSKx<32>,
|
||||
ElementC, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp0,
|
||||
EpilogueOutputOp1,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAddSaturate,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using B2bConv2dFprop = cutlass::conv::device::B2bImplicitGemmConvolution<B2bConv2dFpropKernel>;
|
||||
|
||||
B2bInterleavedFusedConv2dRun<B2bConv2dFprop, 32> fusedConv2d;
|
||||
|
||||
std::cout << "Running Fused back-to-back INT8 interleaved Optimized Convolution Fprops...\n";
|
||||
bool pass = fusedConv2d.run(conv2d_s8_sm75_problem_size_0, conv2d_s8_sm75_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -0,0 +1,372 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Tests for device-wide GEMM interface
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
|
||||
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
|
||||
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
||||
|
||||
#include "device/b2b_implicit_gemm_convolution.h"
|
||||
#include "b2b_interleaved_conv2d_run.h"
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
cutlass::conv::Conv2dProblemSize conv2d_s8_sm80_problem_size_0 (
|
||||
{128, 56, 56, 64}, // input size (NHWC)
|
||||
{64, 3, 3, 64}, // filter size (KRSC)
|
||||
{1, 1, 1, 1}, // padding (pad_h, _, pad_w, _)
|
||||
{1, 1}, // stride (stride_h, stride_w)
|
||||
{1, 1}, // dilation (dilation_h, dilation_w)
|
||||
{128, 56, 56, 64} // output size (NPQK)
|
||||
);
|
||||
cutlass::conv::Conv2dProblemSize conv2d_s8_sm80_problem_size_1 (
|
||||
{128, 56, 56, 64}, // input size (NHWC)
|
||||
{64, 1, 1, 64}, // filter size (KRSC)
|
||||
{0, 0, 0, 0}, // padding (pad_h, _, pad_w, _)
|
||||
{1, 1}, // stride (stride_h, stride_w)
|
||||
{1, 1}, // dilation (dilation_h, dilation_w)
|
||||
{128, 56, 56, 64} // output size (NPQK)
|
||||
);
|
||||
|
||||
bool run_nonfused_conv2d_fprop_s8_sm80() {
|
||||
|
||||
using ElementA = int8_t;
|
||||
using ElementB = int8_t;
|
||||
using ElementC = int8_t;
|
||||
using ElementAccumulator = int32_t;
|
||||
using ElementCompute = float;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>;
|
||||
|
||||
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementB, cutlass::layout::TensorCxRSKx<32>,
|
||||
ElementC, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape0,
|
||||
WarpShape0,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
64 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3,
|
||||
cutlass::arch::OpMultiplyAddSaturate,
|
||||
cutlass::conv::IteratorAlgorithm::kAnalytic
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop0 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel0>;
|
||||
|
||||
using Conv2dFpropKernel1 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementB, cutlass::layout::TensorCxRSKx<32>,
|
||||
ElementC, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape1,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
64 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3,
|
||||
cutlass::arch::OpMultiplyAddSaturate,
|
||||
cutlass::conv::IteratorAlgorithm::kAnalytic
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop1 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel1>;
|
||||
|
||||
B2bInterleavedNonFusedConv2dRun<Conv2dFprop0, Conv2dFprop1, 32> nonFusedConv2d;
|
||||
|
||||
std::cout << "Running Non-fused back-to-back INT8 interleaved Analytic Convolution Fprops...\n";
|
||||
bool pass = nonFusedConv2d.run(conv2d_s8_sm80_problem_size_0, conv2d_s8_sm80_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_fused_conv2d_fprop_s8_sm80() {
|
||||
|
||||
using ElementA = int8_t;
|
||||
using ElementB = int8_t;
|
||||
using ElementC = int8_t;
|
||||
using ElementAccumulator = int32_t;
|
||||
using ElementCompute = float;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>;
|
||||
|
||||
using EpilogueOutputOp0 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
8 * InstructionShape::kN / 32,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>;
|
||||
|
||||
using EpilogueOutputOp1 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
64 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>;
|
||||
|
||||
|
||||
|
||||
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementB, cutlass::layout::TensorCxRSKx<32>,
|
||||
ElementC, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp0,
|
||||
EpilogueOutputOp1,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3,
|
||||
cutlass::arch::OpMultiplyAddSaturate,
|
||||
cutlass::conv::IteratorAlgorithm::kAnalytic
|
||||
>::Kernel;
|
||||
|
||||
using B2bConv2dFprop = cutlass::conv::device::B2bImplicitGemmConvolution<B2bConv2dFpropKernel>;
|
||||
|
||||
B2bInterleavedFusedConv2dRun<B2bConv2dFprop, 32> fusedConv2d;
|
||||
|
||||
std::cout << "Running Fused back-to-back INT8 interleaved Analytic Convolution Fprops...\n";
|
||||
bool pass = fusedConv2d.run(conv2d_s8_sm80_problem_size_0, conv2d_s8_sm80_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_nonfused_conv2d_fprop_optimized_s8_sm80() {
|
||||
|
||||
using ElementA = int8_t;
|
||||
using ElementB = int8_t;
|
||||
using ElementC = int8_t;
|
||||
using ElementAccumulator = int32_t;
|
||||
using ElementCompute = float;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>;
|
||||
|
||||
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementB, cutlass::layout::TensorCxRSKx<32>,
|
||||
ElementC, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape0,
|
||||
WarpShape0,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
64 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3,
|
||||
cutlass::arch::OpMultiplyAddSaturate,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop0 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel0>;
|
||||
|
||||
using Conv2dFpropKernel1 = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementB, cutlass::layout::TensorCxRSKx<32>,
|
||||
ElementC, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape1,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
64 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3,
|
||||
cutlass::arch::OpMultiplyAddSaturate,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop1 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel1>;
|
||||
|
||||
B2bInterleavedNonFusedConv2dRun<Conv2dFprop0, Conv2dFprop1, 32> nonFusedConv2d;
|
||||
|
||||
std::cout << "Running Non-fused back-to-back INT8 interleaved Optimized Convolution Fprops...\n";
|
||||
bool pass = nonFusedConv2d.run(conv2d_s8_sm80_problem_size_0, conv2d_s8_sm80_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_fused_conv2d_fprop_optimized_s8_sm80() {
|
||||
|
||||
using ElementA = int8_t;
|
||||
using ElementB = int8_t;
|
||||
using ElementC = int8_t;
|
||||
using ElementAccumulator = int32_t;
|
||||
using ElementCompute = float;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(1);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(1);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>;
|
||||
|
||||
using EpilogueOutputOp0 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
8 * InstructionShape::kN / 32,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>;
|
||||
|
||||
using EpilogueOutputOp1 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementC,
|
||||
64 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>;
|
||||
|
||||
|
||||
|
||||
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementB, cutlass::layout::TensorCxRSKx<32>,
|
||||
ElementC, cutlass::layout::TensorNCxHWx<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp0,
|
||||
EpilogueOutputOp1,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3,
|
||||
cutlass::arch::OpMultiplyAddSaturate,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using B2bConv2dFprop = cutlass::conv::device::B2bImplicitGemmConvolution<B2bConv2dFpropKernel>;
|
||||
|
||||
B2bInterleavedFusedConv2dRun<B2bConv2dFprop, 32> fusedConv2d;
|
||||
|
||||
std::cout << "Running Fused back-to-back INT8 interleaved Optimized Convolution Fprops...\n";
|
||||
bool pass = fusedConv2d.run(conv2d_s8_sm80_problem_size_0, conv2d_s8_sm80_problem_size_1, cutlass::conv::SplitKMode::kSerial,
|
||||
alpha0, beta0, alpha1, beta1);
|
||||
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
628
examples/13_two_tensor_op_fusion/b2b_conv2d_run.h
Normal file
628
examples/13_two_tensor_op_fusion/b2b_conv2d_run.h
Normal file
@ -0,0 +1,628 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Implicit GEMM testbed
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
|
||||
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
||||
#include "cutlass/reduction/device/reduce_split_k.h"
|
||||
#include "cutlass/reduction/thread/reduction_operators.h"
|
||||
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/reference/device/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_norm.h"
|
||||
|
||||
#include "cutlass/util/reference/host/convolution.h"
|
||||
#include "cutlass/util/reference/device/convolution.h"
|
||||
#include "cutlass/util/reference/device/tensor_relu.h"
|
||||
|
||||
#include "cutlass/core_io.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
|
||||
#include "helper.h"
|
||||
|
||||
#define CHECK_GT(val1, val2) \
|
||||
if((val1) <= (val2)) \
|
||||
std::cerr << __FILE__ << " " << __LINE__ << ": CHECK_GT failed\n";
|
||||
#define CHECK_TRUE(val) \
|
||||
if(!(val)) \
|
||||
std::cerr << __FILE__ << " " << __LINE__ << ": CHECK_TRUE failed\n";
|
||||
|
||||
|
||||
template <typename Conv2d0_, typename Conv2d1_>
|
||||
class B2bNonFusedConv2dRun {
|
||||
public:
|
||||
|
||||
using Conv2d0 = Conv2d0_;
|
||||
using Conv2d1 = Conv2d1_;
|
||||
using ElementAccumulator = typename Conv2d0::ElementAccumulator;
|
||||
using ElementCompute = typename Conv2d0::ElementCompute;
|
||||
|
||||
static cutlass::conv::Operator const kConvolutionalOperator = Conv2d0::kConvolutionalOperator;
|
||||
static_assert(kConvolutionalOperator == Conv2d1::kConvolutionalOperator,
|
||||
"Fused convolution operators must be the same");
|
||||
|
||||
public:
|
||||
|
||||
/// Initialization
|
||||
cutlass::Distribution::Kind init_A;
|
||||
cutlass::Distribution::Kind init_B;
|
||||
cutlass::Distribution::Kind init_C;
|
||||
uint64_t seed;
|
||||
|
||||
cutlass::HostTensor<typename Conv2d0::ElementA, typename Conv2d0::LayoutA> tensor_A0;
|
||||
cutlass::HostTensor<typename Conv2d0::ElementB, typename Conv2d0::LayoutB> tensor_B0;
|
||||
cutlass::HostTensor<typename Conv2d0::ElementC, typename Conv2d0::LayoutC> tensor_C0;
|
||||
cutlass::HostTensor<typename Conv2d0::ElementC, typename Conv2d0::LayoutC> tensor_D0_computed;
|
||||
cutlass::HostTensor<typename Conv2d0::ElementC, typename Conv2d0::LayoutC> tensor_D0_reference;
|
||||
|
||||
cutlass::HostTensor<typename Conv2d1::ElementB, typename Conv2d1::LayoutB> tensor_B1;
|
||||
cutlass::HostTensor<typename Conv2d1::ElementC, typename Conv2d1::LayoutC> tensor_C1;
|
||||
cutlass::HostTensor<typename Conv2d1::ElementC, typename Conv2d1::LayoutC> tensor_D1_computed;
|
||||
cutlass::HostTensor<typename Conv2d1::ElementC, typename Conv2d1::LayoutC> tensor_D1_reference;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
B2bNonFusedConv2dRun(
|
||||
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
|
||||
uint64_t seed_ = 2080
|
||||
):
|
||||
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) {
|
||||
|
||||
}
|
||||
|
||||
/// Helper to initialize a tensor view
|
||||
template <typename Element, typename Layout>
|
||||
void initialize_tensor(
|
||||
cutlass::TensorView<Element, Layout> view,
|
||||
cutlass::Distribution::Kind dist_kind,
|
||||
uint64_t seed) {
|
||||
|
||||
if (dist_kind == cutlass::Distribution::Uniform) {
|
||||
|
||||
int scope;
|
||||
int bits = cutlass::sizeof_bits<Element>::value;
|
||||
|
||||
if (bits <= 16) {
|
||||
scope = 2;
|
||||
}
|
||||
else {
|
||||
scope = 8;
|
||||
}
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
view, seed, scope, -scope, 0);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Identity) {
|
||||
|
||||
cutlass::reference::host::TensorFillIdentity(view);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Gaussian) {
|
||||
|
||||
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Sequential) {
|
||||
|
||||
cutlass::reference::host::BlockFillSequential(view.data(), view.capacity());
|
||||
}
|
||||
else {
|
||||
}
|
||||
}
|
||||
|
||||
void initialize(
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_0,
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_1, uint64_t seed = 2019) {
|
||||
|
||||
tensor_A0.resize(implicit_gemm_tensor_a_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_B0.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_C0.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_D0_computed.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_D0_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_B1.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_1));
|
||||
tensor_C1.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1));
|
||||
tensor_D1_computed.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1));
|
||||
tensor_D1_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1));
|
||||
|
||||
initialize_tensor(tensor_A0.host_view(), init_A, seed);
|
||||
initialize_tensor(tensor_B0.host_view(), init_B, seed * 17);
|
||||
initialize_tensor(tensor_C0.host_view(), init_C, seed * 39);
|
||||
initialize_tensor(tensor_B1.host_view(), init_B, seed * 18);
|
||||
initialize_tensor(tensor_C1.host_view(), init_C, seed * 40);
|
||||
|
||||
tensor_A0.sync_device();
|
||||
tensor_B0.sync_device();
|
||||
tensor_C0.sync_device();
|
||||
tensor_D0_computed.sync_device();
|
||||
tensor_D0_reference.sync_device();
|
||||
tensor_B1.sync_device();
|
||||
tensor_C1.sync_device();
|
||||
tensor_D1_computed.sync_device();
|
||||
tensor_D1_reference.sync_device();
|
||||
}
|
||||
|
||||
/// Executes one test
|
||||
bool run(
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_0,
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_1,
|
||||
cutlass::conv::SplitKMode const &split_k_mode = cutlass::conv::SplitKMode::kSerial,
|
||||
ElementCompute alpha0 = ElementCompute(1),
|
||||
ElementCompute beta0 = ElementCompute(0),
|
||||
ElementCompute alpha1 = ElementCompute(1),
|
||||
ElementCompute beta1 = ElementCompute(0),
|
||||
bool relu = true,
|
||||
int warm_ups = 1,
|
||||
int runs = 100) {
|
||||
|
||||
initialize(problem_size_0, problem_size_1);
|
||||
|
||||
// configure the operator
|
||||
Conv2d0 conv2d_op_0;
|
||||
Conv2d1 conv2d_op_1;
|
||||
|
||||
typename Conv2d0::Arguments conv2d_args_0(
|
||||
problem_size_0,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0.device_ref(),
|
||||
tensor_C0.device_ref(),
|
||||
tensor_D0_computed.device_ref(),
|
||||
{alpha0, beta0},
|
||||
split_k_mode
|
||||
);
|
||||
typename Conv2d1::Arguments conv2d_args_1(
|
||||
problem_size_1,
|
||||
tensor_D0_computed.device_ref(),
|
||||
tensor_B1.device_ref(),
|
||||
tensor_C1.device_ref(),
|
||||
tensor_D1_computed.device_ref(),
|
||||
{alpha1, beta1},
|
||||
split_k_mode
|
||||
);
|
||||
|
||||
|
||||
cutlass::Status status = conv2d_op_0.initialize(conv2d_args_0);
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
status = conv2d_op_1.initialize(conv2d_args_1);
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
for(int i = 0; i < warm_ups; i++) {
|
||||
status = conv2d_op_0();
|
||||
CUTLASS_CHECK(status);
|
||||
status = conv2d_op_1();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
//
|
||||
// Run Conv2d
|
||||
//
|
||||
cudaEvent_t start, stop1, stop2;
|
||||
cudaEventCreate(&start);
|
||||
cudaEventCreate(&stop1);
|
||||
cudaEventCreate(&stop2);
|
||||
|
||||
cudaEventRecord(start);
|
||||
|
||||
|
||||
for(int i = 0; i < runs; i++) {
|
||||
// run conv2d operator
|
||||
status = conv2d_op_0();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
cudaEventRecord(stop1);
|
||||
|
||||
for(int i = 0; i < runs; i++) {
|
||||
// run conv2d operator
|
||||
status = conv2d_op_1();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
cudaEventRecord(stop2);
|
||||
cudaDeviceSynchronize();
|
||||
float conv2d0Time, conv2d1Time, totalTime;
|
||||
cudaEventElapsedTime(&conv2d0Time, start, stop1);
|
||||
cudaEventElapsedTime(&conv2d1Time, stop1, stop2);
|
||||
cudaEventElapsedTime(&totalTime, start, stop2);
|
||||
std::cout << "conv2d 0 time " << conv2d0Time / (float)runs << " ms\n";
|
||||
std::cout << "conv2d 1 time " << conv2d1Time / (float)runs << " ms\n";
|
||||
std::cout << "total time " << totalTime / (float)runs << " ms\n";
|
||||
|
||||
tensor_D0_computed.sync_host();
|
||||
tensor_D1_computed.sync_host();
|
||||
|
||||
bool passed = false;
|
||||
|
||||
cutlass::reference::device::Conv2d<
|
||||
typename Conv2d0::ElementA,
|
||||
typename Conv2d0::LayoutA,
|
||||
typename Conv2d0::ElementB,
|
||||
typename Conv2d0::LayoutB,
|
||||
typename Conv2d0::ElementC,
|
||||
typename Conv2d0::LayoutC,
|
||||
ElementCompute,
|
||||
ElementAccumulator
|
||||
>(
|
||||
kConvolutionalOperator,
|
||||
problem_size_0,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0.device_ref(),
|
||||
tensor_C0.device_ref(),
|
||||
tensor_D0_reference.device_ref(),
|
||||
alpha0,
|
||||
beta0);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(tensor_D0_reference.device_view());
|
||||
}
|
||||
|
||||
cutlass::reference::device::Conv2d<
|
||||
typename Conv2d1::ElementA,
|
||||
typename Conv2d1::LayoutA,
|
||||
typename Conv2d1::ElementB,
|
||||
typename Conv2d1::LayoutB,
|
||||
typename Conv2d1::ElementC,
|
||||
typename Conv2d1::LayoutC,
|
||||
ElementCompute,
|
||||
ElementAccumulator
|
||||
>(
|
||||
kConvolutionalOperator,
|
||||
problem_size_1,
|
||||
tensor_D0_reference.device_ref(),
|
||||
tensor_B1.device_ref(),
|
||||
tensor_C1.device_ref(),
|
||||
tensor_D1_reference.device_ref(),
|
||||
alpha1,
|
||||
beta1);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(tensor_D1_reference.device_view());
|
||||
}
|
||||
|
||||
cudaError_t result = cudaDeviceSynchronize();
|
||||
CHECK_TRUE(result == cudaSuccess);
|
||||
|
||||
// sync host (copy device data to host) for dumping error output in case of mismatches
|
||||
tensor_D0_reference.sync_host();
|
||||
tensor_D1_reference.sync_host();
|
||||
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D0_computed.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D0_reference.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1_computed.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1_reference.host_view()), 0);
|
||||
|
||||
passed = cutlass::reference::host::TensorEquals(
|
||||
tensor_D1_computed.host_view(),
|
||||
tensor_D1_reference.host_view());
|
||||
|
||||
CHECK_TRUE(passed);
|
||||
|
||||
if (!passed) {
|
||||
std::stringstream fname;
|
||||
|
||||
fname << "error_B2bImplicitGemm_device_nonfused.txt";
|
||||
std::cerr << "Dumping results in " << fname.str() << "\n";
|
||||
|
||||
std::ofstream results(fname.str());
|
||||
|
||||
results << problem_size_0 << std::endl;
|
||||
results << problem_size_1 << std::endl;
|
||||
|
||||
results
|
||||
<< "\nA0:\n" << tensor_A0.host_view() << "\n"
|
||||
<< "\nB0:\n" << tensor_B0.host_view() << "\n"
|
||||
<< "\nC0:\n" << tensor_C0.host_view() << "\n"
|
||||
<< "\nD0 reference:\n" << tensor_D0_reference.host_view() << "\n"
|
||||
<< "\nD0 computed:\n" << tensor_D0_computed.host_view() << "\n"
|
||||
<< "\nB1:\n" << tensor_B1.host_view() << "\n"
|
||||
<< "\nC1:\n" << tensor_C1.host_view() << "\n"
|
||||
<< "\nD1 reference:\n" << tensor_D1_reference.host_view() << "\n"
|
||||
<< "\nD1 computed:\n" << tensor_D1_computed.host_view();
|
||||
|
||||
|
||||
}
|
||||
|
||||
return passed;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template <typename B2bConv2d_>
|
||||
class B2bFusedConv2dRun {
|
||||
public:
|
||||
|
||||
using B2bConv2d = B2bConv2d_;
|
||||
using ElementAccumulator = typename B2bConv2d::ElementAccumulator;
|
||||
using ElementCompute = typename B2bConv2d::ElementCompute;
|
||||
|
||||
static cutlass::conv::Operator const kConvolutionalOperator = B2bConv2d::kConvolutionalOperator;
|
||||
|
||||
public:
|
||||
|
||||
/// Initialization
|
||||
cutlass::Distribution::Kind init_A;
|
||||
cutlass::Distribution::Kind init_B;
|
||||
cutlass::Distribution::Kind init_C;
|
||||
uint64_t seed;
|
||||
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementA, typename B2bConv2d::LayoutA> tensor_A0;
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementB, typename B2bConv2d::LayoutB> tensor_B0;
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_C0;
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_D0_reference;
|
||||
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementB, typename B2bConv2d::LayoutB> tensor_B1;
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_C1;
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_D1_computed;
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_D1_reference;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
B2bFusedConv2dRun(
|
||||
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
|
||||
uint64_t seed_ = 2080
|
||||
):
|
||||
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) {
|
||||
|
||||
}
|
||||
|
||||
/// Helper to initialize a tensor view
|
||||
template <typename Element, typename Layout>
|
||||
void initialize_tensor(
|
||||
cutlass::TensorView<Element, Layout> view,
|
||||
cutlass::Distribution::Kind dist_kind,
|
||||
uint64_t seed) {
|
||||
|
||||
if (dist_kind == cutlass::Distribution::Uniform) {
|
||||
|
||||
int scope;
|
||||
int bits = cutlass::sizeof_bits<Element>::value;
|
||||
|
||||
if (bits <= 16) {
|
||||
scope = 2;
|
||||
}
|
||||
else {
|
||||
scope = 8;
|
||||
}
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
view, seed, scope, -scope, 0);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Identity) {
|
||||
|
||||
cutlass::reference::host::TensorFillIdentity(view);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Gaussian) {
|
||||
|
||||
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Sequential) {
|
||||
|
||||
cutlass::reference::host::BlockFillSequential(view.data(), view.capacity());
|
||||
}
|
||||
else {
|
||||
}
|
||||
}
|
||||
|
||||
void initialize(
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_0,
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_1, uint64_t seed = 2019) {
|
||||
|
||||
tensor_A0.resize(implicit_gemm_tensor_a_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_B0.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_C0.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_D0_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_B1.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_1));
|
||||
tensor_C1.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1));
|
||||
tensor_D1_computed.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1));
|
||||
tensor_D1_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1));
|
||||
|
||||
initialize_tensor(tensor_A0.host_view(), init_A, seed);
|
||||
initialize_tensor(tensor_B0.host_view(), init_B, seed * 17);
|
||||
initialize_tensor(tensor_C0.host_view(), init_C, seed * 39);
|
||||
initialize_tensor(tensor_B1.host_view(), init_B, seed * 18);
|
||||
initialize_tensor(tensor_C1.host_view(), init_C, seed * 40);
|
||||
|
||||
tensor_A0.sync_device();
|
||||
tensor_B0.sync_device();
|
||||
tensor_C0.sync_device();
|
||||
tensor_D0_reference.sync_device();
|
||||
tensor_B1.sync_device();
|
||||
tensor_C1.sync_device();
|
||||
tensor_D1_computed.sync_device();
|
||||
tensor_D1_reference.sync_device();
|
||||
}
|
||||
|
||||
/// Executes one test
|
||||
bool run(
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_0,
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_1,
|
||||
cutlass::conv::SplitKMode const &split_k_mode = cutlass::conv::SplitKMode::kSerial,
|
||||
ElementCompute alpha0 = ElementCompute(1),
|
||||
ElementCompute beta0 = ElementCompute(0),
|
||||
ElementCompute alpha1 = ElementCompute(1),
|
||||
ElementCompute beta1 = ElementCompute(0),
|
||||
bool relu = true,
|
||||
int warm_ups = 1,
|
||||
int runs = 100) {
|
||||
|
||||
initialize(problem_size_0, problem_size_1);
|
||||
|
||||
// configure the operator
|
||||
B2bConv2d b2b_conv2d_op;
|
||||
|
||||
typename B2bConv2d::Arguments b2b_conv2d_args(
|
||||
problem_size_0,
|
||||
problem_size_1,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0.device_ref(),
|
||||
tensor_C0.device_ref(),
|
||||
tensor_B1.device_ref(),
|
||||
tensor_C1.device_ref(),
|
||||
tensor_D1_computed.device_ref(),
|
||||
{alpha0, beta0},
|
||||
{alpha1, beta1},
|
||||
split_k_mode
|
||||
);
|
||||
|
||||
cutlass::Status status = b2b_conv2d_op.initialize(b2b_conv2d_args);
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
for(int i = 0; i < warm_ups; i++) {
|
||||
status = b2b_conv2d_op();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
//
|
||||
// Run the Conv2d
|
||||
//
|
||||
|
||||
cudaEvent_t start, stop;
|
||||
cudaEventCreate(&start);
|
||||
cudaEventCreate(&stop);
|
||||
|
||||
cudaEventRecord(start);
|
||||
|
||||
for(int i = 0; i < runs; i++) {
|
||||
|
||||
// run conv2d operator
|
||||
status = b2b_conv2d_op();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
cudaEventRecord(stop);
|
||||
cudaDeviceSynchronize();
|
||||
float conv2dTime;
|
||||
cudaEventElapsedTime(&conv2dTime, start, stop);
|
||||
std::cout << "time " << conv2dTime / (float)runs << " ms\n";
|
||||
|
||||
tensor_D1_computed.sync_host();
|
||||
|
||||
bool passed = false;
|
||||
|
||||
cutlass::reference::device::Conv2d<
|
||||
typename B2bConv2d::ElementA,
|
||||
typename B2bConv2d::LayoutA,
|
||||
typename B2bConv2d::ElementB,
|
||||
typename B2bConv2d::LayoutB,
|
||||
typename B2bConv2d::ElementC,
|
||||
typename B2bConv2d::LayoutC,
|
||||
ElementCompute,
|
||||
ElementAccumulator
|
||||
>(
|
||||
kConvolutionalOperator,
|
||||
problem_size_0,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0.device_ref(),
|
||||
tensor_C0.device_ref(),
|
||||
tensor_D0_reference.device_ref(),
|
||||
alpha0,
|
||||
beta0);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(tensor_D0_reference.device_view());
|
||||
}
|
||||
|
||||
cutlass::reference::device::Conv2d<
|
||||
typename B2bConv2d::ElementA,
|
||||
typename B2bConv2d::LayoutA,
|
||||
typename B2bConv2d::ElementB,
|
||||
typename B2bConv2d::LayoutB,
|
||||
typename B2bConv2d::ElementC,
|
||||
typename B2bConv2d::LayoutC,
|
||||
ElementCompute,
|
||||
ElementAccumulator
|
||||
>(
|
||||
kConvolutionalOperator,
|
||||
problem_size_1,
|
||||
tensor_D0_reference.device_ref(),
|
||||
tensor_B1.device_ref(),
|
||||
tensor_C1.device_ref(),
|
||||
tensor_D1_reference.device_ref(),
|
||||
alpha1,
|
||||
beta1);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(tensor_D1_reference.device_view());
|
||||
}
|
||||
|
||||
cudaError_t result = cudaDeviceSynchronize();
|
||||
CHECK_TRUE(result == cudaSuccess);
|
||||
|
||||
// sync host (copy device data to host) for dumping error output in case of mismatches
|
||||
tensor_D0_reference.sync_host();
|
||||
tensor_D1_reference.sync_host();
|
||||
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D0_reference.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1_computed.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1_reference.host_view()), 0);
|
||||
|
||||
passed = cutlass::reference::host::TensorEquals(
|
||||
tensor_D1_computed.host_view(),
|
||||
tensor_D1_reference.host_view());
|
||||
|
||||
CHECK_TRUE(passed);
|
||||
|
||||
if (!passed) {
|
||||
std::stringstream fname;
|
||||
|
||||
fname << "error_B2bImplicitGemm_device_fused.txt";
|
||||
std::cerr << "Dumping results in " << fname.str() << "\n";
|
||||
|
||||
std::ofstream results(fname.str());
|
||||
|
||||
results << problem_size_0 << std::endl;
|
||||
results << problem_size_1 << std::endl;
|
||||
|
||||
results
|
||||
<< "\nA0:\n" << tensor_A0.host_view() << "\n"
|
||||
<< "\nB0:\n" << tensor_B0.host_view() << "\n"
|
||||
<< "\nC0:\n" << tensor_C0.host_view() << "\n"
|
||||
<< "\nB1:\n" << tensor_B1.host_view() << "\n"
|
||||
<< "\nC1:\n" << tensor_C1.host_view() << "\n"
|
||||
<< "\nD1 reference:\n" << tensor_D1_reference.host_view() << "\n"
|
||||
<< "\nD1 computed:\n" << tensor_D1_computed.host_view();
|
||||
|
||||
|
||||
}
|
||||
|
||||
return passed;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -0,0 +1,190 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/device/gemm.h"
|
||||
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/gemm.h"
|
||||
|
||||
#include "device/b2b_gemm.h"
|
||||
#include "b2b_gemm_run.h"
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
cutlass::gemm::GemmCoord gemm_f16_sm75_problem_size_0(128*1600, 64, 576);
|
||||
cutlass::gemm::GemmCoord gemm_f16_sm75_problem_size_1(128*1600, 128, 64);
|
||||
|
||||
bool run_nonfused_gemm_f16() {
|
||||
|
||||
using ElementOutput = cutlass::half_t;
|
||||
using ElementAccumulator = cutlass::half_t;
|
||||
using ElementCompute = cutlass::half_t;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(2);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(2);
|
||||
ElementCompute beta1 = ElementCompute(1);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 32>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
||||
|
||||
using Gemm0 = cutlass::gemm::device::Gemm<
|
||||
cutlass::half_t,
|
||||
cutlass::layout::RowMajor,
|
||||
cutlass::half_t,
|
||||
cutlass::layout::ColumnMajor,
|
||||
ElementOutput,
|
||||
cutlass::layout::RowMajor,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape0,
|
||||
WarpShape0,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
128 / cutlass::sizeof_bits<ElementOutput>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2
|
||||
>;
|
||||
using Gemm1 = cutlass::gemm::device::Gemm<
|
||||
cutlass::half_t,
|
||||
cutlass::layout::RowMajor,
|
||||
cutlass::half_t,
|
||||
cutlass::layout::ColumnMajor,
|
||||
ElementOutput,
|
||||
cutlass::layout::RowMajor,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape1,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
128 / cutlass::sizeof_bits<ElementOutput>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2
|
||||
>;
|
||||
|
||||
B2bNonFusedGemmRun<Gemm0, Gemm1> nonFusedGemm;
|
||||
|
||||
std::cout << "Running Non-fused back-to-back FP16 TN GEMMs...\n";
|
||||
bool pass = nonFusedGemm.run(gemm_f16_sm75_problem_size_0, gemm_f16_sm75_problem_size_1, alpha0, beta0, alpha1, beta1);
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_fused_gemm_f16() {
|
||||
|
||||
using ElementOutput = cutlass::half_t;
|
||||
using ElementAccumulator = cutlass::half_t;
|
||||
using ElementCompute = cutlass::half_t;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(2);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(2);
|
||||
ElementCompute beta1 = ElementCompute(1);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 32>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 128, 32>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
|
||||
|
||||
using EpilogueOutputOp0 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
InstructionShape::kM * InstructionShape::kN / 32,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>;
|
||||
|
||||
using EpilogueOutputOp1 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
128 / cutlass::sizeof_bits<ElementOutput>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>;
|
||||
|
||||
|
||||
|
||||
using B2bGemm = cutlass::gemm::device::B2bGemm<
|
||||
cutlass::half_t,
|
||||
cutlass::layout::RowMajor,
|
||||
cutlass::half_t,
|
||||
cutlass::layout::ColumnMajor,
|
||||
ElementOutput,
|
||||
cutlass::layout::RowMajor,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp0,
|
||||
EpilogueOutputOp1,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2
|
||||
>;
|
||||
|
||||
B2bFusedGemmRun<B2bGemm> fusedGemm;
|
||||
|
||||
std::cout << "Running Fused back-to-back FP16 TN GEMMs...\n";
|
||||
bool passed = fusedGemm.run(gemm_f16_sm75_problem_size_0, gemm_f16_sm75_problem_size_1, alpha0, beta0, alpha1, beta1);
|
||||
if(passed)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return passed;
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
@ -0,0 +1,191 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/device/gemm.h"
|
||||
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/gemm.h"
|
||||
|
||||
#include "device/b2b_gemm.h"
|
||||
#include "b2b_gemm_run.h"
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
cutlass::gemm::GemmCoord gemm_f16_sm80_problem_size_0(128*1600, 64, 576);
|
||||
cutlass::gemm::GemmCoord gemm_f16_sm80_problem_size_1(128*1600, 128, 64);
|
||||
|
||||
bool run_nonfused_gemm_f16_sm80() {
|
||||
|
||||
using ElementOutput = cutlass::half_t;
|
||||
using ElementAccumulator = cutlass::half_t;
|
||||
using ElementCompute = cutlass::half_t;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(2);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(2);
|
||||
ElementCompute beta1 = ElementCompute(1);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 32>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 32>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
|
||||
|
||||
using Gemm0 = cutlass::gemm::device::Gemm<
|
||||
cutlass::half_t,
|
||||
cutlass::layout::RowMajor,
|
||||
cutlass::half_t,
|
||||
cutlass::layout::ColumnMajor,
|
||||
ElementOutput,
|
||||
cutlass::layout::RowMajor,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape0,
|
||||
WarpShape0,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
128 / cutlass::sizeof_bits<ElementOutput>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3
|
||||
>;
|
||||
using Gemm1 = cutlass::gemm::device::Gemm<
|
||||
cutlass::half_t,
|
||||
cutlass::layout::RowMajor,
|
||||
cutlass::half_t,
|
||||
cutlass::layout::ColumnMajor,
|
||||
ElementOutput,
|
||||
cutlass::layout::RowMajor,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape1,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
128 / cutlass::sizeof_bits<ElementOutput>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3
|
||||
>;
|
||||
|
||||
B2bNonFusedGemmRun<Gemm0, Gemm1> nonFusedGemm;
|
||||
|
||||
std::cout << "Running Non-fused back-to-back FP16 TN GEMMs...\n";
|
||||
bool pass = nonFusedGemm.run(gemm_f16_sm80_problem_size_0, gemm_f16_sm80_problem_size_1, alpha0, beta0, alpha1, beta1);
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_fused_gemm_f16_sm80() {
|
||||
|
||||
using ElementOutput = cutlass::half_t;
|
||||
using ElementAccumulator = cutlass::half_t;
|
||||
using ElementCompute = cutlass::half_t;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(2);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(2);
|
||||
ElementCompute beta1 = ElementCompute(1);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 32>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 128, 32>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
|
||||
|
||||
using EpilogueOutputOp0 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
InstructionShape::kM * InstructionShape::kN / 32,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>;
|
||||
|
||||
using EpilogueOutputOp1 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
128 / cutlass::sizeof_bits<ElementOutput>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>;
|
||||
|
||||
|
||||
|
||||
using B2bGemm = cutlass::gemm::device::B2bGemm<
|
||||
cutlass::half_t,
|
||||
cutlass::layout::RowMajor,
|
||||
cutlass::half_t,
|
||||
cutlass::layout::ColumnMajor,
|
||||
ElementOutput,
|
||||
cutlass::layout::RowMajor,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp0,
|
||||
EpilogueOutputOp1,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
3
|
||||
>;
|
||||
|
||||
B2bFusedGemmRun<B2bGemm> fusedGemm;
|
||||
|
||||
std::cout << "Running Fused back-to-back FP16 TN GEMMs...\n";
|
||||
bool passed = fusedGemm.run(gemm_f16_sm80_problem_size_0, gemm_f16_sm80_problem_size_1, alpha0, beta0, alpha1, beta1);
|
||||
if(passed)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return passed;
|
||||
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
619
examples/13_two_tensor_op_fusion/b2b_gemm_run.h
Normal file
619
examples/13_two_tensor_op_fusion/b2b_gemm_run.h
Normal file
@ -0,0 +1,619 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "cutlass/util/distribution.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_norm.h"
|
||||
#include "cutlass/util/reference/device/gemm.h"
|
||||
#include "cutlass/util/reference/device/tensor_relu.h"
|
||||
|
||||
#include "helper.h"
|
||||
|
||||
#define CHECK_GT(val1, val2) \
|
||||
if((val1) <= (val2)) \
|
||||
std::cerr << __FILE__ << " " << __LINE__ << ": CHECK_GT failed\n";
|
||||
#define CHECK_TRUE(val) \
|
||||
if(!(val)) \
|
||||
std::cerr << __FILE__ << " " << __LINE__ << ": CHECK_TRUE failed\n";
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename Gemm0_, typename Gemm1_>
|
||||
struct B2bNonFusedGemmRun
|
||||
{
|
||||
|
||||
using Gemm0 = Gemm0_;
|
||||
using Gemm1 = Gemm1_;
|
||||
using ElementAccumulator = typename Gemm0::ElementAccumulator;
|
||||
using ElementCompute = typename Gemm0::GemmKernel::Epilogue::OutputOp::ElementCompute;
|
||||
|
||||
/// Initialization
|
||||
cutlass::Distribution::Kind init_A;
|
||||
cutlass::Distribution::Kind init_B;
|
||||
cutlass::Distribution::Kind init_C;
|
||||
uint64_t seed;
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
B2bNonFusedGemmRun(
|
||||
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
|
||||
uint64_t seed_ = 2080
|
||||
):
|
||||
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
|
||||
|
||||
/// Helper to initialize a tensor view
|
||||
template <typename Element, typename Layout>
|
||||
bool initialize_tensor(
|
||||
cutlass::TensorView<Element, Layout> view,
|
||||
cutlass::Distribution::Kind dist_kind,
|
||||
uint64_t seed) {
|
||||
|
||||
if (dist_kind == cutlass::Distribution::Uniform) {
|
||||
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
view, seed, 2, -2, 0);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Identity) {
|
||||
|
||||
cutlass::reference::host::TensorFillIdentity(view);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Gaussian) {
|
||||
|
||||
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Sequential) {
|
||||
|
||||
cutlass::reference::host::BlockFillSequential(
|
||||
view.data(), view.capacity());
|
||||
}
|
||||
else {
|
||||
// TODO: Implement the rest
|
||||
std::cerr << "Not implemented\n";
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Executes one test
|
||||
bool run(
|
||||
cutlass::gemm::GemmCoord problem_size_0,
|
||||
cutlass::gemm::GemmCoord problem_size_1,
|
||||
ElementCompute alpha0 = ElementCompute(1),
|
||||
ElementCompute beta0 = ElementCompute(0),
|
||||
ElementCompute alpha1 = ElementCompute(1),
|
||||
ElementCompute beta1 = ElementCompute(0),
|
||||
bool relu = true,
|
||||
int warm_ups = 1,
|
||||
int runs = 100) {
|
||||
|
||||
//
|
||||
// Allocate the GEMM workspace
|
||||
//
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm0::ElementA,
|
||||
typename Gemm0::LayoutA> tensor_A0(problem_size_0.mk());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm0::ElementB,
|
||||
typename Gemm0::LayoutB> tensor_B0(problem_size_0.kn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm0::ElementC,
|
||||
typename Gemm0::LayoutC> tensor_C0(problem_size_0.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm0::ElementC,
|
||||
typename Gemm0::LayoutC> tensor_D0(problem_size_0.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm0::ElementC,
|
||||
typename Gemm0::LayoutC> reference_D0(problem_size_0.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm1::ElementB,
|
||||
typename Gemm1::LayoutB> tensor_B1(problem_size_1.kn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm1::ElementC,
|
||||
typename Gemm1::LayoutC> tensor_C1(problem_size_1.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm1::ElementC,
|
||||
typename Gemm1::LayoutC> tensor_D1(problem_size_1.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm1::ElementC,
|
||||
typename Gemm1::LayoutC> reference_D1(problem_size_1.mn());
|
||||
|
||||
|
||||
CHECK_TRUE(initialize_tensor(tensor_A0.host_view(), init_A, seed + 2019));
|
||||
CHECK_TRUE(initialize_tensor(tensor_B0.host_view(), init_B, seed + 2018));
|
||||
CHECK_TRUE(initialize_tensor(tensor_C0.host_view(), init_C, seed + 2017));
|
||||
CHECK_TRUE(initialize_tensor(tensor_B1.host_view(), init_B, seed + 2016));
|
||||
CHECK_TRUE(initialize_tensor(tensor_C1.host_view(), init_C, seed + 2015));
|
||||
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_D0.host_view());
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_D1.host_view());
|
||||
cutlass::reference::host::TensorFill(
|
||||
reference_D0.host_view());
|
||||
cutlass::reference::host::TensorFill(
|
||||
reference_D1.host_view());
|
||||
|
||||
tensor_A0.sync_device();
|
||||
tensor_B0.sync_device();
|
||||
tensor_C0.sync_device();
|
||||
tensor_D0.sync_device();
|
||||
tensor_B1.sync_device();
|
||||
tensor_C1.sync_device();
|
||||
tensor_D1.sync_device();
|
||||
reference_D0.sync_device();
|
||||
reference_D1.sync_device();
|
||||
|
||||
//
|
||||
// Initialize the GEMM operator
|
||||
//
|
||||
|
||||
typename Gemm0::Arguments arguments_0{
|
||||
problem_size_0,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0.device_ref(),
|
||||
tensor_C0.device_ref(),
|
||||
tensor_D0.device_ref(),
|
||||
{alpha0, beta0}
|
||||
};
|
||||
|
||||
typename Gemm1::Arguments arguments_1{
|
||||
problem_size_1,
|
||||
tensor_D0.device_ref(),
|
||||
tensor_B1.device_ref(),
|
||||
tensor_C1.device_ref(),
|
||||
tensor_D1.device_ref(),
|
||||
{alpha1, beta1}
|
||||
};
|
||||
|
||||
|
||||
Gemm0 gemm_op_0;
|
||||
Gemm1 gemm_op_1;
|
||||
|
||||
cutlass::Status status = gemm_op_0.initialize(arguments_0);
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
status = gemm_op_1.initialize(arguments_1);
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
for(int i = 0; i < warm_ups; i++) {
|
||||
status = gemm_op_0();
|
||||
CUTLASS_CHECK(status);
|
||||
status = gemm_op_1();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
//
|
||||
// Run the GEMM
|
||||
//
|
||||
|
||||
cudaEvent_t start, stop1, stop2;
|
||||
cudaEventCreate(&start);
|
||||
cudaEventCreate(&stop1);
|
||||
cudaEventCreate(&stop2);
|
||||
|
||||
cudaEventRecord(start);
|
||||
|
||||
for(int i = 0; i < runs; i++) {
|
||||
status = gemm_op_0();
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
cudaEventRecord(stop1);
|
||||
for(int i = 0; i < runs; i++) {
|
||||
|
||||
status = gemm_op_1();
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
cudaEventRecord(stop2);
|
||||
cudaDeviceSynchronize();
|
||||
float gemm0Time, gemm1Time, totalTime;
|
||||
cudaEventElapsedTime(&gemm0Time, start, stop1);
|
||||
cudaEventElapsedTime(&gemm1Time, stop1, stop2);
|
||||
cudaEventElapsedTime(&totalTime, start, stop2);
|
||||
std::cout << "gemm 0 time " << gemm0Time / (float)runs << " ms\n";
|
||||
std::cout << "gemm 1 time " << gemm1Time / (float)runs << " ms\n";
|
||||
std::cout << "total time " << totalTime / (float)runs << " ms\n";
|
||||
|
||||
tensor_D0.sync_host();
|
||||
tensor_D1.sync_host();
|
||||
|
||||
//
|
||||
// Verify
|
||||
//
|
||||
cutlass::reference::device::Gemm<
|
||||
typename Gemm0::ElementA, typename Gemm0::LayoutA,
|
||||
typename Gemm0::ElementB, typename Gemm0::LayoutB,
|
||||
typename Gemm0::ElementC, typename Gemm0::LayoutC, ElementCompute,
|
||||
ElementAccumulator, typename Gemm0::Operator>
|
||||
reference_gemm_0;
|
||||
|
||||
cutlass::reference::device::Gemm<
|
||||
typename Gemm1::ElementA, typename Gemm1::LayoutA,
|
||||
typename Gemm1::ElementB, typename Gemm1::LayoutB,
|
||||
typename Gemm1::ElementC, typename Gemm1::LayoutC, ElementCompute,
|
||||
ElementAccumulator, typename Gemm1::Operator>
|
||||
reference_gemm_1;
|
||||
|
||||
reference_gemm_0(
|
||||
problem_size_0,
|
||||
alpha0,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0.device_ref(),
|
||||
beta0,
|
||||
tensor_C0.device_ref(),
|
||||
reference_D0.device_ref()
|
||||
);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(reference_D0.device_view());
|
||||
}
|
||||
|
||||
reference_gemm_1(
|
||||
problem_size_1,
|
||||
alpha1,
|
||||
reference_D0.device_ref(),
|
||||
tensor_B1.device_ref(),
|
||||
beta1,
|
||||
tensor_C1.device_ref(),
|
||||
reference_D1.device_ref()
|
||||
);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(reference_D1.device_view());
|
||||
}
|
||||
|
||||
// Wait for kernels to finish
|
||||
cudaDeviceSynchronize();
|
||||
reference_D0.sync_host();
|
||||
reference_D1.sync_host();
|
||||
|
||||
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D0.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(reference_D0.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(reference_D1.host_view()), 0);
|
||||
|
||||
bool passed = cutlass::reference::host::TensorEquals(
|
||||
reference_D1.host_view(),
|
||||
tensor_D1.host_view());
|
||||
|
||||
CHECK_TRUE(passed);
|
||||
if (!passed) {
|
||||
|
||||
std::stringstream fname;
|
||||
|
||||
fname << "error_B2bGemm_device_nonfused.txt";
|
||||
std::cerr << "Dumping results in " << fname.str() << "\n";
|
||||
|
||||
std::ofstream file(fname.str());
|
||||
|
||||
file
|
||||
<< "A0 =\n" << tensor_A0.host_view()
|
||||
<< "\nB0 =\n" << tensor_B0.host_view()
|
||||
<< "\nC0 =\n" << tensor_C0.host_view()
|
||||
<< "\nD0 =\n" << tensor_D0.host_view()
|
||||
<< "\nB1 =\n" << tensor_B1.host_view()
|
||||
<< "\nC1 =\n" << tensor_C1.host_view()
|
||||
<< "\n\nReference =\n" << reference_D1.host_view()
|
||||
<< "\nComputed =\n" << tensor_D1.host_view();
|
||||
}
|
||||
|
||||
return passed;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename B2bGemm_>
|
||||
struct B2bFusedGemmRun
|
||||
{
|
||||
|
||||
using B2bGemm = B2bGemm_;
|
||||
using ElementAccumulator = typename B2bGemm::ElementAccumulator;
|
||||
using ElementCompute = typename B2bGemm::B2bGemmKernel::Epilogue::OutputOp::ElementCompute;
|
||||
|
||||
/// Initialization
|
||||
cutlass::Distribution::Kind init_A;
|
||||
cutlass::Distribution::Kind init_B;
|
||||
cutlass::Distribution::Kind init_C;
|
||||
uint64_t seed;
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
B2bFusedGemmRun(
|
||||
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
|
||||
uint64_t seed_ = 2080
|
||||
):
|
||||
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
|
||||
|
||||
/// Helper to initialize a tensor view
|
||||
template <typename Element, typename Layout>
|
||||
bool initialize_tensor(
|
||||
cutlass::TensorView<Element, Layout> view,
|
||||
cutlass::Distribution::Kind dist_kind,
|
||||
uint64_t seed) {
|
||||
|
||||
if (dist_kind == cutlass::Distribution::Uniform) {
|
||||
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
view, seed, 2, -2, 0);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Identity) {
|
||||
|
||||
cutlass::reference::host::TensorFillIdentity(view);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Gaussian) {
|
||||
|
||||
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Sequential) {
|
||||
|
||||
cutlass::reference::host::BlockFillSequential(
|
||||
view.data(), view.capacity());
|
||||
}
|
||||
else {
|
||||
// TODO: Implement the rest
|
||||
std::cerr << "Not implemented\n";
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Executes one test
|
||||
bool run(
|
||||
cutlass::gemm::GemmCoord problem_size_0,
|
||||
cutlass::gemm::GemmCoord problem_size_1,
|
||||
ElementCompute alpha0 = ElementCompute(1),
|
||||
ElementCompute beta0 = ElementCompute(0),
|
||||
ElementCompute alpha1 = ElementCompute(1),
|
||||
ElementCompute beta1 = ElementCompute(0),
|
||||
bool relu = true,
|
||||
int warm_ups = 1,
|
||||
int runs = 100) {
|
||||
|
||||
//
|
||||
// Allocate the GEMM workspace
|
||||
//
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementA,
|
||||
typename B2bGemm::LayoutA> tensor_A0(problem_size_0.mk());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementB,
|
||||
typename B2bGemm::LayoutB> tensor_B0(problem_size_0.kn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementC,
|
||||
typename B2bGemm::LayoutC> tensor_C0(problem_size_0.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementC,
|
||||
typename B2bGemm::LayoutC> reference_D0(problem_size_0.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementB,
|
||||
typename B2bGemm::LayoutB> tensor_B1(problem_size_1.kn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementC,
|
||||
typename B2bGemm::LayoutC> tensor_C1(problem_size_1.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementC,
|
||||
typename B2bGemm::LayoutC> tensor_D1(problem_size_1.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementC,
|
||||
typename B2bGemm::LayoutC> reference_D1(problem_size_1.mn());
|
||||
|
||||
|
||||
CHECK_TRUE(initialize_tensor(tensor_A0.host_view(), init_A, seed + 2019));
|
||||
CHECK_TRUE(initialize_tensor(tensor_B0.host_view(), init_B, seed + 2018));
|
||||
CHECK_TRUE(initialize_tensor(tensor_C0.host_view(), init_C, seed + 2017));
|
||||
CHECK_TRUE(initialize_tensor(tensor_B1.host_view(), init_B, seed + 2016));
|
||||
CHECK_TRUE(initialize_tensor(tensor_C1.host_view(), init_C, seed + 2015));
|
||||
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_D1.host_view());
|
||||
cutlass::reference::host::TensorFill(
|
||||
reference_D0.host_view());
|
||||
cutlass::reference::host::TensorFill(
|
||||
reference_D1.host_view());
|
||||
|
||||
tensor_A0.sync_device();
|
||||
tensor_B0.sync_device();
|
||||
tensor_C0.sync_device();
|
||||
tensor_B1.sync_device();
|
||||
tensor_C1.sync_device();
|
||||
tensor_D1.sync_device();
|
||||
reference_D0.sync_device();
|
||||
reference_D1.sync_device();
|
||||
|
||||
//
|
||||
// Initialize the GEMM operator
|
||||
//
|
||||
|
||||
typename B2bGemm::Arguments arguments{
|
||||
problem_size_0,
|
||||
problem_size_1,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0.device_ref(),
|
||||
tensor_C0.device_ref(),
|
||||
tensor_B1.device_ref(),
|
||||
tensor_C1.device_ref(),
|
||||
tensor_D1.device_ref(),
|
||||
{alpha0, beta0},
|
||||
{alpha1, beta1},
|
||||
};
|
||||
|
||||
B2bGemm b2b_gemm_op;
|
||||
|
||||
cutlass::Status status = b2b_gemm_op.initialize(arguments);
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
for(int i = 0; i < warm_ups; i++) {
|
||||
status = b2b_gemm_op();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
//
|
||||
// Run the GEMM
|
||||
//
|
||||
|
||||
cudaEvent_t start, stop;
|
||||
cudaEventCreate(&start);
|
||||
cudaEventCreate(&stop);
|
||||
|
||||
cudaEventRecord(start);
|
||||
|
||||
for(int i = 0; i < runs; i++) {
|
||||
status = b2b_gemm_op();
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
cudaEventRecord(stop);
|
||||
cudaDeviceSynchronize();
|
||||
float gemmTime;
|
||||
cudaEventElapsedTime(&gemmTime, start, stop);
|
||||
std::cout << "time " << gemmTime / (float)runs << " ms\n";
|
||||
|
||||
tensor_D1.sync_host();
|
||||
|
||||
//
|
||||
// Verify
|
||||
//
|
||||
cutlass::reference::device::Gemm<
|
||||
typename B2bGemm::ElementA, typename B2bGemm::LayoutA,
|
||||
typename B2bGemm::ElementB, typename B2bGemm::LayoutB,
|
||||
typename B2bGemm::ElementC, typename B2bGemm::LayoutC, ElementCompute,
|
||||
ElementAccumulator, typename B2bGemm::Operator>
|
||||
reference_gemm_0, reference_gemm_1;
|
||||
|
||||
reference_gemm_0(
|
||||
problem_size_0,
|
||||
alpha0,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0.device_ref(),
|
||||
beta0,
|
||||
tensor_C0.device_ref(),
|
||||
reference_D0.device_ref()
|
||||
);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(reference_D0.device_view());
|
||||
}
|
||||
|
||||
reference_gemm_1(
|
||||
problem_size_1,
|
||||
alpha1,
|
||||
reference_D0.device_ref(),
|
||||
tensor_B1.device_ref(),
|
||||
beta1,
|
||||
tensor_C1.device_ref(),
|
||||
reference_D1.device_ref()
|
||||
);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(reference_D1.device_view());
|
||||
}
|
||||
|
||||
cudaDeviceSynchronize();
|
||||
reference_D0.sync_host();
|
||||
reference_D1.sync_host();
|
||||
|
||||
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(reference_D0.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(reference_D1.host_view()), 0);
|
||||
|
||||
bool passed = cutlass::reference::host::TensorEquals(
|
||||
reference_D1.host_view(),
|
||||
tensor_D1.host_view());
|
||||
|
||||
CHECK_TRUE(passed);
|
||||
if (!passed) {
|
||||
|
||||
std::stringstream fname;
|
||||
|
||||
fname << "error_B2bGemm_device_fused.txt";
|
||||
std::cerr << "Dumping results in " << fname.str() << "\n";
|
||||
|
||||
std::ofstream file(fname.str());
|
||||
|
||||
file
|
||||
<< "A0 =\n" << tensor_A0.host_view()
|
||||
<< "\nB0 =\n" << tensor_B0.host_view()
|
||||
<< "\nC0 =\n" << tensor_C0.host_view()
|
||||
<< "\nB1 =\n" << tensor_B1.host_view()
|
||||
<< "\nC1 =\n" << tensor_C1.host_view()
|
||||
<< "\n\nReference =\n" << reference_D1.host_view()
|
||||
<< "\nComputed =\n" << tensor_D1.host_view();
|
||||
}
|
||||
|
||||
return passed;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
@ -0,0 +1,189 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/device/gemm.h"
|
||||
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/gemm.h"
|
||||
|
||||
#include "device/b2b_gemm.h"
|
||||
#include "b2b_interleaved_gemm_run.h"
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
cutlass::gemm::GemmCoord gemm_s8_sm75_problem_size_0(128*1600, 64, 576);
|
||||
cutlass::gemm::GemmCoord gemm_s8_sm75_problem_size_1(128*1600, 128, 64);
|
||||
|
||||
bool run_nonfused_gemm_s8() {
|
||||
|
||||
using ElementOutput = int8_t;
|
||||
using ElementAccumulator = int32_t;
|
||||
using ElementCompute = float;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(2);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(2);
|
||||
ElementCompute beta1 = ElementCompute(1);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 32, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
||||
|
||||
using Gemm0 = cutlass::gemm::device::Gemm<
|
||||
int8_t,
|
||||
cutlass::layout::ColumnMajorInterleaved<32>,
|
||||
int8_t,
|
||||
cutlass::layout::RowMajorInterleaved<32>,
|
||||
ElementOutput,
|
||||
cutlass::layout::ColumnMajorInterleaved<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape0,
|
||||
WarpShape0,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
64 / cutlass::sizeof_bits<ElementOutput>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2
|
||||
>;
|
||||
using Gemm1 = cutlass::gemm::device::Gemm<
|
||||
int8_t,
|
||||
cutlass::layout::ColumnMajorInterleaved<32>,
|
||||
int8_t,
|
||||
cutlass::layout::RowMajorInterleaved<32>,
|
||||
ElementOutput,
|
||||
cutlass::layout::ColumnMajorInterleaved<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape1,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
64 / cutlass::sizeof_bits<ElementOutput>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2
|
||||
>;
|
||||
|
||||
B2bInterleavedNonFusedGemmRun<Gemm0, Gemm1, 32> nonFusedGemm;
|
||||
|
||||
std::cout << "Running Non-fused back-to-back INT8 NT interleaved GEMMs...\n";
|
||||
bool pass = nonFusedGemm.run(gemm_s8_sm75_problem_size_0, gemm_s8_sm75_problem_size_1, alpha0, beta0, alpha1, beta1);
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_fused_gemm_s8() {
|
||||
|
||||
using ElementOutput = int8_t;
|
||||
using ElementAccumulator = int32_t;
|
||||
using ElementCompute = float;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(2);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(2);
|
||||
ElementCompute beta1 = ElementCompute(1);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 128, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
|
||||
|
||||
using EpilogueOutputOp0 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
InstructionShape::kM * InstructionShape::kN / 32,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>;
|
||||
|
||||
using EpilogueOutputOp1 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
64 / cutlass::sizeof_bits<ElementOutput>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>;
|
||||
|
||||
using B2bGemm = cutlass::gemm::device::B2bGemm<
|
||||
int8_t,
|
||||
cutlass::layout::ColumnMajorInterleaved<32>,
|
||||
int8_t,
|
||||
cutlass::layout::RowMajorInterleaved<32>,
|
||||
ElementOutput,
|
||||
cutlass::layout::ColumnMajorInterleaved<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm75,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp0,
|
||||
EpilogueOutputOp1,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
|
||||
2
|
||||
>;
|
||||
|
||||
B2bInterleavedFusedGemmRun<B2bGemm, 32> fusedGemm;
|
||||
|
||||
std::cout << "Running Fused back-to-back INT8 NT interleaved GEMMs...\n";
|
||||
bool passed = fusedGemm.run(gemm_s8_sm75_problem_size_0, gemm_s8_sm75_problem_size_1, alpha0, beta0, alpha1, beta1);
|
||||
if(passed)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return passed;
|
||||
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
@ -0,0 +1,202 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/device/gemm.h"
|
||||
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/gemm.h"
|
||||
|
||||
#include "device/b2b_gemm.h"
|
||||
#include "b2b_interleaved_gemm_run.h"
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
cutlass::gemm::GemmCoord gemm_s8_sm80_problem_size_0(128*1600, 64, 576);
|
||||
cutlass::gemm::GemmCoord gemm_s8_sm80_problem_size_1(128*1600, 128, 64);
|
||||
|
||||
bool run_nonfused_gemm_s8_sm80() {
|
||||
|
||||
using ElementOutput = int8_t;
|
||||
using ElementAccumulator = int32_t;
|
||||
using ElementCompute = float;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(2);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(2);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>;
|
||||
|
||||
using Gemm0 = cutlass::gemm::device::Gemm<
|
||||
int8_t,
|
||||
cutlass::layout::ColumnMajorInterleaved<32>,
|
||||
int8_t,
|
||||
cutlass::layout::RowMajorInterleaved<32>,
|
||||
ElementOutput,
|
||||
cutlass::layout::ColumnMajorInterleaved<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape0,
|
||||
WarpShape0,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
64 / cutlass::sizeof_bits<ElementOutput>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
||||
3,
|
||||
16,
|
||||
16,
|
||||
false,
|
||||
cutlass::arch::OpMultiplyAddSaturate
|
||||
>;
|
||||
using Gemm1 = cutlass::gemm::device::Gemm<
|
||||
int8_t,
|
||||
cutlass::layout::ColumnMajorInterleaved<32>,
|
||||
int8_t,
|
||||
cutlass::layout::RowMajorInterleaved<32>,
|
||||
ElementOutput,
|
||||
cutlass::layout::ColumnMajorInterleaved<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape1,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
64 / cutlass::sizeof_bits<ElementOutput>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
||||
3,
|
||||
16,
|
||||
16,
|
||||
false,
|
||||
cutlass::arch::OpMultiplyAddSaturate
|
||||
>;
|
||||
|
||||
B2bInterleavedNonFusedGemmRun<Gemm0, Gemm1, 32> nonFusedGemm;
|
||||
|
||||
std::cout << "Running Non-fused back-to-back INT8 NT interleaved GEMMs...\n";
|
||||
bool pass = nonFusedGemm.run(gemm_s8_sm80_problem_size_0, gemm_s8_sm80_problem_size_1, alpha0, beta0, alpha1, beta1);
|
||||
if(pass)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
bool run_fused_gemm_s8_sm80() {
|
||||
|
||||
using ElementOutput = int8_t;
|
||||
using ElementAccumulator = int32_t;
|
||||
using ElementCompute = float;
|
||||
|
||||
ElementCompute alpha0 = ElementCompute(2);
|
||||
ElementCompute beta0 = ElementCompute(0);
|
||||
ElementCompute alpha1 = ElementCompute(2);
|
||||
ElementCompute beta1 = ElementCompute(0);
|
||||
|
||||
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
|
||||
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
|
||||
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 64>;
|
||||
using WarpShape1 = cutlass::gemm::GemmShape<32, 128, 64>;
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>;
|
||||
|
||||
using EpilogueOutputOp0 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
8 * InstructionShape::kN / 32,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>;
|
||||
|
||||
using EpilogueOutputOp1 =
|
||||
cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput,
|
||||
64 / cutlass::sizeof_bits<ElementOutput>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
|
||||
>;
|
||||
|
||||
using B2bGemm = cutlass::gemm::device::B2bGemm<
|
||||
int8_t,
|
||||
cutlass::layout::ColumnMajorInterleaved<32>,
|
||||
int8_t,
|
||||
cutlass::layout::RowMajorInterleaved<32>,
|
||||
ElementOutput,
|
||||
cutlass::layout::ColumnMajorInterleaved<32>,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm80,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp0,
|
||||
EpilogueOutputOp1,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
||||
3,
|
||||
16,
|
||||
16,
|
||||
false,
|
||||
cutlass::arch::OpMultiplyAddSaturate
|
||||
>;
|
||||
|
||||
B2bInterleavedFusedGemmRun<B2bGemm, 32> fusedGemm;
|
||||
|
||||
std::cout << "Running Fused back-to-back INT8 NT interleaved GEMMs...\n";
|
||||
bool passed = fusedGemm.run(gemm_s8_sm80_problem_size_0, gemm_s8_sm80_problem_size_1, alpha0, beta0, alpha1, beta1);
|
||||
if(passed)
|
||||
std::cout << "Pass\n";
|
||||
else
|
||||
std::cout << "Fail\n";
|
||||
|
||||
return passed;
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
661
examples/13_two_tensor_op_fusion/b2b_interleaved_conv2d_run.h
Normal file
661
examples/13_two_tensor_op_fusion/b2b_interleaved_conv2d_run.h
Normal file
@ -0,0 +1,661 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Implicit GEMM testbed
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
|
||||
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
||||
#include "cutlass/reduction/device/reduce_split_k.h"
|
||||
#include "cutlass/reduction/thread/reduction_operators.h"
|
||||
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/reference/device/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_norm.h"
|
||||
#include "cutlass/util/host_reorder.h"
|
||||
|
||||
#include "cutlass/util/reference/host/convolution.h"
|
||||
#include "cutlass/util/reference/device/convolution.h"
|
||||
#include "cutlass/util/reference/device/tensor_relu.h"
|
||||
|
||||
#include "cutlass/core_io.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
|
||||
#include "helper.h"
|
||||
|
||||
#define CHECK_GT(val1, val2) \
|
||||
if((val1) <= (val2)) \
|
||||
std::cerr << __FILE__ << " " << __LINE__ << ": CHECK_GT failed\n";
|
||||
#define CHECK_TRUE(val) \
|
||||
if(!(val)) \
|
||||
std::cerr << __FILE__ << " " << __LINE__ << ": CHECK_TRUE failed\n";
|
||||
|
||||
|
||||
template <typename Conv2d0_, typename Conv2d1_, int InterleavedK>
|
||||
class B2bInterleavedNonFusedConv2dRun {
|
||||
public:
|
||||
|
||||
using Conv2d0 = Conv2d0_;
|
||||
using Conv2d1 = Conv2d1_;
|
||||
using ElementAccumulator = typename Conv2d0::ElementAccumulator;
|
||||
using ElementCompute = typename Conv2d0::ElementCompute;
|
||||
|
||||
static cutlass::conv::Operator const kConvolutionalOperator = Conv2d0::kConvolutionalOperator;
|
||||
static_assert(kConvolutionalOperator == Conv2d1::kConvolutionalOperator,
|
||||
"Fused convolution operators must be the same");
|
||||
|
||||
public:
|
||||
|
||||
/// Initialization
|
||||
cutlass::Distribution::Kind init_A;
|
||||
cutlass::Distribution::Kind init_B;
|
||||
cutlass::Distribution::Kind init_C;
|
||||
uint64_t seed;
|
||||
|
||||
cutlass::HostTensor<typename Conv2d0::ElementA, typename Conv2d0::LayoutA> tensor_A0;
|
||||
cutlass::HostTensor<typename Conv2d0::ElementB, typename Conv2d0::LayoutB> tensor_B0;
|
||||
cutlass::HostTensor<typename Conv2d0::ElementB, typename Conv2d0::LayoutB> tensor_B0_reordered;
|
||||
cutlass::HostTensor<typename Conv2d0::ElementC, typename Conv2d0::LayoutC> tensor_C0;
|
||||
cutlass::HostTensor<typename Conv2d0::ElementC, typename Conv2d0::LayoutC> tensor_D0_computed;
|
||||
cutlass::HostTensor<typename Conv2d0::ElementC, typename Conv2d0::LayoutC> tensor_D0_reference;
|
||||
|
||||
cutlass::HostTensor<typename Conv2d1::ElementB, typename Conv2d1::LayoutB> tensor_B1;
|
||||
cutlass::HostTensor<typename Conv2d1::ElementB, typename Conv2d1::LayoutB> tensor_B1_reordered;
|
||||
cutlass::HostTensor<typename Conv2d1::ElementC, typename Conv2d1::LayoutC> tensor_C1;
|
||||
cutlass::HostTensor<typename Conv2d1::ElementC, typename Conv2d1::LayoutC> tensor_D1_computed;
|
||||
cutlass::HostTensor<typename Conv2d1::ElementC, typename Conv2d1::LayoutC> tensor_D1_reference;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
B2bInterleavedNonFusedConv2dRun(
|
||||
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
|
||||
uint64_t seed_ = 2080
|
||||
):
|
||||
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) {
|
||||
|
||||
}
|
||||
|
||||
/// Helper to initialize a tensor view
|
||||
template <typename Element, typename Layout>
|
||||
void initialize_tensor(
|
||||
cutlass::TensorView<Element, Layout> view,
|
||||
cutlass::Distribution::Kind dist_kind,
|
||||
uint64_t seed) {
|
||||
|
||||
if (dist_kind == cutlass::Distribution::Uniform) {
|
||||
|
||||
int scope;
|
||||
int bits = cutlass::sizeof_bits<Element>::value;
|
||||
|
||||
if (bits <= 16) {
|
||||
scope = 2;
|
||||
}
|
||||
else {
|
||||
scope = 8;
|
||||
}
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
view, seed, scope, -scope, 0);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Identity) {
|
||||
|
||||
cutlass::reference::host::TensorFillIdentity(view);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Gaussian) {
|
||||
|
||||
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Sequential) {
|
||||
|
||||
cutlass::reference::host::BlockFillSequential(view.data(), view.capacity());
|
||||
}
|
||||
else {
|
||||
}
|
||||
}
|
||||
|
||||
void initialize(
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_0,
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_1, uint64_t seed = 2019) {
|
||||
|
||||
tensor_A0.resize(implicit_gemm_tensor_a_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_B0.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_B0_reordered.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_C0.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_D0_computed.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_D0_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_B1.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_1));
|
||||
tensor_B1_reordered.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_1));
|
||||
tensor_C1.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1));
|
||||
tensor_D1_computed.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1));
|
||||
tensor_D1_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1));
|
||||
|
||||
initialize_tensor(tensor_A0.host_view(), init_A, seed);
|
||||
initialize_tensor(tensor_B0.host_view(), init_B, seed * 17);
|
||||
initialize_tensor(tensor_C0.host_view(), init_C, seed * 39);
|
||||
initialize_tensor(tensor_B1.host_view(), init_B, seed * 18);
|
||||
initialize_tensor(tensor_C1.host_view(), init_C, seed * 40);
|
||||
|
||||
//Reorder B0 and B1
|
||||
cutlass::reorder_convK<InterleavedK, InterleavedK>(
|
||||
tensor_B0_reordered.host_ref(), tensor_B0.host_ref(), implicit_gemm_problem_size(kConvolutionalOperator, problem_size_0));
|
||||
cutlass::reorder_convK<InterleavedK, InterleavedK>(
|
||||
tensor_B1_reordered.host_ref(), tensor_B1.host_ref(), implicit_gemm_problem_size(kConvolutionalOperator, problem_size_1));
|
||||
|
||||
tensor_A0.sync_device();
|
||||
tensor_B0.sync_device();
|
||||
tensor_B0_reordered.sync_device();
|
||||
tensor_C0.sync_device();
|
||||
tensor_D0_computed.sync_device();
|
||||
tensor_D0_reference.sync_device();
|
||||
tensor_B1.sync_device();
|
||||
tensor_B1_reordered.sync_device();
|
||||
tensor_C1.sync_device();
|
||||
tensor_D1_computed.sync_device();
|
||||
tensor_D1_reference.sync_device();
|
||||
}
|
||||
|
||||
/// Executes one test
|
||||
bool run(
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_0,
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_1,
|
||||
cutlass::conv::SplitKMode const &split_k_mode = cutlass::conv::SplitKMode::kSerial,
|
||||
ElementCompute alpha0 = ElementCompute(1),
|
||||
ElementCompute beta0 = ElementCompute(0),
|
||||
ElementCompute alpha1 = ElementCompute(1),
|
||||
ElementCompute beta1 = ElementCompute(0),
|
||||
bool relu = true,
|
||||
int warm_ups = 1,
|
||||
int runs = 100) {
|
||||
|
||||
initialize(problem_size_0, problem_size_1);
|
||||
|
||||
// configure the operator
|
||||
Conv2d0 conv2d_op_0;
|
||||
Conv2d1 conv2d_op_1;
|
||||
|
||||
typename Conv2d0::Arguments conv2d_args_0(
|
||||
problem_size_0,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0_reordered.device_ref(),
|
||||
tensor_C0.device_ref(),
|
||||
tensor_D0_computed.device_ref(),
|
||||
{alpha0, beta0},
|
||||
split_k_mode
|
||||
);
|
||||
typename Conv2d1::Arguments conv2d_args_1(
|
||||
problem_size_1,
|
||||
tensor_D0_computed.device_ref(),
|
||||
tensor_B1_reordered.device_ref(),
|
||||
tensor_C1.device_ref(),
|
||||
tensor_D1_computed.device_ref(),
|
||||
{alpha1, beta1},
|
||||
split_k_mode
|
||||
);
|
||||
|
||||
|
||||
cutlass::Status status = conv2d_op_0.initialize(conv2d_args_0);
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
status = conv2d_op_1.initialize(conv2d_args_1);
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
for(int i = 0; i < warm_ups; i++) {
|
||||
status = conv2d_op_0();
|
||||
CUTLASS_CHECK(status);
|
||||
status = conv2d_op_1();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
//
|
||||
// Run Conv2d
|
||||
//
|
||||
cudaEvent_t start, stop1, stop2;
|
||||
cudaEventCreate(&start);
|
||||
cudaEventCreate(&stop1);
|
||||
cudaEventCreate(&stop2);
|
||||
|
||||
cudaEventRecord(start);
|
||||
|
||||
|
||||
for(int i = 0; i < runs; i++) {
|
||||
// run conv2d operator
|
||||
status = conv2d_op_0();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
cudaEventRecord(stop1);
|
||||
|
||||
for(int i = 0; i < runs; i++) {
|
||||
// run conv2d operator
|
||||
status = conv2d_op_1();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
cudaEventRecord(stop2);
|
||||
cudaDeviceSynchronize();
|
||||
float conv2d0Time, conv2d1Time, totalTime;
|
||||
cudaEventElapsedTime(&conv2d0Time, start, stop1);
|
||||
cudaEventElapsedTime(&conv2d1Time, stop1, stop2);
|
||||
cudaEventElapsedTime(&totalTime, start, stop2);
|
||||
std::cout << "conv2d 0 time " << conv2d0Time / (float)runs << " ms\n";
|
||||
std::cout << "conv2d 1 time " << conv2d1Time / (float)runs << " ms\n";
|
||||
std::cout << "total time " << totalTime / (float)runs << " ms\n";
|
||||
|
||||
tensor_D0_computed.sync_host();
|
||||
tensor_D1_computed.sync_host();
|
||||
|
||||
bool passed = false;
|
||||
|
||||
cutlass::reference::device::Conv2d<
|
||||
typename Conv2d0::ElementA,
|
||||
typename Conv2d0::LayoutA,
|
||||
typename Conv2d0::ElementB,
|
||||
typename Conv2d0::LayoutB,
|
||||
typename Conv2d0::ElementC,
|
||||
typename Conv2d0::LayoutC,
|
||||
ElementCompute,
|
||||
ElementAccumulator,
|
||||
cutlass::NumericConverterClamp<typename Conv2d0::ElementC, ElementCompute>
|
||||
>(
|
||||
kConvolutionalOperator,
|
||||
problem_size_0,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0.device_ref(),
|
||||
tensor_C0.device_ref(),
|
||||
tensor_D0_reference.device_ref(),
|
||||
alpha0,
|
||||
beta0);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(tensor_D0_reference.device_view());
|
||||
}
|
||||
|
||||
cutlass::reference::device::Conv2d<
|
||||
typename Conv2d1::ElementA,
|
||||
typename Conv2d1::LayoutA,
|
||||
typename Conv2d1::ElementB,
|
||||
typename Conv2d1::LayoutB,
|
||||
typename Conv2d1::ElementC,
|
||||
typename Conv2d1::LayoutC,
|
||||
ElementCompute,
|
||||
ElementAccumulator,
|
||||
cutlass::NumericConverterClamp<typename Conv2d1::ElementC, ElementCompute>
|
||||
>(
|
||||
kConvolutionalOperator,
|
||||
problem_size_1,
|
||||
tensor_D0_reference.device_ref(),
|
||||
tensor_B1.device_ref(),
|
||||
tensor_C1.device_ref(),
|
||||
tensor_D1_reference.device_ref(),
|
||||
alpha1,
|
||||
beta1);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(tensor_D1_reference.device_view());
|
||||
}
|
||||
|
||||
cudaError_t result = cudaDeviceSynchronize();
|
||||
CHECK_TRUE(result == cudaSuccess);
|
||||
|
||||
// sync host (copy device data to host) for dumping error output in case of mismatches
|
||||
tensor_D0_reference.sync_host();
|
||||
tensor_D1_reference.sync_host();
|
||||
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D0_computed.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D0_reference.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1_computed.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1_reference.host_view()), 0);
|
||||
|
||||
passed = cutlass::reference::host::TensorEquals(
|
||||
tensor_D1_computed.host_view(),
|
||||
tensor_D1_reference.host_view());
|
||||
|
||||
CHECK_TRUE(passed);
|
||||
|
||||
if (!passed) {
|
||||
std::stringstream fname;
|
||||
|
||||
fname << "error_B2bImplicitGemm_device_interleaved_nonfused.txt";
|
||||
std::cerr << "Dumping results in " << fname.str() << "\n";
|
||||
|
||||
std::ofstream results(fname.str());
|
||||
|
||||
results << problem_size_0 << std::endl;
|
||||
results << problem_size_1 << std::endl;
|
||||
|
||||
results
|
||||
<< "\nA0:\n" << tensor_A0.host_view() << "\n"
|
||||
<< "\nB0:\n" << tensor_B0.host_view() << "\n"
|
||||
<< "\nB0_reordered:\n" << tensor_B0_reordered.host_view() << "\n"
|
||||
<< "\nC0:\n" << tensor_C0.host_view() << "\n"
|
||||
<< "\nD0 reference:\n" << tensor_D0_reference.host_view() << "\n"
|
||||
<< "\nD0 computed:\n" << tensor_D0_computed.host_view() << "\n"
|
||||
<< "\nB1:\n" << tensor_B1.host_view() << "\n"
|
||||
<< "\nB1_reordered:\n" << tensor_B1_reordered.host_view() << "\n"
|
||||
<< "\nC1:\n" << tensor_C1.host_view() << "\n"
|
||||
<< "\nD1 reference:\n" << tensor_D1_reference.host_view() << "\n"
|
||||
<< "\nD1 computed:\n" << tensor_D1_computed.host_view();
|
||||
|
||||
|
||||
}
|
||||
|
||||
return passed;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template <typename B2bConv2d_, int InterleavedK>
|
||||
class B2bInterleavedFusedConv2dRun {
|
||||
public:
|
||||
|
||||
using B2bConv2d = B2bConv2d_;
|
||||
using ElementAccumulator = typename B2bConv2d::ElementAccumulator;
|
||||
using ElementCompute = typename B2bConv2d::ElementCompute;
|
||||
|
||||
static cutlass::conv::Operator const kConvolutionalOperator = B2bConv2d::kConvolutionalOperator;
|
||||
|
||||
public:
|
||||
|
||||
/// Initialization
|
||||
cutlass::Distribution::Kind init_A;
|
||||
cutlass::Distribution::Kind init_B;
|
||||
cutlass::Distribution::Kind init_C;
|
||||
uint64_t seed;
|
||||
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementA, typename B2bConv2d::LayoutA> tensor_A0;
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementB, typename B2bConv2d::LayoutB> tensor_B0;
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementB, typename B2bConv2d::LayoutB> tensor_B0_reordered;
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_C0;
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_D0_reference;
|
||||
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementB, typename B2bConv2d::LayoutB> tensor_B1;
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementB, typename B2bConv2d::LayoutB> tensor_B1_reordered;
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_C1;
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_D1_computed;
|
||||
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_D1_reference;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
B2bInterleavedFusedConv2dRun(
|
||||
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
|
||||
uint64_t seed_ = 2080
|
||||
):
|
||||
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) {
|
||||
|
||||
}
|
||||
|
||||
/// Helper to initialize a tensor view
|
||||
template <typename Element, typename Layout>
|
||||
void initialize_tensor(
|
||||
cutlass::TensorView<Element, Layout> view,
|
||||
cutlass::Distribution::Kind dist_kind,
|
||||
uint64_t seed) {
|
||||
|
||||
if (dist_kind == cutlass::Distribution::Uniform) {
|
||||
|
||||
int scope;
|
||||
int bits = cutlass::sizeof_bits<Element>::value;
|
||||
|
||||
if (bits <= 16) {
|
||||
scope = 2;
|
||||
}
|
||||
else {
|
||||
scope = 8;
|
||||
}
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
view, seed, scope, -scope, 0);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Identity) {
|
||||
|
||||
cutlass::reference::host::TensorFillIdentity(view);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Gaussian) {
|
||||
|
||||
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Sequential) {
|
||||
|
||||
cutlass::reference::host::BlockFillSequential(view.data(), view.capacity());
|
||||
}
|
||||
else {
|
||||
}
|
||||
}
|
||||
|
||||
void initialize(
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_0,
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_1, uint64_t seed = 2019) {
|
||||
|
||||
tensor_A0.resize(implicit_gemm_tensor_a_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_B0.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_B0_reordered.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_C0.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_D0_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0));
|
||||
tensor_B1.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_1));
|
||||
tensor_B1_reordered.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_1));
|
||||
tensor_C1.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1));
|
||||
tensor_D1_computed.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1));
|
||||
tensor_D1_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1));
|
||||
|
||||
initialize_tensor(tensor_A0.host_view(), init_A, seed);
|
||||
initialize_tensor(tensor_B0.host_view(), init_B, seed * 17);
|
||||
initialize_tensor(tensor_C0.host_view(), init_C, seed * 39);
|
||||
initialize_tensor(tensor_B1.host_view(), init_B, seed * 18);
|
||||
initialize_tensor(tensor_C1.host_view(), init_C, seed * 40);
|
||||
|
||||
//Reorder B0 and B1
|
||||
cutlass::reorder_convK<16, InterleavedK>(
|
||||
tensor_B0_reordered.host_ref(), tensor_B0.host_ref(), implicit_gemm_problem_size(kConvolutionalOperator, problem_size_0));
|
||||
cutlass::reorder_convK<InterleavedK, InterleavedK>(
|
||||
tensor_B1_reordered.host_ref(), tensor_B1.host_ref(), implicit_gemm_problem_size(kConvolutionalOperator, problem_size_1));
|
||||
|
||||
tensor_A0.sync_device();
|
||||
tensor_B0.sync_device();
|
||||
tensor_B0_reordered.sync_device();
|
||||
tensor_C0.sync_device();
|
||||
tensor_D0_reference.sync_device();
|
||||
tensor_B1.sync_device();
|
||||
tensor_B1_reordered.sync_device();
|
||||
tensor_C1.sync_device();
|
||||
tensor_D1_computed.sync_device();
|
||||
tensor_D1_reference.sync_device();
|
||||
}
|
||||
|
||||
/// Executes one test
|
||||
bool run(
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_0,
|
||||
cutlass::conv::Conv2dProblemSize const &problem_size_1,
|
||||
cutlass::conv::SplitKMode const &split_k_mode = cutlass::conv::SplitKMode::kSerial,
|
||||
ElementCompute alpha0 = ElementCompute(1),
|
||||
ElementCompute beta0 = ElementCompute(0),
|
||||
ElementCompute alpha1 = ElementCompute(1),
|
||||
ElementCompute beta1 = ElementCompute(0),
|
||||
bool relu = true,
|
||||
int warm_ups = 1,
|
||||
int runs = 100) {
|
||||
|
||||
initialize(problem_size_0, problem_size_1);
|
||||
|
||||
// configure the operator
|
||||
B2bConv2d b2b_conv2d_op;
|
||||
|
||||
typename B2bConv2d::Arguments b2b_conv2d_args(
|
||||
problem_size_0,
|
||||
problem_size_1,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0_reordered.device_ref(),
|
||||
tensor_C0.device_ref(),
|
||||
tensor_B1_reordered.device_ref(),
|
||||
tensor_C1.device_ref(),
|
||||
tensor_D1_computed.device_ref(),
|
||||
{alpha0, beta0},
|
||||
{alpha1, beta1},
|
||||
split_k_mode
|
||||
);
|
||||
|
||||
cutlass::Status status = b2b_conv2d_op.initialize(b2b_conv2d_args);
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
for(int i = 0; i < warm_ups; i++) {
|
||||
status = b2b_conv2d_op();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
//
|
||||
// Run the Conv2d
|
||||
//
|
||||
|
||||
cudaEvent_t start, stop;
|
||||
cudaEventCreate(&start);
|
||||
cudaEventCreate(&stop);
|
||||
|
||||
cudaEventRecord(start);
|
||||
|
||||
for(int i = 0; i < runs; i++) {
|
||||
|
||||
// run conv2d operator
|
||||
status = b2b_conv2d_op();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
cudaEventRecord(stop);
|
||||
cudaDeviceSynchronize();
|
||||
float conv2dTime;
|
||||
cudaEventElapsedTime(&conv2dTime, start, stop);
|
||||
std::cout << "time " << conv2dTime / (float)runs << " ms\n";
|
||||
|
||||
tensor_D1_computed.sync_host();
|
||||
|
||||
bool passed = false;
|
||||
|
||||
cutlass::reference::device::Conv2d<
|
||||
typename B2bConv2d::ElementA,
|
||||
typename B2bConv2d::LayoutA,
|
||||
typename B2bConv2d::ElementB,
|
||||
typename B2bConv2d::LayoutB,
|
||||
typename B2bConv2d::ElementC,
|
||||
typename B2bConv2d::LayoutC,
|
||||
ElementCompute,
|
||||
ElementAccumulator,
|
||||
cutlass::NumericConverterClamp<typename B2bConv2d::ElementC, ElementCompute>
|
||||
>(
|
||||
kConvolutionalOperator,
|
||||
problem_size_0,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0.device_ref(),
|
||||
tensor_C0.device_ref(),
|
||||
tensor_D0_reference.device_ref(),
|
||||
alpha0,
|
||||
beta0);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(tensor_D0_reference.device_view());
|
||||
}
|
||||
|
||||
cutlass::reference::device::Conv2d<
|
||||
typename B2bConv2d::ElementA,
|
||||
typename B2bConv2d::LayoutA,
|
||||
typename B2bConv2d::ElementB,
|
||||
typename B2bConv2d::LayoutB,
|
||||
typename B2bConv2d::ElementC,
|
||||
typename B2bConv2d::LayoutC,
|
||||
ElementCompute,
|
||||
ElementAccumulator,
|
||||
cutlass::NumericConverterClamp<typename B2bConv2d::ElementC, ElementCompute>
|
||||
>(
|
||||
kConvolutionalOperator,
|
||||
problem_size_1,
|
||||
tensor_D0_reference.device_ref(),
|
||||
tensor_B1.device_ref(),
|
||||
tensor_C1.device_ref(),
|
||||
tensor_D1_reference.device_ref(),
|
||||
alpha1,
|
||||
beta1);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(tensor_D1_reference.device_view());
|
||||
}
|
||||
|
||||
cudaError_t result = cudaDeviceSynchronize();
|
||||
CHECK_TRUE(result == cudaSuccess);
|
||||
|
||||
// sync host (copy device data to host) for dumping error output in case of mismatches
|
||||
tensor_D0_reference.sync_host();
|
||||
tensor_D1_reference.sync_host();
|
||||
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D0_reference.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1_computed.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1_reference.host_view()), 0);
|
||||
|
||||
passed = cutlass::reference::host::TensorEquals(
|
||||
tensor_D1_computed.host_view(),
|
||||
tensor_D1_reference.host_view());
|
||||
|
||||
CHECK_TRUE(passed);
|
||||
|
||||
if (!passed) {
|
||||
std::stringstream fname;
|
||||
|
||||
fname << "error_B2bImplicitGemm_device_interleaved_fused.txt";
|
||||
std::cerr << "Dumping results in " << fname.str() << "\n";
|
||||
|
||||
std::ofstream results(fname.str());
|
||||
|
||||
results << problem_size_0 << std::endl;
|
||||
results << problem_size_1 << std::endl;
|
||||
|
||||
results
|
||||
<< "\nA0:\n" << tensor_A0.host_view() << "\n"
|
||||
<< "\nB0:\n" << tensor_B0.host_view() << "\n"
|
||||
<< "\nB0_reordered:\n" << tensor_B0_reordered.host_view() << "\n"
|
||||
<< "\nC0:\n" << tensor_C0.host_view() << "\n"
|
||||
<< "\nB1:\n" << tensor_B1.host_view() << "\n"
|
||||
<< "\nB1_reordered:\n" << tensor_B1_reordered.host_view() << "\n"
|
||||
<< "\nC1:\n" << tensor_C1.host_view() << "\n"
|
||||
<< "\nD1 reference:\n" << tensor_D1_reference.host_view() << "\n"
|
||||
<< "\nD1 computed:\n" << tensor_D1_computed.host_view();
|
||||
|
||||
|
||||
}
|
||||
|
||||
return passed;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
645
examples/13_two_tensor_op_fusion/b2b_interleaved_gemm_run.h
Normal file
645
examples/13_two_tensor_op_fusion/b2b_interleaved_gemm_run.h
Normal file
@ -0,0 +1,645 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "cutlass/util/distribution.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_norm.h"
|
||||
#include "cutlass/util/host_reorder.h"
|
||||
#include "cutlass/util/reference/device/gemm.h"
|
||||
#include "cutlass/util/reference/device/tensor_relu.h"
|
||||
|
||||
#include "helper.h"
|
||||
|
||||
#define CHECK_GT(val1, val2) \
|
||||
if((val1) <= (val2)) \
|
||||
std::cerr << __FILE__ << " " << __LINE__ << ": CHECK_GT failed\n";
|
||||
#define CHECK_TRUE(val) \
|
||||
if(!(val)) \
|
||||
std::cerr << __FILE__ << " " << __LINE__ << ": CHECK_TRUE failed\n";
|
||||
|
||||
template <typename Gemm0_, typename Gemm1_, int InterleavedK_>
|
||||
struct B2bInterleavedNonFusedGemmRun
|
||||
{
|
||||
|
||||
using Gemm0 = Gemm0_;
|
||||
using Gemm1 = Gemm1_;
|
||||
using ElementAccumulator = typename Gemm0::ElementAccumulator;
|
||||
using ElementCompute = typename Gemm0::GemmKernel::Epilogue::OutputOp::ElementCompute;
|
||||
|
||||
/// Initialization
|
||||
cutlass::Distribution::Kind init_A;
|
||||
cutlass::Distribution::Kind init_B;
|
||||
cutlass::Distribution::Kind init_C;
|
||||
uint64_t seed;
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
B2bInterleavedNonFusedGemmRun(
|
||||
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
|
||||
uint64_t seed_ = 2080
|
||||
):
|
||||
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
|
||||
|
||||
/// Helper to initialize a tensor view
|
||||
template <typename Element, typename Layout>
|
||||
bool initialize_tensor(
|
||||
cutlass::TensorView<Element, Layout> view,
|
||||
cutlass::Distribution::Kind dist_kind,
|
||||
uint64_t seed) {
|
||||
|
||||
if (dist_kind == cutlass::Distribution::Uniform) {
|
||||
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
view, seed, 2, -2, 0);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Identity) {
|
||||
|
||||
cutlass::reference::host::TensorFillIdentity(view);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Sequential) {
|
||||
|
||||
cutlass::reference::host::BlockFillSequential(
|
||||
view.data(), view.capacity());
|
||||
}
|
||||
else {
|
||||
// TODO: Implement the rest
|
||||
std::cerr << "Not implemented\n";
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Executes one test
|
||||
bool run(
|
||||
cutlass::gemm::GemmCoord problem_size_0,
|
||||
cutlass::gemm::GemmCoord problem_size_1,
|
||||
ElementCompute alpha0 = ElementCompute(1),
|
||||
ElementCompute beta0 = ElementCompute(0),
|
||||
ElementCompute alpha1 = ElementCompute(1),
|
||||
ElementCompute beta1 = ElementCompute(0),
|
||||
bool relu = true,
|
||||
int warm_ups = 1,
|
||||
int runs = 100) {
|
||||
|
||||
//
|
||||
// Allocate the GEMM workspace
|
||||
//
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm0::ElementA,
|
||||
typename Gemm0::LayoutA> tensor_A0(problem_size_0.mk());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm0::ElementB,
|
||||
typename Gemm0::LayoutB> tensor_B0(problem_size_0.kn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm0::ElementB,
|
||||
typename Gemm0::LayoutB> tensor_B0_reordered(problem_size_0.kn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm0::ElementC,
|
||||
typename Gemm0::LayoutC> tensor_C0(problem_size_0.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm0::ElementC,
|
||||
typename Gemm0::LayoutC> tensor_D0(problem_size_0.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm0::ElementC,
|
||||
typename Gemm0::LayoutC> reference_D0(problem_size_0.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm1::ElementB,
|
||||
typename Gemm1::LayoutB> tensor_B1(problem_size_1.kn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm1::ElementB,
|
||||
typename Gemm1::LayoutB> tensor_B1_reordered(problem_size_1.kn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm1::ElementC,
|
||||
typename Gemm1::LayoutC> tensor_C1(problem_size_1.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm1::ElementC,
|
||||
typename Gemm1::LayoutC> tensor_D1(problem_size_1.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename Gemm1::ElementC,
|
||||
typename Gemm1::LayoutC> reference_D1(problem_size_1.mn());
|
||||
|
||||
|
||||
CHECK_TRUE(initialize_tensor(tensor_A0.host_view(), init_A, seed + 2019));
|
||||
CHECK_TRUE(initialize_tensor(tensor_B0.host_view(), init_B, seed + 2018));
|
||||
CHECK_TRUE(initialize_tensor(tensor_C0.host_view(), init_C, seed + 2017));
|
||||
CHECK_TRUE(initialize_tensor(tensor_B1.host_view(), init_B, seed + 2016));
|
||||
CHECK_TRUE(initialize_tensor(tensor_C1.host_view(), init_C, seed + 2015));
|
||||
|
||||
//Reorder B0 and B1
|
||||
cutlass::reorder_column<InterleavedK_>(
|
||||
tensor_B0_reordered.host_ref(), tensor_B0.host_ref(), problem_size_0);
|
||||
cutlass::reorder_column<InterleavedK_>(
|
||||
tensor_B1_reordered.host_ref(), tensor_B1.host_ref(), problem_size_1);
|
||||
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_D0.host_view());
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_D1.host_view());
|
||||
cutlass::reference::host::TensorFill(
|
||||
reference_D0.host_view());
|
||||
cutlass::reference::host::TensorFill(
|
||||
reference_D1.host_view());
|
||||
|
||||
tensor_A0.sync_device();
|
||||
tensor_B0.sync_device();
|
||||
tensor_B0_reordered.sync_device();
|
||||
tensor_C0.sync_device();
|
||||
tensor_D0.sync_device();
|
||||
tensor_B1.sync_device();
|
||||
tensor_B1_reordered.sync_device();
|
||||
tensor_C1.sync_device();
|
||||
tensor_D1.sync_device();
|
||||
reference_D0.sync_device();
|
||||
reference_D1.sync_device();
|
||||
|
||||
//
|
||||
// Initialize the GEMM operator
|
||||
//
|
||||
|
||||
typename Gemm0::Arguments arguments_0{
|
||||
problem_size_0,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0_reordered.device_ref(),
|
||||
tensor_C0.device_ref(),
|
||||
tensor_D0.device_ref(),
|
||||
{alpha0, beta0}
|
||||
};
|
||||
|
||||
typename Gemm1::Arguments arguments_1{
|
||||
problem_size_1,
|
||||
tensor_D0.device_ref(),
|
||||
tensor_B1_reordered.device_ref(),
|
||||
tensor_C1.device_ref(),
|
||||
tensor_D1.device_ref(),
|
||||
{alpha1, beta1}
|
||||
};
|
||||
|
||||
|
||||
Gemm0 gemm_op_0;
|
||||
Gemm1 gemm_op_1;
|
||||
|
||||
cutlass::Status status = gemm_op_0.initialize(arguments_0);
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
status = gemm_op_1.initialize(arguments_1);
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
for(int i = 0; i < warm_ups; i++) {
|
||||
status = gemm_op_0();
|
||||
CUTLASS_CHECK(status);
|
||||
status = gemm_op_1();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
//
|
||||
// Run the GEMM
|
||||
//
|
||||
cudaEvent_t start, stop1, stop2;
|
||||
cudaEventCreate(&start);
|
||||
cudaEventCreate(&stop1);
|
||||
cudaEventCreate(&stop2);
|
||||
|
||||
cudaEventRecord(start);
|
||||
|
||||
for(int i = 0; i < runs; i++) {
|
||||
status = gemm_op_0();
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
cudaEventRecord(stop1);
|
||||
|
||||
for(int i = 0; i < runs; i++) {
|
||||
status = gemm_op_1();
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
cudaEventRecord(stop2);
|
||||
cudaDeviceSynchronize();
|
||||
float gemm0Time, gemm1Time, totalTime;
|
||||
cudaEventElapsedTime(&gemm0Time, start, stop1);
|
||||
cudaEventElapsedTime(&gemm1Time, stop1, stop2);
|
||||
cudaEventElapsedTime(&totalTime, start, stop2);
|
||||
std::cout << "gemm 0 time " << gemm0Time / (float)runs << " ms\n";
|
||||
std::cout << "gemm 1 time " << gemm1Time / (float)runs << " ms\n";
|
||||
std::cout << "total time " << totalTime / (float)runs << " ms\n";
|
||||
|
||||
tensor_D0.sync_host();
|
||||
tensor_D1.sync_host();
|
||||
|
||||
//
|
||||
// Verify
|
||||
//
|
||||
cutlass::reference::device::Gemm<
|
||||
typename Gemm0::ElementA, typename Gemm0::LayoutA,
|
||||
typename Gemm0::ElementB, typename Gemm0::LayoutB,
|
||||
typename Gemm0::ElementC, typename Gemm0::LayoutC, ElementCompute,
|
||||
ElementAccumulator, typename Gemm0::Operator>
|
||||
reference_gemm_0;
|
||||
|
||||
cutlass::reference::device::Gemm<
|
||||
typename Gemm1::ElementA, typename Gemm1::LayoutA,
|
||||
typename Gemm1::ElementB, typename Gemm1::LayoutB,
|
||||
typename Gemm1::ElementC, typename Gemm1::LayoutC, ElementCompute,
|
||||
ElementAccumulator, typename Gemm1::Operator>
|
||||
reference_gemm_1;
|
||||
|
||||
reference_gemm_0(
|
||||
problem_size_0,
|
||||
alpha0,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0.device_ref(),
|
||||
beta0,
|
||||
tensor_C0.device_ref(),
|
||||
reference_D0.device_ref()
|
||||
);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(reference_D0.device_view());
|
||||
}
|
||||
|
||||
reference_gemm_1(
|
||||
problem_size_1,
|
||||
alpha1,
|
||||
reference_D0.device_ref(),
|
||||
tensor_B1.device_ref(),
|
||||
beta1,
|
||||
tensor_C1.device_ref(),
|
||||
reference_D1.device_ref()
|
||||
);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(reference_D1.device_view());
|
||||
}
|
||||
|
||||
cudaDeviceSynchronize();
|
||||
reference_D0.sync_host();
|
||||
reference_D1.sync_host();
|
||||
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D0.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(reference_D0.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(reference_D1.host_view()), 0);
|
||||
|
||||
bool passed = cutlass::reference::host::TensorEquals(
|
||||
reference_D1.host_view(),
|
||||
tensor_D1.host_view());
|
||||
|
||||
CHECK_TRUE(passed);
|
||||
if (!passed) {
|
||||
|
||||
std::stringstream fname;
|
||||
|
||||
fname << "error_B2bGemm_device_interleaved_nonfused.txt";
|
||||
std::cerr << "Dumping results in " << fname.str() << "\n";
|
||||
|
||||
std::ofstream file(fname.str());
|
||||
|
||||
file
|
||||
<< "A0 =\n" << tensor_A0.host_view()
|
||||
<< "\nB0 =\n" << tensor_B0.host_view()
|
||||
<< "\nB0_reordered =\n" << tensor_B0_reordered.host_view()
|
||||
<< "\nC0 =\n" << tensor_C0.host_view()
|
||||
<< "\nD0 =\n" << tensor_D0.host_view()
|
||||
<< "\nB1 =\n" << tensor_B1.host_view()
|
||||
<< "\nB1_reordered =\n" << tensor_B1_reordered.host_view()
|
||||
<< "\nC1 =\n" << tensor_C1.host_view()
|
||||
<< "\n\nReference =\n" << reference_D1.host_view()
|
||||
<< "\nComputed =\n" << tensor_D1.host_view();
|
||||
}
|
||||
|
||||
return passed;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename B2bGemm_, int InterleavedK_>
|
||||
struct B2bInterleavedFusedGemmRun
|
||||
{
|
||||
|
||||
using B2bGemm = B2bGemm_;
|
||||
using ElementAccumulator = typename B2bGemm::ElementAccumulator;
|
||||
using ElementCompute = typename B2bGemm::B2bGemmKernel::Epilogue::OutputOp::ElementCompute;
|
||||
|
||||
/// Initialization
|
||||
cutlass::Distribution::Kind init_A;
|
||||
cutlass::Distribution::Kind init_B;
|
||||
cutlass::Distribution::Kind init_C;
|
||||
uint64_t seed;
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
B2bInterleavedFusedGemmRun(
|
||||
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
|
||||
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
|
||||
uint64_t seed_ = 2080
|
||||
):
|
||||
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
|
||||
|
||||
/// Helper to initialize a tensor view
|
||||
template <typename Element, typename Layout>
|
||||
bool initialize_tensor(
|
||||
cutlass::TensorView<Element, Layout> view,
|
||||
cutlass::Distribution::Kind dist_kind,
|
||||
uint64_t seed) {
|
||||
|
||||
if (dist_kind == cutlass::Distribution::Uniform) {
|
||||
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
view, seed, 2, -2, 0);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Identity) {
|
||||
|
||||
cutlass::reference::host::TensorFillIdentity(view);
|
||||
}
|
||||
else if (dist_kind == cutlass::Distribution::Sequential) {
|
||||
|
||||
cutlass::reference::host::BlockFillSequential(
|
||||
view.data(), view.capacity());
|
||||
}
|
||||
else {
|
||||
// TODO: Implement the rest
|
||||
std::cerr << "Not implemented\n";
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Executes one test
|
||||
bool run(
|
||||
cutlass::gemm::GemmCoord problem_size_0,
|
||||
cutlass::gemm::GemmCoord problem_size_1,
|
||||
ElementCompute alpha0 = ElementCompute(1),
|
||||
ElementCompute beta0 = ElementCompute(0),
|
||||
ElementCompute alpha1 = ElementCompute(1),
|
||||
ElementCompute beta1 = ElementCompute(0),
|
||||
bool relu = true,
|
||||
int warm_ups = 1,
|
||||
int runs = 100) {
|
||||
|
||||
//
|
||||
// Allocate the GEMM workspace
|
||||
//
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementA,
|
||||
typename B2bGemm::LayoutA> tensor_A0(problem_size_0.mk());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementB,
|
||||
typename B2bGemm::LayoutB> tensor_B0(problem_size_0.kn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementB,
|
||||
typename B2bGemm::LayoutB> tensor_B0_reordered(problem_size_0.kn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementC,
|
||||
typename B2bGemm::LayoutC> tensor_C0(problem_size_0.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementC,
|
||||
typename B2bGemm::LayoutC> reference_D0(problem_size_0.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementB,
|
||||
typename B2bGemm::LayoutB> tensor_B1(problem_size_1.kn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementB,
|
||||
typename B2bGemm::LayoutB> tensor_B1_reordered(problem_size_1.kn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementC,
|
||||
typename B2bGemm::LayoutC> tensor_C1(problem_size_1.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementC,
|
||||
typename B2bGemm::LayoutC> tensor_D1(problem_size_1.mn());
|
||||
|
||||
cutlass::HostTensor<
|
||||
typename B2bGemm::ElementC,
|
||||
typename B2bGemm::LayoutC> reference_D1(problem_size_1.mn());
|
||||
|
||||
|
||||
CHECK_TRUE(initialize_tensor(tensor_A0.host_view(), init_A, seed + 2019));
|
||||
CHECK_TRUE(initialize_tensor(tensor_B0.host_view(), init_B, seed + 2018));
|
||||
CHECK_TRUE(initialize_tensor(tensor_C0.host_view(), init_C, seed + 2017));
|
||||
CHECK_TRUE(initialize_tensor(tensor_B1.host_view(), init_B, seed + 2016));
|
||||
CHECK_TRUE(initialize_tensor(tensor_C1.host_view(), init_C, seed + 2015));
|
||||
|
||||
//Reorder B0
|
||||
cutlass::reorder_column<16>(
|
||||
tensor_B0_reordered.host_ref(), tensor_B0.host_ref(), problem_size_0);
|
||||
cutlass::reorder_column<InterleavedK_>(
|
||||
tensor_B1_reordered.host_ref(), tensor_B1.host_ref(), problem_size_1);
|
||||
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_D1.host_view());
|
||||
cutlass::reference::host::TensorFill(
|
||||
reference_D0.host_view());
|
||||
cutlass::reference::host::TensorFill(
|
||||
reference_D1.host_view());
|
||||
|
||||
tensor_A0.sync_device();
|
||||
tensor_B0.sync_device();
|
||||
tensor_B0_reordered.sync_device();
|
||||
tensor_C0.sync_device();
|
||||
tensor_B1.sync_device();
|
||||
tensor_B1_reordered.sync_device();
|
||||
tensor_C1.sync_device();
|
||||
tensor_D1.sync_device();
|
||||
reference_D0.sync_device();
|
||||
reference_D1.sync_device();
|
||||
|
||||
//
|
||||
// Initialize the GEMM operator
|
||||
//
|
||||
|
||||
typename B2bGemm::Arguments arguments{
|
||||
problem_size_0,
|
||||
problem_size_1,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0_reordered.device_ref(),
|
||||
tensor_C0.device_ref(),
|
||||
tensor_B1_reordered.device_ref(),
|
||||
tensor_C1.device_ref(),
|
||||
tensor_D1.device_ref(),
|
||||
{alpha0, beta0},
|
||||
{alpha1, beta1},
|
||||
1, /*threadblock_swizzle_k_tile*/
|
||||
};
|
||||
|
||||
B2bGemm b2b_gemm_op;
|
||||
|
||||
cutlass::Status status = b2b_gemm_op.initialize(arguments);
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
for(int i = 0; i < warm_ups; i++) {
|
||||
status = b2b_gemm_op();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
//
|
||||
// Run the GEMM
|
||||
//
|
||||
|
||||
cudaEvent_t start, stop;
|
||||
cudaEventCreate(&start);
|
||||
cudaEventCreate(&stop);
|
||||
|
||||
cudaEventRecord(start);
|
||||
|
||||
for(int i = 0; i < runs; i++) {
|
||||
status = b2b_gemm_op();
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
cudaEventRecord(stop);
|
||||
cudaDeviceSynchronize();
|
||||
float gemmTime;
|
||||
cudaEventElapsedTime(&gemmTime, start, stop);
|
||||
std::cout << "time " << gemmTime / (float)runs << " ms\n";
|
||||
|
||||
tensor_D1.sync_host();
|
||||
|
||||
//
|
||||
// Verify
|
||||
//
|
||||
cutlass::reference::device::Gemm<
|
||||
typename B2bGemm::ElementA, typename B2bGemm::LayoutA,
|
||||
typename B2bGemm::ElementB, typename B2bGemm::LayoutB,
|
||||
typename B2bGemm::ElementC, typename B2bGemm::LayoutC, ElementCompute,
|
||||
ElementAccumulator, typename B2bGemm::Operator>
|
||||
reference_gemm_0, reference_gemm_1;
|
||||
|
||||
reference_gemm_0(
|
||||
problem_size_0,
|
||||
alpha0,
|
||||
tensor_A0.device_ref(),
|
||||
tensor_B0.device_ref(),
|
||||
beta0,
|
||||
tensor_C0.device_ref(),
|
||||
reference_D0.device_ref()
|
||||
);
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(reference_D0.device_view());
|
||||
}
|
||||
|
||||
reference_gemm_1(
|
||||
problem_size_1,
|
||||
alpha1,
|
||||
reference_D0.device_ref(),
|
||||
tensor_B1.device_ref(),
|
||||
beta1,
|
||||
tensor_C1.device_ref(),
|
||||
reference_D1.device_ref()
|
||||
);
|
||||
|
||||
|
||||
if(relu) {
|
||||
cutlass::reference::device::TensorReLu(reference_D1.device_view());
|
||||
}
|
||||
|
||||
cudaDeviceSynchronize();
|
||||
reference_D0.sync_host();
|
||||
reference_D1.sync_host();
|
||||
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(reference_D0.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1.host_view()), 0);
|
||||
CHECK_GT(cutlass::reference::host::TensorNorm(reference_D1.host_view()), 0);
|
||||
|
||||
bool passed = cutlass::reference::host::TensorEquals(
|
||||
reference_D1.host_view(),
|
||||
tensor_D1.host_view());
|
||||
|
||||
CHECK_TRUE(passed);
|
||||
if (!passed) {
|
||||
|
||||
std::stringstream fname;
|
||||
|
||||
fname << "error_B2bGemm_device_interleaved_fused.txt";
|
||||
std::cerr << "Dumping results in " << fname.str() << "\n";
|
||||
|
||||
std::ofstream file(fname.str());
|
||||
|
||||
file
|
||||
<< "A0 =\n" << tensor_A0.host_view()
|
||||
<< "\nB0 =\n" << tensor_B0.host_view()
|
||||
<< "\nB0_reordered =\n" << tensor_B0_reordered.host_view()
|
||||
<< "\nC0 =\n" << tensor_C0.host_view()
|
||||
<< "\nB1 =\n" << tensor_B1.host_view()
|
||||
<< "\nB1_reordered =\n" << tensor_B1_reordered.host_view()
|
||||
<< "\nC1 =\n" << tensor_C1.host_view()
|
||||
<< "\n\nReference =\n" << reference_D1.host_view()
|
||||
<< "\nComputed =\n" << tensor_D1.host_view();
|
||||
}
|
||||
|
||||
return passed;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
427
examples/13_two_tensor_op_fusion/device/b2b_gemm.h
Normal file
427
examples/13_two_tensor_op_fusion/device/b2b_gemm.h
Normal file
@ -0,0 +1,427 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Template for a pipelined GEMM kernel. Does not compute batching or support split-K.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/numeric_types.h"
|
||||
#include "cutlass/arch/arch.h"
|
||||
#include "cutlass/device_kernel.h"
|
||||
|
||||
#include "cutlass/gemm/threadblock/threadblock_swizzle.h"
|
||||
|
||||
#include "cutlass/gemm/device/default_gemm_configuration.h"
|
||||
#include "cutlass/epilogue/thread/linear_combination_relu.h"
|
||||
|
||||
#include "kernel/b2b_gemm.h"
|
||||
#include "kernel/default_b2b_gemm.h"
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace cutlass {
|
||||
namespace gemm {
|
||||
namespace device {
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
/// Element type for A matrix operand
|
||||
typename ElementA_,
|
||||
/// Layout type for A matrix operand
|
||||
typename LayoutA_,
|
||||
/// Element type for B matrix operand
|
||||
typename ElementB_,
|
||||
/// Layout type for B matrix operand
|
||||
typename LayoutB_,
|
||||
/// Element type for C and D matrix operands
|
||||
typename ElementC_,
|
||||
/// Layout type for C and D matrix operands
|
||||
typename LayoutC_,
|
||||
/// Element type for internal accumulation
|
||||
typename ElementAccumulator_ = ElementC_,
|
||||
/// Operator class tag
|
||||
typename OperatorClass_ = arch::OpClassSimt,
|
||||
/// Tag indicating architecture to tune for
|
||||
typename ArchTag_ = arch::Sm70,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape0_ = typename DefaultGemmConfiguration<
|
||||
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
|
||||
ElementAccumulator_>::ThreadblockShape,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape1_ = typename DefaultGemmConfiguration<
|
||||
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
|
||||
ElementAccumulator_>::ThreadblockShape,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape0_ = typename DefaultGemmConfiguration<
|
||||
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
|
||||
ElementAccumulator_>::WarpShape,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape1_ = typename DefaultGemmConfiguration<
|
||||
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
|
||||
ElementAccumulator_>::WarpShape,
|
||||
/// Instruction-level tile size (concept: GemmShape)
|
||||
typename InstructionShape_ = typename DefaultGemmConfiguration<
|
||||
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
|
||||
ElementAccumulator_>::InstructionShape,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp0_ = typename DefaultGemmConfiguration<
|
||||
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
|
||||
ElementAccumulator_>::EpilogueOutputOp,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp1_ = typename DefaultGemmConfiguration<
|
||||
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
|
||||
ElementAccumulator_>::EpilogueOutputOp,
|
||||
/// Threadblock-level swizzling operator
|
||||
typename ThreadblockSwizzle_ = threadblock::GemmIdentityThreadblockSwizzle<>,
|
||||
/// Number of stages used in the pipelined mainloop
|
||||
int Stages =
|
||||
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
|
||||
ElementC_, ElementAccumulator_>::kStages,
|
||||
/// Access granularity of A matrix in units of elements
|
||||
int AlignmentA =
|
||||
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
|
||||
ElementC_, ElementAccumulator_>::kAlignmentA,
|
||||
/// Access granularity of B matrix in units of elements
|
||||
int AlignmentB =
|
||||
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
|
||||
ElementC_, ElementAccumulator_>::kAlignmentB,
|
||||
/// If true, kernel supports split-K with serial reduction
|
||||
bool SplitKSerial = false,
|
||||
/// Operation performed by GEMM
|
||||
typename Operator_ = typename DefaultGemmConfiguration<
|
||||
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
|
||||
ElementAccumulator_>::Operator>
|
||||
class B2bGemm {
|
||||
public:
|
||||
|
||||
using ElementA = ElementA_;
|
||||
using LayoutA = LayoutA_;
|
||||
using TensorRefA = TensorRef<ElementA const, LayoutA>;
|
||||
using ElementB = ElementB_;
|
||||
using LayoutB = LayoutB_;
|
||||
using TensorRefB = TensorRef<ElementB const, LayoutB>;
|
||||
using ElementC = ElementC_;
|
||||
using LayoutC = LayoutC_;
|
||||
using TensorRefC = TensorRef<ElementC const, LayoutC>;
|
||||
using TensorRefD = TensorRef<ElementC, LayoutC>;
|
||||
using ElementAccumulator = ElementAccumulator_;
|
||||
using OperatorClass = OperatorClass_;
|
||||
using ArchTag = ArchTag_;
|
||||
using ThreadblockShape0 = ThreadblockShape0_;
|
||||
using ThreadblockShape1 = ThreadblockShape1_;
|
||||
using WarpShape0 = WarpShape0_;
|
||||
using WarpShape1 = WarpShape1_;
|
||||
using InstructionShape = InstructionShape_;
|
||||
using EpilogueOutputOp0 = EpilogueOutputOp0_;
|
||||
using EpilogueOutputOp1 = EpilogueOutputOp1_;
|
||||
using ThreadblockSwizzle = ThreadblockSwizzle_;
|
||||
using Operator = Operator_;
|
||||
static int const kStages = Stages;
|
||||
static int const kAlignmentA = AlignmentA;
|
||||
static int const kAlignmentB = AlignmentB;
|
||||
static int const kAlignmentC = EpilogueOutputOp1::kCount;
|
||||
static bool const kSplitKSerial = SplitKSerial;
|
||||
static ComplexTransform const kTransformA = ComplexTransform::kNone;
|
||||
static ComplexTransform const kTransformB = ComplexTransform::kNone;
|
||||
|
||||
/// Define the kernel
|
||||
using B2bGemmKernel = typename kernel::DefaultB2bGemm<
|
||||
ElementA,
|
||||
LayoutA,
|
||||
kAlignmentA,
|
||||
ElementB,
|
||||
LayoutB,
|
||||
kAlignmentB,
|
||||
ElementC,
|
||||
LayoutC,
|
||||
ElementAccumulator,
|
||||
OperatorClass,
|
||||
ArchTag,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp0,
|
||||
EpilogueOutputOp1,
|
||||
ThreadblockSwizzle,
|
||||
kStages,
|
||||
kSplitKSerial,
|
||||
Operator
|
||||
>::B2bGemmKernel;
|
||||
|
||||
/// Argument structure
|
||||
struct Arguments {
|
||||
|
||||
//
|
||||
// Data members
|
||||
//
|
||||
|
||||
GemmCoord problem_size_0;
|
||||
GemmCoord problem_size_1;
|
||||
TensorRef<ElementA const, LayoutA> ref_A0;
|
||||
TensorRef<ElementB const, LayoutB> ref_B0;
|
||||
TensorRef<ElementC const, LayoutC> ref_C0;
|
||||
TensorRef<ElementB const, LayoutB> ref_B1;
|
||||
TensorRef<ElementC const, LayoutC> ref_C1;
|
||||
TensorRef<ElementC, LayoutC> ref_D1;
|
||||
typename EpilogueOutputOp0::Params epilogue0;
|
||||
typename EpilogueOutputOp1::Params epilogue1;
|
||||
int split_k_slices;
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
/// Default ctor
|
||||
CUTLASS_HOST_DEVICE
|
||||
Arguments(): problem_size_0(0, 0, 0), problem_size_1(0, 0, 0), split_k_slices(1) {
|
||||
|
||||
}
|
||||
|
||||
/// Constructs an Arguments structure
|
||||
CUTLASS_HOST_DEVICE
|
||||
Arguments(
|
||||
GemmCoord problem_size_0_,
|
||||
GemmCoord problem_size_1_,
|
||||
TensorRef<ElementA const, LayoutA> ref_A0_,
|
||||
TensorRef<ElementB const, LayoutB> ref_B0_,
|
||||
TensorRef<ElementC const, LayoutC> ref_C0_,
|
||||
TensorRef<ElementB const, LayoutB> ref_B1_,
|
||||
TensorRef<ElementC const, LayoutC> ref_C1_,
|
||||
TensorRef<ElementC, LayoutC> ref_D1_,
|
||||
typename EpilogueOutputOp0::Params epilogue0_ =
|
||||
typename EpilogueOutputOp0::Params(),
|
||||
typename EpilogueOutputOp1::Params epilogue1_ =
|
||||
typename EpilogueOutputOp1::Params(),
|
||||
int split_k_slices_ = 1
|
||||
):
|
||||
problem_size_0(problem_size_0_),
|
||||
problem_size_1(problem_size_1_),
|
||||
ref_A0(ref_A0_),
|
||||
ref_B0(ref_B0_),
|
||||
ref_C0(ref_C0_),
|
||||
ref_B1(ref_B1_),
|
||||
ref_C1(ref_C1_),
|
||||
ref_D1(ref_D1_),
|
||||
epilogue0(epilogue0_),
|
||||
epilogue1(epilogue1_),
|
||||
split_k_slices(split_k_slices_) {
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
private:
|
||||
|
||||
/// Kernel parameters object
|
||||
typename B2bGemmKernel::Params params_;
|
||||
|
||||
public:
|
||||
|
||||
/// Constructs the GEMM.
|
||||
B2bGemm() { }
|
||||
|
||||
/// Determines whether the GEMM can execute the given problem.
|
||||
static Status can_implement(Arguments const &args) {
|
||||
|
||||
if (!kSplitKSerial && args.split_k_slices > 1) {
|
||||
return Status::kErrorInvalidProblem;
|
||||
}
|
||||
|
||||
Status status = B2bGemmKernel::can_implement(
|
||||
args.problem_size_0,
|
||||
args.problem_size_1,
|
||||
args.ref_A0.non_const_ref(),
|
||||
args.ref_B0.non_const_ref(),
|
||||
args.ref_C0.non_const_ref(),
|
||||
args.ref_B1.non_const_ref(),
|
||||
args.ref_C1.non_const_ref(),
|
||||
args.ref_D1
|
||||
);
|
||||
|
||||
if (status != Status::kSuccess) {
|
||||
return status;
|
||||
}
|
||||
|
||||
return Status::kSuccess;
|
||||
}
|
||||
|
||||
/// Gets the workspace size
|
||||
static size_t get_workspace_size(Arguments const &args) {
|
||||
|
||||
size_t bytes = 0;
|
||||
|
||||
// Determine grid shape
|
||||
ThreadblockSwizzle threadblock_swizzle;
|
||||
|
||||
cutlass::gemm::GemmCoord tiled_shape = threadblock_swizzle.get_tiled_shape(
|
||||
args.problem_size_0,
|
||||
{ThreadblockShape0::kM, ThreadblockShape0::kN, ThreadblockShape0::kK},
|
||||
args.split_k_slices);
|
||||
|
||||
if (kSplitKSerial && args.split_k_slices > 1) {
|
||||
|
||||
|
||||
bytes += sizeof(int) * size_t(tiled_shape.m()) * size_t(tiled_shape.n());
|
||||
}
|
||||
|
||||
return bytes;
|
||||
}
|
||||
|
||||
/// Initializes GEMM state from arguments.
|
||||
Status initialize(Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) {
|
||||
|
||||
// Determine grid shape
|
||||
ThreadblockSwizzle threadblock_swizzle;
|
||||
|
||||
cutlass::gemm::GemmCoord grid_shape = threadblock_swizzle.get_tiled_shape(
|
||||
args.problem_size_0,
|
||||
{ThreadblockShape0::kM, ThreadblockShape0::kN, ThreadblockShape0::kK},
|
||||
args.split_k_slices);
|
||||
// cutlass::gemm::GemmCoord grid_shape_1 = threadblock_swizzle.get_tiled_shape(
|
||||
// args.problem_size_1,
|
||||
// {ThreadblockShape1::kM, ThreadblockShape1::kN, ThreadblockShape1::kK},
|
||||
// args.split_k_slices);
|
||||
|
||||
if (kSplitKSerial) {
|
||||
if (args.split_k_slices > 1) {
|
||||
if (!workspace) {
|
||||
return Status::kErrorWorkspaceNull;
|
||||
}
|
||||
|
||||
size_t bytes = get_workspace_size(args);
|
||||
|
||||
cudaError_t result = cudaMemsetAsync(workspace, 0, bytes, stream);
|
||||
|
||||
if (result != cudaSuccess) {
|
||||
return Status::kErrorInternal;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
|
||||
if (args.split_k_slices > 1) {
|
||||
return Status::kErrorInvalidProblem;
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize the Params structure
|
||||
params_ = typename B2bGemmKernel::Params{
|
||||
args.problem_size_0,
|
||||
args.problem_size_1,
|
||||
grid_shape,
|
||||
args.ref_A0.non_const_ref(),
|
||||
args.ref_B0.non_const_ref(),
|
||||
args.ref_C0.non_const_ref(),
|
||||
args.ref_B1.non_const_ref(),
|
||||
args.ref_C1.non_const_ref(),
|
||||
args.ref_D1,
|
||||
args.epilogue0,
|
||||
args.epilogue1,
|
||||
static_cast<int *>(workspace),
|
||||
};
|
||||
|
||||
return Status::kSuccess;
|
||||
}
|
||||
|
||||
/// Lightweight update given a subset of arguments
|
||||
Status update(Arguments const &args, void *workspace = nullptr) {
|
||||
|
||||
if (kSplitKSerial && args.split_k_slices > 1) {
|
||||
if (!workspace) {
|
||||
return Status::kErrorWorkspaceNull;
|
||||
}
|
||||
}
|
||||
|
||||
params_.ref_A0.reset(args.ref_A.non_const_ref().data());
|
||||
params_.ref_B0.reset(args.ref_B.non_const_ref().data());
|
||||
params_.ref_C0.reset(args.ref_C.non_const_ref().data());
|
||||
params_.ref_B1.reset(args.ref_B.non_const_ref().data());
|
||||
params_.ref_C1.reset(args.ref_C.non_const_ref().data());
|
||||
params_.ref_D1.reset(args.ref_D.data());
|
||||
params_.output_op_0 = args.epilogue0;
|
||||
params_.output_op_1 = args.epilogue1;
|
||||
params_.semaphore = static_cast<int *>(workspace);
|
||||
|
||||
return Status::kSuccess;
|
||||
}
|
||||
|
||||
/// Runs the kernel using initialized state.
|
||||
Status run(cudaStream_t stream = nullptr) {
|
||||
|
||||
ThreadblockSwizzle threadblock_swizzle;
|
||||
|
||||
dim3 grid = threadblock_swizzle.get_grid_shape(params_.grid_tiled_shape);
|
||||
dim3 block(B2bGemmKernel::kThreadCount, 1, 1);
|
||||
|
||||
cudaError_t result;
|
||||
|
||||
int smem_size = int(sizeof(typename B2bGemmKernel::SharedStorage));
|
||||
if (smem_size >= (48 << 10)) {
|
||||
result = cudaFuncSetAttribute(Kernel<B2bGemmKernel>,
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize,
|
||||
smem_size);
|
||||
|
||||
if (result != cudaSuccess) {
|
||||
return Status::kErrorInternal;
|
||||
}
|
||||
}
|
||||
|
||||
cutlass::Kernel<B2bGemmKernel><<<grid, block, smem_size, stream>>>(params_);
|
||||
|
||||
result = cudaGetLastError();
|
||||
|
||||
return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal;
|
||||
}
|
||||
|
||||
/// Runs the kernel using initialized state.
|
||||
Status operator()(cudaStream_t stream = nullptr) {
|
||||
return run(stream);
|
||||
}
|
||||
|
||||
/// Runs the kernel using initialized state.
|
||||
Status operator()(
|
||||
Arguments const &args,
|
||||
void *workspace = nullptr,
|
||||
cudaStream_t stream = nullptr) {
|
||||
|
||||
Status status = initialize(args, workspace, stream);
|
||||
|
||||
if (status == Status::kSuccess) {
|
||||
status = run(stream);
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace device
|
||||
} // namespace gemm
|
||||
} // namespace cutlass
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
@ -0,0 +1,266 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/* \file
|
||||
\brief Template for device-level Implicit GEMM
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <limits>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/device_kernel.h"
|
||||
#include "cutlass/conv/convolution.h"
|
||||
|
||||
#include "kernel/b2b_implicit_gemm_convolution.h"
|
||||
#include "kernel/default_b2b_conv2d_fprop.h"
|
||||
|
||||
namespace cutlass {
|
||||
namespace conv {
|
||||
namespace device {
|
||||
|
||||
template<typename B2bImplicitGemmKernel_>
|
||||
class B2bImplicitGemmConvolution {
|
||||
public:
|
||||
|
||||
using B2bImplicitGemmKernel = B2bImplicitGemmKernel_;
|
||||
|
||||
using ElementA = typename B2bImplicitGemmKernel::ElementA;
|
||||
using LayoutA = typename B2bImplicitGemmKernel::LayoutA;
|
||||
using ElementB = typename B2bImplicitGemmKernel::ElementB;
|
||||
using LayoutB = typename B2bImplicitGemmKernel::LayoutB;
|
||||
using ElementC = typename B2bImplicitGemmKernel::ElementC;
|
||||
using LayoutC = typename B2bImplicitGemmKernel::LayoutC;
|
||||
using ElementAccumulator = typename B2bImplicitGemmKernel::ElementAccumulator;
|
||||
using ElementCompute = typename B2bImplicitGemmKernel::ElementCompute;
|
||||
using OperatorClass = typename B2bImplicitGemmKernel::OperatorClass;
|
||||
using ArchTag = typename B2bImplicitGemmKernel::ArchTag;
|
||||
using ThreadblockShape0 = typename B2bImplicitGemmKernel::ThreadblockShape0;
|
||||
using ThreadblockShape1 = typename B2bImplicitGemmKernel::ThreadblockShape1;
|
||||
using WarpShape0 = typename B2bImplicitGemmKernel::WarpShape0;
|
||||
using WarpShape1 = typename B2bImplicitGemmKernel::WarpShape1;
|
||||
using InstructionShape = typename B2bImplicitGemmKernel::InstructionShape;
|
||||
using ThreadblockSwizzle = typename B2bImplicitGemmKernel::ThreadblockSwizzle;
|
||||
using EpilogueOutputOp0 = typename B2bImplicitGemmKernel::EpilogueOutputOp0;
|
||||
using EpilogueOutputOp1 = typename B2bImplicitGemmKernel::EpilogueOutputOp1;
|
||||
static int const kStages = B2bImplicitGemmKernel::kStages;
|
||||
static int const kConvDim = B2bImplicitGemmKernel::kConvDim;
|
||||
using WarpMmaOperator0 = typename B2bImplicitGemmKernel::WarpMmaOperator0;
|
||||
using WarpMmaOperator1 = typename B2bImplicitGemmKernel::WarpMmaOperator1;
|
||||
using ArchMmaOperator = typename B2bImplicitGemmKernel::ArchMmaOperator;
|
||||
using MathOperator = typename B2bImplicitGemmKernel::MathOperator;
|
||||
|
||||
static cutlass::conv::Operator const kConvolutionalOperator = B2bImplicitGemmKernel::kConvolutionalOperator;
|
||||
static cutlass::conv::IteratorAlgorithm const kIteratorAlgorithm = B2bImplicitGemmKernel::kIteratorAlgorithm;
|
||||
|
||||
static int const kWarpCount =
|
||||
(ThreadblockShape0::kM / WarpShape0::kM) *
|
||||
(ThreadblockShape0::kN / WarpShape0::kN);
|
||||
|
||||
/// Argument structure
|
||||
using Arguments = typename B2bImplicitGemmKernel::Arguments;
|
||||
|
||||
private:
|
||||
|
||||
/// Kernel parameters object
|
||||
typename B2bImplicitGemmKernel::Params params_;
|
||||
|
||||
public:
|
||||
|
||||
/// Constructs Implicit GEMM
|
||||
B2bImplicitGemmConvolution() { }
|
||||
|
||||
/// Determines whether the Implicit GEMM can execute the given problem.
|
||||
static Status can_implement(Arguments const &args) {
|
||||
|
||||
// dispatch to iterators
|
||||
Status status = B2bImplicitGemmKernel::B2bMma::IteratorA0::can_implement(args.problem_size_0);
|
||||
if (Status::kSuccess != status) {
|
||||
return status;
|
||||
}
|
||||
|
||||
status = B2bImplicitGemmKernel::B2bMma::IteratorB0::can_implement(args.problem_size_0);
|
||||
if (Status::kSuccess != status) {
|
||||
return status;
|
||||
}
|
||||
|
||||
status = B2bImplicitGemmKernel::B2bMma::IteratorB1::can_implement(args.problem_size_1);
|
||||
if (Status::kSuccess != status) {
|
||||
return status;
|
||||
}
|
||||
|
||||
// Determine grid shape
|
||||
ThreadblockSwizzle threadblock_swizzle;
|
||||
|
||||
dim3 grid = threadblock_swizzle.get_grid_shape(
|
||||
threadblock_swizzle.get_tiled_shape(
|
||||
cutlass::conv::implicit_gemm_problem_size(kConvolutionalOperator, args.problem_size_0),
|
||||
{ThreadblockShape0::kM, ThreadblockShape0::kN, ThreadblockShape0::kK},
|
||||
args.problem_size_0.split_k_slices));
|
||||
|
||||
if (!(grid.y <= std::numeric_limits<uint16_t>::max() &&
|
||||
grid.z <= std::numeric_limits<uint16_t>::max())) {
|
||||
|
||||
return Status::kErrorInvalidProblem;
|
||||
}
|
||||
|
||||
return Status::kSuccess;
|
||||
}
|
||||
|
||||
/// Gets the workspace size
|
||||
static size_t get_workspace_size(Arguments const &args) {
|
||||
|
||||
size_t workspace_bytes = 0;
|
||||
|
||||
// Determine grid shape
|
||||
ThreadblockSwizzle threadblock_swizzle;
|
||||
|
||||
cutlass::gemm::GemmCoord grid_tiled_shape = threadblock_swizzle.get_tiled_shape(
|
||||
cutlass::conv::implicit_gemm_problem_size(kConvolutionalOperator, args.problem_size_0),
|
||||
{ThreadblockShape0::kM, ThreadblockShape0::kN, ThreadblockShape0::kK},
|
||||
args.problem_size_0.split_k_slices);
|
||||
|
||||
if(args.split_k_mode == SplitKMode::kParallel) {
|
||||
|
||||
// Split-K parallel: CTAs in k-dimension write the partial results in a temporary workspace.
|
||||
// The user needs to call a reduction operator to optain the final output tensor
|
||||
workspace_bytes =
|
||||
sizeof(ElementAccumulator) *
|
||||
size_t(cutlass::conv::implicit_gemm_tensor_c_size(kConvolutionalOperator, args.problem_size_0)) *
|
||||
size_t(grid_tiled_shape.k());
|
||||
}
|
||||
|
||||
else if(args.split_k_mode == SplitKMode::kSerial && args.problem_size_0.split_k_slices > 1) {
|
||||
|
||||
// Split-K serial: The user workspace is used to store semaphore and serialize writing the
|
||||
// final reduced output to user's output tensor
|
||||
workspace_bytes = sizeof(int) * size_t(grid_tiled_shape.m()) * size_t(grid_tiled_shape.n());
|
||||
}
|
||||
|
||||
return workspace_bytes;
|
||||
}
|
||||
|
||||
/// Initializes GEMM state from arguments.
|
||||
Status initialize(
|
||||
Arguments const &args,
|
||||
void *workspace = nullptr,
|
||||
cudaStream_t stream = nullptr) {
|
||||
|
||||
if (args.problem_size_0.split_k_slices > 1) {
|
||||
|
||||
if (!workspace) {
|
||||
return Status::kErrorWorkspaceNull;
|
||||
}
|
||||
|
||||
cudaError_t status = cudaMemsetAsync(workspace, 0, get_workspace_size(args), stream);
|
||||
|
||||
if (status != cudaSuccess) {
|
||||
return Status::kErrorInternal;
|
||||
}
|
||||
}
|
||||
|
||||
// initialize the params structure from the arguments
|
||||
params_ = typename B2bImplicitGemmKernel::Params(
|
||||
args,
|
||||
static_cast<int *>(workspace)
|
||||
);
|
||||
|
||||
int smem_size = int(sizeof(typename B2bImplicitGemmKernel::SharedStorage));
|
||||
|
||||
if (smem_size >= (48 << 10)) {
|
||||
cudaError_t result = cudaFuncSetAttribute(cutlass::Kernel<B2bImplicitGemmKernel>,
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize,
|
||||
smem_size);
|
||||
|
||||
if (result != cudaSuccess) {
|
||||
return Status::kErrorInternal;
|
||||
}
|
||||
}
|
||||
|
||||
return Status::kSuccess;
|
||||
}
|
||||
|
||||
/// Initializes GEMM state from arguments.
|
||||
Status update(Arguments const &args, void *workspace = nullptr) {
|
||||
|
||||
// update the params structure from the arguments
|
||||
params_.ptr_A0 = args.ref_A0.data();
|
||||
params_.ptr_B0 = args.ref_B0.data();
|
||||
params_.ptr_C0 = args.ref_C0.data();
|
||||
params_.ptr_B1 = args.ref_B1.data();
|
||||
params_.ptr_C1 = args.ref_C1.data();
|
||||
params_.ptr_D1 = args.ref_D1.data();
|
||||
params_.output_op_0 = args.output_op_0;
|
||||
params_.output_op_1 = args.output_op_1;
|
||||
params_.semaphore = static_cast<int *>(workspace);
|
||||
|
||||
return Status::kSuccess;
|
||||
}
|
||||
|
||||
/// Runs the kernel using initialized state.
|
||||
Status run(cudaStream_t stream = nullptr) {
|
||||
|
||||
ThreadblockSwizzle threadblock_swizzle;
|
||||
|
||||
dim3 grid = threadblock_swizzle.get_grid_shape(params_.grid_tiled_shape);
|
||||
dim3 block(32 * kWarpCount, 1, 1);
|
||||
|
||||
int smem_size = int(sizeof(typename B2bImplicitGemmKernel::SharedStorage));
|
||||
|
||||
cutlass::Kernel<B2bImplicitGemmKernel><<<grid, block, smem_size, stream>>>(params_);
|
||||
|
||||
cudaError_t result = cudaGetLastError();
|
||||
|
||||
return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal;
|
||||
}
|
||||
|
||||
/// Runs the kernel using initialized state.
|
||||
Status operator()(cudaStream_t stream = nullptr) {
|
||||
return run(stream);
|
||||
}
|
||||
|
||||
/// Runs the kernel using initialized state.
|
||||
Status operator()(
|
||||
Arguments const &args,
|
||||
void *workspace = nullptr,
|
||||
cudaStream_t stream = nullptr) {
|
||||
|
||||
Status status = initialize(args, workspace, stream);
|
||||
|
||||
if (status == Status::kSuccess) {
|
||||
status = run(stream);
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
} // namespace device
|
||||
} // namespace conv
|
||||
} // namespace cutlass
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
136
examples/13_two_tensor_op_fusion/fused_conv2d.cu
Normal file
136
examples/13_two_tensor_op_fusion/fused_conv2d.cu
Normal file
@ -0,0 +1,136 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
#include "b2b_conv2d_fprop_implicit_gemm_s8ncxhwx_s8cxrskx_s8ncxhwx_tensor_op_s32_sm75.h"
|
||||
#include "b2b_conv2d_fprop_implicit_gemm_s8ncxhwx_s8cxrskx_s8ncxhwx_tensor_op_s32_sm80.h"
|
||||
#include "b2b_conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm75.h"
|
||||
#include "b2b_conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.h"
|
||||
|
||||
int run_sm75() {
|
||||
bool notSupported = false;
|
||||
|
||||
// Turing Tensor Core operations exposed with mma.sync are first available in CUDA 10.2.
|
||||
//
|
||||
// CUTLASS must be compiled with CUDA 10.2 Toolkit to run these examples.
|
||||
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2))) {
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
cudaDeviceProp props;
|
||||
|
||||
cudaError_t error = cudaGetDeviceProperties(&props, 0);
|
||||
if (error != cudaSuccess) {
|
||||
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!(props.major == 7 && props.minor >= 5)) {
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
if (notSupported) {
|
||||
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool pass = 1;
|
||||
|
||||
std::cout << "Running on SM75" << std::endl;
|
||||
pass &= run_nonfused_conv2d_fprop_optimized_f16_sm75();
|
||||
pass &= run_fused_conv2d_fprop_optimized_f16_sm75();
|
||||
pass &= run_nonfused_conv2d_fprop_optimized_s8_sm75();
|
||||
pass &= run_fused_conv2d_fprop_optimized_s8_sm75();
|
||||
|
||||
if(pass)
|
||||
return 1;
|
||||
else
|
||||
return -1;
|
||||
|
||||
}
|
||||
|
||||
int run_sm80() {
|
||||
bool notSupported = false;
|
||||
|
||||
// Ampere Tensor Core operations exposed with mma.sync are first available in CUDA 11.0.
|
||||
//
|
||||
// CUTLASS must be compiled with CUDA 11 Toolkit to run Conv2dFprop examples.
|
||||
if (!(__CUDACC_VER_MAJOR__ > 11 || (__CUDACC_VER_MAJOR__ == 11 && __CUDACC_VER_MINOR__ >= 0))) {
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
cudaDeviceProp props;
|
||||
|
||||
cudaError_t error = cudaGetDeviceProperties(&props, 0);
|
||||
if (error != cudaSuccess) {
|
||||
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!(props.major == 8 && props.minor >= 0)) {
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
if (notSupported) {
|
||||
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool pass = 1;
|
||||
|
||||
std::cout << "Running on SM80" << std::endl;
|
||||
pass &= run_nonfused_conv2d_fprop_optimized_f16_sm80();
|
||||
pass &= run_fused_conv2d_fprop_optimized_f16_sm80();
|
||||
pass &= run_nonfused_conv2d_fprop_optimized_s8_sm80();
|
||||
pass &= run_fused_conv2d_fprop_optimized_s8_sm80();
|
||||
|
||||
if(pass)
|
||||
return 1;
|
||||
else
|
||||
return -1;
|
||||
|
||||
}
|
||||
|
||||
|
||||
int main() {
|
||||
|
||||
int result = 0;
|
||||
|
||||
result = run_sm80();
|
||||
|
||||
if(!result) { // not supported
|
||||
result = run_sm75();
|
||||
|
||||
if(!result) {
|
||||
std::cout << "This example isn't supported on current architecture" << std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if(result >= 0)
|
||||
return 0;
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
|
||||
141
examples/13_two_tensor_op_fusion/fused_gemm.cu
Normal file
141
examples/13_two_tensor_op_fusion/fused_gemm.cu
Normal file
@ -0,0 +1,141 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
#include "b2b_gemm_f16t_f16n_f16t_tensor_op_f16_sm75.h"
|
||||
#include "b2b_gemm_f16t_f16n_f16t_tensor_op_f16_sm80.h"
|
||||
#include "b2b_gemm_s8n_s8t_s8n_tensor_op_s32_sm75.h"
|
||||
#include "b2b_gemm_s8n_s8t_s8n_tensor_op_s32_sm80.h"
|
||||
|
||||
int run_sm75() {
|
||||
bool notSupported = false;
|
||||
|
||||
// Turing Tensor Core operations exposed with mma.sync are first available in CUDA 10.2.
|
||||
//
|
||||
// CUTLASS must be compiled with CUDA 10.2 Toolkit to run these examples.
|
||||
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2))) {
|
||||
notSupported = true;
|
||||
|
||||
}
|
||||
|
||||
cudaDeviceProp props;
|
||||
|
||||
cudaError_t error = cudaGetDeviceProperties(&props, 0);
|
||||
if (error != cudaSuccess) {
|
||||
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!(props.major == 7 && props.minor >= 5)) {
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
if (notSupported) {
|
||||
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool pass = true;
|
||||
|
||||
std::cout << "Running on SM75" << std::endl;
|
||||
pass &= run_nonfused_gemm_f16();
|
||||
pass &= run_fused_gemm_f16();
|
||||
pass &= run_nonfused_gemm_s8();
|
||||
pass &= run_fused_gemm_s8();
|
||||
|
||||
if(pass)
|
||||
return 1;
|
||||
else
|
||||
return -1;
|
||||
|
||||
|
||||
}
|
||||
|
||||
int run_sm80() {
|
||||
bool notSupported = false;
|
||||
|
||||
// Ampere Tensor Core operations exposed with mma.sync are first available in CUDA 11.0.
|
||||
//
|
||||
// CUTLASS must be compiled with CUDA 11 Toolkit to run Conv2dFprop examples.
|
||||
if (!(__CUDACC_VER_MAJOR__ > 11 || (__CUDACC_VER_MAJOR__ == 11 && __CUDACC_VER_MINOR__ >= 0))) {
|
||||
notSupported = true;
|
||||
|
||||
}
|
||||
|
||||
cudaDeviceProp props;
|
||||
|
||||
cudaError_t error = cudaGetDeviceProperties(&props, 0);
|
||||
if (error != cudaSuccess) {
|
||||
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!(props.major == 8 && props.minor >= 0)) {
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
if (notSupported) {
|
||||
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool pass = true;
|
||||
|
||||
std::cout << "Running on SM80" << std::endl;
|
||||
pass &= run_nonfused_gemm_f16_sm80();
|
||||
pass &= run_fused_gemm_f16_sm80();
|
||||
pass &= run_nonfused_gemm_s8_sm80();
|
||||
pass &= run_fused_gemm_s8_sm80();
|
||||
|
||||
if(pass)
|
||||
return 1;
|
||||
else
|
||||
return -1;
|
||||
|
||||
}
|
||||
|
||||
|
||||
int main() {
|
||||
|
||||
int result = 0;
|
||||
|
||||
result = run_sm80();
|
||||
|
||||
if(!result) { // not supported
|
||||
result = run_sm75();
|
||||
|
||||
if(!result) {
|
||||
std::cout << "This example isn't supported on current architecture" << std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if(result >= 0)
|
||||
return 0;
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
|
||||
411
examples/13_two_tensor_op_fusion/kernel/b2b_gemm.h
Normal file
411
examples/13_two_tensor_op_fusion/kernel/b2b_gemm.h
Normal file
@ -0,0 +1,411 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Template for a pipelined GEMM kernel. Does not compute batching or support split-K.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
|
||||
#include "cutlass/gemm/gemm.h"
|
||||
#include "cutlass/matrix_coord.h"
|
||||
#include "cutlass/semaphore.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace cutlass {
|
||||
namespace gemm {
|
||||
namespace kernel {
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
typename B2bMma_, ///! Threadblock-scoped matrix multiply-accumulate
|
||||
typename Epilogue_, ///! Epilogue
|
||||
typename ThreadblockSwizzle_, ///! Threadblock swizzling function
|
||||
bool SplitKSerial ///! If true, code supporting split-K via serial reduction is enabled.
|
||||
>
|
||||
struct B2bGemm {
|
||||
|
||||
using B2bMma = B2bMma_;
|
||||
using Epilogue = Epilogue_;
|
||||
using OutputOp0 = typename B2bMma::OutputOp;
|
||||
using OutputOp1 = typename Epilogue::OutputOp;
|
||||
using ThreadblockSwizzle = ThreadblockSwizzle_;
|
||||
static bool const kSplitKSerial = SplitKSerial;
|
||||
|
||||
/// Warp count (concept: GemmShape)
|
||||
using WarpCount0 = typename B2bMma::WarpCount0;
|
||||
static int const kThreadCount = 32 * WarpCount0::kCount;
|
||||
|
||||
/// Parameters structure
|
||||
struct Params {
|
||||
cutlass::gemm::GemmCoord problem_size_0;
|
||||
cutlass::gemm::GemmCoord problem_size_1;
|
||||
cutlass::gemm::GemmCoord grid_tiled_shape;
|
||||
int swizzle_log_tile;
|
||||
typename B2bMma::IteratorA0::Params params_A0;
|
||||
typename B2bMma::IteratorA0::TensorRef ref_A0;
|
||||
typename B2bMma::IteratorB0::Params params_B0;
|
||||
typename B2bMma::IteratorB0::TensorRef ref_B0;
|
||||
typename Epilogue::OutputTileIterator::Params params_C0;
|
||||
typename Epilogue::OutputTileIterator::TensorRef ref_C0;
|
||||
typename B2bMma::IteratorB1::Params params_B1;
|
||||
typename B2bMma::IteratorB1::TensorRef ref_B1;
|
||||
typename Epilogue::OutputTileIterator::Params params_C1;
|
||||
typename Epilogue::OutputTileIterator::TensorRef ref_C1;
|
||||
typename Epilogue::OutputTileIterator::Params params_D1;
|
||||
typename Epilogue::OutputTileIterator::TensorRef ref_D1;
|
||||
typename OutputOp0::Params output_op_0;
|
||||
typename OutputOp1::Params output_op_1;
|
||||
int *semaphore;
|
||||
int gemm_k_iterations_0;
|
||||
int gemm_k_size_0;
|
||||
int gemm_k_iterations_1;
|
||||
int gemm_k_size_1;
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
Params(): swizzle_log_tile(0), semaphore(0), gemm_k_iterations_0(0), gemm_k_size_0(0),
|
||||
gemm_k_iterations_1(0), gemm_k_size_1(0) { }
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
Params(
|
||||
cutlass::gemm::GemmCoord const & problem_size_0,
|
||||
cutlass::gemm::GemmCoord const & problem_size_1,
|
||||
cutlass::gemm::GemmCoord const & grid_tiled_shape,
|
||||
typename B2bMma::IteratorA0::TensorRef ref_A0,
|
||||
typename B2bMma::IteratorB0::TensorRef ref_B0,
|
||||
typename Epilogue::OutputTileIterator::TensorRef ref_C0,
|
||||
typename B2bMma::IteratorB1::TensorRef ref_B1,
|
||||
typename Epilogue::OutputTileIterator::TensorRef ref_C1,
|
||||
typename Epilogue::OutputTileIterator::TensorRef ref_D1,
|
||||
typename OutputOp0::Params output_op_0 = typename OutputOp0::Params(),
|
||||
typename OutputOp1::Params output_op_1 = typename OutputOp1::Params(),
|
||||
int *workspace = nullptr
|
||||
):
|
||||
problem_size_0(problem_size_0),
|
||||
problem_size_1(problem_size_1),
|
||||
grid_tiled_shape(grid_tiled_shape),
|
||||
swizzle_log_tile(ThreadblockSwizzle().get_log_tile(grid_tiled_shape)),
|
||||
params_A0(ref_A0.layout()),
|
||||
ref_A0(ref_A0),
|
||||
params_B0(ref_B0.layout()),
|
||||
ref_B0(ref_B0),
|
||||
params_C0(ref_C0.layout()),
|
||||
ref_C0(ref_C0),
|
||||
params_B1(ref_B1.layout()),
|
||||
ref_B1(ref_B1),
|
||||
params_C1(ref_C1.layout()),
|
||||
ref_C1(ref_C1),
|
||||
params_D1(ref_D1.layout()),
|
||||
ref_D1(ref_D1),
|
||||
output_op_0(output_op_0),
|
||||
output_op_1(output_op_1) {
|
||||
|
||||
int total_gemm_k_iterations_0 = (problem_size_0.k() + B2bMma::Shape0::kK - 1) / B2bMma::Shape0::kK;
|
||||
int gemm_k_iterations_0 = (total_gemm_k_iterations_0 + grid_tiled_shape.k() - 1) / grid_tiled_shape.k();
|
||||
gemm_k_size_0 = gemm_k_iterations_0 * B2bMma::Shape0::kK;
|
||||
int total_gemm_k_iterations_1 = (problem_size_1.k() + B2bMma::Shape1::kK - 1) / B2bMma::Shape1::kK;
|
||||
int gemm_k_iterations_1 = (total_gemm_k_iterations_1 + grid_tiled_shape.k() - 1) / grid_tiled_shape.k();
|
||||
gemm_k_size_1 = gemm_k_iterations_1 * B2bMma::Shape1::kK;
|
||||
|
||||
semaphore = workspace;
|
||||
}
|
||||
};
|
||||
|
||||
/// Shared memory storage structure
|
||||
union SharedStorage {
|
||||
typename B2bMma::B2bMmaSharedStorage main_loop;
|
||||
typename Epilogue::SharedStorage epilogue;
|
||||
};
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
B2bGemm() { }
|
||||
|
||||
/// Determines whether kernel satisfies alignment
|
||||
static Status can_implement(
|
||||
cutlass::gemm::GemmCoord const & problem_size_0,
|
||||
cutlass::gemm::GemmCoord const & problem_size_1,
|
||||
typename B2bMma::IteratorA0::TensorRef ref_A0,
|
||||
typename B2bMma::IteratorB0::TensorRef ref_B0,
|
||||
typename Epilogue::OutputTileIterator::TensorRef ref_C0,
|
||||
typename B2bMma::IteratorB1::TensorRef ref_B1,
|
||||
typename Epilogue::OutputTileIterator::TensorRef ref_C1,
|
||||
typename Epilogue::OutputTileIterator::TensorRef ref_D1) {
|
||||
|
||||
static int const kAlignmentA = B2bMma::IteratorA0::AccessType::kElements;
|
||||
static int const kAlignmentB = B2bMma::IteratorB0::AccessType::kElements;
|
||||
static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess;
|
||||
|
||||
if (!TensorRef_aligned(ref_A0, kAlignmentA)) {
|
||||
return Status::kErrorMisalignedOperand;
|
||||
}
|
||||
|
||||
if (!TensorRef_aligned(ref_B0, kAlignmentB)) {
|
||||
return Status::kErrorMisalignedOperand;
|
||||
}
|
||||
|
||||
if (!TensorRef_aligned(ref_C0, kAlignmentC)) {
|
||||
return Status::kErrorMisalignedOperand;
|
||||
}
|
||||
|
||||
if (!TensorRef_aligned(ref_B1, kAlignmentB)) {
|
||||
return Status::kErrorMisalignedOperand;
|
||||
}
|
||||
|
||||
if (!TensorRef_aligned(ref_C1, kAlignmentC)) {
|
||||
return Status::kErrorMisalignedOperand;
|
||||
}
|
||||
|
||||
if (!TensorRef_aligned(ref_D1, kAlignmentC)) {
|
||||
return Status::kErrorMisalignedOperand;
|
||||
}
|
||||
|
||||
if ((problem_size_0.m() % kAlignmentA) || (problem_size_0.k() % kAlignmentA) ||
|
||||
(problem_size_0.n() % kAlignmentB) || (problem_size_0.k() % kAlignmentB) ||
|
||||
(problem_size_0.m() % kAlignmentC) || (problem_size_0.n() % kAlignmentC) ||
|
||||
(problem_size_1.m() % kAlignmentA) || (problem_size_1.k() % kAlignmentA) ||
|
||||
(problem_size_1.n() % kAlignmentB) || (problem_size_1.k() % kAlignmentB) ||
|
||||
(problem_size_1.m() % kAlignmentC) || (problem_size_1.n() % kAlignmentC)) {
|
||||
|
||||
return Status::kErrorMisalignedOperand;
|
||||
}
|
||||
|
||||
return Status::kSuccess;
|
||||
}
|
||||
|
||||
/// Executes one GEMM
|
||||
CUTLASS_DEVICE
|
||||
void operator()(Params const ¶ms, SharedStorage &shared_storage) {
|
||||
|
||||
// Compute threadblock location
|
||||
ThreadblockSwizzle threadblock_swizzle;
|
||||
|
||||
cutlass::gemm::GemmCoord threadblock_tile_offset =
|
||||
threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);
|
||||
|
||||
// Early exit if CTA is out of range
|
||||
if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() ||
|
||||
params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) {
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// Compute initial location in logical coordinates
|
||||
cutlass::MatrixCoord tb_offset_A0{
|
||||
threadblock_tile_offset.m() * B2bMma::Shape0::kM,
|
||||
threadblock_tile_offset.k() * params.gemm_k_size_0,
|
||||
};
|
||||
|
||||
cutlass::MatrixCoord tb_offset_B0{
|
||||
threadblock_tile_offset.k() * params.gemm_k_size_0,
|
||||
threadblock_tile_offset.n() * B2bMma::Shape0::kN
|
||||
};
|
||||
|
||||
cutlass::MatrixCoord tb_offset_B1{
|
||||
threadblock_tile_offset.k() * params.gemm_k_size_1,
|
||||
threadblock_tile_offset.n() * B2bMma::Shape1::kN
|
||||
};
|
||||
|
||||
// Problem size is a function of threadblock index in the K dimension
|
||||
int problem_size_k_0 = min(
|
||||
params.problem_size_0.k(),
|
||||
(threadblock_tile_offset.k() + 1) * params.gemm_k_size_0);
|
||||
|
||||
// Compute threadblock-scoped matrix multiply-add
|
||||
int gemm_k_iterations_0 = (problem_size_k_0 - tb_offset_A0.column() + B2bMma::Shape0::kK - 1) / B2bMma::Shape0::kK;
|
||||
|
||||
// Problem size is a function of threadblock index in the K dimension
|
||||
int problem_size_k_1 = min(
|
||||
params.problem_size_1.k(),
|
||||
(threadblock_tile_offset.k() + 1) * params.gemm_k_size_1);
|
||||
|
||||
// Compute threadblock-scoped matrix multiply-add
|
||||
// int gemm_k_iterations_1 = (problem_size_k_1 - tb_offset_B1.row() + B2bMma::Shape1::kK - 1) / B2bMma::Shape1::kK;
|
||||
|
||||
|
||||
// Compute position within threadblock
|
||||
int thread_idx = threadIdx.x;
|
||||
|
||||
// Construct iterators to A and B operands
|
||||
typename B2bMma::IteratorA0 iterator_A0(
|
||||
params.params_A0,
|
||||
params.ref_A0.data(),
|
||||
{params.problem_size_0.m(), problem_size_k_0},
|
||||
thread_idx,
|
||||
tb_offset_A0);
|
||||
|
||||
typename B2bMma::IteratorB0 iterator_B0(
|
||||
params.params_B0,
|
||||
params.ref_B0.data(),
|
||||
{problem_size_k_0, params.problem_size_0.n()},
|
||||
thread_idx,
|
||||
tb_offset_B0);
|
||||
|
||||
typename B2bMma::IteratorB1 iterator_B1(
|
||||
params.params_B1,
|
||||
params.ref_B1.data(),
|
||||
{problem_size_k_1, params.problem_size_1.n()},
|
||||
thread_idx,
|
||||
tb_offset_B1);
|
||||
|
||||
|
||||
// Broadcast the warp_id computed by lane 0 to ensure dependent code
|
||||
// is compiled as warp-uniform.
|
||||
int warp_idx = __shfl_sync(0x1f, threadIdx.x / 32, 0);
|
||||
int lane_idx = threadIdx.x % 32;
|
||||
|
||||
//
|
||||
// Main loop
|
||||
//
|
||||
|
||||
OutputOp0 output_op_0(params.output_op_0);
|
||||
|
||||
// Construct thread-scoped matrix multiply
|
||||
B2bMma b2bMma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx);
|
||||
|
||||
typename B2bMma::FragmentC0 src_accum;
|
||||
typename B2bMma::FragmentC1 accumulators;
|
||||
|
||||
src_accum.clear();
|
||||
accumulators.clear();
|
||||
|
||||
if (!kSplitKSerial || gemm_k_iterations_0 > 0) {
|
||||
// Compute threadblock-scoped matrix multiply-add
|
||||
b2bMma(gemm_k_iterations_0, accumulators, iterator_A0, iterator_B0, iterator_B1, src_accum, output_op_0);
|
||||
}
|
||||
|
||||
//
|
||||
// Epilogue
|
||||
//
|
||||
|
||||
OutputOp1 output_op_1(params.output_op_1);
|
||||
|
||||
//
|
||||
// Masked tile iterators constructed from members
|
||||
//
|
||||
|
||||
threadblock_tile_offset =
|
||||
threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);
|
||||
|
||||
//assume identity swizzle
|
||||
MatrixCoord threadblock_offset(
|
||||
threadblock_tile_offset.m() * B2bMma::Shape1::kM,
|
||||
threadblock_tile_offset.n() * B2bMma::Shape1::kN
|
||||
);
|
||||
|
||||
int block_idx = threadblock_tile_offset.m() + threadblock_tile_offset.n() * params.grid_tiled_shape.m();
|
||||
|
||||
// Construct the semaphore.
|
||||
Semaphore semaphore(params.semaphore + block_idx, thread_idx);
|
||||
|
||||
// If performing a reduction via split-K, fetch the initial synchronization
|
||||
if (kSplitKSerial && params.grid_tiled_shape.k() > 1) {
|
||||
|
||||
// Fetch the synchronization lock initially but do not block.
|
||||
semaphore.fetch();
|
||||
|
||||
// Indicate which position in a serial reduction the output operator is currently updating
|
||||
output_op_1.set_k_partition(threadblock_tile_offset.k(), params.grid_tiled_shape.k());
|
||||
}
|
||||
|
||||
// Tile iterator loading from source tensor.
|
||||
typename Epilogue::OutputTileIterator iterator_C1(
|
||||
params.params_C1,
|
||||
params.ref_C1.data(),
|
||||
params.problem_size_1.mn(),
|
||||
thread_idx,
|
||||
threadblock_offset
|
||||
);
|
||||
|
||||
// Tile iterator writing to destination tensor.
|
||||
typename Epilogue::OutputTileIterator iterator_D1(
|
||||
params.params_D1,
|
||||
params.ref_D1.data(),
|
||||
params.problem_size_1.mn(),
|
||||
thread_idx,
|
||||
threadblock_offset
|
||||
);
|
||||
|
||||
Epilogue epilogue(
|
||||
shared_storage.epilogue,
|
||||
thread_idx,
|
||||
warp_idx,
|
||||
lane_idx);
|
||||
|
||||
// Wait on the semaphore - this latency may have been covered by iterator construction
|
||||
if (kSplitKSerial && params.grid_tiled_shape.k() > 1) {
|
||||
|
||||
// For subsequent threadblocks, the source matrix is held in the 'D' tensor.
|
||||
if (threadblock_tile_offset.k()) {
|
||||
iterator_C1 = iterator_D1;
|
||||
}
|
||||
|
||||
semaphore.wait(threadblock_tile_offset.k());
|
||||
|
||||
__threadfence();
|
||||
}
|
||||
|
||||
// Execute the epilogue operator to update the destination tensor.
|
||||
epilogue(output_op_1, iterator_D1, accumulators, iterator_C1);
|
||||
|
||||
//
|
||||
// Release the semaphore
|
||||
//
|
||||
|
||||
if (kSplitKSerial && params.grid_tiled_shape.k() > 1) {
|
||||
|
||||
int lock = 0;
|
||||
if (params.grid_tiled_shape.k() == threadblock_tile_offset.k() + 1) {
|
||||
|
||||
// The final threadblock resets the semaphore for subsequent grids.
|
||||
lock = 0;
|
||||
}
|
||||
else {
|
||||
// Otherwise, the semaphore is incremented
|
||||
lock = threadblock_tile_offset.k() + 1;
|
||||
}
|
||||
|
||||
__threadfence();
|
||||
semaphore.release(lock);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace gemm
|
||||
} // namespace cutlass
|
||||
|
||||
@ -0,0 +1,477 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Template for a pipelined Implicit GEMM kernel.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
|
||||
#include "cutlass/aligned_buffer.h"
|
||||
#include "cutlass/array.h"
|
||||
#include "cutlass/numeric_types.h"
|
||||
#include "cutlass/matrix_shape.h"
|
||||
#include "cutlass/semaphore.h"
|
||||
#include "cutlass/tensor_ref.h"
|
||||
#include "cutlass/layout/tensor.h"
|
||||
#include "cutlass/gemm/gemm.h"
|
||||
#include "cutlass/conv/convolution.h"
|
||||
#include "cutlass/conv/conv2d_problem_size.h"
|
||||
#include "cutlass/conv/conv3d_problem_size.h"
|
||||
#include "cutlass/epilogue/threadblock/output_iterator_parameter.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace cutlass {
|
||||
namespace conv {
|
||||
namespace kernel {
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
typename B2bMma_, ///! Threadblock-scoped matrix multiply-accumulate
|
||||
typename Epilogue_, ///! Epilogue
|
||||
typename ThreadblockSwizzle_, ///! Threadblock swizzling function
|
||||
conv::Operator ConvOperator, ///! Convolutional operator (Fprop, Dgrad, Wgrad)
|
||||
typename ConvProblemSize_ = Conv2dProblemSize ///! Convolutional operator on 2D or 3D problem
|
||||
>
|
||||
struct B2bImplicitGemmConvolution {
|
||||
|
||||
using B2bMma = B2bMma_;
|
||||
using Epilogue = Epilogue_;
|
||||
using EpilogueOutputOp0 = typename B2bMma::OutputOp;
|
||||
using EpilogueOutputOp1 = typename Epilogue::OutputOp;
|
||||
using ThreadblockSwizzle = ThreadblockSwizzle_;
|
||||
static Operator const kConvolutionalOperator = ConvOperator;
|
||||
|
||||
using ElementA = typename B2bMma::IteratorA0::Element;
|
||||
using LayoutA = typename B2bMma::IteratorA0::Layout;
|
||||
using ElementB = typename B2bMma::IteratorB0::Element;
|
||||
using LayoutB = typename B2bMma::IteratorB0::Layout;
|
||||
using ElementC = typename EpilogueOutputOp1::ElementOutput;
|
||||
|
||||
/// Set output tensor C layout
|
||||
using LayoutC = LayoutA;
|
||||
|
||||
using ElementAccumulator = typename EpilogueOutputOp0::ElementAccumulator;
|
||||
using ElementCompute = typename EpilogueOutputOp0::ElementCompute;
|
||||
|
||||
using WarpMmaOperator0 = typename B2bMma::Policy0::Operator;
|
||||
using WarpMmaOperator1 = typename B2bMma::Policy1::Operator;
|
||||
|
||||
using ArchMmaOperator = typename WarpMmaOperator0::ArchMmaOperator;
|
||||
using MathOperator = typename ArchMmaOperator::Operator;
|
||||
|
||||
using OperatorClass = typename WarpMmaOperator0::OperatorClass;
|
||||
using ArchTag = typename WarpMmaOperator0::ArchTag;
|
||||
|
||||
using ThreadblockShape0 = typename B2bMma::Shape0;
|
||||
using ThreadblockShape1 = typename B2bMma::Shape1;
|
||||
using WarpShape0 = typename WarpMmaOperator0::Shape;
|
||||
using WarpShape1 = typename WarpMmaOperator1::Shape;
|
||||
using InstructionShape = typename ArchMmaOperator::Shape;
|
||||
|
||||
static int const kStages = B2bMma::kStages;
|
||||
static IteratorAlgorithm const kIteratorAlgorithm = B2bMma::IteratorA0::kIteratorAlgorithm;
|
||||
|
||||
/// Warp count (concept: GemmShape)
|
||||
using WarpCount0 = typename B2bMma::WarpCount0;
|
||||
static int const kThreadCount = 32 * WarpCount0::kCount;
|
||||
|
||||
using TensorRefA0 = typename B2bMma::IteratorA0::TensorRef;
|
||||
using TensorRefB0 = typename B2bMma::IteratorB0::TensorRef;
|
||||
using TensorRefB1 = typename B2bMma::IteratorB1::TensorRef;
|
||||
using TensorRefC = cutlass::TensorRef<ElementC, LayoutC>;
|
||||
|
||||
/// Check iterator A and B convolution dimension are the same and
|
||||
// set device::B2bImplicitGemmConvolution::kConvDim
|
||||
static_assert(B2bMma::IteratorA0::kConvDim == B2bMma::IteratorB0::kConvDim,
|
||||
"Convolution on different different dimensions is not supported");
|
||||
static int const kConvDim = B2bMma::IteratorA0::kConvDim;
|
||||
|
||||
/// Conv dimension and problem size structure (Conv2d or Conv3d)
|
||||
using ConvProblemSize = ConvProblemSize_;
|
||||
|
||||
/// Wgrad C stride idx for implicit gemm algorithm
|
||||
// Conv2d row-major matrix C (KxRSC)
|
||||
// Conv3d row-major matrix C (KxTRSC)
|
||||
static int const kWgradCStrideIdx =
|
||||
cutlass::platform::is_same<LayoutC, cutlass::layout::TensorNHWC>::value ? 2 : 3;
|
||||
|
||||
/// This chooses the appropriate stride element of the C tensor.
|
||||
static int const kTensorCStrideIdx =
|
||||
(kConvolutionalOperator == conv::Operator::kWgrad ? kWgradCStrideIdx : 0);
|
||||
|
||||
//
|
||||
//
|
||||
//
|
||||
using ConvOutputIteratorParameter = epilogue::threadblock::ConvOutputIteratorParameter<
|
||||
LayoutC,
|
||||
typename Epilogue::OutputTileIterator::Layout,
|
||||
TensorRefC,
|
||||
ConvOperator,
|
||||
ConvProblemSize
|
||||
>;
|
||||
|
||||
/// Argument structure
|
||||
struct Arguments {
|
||||
|
||||
//
|
||||
// Data members
|
||||
//
|
||||
|
||||
ConvProblemSize problem_size_0;
|
||||
ConvProblemSize problem_size_1;
|
||||
TensorRefA0 ref_A0;
|
||||
TensorRefB0 ref_B0;
|
||||
TensorRefC ref_C0;
|
||||
TensorRefB1 ref_B1;
|
||||
TensorRefC ref_C1;
|
||||
TensorRefC ref_D1;
|
||||
typename EpilogueOutputOp0::Params output_op_0;
|
||||
typename EpilogueOutputOp1::Params output_op_1;
|
||||
SplitKMode split_k_mode;
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
/// Default ctor
|
||||
CUTLASS_HOST_DEVICE
|
||||
Arguments() { }
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
Arguments(
|
||||
ConvProblemSize const & problem_size_0,
|
||||
ConvProblemSize const & problem_size_1
|
||||
):
|
||||
problem_size_0(problem_size_0),
|
||||
problem_size_1(problem_size_1) { }
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
Arguments(
|
||||
ConvProblemSize const & problem_size_0,
|
||||
ConvProblemSize const & problem_size_1,
|
||||
TensorRefA0 const & ref_A0,
|
||||
TensorRefB0 const & ref_B0,
|
||||
TensorRefC const & ref_C0,
|
||||
TensorRefB1 const & ref_B1,
|
||||
TensorRefC const & ref_C1,
|
||||
TensorRefC const & ref_D1,
|
||||
typename EpilogueOutputOp0::Params const & output_op_0,
|
||||
typename EpilogueOutputOp1::Params const & output_op_1,
|
||||
SplitKMode const & split_k_mode = SplitKMode::kSerial
|
||||
):
|
||||
problem_size_0(problem_size_0),
|
||||
problem_size_1(problem_size_1),
|
||||
ref_A0(ref_A0),
|
||||
ref_B0(ref_B0),
|
||||
ref_C0(ref_C0),
|
||||
ref_B1(ref_B1),
|
||||
ref_C1(ref_C1),
|
||||
ref_D1(ref_D1),
|
||||
output_op_0(output_op_0),
|
||||
output_op_1(output_op_1),
|
||||
split_k_mode(split_k_mode)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/// Parameters structure
|
||||
struct Params {
|
||||
ConvProblemSize problem_size_0;
|
||||
ConvProblemSize problem_size_1;
|
||||
cutlass::gemm::GemmCoord grid_tiled_shape;
|
||||
gemm::GemmCoord implicit_gemm_problem_size_0;
|
||||
gemm::GemmCoord implicit_gemm_problem_size_1;
|
||||
int swizzle_log_tile;
|
||||
int gemm_k_iterations_0;
|
||||
int gemm_k_iterations_1;
|
||||
typename B2bMma::IteratorA0::Params iterator_A0;
|
||||
typename B2bMma::IteratorA0::Element const *ptr_A0;
|
||||
typename B2bMma::IteratorB0::Params iterator_B0;
|
||||
typename B2bMma::IteratorB0::Element const *ptr_B0;
|
||||
typename Epilogue::OutputTileIterator::Params iterator_C0;
|
||||
typename Epilogue::OutputTileIterator::Element *ptr_C0;
|
||||
typename B2bMma::IteratorB1::Params iterator_B1;
|
||||
typename B2bMma::IteratorB1::Element const *ptr_B1;
|
||||
typename Epilogue::OutputTileIterator::Params iterator_C1;
|
||||
typename Epilogue::OutputTileIterator::Element *ptr_C1;
|
||||
typename Epilogue::OutputTileIterator::Params iterator_D1;
|
||||
typename Epilogue::OutputTileIterator::Element *ptr_D1;
|
||||
typename EpilogueOutputOp0::Params output_op_0;
|
||||
typename EpilogueOutputOp1::Params output_op_1;
|
||||
int *semaphore;
|
||||
SplitKMode split_k_mode;
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
Params(): swizzle_log_tile(0), gemm_k_iterations_0(0), gemm_k_iterations_1(0) { }
|
||||
|
||||
///
|
||||
CUTLASS_HOST_DEVICE
|
||||
Params(
|
||||
Arguments const &args,
|
||||
int *semaphore = nullptr
|
||||
):
|
||||
problem_size_0(args.problem_size_0),
|
||||
problem_size_1(args.problem_size_1),
|
||||
implicit_gemm_problem_size_0(cutlass::conv::implicit_gemm_problem_size(kConvolutionalOperator, args.problem_size_0)),
|
||||
implicit_gemm_problem_size_1(cutlass::conv::implicit_gemm_problem_size(kConvolutionalOperator, args.problem_size_1)),
|
||||
iterator_A0(B2bMma::IteratorA0::getParams(args.problem_size_0, args.ref_A0.layout())),
|
||||
ptr_A0(args.ref_A0.data()),
|
||||
iterator_B0(args.problem_size_0, args.ref_B0.layout()),
|
||||
ptr_B0(args.ref_B0.data()),
|
||||
iterator_C0(ConvOutputIteratorParameter::layout(args.ref_C0)),
|
||||
ptr_C0(args.ref_C0.data()),
|
||||
iterator_B1(args.problem_size_1, args.ref_B1.layout()),
|
||||
ptr_B1(args.ref_B1.data()),
|
||||
iterator_C1(ConvOutputIteratorParameter::layout(args.ref_C1)),
|
||||
ptr_C1(args.ref_C1.data()),
|
||||
iterator_D1(ConvOutputIteratorParameter::layout(args.ref_D1)),
|
||||
ptr_D1(args.ref_D1.data()),
|
||||
output_op_0(args.output_op_0),
|
||||
output_op_1(args.output_op_1),
|
||||
semaphore(semaphore),
|
||||
split_k_mode(args.split_k_mode)
|
||||
{
|
||||
gemm_k_iterations_0 = implicit_gemm_k_iterations(kConvolutionalOperator, ThreadblockShape0::kK, args.problem_size_0);
|
||||
gemm_k_iterations_1 = implicit_gemm_k_iterations(kConvolutionalOperator, ThreadblockShape1::kK, args.problem_size_1);
|
||||
|
||||
ThreadblockSwizzle threadblock_swizzle;
|
||||
|
||||
grid_tiled_shape = threadblock_swizzle.get_tiled_shape(
|
||||
implicit_gemm_problem_size_0,
|
||||
{ThreadblockShape0::kM, ThreadblockShape0::kN, ThreadblockShape0::kK},
|
||||
args.problem_size_0.split_k_slices);
|
||||
|
||||
swizzle_log_tile = ThreadblockSwizzle().get_log_tile(grid_tiled_shape);
|
||||
}
|
||||
};
|
||||
|
||||
/// Shared memory storage structure
|
||||
union SharedStorage {
|
||||
typename B2bMma::B2bMmaSharedStorage main_loop;
|
||||
typename Epilogue::SharedStorage epilogue;
|
||||
};
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
B2bImplicitGemmConvolution() { }
|
||||
|
||||
/// Executes one ImplicitGEMM
|
||||
CUTLASS_DEVICE
|
||||
void operator()(Params const ¶ms, SharedStorage &shared_storage) {
|
||||
|
||||
// Compute threadblock location
|
||||
ThreadblockSwizzle threadblock_swizzle;
|
||||
|
||||
cutlass::gemm::GemmCoord threadblock_tile_idx =
|
||||
threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);
|
||||
|
||||
// Early exit if CTA is out of range
|
||||
if (params.grid_tiled_shape.m() <= threadblock_tile_idx.m() ||
|
||||
params.grid_tiled_shape.n() <= threadblock_tile_idx.n()) {
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// Compute position within threadblock
|
||||
int thread_idx = threadIdx.x;
|
||||
|
||||
// Construct iterators to A and B operands
|
||||
typename B2bMma::IteratorA0 iterator_A0(
|
||||
params.iterator_A0,
|
||||
params.problem_size_0,
|
||||
params.ptr_A0,
|
||||
thread_idx,
|
||||
MatrixCoord(
|
||||
threadblock_tile_idx.m() * B2bMma::Shape0::kM,
|
||||
threadblock_tile_idx.k() * B2bMma::Shape0::kK
|
||||
)
|
||||
);
|
||||
|
||||
typename B2bMma::IteratorB0 iterator_B0(
|
||||
params.iterator_B0,
|
||||
params.problem_size_0,
|
||||
params.ptr_B0,
|
||||
thread_idx,
|
||||
MatrixCoord(
|
||||
threadblock_tile_idx.k() * B2bMma::Shape0::kK,
|
||||
threadblock_tile_idx.n() * B2bMma::Shape0::kN
|
||||
)
|
||||
);
|
||||
|
||||
typename B2bMma::IteratorB1 iterator_B1(
|
||||
params.iterator_B1,
|
||||
params.problem_size_1,
|
||||
params.ptr_B1,
|
||||
thread_idx,
|
||||
MatrixCoord(
|
||||
threadblock_tile_idx.k() * B2bMma::Shape1::kK,
|
||||
threadblock_tile_idx.n() * B2bMma::Shape1::kN
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
// Broadcast the warp_id computed by lane 0 to ensure dependent code
|
||||
// is compiled as warp-uniform.
|
||||
int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0);
|
||||
int lane_idx = threadIdx.x % 32;
|
||||
|
||||
//
|
||||
// Main loop
|
||||
//
|
||||
|
||||
EpilogueOutputOp0 output_op_0(params.output_op_0);
|
||||
|
||||
// Construct thread-scoped matrix multiply
|
||||
B2bMma b2bMma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx);
|
||||
|
||||
typename B2bMma::FragmentC0 src_accum;
|
||||
typename B2bMma::FragmentC1 accumulators;
|
||||
|
||||
src_accum.clear();
|
||||
accumulators.clear();
|
||||
|
||||
// Compute threadblock-scoped matrix multiply-add
|
||||
b2bMma(params.gemm_k_iterations_0, accumulators, iterator_A0, iterator_B0, iterator_B1, src_accum, output_op_0);
|
||||
|
||||
//
|
||||
// Epilogue
|
||||
//
|
||||
|
||||
EpilogueOutputOp1 output_op_1(params.output_op_1);
|
||||
|
||||
// Construct the semaphore.
|
||||
int block_idx = threadblock_tile_idx.m() + threadblock_tile_idx.n() * params.grid_tiled_shape.m();
|
||||
|
||||
Semaphore semaphore(params.semaphore + block_idx, thread_idx);
|
||||
|
||||
// Compute logical position within grid
|
||||
threadblock_tile_idx =
|
||||
threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);
|
||||
|
||||
// If performing a reduction via split-K, fetch the initial synchronization
|
||||
if (params.split_k_mode == SplitKMode::kSerial && params.grid_tiled_shape.k() > 1) {
|
||||
|
||||
// Fetch the synchronization lock initially but do not block.
|
||||
semaphore.fetch();
|
||||
|
||||
// Indicate which position in a serial reduction the output operator is currently updating
|
||||
output_op_1.set_k_partition(threadblock_tile_idx.k(), params.grid_tiled_shape.k());
|
||||
}
|
||||
|
||||
MatrixCoord threadblock_offset(
|
||||
threadblock_tile_idx.m() * B2bMma::Shape1::kM,
|
||||
threadblock_tile_idx.n() * B2bMma::Shape1::kN
|
||||
);
|
||||
|
||||
// Tile iterator writing to destination tensor
|
||||
typename Epilogue::OutputTileIterator iterator_D1(
|
||||
params.iterator_D1,
|
||||
params.ptr_D1,
|
||||
ConvOutputIteratorParameter::extent(params.problem_size_1),
|
||||
thread_idx,
|
||||
threadblock_offset
|
||||
);
|
||||
|
||||
// Tile iterator reading from source accumulator tensor
|
||||
typename Epilogue::OutputTileIterator iterator_C1(
|
||||
params.iterator_C1,
|
||||
params.ptr_C1,
|
||||
ConvOutputIteratorParameter::extent(params.problem_size_1),
|
||||
thread_idx,
|
||||
threadblock_offset
|
||||
);
|
||||
|
||||
|
||||
// Construct the epilogue
|
||||
Epilogue epilogue(
|
||||
shared_storage.epilogue,
|
||||
thread_idx,
|
||||
warp_idx,
|
||||
lane_idx);
|
||||
|
||||
// Wait on the semaphore - this latency may have been covered by iterator construction
|
||||
if (params.split_k_mode == SplitKMode::kSerial && params.grid_tiled_shape.k() > 1) {
|
||||
|
||||
// For subsequent threadblocks, the source matrix is held in the 'D' tensor.
|
||||
if (threadblock_tile_idx.k()) {
|
||||
iterator_C1 = iterator_D1;
|
||||
}
|
||||
|
||||
semaphore.wait(threadblock_tile_idx.k());
|
||||
|
||||
__threadfence();
|
||||
}
|
||||
// Each split-k-slice writes to a unique tensor location
|
||||
else if (params.split_k_mode == SplitKMode::kParallel) {
|
||||
iterator_D1.add_pointer_offset(threadblock_tile_idx.k() *
|
||||
cutlass::conv::implicit_gemm_tensor_c_size(ConvOperator, params.problem_size_1));
|
||||
}
|
||||
|
||||
// Run efficient epilogue
|
||||
epilogue(output_op_1, iterator_D1, accumulators, iterator_C1);
|
||||
|
||||
//
|
||||
// Release the semaphore
|
||||
//
|
||||
|
||||
if (params.split_k_mode == SplitKMode::kSerial && params.grid_tiled_shape.k() > 1) {
|
||||
|
||||
int lock = 0;
|
||||
if (params.grid_tiled_shape.k() == threadblock_tile_idx.k() + 1) {
|
||||
|
||||
// The final threadblock resets the semaphore for subsequent grids.
|
||||
lock = 0;
|
||||
}
|
||||
else {
|
||||
// Otherwise, the semaphore is incremented
|
||||
lock = threadblock_tile_idx.k() + 1;
|
||||
}
|
||||
|
||||
semaphore.release(lock);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace conv
|
||||
} // namespace cutlass
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
1281
examples/13_two_tensor_op_fusion/kernel/default_b2b_conv2d_fprop.h
Normal file
1281
examples/13_two_tensor_op_fusion/kernel/default_b2b_conv2d_fprop.h
Normal file
File diff suppressed because it is too large
Load Diff
434
examples/13_two_tensor_op_fusion/kernel/default_b2b_gemm.h
Normal file
434
examples/13_two_tensor_op_fusion/kernel/default_b2b_gemm.h
Normal file
@ -0,0 +1,434 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
/*! \file
|
||||
\brief
|
||||
Default kernel-level GEMM definitions combine threadblock-scoped matrix multiply-add with
|
||||
the appropriate threadblock-scoped epilogue.
|
||||
|
||||
Note, CUTLASS epilogues universally target row-major outputs. Column-major outputs are
|
||||
accommodated by exchanging A and B operands and assuming transposed layouts. Partial
|
||||
specializations here choose 'device::GemmTransposed' to implement this functionality.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
|
||||
#include "cutlass/layout/matrix.h"
|
||||
#include "cutlass/numeric_types.h"
|
||||
|
||||
#include "cutlass/epilogue/threadblock/epilogue.h"
|
||||
#include "cutlass/epilogue/thread/linear_combination.h"
|
||||
|
||||
#include "cutlass/gemm/gemm.h"
|
||||
#include "cutlass/gemm/kernel/gemm_pipelined.h"
|
||||
#include "cutlass/gemm/threadblock/default_mma_core_sm75.h"
|
||||
#include "cutlass/gemm/threadblock/default_mma_core_sm70.h"
|
||||
#include "cutlass/gemm/threadblock/default_mma_core_sm80.h"
|
||||
#include "cutlass/gemm/threadblock/default_mma_core_simt.h"
|
||||
#include "cutlass/gemm/threadblock/threadblock_swizzle.h"
|
||||
#include "cutlass/epilogue/threadblock/default_epilogue_tensor_op.h"
|
||||
#include "cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h"
|
||||
#include "cutlass/epilogue/threadblock/default_epilogue_simt.h"
|
||||
|
||||
#include "cutlass/transform/threadblock/predicated_tile_iterator.h"
|
||||
|
||||
#include "kernel/b2b_gemm.h"
|
||||
#include "threadblock/default_b2b_mma.h"
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace cutlass {
|
||||
namespace gemm {
|
||||
namespace kernel {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
/// Element type for A matrix operand
|
||||
typename ElementA_,
|
||||
/// Layout type for A matrix operand
|
||||
typename LayoutA_,
|
||||
/// Access granularity of A matrix in units of elements
|
||||
int kAlignmentA,
|
||||
/// Element type for B matrix operand
|
||||
typename ElementB_,
|
||||
/// Layout type for B matrix operand
|
||||
typename LayoutB_,
|
||||
/// Access granularity of B matrix in units of elements
|
||||
int kAlignmentB,
|
||||
/// Element type for C and D matrix operands
|
||||
typename ElementC_,
|
||||
/// Layout type for C and D matrix operands
|
||||
typename LayoutC_,
|
||||
/// Element type for internal accumulation
|
||||
typename ElementAccumulator,
|
||||
/// Operator class tag
|
||||
typename OperatorClass,
|
||||
/// Tag indicating architecture to tune for
|
||||
typename ArchTag,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape0,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape1,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape0,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape1,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename InstructionShape,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp0,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp1,
|
||||
/// Threadblock-level swizzling operator
|
||||
typename ThreadblockSwizzle,
|
||||
/// Number of stages used in the pipelined mainloop
|
||||
int Stages,
|
||||
/// If true, kernel is configured to support serial reduction in the epilogue
|
||||
bool SplitKSerial,
|
||||
/// Operation performed by GEMM
|
||||
typename Operator
|
||||
>
|
||||
struct DefaultB2bGemm;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Partial specialization for Ampere Architecture
|
||||
template <
|
||||
/// Element type for A matrix operand
|
||||
typename ElementA,
|
||||
/// Layout type for A matrix operand
|
||||
typename LayoutA,
|
||||
/// Access granularity of A matrix in units of elements
|
||||
int kAlignmentA,
|
||||
/// Element type for B matrix operand
|
||||
typename ElementB,
|
||||
/// Layout type for B matrix operand
|
||||
typename LayoutB,
|
||||
/// Access granularity of A matrix in units of elements
|
||||
int kAlignmentB,
|
||||
/// Element type for C and D matrix operands
|
||||
typename ElementC,
|
||||
/// Element type for internal accumulation
|
||||
typename ElementAccumulator,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape0,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape1,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape0,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape1,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename InstructionShape,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp0,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp1,
|
||||
/// Threadblock-level swizzling operator
|
||||
typename ThreadblockSwizzle,
|
||||
/// Number of stages used in the pipelined mainloop
|
||||
int Stages,
|
||||
/// If true, kernel is configured to support serial reduction in the
|
||||
/// epilogue
|
||||
bool SplitKSerial,
|
||||
/// Operation performed by GEMM
|
||||
typename Operator>
|
||||
struct DefaultB2bGemm<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementC,
|
||||
layout::RowMajor, ElementAccumulator, arch::OpClassTensorOp,
|
||||
arch::Sm80, ThreadblockShape0, ThreadblockShape1,
|
||||
WarpShape0, WarpShape1, InstructionShape,
|
||||
EpilogueOutputOp0, EpilogueOutputOp1, ThreadblockSwizzle, Stages, SplitKSerial,
|
||||
Operator> {
|
||||
/// Define the threadblock-scoped matrix multiply-accumulate
|
||||
using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma<
|
||||
ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB,
|
||||
ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp, arch::Sm80,
|
||||
ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1,
|
||||
InstructionShape, Stages, Operator, EpilogueOutputOp0>::ThreadblockB2bMma;
|
||||
|
||||
static const int kPartitionsK1 = ThreadblockShape1::kK / WarpShape1::kK;
|
||||
|
||||
/// Define the epilogue
|
||||
using Epilogue =
|
||||
typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
|
||||
ThreadblockShape1, typename B2bMma::Operator1, kPartitionsK1, EpilogueOutputOp1,
|
||||
EpilogueOutputOp1::kCount>::Epilogue;
|
||||
|
||||
/// Define the kernel-level GEMM operator.
|
||||
using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
|
||||
};
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Partial specialization for Turing Architecture
|
||||
template <
|
||||
/// Element type for A matrix operand
|
||||
typename ElementA,
|
||||
/// Layout type for A matrix operand
|
||||
typename LayoutA,
|
||||
/// Access granularity of A matrix in units of elements
|
||||
int kAlignmentA,
|
||||
/// Element type for B matrix operand
|
||||
typename ElementB,
|
||||
/// Layout type for B matrix operand
|
||||
typename LayoutB,
|
||||
/// Access granularity of B matrix in units of elements
|
||||
int kAlignmentB,
|
||||
/// Element type for C and D matrix operands
|
||||
typename ElementC,
|
||||
/// Element type for internal accumulation
|
||||
typename ElementAccumulator,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape0,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape1,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape0,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape1,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename InstructionShape,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp0,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp1,
|
||||
/// Threadblock-level swizzling operator
|
||||
typename ThreadblockSwizzle,
|
||||
/// If true, kernel is configured to support serial reduction in the epilogue
|
||||
bool SplitKSerial,
|
||||
/// Operation performed by GEMM
|
||||
typename Operator
|
||||
>
|
||||
struct DefaultB2bGemm<
|
||||
ElementA, LayoutA, kAlignmentA,
|
||||
ElementB, LayoutB, kAlignmentB,
|
||||
ElementC, layout::RowMajor,
|
||||
ElementAccumulator,
|
||||
arch::OpClassTensorOp,
|
||||
arch::Sm75,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp0,
|
||||
EpilogueOutputOp1,
|
||||
ThreadblockSwizzle,
|
||||
2,
|
||||
SplitKSerial,
|
||||
Operator
|
||||
> {
|
||||
|
||||
/// Define the threadblock-scoped matrix multiply-accumulate
|
||||
using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma<
|
||||
ElementA,
|
||||
LayoutA,
|
||||
kAlignmentA,
|
||||
ElementB,
|
||||
LayoutB,
|
||||
kAlignmentB,
|
||||
ElementAccumulator,
|
||||
layout::RowMajor,
|
||||
arch::OpClassTensorOp,
|
||||
arch::Sm75,
|
||||
ThreadblockShape0,
|
||||
ThreadblockShape1,
|
||||
WarpShape0,
|
||||
WarpShape1,
|
||||
InstructionShape,
|
||||
2,
|
||||
Operator,
|
||||
EpilogueOutputOp0
|
||||
>::ThreadblockB2bMma;
|
||||
|
||||
static const int kPartitionsK1 = ThreadblockShape1::kK / WarpShape1::kK;
|
||||
|
||||
/// Define the epilogue
|
||||
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
|
||||
ThreadblockShape1,
|
||||
typename B2bMma::Operator1,
|
||||
kPartitionsK1,
|
||||
EpilogueOutputOp1,
|
||||
EpilogueOutputOp1::kCount
|
||||
>::Epilogue;
|
||||
|
||||
/// Define the kernel-level GEMM operator.
|
||||
using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
|
||||
};
|
||||
|
||||
|
||||
/// Partial specialization for Ampere Integer Matrix Multiply Interleaved layout
|
||||
template <
|
||||
/// Element type for A matrix operand
|
||||
typename ElementA,
|
||||
/// Access granularity of A matrix in units of elements
|
||||
int kAlignmentA,
|
||||
/// Element type for B matrix operand
|
||||
typename ElementB,
|
||||
/// Access granularity of B matrix in units of elements
|
||||
int kAlignmentB,
|
||||
/// Element type for C and D matrix operands
|
||||
typename ElementC,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape0,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape1,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape0,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape1,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename InstructionShape,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp0,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp1,
|
||||
/// Threadblock-level swizzling operator
|
||||
typename ThreadblockSwizzle,
|
||||
/// Number of stages used in the pipelined mainloop
|
||||
int Stages,
|
||||
/// Number of Interleaved k
|
||||
int InterleavedK,
|
||||
/// If true, kernel is configured to support serial reduction in the
|
||||
/// epilogue
|
||||
bool SplitKSerial,
|
||||
/// Operation performed by GEMM
|
||||
typename Operator>
|
||||
struct DefaultB2bGemm<
|
||||
ElementA, layout::ColumnMajorInterleaved<InterleavedK>, kAlignmentA,
|
||||
ElementB, layout::RowMajorInterleaved<InterleavedK>, kAlignmentB,
|
||||
ElementC, layout::ColumnMajorInterleaved<InterleavedK>, int32_t,
|
||||
arch::OpClassTensorOp, arch::Sm80,
|
||||
ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1,
|
||||
InstructionShape, EpilogueOutputOp0, EpilogueOutputOp1,
|
||||
ThreadblockSwizzle, Stages,
|
||||
SplitKSerial, Operator> {
|
||||
using LayoutA = layout::ColumnMajorInterleaved<InterleavedK>;
|
||||
using LayoutB = layout::RowMajorInterleaved<InterleavedK>;
|
||||
using LayoutC = layout::ColumnMajorInterleaved<InterleavedK>;
|
||||
|
||||
using ElementAccumulator = int32_t;
|
||||
|
||||
/// Define the threadblock-scoped matrix multiply-accumulate
|
||||
using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma<
|
||||
ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB,
|
||||
ElementAccumulator, LayoutC, arch::OpClassTensorOp, arch::Sm80,
|
||||
ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1,
|
||||
InstructionShape, Stages, Operator, EpilogueOutputOp0,
|
||||
true>::ThreadblockB2bMma;
|
||||
|
||||
static const int kPartitionsK1 = ThreadblockShape1::kK / WarpShape1::kK;
|
||||
|
||||
/// Define the epilogue
|
||||
using Epilogue = typename cutlass::epilogue::threadblock::
|
||||
DefaultInterleavedEpilogueTensorOp<
|
||||
ThreadblockShape1, typename B2bMma::Operator1, kPartitionsK1, EpilogueOutputOp1,
|
||||
64 / sizeof_bits<ElementC>::value, InterleavedK>::Epilogue;
|
||||
|
||||
/// Define the kernel-level GEMM operator.
|
||||
using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
/// Partial specialization for Turing Integer Tensor Core Interleaved layout
|
||||
template <
|
||||
/// Element type for A matrix operand
|
||||
typename ElementA,
|
||||
/// Access granularity of A matrix in units of elements
|
||||
int kAlignmentA,
|
||||
/// Element type for B matrix operand
|
||||
typename ElementB,
|
||||
/// Access granularity of B matrix in units of elements
|
||||
int kAlignmentB,
|
||||
/// Element type for C and D matrix operands
|
||||
typename ElementC,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape0,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape1,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape0,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape1,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename InstructionShape,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp0,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp1,
|
||||
/// Threadblock-level swizzling operator
|
||||
typename ThreadblockSwizzle,
|
||||
/// Number of Interleaved k
|
||||
int InterleavedK,
|
||||
/// If true, kernel is configured to support serial reduction in the
|
||||
/// epilogue
|
||||
bool SplitKSerial,
|
||||
/// Operation performed by GEMM
|
||||
typename Operator>
|
||||
struct DefaultB2bGemm<ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
|
||||
kAlignmentA, ElementB,
|
||||
layout::RowMajorInterleaved<InterleavedK>, kAlignmentB,
|
||||
ElementC, layout::ColumnMajorInterleaved<InterleavedK>,
|
||||
int32_t, arch::OpClassTensorOp, arch::Sm75,
|
||||
ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1,
|
||||
InstructionShape, EpilogueOutputOp0, EpilogueOutputOp1,
|
||||
ThreadblockSwizzle, 2, SplitKSerial, Operator> {
|
||||
using LayoutA = layout::ColumnMajorInterleaved<InterleavedK>;
|
||||
using LayoutB = layout::RowMajorInterleaved<InterleavedK>;
|
||||
using LayoutC = layout::ColumnMajorInterleaved<InterleavedK>;
|
||||
|
||||
using ElementAccumulator = int32_t;
|
||||
|
||||
/// Define the threadblock-scoped matrix multiply-accumulate
|
||||
using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma<
|
||||
ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementAccumulator, LayoutC,
|
||||
arch::OpClassTensorOp, arch::Sm75, ThreadblockShape0, ThreadblockShape1,
|
||||
WarpShape0, WarpShape1, InstructionShape, 2, Operator, EpilogueOutputOp0, true>::ThreadblockB2bMma;
|
||||
|
||||
static const int kPartitionsK1 = ThreadblockShape1::kK / WarpShape1::kK;
|
||||
|
||||
/// Define the epilogue for the 2nd Gemm
|
||||
using Epilogue = typename cutlass::epilogue::threadblock::
|
||||
DefaultInterleavedEpilogueTensorOp<
|
||||
ThreadblockShape1, typename B2bMma::Operator1, kPartitionsK1, EpilogueOutputOp1,
|
||||
64 / sizeof_bits<ElementC>::value, InterleavedK>::Epilogue;
|
||||
|
||||
/// Define the kernel-level GEMM operator.
|
||||
using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace gemm
|
||||
} // namespace cutlass
|
||||
@ -0,0 +1,757 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Template for a multistage threadblock-scoped Implicit GEMM Convolution kernel.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/aligned_buffer.h"
|
||||
#include "cutlass/arch/memory.h"
|
||||
#include "cutlass/array.h"
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/gemm.h"
|
||||
#include "cutlass/matrix_shape.h"
|
||||
#include "cutlass/numeric_types.h"
|
||||
#include "cutlass/arch/cache_operation.h"
|
||||
#include "cutlass/gemm/threadblock/mma_base.h"
|
||||
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
|
||||
|
||||
#include "threadblock/b2b_mma_base.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace cutlass {
|
||||
namespace conv {
|
||||
namespace threadblock {
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Structure to compute the matrix product targeting CUDA cores and SIMT math
|
||||
/// instructions.
|
||||
template <
|
||||
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
typename Shape0_,
|
||||
/// Iterates over tiles of A operand in global memory
|
||||
// (concept: ReadableTileIterator | ForwardTileIterator |
|
||||
// MaskedTileIterator)
|
||||
typename IteratorA0_,
|
||||
/// Iterates over tiles of A operand in shared memory
|
||||
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
||||
typename SmemIteratorA0_,
|
||||
/// Cache operation for operand A
|
||||
cutlass::arch::CacheOperation::Kind CacheOpA0,
|
||||
/// Iterates over tiles of B operand in global memory
|
||||
// (concept: ReadableTileIterator | ForwardTileIterator |
|
||||
// MaskedTileIterator)
|
||||
typename IteratorB0_,
|
||||
/// Iterates over tiles of B operand in shared memory
|
||||
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
||||
typename SmemIteratorB0_,
|
||||
/// Cache operation for operand B
|
||||
cutlass::arch::CacheOperation::Kind CacheOpB0,
|
||||
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
typename Shape1_,
|
||||
/// Iterates over the intermediate accumulator tile
|
||||
// (concept::MmaTensorOpFragmentIterator)
|
||||
typename FragmentIteratorA1_,
|
||||
/// Iterates over tiles of B operand in global memory
|
||||
// (concept: ReadableTileIterator | ForwardTileIterator |
|
||||
// MaskedTileIterator)
|
||||
typename IteratorB1_,
|
||||
/// Iterates over tiles of B operand in shared memory
|
||||
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
||||
typename SmemIteratorB1_,
|
||||
/// Cache operation for operand B
|
||||
cutlass::arch::CacheOperation::Kind CacheOpB1,
|
||||
/// Output operator for 1st Gemm(concept: epilogue::thread::LinearCombinationClamp, etc...)
|
||||
typename OutputOp_,
|
||||
/// Policy describing tuning details (concept: MmaPolicy)
|
||||
typename Policy0_,
|
||||
/// Policy describing tuning details (concept: MmaPolicy)
|
||||
typename Policy1_,
|
||||
/// Number of stages,
|
||||
int Stages,
|
||||
/// Used for partial specialization
|
||||
typename Enable = bool>
|
||||
class B2bImplicitGemmMultistage :
|
||||
public gemm::threadblock::B2bMmaBase<Shape0_, Shape1_, Policy0_, Policy1_, Stages> {
|
||||
public:
|
||||
///< Base class
|
||||
using Base = gemm::threadblock::B2bMmaBase<Shape0_, Shape1_, Policy0_, Policy1_, Stages>;
|
||||
///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
using Shape0 = Shape0_;
|
||||
///< Iterates over tiles of A operand in global memory
|
||||
using IteratorA0 = IteratorA0_;
|
||||
///< Iterates over tiles of B operand in global memory
|
||||
using IteratorB0 = IteratorB0_;
|
||||
///< Policy describing tuning details
|
||||
using Policy0 = Policy0_;
|
||||
|
||||
using SmemIteratorA0 = SmemIteratorA0_;
|
||||
using SmemIteratorB0 = SmemIteratorB0_;
|
||||
|
||||
///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
using Shape1 = Shape1_;
|
||||
///< Iterates over tiles of A operand in global memory
|
||||
using FragmentIteratorA1 = FragmentIteratorA1_;
|
||||
///< Iterates over tiles of B operand in global memory
|
||||
using IteratorB1 = IteratorB1_;
|
||||
///< Policy describing tuning details
|
||||
using Policy1 = Policy1_;
|
||||
|
||||
using SmemIteratorB1 = SmemIteratorB1_;
|
||||
|
||||
///< Epilogue after 1st Gemm
|
||||
using OutputOp = OutputOp_;
|
||||
|
||||
static cutlass::arch::CacheOperation::Kind const kCacheOpA0 = CacheOpA0;
|
||||
static cutlass::arch::CacheOperation::Kind const kCacheOpB0 = CacheOpB0;
|
||||
static cutlass::arch::CacheOperation::Kind const kCacheOpB1 = CacheOpB1;
|
||||
|
||||
//
|
||||
// Dependent types
|
||||
//
|
||||
|
||||
using ElementC = typename Policy0::Operator::ElementC;
|
||||
|
||||
/// Fragment of accumulator tile
|
||||
using FragmentC0 = typename Policy0::Operator::FragmentC;
|
||||
|
||||
/// Warp-level Mma
|
||||
using Operator0 = typename Policy0::Operator;
|
||||
|
||||
/// Fragment of accumulator tile
|
||||
using FragmentC1 = typename Policy1::Operator::FragmentC;
|
||||
|
||||
/// Warp-level Mma
|
||||
using Operator1 = typename Policy1::Operator;
|
||||
|
||||
/// Internal structure exposed for introspection.
|
||||
struct Detail {
|
||||
|
||||
static_assert(Base::kWarpGemmIterations0 > 1,
|
||||
"The pipelined structure requires at least two warp-level "
|
||||
"GEMM operations.");
|
||||
static_assert(Base::kWarpGemmIterations1 > 1,
|
||||
"The pipelined structure requires at least two warp-level "
|
||||
"GEMM operations.");
|
||||
|
||||
/// Number of cp.async instructions to load one stage of operand A
|
||||
static int const AsyncCopyIterationsPerStageA0 =
|
||||
IteratorA0::ThreadMap::Iterations::kCount;
|
||||
|
||||
/// Number of cp.async instructions to load one stage of operand B
|
||||
static int const AsyncCopyIterationsPerStageB0 =
|
||||
IteratorB0::ThreadMap::Iterations::kCount;
|
||||
|
||||
/// Number of cp.async instructions to load one stage of operand B
|
||||
static int const AsyncCopyIterationsPerStageB1 =
|
||||
IteratorB1::ThreadMap::Iterations::kCount;
|
||||
|
||||
/// Number of stages
|
||||
static int const kStages = Stages;
|
||||
|
||||
/// Number of cp.async instructions to load on group of operand A
|
||||
static int const kAccessesPerGroupA0 =
|
||||
(AsyncCopyIterationsPerStageA0 + Base::kWarpGemmIterations0 - 1) / Base::kWarpGemmIterations0;
|
||||
|
||||
/// Number of cp.async instructions to load on group of operand B
|
||||
static int const kAccessesPerGroupB0 =
|
||||
(AsyncCopyIterationsPerStageB0 + Base::kWarpGemmIterations0 - 1) / Base::kWarpGemmIterations0;
|
||||
|
||||
/// Number of cp.async instructions to load on group of operand B
|
||||
static int const kAccessesPerGroupB1 =
|
||||
(AsyncCopyIterationsPerStageB1 + Base::kWarpGemmIterations1 - 1) / Base::kWarpGemmIterations1;
|
||||
};
|
||||
|
||||
private:
|
||||
|
||||
using WarpLoadedFragmentA0 = typename Operator0::FragmentA;
|
||||
using WarpLoadedFragmentB0 = typename Operator0::FragmentB;
|
||||
/// Warp Fragment of operand A1 loaded from accmulator tile
|
||||
using WarpLoadedFragmentA1 = typename FragmentIteratorA1::Fragment;
|
||||
using WarpLoadedFragmentB1 = typename Operator1::FragmentB;
|
||||
using WarpTransformedFragmentA0 = typename Operator0::TransformedFragmentA;
|
||||
using WarpTransformedFragmentB0 = typename Operator0::TransformedFragmentB;
|
||||
using WarpTransformedFragmentA1 = typename Operator1::TransformedFragmentA;
|
||||
using WarpTransformedFragmentB1 = typename Operator1::TransformedFragmentB;
|
||||
|
||||
private:
|
||||
|
||||
//
|
||||
// Data members
|
||||
//
|
||||
|
||||
/// Iterator to write threadblock-scoped tile of A operand to shared memory
|
||||
SmemIteratorA0 smem_iterator_A0_;
|
||||
|
||||
/// Iterator to write threadblock-scoped tile of B operand to shared memory
|
||||
SmemIteratorB0 smem_iterator_B0_;
|
||||
|
||||
/// Iterator to write threadblock-scoped tile of B operand to shared memory
|
||||
SmemIteratorB1 smem_iterator_B1_;
|
||||
|
||||
public:
|
||||
|
||||
/// Construct from tensor references
|
||||
CUTLASS_DEVICE
|
||||
B2bImplicitGemmMultistage(
|
||||
///< Shared storage needed for internal use by threadblock-scoped GEMM
|
||||
typename Base::B2bMmaSharedStorage &shared_storage,
|
||||
///< ID within the threadblock
|
||||
int thread_idx,
|
||||
///< ID of warp
|
||||
int warp_idx,
|
||||
///< ID of each thread within a warp
|
||||
int lane_idx
|
||||
):
|
||||
Base(shared_storage, thread_idx, warp_idx, lane_idx),
|
||||
smem_iterator_A0_(shared_storage.sharedStorage0.operand_A_ref(), thread_idx),
|
||||
smem_iterator_B0_(shared_storage.sharedStorage0.operand_B_ref(), thread_idx),
|
||||
smem_iterator_B1_(shared_storage.sharedStorage1.operand_B_ref(), thread_idx)
|
||||
{
|
||||
// Compute warp location within threadblock tile by mapping the warp_id to
|
||||
// three coordinates:
|
||||
// _m: the warp's position within the threadblock along the M dimension
|
||||
// _n: the warp's position within the threadblock along the N dimension
|
||||
// _k: the warp's position within the threadblock along the K dimension
|
||||
|
||||
int warp_idx_mn = warp_idx % (Base::WarpCount0::kM * Base::WarpCount0::kN);
|
||||
int warp_idx_k = warp_idx / (Base::WarpCount0::kM * Base::WarpCount0::kN);
|
||||
|
||||
int warp_idx_m = warp_idx_mn % Base::WarpCount0::kM;
|
||||
int warp_idx_n = warp_idx_mn / Base::WarpCount0::kM;
|
||||
|
||||
// Add per-warp offsets in units of warp-level tiles
|
||||
this->warp_tile_iterator_A0_.add_tile_offset(
|
||||
{warp_idx_m, Base::kWarpGemmIterations0 * warp_idx_k});
|
||||
this->warp_tile_iterator_B0_.add_tile_offset(
|
||||
{Base::kWarpGemmIterations0 * warp_idx_k, warp_idx_n});
|
||||
this->warp_tile_iterator_B1_.add_tile_offset(
|
||||
{Base::kWarpGemmIterations1 * warp_idx_k, warp_idx_n});
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE
|
||||
void copy_tiles_and_advance_0(
|
||||
IteratorA0 &iterator_A0, IteratorB0 &iterator_B0,
|
||||
int group_start_A0 = 0, int group_start_B0 = 0) {
|
||||
|
||||
iterator_A0.set_iteration_index(group_start_A0);
|
||||
this->smem_iterator_A0_.set_iteration_index(group_start_A0);
|
||||
|
||||
// Async Copy for operand A
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int j = 0; j < Detail::kAccessesPerGroupA0; ++j) {
|
||||
|
||||
if (group_start_A0 + j < Detail::AsyncCopyIterationsPerStageA0) {
|
||||
typename IteratorA0::AccessType *dst_ptr =
|
||||
reinterpret_cast<typename IteratorA0::AccessType *>(
|
||||
this->smem_iterator_A0_.get());
|
||||
|
||||
int const kSrcBytes = sizeof_bits<typename IteratorA0::Element>::value *
|
||||
IteratorA0::ThreadMap::kElementsPerAccess / 8;
|
||||
|
||||
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpA0>(
|
||||
dst_ptr, iterator_A0.get(), iterator_A0.valid());
|
||||
|
||||
++iterator_A0;
|
||||
|
||||
++this->smem_iterator_A0_;
|
||||
}
|
||||
}
|
||||
|
||||
iterator_B0.set_iteration_index(group_start_B0);
|
||||
|
||||
this->smem_iterator_B0_.set_iteration_index(group_start_B0);
|
||||
|
||||
// Async Copy for operand B
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int j = 0; j < Detail::kAccessesPerGroupB0; ++j) {
|
||||
if (group_start_B0 + j < Detail::AsyncCopyIterationsPerStageB0) {
|
||||
typename IteratorB0::AccessType *dst_ptr =
|
||||
reinterpret_cast<typename IteratorB0::AccessType *>(
|
||||
this->smem_iterator_B0_.get());
|
||||
|
||||
int const kSrcBytes = sizeof_bits<typename IteratorB0::Element>::value *
|
||||
IteratorB0::ThreadMap::kElementsPerAccess / 8;
|
||||
|
||||
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB0>(
|
||||
dst_ptr, iterator_B0.get(), iterator_B0.valid());
|
||||
|
||||
++iterator_B0;
|
||||
++this->smem_iterator_B0_;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE
|
||||
void copy_tiles_and_advance_1(
|
||||
IteratorB1 &iterator_B1,
|
||||
int group_start_B1 = 0) {
|
||||
|
||||
iterator_B1.set_iteration_index(group_start_B1);
|
||||
|
||||
this->smem_iterator_B1_.set_iteration_index(group_start_B1);
|
||||
|
||||
// Async Copy for operand B
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int j = 0; j < Detail::kAccessesPerGroupB1; ++j) {
|
||||
if (group_start_B1 + j < Detail::AsyncCopyIterationsPerStageB1) {
|
||||
typename IteratorB1::AccessType *dst_ptr =
|
||||
reinterpret_cast<typename IteratorB1::AccessType *>(
|
||||
this->smem_iterator_B1_.get());
|
||||
|
||||
int const kSrcBytes = sizeof_bits<typename IteratorB1::Element>::value *
|
||||
IteratorB1::ThreadMap::kElementsPerAccess / 8;
|
||||
|
||||
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB1>(
|
||||
dst_ptr, iterator_B1.get(), iterator_B1.valid());
|
||||
|
||||
++iterator_B1;
|
||||
++this->smem_iterator_B1_;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Perform a threadblock-scoped matrix multiply-accumulate
|
||||
CUTLASS_DEVICE
|
||||
void operator()(
|
||||
///< problem size of GEMM
|
||||
int gemm_k_iterations_0,
|
||||
///< destination accumulator tile
|
||||
FragmentC1 &accum,
|
||||
///< iterator over A operand in global memory
|
||||
IteratorA0 iterator_A0,
|
||||
///< iterator over B operand in global memory
|
||||
IteratorB0 iterator_B0,
|
||||
///< iterator over B operand in global memory
|
||||
IteratorB1 iterator_B1,
|
||||
///< initial value of accumulator
|
||||
FragmentC0 const &src_accum,
|
||||
///< epilogue operation after 1st Gemm
|
||||
OutputOp output_op_0,
|
||||
///< Imaginary strides used for planar-complex only - ignored here
|
||||
int64_t imag_stride_A = 0,
|
||||
int64_t imag_stride_B = 0) {
|
||||
|
||||
//
|
||||
// Prologue
|
||||
//
|
||||
|
||||
// Issue several complete stages
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int stage = 0; stage < Base::kStages - 1;
|
||||
++stage, --gemm_k_iterations_0) {
|
||||
|
||||
iterator_A0.set_iteration_index(0);
|
||||
this->smem_iterator_A0_.set_iteration_index(0);
|
||||
|
||||
// Async Copy for operand A
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int j = 0; j < Detail::AsyncCopyIterationsPerStageA0; ++j) {
|
||||
typename IteratorA0::AccessType *dst_ptr =
|
||||
reinterpret_cast<typename IteratorA0::AccessType *>(
|
||||
this->smem_iterator_A0_.get());
|
||||
|
||||
int const kSrcBytes =
|
||||
sizeof_bits<typename IteratorA0::Element>::value *
|
||||
IteratorA0::ThreadMap::kElementsPerAccess / 8;
|
||||
|
||||
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpA0>(
|
||||
dst_ptr, iterator_A0.get(), iterator_A0.valid());
|
||||
|
||||
++iterator_A0;
|
||||
++this->smem_iterator_A0_;
|
||||
}
|
||||
|
||||
iterator_B0.set_iteration_index(0);
|
||||
this->smem_iterator_B0_.set_iteration_index(0);
|
||||
|
||||
// Async Copy for operand B
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int j = 0; j < Detail::AsyncCopyIterationsPerStageB0; ++j) {
|
||||
typename IteratorB0::AccessType *dst_ptr =
|
||||
reinterpret_cast<typename IteratorB0::AccessType *>(
|
||||
this->smem_iterator_B0_.get());
|
||||
|
||||
int const kSrcBytes =
|
||||
sizeof_bits<typename IteratorB0::Element>::value *
|
||||
IteratorB0::ThreadMap::kElementsPerAccess / 8;
|
||||
|
||||
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB0>(
|
||||
dst_ptr, iterator_B0.get(), iterator_B0.valid());
|
||||
|
||||
++iterator_B0;
|
||||
++this->smem_iterator_B0_;
|
||||
}
|
||||
|
||||
// Move to the next stage
|
||||
iterator_A0.advance();
|
||||
iterator_B0.advance();
|
||||
|
||||
this->smem_iterator_A0_.add_tile_offset({0, 1});
|
||||
this->smem_iterator_B0_.add_tile_offset({1, 0});
|
||||
|
||||
// Inserts a fence to group cp.async instructions into stages.
|
||||
cutlass::arch::cp_async_fence();
|
||||
}
|
||||
|
||||
// Perform accumulation in the 'd' output operand
|
||||
FragmentC0 accum0 = src_accum;
|
||||
|
||||
// Waits until kStages-2 stages have committed.
|
||||
cutlass::arch::cp_async_wait<Base::kStages - 2>();
|
||||
__syncthreads();
|
||||
|
||||
// Pair of fragments used to overlap shared memory loads and math
|
||||
// instructions
|
||||
WarpLoadedFragmentA0 warp_loaded_frag_A0[2];
|
||||
WarpLoadedFragmentB0 warp_loaded_frag_B0[2];
|
||||
WarpTransformedFragmentA0 warp_transformed_frag_A0[2];
|
||||
WarpTransformedFragmentB0 warp_transformed_frag_B0[2];
|
||||
|
||||
Operator0 warp_mma0;
|
||||
|
||||
this->warp_tile_iterator_A0_.set_kgroup_index(0);
|
||||
this->warp_tile_iterator_B0_.set_kgroup_index(0);
|
||||
|
||||
this->warp_tile_iterator_A0_.load(warp_loaded_frag_A0[0]);
|
||||
this->warp_tile_iterator_B0_.load(warp_loaded_frag_B0[0]);
|
||||
|
||||
++this->warp_tile_iterator_A0_;
|
||||
++this->warp_tile_iterator_B0_;
|
||||
|
||||
// Start issuing the first group of the next stage outside of the mainloop
|
||||
copy_tiles_and_advance_0(iterator_A0, iterator_B0);
|
||||
|
||||
int smem_write_stage_idx = Base::kStages - 1;
|
||||
int smem_read_stage_idx = 0;
|
||||
|
||||
warp_mma0.transform(warp_transformed_frag_A0[0], warp_transformed_frag_B0[0],
|
||||
warp_loaded_frag_A0[0], warp_loaded_frag_B0[0]);
|
||||
|
||||
//
|
||||
// Mainloop
|
||||
//
|
||||
|
||||
CUTLASS_GEMM_LOOP
|
||||
for (; gemm_k_iterations_0 > (-Base::kStages + 1);) {
|
||||
|
||||
//
|
||||
// Loop over GEMM K dimension
|
||||
//
|
||||
|
||||
// Computes a warp-level GEMM on data held in shared memory
|
||||
// Each "warp_mma_k" refers to a warp-level matrix multiply-accumulate
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations0;
|
||||
++warp_mma_k) {
|
||||
|
||||
// Load warp-level tiles from shared memory, wrapping to k offset if
|
||||
// this is the last group as the case may be.
|
||||
|
||||
this->warp_tile_iterator_A0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);
|
||||
this->warp_tile_iterator_B0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);
|
||||
|
||||
this->warp_tile_iterator_A0_.load(warp_loaded_frag_A0[(warp_mma_k + 1) % 2]);
|
||||
this->warp_tile_iterator_B0_.load(warp_loaded_frag_B0[(warp_mma_k + 1) % 2]);
|
||||
|
||||
++this->warp_tile_iterator_A0_;
|
||||
++this->warp_tile_iterator_B0_;
|
||||
|
||||
if (warp_mma_k > 0)
|
||||
warp_mma0.transform(warp_transformed_frag_A0[warp_mma_k % 2],
|
||||
warp_transformed_frag_B0[warp_mma_k % 2],
|
||||
warp_loaded_frag_A0[warp_mma_k % 2],
|
||||
warp_loaded_frag_B0[warp_mma_k % 2]);
|
||||
|
||||
// Issue global->shared copies for the next stage
|
||||
int group_start_iteration_A0, group_start_iteration_B0;
|
||||
|
||||
if (warp_mma_k + 1 == Base::kWarpGemmIterations0) {
|
||||
group_start_iteration_A0 = 0;
|
||||
group_start_iteration_B0 = 0;
|
||||
} else {
|
||||
group_start_iteration_A0 =
|
||||
(warp_mma_k + 1) * Detail::kAccessesPerGroupA0;
|
||||
group_start_iteration_B0 =
|
||||
(warp_mma_k + 1) * Detail::kAccessesPerGroupB0;
|
||||
}
|
||||
|
||||
copy_tiles_and_advance_0(iterator_A0, iterator_B0, group_start_iteration_A0,
|
||||
group_start_iteration_B0);
|
||||
|
||||
warp_mma0(
|
||||
accum0,
|
||||
warp_transformed_frag_A0[warp_mma_k % 2],
|
||||
warp_transformed_frag_B0[warp_mma_k % 2],
|
||||
accum0
|
||||
);
|
||||
|
||||
if (warp_mma_k + 1 == Base::kWarpGemmIterations0)
|
||||
warp_mma0.transform(warp_transformed_frag_A0[(warp_mma_k + 1) % 2],
|
||||
warp_transformed_frag_B0[(warp_mma_k + 1) % 2],
|
||||
warp_loaded_frag_A0[(warp_mma_k + 1) % 2],
|
||||
warp_loaded_frag_B0[(warp_mma_k + 1) % 2]);
|
||||
|
||||
if (warp_mma_k + 2 == Base::kWarpGemmIterations0) {
|
||||
// Inserts a fence to group cp.async instructions into stages.
|
||||
cutlass::arch::cp_async_fence();
|
||||
|
||||
// Waits until kStages-2 stages of cp.async have committed
|
||||
arch::cp_async_wait<Base::kStages - 2>();
|
||||
__syncthreads();
|
||||
|
||||
// Move to the next stage
|
||||
iterator_A0.advance();
|
||||
iterator_B0.advance();
|
||||
|
||||
this->smem_iterator_A0_.add_tile_offset({0, 1});
|
||||
this->smem_iterator_B0_.add_tile_offset({1, 0});
|
||||
|
||||
// Add negative offsets to return iterators to the 'start' of the
|
||||
// circular buffer in shared memory
|
||||
if (smem_write_stage_idx == (Base::kStages - 1)) {
|
||||
this->smem_iterator_A0_.add_tile_offset({0, -Base::kStages});
|
||||
this->smem_iterator_B0_.add_tile_offset({-Base::kStages, 0});
|
||||
smem_write_stage_idx = 0;
|
||||
} else {
|
||||
++smem_write_stage_idx;
|
||||
}
|
||||
|
||||
if (smem_read_stage_idx == (Base::kStages - 1)) {
|
||||
this->warp_tile_iterator_A0_.add_tile_offset(
|
||||
{0, -Base::kStages * Policy0::kPartitionsK *
|
||||
Base::kWarpGemmIterations0});
|
||||
this->warp_tile_iterator_B0_.add_tile_offset(
|
||||
{-Base::kStages * Policy0::kPartitionsK *
|
||||
Base::kWarpGemmIterations0,
|
||||
0});
|
||||
smem_read_stage_idx = 0;
|
||||
} else {
|
||||
++smem_read_stage_idx;
|
||||
}
|
||||
|
||||
--gemm_k_iterations_0;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Insert fence and wait for all outstanding cp.async operations to commit.
|
||||
cutlass::arch::cp_async_fence();
|
||||
cutlass::arch::cp_async_wait<0>();
|
||||
__syncthreads();
|
||||
|
||||
|
||||
// 2nd Implicit Gemm
|
||||
|
||||
/// Iterator to load a warp-scoped tile of A1 operand from intermediate accumulator tile
|
||||
FragmentIteratorA1 warp_tile_iterator_A1_(accum0);
|
||||
|
||||
//
|
||||
// Prologue
|
||||
//
|
||||
int gemm_k_iterations_1 = FragmentIteratorA1::Policy::kIterations / Base::kWarpGemmIterations1;
|
||||
|
||||
// Issue several complete stages
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int stage = 0; stage < Base::kStages - 1;
|
||||
++stage, --gemm_k_iterations_1) {
|
||||
|
||||
iterator_B1.set_iteration_index(0);
|
||||
this->smem_iterator_B1_.set_iteration_index(0);
|
||||
|
||||
// Async Copy for operand B
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int j = 0; j < Detail::AsyncCopyIterationsPerStageB1; ++j) {
|
||||
typename IteratorB1::AccessType *dst_ptr =
|
||||
reinterpret_cast<typename IteratorB1::AccessType *>(
|
||||
this->smem_iterator_B1_.get());
|
||||
|
||||
int const kSrcBytes =
|
||||
sizeof_bits<typename IteratorB1::Element>::value *
|
||||
IteratorB1::ThreadMap::kElementsPerAccess / 8;
|
||||
|
||||
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB1>(
|
||||
dst_ptr, iterator_B1.get(), iterator_B1.valid());
|
||||
|
||||
++iterator_B1;
|
||||
++this->smem_iterator_B1_;
|
||||
}
|
||||
|
||||
// Move to the next stage
|
||||
iterator_B1.advance();
|
||||
|
||||
this->smem_iterator_B1_.add_tile_offset({1, 0});
|
||||
|
||||
// Inserts a fence to group cp.async instructions into stages.
|
||||
cutlass::arch::cp_async_fence();
|
||||
}
|
||||
|
||||
// Waits until kStages-2 stages have committed.
|
||||
cutlass::arch::cp_async_wait<Base::kStages - 2>();
|
||||
__syncthreads();
|
||||
|
||||
// Pair of fragments used to overlap shared memory loads and math
|
||||
// instructions
|
||||
WarpLoadedFragmentA1 warp_loaded_frag_A1[2];
|
||||
WarpLoadedFragmentB1 warp_loaded_frag_B1[2];
|
||||
WarpTransformedFragmentA1 warp_transformed_frag_A1[2];
|
||||
WarpTransformedFragmentB1 warp_transformed_frag_B1[2];
|
||||
|
||||
Operator1 warp_mma1;
|
||||
|
||||
this->warp_tile_iterator_B1_.set_kgroup_index(0);
|
||||
|
||||
warp_tile_iterator_A1_.load(warp_loaded_frag_A1[0], output_op_0);
|
||||
this->warp_tile_iterator_B1_.load(warp_loaded_frag_B1[0]);
|
||||
|
||||
++warp_tile_iterator_A1_;
|
||||
++this->warp_tile_iterator_B1_;
|
||||
|
||||
// Start issuing the first group of the next stage outside of the mainloop
|
||||
copy_tiles_and_advance_1(iterator_B1);
|
||||
|
||||
smem_write_stage_idx = Base::kStages - 1;
|
||||
smem_read_stage_idx = 0;
|
||||
|
||||
warp_mma1.transform(warp_transformed_frag_A1[0], warp_transformed_frag_B1[0],
|
||||
warp_loaded_frag_A1[0], warp_loaded_frag_B1[0]);
|
||||
|
||||
|
||||
//
|
||||
// Mainloop
|
||||
//
|
||||
|
||||
CUTLASS_GEMM_LOOP
|
||||
for (gemm_k_iterations_1 = FragmentIteratorA1::Policy::kIterations / Base::kWarpGemmIterations1 - (Base::kStages - 1);
|
||||
gemm_k_iterations_1 > (-Base::kStages + 1); gemm_k_iterations_1--) {
|
||||
//
|
||||
// Loop over GEMM K dimension
|
||||
//
|
||||
|
||||
// Computes a warp-level GEMM on data held in shared memory
|
||||
// Each "warp_mma_k" refers to a warp-level matrix multiply-accumulate
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations1;
|
||||
++warp_mma_k) {
|
||||
|
||||
// Load warp-level tiles from shared memory, wrapping to k offset if
|
||||
// this is the last group as the case may be.
|
||||
|
||||
this->warp_tile_iterator_B1_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations1);
|
||||
|
||||
warp_tile_iterator_A1_.load(warp_loaded_frag_A1[(warp_mma_k + 1) % 2], output_op_0);
|
||||
this->warp_tile_iterator_B1_.load(warp_loaded_frag_B1[(warp_mma_k + 1) % 2]);
|
||||
|
||||
++warp_tile_iterator_A1_;
|
||||
++this->warp_tile_iterator_B1_;
|
||||
|
||||
if (warp_mma_k > 0)
|
||||
warp_mma1.transform(warp_transformed_frag_A1[warp_mma_k % 2],
|
||||
warp_transformed_frag_B1[warp_mma_k % 2],
|
||||
warp_loaded_frag_A1[warp_mma_k % 2],
|
||||
warp_loaded_frag_B1[warp_mma_k % 2]);
|
||||
|
||||
// Issue global->shared copies for the next stage
|
||||
int group_start_iteration_B1;
|
||||
|
||||
if (warp_mma_k + 1 == Base::kWarpGemmIterations1) {
|
||||
group_start_iteration_B1 = 0;
|
||||
} else {
|
||||
group_start_iteration_B1 =
|
||||
(warp_mma_k + 1) * Detail::kAccessesPerGroupB1;
|
||||
}
|
||||
|
||||
copy_tiles_and_advance_1(iterator_B1,
|
||||
group_start_iteration_B1);
|
||||
|
||||
warp_mma1(
|
||||
accum,
|
||||
warp_transformed_frag_A1[warp_mma_k % 2],
|
||||
warp_transformed_frag_B1[warp_mma_k % 2],
|
||||
accum
|
||||
);
|
||||
|
||||
if (warp_mma_k + 1 == Base::kWarpGemmIterations1)
|
||||
warp_mma1.transform(warp_transformed_frag_A1[(warp_mma_k + 1) % 2],
|
||||
warp_transformed_frag_B1[(warp_mma_k + 1) % 2],
|
||||
warp_loaded_frag_A1[(warp_mma_k + 1) % 2],
|
||||
warp_loaded_frag_B1[(warp_mma_k + 1) % 2]);
|
||||
|
||||
if (warp_mma_k + 2 == Base::kWarpGemmIterations1) {
|
||||
// Inserts a fence to group cp.async instructions into stages.
|
||||
cutlass::arch::cp_async_fence();
|
||||
|
||||
// Waits until kStages-2 stages of cp.async have committed
|
||||
arch::cp_async_wait<Base::kStages - 2>();
|
||||
__syncthreads();
|
||||
|
||||
// Move to the next stage
|
||||
iterator_B1.advance();
|
||||
|
||||
this->smem_iterator_B1_.add_tile_offset({1, 0});
|
||||
|
||||
// Add negative offsets to return iterators to the 'start' of the
|
||||
// circular buffer in shared memory
|
||||
if (smem_write_stage_idx == (Base::kStages - 1)) {
|
||||
this->smem_iterator_B1_.add_tile_offset({-Base::kStages, 0});
|
||||
smem_write_stage_idx = 0;
|
||||
} else {
|
||||
++smem_write_stage_idx;
|
||||
}
|
||||
|
||||
if (smem_read_stage_idx == (Base::kStages - 1)) {
|
||||
this->warp_tile_iterator_B1_.add_tile_offset(
|
||||
{-Base::kStages * Policy1::kPartitionsK *
|
||||
Base::kWarpGemmIterations1,
|
||||
0});
|
||||
smem_read_stage_idx = 0;
|
||||
} else {
|
||||
++smem_read_stage_idx;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Insert fence and wait for all outstanding cp.async operations to commit.
|
||||
cutlass::arch::cp_async_fence();
|
||||
cutlass::arch::cp_async_wait<0>();
|
||||
__syncthreads();
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace threadblock
|
||||
} // namespace gemm
|
||||
} // namespace cutlass
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -0,0 +1,483 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Template for a double-buffered threadblock-scoped GEMM kernel.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/array.h"
|
||||
#include "cutlass/aligned_buffer.h"
|
||||
#include "cutlass/numeric_conversion.h"
|
||||
|
||||
#include "cutlass/numeric_types.h"
|
||||
#include "cutlass/matrix_shape.h"
|
||||
|
||||
#include "cutlass/gemm/gemm.h"
|
||||
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
|
||||
|
||||
#include "threadblock/b2b_mma_base.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace cutlass {
|
||||
namespace conv {
|
||||
namespace threadblock {
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Structure to compute the matrix product targeting CUDA cores and SIMT math instructions.
|
||||
template <
|
||||
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
typename Shape0_,
|
||||
/// Iterates over tiles of A operand in global memory
|
||||
// (concept: ReadableTileIterator | ForwardTileIterator | MaskedTileIterator)
|
||||
typename IteratorA0_,
|
||||
/// Iterates over tiles of A operand in shared memory
|
||||
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
||||
typename SmemIteratorA0_,
|
||||
/// Iterates over tiles of B operand in global memory
|
||||
// (concept: ReadableTileIterator | ForwardTileIterator | MaskedTileIterator)
|
||||
typename IteratorB0_,
|
||||
/// Iterates over tiles of B operand in shared memory
|
||||
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
||||
typename SmemIteratorB0_,
|
||||
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
typename Shape1_,
|
||||
/// Iterates over the intermediate accumulator tile
|
||||
// (concept::MmaTensorOpFragmentIterator)
|
||||
typename FragmentIteratorA1_,
|
||||
/// Iterates over tiles of B operand in global memory
|
||||
// (concept: ReadableTileIterator | ForwardTileIterator | MaskedTileIterator)
|
||||
typename IteratorB1_,
|
||||
/// Iterates over tiles of B operand in shared memory
|
||||
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
||||
typename SmemIteratorB1_,
|
||||
/// Data type of accumulator matrix
|
||||
typename ElementC_,
|
||||
/// Data type of accumulator matrix
|
||||
typename LayoutC_,
|
||||
/// Output operator for 1st Gemm(concept: epilogue::thread::LinearCombinationClamp, etc...)
|
||||
typename OutputOp_,
|
||||
/// Policy describing tuning details (concept: MmaPolicy)
|
||||
typename Policy0_,
|
||||
/// Policy describing tuning details (concept: MmaPolicy)
|
||||
typename Policy1_,
|
||||
/// Transformation applied to A operand
|
||||
typename TransformA0_ = NumericArrayConverter<
|
||||
typename SmemIteratorA0_::Element,
|
||||
typename IteratorA0_::Element,
|
||||
IteratorA0_::Fragment::kElements>,
|
||||
///
|
||||
/// Transformation applied to A operand
|
||||
typename TransformB0_ = NumericArrayConverter<
|
||||
typename SmemIteratorB0_::Element,
|
||||
typename IteratorB0_::Element,
|
||||
IteratorB0_::Fragment::kElements>,
|
||||
///
|
||||
/// Transformation applied to A operand
|
||||
typename TransformB1_ = NumericArrayConverter<
|
||||
typename SmemIteratorB1_::Element,
|
||||
typename IteratorB1_::Element,
|
||||
IteratorB1_::Fragment::kElements>,
|
||||
/// Used for partial specialization
|
||||
typename Enable = bool
|
||||
>
|
||||
class B2bImplicitGemmPipelined : public gemm::threadblock::B2bMmaBase<Shape0_, Shape1_, Policy0_, Policy1_, 2> {
|
||||
public:
|
||||
|
||||
///< Base class
|
||||
using Base = gemm::threadblock::B2bMmaBase<Shape0_, Shape1_, Policy0_, Policy1_, 2>;
|
||||
|
||||
using Shape0 = Shape0_; ///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
using IteratorA0 = IteratorA0_; ///< Iterates over tiles of A operand in global memory
|
||||
using IteratorB0 = IteratorB0_; ///< Iterates over tiles of B operand in global memory
|
||||
using Policy0 = Policy0_; ///< Policy0 describing tuning details
|
||||
|
||||
using SmemIteratorA0 = SmemIteratorA0_;
|
||||
using SmemIteratorB0 = SmemIteratorB0_;
|
||||
|
||||
using Shape1 = Shape1_; ///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
using FragmentIteratorA1 = FragmentIteratorA1_; ///< Iterates over tiles of A operand in global memory
|
||||
using IteratorB1 = IteratorB1_; ///< Iterates over tiles of B operand in global memory
|
||||
using Policy1 = Policy1_; ///< Policy1 describing tuning details
|
||||
|
||||
using SmemIteratorB1 = SmemIteratorB1_;
|
||||
|
||||
using ElementC = ElementC_; ///< Data type of accumulator matrix
|
||||
using LayoutC = LayoutC_; ///< Layout of accumulator matrix
|
||||
|
||||
using OutputOp = OutputOp_; ///< Epilogue after 1st Gemm
|
||||
|
||||
using TransformA0 = TransformA0_;
|
||||
using TransformB0 = TransformB0_;
|
||||
using TransformB1 = TransformB1_;
|
||||
|
||||
//
|
||||
// Dependent types
|
||||
//
|
||||
|
||||
/// Fragment of operand A loaded from global memory
|
||||
using FragmentA0 = typename IteratorA0::Fragment;
|
||||
|
||||
/// Fragment of operand B loaded from global memory
|
||||
using FragmentB0 = typename IteratorB0::Fragment;
|
||||
|
||||
/// Fragment of accumulator tile
|
||||
using FragmentC0 = typename Policy0::Operator::FragmentC;
|
||||
|
||||
/// Warp-level Mma
|
||||
using Operator0 = typename Policy0::Operator;
|
||||
|
||||
/// Fragment of operand B loaded from global memory
|
||||
using FragmentB1 = typename IteratorB1::Fragment;
|
||||
|
||||
/// Fragment of accumulator tile
|
||||
using FragmentC1 = typename Policy1::Operator::FragmentC;
|
||||
|
||||
/// Warp-level Mma
|
||||
using Operator1 = typename Policy1::Operator;
|
||||
|
||||
/// Obtain the arch tag from the warp-level operator
|
||||
using ArchTag = typename Policy0::Operator::ArchTag;
|
||||
|
||||
/// Complex transform on A0 operand
|
||||
static ComplexTransform const kTransformA0 = Operator0::kTransformA;
|
||||
|
||||
/// Complex transform on B0 operand
|
||||
static ComplexTransform const kTransformB0 = Operator0::kTransformB;
|
||||
|
||||
/// Complex transform on B1 operand
|
||||
static ComplexTransform const kTransformB1 = Operator1::kTransformB;
|
||||
|
||||
// staticaly assert kStages for MmaPipelined is two (Double-buffered pipeline)
|
||||
static_assert((Base::kStages==2), "MmaPipelined requires kStages set to value 2");
|
||||
|
||||
private:
|
||||
|
||||
using WarpFragmentA0 = typename Operator0::FragmentA;
|
||||
using WarpFragmentB0 = typename Operator0::FragmentB;
|
||||
/// Warp Fragment of operand A1 loaded from accmulator tile
|
||||
using WarpFragmentA1 = typename FragmentIteratorA1::Fragment;
|
||||
using WarpFragmentB1 = typename Operator1::FragmentB;
|
||||
|
||||
protected:
|
||||
|
||||
/// Iterator to write threadblock-scoped tile of A operand to shared memory
|
||||
SmemIteratorA0 smem_iterator_A_;
|
||||
|
||||
/// Iterator to write threadblock-scoped tile of B0 operand to shared memory
|
||||
SmemIteratorB0 smem_iterator_B0_;
|
||||
|
||||
/// Iterator to write threadblock-scoped tile of B1 operand to shared memory
|
||||
SmemIteratorB1 smem_iterator_B1_;
|
||||
|
||||
public:
|
||||
|
||||
/// Construct from tensor references
|
||||
CUTLASS_DEVICE
|
||||
B2bImplicitGemmPipelined(
|
||||
typename Base::B2bMmaSharedStorage &shared_storage, ///< Shared storage needed for internal use by threadblock-scoped GEMM
|
||||
int thread_idx, ///< ID within the threadblock
|
||||
int warp_idx, ///< ID of warp
|
||||
int lane_idx ///< ID of each thread within a warp
|
||||
):
|
||||
Base(shared_storage, thread_idx, warp_idx, lane_idx),
|
||||
smem_iterator_A_(shared_storage.sharedStorage0.operand_A_ref(), thread_idx),
|
||||
smem_iterator_B0_(shared_storage.sharedStorage0.operand_B_ref(), thread_idx),
|
||||
smem_iterator_B1_(shared_storage.sharedStorage1.operand_B_ref(), thread_idx) {
|
||||
|
||||
// Compute warp location within threadblock tile by mapping the warp_id to
|
||||
// three coordinates:
|
||||
// _m: the warp's position within the threadblock along the M dimension
|
||||
// _n: the warp's position within the threadblock along the N dimension
|
||||
// _k: the warp's position within the threadblock along the K dimension
|
||||
|
||||
int warp_idx_mn = warp_idx % (Base::WarpCount0::kM * Base::WarpCount0::kN);
|
||||
int warp_idx_k = warp_idx / (Base::WarpCount0::kM * Base::WarpCount0::kN);
|
||||
|
||||
int warp_idx_m = warp_idx_mn % Base::WarpCount0::kM;
|
||||
int warp_idx_n = warp_idx_mn / Base::WarpCount0::kM;
|
||||
|
||||
//These may change across different GEMM layers
|
||||
int tile_offset_k_0 = Base::kWarpGemmIterations0 * warp_idx_k;
|
||||
int tile_offset_k_1 = Base::kWarpGemmIterations1 * warp_idx_k;
|
||||
|
||||
// Add per-warp offsets in units of warp-level tiles
|
||||
this->warp_tile_iterator_A0_.add_tile_offset({warp_idx_m, tile_offset_k_0});
|
||||
this->warp_tile_iterator_B0_.add_tile_offset({tile_offset_k_0, warp_idx_n});
|
||||
this->warp_tile_iterator_B1_.add_tile_offset({tile_offset_k_1, warp_idx_n});
|
||||
|
||||
}
|
||||
|
||||
/// Perform a threadblock-scoped matrix multiply-accumulate
|
||||
CUTLASS_DEVICE
|
||||
void operator()(
|
||||
int gemm_k_iterations_0, ///< number of iterations of the mainloop
|
||||
FragmentC1 &accum, ///< destination accumulator tile
|
||||
IteratorA0 iterator_A, ///< iterator over A operand in global memory
|
||||
IteratorB0 iterator_B0, ///< iterator over B0 operand in global memory
|
||||
IteratorB1 iterator_B1, ///< iterator over B1 operand in global memory
|
||||
FragmentC0 const &src_accum, ///< source accumulator tile
|
||||
OutputOp output_op_0, ///< epilogue operation after 1st Gemm
|
||||
TransformA0 transform_A0 = TransformA0(), ///< transformation applied to A0 fragment
|
||||
TransformB0 transform_B0 = TransformB0(), ///< transformation applied to B0 fragment
|
||||
TransformB1 transform_B1 = TransformB1()) { ///< transformation applied to B1 fragment
|
||||
|
||||
//
|
||||
// Prologue
|
||||
//
|
||||
|
||||
// Perform accumulation in the 'd' output operand
|
||||
FragmentC0 accum0 = src_accum;
|
||||
|
||||
FragmentA0 tb_frag_A;
|
||||
FragmentB0 tb_frag_B0;
|
||||
|
||||
tb_frag_A.clear();
|
||||
tb_frag_B0.clear();
|
||||
|
||||
// The last kblock is loaded in the prolog
|
||||
iterator_A.load(tb_frag_A);
|
||||
iterator_B0.load(tb_frag_B0);
|
||||
|
||||
++iterator_A;
|
||||
++iterator_B0;
|
||||
|
||||
this->smem_iterator_A_.store(transform_A0(tb_frag_A));
|
||||
this->smem_iterator_B0_.store(transform_B0(tb_frag_B0));
|
||||
|
||||
++this->smem_iterator_A_;
|
||||
++this->smem_iterator_B0_;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Pair of fragments used to overlap shared memory loads and math instructions
|
||||
WarpFragmentA0 warp_frag_A0[2];
|
||||
WarpFragmentB0 warp_frag_B0[2];
|
||||
|
||||
this->warp_tile_iterator_A0_.set_kgroup_index(0);
|
||||
this->warp_tile_iterator_B0_.set_kgroup_index(0);
|
||||
|
||||
this->warp_tile_iterator_A0_.load(warp_frag_A0[0]);
|
||||
this->warp_tile_iterator_B0_.load(warp_frag_B0[0]);
|
||||
|
||||
++this->warp_tile_iterator_A0_;
|
||||
++this->warp_tile_iterator_B0_;
|
||||
|
||||
Operator0 warp_mma0;
|
||||
|
||||
int smem_write_stage_idx = 1;
|
||||
|
||||
// Issue loads during the first warp-level matrix multiply-add *AFTER* issuing
|
||||
// shared memory loads (which have the tighest latency requirement).
|
||||
|
||||
//
|
||||
// Mainloop
|
||||
//
|
||||
|
||||
// Note: The main loop does not support Base::kWarpGemmIterations == 2.
|
||||
CUTLASS_GEMM_LOOP
|
||||
for (; gemm_k_iterations_0 > 0; --gemm_k_iterations_0) {
|
||||
//
|
||||
// Loop over GEMM K dimension
|
||||
//
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations0; ++warp_mma_k) {
|
||||
|
||||
// Load warp-level tiles from shared memory, wrapping to k offset if this is the last group
|
||||
// as the case may be.
|
||||
|
||||
if (warp_mma_k == Base::kWarpGemmIterations0 - 1) {
|
||||
|
||||
// Write fragments to shared memory
|
||||
this->smem_iterator_A_.store(transform_A0(tb_frag_A));
|
||||
|
||||
this->smem_iterator_B0_.store(transform_B0(tb_frag_B0));
|
||||
|
||||
__syncthreads();
|
||||
|
||||
++this->smem_iterator_A_;
|
||||
++this->smem_iterator_B0_;
|
||||
|
||||
// Add negative offsets to return iterators to the 'start' of the circular buffer in shared memory
|
||||
if (smem_write_stage_idx == 1) {
|
||||
this->smem_iterator_A_.add_tile_offset({0, -Base::kStages});
|
||||
this->smem_iterator_B0_.add_tile_offset({-Base::kStages, 0});
|
||||
}
|
||||
else {
|
||||
this->warp_tile_iterator_A0_.add_tile_offset(
|
||||
{0, -Base::kStages * Policy0::kPartitionsK * Base::kWarpGemmIterations0});
|
||||
this->warp_tile_iterator_B0_.add_tile_offset(
|
||||
{-Base::kStages * Policy0::kPartitionsK * Base::kWarpGemmIterations0,
|
||||
0});
|
||||
}
|
||||
|
||||
smem_write_stage_idx ^= 1;
|
||||
}
|
||||
|
||||
this->warp_tile_iterator_A0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);
|
||||
this->warp_tile_iterator_B0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);
|
||||
|
||||
this->warp_tile_iterator_A0_.load(warp_frag_A0[(warp_mma_k + 1) % 2]);
|
||||
this->warp_tile_iterator_B0_.load(warp_frag_B0[(warp_mma_k + 1) % 2]);
|
||||
|
||||
++this->warp_tile_iterator_A0_;
|
||||
++this->warp_tile_iterator_B0_;
|
||||
|
||||
if (warp_mma_k == 0) {
|
||||
|
||||
iterator_A.load(tb_frag_A);
|
||||
iterator_B0.load(tb_frag_B0);
|
||||
|
||||
++iterator_A;
|
||||
++iterator_B0;
|
||||
}
|
||||
|
||||
warp_mma0(accum0, warp_frag_A0[warp_mma_k % 2],
|
||||
warp_frag_B0[warp_mma_k % 2], accum0);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//2nd Implicit Gemm
|
||||
|
||||
/// Iterator to load a warp-scoped tile of A1 operand from intermediate accumulator tile
|
||||
FragmentIteratorA1 warp_tile_iterator_A1_(accum0);
|
||||
|
||||
//
|
||||
// Prologue
|
||||
//
|
||||
|
||||
FragmentB1 tb_frag_B1;
|
||||
|
||||
tb_frag_B1.clear();
|
||||
|
||||
// The last kblock is loaded in the prolog
|
||||
iterator_B1.load(tb_frag_B1);
|
||||
|
||||
|
||||
++iterator_B1;
|
||||
|
||||
this->smem_iterator_B1_.store(transform_B1(tb_frag_B1));
|
||||
|
||||
++this->smem_iterator_B1_;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Pair of fragments used to overlap shared memory loads and math instructions
|
||||
WarpFragmentA1 warp_frag_A1[2];
|
||||
WarpFragmentB1 warp_frag_B1[2];
|
||||
|
||||
this->warp_tile_iterator_B1_.set_kgroup_index(0);
|
||||
|
||||
warp_tile_iterator_A1_.load(warp_frag_A1[0], output_op_0);
|
||||
this->warp_tile_iterator_B1_.load(warp_frag_B1[0]);
|
||||
|
||||
++warp_tile_iterator_A1_;
|
||||
++this->warp_tile_iterator_B1_;
|
||||
|
||||
Operator1 warp_mma1;
|
||||
|
||||
smem_write_stage_idx = 1;
|
||||
|
||||
int gemm_k_iterations_1 = FragmentIteratorA1::Policy::kIterations / Base::kWarpGemmIterations1;
|
||||
|
||||
// Issue loads during the first warp-level matrix multiply-add *AFTER* issuing
|
||||
// shared memory loads (which have the tighest latency requirement).
|
||||
|
||||
//
|
||||
// Mainloop
|
||||
//
|
||||
|
||||
// Note: The main loop does not support Base::kWarpGemmIterations == 2.
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (; gemm_k_iterations_1 > 0; --gemm_k_iterations_1) {
|
||||
//
|
||||
// Loop over GEMM K dimension
|
||||
//
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations1; ++warp_mma_k) {
|
||||
|
||||
// Load warp-level tiles from shared memory, wrapping to k offset if this is the last group
|
||||
// as the case may be.
|
||||
|
||||
if (warp_mma_k == Base::kWarpGemmIterations1 - 1) {
|
||||
|
||||
this->smem_iterator_B1_.store(transform_B1(tb_frag_B1));
|
||||
|
||||
__syncthreads();
|
||||
|
||||
++this->smem_iterator_B1_;
|
||||
|
||||
// Add negative offsets to return iterators to the 'start' of the circular buffer in shared memory
|
||||
if (smem_write_stage_idx == 1) {
|
||||
this->smem_iterator_B1_.add_tile_offset({-Base::kStages, 0});
|
||||
}
|
||||
else {
|
||||
this->warp_tile_iterator_B1_.add_tile_offset(
|
||||
{-Base::kStages * Policy1::kPartitionsK * Base::kWarpGemmIterations1,
|
||||
0});
|
||||
}
|
||||
|
||||
smem_write_stage_idx ^= 1;
|
||||
}
|
||||
|
||||
this->warp_tile_iterator_B1_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations1);
|
||||
|
||||
warp_tile_iterator_A1_.load(warp_frag_A1[(warp_mma_k + 1) % 2], output_op_0);
|
||||
this->warp_tile_iterator_B1_.load(warp_frag_B1[(warp_mma_k + 1) % 2]);
|
||||
|
||||
++warp_tile_iterator_A1_;
|
||||
++this->warp_tile_iterator_B1_;
|
||||
|
||||
if (warp_mma_k == 0) {
|
||||
|
||||
iterator_B1.load(tb_frag_B1);
|
||||
|
||||
++iterator_B1;
|
||||
}
|
||||
|
||||
warp_mma1(accum, warp_frag_A1[warp_mma_k % 2],
|
||||
warp_frag_B1[warp_mma_k % 2], accum);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace threadblock
|
||||
} // namespace gemm
|
||||
} // namespace cutlass
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
230
examples/13_two_tensor_op_fusion/threadblock/b2b_mma_base.h
Normal file
230
examples/13_two_tensor_op_fusion/threadblock/b2b_mma_base.h
Normal file
@ -0,0 +1,230 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Template for a double-buffered threadblock-scoped GEMM kernel.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/aligned_buffer.h"
|
||||
#include "cutlass/arch/memory.h"
|
||||
#include "cutlass/array.h"
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/gemm.h"
|
||||
#include "cutlass/matrix_shape.h"
|
||||
#include "cutlass/numeric_types.h"
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace cutlass {
|
||||
namespace gemm {
|
||||
namespace threadblock {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Structure to compute the matrix product targeting CUDA cores and SIMT math
|
||||
/// instructions.
|
||||
template <
|
||||
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
typename Shape0_,
|
||||
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
typename Shape1_,
|
||||
/// Policy describing tuning details (concept: MmaPolicy)
|
||||
typename Policy0_,
|
||||
/// Policy describing tuning details (concept: MmaPolicy)
|
||||
typename Policy1_,
|
||||
/// Number of stages,
|
||||
int Stages,
|
||||
/// Used for partial specialization
|
||||
typename Enable = bool>
|
||||
class B2bMmaBase {
|
||||
public:
|
||||
///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
using Shape0 = Shape0_;
|
||||
using Shape1 = Shape1_;
|
||||
|
||||
///< Policy describing tuning details
|
||||
using Policy0 = Policy0_;
|
||||
using Policy1 = Policy1_;
|
||||
|
||||
//
|
||||
// Dependent types
|
||||
//
|
||||
|
||||
/// Warp-level Mma
|
||||
using Operator0 = typename Policy0::Operator;
|
||||
using Operator1 = typename Policy1::Operator;
|
||||
|
||||
/// Shape describing the overall GEMM computed from shared memory
|
||||
/// by each warp.
|
||||
using WarpGemm0 = typename Policy0::Operator::Shape;
|
||||
using WarpGemm1 = typename Policy1::Operator::Shape;
|
||||
|
||||
/// Shape describing the number of warps filling the CTA
|
||||
using WarpCount0 = GemmShape<Shape0::kM / WarpGemm0::kM,
|
||||
Shape0::kN / WarpGemm0::kN,
|
||||
Shape0::kK / WarpGemm0::kK>;
|
||||
using WarpCount1 = GemmShape<Shape1::kM / WarpGemm1::kM,
|
||||
Shape1::kN / WarpGemm1::kN,
|
||||
Shape1::kK / WarpGemm1::kK>;
|
||||
|
||||
/// Number of warp-level GEMM oeprations
|
||||
static int const kWarpGemmIterations0 =
|
||||
(WarpGemm0::kK / Operator0::Policy::MmaShape::kK);
|
||||
static int const kWarpGemmIterations1 =
|
||||
(WarpGemm1::kK / Operator1::Policy::MmaShape::kK);
|
||||
|
||||
/// Number of stages
|
||||
static int const kStages = Stages;
|
||||
|
||||
//
|
||||
// Nested structs
|
||||
//
|
||||
|
||||
/// Shared storage object needed by threadblock-scoped GEMM
|
||||
template<
|
||||
typename Shape_,
|
||||
typename Policy_
|
||||
>
|
||||
class SharedStorage {
|
||||
public:
|
||||
//
|
||||
// Type definitions
|
||||
//
|
||||
using Shape = Shape_;
|
||||
using Policy = Policy_;
|
||||
using Operator = typename Policy::Operator;
|
||||
|
||||
/// Tensor reference to the A operand
|
||||
using TensorRefA = TensorRef<typename Operator::ElementA, typename Operator::LayoutA>;
|
||||
|
||||
/// Tensor reference to the B operand
|
||||
using TensorRefB = TensorRef<typename Operator::ElementB, typename Operator::LayoutB>;
|
||||
|
||||
|
||||
/// Shape of the A matrix operand in shared memory
|
||||
using ShapeA = MatrixShape<Shape::kM + Policy::SmemPaddingA::kRow,
|
||||
Shape::kK * kStages +
|
||||
Policy::SmemPaddingA::kColumn>;
|
||||
|
||||
/// Shape of the B matrix operand in shared memory
|
||||
using ShapeB =
|
||||
MatrixShape<Shape::kK * kStages + Policy::SmemPaddingB::kRow,
|
||||
Shape::kN + Policy::SmemPaddingB::kColumn>;
|
||||
|
||||
public:
|
||||
//
|
||||
// Data members
|
||||
//
|
||||
|
||||
/// Buffer for A operand
|
||||
AlignedBuffer<typename Operator::ElementA, ShapeA::kCount> operand_A;
|
||||
|
||||
/// Buffer for B operand
|
||||
AlignedBuffer<typename Operator::ElementB, ShapeB::kCount> operand_B;
|
||||
|
||||
public:
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
/// Returns a layout object for the A matrix
|
||||
CUTLASS_DEVICE
|
||||
static typename Operator::LayoutA LayoutA() {
|
||||
return Operator::LayoutA::packed({ShapeA::kRow, ShapeA::kColumn});
|
||||
}
|
||||
|
||||
/// Returns a layout object for the B matrix
|
||||
CUTLASS_HOST_DEVICE
|
||||
static typename Operator::LayoutB LayoutB() {
|
||||
return Operator::LayoutB::packed({ShapeB::kRow, ShapeB::kColumn});
|
||||
}
|
||||
|
||||
/// Returns a TensorRef to the A operand
|
||||
CUTLASS_HOST_DEVICE
|
||||
TensorRefA operand_A_ref() {
|
||||
return TensorRefA{operand_A.data(), LayoutA()};
|
||||
}
|
||||
|
||||
/// Returns a TensorRef to the B operand
|
||||
CUTLASS_HOST_DEVICE
|
||||
TensorRefB operand_B_ref() {
|
||||
return TensorRefB{operand_B.data(), LayoutB()};
|
||||
}
|
||||
};
|
||||
|
||||
using SharedStorage0 = SharedStorage<Shape0, Policy0>;
|
||||
using SharedStorage1 = SharedStorage<Shape1, Policy1>;
|
||||
union B2bMmaSharedStorage {
|
||||
SharedStorage0 sharedStorage0;
|
||||
SharedStorage1 sharedStorage1;
|
||||
};
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
//
|
||||
// Data members
|
||||
//
|
||||
|
||||
/// Iterator to load a warp-scoped tile of A0 operand from shared memory
|
||||
typename Operator0::IteratorA warp_tile_iterator_A0_;
|
||||
|
||||
/// Iterator to load a warp-scoped tile of B0 operand from shared memory
|
||||
typename Operator0::IteratorB warp_tile_iterator_B0_;
|
||||
|
||||
/// Iterator to load a warp-scoped tile of B0 operand from shared memory
|
||||
typename Operator1::IteratorB warp_tile_iterator_B1_;
|
||||
|
||||
public:
|
||||
|
||||
/// Construct from tensor references
|
||||
CUTLASS_DEVICE
|
||||
B2bMmaBase(
|
||||
///< Shared storage needed for internal use by threadblock-scoped GEMM
|
||||
B2bMmaSharedStorage &shared_storage,
|
||||
///< ID within the threadblock
|
||||
int thread_idx,
|
||||
///< ID of warp
|
||||
int warp_idx,
|
||||
///< ID of each thread within a warp
|
||||
int lane_idx
|
||||
):
|
||||
warp_tile_iterator_A0_(shared_storage.sharedStorage0.operand_A_ref(), lane_idx),
|
||||
warp_tile_iterator_B0_(shared_storage.sharedStorage0.operand_B_ref(), lane_idx),
|
||||
warp_tile_iterator_B1_(shared_storage.sharedStorage1.operand_B_ref(), lane_idx) {
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace threadblock
|
||||
} // namespace gemm
|
||||
} // namespace cutlass
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -0,0 +1,811 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Template for a double-buffered threadblock-scoped GEMM kernel.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/aligned_buffer.h"
|
||||
#include "cutlass/arch/memory.h"
|
||||
#include "cutlass/array.h"
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/gemm.h"
|
||||
#include "cutlass/matrix_shape.h"
|
||||
#include "cutlass/numeric_types.h"
|
||||
|
||||
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
|
||||
|
||||
#include "threadblock/b2b_mma_base.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace cutlass {
|
||||
namespace gemm {
|
||||
namespace threadblock {
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Structure to compute the matrix product targeting CUDA cores and SIMT math
|
||||
/// instructions.
|
||||
template <
|
||||
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
typename Shape0_,
|
||||
/// Iterates over tiles of A operand in global memory
|
||||
// (concept: ReadableTileIterator | ForwardTileIterator |
|
||||
// MaskedTileIterator)
|
||||
typename IteratorA0_,
|
||||
/// Iterates over tiles of A operand in shared memory
|
||||
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
||||
typename SmemIteratorA0_,
|
||||
/// Cache operation for operand A
|
||||
cutlass::arch::CacheOperation::Kind CacheOpA0,
|
||||
/// Iterates over tiles of B operand in global memory
|
||||
// (concept: ReadableTileIterator | ForwardTileIterator |
|
||||
// MaskedTileIterator)
|
||||
typename IteratorB0_,
|
||||
/// Iterates over tiles of B operand in shared memory
|
||||
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
||||
typename SmemIteratorB0_,
|
||||
/// Cache operation for operand B
|
||||
cutlass::arch::CacheOperation::Kind CacheOpB0,
|
||||
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
typename Shape1_,
|
||||
/// Iterates over the intermediate accumulator tile
|
||||
// (concept::MmaTensorOpFragmentIterator)
|
||||
typename FragmentIteratorA1_,
|
||||
/// Iterates over tiles of B operand in global memory
|
||||
// (concept: ReadableTileIterator | ForwardTileIterator |
|
||||
// MaskedTileIterator)
|
||||
typename IteratorB1_,
|
||||
/// Iterates over tiles of B operand in shared memory
|
||||
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
||||
typename SmemIteratorB1_,
|
||||
/// Cache operation for operand B
|
||||
cutlass::arch::CacheOperation::Kind CacheOpB1,
|
||||
/// Data type of accumulator matrix
|
||||
typename ElementC_,
|
||||
/// Data type of accumulator matrix
|
||||
typename LayoutC_,
|
||||
/// Output operator for 1st Gemm(concept: epilogue::thread::LinearCombinationClamp, etc...)
|
||||
typename OutputOp_,
|
||||
/// Policy describing tuning details (concept: MmaPolicy)
|
||||
typename Policy0_,
|
||||
/// Policy describing tuning details (concept: MmaPolicy)
|
||||
typename Policy1_,
|
||||
/// Number of stages,
|
||||
int Stages,
|
||||
/// Used for partial specialization
|
||||
typename Enable = bool>
|
||||
class B2bMmaMultistage :
|
||||
public B2bMmaBase<Shape0_, Shape1_, Policy0_, Policy1_, Stages> {
|
||||
public:
|
||||
///< Base class
|
||||
using Base = B2bMmaBase<Shape0_, Shape1_, Policy0_, Policy1_, Stages>;
|
||||
///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
using Shape0 = Shape0_;
|
||||
///< Iterates over tiles of A operand in global memory
|
||||
using IteratorA0 = IteratorA0_;
|
||||
///< Iterates over tiles of B operand in global memory
|
||||
using IteratorB0 = IteratorB0_;
|
||||
///< Policy describing tuning details
|
||||
using Policy0 = Policy0_;
|
||||
|
||||
using SmemIteratorA0 = SmemIteratorA0_;
|
||||
using SmemIteratorB0 = SmemIteratorB0_;
|
||||
|
||||
///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
using Shape1 = Shape1_;
|
||||
///< Iterates over intermediate accumulator tile
|
||||
using FragmentIteratorA1 = FragmentIteratorA1_;
|
||||
///< Iterates over tiles of B operand in global memory
|
||||
using IteratorB1 = IteratorB1_;
|
||||
///< Policy describing tuning details
|
||||
using Policy1 = Policy1_;
|
||||
|
||||
using SmemIteratorB1 = SmemIteratorB1_;
|
||||
|
||||
///< Data type of accumulator matrix
|
||||
using ElementC = ElementC_;
|
||||
///< Layout of accumulator matrix
|
||||
using LayoutC = LayoutC_;
|
||||
|
||||
///< Epilogue after 1st Gemm
|
||||
using OutputOp = OutputOp_;
|
||||
|
||||
static cutlass::arch::CacheOperation::Kind const kCacheOpA0 = CacheOpA0;
|
||||
static cutlass::arch::CacheOperation::Kind const kCacheOpB0 = CacheOpB0;
|
||||
static cutlass::arch::CacheOperation::Kind const kCacheOpB1 = CacheOpB1;
|
||||
|
||||
//
|
||||
// Dependent types
|
||||
//
|
||||
|
||||
/// Fragment of accumulator tile
|
||||
using FragmentC0 = typename Policy0::Operator::FragmentC;
|
||||
|
||||
/// Warp-level Mma
|
||||
using Operator0 = typename Policy0::Operator;
|
||||
|
||||
/// Fragment of accumulator tile
|
||||
using FragmentC1 = typename Policy1::Operator::FragmentC;
|
||||
|
||||
/// Warp-level Mma
|
||||
using Operator1 = typename Policy1::Operator;
|
||||
|
||||
/// Minimum architecture is Sm80 to support cp.async
|
||||
using ArchTag = arch::Sm80;
|
||||
|
||||
/// Complex transform on A operand
|
||||
static ComplexTransform const kTransformA0 = Operator0::kTransformA;
|
||||
|
||||
/// Complex transform on B operand
|
||||
static ComplexTransform const kTransformB0 = Operator0::kTransformB;
|
||||
|
||||
/// Complex transform on B operand
|
||||
static ComplexTransform const kTransformB1 = Operator1::kTransformB;
|
||||
|
||||
/// Internal structure exposed for introspection.
|
||||
struct Detail {
|
||||
|
||||
static_assert(Base::kWarpGemmIterations0 > 1,
|
||||
"The pipelined structure requires at least two warp-level "
|
||||
"GEMM operations.");
|
||||
static_assert(Base::kWarpGemmIterations1 > 1,
|
||||
"The pipelined structure requires at least two warp-level "
|
||||
"GEMM operations.");
|
||||
|
||||
/// Number of cp.async instructions to load one stage of operand A
|
||||
static int const TBLDGSTSIterationsA0 =
|
||||
IteratorA0::ThreadMap::Iterations::kCount;
|
||||
|
||||
/// Number of cp.async instructions to load one stage of operand B
|
||||
static int const TBLDGSTSIterationsB0 =
|
||||
IteratorB0::ThreadMap::Iterations::kCount;
|
||||
|
||||
/// Number of cp.async instructions to load one stage of operand B
|
||||
static int const TBLDGSTSIterationsB1 =
|
||||
IteratorB1::ThreadMap::Iterations::kCount;
|
||||
|
||||
/// Number of stages
|
||||
static int const kStages = Stages;
|
||||
|
||||
/// Number of cp.async instructions to load on group of operand A
|
||||
static int const kAccessesPerGroupA0 =
|
||||
(TBLDGSTSIterationsA0 + Base::kWarpGemmIterations0 - 1) / Base::kWarpGemmIterations0;
|
||||
|
||||
/// Number of cp.async instructions to load on group of operand B
|
||||
static int const kAccessesPerGroupB0 =
|
||||
(TBLDGSTSIterationsB0 + Base::kWarpGemmIterations0 - 1) / Base::kWarpGemmIterations0;
|
||||
|
||||
/// Number of cp.async instructions to load on group of operand B
|
||||
static int const kAccessesPerGroupB1 =
|
||||
(TBLDGSTSIterationsB1 + Base::kWarpGemmIterations1 - 1) / Base::kWarpGemmIterations1;
|
||||
};
|
||||
|
||||
private:
|
||||
|
||||
using WarpLoadedFragmentA0 = typename Operator0::FragmentA;
|
||||
using WarpLoadedFragmentB0 = typename Operator0::FragmentB;
|
||||
/// Warp Fragment of operand A1 loaded from accmulator tile
|
||||
using WarpLoadedFragmentA1 = typename FragmentIteratorA1::Fragment;
|
||||
using WarpLoadedFragmentB1 = typename Operator1::FragmentB;
|
||||
using WarpTransformedFragmentA0 = typename Operator0::TransformedFragmentA;
|
||||
using WarpTransformedFragmentB0 = typename Operator0::TransformedFragmentB;
|
||||
using WarpTransformedFragmentA1 = typename Operator1::TransformedFragmentA;
|
||||
using WarpTransformedFragmentB1 = typename Operator1::TransformedFragmentB;
|
||||
|
||||
private:
|
||||
|
||||
//
|
||||
// Data members
|
||||
//
|
||||
|
||||
/// Iterator to write threadblock-scoped tile of A operand to shared memory
|
||||
SmemIteratorA0 smem_iterator_A0_;
|
||||
|
||||
/// Iterator to write threadblock-scoped tile of B operand to shared memory
|
||||
SmemIteratorB0 smem_iterator_B0_;
|
||||
|
||||
/// Iterator to write threadblock-scoped tile of B operand to shared memory
|
||||
SmemIteratorB1 smem_iterator_B1_;
|
||||
|
||||
public:
|
||||
|
||||
/// Construct from tensor references
|
||||
CUTLASS_DEVICE
|
||||
B2bMmaMultistage(
|
||||
///< Shared storage needed for internal use by threadblock-scoped GEMM
|
||||
typename Base::B2bMmaSharedStorage &shared_storage,
|
||||
///< ID within the threadblock
|
||||
int thread_idx,
|
||||
///< ID of warp
|
||||
int warp_idx,
|
||||
///< ID of each thread within a warp
|
||||
int lane_idx
|
||||
):
|
||||
Base(shared_storage, thread_idx, warp_idx, lane_idx),
|
||||
smem_iterator_A0_(shared_storage.sharedStorage0.operand_A_ref(), thread_idx),
|
||||
smem_iterator_B0_(shared_storage.sharedStorage0.operand_B_ref(), thread_idx),
|
||||
smem_iterator_B1_(shared_storage.sharedStorage1.operand_B_ref(), thread_idx)
|
||||
{
|
||||
// Compute warp location within threadblock tile by mapping the warp_id to
|
||||
// three coordinates:
|
||||
// _m: the warp's position within the threadblock along the M dimension
|
||||
// _n: the warp's position within the threadblock along the N dimension
|
||||
// _k: the warp's position within the threadblock along the K dimension
|
||||
|
||||
int warp_idx_mn = warp_idx % (Base::WarpCount0::kM * Base::WarpCount0::kN);
|
||||
int warp_idx_k = warp_idx / (Base::WarpCount0::kM * Base::WarpCount0::kN);
|
||||
|
||||
int warp_idx_m = warp_idx_mn % Base::WarpCount0::kM;
|
||||
int warp_idx_n = warp_idx_mn / Base::WarpCount0::kM;
|
||||
|
||||
// Add per-warp offsets in units of warp-level tiles
|
||||
this->warp_tile_iterator_A0_.add_tile_offset(
|
||||
{warp_idx_m, Base::kWarpGemmIterations0 * warp_idx_k});
|
||||
this->warp_tile_iterator_B0_.add_tile_offset(
|
||||
{Base::kWarpGemmIterations0 * warp_idx_k, warp_idx_n});
|
||||
this->warp_tile_iterator_B1_.add_tile_offset(
|
||||
{Base::kWarpGemmIterations1 * warp_idx_k, warp_idx_n});
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE
|
||||
void copy_tiles_and_advance_0(IteratorA0 &iterator_A0, IteratorB0 &iterator_B0,
|
||||
int group_start_A0 = 0, int group_start_B0 = 0) {
|
||||
iterator_A0.set_iteration_index(group_start_A0 *
|
||||
IteratorA0::kAccessesPerVector);
|
||||
this->smem_iterator_A0_.set_iteration_index(group_start_A0);
|
||||
|
||||
// LDGSTS for operand A
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int j = 0; j < Detail::kAccessesPerGroupA0; ++j) {
|
||||
if (group_start_A0 + j < Detail::TBLDGSTSIterationsA0) {
|
||||
typename IteratorA0::AccessType *dst_ptr =
|
||||
reinterpret_cast<typename IteratorA0::AccessType *>(
|
||||
this->smem_iterator_A0_.get());
|
||||
|
||||
int const kSrcBytes = sizeof_bits<typename IteratorA0::Element>::value *
|
||||
IteratorA0::ThreadMap::kElementsPerAccess /
|
||||
IteratorA0::kAccessesPerVector / 8;
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int v = 0; v < IteratorA0::kAccessesPerVector; ++v) {
|
||||
auto gmem_ptr = iterator_A0.get();
|
||||
|
||||
cutlass::arch::cp_async<kSrcBytes, kCacheOpA0>(
|
||||
dst_ptr + v, gmem_ptr, iterator_A0.valid());
|
||||
|
||||
++iterator_A0;
|
||||
}
|
||||
|
||||
++this->smem_iterator_A0_;
|
||||
}
|
||||
}
|
||||
|
||||
iterator_B0.set_iteration_index(group_start_B0 *
|
||||
IteratorB0::kAccessesPerVector);
|
||||
this->smem_iterator_B0_.set_iteration_index(group_start_B0);
|
||||
|
||||
// LDGSTS for operand B
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int j = 0; j < Detail::kAccessesPerGroupB0; ++j) {
|
||||
if (group_start_B0 + j < Detail::TBLDGSTSIterationsB0) {
|
||||
typename IteratorB0::AccessType *dst_ptr =
|
||||
reinterpret_cast<typename IteratorB0::AccessType *>(
|
||||
this->smem_iterator_B0_.get());
|
||||
|
||||
int const kSrcBytes = sizeof_bits<typename IteratorB0::Element>::value *
|
||||
IteratorB0::ThreadMap::kElementsPerAccess /
|
||||
IteratorB0::kAccessesPerVector / 8;
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int v = 0; v < IteratorB0::kAccessesPerVector; ++v) {
|
||||
auto gmem_ptr = iterator_B0.get();
|
||||
|
||||
cutlass::arch::cp_async<kSrcBytes, kCacheOpB0>(
|
||||
dst_ptr + v, gmem_ptr, iterator_B0.valid());
|
||||
|
||||
++iterator_B0;
|
||||
}
|
||||
++this->smem_iterator_B0_;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE
|
||||
void copy_tiles_and_advance_1(IteratorB1 &iterator_B1,
|
||||
int group_start_B1 = 0) {
|
||||
iterator_B1.set_iteration_index(group_start_B1 *
|
||||
IteratorB1::kAccessesPerVector);
|
||||
this->smem_iterator_B1_.set_iteration_index(group_start_B1);
|
||||
|
||||
// LDGSTS for operand B
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int j = 0; j < Detail::kAccessesPerGroupB1; ++j) {
|
||||
if (group_start_B1 + j < Detail::TBLDGSTSIterationsB1) {
|
||||
typename IteratorB1::AccessType *dst_ptr =
|
||||
reinterpret_cast<typename IteratorB1::AccessType *>(
|
||||
this->smem_iterator_B1_.get());
|
||||
|
||||
int const kSrcBytes = sizeof_bits<typename IteratorB1::Element>::value *
|
||||
IteratorB1::ThreadMap::kElementsPerAccess /
|
||||
IteratorB1::kAccessesPerVector / 8;
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int v = 0; v < IteratorB1::kAccessesPerVector; ++v) {
|
||||
auto gmem_ptr = iterator_B1.get();
|
||||
|
||||
cutlass::arch::cp_async<kSrcBytes, kCacheOpB1>(
|
||||
dst_ptr + v, gmem_ptr, iterator_B1.valid());
|
||||
|
||||
++iterator_B1;
|
||||
}
|
||||
++this->smem_iterator_B1_;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Perform a threadblock-scoped matrix multiply-accumulate
|
||||
CUTLASS_DEVICE
|
||||
void operator()(
|
||||
///< problem size of GEMM
|
||||
int gemm_k_iterations_0,
|
||||
///< destination accumulator tile
|
||||
FragmentC1 &accum,
|
||||
///< iterator over A operand in global memory
|
||||
IteratorA0 iterator_A0,
|
||||
///< iterator over B operand in global memory
|
||||
IteratorB0 iterator_B0,
|
||||
///< iterator over B operand in global memory
|
||||
IteratorB1 iterator_B1,
|
||||
///< initial value of accumulator
|
||||
FragmentC0 const &src_accum,
|
||||
///< epilogue operation after 1st Gemm
|
||||
OutputOp output_op_0)
|
||||
{
|
||||
//
|
||||
// Prologue
|
||||
//
|
||||
|
||||
// Issue several complete stages
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int stage = 0; stage < Base::kStages - 1;
|
||||
++stage, --gemm_k_iterations_0) {
|
||||
|
||||
iterator_A0.clear_mask(gemm_k_iterations_0 == 0);
|
||||
iterator_B0.clear_mask(gemm_k_iterations_0 == 0);
|
||||
|
||||
iterator_A0.set_iteration_index(0);
|
||||
this->smem_iterator_A0_.set_iteration_index(0);
|
||||
|
||||
// LDGSTS for operand A
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int j = 0; j < Detail::TBLDGSTSIterationsA0; ++j) {
|
||||
typename IteratorA0::AccessType *dst_ptr =
|
||||
reinterpret_cast<typename IteratorA0::AccessType *>(
|
||||
this->smem_iterator_A0_.get());
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int v = 0; v < IteratorA0::kAccessesPerVector; ++v) {
|
||||
int const kSrcBytes =
|
||||
sizeof_bits<typename IteratorA0::Element>::value *
|
||||
IteratorA0::ThreadMap::kElementsPerAccess /
|
||||
IteratorA0::kAccessesPerVector / 8;
|
||||
|
||||
int src_bytes = (iterator_A0.valid() ? kSrcBytes : 0);
|
||||
|
||||
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpA0>(
|
||||
dst_ptr + v, iterator_A0.get(), iterator_A0.valid());
|
||||
|
||||
++iterator_A0;
|
||||
}
|
||||
|
||||
++this->smem_iterator_A0_;
|
||||
}
|
||||
|
||||
iterator_B0.set_iteration_index(0);
|
||||
this->smem_iterator_B0_.set_iteration_index(0);
|
||||
|
||||
// LDGSTS for operand B
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int j = 0; j < Detail::TBLDGSTSIterationsB0; ++j) {
|
||||
typename IteratorB0::AccessType *dst_ptr =
|
||||
reinterpret_cast<typename IteratorB0::AccessType *>(
|
||||
this->smem_iterator_B0_.get());
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int v = 0; v < IteratorB0::kAccessesPerVector; ++v) {
|
||||
int const kSrcBytes =
|
||||
sizeof_bits<typename IteratorB0::Element>::value *
|
||||
IteratorB0::ThreadMap::kElementsPerAccess /
|
||||
IteratorB0::kAccessesPerVector / 8;
|
||||
|
||||
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB0>(
|
||||
dst_ptr + v, iterator_B0.get(), iterator_B0.valid());
|
||||
|
||||
++iterator_B0;
|
||||
}
|
||||
|
||||
++this->smem_iterator_B0_;
|
||||
}
|
||||
|
||||
// Move to the next stage
|
||||
iterator_A0.add_tile_offset({0, 1});
|
||||
iterator_B0.add_tile_offset({1, 0});
|
||||
|
||||
this->smem_iterator_A0_.add_tile_offset({0, 1});
|
||||
this->smem_iterator_B0_.add_tile_offset({1, 0});
|
||||
|
||||
// Defines the boundary of a stage of cp.async.
|
||||
cutlass::arch::cp_async_fence();
|
||||
}
|
||||
|
||||
// Perform accumulation in the 'd' output operand
|
||||
FragmentC0 accum0 = src_accum;
|
||||
|
||||
// DEPBAR+SYNC
|
||||
cutlass::arch::cp_async_wait<Base::kStages - 2>();
|
||||
__syncthreads();
|
||||
|
||||
// Pair of fragments used to overlap shared memory loads and math
|
||||
// instructions
|
||||
WarpLoadedFragmentA0 warp_loaded_frag_A0[2];
|
||||
WarpLoadedFragmentB0 warp_loaded_frag_B0[2];
|
||||
WarpTransformedFragmentA0 warp_transformed_frag_A0[2];
|
||||
WarpTransformedFragmentB0 warp_transformed_frag_B0[2];
|
||||
|
||||
Operator0 warp_mma0;
|
||||
|
||||
this->warp_tile_iterator_A0_.set_kgroup_index(0);
|
||||
this->warp_tile_iterator_B0_.set_kgroup_index(0);
|
||||
|
||||
this->warp_tile_iterator_A0_.load(warp_loaded_frag_A0[0]);
|
||||
this->warp_tile_iterator_B0_.load(warp_loaded_frag_B0[0]);
|
||||
|
||||
++this->warp_tile_iterator_A0_;
|
||||
++this->warp_tile_iterator_B0_;
|
||||
|
||||
iterator_A0.clear_mask(gemm_k_iterations_0 == 0);
|
||||
iterator_B0.clear_mask(gemm_k_iterations_0 == 0);
|
||||
|
||||
int smem_write_stage_idx = Base::kStages - 1;
|
||||
int smem_read_stage_idx = 0;
|
||||
|
||||
warp_mma0.transform(warp_transformed_frag_A0[0], warp_transformed_frag_B0[0],
|
||||
warp_loaded_frag_A0[0], warp_loaded_frag_B0[0]);
|
||||
|
||||
//
|
||||
// Mainloop
|
||||
//
|
||||
|
||||
CUTLASS_GEMM_LOOP
|
||||
for (; gemm_k_iterations_0 > (-Base::kStages + 1);) {
|
||||
//
|
||||
// Loop over GEMM K dimension
|
||||
//
|
||||
|
||||
// Computes a warp-level GEMM on data held in shared memory
|
||||
// Each "warp_mma_k" refers to a warp-level matrix multiply-accumulate
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations0;
|
||||
++warp_mma_k) {
|
||||
|
||||
// Load warp-level tiles from shared memory, wrapping to k offset if
|
||||
// this is the last group as the case may be.
|
||||
|
||||
this->warp_tile_iterator_A0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);
|
||||
this->warp_tile_iterator_B0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);
|
||||
|
||||
this->warp_tile_iterator_A0_.load(warp_loaded_frag_A0[(warp_mma_k + 1) % 2]);
|
||||
this->warp_tile_iterator_B0_.load(warp_loaded_frag_B0[(warp_mma_k + 1) % 2]);
|
||||
|
||||
++this->warp_tile_iterator_A0_;
|
||||
++this->warp_tile_iterator_B0_;
|
||||
|
||||
if (warp_mma_k > 0)
|
||||
warp_mma0.transform(warp_transformed_frag_A0[warp_mma_k % 2],
|
||||
warp_transformed_frag_B0[warp_mma_k % 2],
|
||||
warp_loaded_frag_A0[warp_mma_k % 2],
|
||||
warp_loaded_frag_B0[warp_mma_k % 2]);
|
||||
|
||||
warp_mma0(
|
||||
accum0,
|
||||
warp_transformed_frag_A0[warp_mma_k % 2],
|
||||
warp_transformed_frag_B0[warp_mma_k % 2],
|
||||
accum0
|
||||
);
|
||||
|
||||
// Issue global->shared copies for the this stage
|
||||
if (warp_mma_k < Base::kWarpGemmIterations0 - 1) {
|
||||
int group_start_iteration_A0, group_start_iteration_B0;
|
||||
|
||||
group_start_iteration_A0 = warp_mma_k * Detail::kAccessesPerGroupA0;
|
||||
group_start_iteration_B0 = warp_mma_k * Detail::kAccessesPerGroupB0;
|
||||
|
||||
copy_tiles_and_advance_0(iterator_A0, iterator_B0, group_start_iteration_A0,
|
||||
group_start_iteration_B0);
|
||||
}
|
||||
|
||||
if (warp_mma_k + 2 == Base::kWarpGemmIterations0) {
|
||||
int group_start_iteration_A0, group_start_iteration_B0;
|
||||
group_start_iteration_A0 =
|
||||
(warp_mma_k + 1) * Detail::kAccessesPerGroupA0;
|
||||
group_start_iteration_B0 =
|
||||
(warp_mma_k + 1) * Detail::kAccessesPerGroupB0;
|
||||
|
||||
copy_tiles_and_advance_0(iterator_A0, iterator_B0, group_start_iteration_A0,
|
||||
group_start_iteration_B0);
|
||||
|
||||
// Inserts a memory fence between stages of cp.async instructions.
|
||||
cutlass::arch::cp_async_fence();
|
||||
|
||||
// Waits until kStages-2 stages have committed.
|
||||
arch::cp_async_wait<Base::kStages - 2>();
|
||||
__syncthreads();
|
||||
|
||||
// Move to the next stage
|
||||
iterator_A0.add_tile_offset({0, 1});
|
||||
iterator_B0.add_tile_offset({1, 0});
|
||||
|
||||
this->smem_iterator_A0_.add_tile_offset({0, 1});
|
||||
this->smem_iterator_B0_.add_tile_offset({1, 0});
|
||||
|
||||
// Add negative offsets to return iterators to the 'start' of the
|
||||
// circular buffer in shared memory
|
||||
if (smem_write_stage_idx == (Base::kStages - 1)) {
|
||||
this->smem_iterator_A0_.add_tile_offset({0, -Base::kStages});
|
||||
this->smem_iterator_B0_.add_tile_offset({-Base::kStages, 0});
|
||||
smem_write_stage_idx = 0;
|
||||
} else {
|
||||
++smem_write_stage_idx;
|
||||
}
|
||||
|
||||
if (smem_read_stage_idx == (Base::kStages - 1)) {
|
||||
this->warp_tile_iterator_A0_.add_tile_offset(
|
||||
{0, -Base::kStages * Policy0::kPartitionsK *
|
||||
Base::kWarpGemmIterations0});
|
||||
this->warp_tile_iterator_B0_.add_tile_offset(
|
||||
{-Base::kStages * Policy0::kPartitionsK *
|
||||
Base::kWarpGemmIterations0,
|
||||
0});
|
||||
smem_read_stage_idx = 0;
|
||||
} else {
|
||||
++smem_read_stage_idx;
|
||||
}
|
||||
|
||||
--gemm_k_iterations_0;
|
||||
iterator_A0.clear_mask(gemm_k_iterations_0 == 0);
|
||||
iterator_B0.clear_mask(gemm_k_iterations_0 == 0);
|
||||
}
|
||||
|
||||
// Do any conversions feeding the first stage at the end of the loop so
|
||||
// we can start right away on mma instructions
|
||||
if (warp_mma_k + 1 == Base::kWarpGemmIterations0)
|
||||
warp_mma0.transform(warp_transformed_frag_A0[(warp_mma_k + 1) % 2],
|
||||
warp_transformed_frag_B0[(warp_mma_k + 1) % 2],
|
||||
warp_loaded_frag_A0[(warp_mma_k + 1) % 2],
|
||||
warp_loaded_frag_B0[(warp_mma_k + 1) % 2]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
// 2nd Gemm
|
||||
|
||||
/// Iterator to load a warp-scoped tile of A1 operand from intermediate accumulator tile
|
||||
FragmentIteratorA1 warp_tile_iterator_A1_(accum0);
|
||||
|
||||
//
|
||||
// Prologue
|
||||
//
|
||||
int gemm_k_iterations_1 = FragmentIteratorA1::Policy::kIterations / Base::kWarpGemmIterations1;
|
||||
|
||||
// Issue several complete stages
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int stage = 0; stage < Base::kStages - 1;
|
||||
++stage, --gemm_k_iterations_1) {
|
||||
|
||||
iterator_B1.clear_mask(gemm_k_iterations_1 == 0);
|
||||
|
||||
iterator_B1.set_iteration_index(0);
|
||||
this->smem_iterator_B1_.set_iteration_index(0);
|
||||
|
||||
// LDGSTS for operand B
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int j = 0; j < Detail::TBLDGSTSIterationsB1; ++j) {
|
||||
typename IteratorB1::AccessType *dst_ptr =
|
||||
reinterpret_cast<typename IteratorB1::AccessType *>(
|
||||
this->smem_iterator_B1_.get());
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int v = 0; v < IteratorB1::kAccessesPerVector; ++v) {
|
||||
int const kSrcBytes =
|
||||
sizeof_bits<typename IteratorB1::Element>::value *
|
||||
IteratorB1::ThreadMap::kElementsPerAccess /
|
||||
IteratorB1::kAccessesPerVector / 8;
|
||||
|
||||
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB1>(
|
||||
dst_ptr + v, iterator_B1.get(), iterator_B1.valid());
|
||||
|
||||
++iterator_B1;
|
||||
}
|
||||
|
||||
++this->smem_iterator_B1_;
|
||||
}
|
||||
|
||||
// Move to the next stage
|
||||
iterator_B1.add_tile_offset({1, 0});
|
||||
|
||||
this->smem_iterator_B1_.add_tile_offset({1, 0});
|
||||
|
||||
// Defines the boundary of a stage of cp.async.
|
||||
cutlass::arch::cp_async_fence();
|
||||
}
|
||||
|
||||
// DEPBAR+SYNC
|
||||
cutlass::arch::cp_async_wait<Base::kStages - 2>();
|
||||
__syncthreads();
|
||||
|
||||
// Pair of fragments used to overlap shared memory loads and math
|
||||
// instructions
|
||||
WarpLoadedFragmentA1 warp_loaded_frag_A1[2];
|
||||
WarpLoadedFragmentB1 warp_loaded_frag_B1[2];
|
||||
WarpTransformedFragmentA1 warp_transformed_frag_A1[2];
|
||||
WarpTransformedFragmentB1 warp_transformed_frag_B1[2];
|
||||
|
||||
Operator1 warp_mma1;
|
||||
|
||||
this->warp_tile_iterator_B1_.set_kgroup_index(0);
|
||||
|
||||
warp_tile_iterator_A1_.load(warp_loaded_frag_A1[0], output_op_0);
|
||||
this->warp_tile_iterator_B1_.load(warp_loaded_frag_B1[0]);
|
||||
|
||||
++warp_tile_iterator_A1_;
|
||||
++this->warp_tile_iterator_B1_;
|
||||
|
||||
iterator_B1.clear_mask(gemm_k_iterations_1 == 0);
|
||||
|
||||
smem_write_stage_idx = Base::kStages - 1;
|
||||
smem_read_stage_idx = 0;
|
||||
|
||||
warp_mma1.transform(warp_transformed_frag_A1[0], warp_transformed_frag_B1[0],
|
||||
warp_loaded_frag_A1[0], warp_loaded_frag_B1[0]);
|
||||
|
||||
//
|
||||
// Mainloop
|
||||
//
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (gemm_k_iterations_1 = FragmentIteratorA1::Policy::kIterations / Base::kWarpGemmIterations1 - (Base::kStages - 1);
|
||||
gemm_k_iterations_1 > (-Base::kStages + 1); gemm_k_iterations_1--) {
|
||||
//
|
||||
// Loop over GEMM K dimension
|
||||
//
|
||||
|
||||
// Computes a warp-level GEMM on data held in shared memory
|
||||
// Each "warp_mma_k" refers to a warp-level matrix multiply-accumulate
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations1;
|
||||
++warp_mma_k) {
|
||||
|
||||
// Load warp-level tiles from shared memory, wrapping to k offset if
|
||||
// this is the last group as the case may be.
|
||||
|
||||
this->warp_tile_iterator_B1_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations1);
|
||||
|
||||
warp_tile_iterator_A1_.load(warp_loaded_frag_A1[(warp_mma_k + 1) % 2], output_op_0);
|
||||
this->warp_tile_iterator_B1_.load(warp_loaded_frag_B1[(warp_mma_k + 1) % 2]);
|
||||
|
||||
++warp_tile_iterator_A1_;
|
||||
++this->warp_tile_iterator_B1_;
|
||||
|
||||
if (warp_mma_k > 0)
|
||||
warp_mma1.transform(warp_transformed_frag_A1[warp_mma_k % 2],
|
||||
warp_transformed_frag_B1[warp_mma_k % 2],
|
||||
warp_loaded_frag_A1[warp_mma_k % 2],
|
||||
warp_loaded_frag_B1[warp_mma_k % 2]);
|
||||
|
||||
|
||||
warp_mma1(
|
||||
accum,
|
||||
warp_transformed_frag_A1[warp_mma_k % 2],
|
||||
warp_transformed_frag_B1[warp_mma_k % 2],
|
||||
accum
|
||||
);
|
||||
|
||||
// Issue global->shared copies for the this stage
|
||||
if (warp_mma_k < Base::kWarpGemmIterations1 - 1) {
|
||||
int group_start_iteration_B1;
|
||||
|
||||
group_start_iteration_B1 = warp_mma_k * Detail::kAccessesPerGroupB1;
|
||||
|
||||
copy_tiles_and_advance_1(iterator_B1, group_start_iteration_B1);
|
||||
}
|
||||
|
||||
if (warp_mma_k + 2 == Base::kWarpGemmIterations1) {
|
||||
int group_start_iteration_B1;
|
||||
group_start_iteration_B1 =
|
||||
(warp_mma_k + 1) * Detail::kAccessesPerGroupB1;
|
||||
|
||||
copy_tiles_and_advance_1(iterator_B1, group_start_iteration_B1);
|
||||
|
||||
// Inserts a memory fence between stages of cp.async instructions.
|
||||
cutlass::arch::cp_async_fence();
|
||||
|
||||
// Waits until kStages-2 stages have committed.
|
||||
arch::cp_async_wait<Base::kStages - 2>();
|
||||
__syncthreads();
|
||||
|
||||
// Move to the next stage
|
||||
iterator_B1.add_tile_offset({1, 0});
|
||||
|
||||
this->smem_iterator_B1_.add_tile_offset({1, 0});
|
||||
|
||||
// Add negative offsets to return iterators to the 'start' of the
|
||||
// circular buffer in shared memory
|
||||
if (smem_write_stage_idx == (Base::kStages - 1)) {
|
||||
this->smem_iterator_B1_.add_tile_offset({-Base::kStages, 0});
|
||||
smem_write_stage_idx = 0;
|
||||
} else {
|
||||
++smem_write_stage_idx;
|
||||
}
|
||||
|
||||
if (smem_read_stage_idx == (Base::kStages - 1)) {
|
||||
this->warp_tile_iterator_B1_.add_tile_offset(
|
||||
{-Base::kStages * Policy1::kPartitionsK *
|
||||
Base::kWarpGemmIterations1,
|
||||
0});
|
||||
smem_read_stage_idx = 0;
|
||||
} else {
|
||||
++smem_read_stage_idx;
|
||||
}
|
||||
|
||||
iterator_B1.clear_mask(gemm_k_iterations_1 == 1);
|
||||
}
|
||||
|
||||
// Do any conversions feeding the first stage at the end of the loop so
|
||||
// we can start right away on mma instructions
|
||||
if (warp_mma_k + 1 == Base::kWarpGemmIterations1)
|
||||
warp_mma1.transform(warp_transformed_frag_A1[(warp_mma_k + 1) % 2],
|
||||
warp_transformed_frag_B1[(warp_mma_k + 1) % 2],
|
||||
warp_loaded_frag_A1[(warp_mma_k + 1) % 2],
|
||||
warp_loaded_frag_B1[(warp_mma_k + 1) % 2]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace threadblock
|
||||
} // namespace gemm
|
||||
} // namespace cutlass
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
505
examples/13_two_tensor_op_fusion/threadblock/b2b_mma_pipelined.h
Normal file
505
examples/13_two_tensor_op_fusion/threadblock/b2b_mma_pipelined.h
Normal file
@ -0,0 +1,505 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Template for a double-buffered threadblock-scoped Back-to-back fused GEMM kernel.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/array.h"
|
||||
#include "cutlass/aligned_buffer.h"
|
||||
#include "cutlass/numeric_conversion.h"
|
||||
|
||||
#include "cutlass/numeric_types.h"
|
||||
#include "cutlass/matrix_shape.h"
|
||||
|
||||
#include "cutlass/gemm/gemm.h"
|
||||
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
|
||||
|
||||
#include "threadblock/b2b_mma_base.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace cutlass {
|
||||
namespace gemm {
|
||||
namespace threadblock {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Structure to compute the matrix product targeting CUDA cores and SIMT math instructions.
|
||||
template <
|
||||
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
typename Shape0_,
|
||||
/// Iterates over tiles of A operand in global memory
|
||||
// (concept: ReadableTileIterator | ForwardTileIterator | MaskedTileIterator)
|
||||
typename IteratorA0_,
|
||||
/// Iterates over tiles of A operand in shared memory
|
||||
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
||||
typename SmemIteratorA0_,
|
||||
/// Iterates over tiles of B operand in global memory
|
||||
// (concept: ReadableTileIterator | ForwardTileIterator | MaskedTileIterator)
|
||||
typename IteratorB0_,
|
||||
/// Iterates over tiles of B operand in shared memory
|
||||
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
||||
typename SmemIteratorB0_,
|
||||
/// Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
typename Shape1_,
|
||||
/// Iterates over the intermediate accumulator tile
|
||||
// (concept::MmaTensorOpFragmentIterator)
|
||||
typename FragmentIteratorA1_,
|
||||
/// Iterates over tiles of B operand in global memory
|
||||
// (concept: ReadableTileIterator | ForwardTileIterator | MaskedTileIterator)
|
||||
typename IteratorB1_,
|
||||
/// Iterates over tiles of B operand in shared memory
|
||||
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
|
||||
typename SmemIteratorB1_,
|
||||
/// Data type of accumulator matrix
|
||||
typename ElementC_,
|
||||
/// Data type of accumulator matrix
|
||||
typename LayoutC_,
|
||||
/// Output operator for 1st Gemm(concept: epilogue::thread::LinearCombinationClamp, etc...)
|
||||
typename OutputOp_,
|
||||
/// Policy describing tuning details (concept: MmaPipelinedPolicy)
|
||||
typename Policy0_,
|
||||
/// Policy describing tuning details (concept: MmaPipelinedPolicy)
|
||||
typename Policy1_,
|
||||
/// Transformation applied to A0 operand
|
||||
typename TransformA0_ = NumericArrayConverter<
|
||||
typename SmemIteratorA0_::Element,
|
||||
typename IteratorA0_::Element,
|
||||
IteratorA0_::Fragment::kElements>,
|
||||
///
|
||||
/// Transformation applied to B0 operand
|
||||
typename TransformB0_ = NumericArrayConverter<
|
||||
typename SmemIteratorB0_::Element,
|
||||
typename IteratorB0_::Element,
|
||||
IteratorB0_::Fragment::kElements>,
|
||||
///
|
||||
/// Transformation applied to B1 operand
|
||||
typename TransformB1_ = NumericArrayConverter<
|
||||
typename SmemIteratorB1_::Element,
|
||||
typename IteratorB1_::Element,
|
||||
IteratorB1_::Fragment::kElements>,
|
||||
/// Used for partial specialization
|
||||
typename Enable = bool
|
||||
>
|
||||
class B2bMmaPipelined : public B2bMmaBase<Shape0_, Shape1_, Policy0_, Policy1_, 2> {
|
||||
public:
|
||||
|
||||
///< Base class
|
||||
using Base = B2bMmaBase<Shape0_, Shape1_, Policy0_, Policy1_, 2>;
|
||||
|
||||
using Shape0 = Shape0_; ///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
using IteratorA0 = IteratorA0_; ///< Iterates over tiles of A operand in global memory
|
||||
using IteratorB0 = IteratorB0_; ///< Iterates over tiles of B operand in global memory
|
||||
using Policy0 = Policy0_; ///< Policy describing tuning details
|
||||
|
||||
using SmemIteratorA0 = SmemIteratorA0_;
|
||||
using SmemIteratorB0 = SmemIteratorB0_;
|
||||
|
||||
using Shape1 = Shape1_; ///< Size of the Gemm problem - concept: gemm::GemmShape<>
|
||||
using FragmentIteratorA1 = FragmentIteratorA1_; ///< Iterates over intermediate accumulator tile
|
||||
using IteratorB1 = IteratorB1_; ///< Iterates over tiles of B operand in global memory
|
||||
using Policy1 = Policy1_; ///< Policy describing tuning details
|
||||
|
||||
using SmemIteratorB1 = SmemIteratorB1_;
|
||||
|
||||
|
||||
using ElementC = ElementC_; ///< Data type of accumulator matrix
|
||||
using LayoutC = LayoutC_; ///< Layout of accumulator matrix
|
||||
|
||||
using OutputOp = OutputOp_; ///< Epilogue after 1st Gemm
|
||||
|
||||
using TransformA0 = TransformA0_;
|
||||
using TransformB0 = TransformB0_;
|
||||
using TransformB1 = TransformB1_;
|
||||
|
||||
//
|
||||
// Dependent types
|
||||
//
|
||||
|
||||
/// Fragment of operand A loaded from global memory
|
||||
using FragmentA0 = typename IteratorA0::Fragment;
|
||||
|
||||
/// Fragment of operand B loaded from global memory
|
||||
using FragmentB0 = typename IteratorB0::Fragment;
|
||||
|
||||
/// Fragment of accumulator tile
|
||||
using FragmentC0 = typename Policy0::Operator::FragmentC;
|
||||
|
||||
/// Warp-level Mma
|
||||
using Operator0 = typename Policy0::Operator;
|
||||
|
||||
/// Fragment of operand B loaded from global memory
|
||||
using FragmentB1 = typename IteratorB1::Fragment;
|
||||
|
||||
/// Fragment of accumulator tile
|
||||
using FragmentC1 = typename Policy1::Operator::FragmentC;
|
||||
|
||||
/// Warp-level Mma
|
||||
using Operator1 = typename Policy1::Operator;
|
||||
|
||||
/// Obtain the arch tag from the warp-level operator
|
||||
using ArchTag = typename Policy0::Operator::ArchTag;
|
||||
|
||||
/// Complex transform on A0 operand
|
||||
static ComplexTransform const kTransformA0 = Operator0::kTransformA;
|
||||
|
||||
/// Complex transform on B0 operand
|
||||
static ComplexTransform const kTransformB0 = Operator0::kTransformB;
|
||||
|
||||
/// Complex transform on B1 operand
|
||||
static ComplexTransform const kTransformB1 = Operator1::kTransformB;
|
||||
|
||||
// staticaly assert kStages for MmaPipelined is two (Double-buffered pipeline)
|
||||
static_assert((Base::kStages==2), "MmaPipelined requires kStages set to value 2");
|
||||
|
||||
private:
|
||||
|
||||
using WarpFragmentA0 = typename Operator0::FragmentA;
|
||||
using WarpFragmentB0 = typename Operator0::FragmentB;
|
||||
/// Warp Fragment of operand A1 loaded from accmulator tile
|
||||
using WarpFragmentA1 = typename FragmentIteratorA1::Fragment;
|
||||
using WarpFragmentB1 = typename Operator1::FragmentB;
|
||||
|
||||
protected:
|
||||
|
||||
/// Iterator to write threadblock-scoped tile of A operand to shared memory
|
||||
SmemIteratorA0 smem_iterator_A_;
|
||||
|
||||
/// Iterator to write threadblock-scoped tile of B0 operand to shared memory
|
||||
SmemIteratorB0 smem_iterator_B0_;
|
||||
|
||||
/// Iterator to write threadblock-scoped tile of B1 operand to shared memory
|
||||
SmemIteratorB1 smem_iterator_B1_;
|
||||
|
||||
public:
|
||||
|
||||
/// Construct from tensor references
|
||||
CUTLASS_DEVICE
|
||||
B2bMmaPipelined(
|
||||
typename Base::B2bMmaSharedStorage &shared_storage, ///< Shared storage needed for internal use by threadblock-scoped GEMM
|
||||
int thread_idx, ///< ID within the threadblock
|
||||
int warp_idx, ///< ID of warp
|
||||
int lane_idx ///< ID of each thread within a warp
|
||||
):
|
||||
Base(shared_storage, thread_idx, warp_idx, lane_idx),
|
||||
smem_iterator_A_(shared_storage.sharedStorage0.operand_A_ref(), thread_idx),
|
||||
smem_iterator_B0_(shared_storage.sharedStorage0.operand_B_ref(), thread_idx),
|
||||
smem_iterator_B1_(shared_storage.sharedStorage1.operand_B_ref(), thread_idx) {
|
||||
|
||||
|
||||
// Compute warp location within threadblock tile by mapping the warp_id to three coordinates:
|
||||
// _m: the warp's position within the threadblock along the M dimension
|
||||
// _n: the warp's position within the threadblock along the N dimension
|
||||
// _k: the warp's position within the threadblock along the K dimension
|
||||
|
||||
//These should stay the same across different GEMM layers
|
||||
int warp_idx_mn = warp_idx % (Base::WarpCount0::kM * Base::WarpCount0::kN);
|
||||
int warp_idx_k = warp_idx / (Base::WarpCount0::kM * Base::WarpCount0::kN);
|
||||
|
||||
int warp_idx_m = warp_idx_mn % Base::WarpCount0::kM;
|
||||
int warp_idx_n = warp_idx_mn / Base::WarpCount0::kM;
|
||||
|
||||
//These may change across different GEMM layers
|
||||
int tile_offset_k_0 = Base::kWarpGemmIterations0 * warp_idx_k;
|
||||
int tile_offset_k_1 = Base::kWarpGemmIterations1 * warp_idx_k;
|
||||
|
||||
// Add per-warp offsets in units of warp-level tiles
|
||||
this->warp_tile_iterator_A0_.add_tile_offset({warp_idx_m, tile_offset_k_0});
|
||||
this->warp_tile_iterator_B0_.add_tile_offset({tile_offset_k_0, warp_idx_n});
|
||||
this->warp_tile_iterator_B1_.add_tile_offset({tile_offset_k_1, warp_idx_n});
|
||||
}
|
||||
|
||||
/// Perform a threadblock-scoped matrix multiply-accumulate
|
||||
CUTLASS_DEVICE
|
||||
void operator()(
|
||||
int gemm_k_iterations_0, ///< number of iterations of the mainloop
|
||||
FragmentC1 &accum, ///< destination accumulator tile
|
||||
IteratorA0 iterator_A, ///< iterator over A operand in global memory
|
||||
IteratorB0 iterator_B0, ///< iterator over B0 operand in global memory
|
||||
IteratorB1 iterator_B1, ///< iterator over B1 operand in global memory
|
||||
FragmentC0 const &src_accum, ///< source accumualtor tile
|
||||
OutputOp output_op_0, ///< epilogue operation after 1st Gemm
|
||||
TransformA0 transform_A0 = TransformA0(), ///< transformation applied to A0 fragment
|
||||
TransformB0 transform_B0 = TransformB0(), ///< transformation applied to B0 fragment
|
||||
TransformB1 transform_B1 = TransformB1()) { ///< transformation applied to B1 fragment
|
||||
|
||||
//
|
||||
// Prologue
|
||||
//
|
||||
|
||||
// Perform accumulation in the 'd' output operand
|
||||
FragmentC0 accum0 = src_accum;
|
||||
|
||||
FragmentA0 tb_frag_A;
|
||||
FragmentB0 tb_frag_B0;
|
||||
|
||||
tb_frag_A.clear();
|
||||
tb_frag_B0.clear();
|
||||
|
||||
// The last kblock is loaded in the prolog
|
||||
iterator_A.load(tb_frag_A);
|
||||
iterator_B0.load(tb_frag_B0);
|
||||
|
||||
++iterator_A;
|
||||
++iterator_B0;
|
||||
|
||||
this->smem_iterator_A_.store(tb_frag_A);
|
||||
this->smem_iterator_B0_.store(tb_frag_B0);
|
||||
|
||||
++this->smem_iterator_A_;
|
||||
++this->smem_iterator_B0_;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Pair of fragments used to overlap shared memory loads and math instructions
|
||||
WarpFragmentA0 warp_frag_A0[2];
|
||||
WarpFragmentB0 warp_frag_B0[2];
|
||||
|
||||
this->warp_tile_iterator_A0_.set_kgroup_index(0);
|
||||
this->warp_tile_iterator_B0_.set_kgroup_index(0);
|
||||
|
||||
this->warp_tile_iterator_A0_.load(warp_frag_A0[0]);
|
||||
this->warp_tile_iterator_B0_.load(warp_frag_B0[0]);
|
||||
|
||||
++this->warp_tile_iterator_A0_;
|
||||
++this->warp_tile_iterator_B0_;
|
||||
|
||||
Operator0 warp_mma0;
|
||||
|
||||
int smem_write_stage_idx = 1;
|
||||
|
||||
// Avoid reading out of bounds
|
||||
if (gemm_k_iterations_0 <= 1) {
|
||||
iterator_A.clear_mask();
|
||||
iterator_B0.clear_mask();
|
||||
}
|
||||
|
||||
// Issue loads during the first warp-level matrix multiply-add *AFTER* issuing
|
||||
// shared memory loads (which have the tighest latency requirement).
|
||||
iterator_A.load(tb_frag_A);
|
||||
|
||||
//
|
||||
// Mainloop
|
||||
//
|
||||
|
||||
// Note: The main loop does not support Base::WarpGemmIterations == 2.
|
||||
CUTLASS_GEMM_LOOP
|
||||
for (; gemm_k_iterations_0 > 0; --gemm_k_iterations_0) {
|
||||
|
||||
//
|
||||
// Loop over GEMM K dimension
|
||||
//
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations0; ++warp_mma_k) {
|
||||
|
||||
// Load warp-level tiles from shared memory, wrapping to k offset if this is the last group
|
||||
// as the case may be.
|
||||
|
||||
if (warp_mma_k == Base::kWarpGemmIterations0 - 1) {
|
||||
|
||||
// Write fragments to shared memory
|
||||
this->smem_iterator_A_.store(tb_frag_A);
|
||||
|
||||
this->smem_iterator_B0_.store(tb_frag_B0);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Issue loads during the first warp-level matrix multiply-add *AFTER* issuing
|
||||
// shared memory loads (which have the tighest latency requirement).
|
||||
iterator_A.load(tb_frag_A);
|
||||
|
||||
++this->smem_iterator_B0_;
|
||||
++this->smem_iterator_A_;
|
||||
|
||||
|
||||
// Add negative offsets to return iterators to the 'start' of the circular buffer in shared memory
|
||||
if (smem_write_stage_idx == 1) {
|
||||
this->smem_iterator_A_.add_tile_offset({0, -Base::kStages});
|
||||
this->smem_iterator_B0_.add_tile_offset({-Base::kStages, 0});
|
||||
}
|
||||
else {
|
||||
this->warp_tile_iterator_A0_.add_tile_offset(
|
||||
{0, -Base::kStages * Policy0::kPartitionsK * Base::kWarpGemmIterations0});
|
||||
this->warp_tile_iterator_B0_.add_tile_offset(
|
||||
{-Base::kStages * Policy0::kPartitionsK * Base::kWarpGemmIterations0,
|
||||
0});
|
||||
}
|
||||
|
||||
smem_write_stage_idx ^= 1;
|
||||
}
|
||||
|
||||
this->warp_tile_iterator_A0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);
|
||||
this->warp_tile_iterator_B0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);
|
||||
|
||||
this->warp_tile_iterator_A0_.load(warp_frag_A0[(warp_mma_k + 1) % 2]);
|
||||
this->warp_tile_iterator_B0_.load(warp_frag_B0[(warp_mma_k + 1) % 2]);
|
||||
|
||||
++this->warp_tile_iterator_A0_;
|
||||
++this->warp_tile_iterator_B0_;
|
||||
|
||||
if (warp_mma_k == 0) {
|
||||
|
||||
iterator_B0.load(tb_frag_B0);
|
||||
|
||||
++iterator_A;
|
||||
++iterator_B0;
|
||||
|
||||
// Avoid reading out of bounds if this was the last loop iteration
|
||||
if (gemm_k_iterations_0 <= 2) {
|
||||
iterator_A.clear_mask();
|
||||
iterator_B0.clear_mask();
|
||||
}
|
||||
}
|
||||
|
||||
warp_mma0(accum0, warp_frag_A0[warp_mma_k % 2], warp_frag_B0[warp_mma_k % 2], accum0);
|
||||
}
|
||||
}
|
||||
|
||||
//2nd Gemm
|
||||
|
||||
/// Iterator to load a warp-scoped tile of A1 operand from intermediate accumulator tile
|
||||
FragmentIteratorA1 warp_tile_iterator_A1_(accum0);
|
||||
|
||||
//
|
||||
// Prologue
|
||||
//
|
||||
|
||||
FragmentB1 tb_frag_B1;
|
||||
|
||||
tb_frag_B1.clear();
|
||||
|
||||
// The last kblock is loaded in the prolog
|
||||
iterator_B1.load(tb_frag_B1);
|
||||
|
||||
++iterator_B1;
|
||||
|
||||
this->smem_iterator_B1_.store(tb_frag_B1);
|
||||
|
||||
++this->smem_iterator_B1_;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Pair of fragments used to overlap shared memory loads and math instructions
|
||||
WarpFragmentA1 warp_frag_A1[2];
|
||||
WarpFragmentB1 warp_frag_B1[2];
|
||||
|
||||
//warp_tile_iterator_A1_.set_kgroup_index(0);
|
||||
this->warp_tile_iterator_B1_.set_kgroup_index(0);
|
||||
|
||||
warp_tile_iterator_A1_.load(warp_frag_A1[0], output_op_0);
|
||||
this->warp_tile_iterator_B1_.load(warp_frag_B1[0]);
|
||||
|
||||
++warp_tile_iterator_A1_;
|
||||
++this->warp_tile_iterator_B1_;
|
||||
|
||||
Operator1 warp_mma1;
|
||||
|
||||
smem_write_stage_idx = 1;
|
||||
|
||||
int gemm_k_iterations_1 = FragmentIteratorA1::Policy::kIterations / Base::kWarpGemmIterations1;
|
||||
|
||||
// Avoid reading out of bounds
|
||||
if (gemm_k_iterations_1 <= 1) {
|
||||
iterator_B1.clear_mask();
|
||||
}
|
||||
|
||||
//
|
||||
// Mainloop
|
||||
//
|
||||
|
||||
// Note: The main loop does not support Base::WarpGemmIterations == 2.
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (; gemm_k_iterations_1 > 0; --gemm_k_iterations_1) {
|
||||
|
||||
//
|
||||
// Loop over GEMM K dimension
|
||||
//
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations1; ++warp_mma_k) {
|
||||
|
||||
// Load warp-level tiles from shared memory, wrapping to k offset if this is the last group
|
||||
// as the case may be.
|
||||
|
||||
if (warp_mma_k == Base::kWarpGemmIterations1 - 1) {
|
||||
|
||||
// Write fragments to shared memory
|
||||
|
||||
this->smem_iterator_B1_.store(tb_frag_B1);
|
||||
|
||||
__syncthreads();
|
||||
++this->smem_iterator_B1_;
|
||||
|
||||
// Add negative offsets to return iterators to the 'start' of the circular buffer in shared memory
|
||||
if (smem_write_stage_idx == 1) {
|
||||
this->smem_iterator_B1_.add_tile_offset({-Base::kStages, 0});
|
||||
}
|
||||
else {
|
||||
this->warp_tile_iterator_B1_.add_tile_offset(
|
||||
{-Base::kStages * Policy1::kPartitionsK *
|
||||
Base::kWarpGemmIterations1,
|
||||
0});
|
||||
}
|
||||
|
||||
smem_write_stage_idx ^= 1;
|
||||
}
|
||||
|
||||
this->warp_tile_iterator_B1_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations1);
|
||||
|
||||
warp_tile_iterator_A1_.load(warp_frag_A1[(warp_mma_k + 1) % 2], output_op_0);
|
||||
this->warp_tile_iterator_B1_.load(warp_frag_B1[(warp_mma_k + 1) % 2]);
|
||||
|
||||
|
||||
++warp_tile_iterator_A1_;
|
||||
++this->warp_tile_iterator_B1_;
|
||||
|
||||
if (warp_mma_k == 0) {
|
||||
|
||||
iterator_B1.load(tb_frag_B1);
|
||||
++iterator_B1;
|
||||
|
||||
|
||||
// Avoid reading out of bounds if this was the last loop iteration
|
||||
if (gemm_k_iterations_1 <= 2) {
|
||||
iterator_B1.clear_mask();
|
||||
}
|
||||
}
|
||||
|
||||
warp_mma1(accum, warp_frag_A1[warp_mma_k % 2], warp_frag_B1[warp_mma_k % 2], accum);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace threadblock
|
||||
} // namespace gemm
|
||||
} // namespace cutlass
|
||||
502
examples/13_two_tensor_op_fusion/threadblock/default_b2b_mma.h
Normal file
502
examples/13_two_tensor_op_fusion/threadblock/default_b2b_mma.h
Normal file
@ -0,0 +1,502 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Template for a pipelined GEMM kernel. Does not compute batching or support split-K.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/numeric_types.h"
|
||||
#include "cutlass/arch/arch.h"
|
||||
|
||||
#include "cutlass/transform/threadblock/predicated_tile_iterator.h"
|
||||
#include "cutlass/transform/threadblock/predicated_tile_iterator_2dthreadtile.h"
|
||||
#include "cutlass/gemm/threadblock/default_mma_core_sm70.h"
|
||||
#include "cutlass/gemm/threadblock/default_mma_core_sm75.h"
|
||||
#include "cutlass/gemm/threadblock/default_mma_core_sm80.h"
|
||||
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
|
||||
|
||||
#include "threadblock/b2b_mma_pipelined.h"
|
||||
#include "threadblock/b2b_mma_multistage.h"
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace cutlass {
|
||||
namespace gemm {
|
||||
namespace threadblock {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
/// Element type for A matrix operand
|
||||
typename ElementA_,
|
||||
/// Layout type for A matrix operand
|
||||
typename LayoutA_,
|
||||
/// Access granularity of A matrix in units of elements
|
||||
int kAlignmentA,
|
||||
/// Element type for B matrix operand
|
||||
typename ElementB_,
|
||||
/// Layout type for B matrix operand
|
||||
typename LayoutB_,
|
||||
/// Access granularity of B matrix in units of elements
|
||||
int kAlignmentB,
|
||||
/// Element type for internal accumulation
|
||||
typename ElementAccumulator_,
|
||||
/// Layout type for C and D matrix operands
|
||||
typename LayoutC_,
|
||||
/// Operator class tag
|
||||
typename OperatorClass_,
|
||||
/// Tag indicating architecture to tune for
|
||||
typename ArchTag_,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape0_,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape1_,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape0_,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape1_,
|
||||
/// Instruction-level tile size (concept: GemmShape)
|
||||
typename InstructionShape_,
|
||||
/// Number of stages used in the pipelined mainloop
|
||||
int Stages,
|
||||
/// Operation perfomed by GEMM
|
||||
typename Operator,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp,
|
||||
/// Store the accumulators in row major or column major. Row major is used
|
||||
/// when output layout is interleaved.
|
||||
bool AccumulatorsInRowMajor = false>
|
||||
struct DefaultB2bMma;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
/// Specialization for row-major output with 2-stage pipeline
|
||||
template <
|
||||
/// Element type for A matrix operand
|
||||
typename ElementA,
|
||||
/// Layout type for A matrix operand
|
||||
typename LayoutA,
|
||||
/// Access granularity of A matrix in units of elements
|
||||
int kAlignmentA,
|
||||
/// Element type for B matrix operand
|
||||
typename ElementB,
|
||||
/// Layout type for B matrix operand
|
||||
typename LayoutB,
|
||||
/// Access granularity of B matrix in units of elements
|
||||
int kAlignmentB,
|
||||
/// Element type for internal accumulation
|
||||
typename ElementAccumulator,
|
||||
/// Tag indicating architecture to tune for
|
||||
typename ArchTag,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape0,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape1,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape0,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape1,
|
||||
/// Instruction-level tile size (concept: GemmShape)
|
||||
typename InstructionShape,
|
||||
/// Operation performed by GEMM
|
||||
typename Operator,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp>
|
||||
struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
|
||||
kAlignmentB, ElementAccumulator, layout::RowMajor,
|
||||
arch::OpClassTensorOp, ArchTag,
|
||||
ThreadblockShape0, ThreadblockShape1,
|
||||
WarpShape0, WarpShape1,
|
||||
InstructionShape, 2, Operator, EpilogueOutputOp, false> {
|
||||
// Define the MmaCore components
|
||||
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
||||
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, LayoutA,
|
||||
ElementB, LayoutB, ElementAccumulator, layout::RowMajor,
|
||||
arch::OpClassTensorOp, 2, Operator>;
|
||||
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
||||
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, LayoutA,
|
||||
ElementB, LayoutB, ElementAccumulator, layout::RowMajor,
|
||||
arch::OpClassTensorOp, 2, Operator>;
|
||||
|
||||
// Define iterators over tiles from the A operand
|
||||
using IteratorA0 =
|
||||
cutlass::transform::threadblock::PredicatedTileIterator<
|
||||
cutlass::MatrixShape<MmaCore0::Shape::kM, MmaCore0::Shape::kK>,
|
||||
ElementA, LayoutA, 1, typename MmaCore0::IteratorThreadMapA, kAlignmentA>;
|
||||
|
||||
// Define iterators over tiles from the B operand
|
||||
using IteratorB0 =
|
||||
cutlass::transform::threadblock::PredicatedTileIterator<
|
||||
cutlass::MatrixShape<MmaCore0::Shape::kK, MmaCore0::Shape::kN>,
|
||||
ElementB, LayoutB, 0, typename MmaCore0::IteratorThreadMapB, kAlignmentB>;
|
||||
|
||||
// Use fragment iterator for A operand
|
||||
using AccumulatorLayout = cutlass::layout::ColumnMajor;
|
||||
using FragmentIteratorA1 =
|
||||
cutlass::gemm::warp::MmaTensorOpFragmentIterator<
|
||||
cutlass::MatrixShape<MmaCore1::WarpShape::kM, MmaCore1::InstructionShape::kK>, //warp shape
|
||||
cutlass::MatrixShape<MmaCore0::WarpShape::kM, MmaCore0::WarpShape::kN>, //accumulator shape
|
||||
MmaCore1::Shape::kK, //kBlocksColumn
|
||||
ElementAccumulator, ElementA, AccumulatorLayout, InstructionShape, EpilogueOutputOp>;
|
||||
|
||||
// Define iterators over tiles from the B operand
|
||||
using IteratorB1 =
|
||||
cutlass::transform::threadblock::PredicatedTileIterator<
|
||||
cutlass::MatrixShape<MmaCore1::Shape::kK, MmaCore1::Shape::kN>,
|
||||
ElementB, LayoutB, 0, typename MmaCore1::IteratorThreadMapB>;
|
||||
|
||||
// Define the threadblock-scoped pipelined matrix multiply
|
||||
using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaPipelined<
|
||||
typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA,
|
||||
IteratorB0, typename MmaCore0::SmemIteratorB,
|
||||
typename MmaCore1::Shape, FragmentIteratorA1,
|
||||
IteratorB1, typename MmaCore1::SmemIteratorB,
|
||||
ElementAccumulator, layout::RowMajor,
|
||||
EpilogueOutputOp,
|
||||
typename MmaCore0::MmaPolicy, typename MmaCore1::MmaPolicy>;
|
||||
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
/// Specialization for row-major output for multi-stage
|
||||
template <
|
||||
/// Element type for A matrix operand
|
||||
typename ElementA,
|
||||
/// Layout type for A matrix operand
|
||||
typename LayoutA,
|
||||
/// Access granularity of A matrix in units of elements
|
||||
int kAlignmentA,
|
||||
/// Element type for B matrix operand
|
||||
typename ElementB,
|
||||
/// Layout type for B matrix operand
|
||||
typename LayoutB,
|
||||
/// Access granularity of B matrix in units of elements
|
||||
int kAlignmentB,
|
||||
/// Element type for internal accumulation
|
||||
typename ElementAccumulator,
|
||||
/// Tag indicating architecture to tune for
|
||||
typename ArchTag,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape0,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape1,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape0,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape1,
|
||||
/// Instruction-level tile size (concept: GemmShape)
|
||||
typename InstructionShape,
|
||||
/// Number of stages used in the multistage mainloop
|
||||
int Stages,
|
||||
/// Operation performed by GEMM
|
||||
typename Operator,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp>
|
||||
struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
|
||||
kAlignmentB, ElementAccumulator, layout::RowMajor,
|
||||
arch::OpClassTensorOp, ArchTag,
|
||||
ThreadblockShape0, ThreadblockShape1,
|
||||
WarpShape0, WarpShape1,
|
||||
InstructionShape, Stages, Operator, EpilogueOutputOp, false> {
|
||||
|
||||
static cutlass::arch::CacheOperation::Kind const CacheOpA =
|
||||
((sizeof_bits<ElementA>::value * kAlignmentA) == 128)
|
||||
? cutlass::arch::CacheOperation::Global
|
||||
: cutlass::arch::CacheOperation::Always;
|
||||
|
||||
static cutlass::arch::CacheOperation::Kind const CacheOpB =
|
||||
((sizeof_bits<ElementB>::value * kAlignmentB) == 128)
|
||||
? cutlass::arch::CacheOperation::Global
|
||||
: cutlass::arch::CacheOperation::Always;
|
||||
|
||||
|
||||
// Define the MmaCore components
|
||||
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
||||
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, LayoutA,
|
||||
ElementB, LayoutB, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
|
||||
Stages, Operator, false, CacheOpA, CacheOpB>;
|
||||
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
||||
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, LayoutA,
|
||||
ElementB, LayoutB, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
|
||||
Stages, Operator, false, CacheOpA, CacheOpB>;
|
||||
|
||||
// Define iterators over tiles from the A operand
|
||||
using ThreadMapA0 = typename MmaCore0::IteratorThreadMapA;
|
||||
using AccessTypeA0 = cutlass::Array<ElementA, kAlignmentA>;
|
||||
using IteratorA0 =
|
||||
cutlass::transform::threadblock::PredicatedTileAccessIterator<
|
||||
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
|
||||
ElementA, LayoutA, 1, ThreadMapA0, AccessTypeA0>;
|
||||
|
||||
// Define iterators over tiles from the B operand
|
||||
using ThreadMapB0 = typename MmaCore0::IteratorThreadMapB;
|
||||
using AccessTypeB0 = cutlass::Array<ElementB, kAlignmentB>;
|
||||
using IteratorB0 =
|
||||
cutlass::transform::threadblock::PredicatedTileAccessIterator<
|
||||
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
|
||||
ElementB, LayoutB, 0, ThreadMapB0, AccessTypeB0>;
|
||||
|
||||
// Use fragment iterator for A operand
|
||||
using AccumulatorLayout = cutlass::layout::ColumnMajor;
|
||||
using FragmentIteratorA1 =
|
||||
cutlass::gemm::warp::MmaTensorOpFragmentIterator<
|
||||
cutlass::MatrixShape<MmaCore1::WarpShape::kM, MmaCore1::InstructionShape::kK>, //warp shape
|
||||
cutlass::MatrixShape<MmaCore0::WarpShape::kM, MmaCore0::WarpShape::kN>, //accumulator shape
|
||||
MmaCore1::Shape::kK, //kBlocksColumn
|
||||
ElementAccumulator, ElementA, AccumulatorLayout, InstructionShape, EpilogueOutputOp>;
|
||||
|
||||
// Define iterators over tiles from the B operand
|
||||
using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB;
|
||||
using AccessTypeB1 = cutlass::Array<ElementB, kAlignmentB>;
|
||||
using IteratorB1 =
|
||||
cutlass::transform::threadblock::PredicatedTileAccessIterator<
|
||||
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
|
||||
ElementB, LayoutB, 0, ThreadMapB1, AccessTypeB1>;
|
||||
|
||||
// Define the threadblock-scoped pipelined matrix multiply
|
||||
using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaMultistage<
|
||||
typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA,
|
||||
MmaCore0::kCacheOpA,
|
||||
IteratorB0, typename MmaCore0::SmemIteratorB, MmaCore0::kCacheOpB,
|
||||
typename MmaCore1::Shape, FragmentIteratorA1,
|
||||
IteratorB1, typename MmaCore1::SmemIteratorB, MmaCore1::kCacheOpB,
|
||||
ElementAccumulator, layout::RowMajor,
|
||||
EpilogueOutputOp,
|
||||
typename MmaCore0::MmaPolicy, typename MmaCore1::MmaPolicy, Stages>;
|
||||
|
||||
};
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Specialization for column-major-interleaved output with 2-stage pipeline
|
||||
template <
|
||||
/// Element type for A matrix operand
|
||||
typename ElementA,
|
||||
/// Layout type for A matrix operand
|
||||
typename LayoutA,
|
||||
/// Access granularity of A matrix in units of elements
|
||||
int kAlignmentA,
|
||||
/// Element type for B matrix operand
|
||||
typename ElementB,
|
||||
/// Layout type for B matrix operand
|
||||
typename LayoutB,
|
||||
/// Access granularity of B matrix in units of elements
|
||||
int kAlignmentB,
|
||||
/// Element type for internal accumulation
|
||||
typename ElementAccumulator,
|
||||
/// Tag indicating architecture to tune for
|
||||
typename OperatorClass,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape0,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape1,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape0,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape1,
|
||||
/// Instruction-level tile size (concept: GemmShape)
|
||||
typename InstructionShape,
|
||||
/// Operation performed by GEMM
|
||||
typename Operator,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp,
|
||||
/// Number of Interleaved K
|
||||
int InterleavedK>
|
||||
struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
|
||||
kAlignmentB, ElementAccumulator,
|
||||
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, arch::Sm75,
|
||||
ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1,
|
||||
InstructionShape, 2, Operator, EpilogueOutputOp, true> {
|
||||
// Define the MmaCore components
|
||||
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
||||
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, LayoutA,
|
||||
ElementB, LayoutB, ElementAccumulator,
|
||||
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, 2, Operator,
|
||||
true>;
|
||||
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
||||
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, LayoutA,
|
||||
ElementB, LayoutB, ElementAccumulator,
|
||||
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, 2, Operator,
|
||||
true>;
|
||||
|
||||
static_assert(kAlignmentA == 128 / sizeof_bits<ElementA>::value,
|
||||
"Alignment must match thread data map's vector length");
|
||||
|
||||
static_assert(kAlignmentB ==128 / sizeof_bits<ElementB>::value,
|
||||
"Alignment must match thread data map's vector length");
|
||||
|
||||
// Define iterators over tiles from the A operand
|
||||
using IteratorA0 = cutlass::transform::threadblock::PredicatedTileIterator<
|
||||
cutlass::MatrixShape<MmaCore0::Shape::kM, MmaCore0::Shape::kK>, ElementA,
|
||||
LayoutA, 1, typename MmaCore0::IteratorThreadMapA>;
|
||||
|
||||
// Define iterators over tiles from the B operand
|
||||
using IteratorB0 = cutlass::transform::threadblock::PredicatedTileIterator<
|
||||
cutlass::MatrixShape<MmaCore0::Shape::kK, MmaCore0::Shape::kN>, ElementB,
|
||||
LayoutB, 0, typename MmaCore0::IteratorThreadMapB>;
|
||||
|
||||
// Use fragment iterator for A1 operand
|
||||
using AccumulatorLayout = cutlass::layout::RowMajor; //AccumulatorsInRowMajor = true
|
||||
using FragmentIteratorA1 =
|
||||
cutlass::gemm::warp::MmaTensorOpFragmentIterator<
|
||||
cutlass::MatrixShape<MmaCore1::WarpShape::kM, MmaCore1::InstructionShape::kK>, //warp shape
|
||||
cutlass::MatrixShape<MmaCore0::WarpShape::kM, MmaCore0::WarpShape::kN>, //accumulator shape
|
||||
MmaCore1::Shape::kK, //kBlocksColumn
|
||||
ElementAccumulator, ElementA, AccumulatorLayout,
|
||||
InstructionShape, EpilogueOutputOp>;
|
||||
|
||||
// Define iterators over tiles from the B operand
|
||||
using IteratorB1 =
|
||||
cutlass::transform::threadblock::PredicatedTileIterator<
|
||||
cutlass::MatrixShape<MmaCore1::Shape::kK, MmaCore1::Shape::kN>,
|
||||
ElementB, LayoutB, 0, typename MmaCore1::IteratorThreadMapB>;
|
||||
|
||||
|
||||
|
||||
// Define the threadblock-scoped pipelined matrix multiply
|
||||
using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaPipelined<
|
||||
typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA,
|
||||
IteratorB0, typename MmaCore0::SmemIteratorB,
|
||||
typename MmaCore1::Shape, FragmentIteratorA1,
|
||||
IteratorB1, typename MmaCore1::SmemIteratorB,
|
||||
ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>,
|
||||
EpilogueOutputOp,
|
||||
typename MmaCore0::MmaPolicy, typename MmaCore1::MmaPolicy>;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Specialization for column-major-interleaved output with multi-stage
|
||||
template <
|
||||
/// Element type for A matrix operand
|
||||
typename ElementA,
|
||||
/// Layout type for A matrix operand
|
||||
typename LayoutA,
|
||||
/// Access granularity of A matrix in units of elements
|
||||
int kAlignmentA,
|
||||
/// Element type for B matrix operand
|
||||
typename ElementB,
|
||||
/// Layout type for B matrix operand
|
||||
typename LayoutB,
|
||||
/// Access granularity of B matrix in units of elements
|
||||
int kAlignmentB,
|
||||
/// Element type for internal accumulation
|
||||
typename ElementAccumulator,
|
||||
/// Tag indicating architecture to tune for
|
||||
typename OperatorClass,
|
||||
/// Tag indicating architecture to tune for
|
||||
typename ArchTag,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape0,
|
||||
/// Threadblock-level tile size (concept: GemmShape)
|
||||
typename ThreadblockShape1,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape0,
|
||||
/// Warp-level tile size (concept: GemmShape)
|
||||
typename WarpShape1,
|
||||
/// Instruction-level tile size (concept: GemmShape)
|
||||
typename InstructionShape,
|
||||
/// Number of stages used in the multistage mainloop
|
||||
int Stages,
|
||||
/// Operation performed by GEMM
|
||||
typename Operator,
|
||||
/// Epilogue output operator
|
||||
typename EpilogueOutputOp,
|
||||
/// Number of Interleaved K
|
||||
int InterleavedK>
|
||||
struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
|
||||
kAlignmentB, ElementAccumulator,
|
||||
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, ArchTag,
|
||||
ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1,
|
||||
InstructionShape, Stages, Operator, EpilogueOutputOp, true> {
|
||||
// Define the MmaCore components
|
||||
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
||||
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, LayoutA,
|
||||
ElementB, LayoutB, ElementAccumulator,
|
||||
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, Stages,
|
||||
Operator, true>;
|
||||
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
||||
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, LayoutA,
|
||||
ElementB, LayoutB, ElementAccumulator,
|
||||
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, Stages,
|
||||
Operator, true>;
|
||||
|
||||
// Define iterators over tiles from the A operand
|
||||
using ThreadMapA0 = typename MmaCore0::IteratorThreadMapA;
|
||||
using AccessTypeA = cutlass::Array<ElementA, kAlignmentA>;
|
||||
using IteratorA0 =
|
||||
cutlass::transform::threadblock::PredicatedTileAccessIterator<
|
||||
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
|
||||
ElementA, LayoutA, 1, ThreadMapA0, AccessTypeA>;
|
||||
|
||||
// Define iterators over tiles from the B operand
|
||||
using ThreadMapB0 = typename MmaCore0::IteratorThreadMapB;
|
||||
using AccessTypeB = cutlass::Array<ElementB, kAlignmentB>;
|
||||
using IteratorB0 =
|
||||
cutlass::transform::threadblock::PredicatedTileAccessIterator<
|
||||
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
|
||||
ElementB, LayoutB, 0, ThreadMapB0, AccessTypeB>;
|
||||
|
||||
// Use fragment iterator for A1 operand
|
||||
using AccumulatorLayout = cutlass::layout::RowMajor; //AccumulatorsInRowMajor = true
|
||||
using FragmentIteratorA1 =
|
||||
cutlass::gemm::warp::MmaTensorOpFragmentIterator<
|
||||
cutlass::MatrixShape<MmaCore1::WarpShape::kM, MmaCore1::InstructionShape::kK>, //warp shape
|
||||
cutlass::MatrixShape<MmaCore0::WarpShape::kM, MmaCore0::WarpShape::kN>, //accumulator shape
|
||||
MmaCore1::Shape::kK, //kBlocksColumn
|
||||
ElementAccumulator, ElementA, AccumulatorLayout,
|
||||
InstructionShape, EpilogueOutputOp>;
|
||||
|
||||
// Define iterators over tiles from the B operand
|
||||
using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB;
|
||||
using IteratorB1 =
|
||||
cutlass::transform::threadblock::PredicatedTileAccessIterator<
|
||||
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
|
||||
ElementB, LayoutB, 0, ThreadMapB1, AccessTypeB>;
|
||||
|
||||
|
||||
|
||||
// Define the threadblock-scoped multistage matrix multiply
|
||||
using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaMultistage<
|
||||
typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA,
|
||||
MmaCore0::kCacheOpA,
|
||||
IteratorB0, typename MmaCore0::SmemIteratorB, MmaCore0::kCacheOpB,
|
||||
typename MmaCore1::Shape, FragmentIteratorA1,
|
||||
IteratorB1, typename MmaCore1::SmemIteratorB, MmaCore1::kCacheOpB,
|
||||
ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>,
|
||||
EpilogueOutputOp,
|
||||
typename MmaCore0::MmaPolicy, typename MmaCore1::MmaPolicy, Stages>;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
} // namespace threadblock
|
||||
} // namespace gemm
|
||||
} // namespace cutlass
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
27
examples/14_ampere_tf32_tensorop_gemm/CMakeLists.txt
Normal file
27
examples/14_ampere_tf32_tensorop_gemm/CMakeLists.txt
Normal file
@ -0,0 +1,27 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
14_ampere_tf32_tensorop_gemm
|
||||
ampere_tf32_tensorop_gemm.cu
|
||||
)
|
||||
|
||||
@ -0,0 +1,466 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
/**
|
||||
Please check example 07 and 08 for the basics of tensor op gemm kernels. On NVIDIA Ampere
|
||||
architecture, most concept still holds. The two main differences are
|
||||
|
||||
1. NVIDIA Ampere architecture introduces a new series of tensor core instructions (see
|
||||
include/cutlass/arch/mma_sm80.h) which are more efficient on Ampere.
|
||||
|
||||
2. NVIDIA Ampere architecture uses cp_async() to build multistage software pipeline to better hide
|
||||
latency (see include/cutlass/gemm/threadblock/mma_multistage.h)
|
||||
|
||||
Moreover, NVIDIA Ampere architecture starts supporting tfloat32 (see include/cutlass/tfloat32.h)
|
||||
data types in tensor cores. One big advantage is that we can load in fp32 data and convert them
|
||||
implicitly to tf32 inside the GEMM kernel which means no change is needed to accelerate traditional
|
||||
fp32 data by using NVIDIA Ampere architecture.
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/device/gemm.h"
|
||||
|
||||
#include "cutlass/util/command_line.h"
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/reference/device/gemm.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
|
||||
#include "helper.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Result structure
|
||||
struct Result {
|
||||
|
||||
double runtime_ms;
|
||||
double gflops;
|
||||
cutlass::Status status;
|
||||
cudaError_t error;
|
||||
bool passed;
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
Result(
|
||||
double runtime_ms = 0,
|
||||
double gflops = 0,
|
||||
cutlass::Status status = cutlass::Status::kSuccess,
|
||||
cudaError_t error = cudaSuccess
|
||||
):
|
||||
runtime_ms(runtime_ms), gflops(gflops), status(status), error(error), passed(true) { }
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Command line options parsing
|
||||
struct Options {
|
||||
|
||||
bool help;
|
||||
|
||||
cutlass::gemm::GemmCoord problem_size;
|
||||
int batch_count;
|
||||
float alpha;
|
||||
float beta;
|
||||
|
||||
bool reference_check;
|
||||
int iterations;
|
||||
|
||||
Options():
|
||||
help(false),
|
||||
problem_size({5120, 4096, 4096}),
|
||||
batch_count(1),
|
||||
reference_check(true),
|
||||
iterations(20),
|
||||
alpha(1),
|
||||
beta() { }
|
||||
|
||||
bool valid() {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Parses the command line
|
||||
void parse(int argc, char const **args) {
|
||||
cutlass::CommandLine cmd(argc, args);
|
||||
|
||||
if (cmd.check_cmd_line_flag("help")) {
|
||||
help = true;
|
||||
}
|
||||
|
||||
cmd.get_cmd_line_argument("m", problem_size.m());
|
||||
cmd.get_cmd_line_argument("n", problem_size.n());
|
||||
cmd.get_cmd_line_argument("k", problem_size.k());
|
||||
|
||||
cmd.get_cmd_line_argument("alpha", alpha);
|
||||
cmd.get_cmd_line_argument("beta", beta);
|
||||
|
||||
cmd.get_cmd_line_argument("iterations", iterations);
|
||||
|
||||
}
|
||||
|
||||
/// Prints the usage statement.
|
||||
std::ostream & print_usage(std::ostream &out) const {
|
||||
|
||||
out << "14_ampere_tf32_tensorop_gemm example\n\n"
|
||||
<< " This example uses the CUTLASS Library to execute TF32 tensorop GEMM computations.\n\n"
|
||||
<< "Options:\n\n"
|
||||
<< " --help If specified, displays this usage statement.\n\n"
|
||||
<< " --m <int> GEMM M dimension\n"
|
||||
<< " --n <int> GEMM N dimension\n"
|
||||
<< " --k <int> GEMM K dimension\n"
|
||||
<< " --alpha <f32> Epilogue scalar alpha\n"
|
||||
<< " --beta <f32> Epilogue scalar beta\n\n"
|
||||
<< " --iterations <int> Number of profiling iterations to perform.\n\n";
|
||||
|
||||
out << "\n\nExamples:\n\n"
|
||||
<< "$ ./examples/14_ampere_tf32_tensorop_gemm/14_ampere_tf32_tensorop_gemm --m=1024 --n=512 --k=1024 \\\n"
|
||||
<< " --alpha=2 --beta=0.707 \n\n";
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
/// Compute performance in GFLOP/s
|
||||
double gflops(double runtime_s) const {
|
||||
|
||||
// Number of real-valued multiply-adds
|
||||
int64_t fmas = problem_size.product() * batch_count;
|
||||
|
||||
// Two flops per multiply-add
|
||||
return 2.0 * double(fmas) / double(1.0e9) / runtime_s;
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// The code section below describes datatype for input, output matrices and computation between
|
||||
// elements in input matrices.
|
||||
using ElementAccumulator = float; // <- data type of accumulator
|
||||
using ElementComputeEpilogue = ElementAccumulator; // <- data type of epilogue operations
|
||||
using ElementInputA = float; // <- data type of elements in input matrix A
|
||||
using ElementInputB = float; // <- data type of elements in input matrix B
|
||||
using ElementOutput = float; // <- data type of elements in output matrix D
|
||||
|
||||
// The code section below describes matrix layout of input and output matrices. Column Major for
|
||||
// Matrix A, Row Major for Matrix B and Row Major for Matrix C
|
||||
using LayoutInputA = cutlass::layout::RowMajor;
|
||||
using LayoutInputB = cutlass::layout::ColumnMajor;
|
||||
using LayoutOutput = cutlass::layout::RowMajor;
|
||||
|
||||
// This code section describes whether you want to use tensor cores or regular SIMT cores on GPU SM
|
||||
using MMAOp = cutlass::arch::OpClassTensorOp;
|
||||
|
||||
// This code section describes CUDA SM architecture number
|
||||
using SmArch = cutlass::arch::Sm80;
|
||||
|
||||
// This code section describes the tile size a thread block will compute
|
||||
using ShapeMMAThreadBlock =
|
||||
cutlass::gemm::GemmShape<128, 128, 16>; // <- threadblock tile M = 128, N = 128, K = 16
|
||||
// This code section describes tile size a warp will compute
|
||||
using ShapeMMAWarp = cutlass::gemm::GemmShape<64, 64, 16>; // <- warp tile M = 64, N = 64, K = 16
|
||||
// This code section describes the size of MMA op
|
||||
using ShapeMMAOp = cutlass::gemm::GemmShape<16, 8, 8>; // <- MMA Op tile M = 16, N = 8, K = 8
|
||||
|
||||
// This code section describes how threadblocks are scheduled on GPU
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>; // <- ??
|
||||
|
||||
// This code section describes the epilogue part of the kernel
|
||||
using EpilogueOp = cutlass::epilogue::thread::LinearCombination<
|
||||
ElementOutput, // <- data type of output matrix
|
||||
128 / cutlass::sizeof_bits<ElementOutput>::value, // <- the number of elements per vectorized
|
||||
// memory access. For a byte, it's 16
|
||||
// elements. This becomes the vector width of
|
||||
// math instructions in the epilogue too
|
||||
ElementAccumulator, // <- data type of accumulator
|
||||
ElementComputeEpilogue>; // <- data type for alpha/beta in linear combination function
|
||||
|
||||
// Number of pipelines you want to use
|
||||
constexpr int NumStages = 4;
|
||||
|
||||
using Gemm = cutlass::gemm::device::Gemm<ElementInputA,
|
||||
LayoutInputA,
|
||||
ElementInputB,
|
||||
LayoutInputB,
|
||||
ElementOutput,
|
||||
LayoutOutput,
|
||||
ElementAccumulator,
|
||||
MMAOp,
|
||||
SmArch,
|
||||
ShapeMMAThreadBlock,
|
||||
ShapeMMAWarp,
|
||||
ShapeMMAOp,
|
||||
EpilogueOp,
|
||||
SwizzleThreadBlock,
|
||||
NumStages>;
|
||||
|
||||
int run(Options &options) {
|
||||
|
||||
// Create a tuple of problem size for matrix multiplication
|
||||
cutlass::gemm::GemmCoord problem_size = options.problem_size;
|
||||
|
||||
// Initialize tensors using CUTLASS helper functions
|
||||
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(
|
||||
problem_size.mk()); // <- Create matrix A with dimensions M x K
|
||||
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(
|
||||
problem_size.kn()); // <- Create matrix B with dimensions K x N
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c(
|
||||
problem_size.mn()); // <- Create matrix C with dimensions M x N
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_d(
|
||||
problem_size.mn()); // <- Create matrix D with dimensions M x N used to store output from
|
||||
// CUTLASS kernel
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_ref_d(
|
||||
problem_size.mn()); // <- Create matrix D with dimensions M x N used to store output from
|
||||
// reference kernel
|
||||
|
||||
// Fill input and output matrices on host using CUTLASS helper functions
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_a.host_view(),
|
||||
1,
|
||||
ElementInputA(4),
|
||||
ElementInputA(-4),
|
||||
0); // <- Fill matrix A on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_b.host_view(),
|
||||
1,
|
||||
ElementInputB(4),
|
||||
ElementInputB(-4),
|
||||
0); // <- Fill matrix B on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_c.host_view(),
|
||||
1,
|
||||
ElementOutput(4),
|
||||
ElementOutput(-4),
|
||||
0); // <- Fill matrix C on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_d.host_view()); // <- fill matrix D on host with zeros
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_ref_d.host_view()); // <- fill matrix D for reference on host with zeros
|
||||
|
||||
// Copy data from host to GPU
|
||||
tensor_a.sync_device();
|
||||
tensor_b.sync_device();
|
||||
tensor_c.sync_device();
|
||||
tensor_d.sync_device();
|
||||
tensor_ref_d.sync_device();
|
||||
|
||||
// Initialize alpha and beta for dot product computation
|
||||
ElementComputeEpilogue alpha = ElementComputeEpilogue(options.alpha);
|
||||
ElementComputeEpilogue beta = ElementComputeEpilogue(options.beta);
|
||||
|
||||
// Split K dimension into 1 partitions
|
||||
int split_k_slices = 1;
|
||||
|
||||
// Create a tuple of gemm kernel arguments. This is later passed as arguments to launch
|
||||
// instantiated CUTLASS kernel
|
||||
typename Gemm::Arguments arguments{problem_size, // <- problem size of matrix multiplication
|
||||
tensor_a.device_ref(), // <- reference to matrix A on device
|
||||
tensor_b.device_ref(), // <- reference to matrix B on device
|
||||
tensor_c.device_ref(), // <- reference to matrix C on device
|
||||
tensor_d.device_ref(), // <- reference to matrix D on device
|
||||
{alpha, beta}, // <- tuple of alpha and beta
|
||||
split_k_slices}; // <- k-dimension split factor
|
||||
|
||||
// Using the arguments, query for extra workspace required for matrix multiplication computation
|
||||
size_t workspace_size = Gemm::get_workspace_size(arguments);
|
||||
|
||||
// Allocate workspace memory
|
||||
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
||||
|
||||
// Instantiate CUTLASS kernel depending on templates
|
||||
Gemm gemm_op;
|
||||
|
||||
// Check the problem size is supported or not
|
||||
cutlass::Status status = gemm_op.can_implement(arguments);
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Initialize CUTLASS kernel with arguments and workspace pointer
|
||||
status = gemm_op.initialize(arguments, workspace.get());
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Result structure
|
||||
Result result;
|
||||
|
||||
//
|
||||
// Construct events
|
||||
//
|
||||
|
||||
cudaEvent_t events[2];
|
||||
|
||||
for (auto & event : events) {
|
||||
result.error = cudaEventCreate(&event);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventCreate() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Record an event at the start of a series of GEMMs
|
||||
result.error = cudaEventRecord(events[0]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
//
|
||||
// Run profiling loop
|
||||
//
|
||||
|
||||
for (int iter = 0; iter < options.iterations; ++iter) {
|
||||
// Launch initialized CUTLASS kernel
|
||||
status = gemm_op();
|
||||
CUTLASS_CHECK(status);
|
||||
}
|
||||
|
||||
//
|
||||
// Stop profiling loop
|
||||
//
|
||||
|
||||
// Record an event when the GEMMs are complete
|
||||
result.error = cudaEventRecord(events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Wait for work on the device to complete.
|
||||
result.error = cudaEventSynchronize(events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventSynchronize() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Measure elapsed runtime
|
||||
float runtime_ms = 0;
|
||||
result.error = cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventElapsed() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Compute average runtime and GFLOPs.
|
||||
result.runtime_ms = double(runtime_ms) / double(options.iterations);
|
||||
result.gflops = options.gflops(result.runtime_ms / 1000.0);
|
||||
|
||||
// Cleanup
|
||||
for (auto event : events) {
|
||||
(void)cudaEventDestroy(event);
|
||||
}
|
||||
|
||||
// Create instantiation for device reference gemm kernel
|
||||
cutlass::reference::device::Gemm<ElementInputA,
|
||||
LayoutInputA,
|
||||
ElementInputB,
|
||||
LayoutInputB,
|
||||
ElementOutput,
|
||||
LayoutOutput,
|
||||
ElementComputeEpilogue,
|
||||
ElementComputeEpilogue>
|
||||
gemm_device;
|
||||
|
||||
// Launch device reference gemm kernel
|
||||
gemm_device(problem_size,
|
||||
alpha,
|
||||
tensor_a.device_ref(),
|
||||
tensor_b.device_ref(),
|
||||
beta,
|
||||
tensor_c.device_ref(),
|
||||
tensor_ref_d.device_ref());
|
||||
|
||||
// Wait for kernels to finish
|
||||
cudaDeviceSynchronize();
|
||||
|
||||
// Copy output data from CUTLASS and reference kernel to host for comparison
|
||||
tensor_d.sync_host();
|
||||
tensor_ref_d.sync_host();
|
||||
|
||||
// Check if output from CUTLASS kernel and reference kernel are equal or not
|
||||
bool passed = cutlass::reference::host::TensorEquals(
|
||||
tensor_d.host_view(),
|
||||
tensor_ref_d.host_view());
|
||||
|
||||
if (passed) {
|
||||
std::cout << "Runtime: " << result.runtime_ms << " ms" << std::endl;
|
||||
std::cout << " GFLOPs: " << result.gflops << std::endl;
|
||||
}
|
||||
|
||||
std::cout << (passed ? "Passed" : "Failed") << std::endl;
|
||||
|
||||
return (passed ? 0 : -1);
|
||||
}
|
||||
|
||||
int main(int argc, const char **argv) {
|
||||
|
||||
bool notSupported = false;
|
||||
|
||||
// Ampere Tensor Core operations exposed with mma.sync and ldmatrix are first available
|
||||
// in CUDA 11.0.
|
||||
//
|
||||
// CUTLASS must be compiled with CUDA 11.0 Toolkit to run these examples.
|
||||
if (!(__CUDACC_VER_MAJOR__ >= 11)) {
|
||||
std::cerr << "Ampere Tensor Core operations must be compiled with CUDA 11.0 Toolkit or later." << std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
cudaDeviceProp props;
|
||||
|
||||
cudaError_t error = cudaGetDeviceProperties(&props, 0);
|
||||
if (error != cudaSuccess) {
|
||||
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!((props.major * 10 + props.minor) >= 80)) {
|
||||
std::cerr << "Ampere Tensor Core operations must be run on a machine with compute capability at least 80."
|
||||
<< std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
if (notSupported) {
|
||||
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
|
||||
return 0;
|
||||
}
|
||||
|
||||
Options options;
|
||||
options.parse(argc, argv);
|
||||
|
||||
if (options.help) {
|
||||
options.print_usage(std::cout) << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
printf("%d x %d x %d TF32 tensor op Matrix Multiply\n", \
|
||||
options.problem_size.m(), options.problem_size.n(), options.problem_size.k());
|
||||
|
||||
if (!options.valid()) {
|
||||
std::cerr << "Invalid problem." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
return run(options);
|
||||
}
|
||||
27
examples/15_ampere_sparse_tensorop_gemm/CMakeLists.txt
Normal file
27
examples/15_ampere_sparse_tensorop_gemm/CMakeLists.txt
Normal file
@ -0,0 +1,27 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
15_ampere_sparse_tensorop_gemm
|
||||
ampere_sparse_tensorop_gemm.cu
|
||||
)
|
||||
|
||||
@ -0,0 +1,311 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
/**
|
||||
Please check example 07, 08 and 17 for the basics of dense tensor op gemm kernels. NVIDIA Ampere
|
||||
architecture also supports structured sparse tensor op for tf32, fp16, int8 and int4.
|
||||
|
||||
Sparse GEMM kernels needs to takes an additional E matrix which stores the meta data. The format of
|
||||
meta data is different for every data types. CUTLASS templates can automatically infer it based on
|
||||
input A and B. Check code below.
|
||||
|
||||
Moreover, matrix E needs to be preprocessed so that it can use ldmatrix to load into the registers
|
||||
efficiently.
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/device/gemm_sparse.h"
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/reference/host/gemm.h"
|
||||
#include "cutlass/util/host_reorder.h"
|
||||
#include "cutlass/util/host_uncompress.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "helper.h"
|
||||
|
||||
// The code section below describes datatype for input, output matrices and computation between
|
||||
// elements in input matrices.
|
||||
using ElementAccumulator = int32_t; // <- data type of accumulator
|
||||
using ElementComputeEpilogue = ElementAccumulator; // <- data type of epilogue operations
|
||||
using ElementInputA = cutlass::int4b_t; // <- data type of elements in input matrix A
|
||||
using ElementInputB = cutlass::int4b_t; // <- data type of elements in input matrix B
|
||||
using ElementOutput = int32_t; // <- data type of elements in output matrix D
|
||||
|
||||
// The code section below describes matrix layout of input and output matrices. Row Major for
|
||||
// Matrix A, Column Major for Matrix B and Row Major for Matrix C
|
||||
using LayoutInputA = cutlass::layout::RowMajor;
|
||||
using LayoutInputB = cutlass::layout::ColumnMajor;
|
||||
using LayoutOutput = cutlass::layout::RowMajor;
|
||||
|
||||
// This code section describes whether you want to use tensor cores or regular SIMT cores on GPU SM
|
||||
using MMAOp = cutlass::arch::OpClassTensorOp;
|
||||
|
||||
// This code section describes CUDA SM architecture number
|
||||
using SmArch = cutlass::arch::Sm80;
|
||||
|
||||
// This code section describes the tile size a thread block will compute
|
||||
using ShapeMMAThreadBlock =
|
||||
cutlass::gemm::GemmShape<128, 128, 256>; // <- threadblock tile M = 128, N = 128, K = 256
|
||||
// This code section describes tile size a warp will compute
|
||||
using ShapeMMAWarp = cutlass::gemm::GemmShape<64, 64, 256>; // <- warp tile M = 64, N = 64, K = 256
|
||||
// This code section describes the size of MMA op
|
||||
using ShapeMMAOp = cutlass::gemm::GemmShape<16, 8, 128>; // <- MMA Op tile M = 16, N = 8, K = 128
|
||||
|
||||
// This code section describes how threadblocks are scheduled on GPU
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>; // <- ??
|
||||
|
||||
// This code section describes the epilogue part of the kernel
|
||||
using EpilogueOp = cutlass::epilogue::thread::LinearCombination<
|
||||
ElementOutput, // <- data type of output matrix
|
||||
128 / cutlass::sizeof_bits<ElementOutput>::value, // <- the number of elements per vectorized
|
||||
// memory access. For a byte, it's 16
|
||||
// elements. This becomes the vector width of
|
||||
// math instructions in the epilogue too
|
||||
ElementAccumulator, // <- data type of accumulator
|
||||
ElementComputeEpilogue>; // <- data type for alpha/beta in linear combination function
|
||||
|
||||
// Number of pipelines you want to use
|
||||
constexpr int NumStages = 3;
|
||||
|
||||
using Gemm = cutlass::gemm::device::SparseGemm<ElementInputA,
|
||||
LayoutInputA,
|
||||
ElementInputB,
|
||||
LayoutInputB,
|
||||
ElementOutput,
|
||||
LayoutOutput,
|
||||
ElementAccumulator,
|
||||
MMAOp,
|
||||
SmArch,
|
||||
ShapeMMAThreadBlock,
|
||||
ShapeMMAWarp,
|
||||
ShapeMMAOp,
|
||||
EpilogueOp,
|
||||
SwizzleThreadBlock,
|
||||
NumStages>;
|
||||
|
||||
// Data type and layout of meta data matrix E can be inferred from template Gemm.
|
||||
using ElementInputE = typename Gemm::ElementE;
|
||||
using LayoutInputE = cutlass::layout::RowMajor;
|
||||
using ReorderedLayoutInputE = typename Gemm::LayoutE;
|
||||
|
||||
// Blow property is defined in include/cutlass/arch/sp_mma_sm80.h
|
||||
// 50% Sparsity on Ampere
|
||||
constexpr int kSparse = Gemm::kSparse;
|
||||
// How many elements of A are covered per ElementE
|
||||
constexpr int kElementsPerElementE = Gemm::kElementsPerElementE;
|
||||
// The size of individual meta data
|
||||
constexpr int kMetaSizeInBits = Gemm::kMetaSizeInBits;
|
||||
|
||||
int run() {
|
||||
|
||||
const int length_m = 512;
|
||||
const int length_n = 512;
|
||||
const int length_k = 1024;
|
||||
|
||||
// Create a tuple of problem size for matrix multiplication
|
||||
cutlass::gemm::GemmCoord problem_size(length_m, length_n, length_k);
|
||||
|
||||
// Initialize tensors using CUTLASS helper functions
|
||||
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(
|
||||
cutlass::make_Coord(problem_size.m(), problem_size.k() / kSparse)); // <- Create matrix A with dimensions M x (K / 2)
|
||||
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a_uncompressed(
|
||||
problem_size.mk()); // <- Create uncompressed matrix A with dimensions M x K for reference computing
|
||||
|
||||
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(
|
||||
problem_size.kn()); // <- Create matrix B with dimensions K x N
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c(
|
||||
problem_size.mn()); // <- Create matrix C with dimensions M x N
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_d(
|
||||
problem_size.mn()); // <- Create matrix D with dimensions M x N used to store output from
|
||||
// CUTLASS kernel
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_ref_d(
|
||||
problem_size.mn()); // <- Create matrix D with dimensions M x N used to store output from
|
||||
// reference kernel
|
||||
|
||||
// Create matrix E with dimensions M x (K / 2 / kElementsPerElementE). This one is used by reference computing.
|
||||
cutlass::HostTensor<ElementInputE, LayoutInputE> tensor_e(
|
||||
cutlass::make_Coord(problem_size.m(), problem_size.k() / kSparse / kElementsPerElementE));
|
||||
// Same size as the above. The above one needs to be reordered and stored in this one.
|
||||
cutlass::HostTensor<ElementInputE, ReorderedLayoutInputE> tensor_e_reordered(
|
||||
cutlass::make_Coord(problem_size.m(), problem_size.k() / kSparse / kElementsPerElementE));
|
||||
|
||||
// Fill input and output matrices on host using CUTLASS helper functions
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_a.host_view(),
|
||||
1,
|
||||
ElementInputA(2),
|
||||
ElementInputA(-2),
|
||||
0); // <- Fill matrix A on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_b.host_view(),
|
||||
1,
|
||||
ElementInputB(2),
|
||||
ElementInputB(-2),
|
||||
0); // <- Fill matrix B on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_c.host_view(),
|
||||
1,
|
||||
ElementOutput(2),
|
||||
ElementOutput(-2),
|
||||
0); // <- Fill matrix C on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomSparseMeta(
|
||||
tensor_e.host_view(),
|
||||
1,
|
||||
kMetaSizeInBits); // <- Fill matrix E on host with uniform-distribution random meta data
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_d.host_view()); // <- fill matrix D on host with zeros
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_ref_d.host_view()); // <- fill matrix D for reference on host with zeros
|
||||
|
||||
// Reorder the meta data matrix so that we can use ldmatrix to load them to tensor core
|
||||
// instructions.
|
||||
cutlass::reorder_meta(tensor_e_reordered.host_ref(), tensor_e.host_ref(),
|
||||
{problem_size.m(), problem_size.n(),
|
||||
problem_size.k() / kSparse / kElementsPerElementE});
|
||||
|
||||
// Copy data from host to GPU
|
||||
tensor_a.sync_device();
|
||||
tensor_b.sync_device();
|
||||
tensor_c.sync_device();
|
||||
tensor_d.sync_device();
|
||||
tensor_e_reordered.sync_device();
|
||||
tensor_ref_d.sync_device();
|
||||
|
||||
// Initialize alpha and beta for dot product computation
|
||||
ElementComputeEpilogue alpha = ElementComputeEpilogue(1);
|
||||
ElementComputeEpilogue beta = ElementComputeEpilogue(0);
|
||||
|
||||
// Split K dimension into 1 partitions
|
||||
int split_k_slices = 1;
|
||||
|
||||
// Create a tuple of gemm kernel arguments. This is later passed as arguments to launch
|
||||
// instantiated CUTLASS kernel
|
||||
typename Gemm::Arguments arguments{problem_size, // <- problem size of matrix multiplication
|
||||
tensor_a.device_ref(), // <- reference to matrix A on device
|
||||
tensor_b.device_ref(), // <- reference to matrix B on device
|
||||
tensor_c.device_ref(), // <- reference to matrix C on device
|
||||
tensor_d.device_ref(), // <- reference to matrix D on device
|
||||
tensor_e_reordered.device_ref(), // <- reference to matrix E on device
|
||||
{alpha, beta}, // <- tuple of alpha and beta
|
||||
split_k_slices}; // <- k-dimension split factor
|
||||
|
||||
// Using the arguments, query for extra workspace required for matrix multiplication computation
|
||||
size_t workspace_size = Gemm::get_workspace_size(arguments);
|
||||
|
||||
// Allocate workspace memory
|
||||
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
||||
|
||||
// Instantiate CUTLASS kernel depending on templates
|
||||
Gemm gemm_op;
|
||||
|
||||
// Check the problem size is supported or not
|
||||
cutlass::Status status = gemm_op.can_implement(arguments);
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Initialize CUTLASS kernel with arguments and workspace pointer
|
||||
status = gemm_op.initialize(arguments, workspace.get());
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Launch initialized CUTLASS kernel
|
||||
status = gemm_op();
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// uncompress tensor_a based on meta data tensor_e. We need it for reference computing.
|
||||
cutlass::uncompress(tensor_a_uncompressed.host_ref(), tensor_a.host_ref(),
|
||||
tensor_e.host_ref(), problem_size.m(), problem_size.k());
|
||||
|
||||
// Create instantiation for host reference gemm kernel
|
||||
cutlass::reference::host::Gemm<ElementInputA,
|
||||
LayoutInputA,
|
||||
ElementInputB,
|
||||
LayoutInputB,
|
||||
ElementOutput,
|
||||
LayoutOutput,
|
||||
ElementComputeEpilogue,
|
||||
ElementComputeEpilogue,
|
||||
typename Gemm::Operator>
|
||||
gemm_host;
|
||||
|
||||
// Launch host reference gemm kernel
|
||||
gemm_host(problem_size,
|
||||
alpha,
|
||||
tensor_a_uncompressed.host_ref(),
|
||||
tensor_b.host_ref(),
|
||||
beta,
|
||||
tensor_c.host_ref(),
|
||||
tensor_ref_d.host_ref());
|
||||
|
||||
// Copy output data from CUTLASS host for comparison
|
||||
tensor_d.sync_host();
|
||||
|
||||
// Check if output from CUTLASS kernel and reference kernel are equal or not
|
||||
bool passed = cutlass::reference::host::TensorEquals(
|
||||
tensor_d.host_view(),
|
||||
tensor_ref_d.host_view());
|
||||
|
||||
std::cout << (passed ? "Passed" : "Failed") << std::endl;
|
||||
|
||||
return (passed ? 0 : -1);
|
||||
}
|
||||
|
||||
int main() {
|
||||
|
||||
bool notSupported = false;
|
||||
|
||||
// Ampere Sparse Tensor Core operations exposed with mma.sync and ldmatrix are first available
|
||||
// in CUDA 11.1.
|
||||
//
|
||||
// CUTLASS must be compiled with CUDA 11.1 Toolkit to run these examples.
|
||||
|
||||
if (!(__CUDACC_VER_MAJOR__ > 11 || (__CUDACC_VER_MAJOR__ == 11 && __CUDACC_VER_MINOR__ >= 1))) {
|
||||
std::cerr << "Ampere Tensor Core operations must be compiled with CUDA 11.1 Toolkit or later." << std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
cudaDeviceProp props;
|
||||
|
||||
cudaError_t error = cudaGetDeviceProperties(&props, 0);
|
||||
if (error != cudaSuccess) {
|
||||
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!((props.major * 10 + props.minor) >= 80)) {
|
||||
std::cerr << "Ampere Tensor Core operations must be run on a machine with compute capability at least 80."
|
||||
<< std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
if (notSupported) {
|
||||
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
|
||||
return 0;
|
||||
}
|
||||
|
||||
return run();
|
||||
}
|
||||
28
examples/16_ampere_tensorop_conv2dfprop/CMakeLists.txt
Normal file
28
examples/16_ampere_tensorop_conv2dfprop/CMakeLists.txt
Normal file
@ -0,0 +1,28 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
cutlass_example_add_executable(
|
||||
16_ampere_tensorop_conv2dfprop
|
||||
ampere_tensorop_conv2dfprop.cu
|
||||
)
|
||||
|
||||
@ -0,0 +1,756 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
/**
|
||||
|
||||
This example shows how to run convolution kernels using functions and data structures
|
||||
provided by CUTLASS using tensor cores; which we run on a NVIDIA Ampere GPU.
|
||||
|
||||
Writing a single high performance convolution kernel is hard but do-able. Whereas writing
|
||||
high performance kernels at scale which works for multiple problem sizes with good abstractions is
|
||||
really hard. CUTLASS solves this problem by providing simplified abstractions to compose
|
||||
multiple sections of implicit gemm kernel. When used properly, the kernels can hit peak performance
|
||||
of GPU easily.
|
||||
|
||||
CUTLASS divides a kernel into hierarchical composable sections. Which means, at each thread, warp
|
||||
and thread-block level, they compute on their own tile-size with higher level of tile sizes being
|
||||
composed from lower level ones. Multiple thread-tiles (tile size each thread computes) can be used
|
||||
to form warp-tiles (tile size each warp computes) and multiple warp tiles can be used to compute
|
||||
threadblock-tile (tile size computed by a threadblock).
|
||||
|
||||
In thie example, we split variable initialization into
|
||||
1. Setting up data properties : describes how tensors are laid out in the memory and how the kernel
|
||||
can view them (logical to physical mapping)
|
||||
2. Setting up computation properties : describes how the above set tensors will be used to compute
|
||||
output of convolution.
|
||||
|
||||
First, we setup the data types of the input tensor A, weights' tensor B and output tensor C along
|
||||
with alpha, beta as the equation for convolution is C = alpha * Conv2dFprop(A, B) + beta * C. In CUTLASS,
|
||||
the kernels first compute Conv2dFprop(A, B) and leave the rest of the computation to end of the kernel as
|
||||
alpha * X + beta * C is a simple element-wise operation on X (Conv2dFprop(A, B)) and C. We call this as
|
||||
epilogue of kernel. Hence, we setup data types for alpha and beta to be equal to
|
||||
ElementComputeEpilogue = float. We use the data type for elements in input tensor A and B as
|
||||
cutlass::half_t. We convey this to CUTLASS kernel by initializing template variables ElementAccumulator (float),
|
||||
ElementComputeEpilogue (float), ElementInputA (cutlass::half_t), ElementInputB (cutlass::half_t),
|
||||
ElementOutput (float). Communicating just the data type is not enough. As the data is laid out
|
||||
linearly in memory, we have to convey the layout of tensors. We do that by initializing template
|
||||
variables LayoutInputA, LayoutInputB and LayoutOutput to TensorNHWC cutlass variable. Next, we setup
|
||||
rules to comptue alpha * X + beta * C which is called epilogue of the kernel. We initialize template
|
||||
variable EpilogueOp, which takes the data type of output ElementOutput (float), the number of
|
||||
elements per vector memory access (8), data type of accumulator (float) and data type of
|
||||
computation of linear combination (alpha * X + beta * C).
|
||||
|
||||
Now that we setup the properties of data, we have to setup properties of computation.
|
||||
|
||||
Second, we create template variables of tile sizes for thread-block, warp and mma-op to 128x128x64,
|
||||
64x64x64, 16x8x16 (MxNxK) respectively. When passed to instantiate CUTLASS Implicit GEMM kernel, it
|
||||
internally deduces the amount of threads needed per thread-block, amount of shared memory, storing
|
||||
data in bank-conflict free manner, and ton of other variables required to compose, intialize and
|
||||
launch a high performance Implicit GEMM kernel. This is the beauty of CUTLASS, it relieves developer
|
||||
from understanding and coding complicated hardware optimizations which can easily go wrong.
|
||||
|
||||
CUTLASS also supports multiple MMA pipelines in a threadblock. What are MMA pipelines? MMA pipelines
|
||||
constitute the whole process of loading input data from global memory to shared memory, loading data
|
||||
from shared memory to registers, doing matrix multiplication, store to global memory. The below flow
|
||||
sequence shows a typical mma multistage pipeline.
|
||||
(see include/cutlass/conv/threadblock/implicit_gemm_multistage.h)
|
||||
|
||||
tensor in global memory --cp_async--> tile in shared memory --smem loads--> registers
|
||||
--mma--> registers --global stores--> output to global memory
|
||||
|
||||
NVIDIA Ampere uses `cp_async` to build multistage software pipeline to better hide latencies.
|
||||
|
||||
|
||||
There are few more template variables initialized such as, which threadblock tile of output matrix
|
||||
is done which threadblock launched on an SM, CUDA SM architecture of GPU you want to run on.
|
||||
|
||||
These are all put together to create a template variable which describes CUTLASS Implicit GEMM
|
||||
kernel using cutlass::conv::device::ImplicitGemm template.
|
||||
|
||||
The next step is to intialize physical data, instantiate and initialize CUTLASS kernel and run it.
|
||||
We use CUTLASS utilities to initialize, fill, compare tensors as they are simple and doesn't come
|
||||
in the way of learning CUTLASS.
|
||||
|
||||
Once all the tensors are initialized and filled with data, create arguments tuple to launch CUTLASS
|
||||
kernel which takes problem size (N = 1, H = 64, W = 64, C = 128), filter size (K = 64,
|
||||
R = 3, S = 3, C = 128 ), padding, strides, dilation, tensors, alpha, beta and the
|
||||
important one, split k-dimension factor. Along with that, we query CUTLASS if any scratch-space
|
||||
memory required by the kernel we instantiated. If yes, we create it and pass it along with other
|
||||
arguments created to intialize CUTLASS kernel then, the kernel is launched.
|
||||
|
||||
In this example, we later on launch a reference convolution kernel (from CUTLASS utilities) to
|
||||
compare if the output from CUTLASS kernel is same as the reference implicit GEMM kernel.
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/device/gemm.h"
|
||||
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
|
||||
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
||||
|
||||
#include "cutlass/util/command_line.h"
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "cutlass/util/reference/device/gemm.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/reference/host/convolution.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
|
||||
#include "helper.h"
|
||||
|
||||
// The code section below describes datatype for input, output tensors and computation between
|
||||
// elements
|
||||
using ElementAccumulator = float; // Data type of accumulator
|
||||
using ElementComputeEpilogue = float; // Data type of epilogue computation (alpha, beta)
|
||||
using ElementInputA = cutlass::half_t; // Data type of elements in input tensor
|
||||
using ElementInputB = cutlass::half_t; // Data type of elements in input tensor
|
||||
using ElementOutput = float; // Data type of elements in output tensor
|
||||
|
||||
using LayoutInputA = cutlass::layout::TensorNHWC;
|
||||
using LayoutInputB = cutlass::layout::TensorNHWC;
|
||||
using LayoutOutput = cutlass::layout::TensorNHWC;
|
||||
|
||||
// This code section describes whether you want to use tensor cores or regular SIMT cores on GPU SM
|
||||
using MMAOp = cutlass::arch::OpClassTensorOp;
|
||||
|
||||
// This code section describes CUDA SM architecture number
|
||||
using SmArch = cutlass::arch::Sm80;
|
||||
|
||||
// This code section describes the tile size a thread block will compute
|
||||
using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 64>; // Threadblock tile shape
|
||||
|
||||
// This code section describes tile size a warp will compute
|
||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; // Warp tile shape
|
||||
|
||||
// This code section describes the size of MMA op
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; // TensorCore instruction shape
|
||||
|
||||
// This code section describes how threadblocks are scheduled on GPU
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>;
|
||||
|
||||
// Number of pipelines you want to use
|
||||
constexpr int NumStages = 3;
|
||||
|
||||
// This code section describe iterator algorithm selected is Analytic or Optimized
|
||||
static cutlass::conv::IteratorAlgorithm const IteratorAlgorithm = cutlass::conv::IteratorAlgorithm::kOptimized;
|
||||
|
||||
// This code section describes the epilogue part of the kernel, we use default value
|
||||
using EpilogueOp = cutlass::epilogue::thread::LinearCombination<
|
||||
ElementOutput, // Data type of output matrix.
|
||||
128 / cutlass::sizeof_bits<ElementOutput>::value, // The number of elements per vectorized.
|
||||
// memory access. This becomes the vector width of
|
||||
// math instructions in the epilogue too.
|
||||
ElementAccumulator, // Data type of accumulator
|
||||
ElementComputeEpilogue>; // Data type for alpha/beta in linear combination
|
||||
|
||||
|
||||
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementInputA, LayoutInputA,
|
||||
ElementInputB, LayoutInputB,
|
||||
ElementOutput, LayoutOutput,
|
||||
ElementAccumulator,
|
||||
MMAOp,
|
||||
SmArch,
|
||||
ThreadblockShape,
|
||||
WarpShape,
|
||||
InstructionShape,
|
||||
EpilogueOp,
|
||||
SwizzleThreadBlock,
|
||||
NumStages,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
IteratorAlgorithm
|
||||
>::Kernel;
|
||||
|
||||
using ImplicitGemm = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Command line options parsing
|
||||
struct Options {
|
||||
|
||||
bool help;
|
||||
cutlass::Tensor4DCoord input_size;
|
||||
cutlass::Tensor4DCoord filter_size;
|
||||
cutlass::Tensor4DCoord padding;
|
||||
cutlass::MatrixCoord conv_stride;
|
||||
cutlass::MatrixCoord dilation;
|
||||
bool reference_check;
|
||||
bool measure_performance;
|
||||
int iterations;
|
||||
bool save_workspace;
|
||||
ElementComputeEpilogue alpha;
|
||||
ElementComputeEpilogue beta;
|
||||
bool benchmark;
|
||||
std::string tag;
|
||||
|
||||
Options():
|
||||
help(false),
|
||||
input_size(1, 32, 32, 32),
|
||||
filter_size(32, 3, 3, 32),
|
||||
padding(1, 1, 1, 1),
|
||||
conv_stride(1, 1),
|
||||
dilation(1, 1),
|
||||
reference_check(false),
|
||||
measure_performance(true),
|
||||
iterations(20),
|
||||
save_workspace(false),
|
||||
alpha(1),
|
||||
beta(0),
|
||||
benchmark(false) { }
|
||||
|
||||
// Verify the problem size is compatible with the CUTLASS Convolution implementation.
|
||||
bool valid() {
|
||||
|
||||
//
|
||||
// CUTLASS attempts to load 128b vectors of cutlass::half_t (F16) elements. Consequently,
|
||||
// all pointers, strides, and tensor extents must be divisible by 8 elements.
|
||||
//
|
||||
int const kAlignment = 8;
|
||||
|
||||
if ((input_size.c() % kAlignment) ||
|
||||
(filter_size.n() % kAlignment)) {
|
||||
|
||||
// misaligned tensors
|
||||
return false;
|
||||
}
|
||||
|
||||
// Invalid padding
|
||||
if ((padding.h() != filter_size.h() / 2) ||
|
||||
(padding.w() != filter_size.w() / 2)) {
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Updates input and filter sizes
|
||||
void update(
|
||||
cutlass::Tensor4DCoord input_size,
|
||||
cutlass::Tensor4DCoord filter_size) {
|
||||
|
||||
this->input_size = input_size;
|
||||
this->filter_size = filter_size;
|
||||
|
||||
padding.n() = filter_size.h() / 2;
|
||||
padding.h() = filter_size.h() / 2;
|
||||
padding.w() = filter_size.w() / 2;
|
||||
padding.c() = filter_size.w() / 2;
|
||||
}
|
||||
|
||||
// Parses the command line
|
||||
void parse(int argc, char const **args) {
|
||||
cutlass::CommandLine cmd(argc, args);
|
||||
|
||||
if (cmd.check_cmd_line_flag("help")) {
|
||||
help = true;
|
||||
}
|
||||
|
||||
if (cmd.check_cmd_line_flag("ref-check")) {
|
||||
reference_check = true;
|
||||
}
|
||||
|
||||
if (cmd.check_cmd_line_flag("perf-check")) {
|
||||
measure_performance = true;
|
||||
}
|
||||
|
||||
if (cmd.check_cmd_line_flag("save-workspace")) {
|
||||
save_workspace = true;
|
||||
}
|
||||
|
||||
if (cmd.check_cmd_line_flag("benchmark")) {
|
||||
benchmark = true;
|
||||
}
|
||||
|
||||
cmd.get_cmd_line_argument("n", input_size.n());
|
||||
cmd.get_cmd_line_argument("h", input_size.h());
|
||||
cmd.get_cmd_line_argument("w", input_size.w());
|
||||
cmd.get_cmd_line_argument("c", input_size.c());
|
||||
|
||||
cmd.get_cmd_line_argument("k", filter_size.n());
|
||||
cmd.get_cmd_line_argument("r", filter_size.h());
|
||||
cmd.get_cmd_line_argument("s", filter_size.w());
|
||||
filter_size.c() = input_size.c();
|
||||
|
||||
cmd.get_cmd_line_argument("alpha", alpha);
|
||||
cmd.get_cmd_line_argument("beta", beta);
|
||||
|
||||
cmd.get_cmd_line_argument("iterations", iterations);
|
||||
cmd.get_cmd_line_argument("tag", tag);
|
||||
|
||||
if (filter_size.h() == 3 && filter_size.w() == 3) {
|
||||
padding = {1, 1, 1, 1};
|
||||
}
|
||||
else {
|
||||
filter_size.h() = 1;
|
||||
filter_size.w() = 1;
|
||||
padding = {0, 0, 0, 0};
|
||||
}
|
||||
}
|
||||
|
||||
/// Prints the usage statement.
|
||||
std::ostream & print_usage(std::ostream &out) const {
|
||||
|
||||
out << "16_ampere_tensorop_conv2dfprop example\n\n"
|
||||
<< " This example uses Ampere's Tensor Core operators on F16 data types to compute\n"
|
||||
<< " forward convolution on tensors of layout NHWC.\n\n"
|
||||
<< "Options:\n\n"
|
||||
<< " --help If specified, displays this usage statement.\n\n"
|
||||
<< " --n <int> Input tensor extent N\n"
|
||||
<< " --h <int> Input tensor extent H\n"
|
||||
<< " --w <int> Input tensor extent W\n"
|
||||
<< " --c <int> Input tensor extent C\n"
|
||||
<< " --k <int> Filter extent K\n"
|
||||
<< " --r <int> Filter extent R\n"
|
||||
<< " --s <int> Filter extent S\n\n"
|
||||
<< " --alpha <float> Epilogue scalar alpha\n"
|
||||
<< " --beta <float> Epilogue scalar beta\n\n"
|
||||
<< " --ref-check If set (true), reference check on the host is computed\n"
|
||||
<< " --perf-check If set (true), performance is measured.\n"
|
||||
<< " --benchmark If set (true), performance benchmarking on several layers and batch-size.\n"
|
||||
<< " --iterations <int> Number of profiling iterations to perform.\n"
|
||||
<< " --save-workspace If set, workspace is written to a text file.\n"
|
||||
<< " --tag <string> String to replicate across the first column in the results table\n";
|
||||
|
||||
out << "\n\nExamples:\n\n"
|
||||
<< "$ ./examples/16_ampere_tensorop_conv2dfprop/16_ampere_tensorop_conv2dfprop --n=32 --h=224 --w=224 --c=128 --k=256 --r=1 --s=1\n\n"
|
||||
<< "$ ./examples/16_ampere_tensorop_conv2dfprop/16_ampere_tensorop_conv2dfprop --n=1 --h=224 --w=224 --c=32 --k=32 --r=3 --s=3 --ref-check\n\n";
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
/// Computes the output tensor size (NPQK)
|
||||
cutlass::Tensor4DCoord output_size() const {
|
||||
return cutlass::Tensor4DCoord(
|
||||
input_size.n(),
|
||||
(input_size.h() + padding.n() + padding.h() - filter_size.h()) / conv_stride.row() + 1,
|
||||
(input_size.w() + padding.w() + padding.c() - filter_size.w()) / conv_stride.column() + 1,
|
||||
filter_size.n());
|
||||
}
|
||||
|
||||
/// Compute performance in GFLOP/s
|
||||
double gflops(double runtime_s) const {
|
||||
|
||||
// Number of multiply-adds = NPQK * CRS
|
||||
int64_t fmas = output_size().product() * int64_t(filter_size.h() * filter_size.w() * filter_size.c());
|
||||
|
||||
// Two flops per multiply-add
|
||||
return 2.0 * double(fmas) / double(1.0e9) / runtime_s;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
struct Result {
|
||||
double runtime_ms;
|
||||
double gflops;
|
||||
cutlass::Status status;
|
||||
cutlass::Status reference_check;
|
||||
cudaError_t error;
|
||||
|
||||
Result():
|
||||
runtime_ms(0),
|
||||
gflops(0),
|
||||
status(cutlass::Status::kSuccess),
|
||||
reference_check(cutlass::Status::kInvalid),
|
||||
error(cudaSuccess) { }
|
||||
|
||||
static std::ostream & print_header(std::ostream &out, Options const &options) {
|
||||
|
||||
if (!options.tag.empty()) {
|
||||
out << "Name,";
|
||||
}
|
||||
|
||||
out << "Layer,N,H,W,C,K,R,S,Runtime,GFLOPs";
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream & print(std::ostream &out, int idx, Options const &options) {
|
||||
|
||||
if (!options.tag.empty()) {
|
||||
out << options.tag << ",";
|
||||
}
|
||||
|
||||
out
|
||||
<< "conv_" << idx << ","
|
||||
<< options.input_size.n() << ","
|
||||
<< options.input_size.h() << ","
|
||||
<< options.input_size.w() << ","
|
||||
<< options.input_size.c() << ","
|
||||
<< options.filter_size.n() << ","
|
||||
<< options.filter_size.h() << ","
|
||||
<< options.filter_size.w() << ","
|
||||
<< runtime_ms << ","
|
||||
<< gflops;
|
||||
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Runs one benchmark
|
||||
Result profile_convolution(Options const &options) {
|
||||
|
||||
Result result;
|
||||
|
||||
//
|
||||
// Allocate host-device tensors using the CUTLASS Utilities.
|
||||
//
|
||||
|
||||
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(options.input_size);
|
||||
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(options.filter_size);
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c(options.output_size());
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_ref_c(options.output_size());
|
||||
|
||||
//
|
||||
// Initialize tensors
|
||||
//
|
||||
|
||||
// Fill tensor A on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_a.host_view(),
|
||||
1,
|
||||
ElementInputA(7),
|
||||
ElementInputA(-8),
|
||||
0);
|
||||
|
||||
// Fill tensor B on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_b.host_view(),
|
||||
1,
|
||||
ElementInputB(7),
|
||||
ElementInputB(-8),
|
||||
0);
|
||||
|
||||
// Fill tensor C on host with zeros
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_c.host_view());
|
||||
|
||||
// Fill tensor C for reference on host with zeros
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_ref_c.host_view());
|
||||
|
||||
// Copy data from host to GPU
|
||||
tensor_a.sync_device();
|
||||
tensor_b.sync_device();
|
||||
tensor_c.sync_device();
|
||||
tensor_ref_c.sync_device();
|
||||
|
||||
//
|
||||
// Define arguments for CUTLASS Convolution
|
||||
//
|
||||
|
||||
cutlass::conv::Mode mode = cutlass::conv::Mode::kCrossCorrelation;
|
||||
|
||||
// Split K dimension into 1 partitions
|
||||
int split_k_slices = 1;
|
||||
|
||||
// Construct Conv2dProblemSize with user defined output size
|
||||
cutlass::conv::Conv2dProblemSize problem_size(
|
||||
options.input_size,
|
||||
options.filter_size,
|
||||
options.padding,
|
||||
options.conv_stride,
|
||||
options.dilation,
|
||||
options.output_size(),
|
||||
mode,
|
||||
split_k_slices
|
||||
);
|
||||
|
||||
// Construct ImplicitGemm::Argument structure with conv2d
|
||||
// problem size, data pointers, and epilogue values
|
||||
typename ImplicitGemm::Arguments arguments{
|
||||
problem_size,
|
||||
tensor_a.device_ref(),
|
||||
tensor_b.device_ref(),
|
||||
tensor_c.device_ref(),
|
||||
tensor_c.device_ref(),
|
||||
{options.alpha, options.beta},
|
||||
};
|
||||
|
||||
//
|
||||
// Initialize CUTLASS Convolution
|
||||
//
|
||||
|
||||
ImplicitGemm implicit_gemm_op;
|
||||
|
||||
size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments);
|
||||
|
||||
// Allocate workspace memory
|
||||
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
||||
|
||||
result.status = implicit_gemm_op.can_implement(arguments);
|
||||
CUTLASS_CHECK(result.status);
|
||||
|
||||
result.status = implicit_gemm_op.initialize(arguments, workspace.get());
|
||||
CUTLASS_CHECK(result.status);
|
||||
|
||||
//
|
||||
// Launch initialized CUTLASS kernel
|
||||
//
|
||||
result.status = implicit_gemm_op();
|
||||
|
||||
CUTLASS_CHECK(result.status);
|
||||
|
||||
//
|
||||
// Optional reference check
|
||||
//
|
||||
|
||||
if (options.reference_check) {
|
||||
std::cout << "Verification on host...\n";
|
||||
|
||||
// Compute with reference implementation
|
||||
cutlass::reference::host::Conv2dFprop<
|
||||
ElementInputA,
|
||||
LayoutInputA,
|
||||
ElementInputB,
|
||||
LayoutInputB,
|
||||
ElementOutput,
|
||||
LayoutOutput,
|
||||
ElementComputeEpilogue,
|
||||
ElementAccumulator,
|
||||
cutlass::NumericConverter<ElementOutput, ElementComputeEpilogue>
|
||||
>(
|
||||
problem_size,
|
||||
tensor_a.host_ref(),
|
||||
tensor_b.host_ref(),
|
||||
tensor_c.host_ref(),
|
||||
tensor_ref_c.host_ref(),
|
||||
options.alpha,
|
||||
options.beta
|
||||
);
|
||||
|
||||
// Check if output from CUTLASS kernel and reference kernel are equal or not
|
||||
tensor_c.sync_host();
|
||||
|
||||
bool passed = cutlass::reference::host::TensorEquals(
|
||||
tensor_c.host_view(),
|
||||
tensor_ref_c.host_view());
|
||||
|
||||
if (!passed) {
|
||||
result.reference_check = cutlass::Status::kErrorInternal;
|
||||
std::cout << "ERROR - results miscompared.\n";
|
||||
}
|
||||
else {
|
||||
result.reference_check = cutlass::Status::kSuccess;
|
||||
std::cout << "Passed.\n";
|
||||
}
|
||||
}
|
||||
else {
|
||||
result.reference_check = cutlass::Status::kInvalid;
|
||||
}
|
||||
|
||||
if (options.save_workspace) {
|
||||
|
||||
std::stringstream ss;
|
||||
|
||||
ss << "16_ampere_workspace_conv2dfprop_"
|
||||
<< options.input_size.n() << "x" << options.input_size.h() << "x" << options.input_size.w() << "x" << options.input_size.c()
|
||||
<< "_"
|
||||
<< options.filter_size.n() << "x" << options.filter_size.h() << "x" << options.filter_size.w() << "x" << options.filter_size.c()
|
||||
<< ".dat";
|
||||
|
||||
std::ofstream output_workspace(ss.str());
|
||||
|
||||
output_workspace
|
||||
<< "Input = \n" << tensor_a.host_view() << "\n\n"
|
||||
<< "Filters = \n" << tensor_b.host_view() << "\n\n";
|
||||
|
||||
if (options.reference_check) {
|
||||
output_workspace << "Reference = \n" << tensor_ref_c.host_view() << "\n\n";
|
||||
}
|
||||
|
||||
output_workspace << "Computed = \n" << tensor_c.host_view() << std::endl;
|
||||
|
||||
std::cout << "Results written to '" << ss.str() << "'." << std::endl;
|
||||
}
|
||||
|
||||
//
|
||||
// Performance measurement
|
||||
//
|
||||
|
||||
if (options.measure_performance) {
|
||||
|
||||
cudaEvent_t events[2];
|
||||
|
||||
for (auto & event : events) {
|
||||
result.error = cudaEventCreate(&event);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventCreate() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
// Record an event at the start of a series of convolution operations.
|
||||
result.error = cudaEventRecord(events[0]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Launch a sequence of implicit GEMM operations on the device
|
||||
for (int iteration = 0; iteration < options.iterations; ++iteration) {
|
||||
result.status = implicit_gemm_op();
|
||||
CUTLASS_CHECK(result.status);
|
||||
}
|
||||
|
||||
// Record an event when the convolutions have been launched.
|
||||
result.error = cudaEventRecord(events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Wait for work on the device to complete.
|
||||
result.error = cudaEventSynchronize(events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventSynchronize() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Measure elapsed runtime
|
||||
float runtime_ms = 0;
|
||||
result.error = cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventElapsed() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Print average runtime and GFLOPs.
|
||||
result.runtime_ms = double(runtime_ms) / double(options.iterations);
|
||||
result.gflops = options.gflops(result.runtime_ms / 1000.0);
|
||||
|
||||
// Cleanup
|
||||
for (auto event : events) {
|
||||
(void)cudaEventDestroy(event);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
int main(int argc, char const **args) {
|
||||
|
||||
bool notSupported = false;
|
||||
|
||||
// Ampere Tensor Core operations exposed with mma.sync are first available in CUDA 11.0.
|
||||
//
|
||||
// CUTLASS must be compiled with CUDA 11 Toolkit to run Conv2dFprop examples.
|
||||
if (!(__CUDACC_VER_MAJOR__ > 11 || (__CUDACC_VER_MAJOR__ == 11 && __CUDACC_VER_MINOR__ >= 0))) {
|
||||
std::cerr << "Ampere Tensor Core operations must be compiled with CUDA 11.0 Toolkit or later." << std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
cudaDeviceProp props;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&props, 0));
|
||||
|
||||
if (!(props.major > 8 || (props.major == 8 && props.minor >= 0))) {
|
||||
std::cerr << "Ampere Tensor Ops must be run on a machine with compute capability at least 80."
|
||||
<< std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
if (notSupported) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
Options options;
|
||||
|
||||
options.parse(argc, args);
|
||||
|
||||
if (options.help) {
|
||||
options.print_usage(std::cout) << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (options.benchmark) {
|
||||
// Benchmark several layers
|
||||
|
||||
int batch_sizes[] = {1, 32, 64, 128, 256, 512};
|
||||
|
||||
struct Benchmark {
|
||||
int h, w, c, k, r, s;
|
||||
} layers[] = {
|
||||
{56, 56, 64, 256, 1, 1},
|
||||
{56, 56, 64, 64, 1, 1},
|
||||
{56, 56, 64, 64, 3, 3},
|
||||
{56, 56, 256, 64, 1, 1},
|
||||
{56, 56, 256, 512, 1, 1},
|
||||
{56, 56, 256, 128, 1, 1},
|
||||
{28, 28, 128, 128, 3, 3},
|
||||
{28, 28, 128, 512, 1, 1},
|
||||
{28, 28, 512, 128, 1, 1},
|
||||
{28, 28, 512, 1024, 1, 1},
|
||||
{28, 28, 512, 256, 1, 1},
|
||||
{14, 14, 256, 256, 3, 3},
|
||||
{14, 14, 256, 1024, 1, 1},
|
||||
{14, 14, 1024, 256, 1, 1},
|
||||
{14, 14, 1024, 2048, 1, 1},
|
||||
{14, 14, 1024, 512, 1, 1},
|
||||
{7, 7, 512, 512, 3, 3},
|
||||
};
|
||||
|
||||
Result::print_header(std::cout, options) << std::endl;
|
||||
|
||||
int idx = 1;
|
||||
|
||||
for (auto const &layer : layers) {
|
||||
for (auto N : batch_sizes) {
|
||||
|
||||
options.update({N, layer.h, layer.w, layer.c}, {layer.k, layer.r, layer.s, layer.c});
|
||||
|
||||
Result result = profile_convolution(options);
|
||||
result.print(std::cout, idx, options) << std::endl;
|
||||
}
|
||||
|
||||
++idx;
|
||||
}
|
||||
}
|
||||
else {
|
||||
|
||||
// Execute one problem size
|
||||
if (!options.valid()) {
|
||||
std::cerr << "Invalid problem." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
Result result = profile_convolution(options);
|
||||
|
||||
Result::print_header(std::cout, options) << std::endl;
|
||||
result.print(std::cout, 1, options) << std::endl;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
28
examples/17_fprop_per_channel_bias/CMakeLists.txt
Normal file
28
examples/17_fprop_per_channel_bias/CMakeLists.txt
Normal file
@ -0,0 +1,28 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
cutlass_example_add_executable(
|
||||
17_fprop_per_channel_bias
|
||||
fprop_per_channel_bias.cu
|
||||
)
|
||||
|
||||
300
examples/17_fprop_per_channel_bias/fprop_per_channel_bias.cu
Normal file
300
examples/17_fprop_per_channel_bias/fprop_per_channel_bias.cu
Normal file
@ -0,0 +1,300 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
/**
|
||||
The convolution version of 12_gemm_bias_relu. Similarly, we put bias vector in Operand C and the
|
||||
rest is the same as normal convolution.
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/device/gemm.h"
|
||||
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
|
||||
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
||||
|
||||
#include "cutlass/util/command_line.h"
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/host_reorder.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "cutlass/util/reference/device/gemm.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/reference/device/convolution.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
|
||||
#include "helper.h"
|
||||
|
||||
// The code section below describes datatype for input, output tensors and computation between
|
||||
// elements
|
||||
using ElementAccumulator = float; // Data type of accumulator
|
||||
using ElementComputeEpilogue = ElementAccumulator; // Data type of epilogue computation
|
||||
using ElementInputA = cutlass::half_t; // Data type of elements in input tensor
|
||||
using ElementInputB = cutlass::half_t; // Data type of elements in input tensor
|
||||
using ElementOutput = float; // Data type of elements in output tensor
|
||||
|
||||
using LayoutInputA = cutlass::layout::TensorNHWC;
|
||||
using LayoutInputB = cutlass::layout::TensorNHWC;
|
||||
using LayoutOutput = cutlass::layout::TensorNHWC;
|
||||
|
||||
// This code section describes whether you want to use tensor cores or regular SIMT cores on GPU SM
|
||||
using MMAOp = cutlass::arch::OpClassTensorOp;
|
||||
|
||||
// This code section describes CUDA SM architecture number
|
||||
using SmArch = cutlass::arch::Sm80;
|
||||
|
||||
// This code section describes the tile size a thread block will compute
|
||||
using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>; // Threadblock tile shape
|
||||
|
||||
// This code section describes tile size a warp will compute
|
||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; // Warp tile shape
|
||||
|
||||
// This code section describes the size of MMA op
|
||||
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; // TensorCore instruction shape
|
||||
|
||||
// This code section describes how threadblocks are scheduled on GPU
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>;
|
||||
|
||||
// Number of pipelines you want to use
|
||||
constexpr int NumStages = 4;
|
||||
|
||||
// This code section describe iterator algorithm selected is Analytic or Optimized
|
||||
static cutlass::conv::IteratorAlgorithm const IteratorAlgorithm = cutlass::conv::IteratorAlgorithm::kOptimized;
|
||||
|
||||
// This code section describes the epilogue part of the kernel, we use default value
|
||||
using EpilogueOp = cutlass::epilogue::thread::LinearCombinationRelu<
|
||||
ElementOutput, // Data type of output matrix.
|
||||
128 / cutlass::sizeof_bits<ElementOutput>::value, // The number of elements per vectorized.
|
||||
// memory access. This becomes the vector width of
|
||||
// math instructions in the epilogue too.
|
||||
ElementAccumulator, // Data type of accumulator
|
||||
ElementComputeEpilogue, // Data type for alpha in linear combination
|
||||
cutlass::epilogue::thread::ScaleType::NoBetaScaling>; // alpha X C + per channel bias
|
||||
|
||||
|
||||
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementInputA, LayoutInputA,
|
||||
ElementInputB, LayoutInputB,
|
||||
ElementOutput, LayoutOutput,
|
||||
ElementAccumulator,
|
||||
MMAOp,
|
||||
SmArch,
|
||||
ThreadblockShape,
|
||||
WarpShape,
|
||||
InstructionShape,
|
||||
EpilogueOp,
|
||||
SwizzleThreadBlock,
|
||||
NumStages,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
IteratorAlgorithm
|
||||
>::Kernel;
|
||||
|
||||
using ImplicitGemm = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
int run() {
|
||||
|
||||
// Construct Conv2dProblemSize with user defined output size
|
||||
cutlass::conv::Conv2dProblemSize problem_size(
|
||||
{1, 7, 7, 512}, // activation
|
||||
{512, 3, 3, 512}, // filter
|
||||
{1, 1, 1, 1}, // padding
|
||||
{1, 1}, // striding
|
||||
{1, 1}, // dilation
|
||||
cutlass::conv::Mode::kCrossCorrelation, // mode (convolution or cross-correlation)
|
||||
1 // split-k slices
|
||||
);
|
||||
|
||||
// Initialize tensors using CUTLASS helper functions
|
||||
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(problem_size.activation_extent());
|
||||
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(problem_size.filter_extent());
|
||||
|
||||
// Create tensor C with dimensions 1x1x1xk which is the bias vector
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c_bias({1, 1, 1, problem_size.K});
|
||||
|
||||
// Create tensor D used to store output from CUTLASS kernel
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_d(problem_size.output_extent());
|
||||
// Create matrix D with dimensions M x N used to store output from reference
|
||||
// kernel
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_ref_d(problem_size.output_extent());
|
||||
|
||||
// Fill input and output matrices on host using CUTLASS helper functions
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_a.host_view(),
|
||||
1,
|
||||
ElementInputA(4),
|
||||
ElementInputA(-4),
|
||||
0); // <- Fill tensor A on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_b.host_view(),
|
||||
1,
|
||||
ElementInputB(4),
|
||||
ElementInputB(-4),
|
||||
0); // <- Fill tensor B on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_c_bias.host_view(),
|
||||
1,
|
||||
ElementOutput(4),
|
||||
ElementOutput(-4),
|
||||
0); // <- Fill matrix C on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_d.host_view()); // <- fill matrix D on host with zeros
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_ref_d.host_view()); // <- fill matrix D for reference on host with zeros
|
||||
|
||||
// Copy data from host to GPU
|
||||
tensor_a.sync_device();
|
||||
tensor_b.sync_device();
|
||||
tensor_c_bias.sync_device();
|
||||
tensor_d.sync_device();
|
||||
tensor_ref_d.sync_device();
|
||||
|
||||
// Initialize alpha for dot product computation
|
||||
ElementComputeEpilogue alpha = ElementComputeEpilogue(1);
|
||||
|
||||
// Create a tuple of gemm kernel arguments. This is later passed as arguments to launch
|
||||
// instantiated CUTLASS kernel
|
||||
typename ImplicitGemm::Arguments arguments{
|
||||
problem_size,
|
||||
tensor_a.device_ref(), // <- reference to tensor A on device
|
||||
tensor_b.device_ref(), // <- reference to tensor B on device
|
||||
// tensor C is treated as the bias vector. We can enable the CONV
|
||||
// to project away the N, H, W dimension by setting the stride to zero.
|
||||
{tensor_c_bias.device_data(), LayoutOutput::Stride(0)},
|
||||
tensor_d.device_ref(), // <- reference to tensor D on device
|
||||
{alpha} };
|
||||
|
||||
// Instantiate CUTLASS kernel depending on templates
|
||||
ImplicitGemm implicit_gemm_op;
|
||||
|
||||
// Using the arguments, query for extra workspace required for matrix multiplication computation
|
||||
size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments);
|
||||
|
||||
// Allocate workspace memory
|
||||
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
||||
|
||||
// Check the problem size is supported or not
|
||||
cutlass::Status status = implicit_gemm_op.can_implement(arguments);
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Initialize CUTLASS kernel with arguments and workspace pointer
|
||||
status = implicit_gemm_op.initialize(arguments, workspace.get());
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Launch initialized CUTLASS kernel
|
||||
status = implicit_gemm_op();
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
//
|
||||
// Create instantiation for device reference conv kernel
|
||||
//
|
||||
|
||||
// Launch device reference to compute strictly the product A * B
|
||||
cutlass::reference::device::Conv2d<
|
||||
ElementInputA,
|
||||
LayoutInputA,
|
||||
ElementInputB,
|
||||
LayoutInputB,
|
||||
ElementOutput,
|
||||
LayoutOutput,
|
||||
ElementComputeEpilogue,
|
||||
ElementAccumulator,
|
||||
cutlass::NumericConverter<ElementOutput, ElementComputeEpilogue>>
|
||||
(
|
||||
cutlass::conv::Operator::kFprop,
|
||||
problem_size,
|
||||
tensor_a.device_ref(),
|
||||
tensor_b.device_ref(),
|
||||
tensor_c_bias.device_ref(),
|
||||
tensor_ref_d.device_ref(),
|
||||
alpha, 0
|
||||
);
|
||||
|
||||
// Wait for kernels to finish
|
||||
cudaDeviceSynchronize();
|
||||
|
||||
// Copy output data from CUTLASS and reference kernel to host for comparison
|
||||
tensor_d.sync_host();
|
||||
tensor_ref_d.sync_host();
|
||||
|
||||
// Compute bias + relu in host code
|
||||
for (int n = 0; n < problem_size.N; ++n) {
|
||||
for (int p = 0; p < problem_size.P; ++p) {
|
||||
for (int q = 0; q < problem_size.Q; ++q) {
|
||||
for (int k = 0; k < problem_size.K; ++k) {
|
||||
|
||||
tensor_ref_d.at({n, p, q, k}) =
|
||||
std::max(ElementOutput(0),
|
||||
ElementOutput(tensor_ref_d.at({n, p, q, k}) +
|
||||
tensor_c_bias.at({0, 0, 0, k})));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check if output from CUTLASS kernel and reference kernel are equal or not
|
||||
std::cout << (cutlass::reference::host::TensorEquals(tensor_d.host_view(),
|
||||
tensor_ref_d.host_view())
|
||||
? "Passed"
|
||||
: "Failed")
|
||||
<< std::endl;
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main(int argc, char const **args) {
|
||||
|
||||
bool notSupported = false;
|
||||
|
||||
// Ampere Tensor Core operations exposed with mma.sync are first available in CUDA 11.0.
|
||||
//
|
||||
// CUTLASS must be compiled with CUDA 11 Toolkit to run Conv2dFprop examples.
|
||||
if (!(__CUDACC_VER_MAJOR__ > 11 || (__CUDACC_VER_MAJOR__ == 11 && __CUDACC_VER_MINOR__ >= 0))) {
|
||||
std::cerr << "Ampere Tensor Core operations must be compiled with CUDA 11.0 Toolkit or later." << std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
cudaDeviceProp props;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&props, 0));
|
||||
|
||||
if (!(props.major > 8 || (props.major == 8 && props.minor >= 0))) {
|
||||
std::cerr << "Ampere Tensor Ops must be run on a machine with compute capability at least 80."
|
||||
<< std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
if (notSupported) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return run();
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
28
examples/18_ampere_fp64_tensorop_affine2_gemm/CMakeLists.txt
Normal file
28
examples/18_ampere_fp64_tensorop_affine2_gemm/CMakeLists.txt
Normal file
@ -0,0 +1,28 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
cutlass_example_add_executable(
|
||||
18_ampere_fp64_tensorop_affine2_gemm
|
||||
ampere_fp64_tensorop_affine2_gemm.cu
|
||||
)
|
||||
|
||||
@ -0,0 +1,336 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
/**
|
||||
In the normal GEMM, the fast changing dimension of a matrix always has stride
|
||||
equals to 1, e.g. ColumnMajor and RowMajor matrix. Affine2 matrix can have
|
||||
larger than 1 stride in both dimensions. To support such layout, we need to
|
||||
change to method to visit the global memory:
|
||||
|
||||
1. We can only visit 1 element a time because elements are not stored
|
||||
consecutively anymore. Vectorized load/store is not possible.
|
||||
2. One extra multiplication is needed in calculating the global memory
|
||||
address
|
||||
addr = base_pointer + coord1 * stride1 + coord2 * stride2
|
||||
|
||||
The rest part of GEMM which includes shared memory load/store, mma comutation
|
||||
is the same.
|
||||
|
||||
This example uses Ampere fp64 tensore core Affine2 GEMM as an example. SIMT
|
||||
(e.g. sgemm, dgemm) has support Affine2 layout.
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/device/gemm_universal_adapter.h"
|
||||
#include "cutlass/gemm/kernel/default_gemm_with_k_reduction.h"
|
||||
#include "cutlass/reduction/device/reduce_split_k.h"
|
||||
#include "cutlass/reduction/kernel/reduce_split_k.h"
|
||||
#include "cutlass/reduction/thread/reduction_operators.h"
|
||||
#include "cutlass/matrix_coord.h"
|
||||
|
||||
#include "cutlass/util/command_line.h"
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "cutlass/util/reference/device/gemm.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
|
||||
#include "helper.h"
|
||||
|
||||
// The code section below describes datatype for input, output tensors and computation between
|
||||
// elements
|
||||
using ElementAccumulator = double; // Data type of accumulator
|
||||
using ElementComputeEpilogue = ElementAccumulator; // Data type of epilogue computation
|
||||
using ElementInputA = double; // Data type of elements in input tensor
|
||||
using ElementInputB = double; // Data type of elements in input tensor
|
||||
using ElementOutput = double; // Data type of elements in output tensor
|
||||
|
||||
// Since Affine2 explicitly lists the strides of both dimensions, it does not really matter if
|
||||
// it is columnmajor and rowmajor. However, it helps CUTLASS to improve the load locality if
|
||||
// CUTLASS can know which dimension of A/B operand has smaller stride or more dense.
|
||||
//
|
||||
// Affine2 ColumnMajor means the row stride is smaller and Affine2 RowMajor means the column
|
||||
// stride is smaller.
|
||||
//
|
||||
// The Affine2 epilogue reuses AffineN epilogue so it does not need to specify column majore
|
||||
// or row major.
|
||||
using LayoutInputA = cutlass::layout::AffineRank2ColumnMajor;
|
||||
using LayoutInputB = cutlass::layout::AffineRank2RowMajor;
|
||||
using LayoutOutput = cutlass::layout::AffineRankN<2>;
|
||||
|
||||
// This code section describes whether you want to use tensor cores or regular SIMT cores on GPU SM
|
||||
using MMAOp = cutlass::arch::OpClassTensorOp;
|
||||
|
||||
// This code section describes CUDA SM architecture number
|
||||
using SmArch = cutlass::arch::Sm80;
|
||||
|
||||
// This code section describes the tile size a thread block will compute
|
||||
using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 16>; // Threadblock tile shape
|
||||
|
||||
// This code section describes tile size a warp will compute
|
||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 16>; // Warp tile shape
|
||||
|
||||
// This code section describes the size of MMA op
|
||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>; // TensorCore instruction shape
|
||||
|
||||
// This code section describes how threadblocks are scheduled on GPU
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<8>;
|
||||
|
||||
// Number of pipelines you want to use
|
||||
constexpr int NumStages = 3;
|
||||
|
||||
// This code section describes the epilogue part of the kernel, we use default value
|
||||
using EpilogueOp = cutlass::epilogue::thread::LinearCombination<
|
||||
ElementOutput, // Data type of output matrix.
|
||||
1, // The number of elements per memory
|
||||
// access has. It has to be 1 for
|
||||
// affine2.
|
||||
ElementComputeEpilogue>;
|
||||
|
||||
using GemmKernel = typename cutlass::gemm::kernel::DefaultGemmUniversal<
|
||||
ElementInputA, LayoutInputA, cutlass::ComplexTransform::kNone, 1, // AlignmentA has to be 1
|
||||
ElementInputB, LayoutInputB, cutlass::ComplexTransform::kNone, 1, // AlignmentB has to be 1
|
||||
ElementOutput, LayoutOutput,
|
||||
ElementAccumulator,
|
||||
MMAOp,
|
||||
SmArch,
|
||||
ThreadblockShape,
|
||||
WarpShape,
|
||||
InstructionShape,
|
||||
EpilogueOp,
|
||||
SwizzleThreadBlock,
|
||||
NumStages,
|
||||
cutlass::arch::OpMultiplyAdd
|
||||
>::GemmKernel;
|
||||
|
||||
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
int run() {
|
||||
|
||||
// Construct Gemm ProblemSize with user defined output size
|
||||
cutlass::gemm::GemmCoord problem_size = {1024, 512, 1024};
|
||||
|
||||
// Stride factor shows the distance between two elements in the differnet dimensions. The
|
||||
// first data is the logical distance between two rows, the second is between two columns.
|
||||
// CUTLASS has a utility tool cutlass::layout::Affine2Layout_Factory<Layout>::layout_factory
|
||||
// to help to convert stride_factor to the two strides.
|
||||
//
|
||||
// It is also totally fine to compute the strides directly without using the utility to
|
||||
// construct the affine2 layout.
|
||||
typename LayoutInputA::Stride::Index stride_factor_A[] = {3, 4};
|
||||
typename LayoutInputB::Stride::Index stride_factor_B[] = {5, 6};
|
||||
typename LayoutOutput::Stride::Index stride_factor_C[] = {7, 8};
|
||||
|
||||
// Initialize tensors using CUTLASS helper functions
|
||||
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(problem_size.mk(),
|
||||
cutlass::layout::Affine2Layout_Factory<LayoutInputA>::layout_factory(problem_size.mk(),
|
||||
stride_factor_A));
|
||||
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(problem_size.kn(),
|
||||
cutlass::layout::Affine2Layout_Factory<LayoutInputB>::layout_factory(problem_size.kn(),
|
||||
stride_factor_B));
|
||||
|
||||
// Create matrix C used to load for bias addition.
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c(problem_size.mn(),
|
||||
cutlass::layout::Affine2Layout_Factory<LayoutOutput>::layout_factory(problem_size.mn(),
|
||||
stride_factor_C));
|
||||
|
||||
// Create matrix D used to store output from CUTLASS kernel
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_d(problem_size.mn(),
|
||||
cutlass::layout::Affine2Layout_Factory<LayoutOutput>::layout_factory(problem_size.mn(),
|
||||
stride_factor_C));
|
||||
|
||||
// Create matrix D with dimensions M x N used to store output from reference
|
||||
// kernel
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_ref_d(problem_size.mn(),
|
||||
cutlass::layout::Affine2Layout_Factory<LayoutOutput>::layout_factory(problem_size.mn(),
|
||||
stride_factor_C));
|
||||
|
||||
// Fill input and output matrices on host using CUTLASS helper functions
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_a.host_view(),
|
||||
1,
|
||||
ElementInputA(4),
|
||||
ElementInputA(-4),
|
||||
0); // <- Fill matrix A on host with uniform-distribution random data
|
||||
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_b.host_view(),
|
||||
1,
|
||||
ElementInputB(4),
|
||||
ElementInputB(-4),
|
||||
0); // <- Fill matrix B on host with uniform-distribution random data
|
||||
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_c.host_view(),
|
||||
1,
|
||||
ElementOutput(4),
|
||||
ElementOutput(-4),
|
||||
0); // <- Fill matrix C on host with uniform-distribution random data
|
||||
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_d.host_view()); // <- fill matrix D on host with zeros
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_ref_d.host_view()); // <- fill matrix D for reference on host with zeros
|
||||
|
||||
// Copy data from host to GPU
|
||||
tensor_a.sync_device();
|
||||
tensor_b.sync_device();
|
||||
tensor_c.sync_device();
|
||||
tensor_d.sync_device();
|
||||
tensor_ref_d.sync_device();
|
||||
|
||||
// Initialize alpha for dot product computation
|
||||
ElementComputeEpilogue alpha = ElementComputeEpilogue(1);
|
||||
ElementComputeEpilogue beta = ElementComputeEpilogue(1);
|
||||
|
||||
cutlass::gemm::GemmUniversalMode mode = cutlass::gemm::GemmUniversalMode::kGemm;
|
||||
|
||||
int batch_count = 1;
|
||||
|
||||
// Create a tuple of gemm kernel arguments. This is later passed as arguments to launch
|
||||
// instantiated CUTLASS kernel
|
||||
typename Gemm::Arguments arguments{
|
||||
mode,
|
||||
problem_size,
|
||||
batch_count,
|
||||
{alpha, beta},
|
||||
tensor_a.device_ref().data(), // <- reference to matrix A on device
|
||||
tensor_b.device_ref().data(), // <- reference to matrix B on device
|
||||
tensor_c.device_ref().data(), // <- reference to matrix C on device
|
||||
tensor_d.device_ref().data(), // <- reference to matrix D on device
|
||||
tensor_a.layout().capacity(problem_size.mn()),
|
||||
tensor_b.layout().capacity(problem_size.kn()),
|
||||
tensor_c.layout().capacity(problem_size.mn()),
|
||||
tensor_d.layout().capacity(problem_size.mn()),
|
||||
tensor_a.layout().stride(),
|
||||
tensor_b.layout().stride(),
|
||||
tensor_c.layout().stride(),
|
||||
tensor_d.layout().stride()
|
||||
};
|
||||
|
||||
// Instantiate CUTLASS kernel depending on templates
|
||||
Gemm gemm_op;
|
||||
|
||||
// Using the arguments, query for extra workspace required for matrix multiplication computation
|
||||
size_t workspace_size = Gemm::get_workspace_size(arguments);
|
||||
|
||||
// Allocate workspace memory
|
||||
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
||||
|
||||
// Check the problem size is supported or not
|
||||
cutlass::Status status = gemm_op.can_implement(arguments);
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Initialize CUTLASS kernel with arguments and workspace pointer
|
||||
status = gemm_op.initialize(arguments, workspace.get());
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Launch initialized CUTLASS kernel
|
||||
status = gemm_op();
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
//
|
||||
// Create instantiation for device reference gemm kernel
|
||||
//
|
||||
|
||||
// Launch device reference to compute strictly the product A * B
|
||||
cutlass::reference::device::Gemm<
|
||||
ElementInputA,
|
||||
LayoutInputA,
|
||||
ElementInputB,
|
||||
LayoutInputB,
|
||||
ElementOutput,
|
||||
LayoutOutput,
|
||||
ElementComputeEpilogue,
|
||||
ElementAccumulator> gemm_device;
|
||||
|
||||
gemm_device
|
||||
(
|
||||
problem_size,
|
||||
alpha,
|
||||
tensor_a.device_ref(),
|
||||
tensor_b.device_ref(),
|
||||
beta,
|
||||
tensor_c.device_ref(),
|
||||
tensor_ref_d.device_ref()
|
||||
);
|
||||
|
||||
// Wait for kernels to finish
|
||||
cudaDeviceSynchronize();
|
||||
|
||||
// Copy output data from CUTLASS and reference kernel to host for comparison
|
||||
tensor_d.sync_host();
|
||||
tensor_ref_d.sync_host();
|
||||
|
||||
bool pass = cutlass::reference::host::TensorEquals(tensor_d.host_view(),
|
||||
tensor_ref_d.host_view());
|
||||
|
||||
// Check if output from CUTLASS kernel and reference kernel are equal or not
|
||||
std::cout << (pass
|
||||
? "Passed"
|
||||
: "Failed")
|
||||
<< std::endl;
|
||||
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main(int argc, char const **args) {
|
||||
|
||||
bool notSupported = false;
|
||||
|
||||
// Ampere Tensor Core operations exposed with mma.sync are first available in CUDA 11.0.
|
||||
//
|
||||
// CUTLASS must be compiled with CUDA 11 Toolkit to run Conv2dFprop examples.
|
||||
if (!(__CUDACC_VER_MAJOR__ > 11 || (__CUDACC_VER_MAJOR__ == 11 && __CUDACC_VER_MINOR__ >= 0))) {
|
||||
std::cerr << "Ampere Tensor Core operations must be compiled with CUDA 11.0 Toolkit or later." << std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
cudaDeviceProp props;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&props, 0));
|
||||
|
||||
if (!(props.major > 8 || (props.major == 8 && props.minor >= 0))) {
|
||||
std::cerr << "Ampere Tensor Ops must be run on a machine with compute capability at least 80."
|
||||
<< std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
if (notSupported) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return run();
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
27
examples/19_tensorop_canonical/CMakeLists.txt
Normal file
27
examples/19_tensorop_canonical/CMakeLists.txt
Normal file
@ -0,0 +1,27 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
19_tensorop_canonical
|
||||
tensorop_canonical.cu
|
||||
)
|
||||
|
||||
432
examples/19_tensorop_canonical/tensorop_canonical.cu
Normal file
432
examples/19_tensorop_canonical/tensorop_canonical.cu
Normal file
@ -0,0 +1,432 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
/*
|
||||
This example requires NVIDIA Ampere GPU or later.
|
||||
*/
|
||||
|
||||
// Standard Library includes
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
|
||||
// CUTLASS Includes
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/functional.h"
|
||||
#include "cutlass/layout/matrix.h"
|
||||
#include "cutlass/gemm/warp/default_mma_tensor_op.h"
|
||||
#include "cutlass/epilogue/warp/fragment_iterator_tensor_op.h"
|
||||
#include "cutlass/epilogue/warp/tile_iterator_tensor_op.h"
|
||||
|
||||
// CUTLASS Utility Includes
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/reference/host/gemm_complex.h"
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Define the overal warp-level problem shape
|
||||
int const kM = 27;
|
||||
int const kN = 31;
|
||||
int const kK = 17;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Define a warp-level GEMM operator.
|
||||
//
|
||||
// This template could be part of the CUTLASS Template Library or implemented internally. This
|
||||
// wraps the matrix multiply operation and epilogue with a GEMM-like interface that can be
|
||||
// instantiated in device code.
|
||||
|
||||
namespace cutlass {
|
||||
namespace gemm {
|
||||
namespace warp {
|
||||
|
||||
template <
|
||||
typename Shape,
|
||||
typename InstructionShape,
|
||||
typename ElementA,
|
||||
typename LayoutA,
|
||||
typename ElementB,
|
||||
typename LayoutB,
|
||||
typename ElementC,
|
||||
typename LayoutC,
|
||||
typename ElementScalar
|
||||
>
|
||||
class GemmTensorOp {
|
||||
public:
|
||||
|
||||
using WarpShape = GemmShape<
|
||||
((Shape::kM + InstructionShape::kM - 1) / InstructionShape::kM) * InstructionShape::kM,
|
||||
((Shape::kN + InstructionShape::kN - 1) / InstructionShape::kN) * InstructionShape::kN,
|
||||
InstructionShape::kK
|
||||
>;
|
||||
|
||||
using MmaWarp = typename cutlass::gemm::warp::DefaultMmaTensorOp<
|
||||
WarpShape,
|
||||
InstructionShape,
|
||||
double, // Data type of A elements
|
||||
cutlass::layout::RowMajor, // Layout of A matrix
|
||||
double, // Data type of B elements
|
||||
cutlass::layout::ColumnMajor, // Layout of B matrix
|
||||
double, // Data type of C elements
|
||||
cutlass::layout::RowMajor // Layout of C matrix
|
||||
>::Type;
|
||||
|
||||
// Number of 'K groups'
|
||||
int const kKgroups = (Shape::kK + InstructionShape::kK - 1) / InstructionShape::kK;
|
||||
|
||||
// Define a 'FragmentIterator' to iterate over slices of accumulators
|
||||
using FragmentIterator = cutlass::epilogue::warp::FragmentIteratorTensorOp<
|
||||
typename MmaWarp::Shape,
|
||||
InstructionShape,
|
||||
double,
|
||||
typename MmaWarp::Policy::Operator::FragmentC,
|
||||
cutlass::layout::RowMajor
|
||||
>;
|
||||
|
||||
// Define an epilogue 'Tile Iteterator' to iterate over slices of elements in Shared Memory
|
||||
using AccumulatorTileIterator = cutlass::epilogue::warp::TileIteratorTensorOpCanonical<
|
||||
typename MmaWarp::Shape,
|
||||
InstructionShape,
|
||||
double,
|
||||
cutlass::layout::RowMajor
|
||||
>;
|
||||
|
||||
using TensorRefA = typename MmaWarp::IteratorA::TensorRef;
|
||||
using TensorRefB = typename MmaWarp::IteratorB::TensorRef;
|
||||
using TensorRefC = typename AccumulatorTileIterator::TensorRef;
|
||||
|
||||
public:
|
||||
CUTLASS_HOST_DEVICE
|
||||
GemmTensorOp() { }
|
||||
|
||||
CUTLASS_DEVICE
|
||||
void operator()(
|
||||
ElementScalar alpha,
|
||||
TensorRefA ref_A,
|
||||
TensorRefB ref_B,
|
||||
ElementScalar beta,
|
||||
TensorRefC ref_C,
|
||||
TensorRefC ref_D,
|
||||
int lane_id) const {
|
||||
|
||||
// Instantiate iterators pointing to slices of the A and B matrices in shared memory
|
||||
typename MmaWarp::IteratorA iter_A(ref_A, {Shape::kM, Shape::kK}, lane_id);
|
||||
typename MmaWarp::IteratorB iter_B(ref_B, {Shape::kK, Shape::kN}, lane_id);
|
||||
|
||||
// Instantiate and clear accumulator tile holding the C matrix
|
||||
typename MmaWarp::FragmentC accum;
|
||||
accum.clear();
|
||||
|
||||
// Instantiate the warp-level matrix multiply operator
|
||||
MmaWarp mma_op;
|
||||
|
||||
// Instantiate fragments holding the slice of the matrix held by each warp
|
||||
typename MmaWarp::FragmentA frag_A[2];
|
||||
typename MmaWarp::FragmentB frag_B[2];
|
||||
|
||||
// Load fragments from shared memory
|
||||
iter_A.load(frag_A[0]);
|
||||
iter_B.load(frag_B[0]);
|
||||
|
||||
++iter_A;
|
||||
++iter_B;
|
||||
|
||||
// Load fragments from shared memory
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int k = 0; k < kKgroups; ++k) {
|
||||
|
||||
// Load fragments from shared memory
|
||||
iter_A.load(frag_A[(k + 1) % 2]);
|
||||
iter_B.load(frag_B[(k + 1) % 2]);
|
||||
|
||||
++iter_A;
|
||||
++iter_B;
|
||||
|
||||
// Compute the matrix multiply
|
||||
mma_op(accum, frag_A[k % 2], frag_B[k % 2], accum);
|
||||
}
|
||||
|
||||
// Instantiate iterators
|
||||
FragmentIterator accum_frag_it(accum);
|
||||
AccumulatorTileIterator source_tile_it(ref_C, {Shape::kM, Shape::kN}, lane_id);
|
||||
AccumulatorTileIterator dest_tile_it(ref_D, {Shape::kM, Shape::kN}, lane_id);
|
||||
|
||||
// Define function objects for linear scaling operation
|
||||
cutlass::multiplies<typename FragmentIterator::Fragment> mul_source;
|
||||
cutlass::multiply_add<typename FragmentIterator::Fragment> mul_add_accumulator;
|
||||
|
||||
// Iterate over the epilogue components
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int idx = 0; idx < FragmentIterator::kIterations; ++idx) {
|
||||
|
||||
// Define storage for slices of the accumulators
|
||||
typename FragmentIterator::Fragment accum_fragment;
|
||||
typename FragmentIterator::Fragment source_fragment;
|
||||
|
||||
// Select a slice of accumulators from the accumulator tile
|
||||
accum_frag_it.load(accum_fragment);
|
||||
++accum_frag_it;
|
||||
|
||||
// Load a corresponding slice from Shared memory
|
||||
source_tile_it.load(source_fragment);
|
||||
++source_tile_it;
|
||||
|
||||
// Compute linear scaling - alpha * AB + beta * C
|
||||
source_fragment = mul_source(beta, source_fragment);
|
||||
accum_fragment = mul_add_accumulator(alpha, accum_fragment, source_fragment);
|
||||
|
||||
// Store the result to shared memory
|
||||
dest_tile_it.store(accum_fragment);
|
||||
++dest_tile_it;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace warp
|
||||
} // namespace gemm
|
||||
} // namespace cutlass
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Sample kernel demonstrating a collective GEMM operation by a warp on arbitrary matrices held
|
||||
// in Shared Memory.
|
||||
__global__ void kernel(
|
||||
double *D_gmem,
|
||||
double alpha,
|
||||
double const *A_gmem,
|
||||
double const *B_gmem,
|
||||
double beta,
|
||||
double const *C_gmem) {
|
||||
|
||||
// Define several matrices in shared memory
|
||||
__shared__ double A[kM][kK];
|
||||
__shared__ double B[kN][kK];
|
||||
__shared__ double C[kM][kN];
|
||||
|
||||
// Copy data into SMEM
|
||||
if (threadIdx.x == 0) {
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (int m = 0; m < kM; ++m) {
|
||||
for (int k = 0; k < kK; ++k) {
|
||||
A[m][k] = A_gmem[m * kK + k];
|
||||
}
|
||||
}
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (int n = 0; n < kN; ++n) {
|
||||
for (int k = 0; k < kK; ++k) {
|
||||
B[n][k] = B_gmem[n * kK + k];
|
||||
}
|
||||
}
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (int m = 0; m < kM; ++m) {
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (int n = 0; n < kN; ++n) {
|
||||
C[m][n] = C_gmem[m * kN + n];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
//
|
||||
// Instantiate a warp-level matrix multiply operator given the fundamental instruction shape (8x8x4),
|
||||
// overall shape, data type of each operand, and layout of each operand.
|
||||
//
|
||||
|
||||
using GemmTensorOp = cutlass::gemm::warp::GemmTensorOp<
|
||||
cutlass::gemm::GemmShape<kM, kN, kK>,
|
||||
cutlass::gemm::GemmShape<8, 8, 4>,
|
||||
double, // Data type of A elements
|
||||
cutlass::layout::RowMajor, // Layout of A matrix
|
||||
double, // Data type of B elements
|
||||
cutlass::layout::ColumnMajor, // Layout of B matrix
|
||||
double, // Data type of C elements
|
||||
cutlass::layout::RowMajor, // Layout of C matrix
|
||||
double // Scalar type of alpha and beta
|
||||
>;
|
||||
|
||||
// Instantiate the GEMM operator
|
||||
GemmTensorOp gemm;
|
||||
|
||||
// Execute the warp-level GEMM operation
|
||||
gemm(
|
||||
alpha,
|
||||
{&A[0][0], kK},
|
||||
{&B[0][0], kK},
|
||||
beta,
|
||||
{&C[0][0], kN},
|
||||
{&C[0][0], kN},
|
||||
threadIdx.x);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Copy data into SMEM
|
||||
if (threadIdx.x == 0) {
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (int m = 0; m < kM; ++m) {
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (int n = 0; n < kN; ++n) {
|
||||
D_gmem[m * kN + n] = C[m][n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Entry point to canonical warp-level GEMM operation
|
||||
int main(int argc, const char *arg[]) {
|
||||
|
||||
bool notSupported = false;
|
||||
|
||||
// CUTLASS must be compiled with CUDA 11 Toolkit to run these examples.
|
||||
if (!(__CUDACC_VER_MAJOR__ >= 11)) {
|
||||
std::cerr << "NVIDIA Ampere Tensor Core operations must be compiled with CUDA 11.0 Toolkit or later." << std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
cudaDeviceProp props;
|
||||
|
||||
cudaError_t error = cudaGetDeviceProperties(&props, 0);
|
||||
if (error != cudaSuccess) {
|
||||
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!((props.major * 10 + props.minor) >= 80)) {
|
||||
std::cerr << "This example requires compute capability at least 80."
|
||||
<< std::endl;
|
||||
notSupported = true;
|
||||
}
|
||||
|
||||
if (notSupported) {
|
||||
// Return 0 so tests are considered passing if run on unsupported platforms.
|
||||
return 0;
|
||||
}
|
||||
|
||||
cutlass::HostTensor<double, cutlass::layout::RowMajor> A({kM, kK});
|
||||
cutlass::HostTensor<double, cutlass::layout::ColumnMajor> B({kK, kN});
|
||||
cutlass::HostTensor<double, cutlass::layout::RowMajor> C({kM, kN});
|
||||
cutlass::HostTensor<double, cutlass::layout::RowMajor> D({kM, kN});
|
||||
|
||||
uint64_t seed = 2020;
|
||||
double max = 8;
|
||||
double min = -8;
|
||||
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
A.host_view(),
|
||||
seed,
|
||||
max,
|
||||
min,
|
||||
0
|
||||
);
|
||||
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
B.host_view(),
|
||||
seed + 17,
|
||||
max,
|
||||
min,
|
||||
0
|
||||
);
|
||||
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
C.host_view(),
|
||||
seed + 31,
|
||||
max,
|
||||
min,
|
||||
0
|
||||
);
|
||||
|
||||
A.sync_device();
|
||||
B.sync_device();
|
||||
C.sync_device();
|
||||
D.sync_device();
|
||||
|
||||
dim3 grid(1,1);
|
||||
dim3 block(32, 1, 1);
|
||||
|
||||
double alpha = 2.25;
|
||||
double beta = 1.24;
|
||||
|
||||
kernel<<< grid, block >>>(
|
||||
D.device_data(),
|
||||
alpha,
|
||||
A.device_data(),
|
||||
B.device_data(),
|
||||
beta,
|
||||
C.device_data()
|
||||
);
|
||||
|
||||
cudaError_t result = cudaDeviceSynchronize();
|
||||
if (result != cudaSuccess) {
|
||||
std::cerr << "Failed to synchronize device after kernel launch." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
D.sync_host();
|
||||
|
||||
// Compute reference on host
|
||||
cutlass::HostTensor<double, cutlass::layout::RowMajor> D_ref({kM, kN}, false);
|
||||
|
||||
cutlass::reference::host::GemmComplex(
|
||||
{kM, kN, kK},
|
||||
alpha,
|
||||
A.host_ref(),
|
||||
cutlass::ComplexTransform::kNone,
|
||||
B.host_ref(),
|
||||
cutlass::ComplexTransform::kNone,
|
||||
beta,
|
||||
C.host_ref(),
|
||||
D_ref.host_ref(),
|
||||
double()
|
||||
);
|
||||
|
||||
// Verify reference matches computed
|
||||
if (!cutlass::reference::host::TensorEquals(
|
||||
D.host_view(),
|
||||
D_ref.host_view())) {
|
||||
|
||||
std::cerr
|
||||
<< "A =\n" << A.host_view()
|
||||
<< "\n\nB = \n" << B.host_view()
|
||||
<< "\n\nC = " << C.host_view()
|
||||
<< "\n\nRef =\n" << D_ref.host_view()
|
||||
<< "\n\nD =\n" << D.host_view() << "\n\n";
|
||||
|
||||
std::cerr << "Error - device results mismatch host reference." << std::endl;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
std::cout << "Passed" << std::endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
27
examples/20_simt_canonical/CMakeLists.txt
Normal file
27
examples/20_simt_canonical/CMakeLists.txt
Normal file
@ -0,0 +1,27 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
20_simt_canonical
|
||||
simt_canonical.cu
|
||||
)
|
||||
|
||||
419
examples/20_simt_canonical/simt_canonical.cu
Normal file
419
examples/20_simt_canonical/simt_canonical.cu
Normal file
@ -0,0 +1,419 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
/*
|
||||
This example requires NVIDIA Maxwell GPU or beyond.
|
||||
*/
|
||||
|
||||
// Standard Library includes
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
|
||||
// CUTLASS Includes
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/core_io.h"
|
||||
#include "cutlass/functional.h"
|
||||
#include "cutlass/layout/matrix.h"
|
||||
#include "cutlass/gemm/warp/mma_simt.h"
|
||||
#include "cutlass/epilogue/warp/fragment_iterator_simt.h"
|
||||
#include "cutlass/epilogue/warp/tile_iterator_simt.h"
|
||||
|
||||
// CUTLASS Utility Includes
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
|
||||
#include "cutlass/util/reference/host/gemm.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/gemm_complex.h"
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Define the overal warp-level problem shape
|
||||
int const kM = 14;
|
||||
int const kN = 27;
|
||||
int const kK = 17;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Define a warp-level GEMM operator.
|
||||
//
|
||||
// This template could be part of the CUTLASS Template Library or implemented internally. This
|
||||
// wraps the matrix multiply operation and epilogue with a GEMM-like interface that can be
|
||||
// instantiated in device code.
|
||||
|
||||
namespace cutlass {
|
||||
namespace gemm {
|
||||
namespace warp {
|
||||
|
||||
template <
|
||||
typename Shape,
|
||||
typename ElementA,
|
||||
typename LayoutA,
|
||||
typename ElementB,
|
||||
typename LayoutB,
|
||||
typename ElementC,
|
||||
typename LayoutC,
|
||||
typename ElementScalar
|
||||
>
|
||||
class GemmSimt {
|
||||
public:
|
||||
|
||||
|
||||
using Policy = cutlass::gemm::warp::MmaSimtPolicy<
|
||||
cutlass::MatrixShape<4, 8>,
|
||||
cutlass::layout::RowMajorInterleaved<2>,
|
||||
cutlass::gemm::GemmShape<4, 4, 1>
|
||||
>;
|
||||
|
||||
using MmaWarp = cutlass::gemm::warp::MmaSimt<
|
||||
cutlass::gemm::GemmShape<16, 32, 8>,
|
||||
float,
|
||||
cutlass::layout::RowMajor,
|
||||
float,
|
||||
cutlass::layout::ColumnMajor,
|
||||
float,
|
||||
cutlass::layout::RowMajor,
|
||||
Policy
|
||||
>;
|
||||
|
||||
// Number of 'K groups'
|
||||
int const kKgroups = Shape::kK;
|
||||
|
||||
using FragmentIterator = cutlass::epilogue::warp::FragmentIteratorSimt<
|
||||
typename MmaWarp::Shape,
|
||||
typename MmaWarp::ThreadMma,
|
||||
layout::RowMajor, // SMEM layout
|
||||
typename MmaWarp::Policy
|
||||
>;
|
||||
|
||||
using AccumulatorTileIterator = cutlass::epilogue::warp::TileIteratorSimtCanonical<
|
||||
typename MmaWarp::Shape,
|
||||
typename MmaWarp::ThreadMma,
|
||||
float, // ElementAccumulator
|
||||
layout::RowMajor, // SMEM layout
|
||||
typename MmaWarp::Policy
|
||||
>;
|
||||
|
||||
using TensorRefA = typename MmaWarp::IteratorA::TensorRef;
|
||||
using TensorRefB = typename MmaWarp::IteratorB::TensorRef;
|
||||
using TensorRefC = typename AccumulatorTileIterator::TensorRef;
|
||||
|
||||
public:
|
||||
CUTLASS_HOST_DEVICE
|
||||
GemmSimt() { }
|
||||
|
||||
CUTLASS_DEVICE
|
||||
void operator()(
|
||||
ElementScalar alpha,
|
||||
TensorRefA ref_A,
|
||||
TensorRefB ref_B,
|
||||
ElementScalar beta,
|
||||
TensorRefC ref_C,
|
||||
TensorRefC ref_D,
|
||||
int lane_id) const {
|
||||
|
||||
// Instantiate iterators pointing to slices of the A and B matrices in shared memory
|
||||
typename MmaWarp::IteratorA iter_A(ref_A, {Shape::kM, Shape::kK}, lane_id);
|
||||
typename MmaWarp::IteratorB iter_B(ref_B, {Shape::kK, Shape::kN}, lane_id);
|
||||
|
||||
// Instantiate and clear accumulator tile holding the C matrix
|
||||
typename MmaWarp::FragmentC accum;
|
||||
accum.clear();
|
||||
|
||||
// Instantiate the warp-level matrix multiply operator
|
||||
MmaWarp mma_op;
|
||||
|
||||
// Instantiate fragments holding the slice of the matrix held by each warp
|
||||
typename MmaWarp::FragmentA frag_A[2];
|
||||
typename MmaWarp::FragmentB frag_B[2];
|
||||
|
||||
// Load fragments from shared memory
|
||||
iter_A.load(frag_A[0]);
|
||||
iter_B.load(frag_B[0]);
|
||||
|
||||
++iter_A;
|
||||
++iter_B;
|
||||
|
||||
// Load fragments from shared memory
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int k = 0; k < kKgroups; ++k) {
|
||||
|
||||
// Load fragments from shared memory
|
||||
iter_A.load(frag_A[(k + 1) % 2]);
|
||||
iter_B.load(frag_B[(k + 1) % 2]);
|
||||
|
||||
++iter_A;
|
||||
++iter_B;
|
||||
|
||||
// Compute the matrix multiply
|
||||
mma_op(accum, frag_A[k % 2], frag_B[k % 2], accum);
|
||||
}
|
||||
|
||||
// Instantiate iterators
|
||||
FragmentIterator accum_frag_it(accum);
|
||||
AccumulatorTileIterator source_tile_it(ref_C, {Shape::kM, Shape::kN}, lane_id);
|
||||
AccumulatorTileIterator dest_tile_it(ref_D, {Shape::kM, Shape::kN}, lane_id);
|
||||
|
||||
// Define function objects for linear scaling operation
|
||||
cutlass::multiplies<typename FragmentIterator::Fragment> mul_source;
|
||||
cutlass::multiply_add<typename FragmentIterator::Fragment> mul_add_accumulator;
|
||||
|
||||
// Iterate over the epilogue components
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int idx = 0; idx < FragmentIterator::kIterations; ++idx) {
|
||||
|
||||
// Define storage for slices of the accumulators
|
||||
typename FragmentIterator::Fragment accum_fragment;
|
||||
typename FragmentIterator::Fragment source_fragment;
|
||||
|
||||
// Select a slice of accumulators from the accumulator tile
|
||||
accum_frag_it.load(accum_fragment);
|
||||
++accum_frag_it;
|
||||
|
||||
// Load a corresponding slice from Shared memory
|
||||
source_tile_it.load(source_fragment);
|
||||
++source_tile_it;
|
||||
|
||||
// Compute linear scaling - alpha * AB + beta * C
|
||||
source_fragment = mul_source(beta, source_fragment);
|
||||
accum_fragment = mul_add_accumulator(alpha, accum_fragment, source_fragment);
|
||||
|
||||
// Store the result to shared memory
|
||||
dest_tile_it.store(accum_fragment);
|
||||
++dest_tile_it;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} // namespace warp
|
||||
} // namespace gemm
|
||||
} // namespace cutlass
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Sample kernel demonstrating a collective GEMM operation by a warp on arbitrary matrices held
|
||||
// in Shared Memory.
|
||||
__global__ void kernel(
|
||||
float *D_gmem,
|
||||
float alpha,
|
||||
float const *A_gmem,
|
||||
float const *B_gmem,
|
||||
float beta,
|
||||
float const *C_gmem) {
|
||||
|
||||
// Define several matrices in shared memory
|
||||
__shared__ float A[kM][kK];
|
||||
__shared__ float B[kN][kK];
|
||||
__shared__ float C[kM][kN];
|
||||
|
||||
// Copy data into SMEM
|
||||
if (threadIdx.x == 0) {
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (int m = 0; m < kM; ++m) {
|
||||
for (int k = 0; k < kK; ++k) {
|
||||
A[m][k] = A_gmem[m * kK + k];
|
||||
}
|
||||
}
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (int n = 0; n < kN; ++n) {
|
||||
for (int k = 0; k < kK; ++k) {
|
||||
B[n][k] = B_gmem[n * kK + k];
|
||||
}
|
||||
}
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (int m = 0; m < kM; ++m) {
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (int n = 0; n < kN; ++n) {
|
||||
C[m][n] = C_gmem[m * kN + n];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
//
|
||||
// Instantiate a warp-level matrix multiply operator given the fundamental instruction shape (8x8x4),
|
||||
// overall shape, data type of each operand, and layout of each operand.
|
||||
//
|
||||
|
||||
using GemmSimt = cutlass::gemm::warp::GemmSimt<
|
||||
cutlass::gemm::GemmShape<kM, kN, kK>,
|
||||
float, // Data type of A elements
|
||||
cutlass::layout::RowMajor, // Layout of A matrix
|
||||
float, // Data type of B elements
|
||||
cutlass::layout::ColumnMajor, // Layout of B matrix
|
||||
float, // Data type of C elements
|
||||
cutlass::layout::RowMajor, // Layout of C matrix
|
||||
float // Scalar type of alpha and beta
|
||||
>;
|
||||
|
||||
// Instantiate the GEMM operator
|
||||
GemmSimt gemm;
|
||||
|
||||
// Execute the warp-level GEMM operation
|
||||
gemm(
|
||||
alpha,
|
||||
{&A[0][0], kK},
|
||||
{&B[0][0], kK},
|
||||
beta,
|
||||
{&C[0][0], kN},
|
||||
{&C[0][0], kN},
|
||||
threadIdx.x);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Copy data into SMEM
|
||||
if (threadIdx.x == 0) {
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (int m = 0; m < kM; ++m) {
|
||||
CUTLASS_PRAGMA_NO_UNROLL
|
||||
for (int n = 0; n < kN; ++n) {
|
||||
D_gmem[m * kN + n] = C[m][n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
int main(int argc, const char *arg[]) {
|
||||
|
||||
cutlass::HostTensor<float, cutlass::layout::RowMajor> A({kM, kK});
|
||||
cutlass::HostTensor<float, cutlass::layout::ColumnMajor> B({kK, kN});
|
||||
cutlass::HostTensor<float, cutlass::layout::RowMajor> C({kM, kN});
|
||||
cutlass::HostTensor<float, cutlass::layout::RowMajor> D({kM, kN});
|
||||
|
||||
uint64_t seed = 2020;
|
||||
float max = 8;
|
||||
float min = -8;
|
||||
|
||||
std::cout << "Simt canonical GEMM problem size = (" << cutlass::gemm::GemmShape<kM, kN, kK>() <<")" << std::endl;
|
||||
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
A.host_view(),
|
||||
seed,
|
||||
max,
|
||||
min,
|
||||
0
|
||||
);
|
||||
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
B.host_view(),
|
||||
seed + 17,
|
||||
max,
|
||||
min,
|
||||
0
|
||||
);
|
||||
|
||||
#if 0 // Debug: fill A sequentially and B as Identity matrix for debugging
|
||||
cutlass::reference::host::BlockFillSequential(
|
||||
A.host_view().data(), A.host_view().capacity());
|
||||
|
||||
cutlass::reference::host::TensorFillIdentity(B.host_view());
|
||||
#endif
|
||||
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
C.host_view(),
|
||||
seed + 31,
|
||||
max,
|
||||
min,
|
||||
0
|
||||
);
|
||||
|
||||
A.sync_device();
|
||||
B.sync_device();
|
||||
C.sync_device();
|
||||
D.sync_device();
|
||||
|
||||
dim3 grid(1, 1);
|
||||
dim3 block(32, 1, 1);
|
||||
|
||||
float alpha = 1.0f;
|
||||
float beta = 0.0f;
|
||||
|
||||
kernel<<< grid, block >>>(
|
||||
D.device_data(),
|
||||
alpha,
|
||||
A.device_data(),
|
||||
B.device_data(),
|
||||
beta,
|
||||
C.device_data()
|
||||
);
|
||||
|
||||
cudaError_t result = cudaDeviceSynchronize();
|
||||
if (result != cudaSuccess) {
|
||||
std::cerr << "Failed to synchronize device after kernel launch." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
D.sync_host();
|
||||
|
||||
// Compute reference on host
|
||||
cutlass::HostTensor<float, cutlass::layout::RowMajor> D_ref({kM, kN}, false);
|
||||
cutlass::reference::host::TensorCopy(D_ref.host_view(), C.host_view());
|
||||
|
||||
cutlass::reference::host::Gemm<
|
||||
float, cutlass::layout::RowMajor,
|
||||
float, cutlass::layout::ColumnMajor,
|
||||
float, cutlass::layout::RowMajor,
|
||||
float, float> reference_gemm;
|
||||
|
||||
reference_gemm(
|
||||
{kM, kN, kK},
|
||||
alpha,
|
||||
A.host_ref(),
|
||||
B.host_ref(),
|
||||
beta,
|
||||
D_ref.host_ref(),
|
||||
float()
|
||||
);
|
||||
|
||||
// Verify reference matches computed
|
||||
if (!cutlass::reference::host::TensorEquals(
|
||||
D.host_view(),
|
||||
D_ref.host_view())) {
|
||||
|
||||
std::cerr
|
||||
<< "A =\n" << A.host_view()
|
||||
<< "\n\nB = \n" << B.host_view()
|
||||
<< "\n\nC = " << C.host_view()
|
||||
<< "\n\nRef =\n" << D_ref.host_view()
|
||||
<< "\n\nD =\n" << D.host_view() << "\n\n";
|
||||
|
||||
std::cerr << "Error - device results mismatch host reference." << std::endl;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
std::cout << "Passed" << std::endl;
|
||||
|
||||
return 0;
|
||||
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
27
examples/21_quaternion_gemm/CMakeLists.txt
Normal file
27
examples/21_quaternion_gemm/CMakeLists.txt
Normal file
@ -0,0 +1,27 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cutlass_example_add_executable(
|
||||
21_quaternion_gemm
|
||||
quaternion_gemm.cu
|
||||
)
|
||||
|
||||
448
examples/21_quaternion_gemm/quaternion_gemm.cu
Normal file
448
examples/21_quaternion_gemm/quaternion_gemm.cu
Normal file
@ -0,0 +1,448 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/device/gemm.h"
|
||||
|
||||
#include "cutlass/util/command_line.h"
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/reference/device/gemm.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
|
||||
#include "helper.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Result structure
|
||||
struct Result {
|
||||
|
||||
double runtime_ms;
|
||||
double gflops;
|
||||
cutlass::Status status;
|
||||
cudaError_t error;
|
||||
bool passed;
|
||||
|
||||
//
|
||||
// Methods
|
||||
//
|
||||
|
||||
Result(
|
||||
double runtime_ms = 0,
|
||||
double gflops = 0,
|
||||
cutlass::Status status = cutlass::Status::kSuccess,
|
||||
cudaError_t error = cudaSuccess
|
||||
):
|
||||
runtime_ms(runtime_ms), gflops(gflops), status(status), error(error), passed(true) { }
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Command line options parsing
|
||||
struct Options {
|
||||
|
||||
bool help;
|
||||
|
||||
cutlass::gemm::GemmCoord problem_size;
|
||||
int batch_count;
|
||||
cutlass::Quaternion<float> alpha;
|
||||
cutlass::Quaternion<float> beta;
|
||||
|
||||
bool reference_check;
|
||||
int iterations;
|
||||
|
||||
Options():
|
||||
help(false),
|
||||
problem_size({1024, 1024, 1024}),
|
||||
batch_count(1),
|
||||
reference_check(true),
|
||||
iterations(20),
|
||||
alpha(1),
|
||||
beta() { }
|
||||
|
||||
bool valid() {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Parses the command line
|
||||
void parse(int argc, char const **args) {
|
||||
cutlass::CommandLine cmd(argc, args);
|
||||
|
||||
if (cmd.check_cmd_line_flag("help")) {
|
||||
help = true;
|
||||
}
|
||||
|
||||
cmd.get_cmd_line_argument("m", problem_size.m());
|
||||
cmd.get_cmd_line_argument("n", problem_size.n());
|
||||
cmd.get_cmd_line_argument("k", problem_size.k());
|
||||
cmd.get_cmd_line_argument("batch", batch_count);
|
||||
|
||||
cmd.get_cmd_line_argument("alpha", alpha.w());
|
||||
cmd.get_cmd_line_argument("alpha_i", alpha.x());
|
||||
cmd.get_cmd_line_argument("alpha_j", alpha.y());
|
||||
cmd.get_cmd_line_argument("alpha_k", alpha.z());
|
||||
|
||||
cmd.get_cmd_line_argument("beta", beta.w());
|
||||
cmd.get_cmd_line_argument("beta_i", beta.x());
|
||||
cmd.get_cmd_line_argument("beta_j", beta.y());
|
||||
cmd.get_cmd_line_argument("beta_k", beta.z());
|
||||
|
||||
cmd.get_cmd_line_argument("iterations", iterations);
|
||||
|
||||
}
|
||||
|
||||
/// Prints the usage statement.
|
||||
std::ostream & print_usage(std::ostream &out) const {
|
||||
|
||||
out << "21_quaternion_gemm example\n\n"
|
||||
<< " This example uses the CUTLASS Library to execute Quaternion GEMM computations.\n\n"
|
||||
<< "Options:\n\n"
|
||||
<< " --help If specified, displays this usage statement.\n\n"
|
||||
<< " --m <int> GEMM M dimension\n"
|
||||
<< " --n <int> GEMM N dimension\n"
|
||||
<< " --k <int> GEMM K dimension\n"
|
||||
<< " --batch <int> Number of GEMM operations executed in one batch\n"
|
||||
<< " --alpha <f32> Epilogue scalar alpha (real part)\n"
|
||||
<< " --alpha_i <f32> Epilogue scalar alpha_i (imaginary part)\n"
|
||||
<< " --alpha_j <f32> Epilogue scalar alpha_j (imaginary part)\n"
|
||||
<< " --alpha_k <f32> Epilogue scalar alpha_k (imaginary part)\n"
|
||||
<< " --beta <f32> Epilogue scalar beta (real part)\n\n"
|
||||
<< " --beta_i <f32> Epilogue scalar beta_i (imaginary part)\n\n"
|
||||
<< " --beta_j <f32> Epilogue scalar beta_j (imaginary part)\n\n"
|
||||
<< " --beta_k <f32> Epilogue scalar beta_k (imaginary part)\n\n"
|
||||
<< " --iterations <int> Number of profiling iterations to perform.\n\n";
|
||||
|
||||
out << "\n\nExamples:\n\n"
|
||||
<< "$ ./examples/21_quaternion_gemm/21_quaternion_gemm --batch=7 --m=1024 --n=512 --k=1024 \\\n"
|
||||
<< " --alpha=2 --alpha_i=-2 --beta=0.707 --beta_i=-.707\n\n";
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
/// Compute performance in GFLOP/s
|
||||
double gflops(double runtime_s) const {
|
||||
|
||||
// Number of real-valued multiply-adds
|
||||
int64_t fmas = problem_size.product() * batch_count * 16;
|
||||
|
||||
// Two flops per multiply-add
|
||||
return 2.0 * double(fmas) / double(1.0e9) / runtime_s;
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// The code section below describes datatype for input, output matrices and computation between
|
||||
// elements in input matrices.
|
||||
using precision = float;
|
||||
using Element = cutlass::Quaternion<float>;
|
||||
using ElementComputeEpilogue = Element; // <- data type of epilogue operations
|
||||
using ElementAccumulator = Element; // <- data type of accumulator
|
||||
using ElementInputA = Element; // <- data type of elements in input matrix A
|
||||
using ElementInputB = Element; // <- data type of elements in input matrix B
|
||||
using ElementOutput = Element; // <- data type of elements in output matrix D
|
||||
|
||||
// The code section below describes matrix layout of input and output matrices. Column Major for
|
||||
// Matrix A, Row Major for Matrix B and Row Major for Matrix C
|
||||
using LayoutInputA = cutlass::layout::RowMajor;
|
||||
using LayoutInputB = cutlass::layout::ColumnMajor;
|
||||
using LayoutOutput = cutlass::layout::RowMajor;
|
||||
|
||||
// This code section describes whether you want to use tensor cores or regular SIMT cores on GPU SM
|
||||
using MMAOp = cutlass::arch::OpClassSimt;
|
||||
|
||||
// This code section describes CUDA SM architecture number
|
||||
using SmArch = cutlass::arch::Sm50;
|
||||
|
||||
// This code section describes the tile size a thread block will compute
|
||||
using ShapeMMAThreadBlock =
|
||||
cutlass::gemm::GemmShape<64, 64, 4>; // <- threadblock tile M = 64, N = 64, K = 8
|
||||
// This code section describes tile size a warp will compute
|
||||
using ShapeMMAWarp = cutlass::gemm::GemmShape<32, 16, 4>; // <- warp tile M = 32, N = 16, K = 8
|
||||
// This code section describes the size of MMA op
|
||||
using ShapeMMAOp = cutlass::gemm::GemmShape<1, 1, 1>; // <- MMA Op tile M = 1, N = 1, K = 1
|
||||
|
||||
// This code section describes how threadblocks are scheduled on GPU
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>; // <- Defaults
|
||||
|
||||
// This code section describes the epilogue part of the kernel
|
||||
using EpilogueOp = cutlass::epilogue::thread::LinearCombination<
|
||||
ElementOutput, // <- data type of output matrix
|
||||
128 / cutlass::sizeof_bits<ElementOutput>::value, // <- the number of elements per vectorized
|
||||
// memory access. For a byte, it's 16
|
||||
// elements. This becomes the vector width of
|
||||
// math instructions in the epilogue too
|
||||
ElementAccumulator, // <- data type of accumulator
|
||||
ElementComputeEpilogue>; // <- data type for alpha/beta in linear combination function
|
||||
|
||||
// Number of pipelines you want to use
|
||||
constexpr int NumStages = 2;
|
||||
|
||||
using Gemm = cutlass::gemm::device::Gemm<ElementInputA,
|
||||
LayoutInputA,
|
||||
ElementInputB,
|
||||
LayoutInputB,
|
||||
ElementOutput,
|
||||
LayoutOutput,
|
||||
ElementAccumulator,
|
||||
MMAOp,
|
||||
SmArch,
|
||||
ShapeMMAThreadBlock,
|
||||
ShapeMMAWarp,
|
||||
ShapeMMAOp,
|
||||
EpilogueOp,
|
||||
SwizzleThreadBlock,
|
||||
NumStages>;
|
||||
|
||||
int run(Options options) {
|
||||
|
||||
// PASS/FAIL status
|
||||
bool passed = true;
|
||||
|
||||
// Create a tuple of problem size for matrix multiplication
|
||||
cutlass::gemm::GemmCoord problem_size = options.problem_size;
|
||||
|
||||
// Initialize tensors using CUTLASS helper functions
|
||||
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(
|
||||
problem_size.mk()); // <- Create matrix A with dimensions M x K
|
||||
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(
|
||||
problem_size.kn()); // <- Create matrix B with dimensions K x N
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c(
|
||||
problem_size.mn()); // <- Create matrix C with dimensions M x N
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_d(
|
||||
problem_size.mn()); // <- Create matrix D with dimensions M x N used to store output from
|
||||
// CUTLASS kernel
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_ref_d(
|
||||
problem_size.mn()); // <- Create matrix D with dimensions M x N used to store output from
|
||||
// reference kernel
|
||||
|
||||
// Fill input and output matrices on host using CUTLASS helper functions
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_a.host_view(),
|
||||
1,
|
||||
4,
|
||||
-4,
|
||||
0); // <- Fill matrix A on host with uniform-distribution random data
|
||||
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_b.host_view(),
|
||||
1,
|
||||
4,
|
||||
-4,
|
||||
0); // <- Fill matrix B on host with uniform-distribution random data
|
||||
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_c.host_view(),
|
||||
1,
|
||||
4,
|
||||
-4,
|
||||
0); // <- Fill matrix C on host with uniform-distribution random data
|
||||
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_d.host_view()); // <- fill matrix D on host with zeros
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_ref_d.host_view()); // <- fill matrix D for reference on host with zeros
|
||||
|
||||
// Copy data from host to GPU
|
||||
tensor_a.sync_device();
|
||||
tensor_b.sync_device();
|
||||
tensor_c.sync_device();
|
||||
tensor_d.sync_device();
|
||||
tensor_ref_d.sync_device();
|
||||
|
||||
// Initialize alpha and beta for dot product computation
|
||||
ElementComputeEpilogue alpha = ElementComputeEpilogue(1);
|
||||
ElementComputeEpilogue beta = ElementComputeEpilogue(0);
|
||||
|
||||
// Split K dimension into 1 partitions
|
||||
int split_k_slices = 1;
|
||||
|
||||
// Create a tuple of gemm kernel arguments. This is later passed as arguments to launch
|
||||
// instantiated CUTLASS kernel
|
||||
typename Gemm::Arguments arguments{problem_size, // <- problem size of matrix multiplication
|
||||
tensor_a.device_ref(), // <- reference to matrix A on device
|
||||
tensor_b.device_ref(), // <- reference to matrix B on device
|
||||
tensor_c.device_ref(), // <- reference to matrix C on device
|
||||
tensor_d.device_ref(), // <- reference to matrix D on device
|
||||
{alpha, beta}, // <- tuple of alpha and beta
|
||||
split_k_slices}; // <- k-dimension split factor
|
||||
|
||||
// Using the arguments, query for extra workspace required for matrix multiplication computation
|
||||
size_t workspace_size = Gemm::get_workspace_size(arguments);
|
||||
|
||||
// Allocate workspace memory
|
||||
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
||||
|
||||
// Instantiate CUTLASS kernel depending on templates
|
||||
Gemm gemm_op;
|
||||
|
||||
// Check the problem size is supported or not
|
||||
cutlass::Status status = gemm_op.can_implement(arguments);
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Initialize CUTLASS kernel with arguments and workspace pointer
|
||||
status = gemm_op.initialize(arguments, workspace.get());
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
// Result structure
|
||||
Result result;
|
||||
|
||||
//
|
||||
// Construct events
|
||||
//
|
||||
|
||||
cudaEvent_t events[2];
|
||||
|
||||
for (auto & event : events) {
|
||||
result.error = cudaEventCreate(&event);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventCreate() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Record an event at the start of a series of GEMMs
|
||||
result.error = cudaEventRecord(events[0]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
//
|
||||
// Run profiling loop
|
||||
//
|
||||
|
||||
for (int iter = 0; iter < options.iterations; ++iter) {
|
||||
|
||||
// Launch initialized CUTLASS kernel
|
||||
status = gemm_op();
|
||||
CUTLASS_CHECK(status);
|
||||
|
||||
}
|
||||
|
||||
//
|
||||
// Stop profiling loop
|
||||
//
|
||||
|
||||
// Record an event when the GEMMs are complete
|
||||
result.error = cudaEventRecord(events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Wait for work on the device to complete.
|
||||
result.error = cudaEventSynchronize(events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventSynchronize() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Measure elapsed runtime
|
||||
float runtime_ms = 0;
|
||||
result.error = cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventElapsed() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Compute average runtime and GFLOPs.
|
||||
result.runtime_ms = double(runtime_ms) / double(options.iterations);
|
||||
result.gflops = options.gflops(result.runtime_ms / 1000.0);
|
||||
|
||||
// Cleanup
|
||||
for (auto event : events) {
|
||||
(void)cudaEventDestroy(event);
|
||||
}
|
||||
|
||||
if (options.reference_check) {
|
||||
|
||||
// Create instantiation for device reference gemm kernel
|
||||
cutlass::reference::device::Gemm<ElementInputA,
|
||||
LayoutInputA,
|
||||
ElementInputB,
|
||||
LayoutInputB,
|
||||
ElementOutput,
|
||||
LayoutOutput,
|
||||
ElementComputeEpilogue,
|
||||
ElementComputeEpilogue> gemm_device;
|
||||
|
||||
// Launch device reference gemm kernel
|
||||
gemm_device(problem_size,
|
||||
alpha,
|
||||
tensor_a.device_ref(),
|
||||
tensor_b.device_ref(),
|
||||
beta,
|
||||
tensor_c.device_ref(),
|
||||
tensor_ref_d.device_ref());
|
||||
|
||||
// Wait for kernels to finish
|
||||
cudaDeviceSynchronize();
|
||||
|
||||
// Copy output data from CUTLASS and reference kernel to host for comparison
|
||||
tensor_d.sync_host();
|
||||
tensor_ref_d.sync_host();
|
||||
|
||||
// Check if output from CUTLASS kernel and reference kernel are equal or not
|
||||
passed &= cutlass::reference::host::TensorEquals(
|
||||
tensor_d.host_view(),
|
||||
tensor_ref_d.host_view());
|
||||
|
||||
}
|
||||
|
||||
if (passed) {
|
||||
std::cout << "Runtime: " << result.runtime_ms << " ms" << std::endl;
|
||||
std::cout << " GFLOPs: " << result.gflops << std::endl;
|
||||
}
|
||||
|
||||
std::cout << (passed ? "Passed" : "Failed") << std::endl;
|
||||
return (passed ? 0 : -1);
|
||||
}
|
||||
|
||||
int main(int argc, char const** argv) {
|
||||
|
||||
Options options;
|
||||
options.parse(argc, argv);
|
||||
|
||||
if (options.help) {
|
||||
options.print_usage(std::cout) << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
printf("%d x %d x %d Single Precision Quaternion Matrix Multiply\n", \
|
||||
options.problem_size.m(), options.problem_size.n(), options.problem_size.k());
|
||||
|
||||
if (!options.valid()) {
|
||||
std::cerr << "Invalid problem." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
return run(options);
|
||||
}
|
||||
|
||||
28
examples/22_quaternion_conv/CMakeLists.txt
Normal file
28
examples/22_quaternion_conv/CMakeLists.txt
Normal file
@ -0,0 +1,28 @@
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
# * Redistributions of source code must retain the above copyright notice, this list of
|
||||
# conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
# conditions and the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
# to endorse or promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
cutlass_example_add_executable(
|
||||
22_quaternion_conv
|
||||
quaternion_conv.cu
|
||||
)
|
||||
|
||||
660
examples/22_quaternion_conv/quaternion_conv.cu
Normal file
660
examples/22_quaternion_conv/quaternion_conv.cu
Normal file
@ -0,0 +1,660 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/gemm/device/gemm.h"
|
||||
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
|
||||
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
||||
|
||||
#include "cutlass/util/command_line.h"
|
||||
#include "cutlass/util/host_tensor.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
#include "cutlass/util/reference/device/gemm.h"
|
||||
#include "cutlass/util/reference/host/tensor_compare.h"
|
||||
#include "cutlass/util/reference/host/tensor_copy.h"
|
||||
#include "cutlass/util/reference/host/tensor_fill.h"
|
||||
#include "cutlass/util/reference/host/convolution.h"
|
||||
#include "cutlass/util/tensor_view_io.h"
|
||||
|
||||
#include "helper.h"
|
||||
|
||||
// The code section below describes datatype for input, output tensors and computation between
|
||||
// elements
|
||||
using Element = cutlass::Quaternion<float>;
|
||||
using ElementAccumulator = Element; // Data type of accumulator
|
||||
using ElementComputeEpilogue = Element; // Data type of epilogue computation (alpha, beta)
|
||||
using ElementInputA = Element; // Data type of elements in input tensor
|
||||
using ElementInputB = Element; // Data type of elements in input tensor
|
||||
using ElementOutput = Element; // Data type of elements in output tensor
|
||||
|
||||
using LayoutInputA = cutlass::layout::TensorNHWC;
|
||||
using LayoutInputB = cutlass::layout::TensorNHWC;
|
||||
using LayoutOutput = cutlass::layout::TensorNHWC;
|
||||
|
||||
// This code section describes whether you want to use tensor cores or regular SIMT cores on GPU SM
|
||||
using MMAOp = cutlass::arch::OpClassSimt;
|
||||
|
||||
// This code section describes CUDA SM architecture number
|
||||
using SmArch = cutlass::arch::Sm50;
|
||||
|
||||
// This code section describes the tile size a thread block will compute
|
||||
using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 8>; // Threadblock tile shape
|
||||
|
||||
// This code section describes tile size a warp will compute
|
||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>; // Warp tile shape
|
||||
|
||||
// This code section describes the size of MMA op
|
||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 1>; // SIMT instruction shape
|
||||
|
||||
// This code section describes how threadblocks are scheduled on GPU
|
||||
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>;
|
||||
|
||||
// Number of pipelines you want to use
|
||||
constexpr int NumStages = 2;
|
||||
|
||||
// This code section describe iterator algorithm selected is Analytic or Optimized
|
||||
static cutlass::conv::IteratorAlgorithm const IteratorAlgorithm = cutlass::conv::IteratorAlgorithm::kOptimized;
|
||||
|
||||
// This code section describes the epilogue part of the kernel, we use default value
|
||||
using EpilogueOp = cutlass::epilogue::thread::LinearCombination<
|
||||
ElementOutput, // Data type of output matrix.
|
||||
128 / cutlass::sizeof_bits<ElementOutput>::value, // The number of elements per vectorized.
|
||||
// memory access. This becomes the vector width of
|
||||
// math instructions in the epilogue too.
|
||||
ElementAccumulator, // Data type of accumulator
|
||||
ElementComputeEpilogue>; // Data type for alpha/beta in linear combination
|
||||
|
||||
|
||||
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementInputA, LayoutInputA,
|
||||
ElementInputB, LayoutInputB,
|
||||
ElementOutput, LayoutOutput,
|
||||
ElementAccumulator,
|
||||
MMAOp,
|
||||
SmArch,
|
||||
ThreadblockShape,
|
||||
WarpShape,
|
||||
InstructionShape,
|
||||
EpilogueOp,
|
||||
SwizzleThreadBlock,
|
||||
NumStages,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
IteratorAlgorithm
|
||||
>::Kernel;
|
||||
|
||||
using ImplicitGemm = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Command line options parsing
|
||||
struct Options {
|
||||
|
||||
bool help;
|
||||
cutlass::Tensor4DCoord input_size;
|
||||
cutlass::Tensor4DCoord filter_size;
|
||||
cutlass::Tensor4DCoord padding;
|
||||
cutlass::MatrixCoord conv_stride;
|
||||
cutlass::MatrixCoord dilation;
|
||||
bool reference_check;
|
||||
bool measure_performance;
|
||||
int iterations;
|
||||
bool save_workspace;
|
||||
ElementComputeEpilogue alpha;
|
||||
ElementComputeEpilogue beta;
|
||||
bool benchmark;
|
||||
std::string tag;
|
||||
|
||||
Options():
|
||||
help(false),
|
||||
input_size(1, 32, 32, 32),
|
||||
filter_size(32, 3, 3, 32),
|
||||
padding(1, 1, 1, 1),
|
||||
conv_stride(1, 1),
|
||||
dilation(1, 1),
|
||||
reference_check(false),
|
||||
measure_performance(true),
|
||||
iterations(20),
|
||||
save_workspace(false),
|
||||
alpha(1),
|
||||
beta(0),
|
||||
benchmark(false) { }
|
||||
|
||||
// Verify the problem size is compatible with the CUTLASS Convolution implementation.
|
||||
bool valid() {
|
||||
|
||||
//
|
||||
// CUTLASS attempts to load 128b vectors of cutlass::half_t (F16) elements. Consequently,
|
||||
// all pointers, strides, and tensor extents must be divisible by 8 elements.
|
||||
//
|
||||
int const kAlignment = 8;
|
||||
|
||||
if ((input_size.c() % kAlignment) ||
|
||||
(filter_size.n() % kAlignment)) {
|
||||
|
||||
// misaligned tensors
|
||||
return false;
|
||||
}
|
||||
|
||||
// Invalid padding
|
||||
if ((padding.h() != filter_size.h() / 2) ||
|
||||
(padding.w() != filter_size.w() / 2)) {
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Updates input and filter sizes
|
||||
void update(
|
||||
cutlass::Tensor4DCoord input_size,
|
||||
cutlass::Tensor4DCoord filter_size) {
|
||||
|
||||
this->input_size = input_size;
|
||||
this->filter_size = filter_size;
|
||||
|
||||
padding.n() = filter_size.h() / 2;
|
||||
padding.h() = filter_size.h() / 2;
|
||||
padding.w() = filter_size.w() / 2;
|
||||
padding.c() = filter_size.w() / 2;
|
||||
}
|
||||
|
||||
// Parses the command line
|
||||
void parse(int argc, char const **args) {
|
||||
cutlass::CommandLine cmd(argc, args);
|
||||
|
||||
if (cmd.check_cmd_line_flag("help")) {
|
||||
help = true;
|
||||
}
|
||||
|
||||
if (cmd.check_cmd_line_flag("ref-check")) {
|
||||
reference_check = true;
|
||||
}
|
||||
|
||||
if (cmd.check_cmd_line_flag("perf-check")) {
|
||||
measure_performance = true;
|
||||
}
|
||||
|
||||
if (cmd.check_cmd_line_flag("save-workspace")) {
|
||||
save_workspace = true;
|
||||
}
|
||||
|
||||
if (cmd.check_cmd_line_flag("benchmark")) {
|
||||
benchmark = true;
|
||||
}
|
||||
|
||||
cmd.get_cmd_line_argument("n", input_size.n());
|
||||
cmd.get_cmd_line_argument("h", input_size.h());
|
||||
cmd.get_cmd_line_argument("w", input_size.w());
|
||||
cmd.get_cmd_line_argument("c", input_size.c());
|
||||
|
||||
cmd.get_cmd_line_argument("k", filter_size.n());
|
||||
cmd.get_cmd_line_argument("r", filter_size.h());
|
||||
cmd.get_cmd_line_argument("s", filter_size.w());
|
||||
filter_size.c() = input_size.c();
|
||||
|
||||
cmd.get_cmd_line_argument("alpha_w", alpha.w());
|
||||
cmd.get_cmd_line_argument("alpha_x", alpha.x());
|
||||
cmd.get_cmd_line_argument("alpha_y", alpha.y());
|
||||
cmd.get_cmd_line_argument("alpha_z", alpha.z());
|
||||
|
||||
cmd.get_cmd_line_argument("beta_w", beta.w());
|
||||
cmd.get_cmd_line_argument("beta_x", beta.x());
|
||||
cmd.get_cmd_line_argument("beta_y", beta.y());
|
||||
cmd.get_cmd_line_argument("beta_z", beta.z());
|
||||
|
||||
cmd.get_cmd_line_argument("iterations", iterations);
|
||||
cmd.get_cmd_line_argument("tag", tag);
|
||||
|
||||
if (filter_size.h() == 3 && filter_size.w() == 3) {
|
||||
padding = {1, 1, 1, 1};
|
||||
}
|
||||
else {
|
||||
filter_size.h() = 1;
|
||||
filter_size.w() = 1;
|
||||
padding = {0, 0, 0, 0};
|
||||
}
|
||||
}
|
||||
|
||||
/// Prints the usage statement.
|
||||
std::ostream & print_usage(std::ostream &out) const {
|
||||
|
||||
out << "22_quaternion_conv example\n\n"
|
||||
<< " This example uses Ampere's Tensor Core operators on F16 data types to compute\n"
|
||||
<< " forward convolution on tensors of layout NHWC.\n\n"
|
||||
<< "Options:\n\n"
|
||||
<< " --help If specified, displays this usage statement.\n\n"
|
||||
<< " --n <int> Input tensor extent N\n"
|
||||
<< " --h <int> Input tensor extent H\n"
|
||||
<< " --w <int> Input tensor extent W\n"
|
||||
<< " --c <int> Input tensor extent C\n"
|
||||
<< " --k <int> Filter extent K\n"
|
||||
<< " --r <int> Filter extent R\n"
|
||||
<< " --s <int> Filter extent S\n\n"
|
||||
<< " --alpha <float> Epilogue scalar alpha\n"
|
||||
<< " --beta <float> Epilogue scalar beta\n\n"
|
||||
<< " --ref-check If set (true), reference check on the host is computed\n"
|
||||
<< " --perf-check If set (true), performance is measured.\n"
|
||||
<< " --benchmark If set (true), performance benchmarking on several layers and batch-size.\n"
|
||||
<< " --iterations <int> Number of profiling iterations to perform.\n"
|
||||
<< " --save-workspace If set, workspace is written to a text file.\n"
|
||||
<< " --tag <string> String to replicate across the first column in the results table\n";
|
||||
|
||||
out << "\n\nExamples:\n\n"
|
||||
<< "$ ./examples/22_quaternion_conv/22_quaternion_conv --n=32 --h=224 --w=224 --c=128 --k=256 --r=1 --s=1\n\n"
|
||||
<< "$ ./examples/22_quaternion_conv/22_quaternion_conv --n=1 --h=224 --w=224 --c=32 --k=32 --r=3 --s=3 --ref-check\n\n";
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
/// Computes the output tensor size (NPQK)
|
||||
cutlass::Tensor4DCoord output_size() const {
|
||||
return cutlass::Tensor4DCoord(
|
||||
input_size.n(),
|
||||
(input_size.h() + padding.n() + padding.h() - filter_size.h()) / conv_stride.row() + 1,
|
||||
(input_size.w() + padding.w() + padding.c() - filter_size.w()) / conv_stride.column() + 1,
|
||||
filter_size.n());
|
||||
}
|
||||
|
||||
/// Compute performance in GFLOP/s
|
||||
double gflops(double runtime_s) const {
|
||||
|
||||
// Number of multiply-adds = NPQK * CRS
|
||||
int64_t fmas = output_size().product() * int64_t(filter_size.h() * filter_size.w() * filter_size.c()) * 16;
|
||||
|
||||
// Two flops per multiply-add
|
||||
return 2.0 * double(fmas) / double(1.0e9) / runtime_s;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
struct Result {
|
||||
double runtime_ms;
|
||||
double gflops;
|
||||
cutlass::Status status;
|
||||
cutlass::Status reference_check;
|
||||
cudaError_t error;
|
||||
|
||||
Result():
|
||||
runtime_ms(0),
|
||||
gflops(0),
|
||||
status(cutlass::Status::kSuccess),
|
||||
reference_check(cutlass::Status::kInvalid),
|
||||
error(cudaSuccess) { }
|
||||
|
||||
static std::ostream & print_header(std::ostream &out, Options const &options) {
|
||||
|
||||
if (!options.tag.empty()) {
|
||||
out << "Name,";
|
||||
}
|
||||
|
||||
out << "Layer,N,H,W,C,K,R,S,Runtime,GFLOPs";
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream & print(std::ostream &out, int idx, Options const &options) {
|
||||
|
||||
if (!options.tag.empty()) {
|
||||
out << options.tag << ",";
|
||||
}
|
||||
|
||||
out
|
||||
<< "conv_" << idx << ","
|
||||
<< options.input_size.n() << ","
|
||||
<< options.input_size.h() << ","
|
||||
<< options.input_size.w() << ","
|
||||
<< options.input_size.c() << ","
|
||||
<< options.filter_size.n() << ","
|
||||
<< options.filter_size.h() << ","
|
||||
<< options.filter_size.w() << ","
|
||||
<< runtime_ms << ","
|
||||
<< gflops;
|
||||
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Runs one benchmark
|
||||
Result profile_convolution(Options const &options) {
|
||||
|
||||
Result result;
|
||||
|
||||
//
|
||||
// Allocate host-device tensors using the CUTLASS Utilities.
|
||||
//
|
||||
|
||||
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(options.input_size);
|
||||
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(options.filter_size);
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c(options.output_size());
|
||||
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_ref_c(options.output_size());
|
||||
|
||||
//
|
||||
// Initialize tensors
|
||||
//
|
||||
|
||||
// Fill tensor A on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_a.host_view(),
|
||||
1,
|
||||
7,
|
||||
-8,
|
||||
0);
|
||||
|
||||
// Fill tensor B on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_b.host_view(),
|
||||
1,
|
||||
7,
|
||||
-8,
|
||||
0);
|
||||
|
||||
// Fill tensor C on host with zeros
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_c.host_view());
|
||||
|
||||
// Fill tensor C for reference on host with zeros
|
||||
cutlass::reference::host::TensorFill(
|
||||
tensor_ref_c.host_view());
|
||||
|
||||
// Copy data from host to GPU
|
||||
tensor_a.sync_device();
|
||||
tensor_b.sync_device();
|
||||
tensor_c.sync_device();
|
||||
tensor_ref_c.sync_device();
|
||||
|
||||
//
|
||||
// Define arguments for CUTLASS Convolution
|
||||
//
|
||||
|
||||
cutlass::conv::Mode mode = cutlass::conv::Mode::kCrossCorrelation;
|
||||
|
||||
// Split K dimension into 1 partitions
|
||||
int split_k_slices = 1;
|
||||
|
||||
// Construct Conv2dProblemSize with user defined output size
|
||||
cutlass::conv::Conv2dProblemSize problem_size(
|
||||
options.input_size,
|
||||
options.filter_size,
|
||||
options.padding,
|
||||
options.conv_stride,
|
||||
options.dilation,
|
||||
options.output_size(),
|
||||
mode,
|
||||
split_k_slices
|
||||
);
|
||||
|
||||
// Construct ImplicitGemm::Argument structure with conv2d
|
||||
// problem size, data pointers, and epilogue values
|
||||
typename ImplicitGemm::Arguments arguments{
|
||||
problem_size,
|
||||
tensor_a.device_ref(),
|
||||
tensor_b.device_ref(),
|
||||
tensor_c.device_ref(),
|
||||
tensor_c.device_ref(),
|
||||
{options.alpha, options.beta},
|
||||
};
|
||||
|
||||
//
|
||||
// Initialize CUTLASS Convolution
|
||||
//
|
||||
|
||||
ImplicitGemm implicit_gemm_op;
|
||||
|
||||
size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments);
|
||||
|
||||
// Allocate workspace memory
|
||||
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
||||
|
||||
result.status = implicit_gemm_op.can_implement(arguments);
|
||||
CUTLASS_CHECK(result.status);
|
||||
|
||||
result.status = implicit_gemm_op.initialize(arguments, workspace.get());
|
||||
CUTLASS_CHECK(result.status);
|
||||
|
||||
//
|
||||
// Launch initialized CUTLASS kernel
|
||||
//
|
||||
result.status = implicit_gemm_op();
|
||||
|
||||
CUTLASS_CHECK(result.status);
|
||||
|
||||
//
|
||||
// Optional reference check
|
||||
//
|
||||
|
||||
if (options.reference_check) {
|
||||
std::cout << "Verification on host...\n";
|
||||
|
||||
// Compute with reference implementation
|
||||
cutlass::reference::host::Conv2dFprop<
|
||||
ElementInputA,
|
||||
LayoutInputA,
|
||||
ElementInputB,
|
||||
LayoutInputB,
|
||||
ElementOutput,
|
||||
LayoutOutput,
|
||||
ElementComputeEpilogue,
|
||||
ElementAccumulator,
|
||||
cutlass::NumericConverter<ElementOutput, ElementComputeEpilogue>
|
||||
>(
|
||||
problem_size,
|
||||
tensor_a.host_ref(),
|
||||
tensor_b.host_ref(),
|
||||
tensor_c.host_ref(),
|
||||
tensor_ref_c.host_ref(),
|
||||
options.alpha,
|
||||
options.beta
|
||||
);
|
||||
|
||||
// Check if output from CUTLASS kernel and reference kernel are equal or not
|
||||
tensor_c.sync_host();
|
||||
|
||||
bool passed = cutlass::reference::host::TensorEquals(
|
||||
tensor_c.host_view(),
|
||||
tensor_ref_c.host_view());
|
||||
|
||||
if (!passed) {
|
||||
result.reference_check = cutlass::Status::kErrorInternal;
|
||||
std::cout << "ERROR - results miscompared.\n";
|
||||
}
|
||||
else {
|
||||
result.reference_check = cutlass::Status::kSuccess;
|
||||
std::cout << "Passed.\n";
|
||||
}
|
||||
}
|
||||
else {
|
||||
result.reference_check = cutlass::Status::kInvalid;
|
||||
}
|
||||
|
||||
if (options.save_workspace) {
|
||||
|
||||
std::stringstream ss;
|
||||
|
||||
ss << "22_quaternion_conv_"
|
||||
<< options.input_size.n() << "x" << options.input_size.h() << "x" << options.input_size.w() << "x" << options.input_size.c()
|
||||
<< "_"
|
||||
<< options.filter_size.n() << "x" << options.filter_size.h() << "x" << options.filter_size.w() << "x" << options.filter_size.c()
|
||||
<< ".dat";
|
||||
|
||||
std::ofstream output_workspace(ss.str());
|
||||
|
||||
output_workspace
|
||||
<< "Input = \n" << tensor_a.host_view() << "\n\n"
|
||||
<< "Filters = \n" << tensor_b.host_view() << "\n\n";
|
||||
|
||||
if (options.reference_check) {
|
||||
output_workspace << "Reference = \n" << tensor_ref_c.host_view() << "\n\n";
|
||||
}
|
||||
|
||||
output_workspace << "Computed = \n" << tensor_c.host_view() << std::endl;
|
||||
|
||||
std::cout << "Results written to '" << ss.str() << "'." << std::endl;
|
||||
}
|
||||
|
||||
//
|
||||
// Performance measurement
|
||||
//
|
||||
|
||||
if (options.measure_performance) {
|
||||
|
||||
cudaEvent_t events[2];
|
||||
|
||||
for (auto & event : events) {
|
||||
result.error = cudaEventCreate(&event);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventCreate() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
// Record an event at the start of a series of convolution operations.
|
||||
result.error = cudaEventRecord(events[0]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Launch a sequence of implicit GEMM operations on the device
|
||||
for (int iteration = 0; iteration < options.iterations; ++iteration) {
|
||||
result.status = implicit_gemm_op();
|
||||
CUTLASS_CHECK(result.status);
|
||||
}
|
||||
|
||||
// Record an event when the convolutions have been launched.
|
||||
result.error = cudaEventRecord(events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Wait for work on the device to complete.
|
||||
result.error = cudaEventSynchronize(events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventSynchronize() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Measure elapsed runtime
|
||||
float runtime_ms = 0;
|
||||
result.error = cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
|
||||
if (result.error != cudaSuccess) {
|
||||
std::cerr << "cudaEventElapsed() failed: " << cudaGetErrorString(result.error) << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Print average runtime and GFLOPs.
|
||||
result.runtime_ms = double(runtime_ms) / double(options.iterations);
|
||||
result.gflops = options.gflops(result.runtime_ms / 1000.0);
|
||||
|
||||
// Cleanup
|
||||
for (auto event : events) {
|
||||
(void)cudaEventDestroy(event);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
int main(int argc, char const **args) {
|
||||
|
||||
Options options;
|
||||
|
||||
options.parse(argc, args);
|
||||
|
||||
if (options.help) {
|
||||
options.print_usage(std::cout) << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (options.benchmark) {
|
||||
// Benchmark several layers
|
||||
|
||||
int batch_sizes[] = {1, 32, 64, 128, 256, 512};
|
||||
|
||||
struct Benchmark {
|
||||
int h, w, c, k, r, s;
|
||||
} layers[] = {
|
||||
{56, 56, 64, 256, 1, 1},
|
||||
{56, 56, 64, 64, 1, 1},
|
||||
{56, 56, 64, 64, 3, 3},
|
||||
{56, 56, 256, 64, 1, 1},
|
||||
{56, 56, 256, 512, 1, 1},
|
||||
{56, 56, 256, 128, 1, 1},
|
||||
{28, 28, 128, 128, 3, 3},
|
||||
{28, 28, 128, 512, 1, 1},
|
||||
{28, 28, 512, 128, 1, 1},
|
||||
{28, 28, 512, 1024, 1, 1},
|
||||
{28, 28, 512, 256, 1, 1},
|
||||
{14, 14, 256, 256, 3, 3},
|
||||
{14, 14, 256, 1024, 1, 1},
|
||||
{14, 14, 1024, 256, 1, 1},
|
||||
{14, 14, 1024, 2048, 1, 1},
|
||||
{14, 14, 1024, 512, 1, 1},
|
||||
{7, 7, 512, 512, 3, 3},
|
||||
};
|
||||
|
||||
Result::print_header(std::cout, options) << std::endl;
|
||||
|
||||
int idx = 1;
|
||||
|
||||
for (auto const &layer : layers) {
|
||||
for (auto N : batch_sizes) {
|
||||
|
||||
options.update({N, layer.h, layer.w, layer.c}, {layer.k, layer.r, layer.s, layer.c});
|
||||
|
||||
Result result = profile_convolution(options);
|
||||
result.print(std::cout, idx, options) << std::endl;
|
||||
}
|
||||
|
||||
++idx;
|
||||
}
|
||||
}
|
||||
else {
|
||||
|
||||
// Execute one problem size
|
||||
if (!options.valid()) {
|
||||
std::cerr << "Invalid problem." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
Result result = profile_convolution(options);
|
||||
|
||||
Result::print_header(std::cout, options) << std::endl;
|
||||
result.print(std::cout, 1, options) << std::endl;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -1,4 +1,4 @@
|
||||
# Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
# provided that the following conditions are met:
|
||||
@ -17,21 +17,28 @@
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
set(CUTLASS_EXAMPLES_COMMON_SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/common)
|
||||
|
||||
function(cutlass_example_add_executable)
|
||||
add_custom_target(cutlass_examples)
|
||||
add_custom_target(test_examples)
|
||||
|
||||
function(cutlass_example_add_executable NAME)
|
||||
|
||||
set(options)
|
||||
set(oneValueArgs)
|
||||
set(multiValueArgs)
|
||||
set(oneValueArgs DISABLE_TESTS)
|
||||
set(multiValueArgs DEPENDS DEPENDEES TEST_COMMAND_OPTIONS)
|
||||
cmake_parse_arguments(_ "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
||||
|
||||
cutlass_add_executable(${__UNPARSED_ARGUMENTS})
|
||||
if (NOT DEFINED __DISABLE_TESTS)
|
||||
set(__DISABLE_TESTS OFF)
|
||||
endif()
|
||||
|
||||
list(GET __UNPARSED_ARGUMENTS 0 NAME)
|
||||
cutlass_add_executable(${NAME} ${__UNPARSED_ARGUMENTS})
|
||||
|
||||
add_dependencies(cutlass_examples ${NAME})
|
||||
|
||||
target_link_libraries(
|
||||
${NAME}
|
||||
@ -46,9 +53,21 @@ function(cutlass_example_add_executable)
|
||||
${CUTLASS_EXAMPLES_COMMON_SOURCE_DIR}
|
||||
)
|
||||
|
||||
endfunction()
|
||||
install(
|
||||
TARGETS ${NAME}
|
||||
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
|
||||
)
|
||||
|
||||
add_custom_target(cutlass_examples)
|
||||
cutlass_add_executable_tests(
|
||||
test_examples_${NAME} ${NAME}
|
||||
DEPENDS ${__DEPENDS}
|
||||
DEPENDEES test_examples ${__DEPENDEES}
|
||||
TEST_COMMAND_OPTIONS ${__TEST_COMMAND_OPTIONS}
|
||||
DISABLE_EXECUTABLE_INSTALL_RULE
|
||||
DISABLE_TESTS ${__DISABLE_TESTS}
|
||||
)
|
||||
|
||||
endfunction()
|
||||
|
||||
foreach(EXAMPLE
|
||||
00_basic_gemm
|
||||
@ -59,9 +78,23 @@ foreach(EXAMPLE
|
||||
05_batched_gemm
|
||||
06_splitK_gemm
|
||||
07_volta_tensorop_gemm
|
||||
08_turing_tensorop_gemm)
|
||||
08_turing_tensorop_gemm
|
||||
09_turing_tensorop_conv2dfprop
|
||||
10_planar_complex
|
||||
11_planar_complex_array
|
||||
12_gemm_bias_relu
|
||||
13_two_tensor_op_fusion
|
||||
14_ampere_tf32_tensorop_gemm
|
||||
15_ampere_sparse_tensorop_gemm
|
||||
16_ampere_tensorop_conv2dfprop
|
||||
17_fprop_per_channel_bias
|
||||
18_ampere_fp64_tensorop_affine2_gemm
|
||||
19_tensorop_canonical
|
||||
20_simt_canonical
|
||||
21_quaternion_gemm
|
||||
22_quaternion_conv
|
||||
)
|
||||
|
||||
add_subdirectory(${EXAMPLE})
|
||||
add_dependencies(cutlass_examples ${EXAMPLE})
|
||||
|
||||
endforeach()
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -33,6 +33,26 @@
|
||||
namespace cutlass {
|
||||
namespace arch {
|
||||
|
||||
#if defined(__NVCC__) || (defined(__clang__) && defined(__CUDA__))
|
||||
|
||||
/// Computes laneId within a warp
|
||||
CUTLASS_DEVICE
|
||||
int LaneId() {
|
||||
int ret;
|
||||
asm ("mov.u32 %0, %%laneid;" : "=r"(ret) : );
|
||||
return ret;
|
||||
}
|
||||
|
||||
/// Computes SM number the thread is running on
|
||||
CUTLASS_DEVICE
|
||||
int SmId() {
|
||||
int ret;
|
||||
asm ("mov.u32 %0, %%smid;" : "=r"(ret) : );
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
struct Sm50 {
|
||||
static int const kMinComputeCapability = 50;
|
||||
@ -52,6 +72,21 @@ struct Sm72 {
|
||||
struct Sm75 {
|
||||
static int const kMinComputeCapability = 75;
|
||||
};
|
||||
struct Sm80 {
|
||||
static int const kMinComputeCapability = 80;
|
||||
};
|
||||
struct Sm86 {
|
||||
static int const kMinComputeCapability = 86;
|
||||
};
|
||||
|
||||
/// Triggers a breakpoint on the device
|
||||
CUTLASS_DEVICE
|
||||
void device_breakpoint() {
|
||||
#if defined(__CUDA_ARCH__)
|
||||
asm volatile (" brkpt;\n");
|
||||
#endif
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace arch
|
||||
|
||||
60
include/cutlass/arch/cache_operation.h
Normal file
60
include/cutlass/arch/cache_operation.h
Normal file
@ -0,0 +1,60 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Directives related to cache operations
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
|
||||
namespace cutlass {
|
||||
namespace arch {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Controls PTX cache operations
|
||||
struct CacheOperation {
|
||||
enum Kind {
|
||||
/// Cache at all levels - accessed again
|
||||
Always,
|
||||
/// Cache at global level
|
||||
Global,
|
||||
/// Streaming - likely to be accessed once
|
||||
Streaming,
|
||||
/// Indicates the line will not be used again
|
||||
LastUse,
|
||||
/// Don't cache, and fetch again
|
||||
Volatile,
|
||||
/// Write back at all coherent levels
|
||||
WriteBack,
|
||||
/// Write through to system memory
|
||||
WriteThrough
|
||||
};
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace arch
|
||||
} // namespace cutlass
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -28,11 +28,322 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
|
||||
namespace cutlass {
|
||||
namespace arch {
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
/// Fragment type to store loaded data
|
||||
typename AccessType,
|
||||
/// The bytes of loading
|
||||
int LoadBytes
|
||||
>
|
||||
struct global_load;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Specializations
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#if (((__CUDACC_VER_MAJOR__ == 11) && (__CUDACC_VER_MINOR__ >= 4)) || \
|
||||
(__CUDACC_VER_MAJOR__ > 11)) && \
|
||||
defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 750) && \
|
||||
! (defined(__clang__) && defined(__CUDA__))
|
||||
#define CUTLASS_ENABLE_L2_PREFETCH 1
|
||||
#else
|
||||
#define CUTLASS_ENABLE_L2_PREFETCH 0
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// The redundant mov PTX instruction is used to enforce the compiler to
|
||||
// initialize data to zero before ld.global
|
||||
template <typename AccessType>
|
||||
struct global_load<AccessType,
|
||||
32
|
||||
> {
|
||||
CUTLASS_DEVICE
|
||||
global_load(AccessType &D, void const *ptr, bool pred_guard) {
|
||||
uint4 *data = reinterpret_cast<uint4 *>(&D);
|
||||
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" .reg .pred p;\n"
|
||||
" setp.ne.b32 p, %9, 0;\n"
|
||||
" mov.b32 %0, %10;\n"
|
||||
" mov.b32 %1, %11;\n"
|
||||
" mov.b32 %2, %12;\n"
|
||||
" mov.b32 %3, %13;\n"
|
||||
" mov.b32 %4, %14;\n"
|
||||
" mov.b32 %5, %15;\n"
|
||||
" mov.b32 %6, %16;\n"
|
||||
" mov.b32 %7, %17;\n"
|
||||
#if CUTLASS_ENABLE_L2_PREFETCH
|
||||
" @p ld.global.L2::128B.v4.u32 {%0, %1, %2, %3}, [%8];\n"
|
||||
" @p ld.global.L2::128B.v4.u32 {%4, %5, %6, %7}, [%18];\n"
|
||||
#else
|
||||
" @p ld.global.v4.u32 {%0, %1, %2, %3}, [%8];\n"
|
||||
" @p ld.global.v4.u32 {%4, %5, %6, %7}, [%18];\n"
|
||||
#endif
|
||||
"}\n"
|
||||
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w),
|
||||
"=r"(data[1].x), "=r"(data[1].y), "=r"(data[1].z), "=r"(data[1].w)
|
||||
: "l"(ptr), "r"((int)pred_guard), "r"(data[0].x), "r"(data[0].y),
|
||||
"r"(data[0].z), "r"(data[0].w), "r"(data[1].x), "r"(data[1].y),
|
||||
"r"(data[1].z), "r"(data[1].w), "l"(((uint8_t *)ptr) + 16));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AccessType>
|
||||
struct global_load<AccessType,
|
||||
16
|
||||
> {
|
||||
CUTLASS_DEVICE
|
||||
global_load(AccessType &D, void const *ptr, bool pred_guard) {
|
||||
uint4 &data = reinterpret_cast<uint4 &>(D);
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" .reg .pred p;\n"
|
||||
" setp.ne.b32 p, %5, 0;\n"
|
||||
" mov.b32 %0, %6;\n"
|
||||
" mov.b32 %1, %7;\n"
|
||||
" mov.b32 %2, %8;\n"
|
||||
" mov.b32 %3, %9;\n"
|
||||
#if CUTLASS_ENABLE_L2_PREFETCH
|
||||
" @p ld.global.L2::128B.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
||||
#else
|
||||
" @p ld.global.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
||||
#endif
|
||||
"}\n"
|
||||
: "=r"(data.x), "=r"(data.y), "=r"(data.z), "=r"(data.w)
|
||||
: "l"(ptr), "r"((int)pred_guard), "r"(data.x), "r"(data.y), "r"(data.z), "r"(data.w));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AccessType>
|
||||
struct global_load<AccessType,
|
||||
8
|
||||
> {
|
||||
CUTLASS_DEVICE
|
||||
global_load(AccessType &D, void const *ptr, bool pred_guard) {
|
||||
uint2 &data = reinterpret_cast<uint2 &>(D);
|
||||
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" .reg .pred p;\n"
|
||||
" setp.ne.b32 p, %3, 0;\n"
|
||||
" mov.b32 %0, %4;\n"
|
||||
" mov.b32 %1, %5;\n"
|
||||
#if CUTLASS_ENABLE_L2_PREFETCH
|
||||
" @p ld.global.L2::128B.v2.u32 {%0, %1}, [%2];\n"
|
||||
#else
|
||||
" @p ld.global.v2.u32 {%0, %1}, [%2];\n"
|
||||
#endif
|
||||
"}\n"
|
||||
: "=r"(data.x), "=r"(data.y)
|
||||
: "l"(ptr), "r"((int)pred_guard), "r"(data.x), "r"(data.y));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AccessType>
|
||||
struct global_load<AccessType,
|
||||
4
|
||||
> {
|
||||
CUTLASS_DEVICE
|
||||
global_load(AccessType &D, void const *ptr, bool pred_guard) {
|
||||
unsigned &data = reinterpret_cast<unsigned &>(D);
|
||||
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" .reg .pred p;\n"
|
||||
" setp.ne.b32 p, %2, 0;\n"
|
||||
" mov.b32 %0, %3;\n"
|
||||
#if CUTLASS_ENABLE_L2_PREFETCH
|
||||
" @p ld.global.L2::128B.u32 %0, [%1];\n"
|
||||
#else
|
||||
" @p ld.global.u32 %0, [%1];\n"
|
||||
#endif
|
||||
"}\n"
|
||||
: "=r"(data)
|
||||
: "l"(ptr), "r"((int)pred_guard), "r"(data));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AccessType>
|
||||
struct global_load<AccessType,
|
||||
2
|
||||
> {
|
||||
CUTLASS_DEVICE
|
||||
global_load(AccessType &D, void const *ptr, bool pred_guard) {
|
||||
uint16_t &data = reinterpret_cast<uint16_t &>(D);
|
||||
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" .reg .pred p;\n"
|
||||
" setp.ne.b32 p, %2, 0;\n"
|
||||
" mov.b16 %0, %3;\n"
|
||||
#if CUTLASS_ENABLE_L2_PREFETCH
|
||||
" @p ld.global.L2::128B.u16 %0, [%1];\n"
|
||||
#else
|
||||
" @p ld.global.u16 %0, [%1];\n"
|
||||
#endif
|
||||
"}\n"
|
||||
: "=h"(data)
|
||||
: "l"(ptr), "r"((int)pred_guard), "h"(data));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AccessType>
|
||||
struct global_load<AccessType,
|
||||
1
|
||||
> {
|
||||
CUTLASS_DEVICE
|
||||
global_load(AccessType &D, void const *ptr, bool pred_guard) {
|
||||
if (pred_guard) D = *(reinterpret_cast<AccessType const *>(ptr));
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
/// Fragment type to store data
|
||||
typename AccessType,
|
||||
/// The bytes of storing
|
||||
int StoreBytes
|
||||
>
|
||||
struct global_store;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Specializations
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
template <typename AccessType>
|
||||
struct global_store<AccessType, 64> {
|
||||
CUTLASS_DEVICE
|
||||
global_store(AccessType const &D, void *ptr, bool pred_guard) {
|
||||
uint4 const *data = reinterpret_cast<uint4 const *>(&D);
|
||||
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" .reg .pred p;\n"
|
||||
" setp.ne.b32 p, %5, 0;\n"
|
||||
" @p st.global.v4.u32 [%0], {%1, %2, %3, %4};\n"
|
||||
" @p st.global.v4.u32 [%6], {%7, %8, %9, %10};\n"
|
||||
" @p st.global.v4.u32 [%11], {%12, %13, %14, %15};\n"
|
||||
" @p st.global.v4.u32 [%16], {%17, %18, %19, %20};\n"
|
||||
"}\n"
|
||||
:
|
||||
: "l"(ptr), "r"(data[0].x), "r"(data[0].y), "r"(data[0].z),
|
||||
"r"(data[0].w), "r"((int)pred_guard), "l"(((uint8_t *)ptr) + 16),
|
||||
"r"(data[1].x), "r"(data[1].y), "r"(data[1].z), "r"(data[1].w),
|
||||
"l"(((uint8_t *)ptr) + 32),
|
||||
"r"(data[2].x), "r"(data[2].y), "r"(data[2].z), "r"(data[2].w),
|
||||
"l"(((uint8_t *)ptr) + 48),
|
||||
"r"(data[3].x), "r"(data[3].y), "r"(data[3].z), "r"(data[2].w));
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <typename AccessType>
|
||||
struct global_store<AccessType, 32> {
|
||||
CUTLASS_DEVICE
|
||||
global_store(AccessType const &D, void *ptr, bool pred_guard) {
|
||||
uint4 const *data = reinterpret_cast<uint4 const *>(&D);
|
||||
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" .reg .pred p;\n"
|
||||
" setp.ne.b32 p, %5, 0;\n"
|
||||
" @p st.global.v4.u32 [%0], {%1, %2, %3, %4};\n"
|
||||
" @p st.global.v4.u32 [%6], {%7, %8, %9, %10};\n"
|
||||
"}\n"
|
||||
:
|
||||
: "l"(ptr), "r"(data[0].x), "r"(data[0].y), "r"(data[0].z),
|
||||
"r"(data[0].w), "r"((int)pred_guard), "l"(((uint8_t *)ptr) + 16),
|
||||
"r"(data[1].x), "r"(data[1].y), "r"(data[1].z), "r"(data[1].w));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AccessType>
|
||||
struct global_store<AccessType, 16> {
|
||||
CUTLASS_DEVICE
|
||||
global_store(AccessType const &D, void *ptr, bool pred_guard) {
|
||||
uint4 const &data = reinterpret_cast<uint4 const &>(D);
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" .reg .pred p;\n"
|
||||
" setp.ne.b32 p, %5, 0;\n"
|
||||
" @p st.global.v4.u32 [%0], {%1, %2, %3, %4};\n"
|
||||
"}\n"
|
||||
:
|
||||
: "l"(ptr), "r"(data.x), "r"(data.y), "r"(data.z), "r"(data.w), "r"((int)pred_guard));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AccessType>
|
||||
struct global_store<AccessType, 8> {
|
||||
CUTLASS_DEVICE
|
||||
global_store(AccessType const &D, void *ptr, bool pred_guard) {
|
||||
uint2 const &data = reinterpret_cast<uint2 const &>(D);
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" .reg .pred p;\n"
|
||||
" setp.ne.b32 p, %3, 0;\n"
|
||||
" @p st.global.v2.u32 [%0], {%1, %2};\n"
|
||||
"}\n"
|
||||
:
|
||||
: "l"(ptr), "r"(data.x), "r"(data.y), "r"((int)pred_guard));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AccessType>
|
||||
struct global_store<AccessType, 4> {
|
||||
CUTLASS_DEVICE
|
||||
global_store(AccessType const &D, void *ptr, bool pred_guard) {
|
||||
uint32_t const &data = reinterpret_cast<uint32_t const &>(D);
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" .reg .pred p;\n"
|
||||
" setp.ne.b32 p, %2, 0;\n"
|
||||
" @p st.global.u32 [%0], %1;\n"
|
||||
"}\n"
|
||||
:
|
||||
: "l"(ptr), "r"(data), "r"((int)pred_guard));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AccessType>
|
||||
struct global_store<AccessType, 2> {
|
||||
CUTLASS_DEVICE
|
||||
global_store(AccessType const &D, void *ptr, bool pred_guard) {
|
||||
uint16_t const &data = reinterpret_cast<uint16_t const &>(D);
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" .reg .pred p;\n"
|
||||
" setp.ne.b32 p, %2, 0;\n"
|
||||
" @p st.global.u16 [%0], %1;\n"
|
||||
"}\n"
|
||||
:
|
||||
: "l"(ptr), "h"(data), "r"((int)pred_guard));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AccessType>
|
||||
struct global_store<AccessType, 1> {
|
||||
CUTLASS_DEVICE
|
||||
global_store(AccessType const &D, void *ptr, bool pred_guard) {
|
||||
if (pred_guard) *(reinterpret_cast<AccessType *>(ptr)) = D;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -42,4 +353,6 @@ namespace arch {
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include "memory_sm75.h"
|
||||
#include "memory_sm80.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -46,61 +46,102 @@ inline __device__ void ldsm(Array<unsigned, MatrixCount> & D, void const* ptr);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Specializations
|
||||
// Determine the appropriate way to target PTX's "ldmatrix" instruction.
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#if (__CUDACC_VER_MAJOR__ == 10) && (__CUDACC_VER_MINOR__ == 2)
|
||||
#define CUDA_NVVM_GET_SHARED_POINTER_SUPPORTED 1
|
||||
#else
|
||||
#define CUDA_NVVM_GET_SHARED_POINTER_SUPPORTED 0
|
||||
#if (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2) || (__CUDACC_VER_MAJOR__ >= 11)
|
||||
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 750)
|
||||
#define CUDA_LDMATRIX_ACTIVATED 1
|
||||
#endif
|
||||
|
||||
#if ! defined(CUDA_NVVM_GET_SHARED_POINTER_ENABLED)
|
||||
#define CUDA_NVVM_GET_SHARED_POINTER_ENABLED (CUDA_NVVM_GET_SHARED_POINTER_SUPPORTED)
|
||||
#define CUDA_LDMATRIX_SUPPORTED 1
|
||||
#endif
|
||||
|
||||
#if ! defined(CUDA_LDMATRIX_SUPPORTED)
|
||||
#define CUDA_LDMATRIX_SUPPORTED ((__CUDACC_VER_MAJOR__ == 10) && (__CUDACC_VER_MINOR__ >= 2))
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/*
|
||||
#if ! defined(CUDA_NVVM_GET_SMEM_POINTER_SUPPORTED) && (__CUDACC_VER_MAJOR__ > 10)
|
||||
#define CUDA_NVVM_GET_SMEM_POINTER_SUPPORTED 1
|
||||
#endif
|
||||
#if ! defined(CUDA_NVVM_GET_SMEM_POINTER_SUPPORTED)
|
||||
#define CUDA_NVVM_GET_SMEM_POINTER_SUPPORTED ((__CUDACC_VER_MAJOR__ == 10) && (__CUDACC_VER_MINOR__ >= 1))
|
||||
#endif
|
||||
|
||||
#if ! defined(CUDA_LDMATRIX_ENABLED)
|
||||
#define CUDA_LDMATRIX_ENABLED (CUDA_LDMATRIX_SUPPORTED)
|
||||
#if ! defined(CUDA_NVVM_GET_SMEM_POINTER_ENABLED)
|
||||
#define CUDA_NVVM_GET_SMEM_POINTER_ENABLED CUDA_NVVM_GET_SMEM_POINTER_SUPPORTED
|
||||
#endif
|
||||
*/
|
||||
|
||||
#if (CUDA_LDMATRIX_ENABLED && defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 750))
|
||||
#define CUDA_LDMATRIX_ACTIVATED 1
|
||||
#else
|
||||
#define CUDA_LDMATRIX_ACTIVATED 0
|
||||
#endif
|
||||
|
||||
#if defined(CUTLASS_GET_SMEM_POINTER)
|
||||
// Use the existing implementation
|
||||
#elif CUDA_NVVM_GET_SHARED_POINTER_ENABLED
|
||||
#if ! defined(NVVM_GET_SMEM_POINTER)
|
||||
#define NVVM_GET_SMEM_POINTER
|
||||
#if (! defined (__clang__) && __CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2)
|
||||
extern "C" {
|
||||
//
|
||||
// This NVVM intrinsic is subject to change in future versions of CUDA.
|
||||
// Clients should not call it directly. Rather, they should use the
|
||||
// cutlass::arch::ldsm<>() template.
|
||||
//
|
||||
__device__ uint32_t __nvvm_get_smem_pointer(void*);
|
||||
//
|
||||
// This NVVM intrinsic is subject to change in future versions of CUDA.
|
||||
// Clients should not call it directly. Rather, they should use the
|
||||
// cutlass::arch::ldsm<>() template.
|
||||
//
|
||||
__device__ uint32_t __nvvm_get_smem_pointer(void *);
|
||||
}
|
||||
#endif
|
||||
#define CUTLASS_GET_SMEM_POINTER(ptr) __nvvm_get_smem_pointer((void*)ptr)
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// CUTLASS helper to get SMEM pointer
|
||||
inline __device__ unsigned cutlass_get_smem_pointer(void *ptr) {
|
||||
|
||||
// We prefer to use the new CVTA intrinsics if they are available, otherwise we will fall back to
|
||||
// the previous internal intrinsics if they are available.
|
||||
#if (! defined (__clang__) && defined(__CUDA_ARCH__) && __CUDACC_VER_MAJOR__ >= 11)
|
||||
//
|
||||
// This NVVM intrinsic converts an address in shared memory to a plain
|
||||
// unsigned integer. This is necessary to pass to shared memory instructions
|
||||
// in inline PTX.
|
||||
//
|
||||
// In CUDA 11 and beyond, this replaces __nvvm_get_smem_pointer() [only available in 10.2].
|
||||
//
|
||||
//__device__ size_t __cvta_generic_to_shared(void* ptr);
|
||||
|
||||
/// CUTLASS helper to get SMEM pointer
|
||||
return static_cast<unsigned>(__cvta_generic_to_shared(ptr));
|
||||
|
||||
#elif (! defined (__clang__) && defined(__CUDA_ARCH__) && __CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2)
|
||||
|
||||
return __nvvm_get_smem_pointer(ptr);
|
||||
|
||||
#elif defined(__CUDA_ARCH__)
|
||||
|
||||
uint32_t smem_ptr;
|
||||
|
||||
asm(
|
||||
"{ .reg .u64 smem_ptr; cvta.to.shared.u64 smem_ptr, %1; cvt.u32.u64 %0, smem_ptr; }\n"
|
||||
: "=r"(smem_ptr) : "l"(ptr));
|
||||
|
||||
return smem_ptr;
|
||||
|
||||
#else
|
||||
|
||||
CUTLASS_UNUSED(ptr);
|
||||
CUTLASS_NOT_IMPLEMENTED();
|
||||
return 0;
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
/// CUTLASS helper to get SMEM pointer
|
||||
inline __device__ unsigned cutlass_get_smem_pointer(void const *ptr) {
|
||||
return cutlass_get_smem_pointer(const_cast<void *>(ptr));
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <>
|
||||
inline __device__ void ldsm<layout::RowMajor, 1>(
|
||||
Array<unsigned, 1> & D,
|
||||
void const* ptr) {
|
||||
|
||||
#if CUDA_LDMATRIX_ACTIVATED
|
||||
#if defined(CUDA_LDMATRIX_ACTIVATED)
|
||||
|
||||
unsigned addr = CUTLASS_GET_SMEM_POINTER(ptr);
|
||||
unsigned addr = cutlass_get_smem_pointer(ptr);
|
||||
|
||||
int x;
|
||||
asm volatile ("ldmatrix.sync.aligned.x1.m8n8.shared.b16 {%0}, [%1];" : "=r"(x) : "r"(addr));
|
||||
@ -108,7 +149,9 @@ inline __device__ void ldsm<layout::RowMajor, 1>(
|
||||
|
||||
#else
|
||||
|
||||
assert(0);
|
||||
CUTLASS_UNUSED(D);
|
||||
CUTLASS_UNUSED(ptr);
|
||||
CUTLASS_NOT_IMPLEMENTED();
|
||||
|
||||
#endif
|
||||
}
|
||||
@ -120,9 +163,9 @@ inline __device__ void ldsm<layout::RowMajor, 2>(
|
||||
Array<unsigned, 2> & D,
|
||||
void const* ptr) {
|
||||
|
||||
#if CUDA_LDMATRIX_ACTIVATED
|
||||
#if defined(CUDA_LDMATRIX_ACTIVATED)
|
||||
|
||||
unsigned addr = CUTLASS_GET_SMEM_POINTER(ptr);
|
||||
unsigned addr = cutlass_get_smem_pointer(ptr);
|
||||
|
||||
int x, y;
|
||||
asm volatile ("ldmatrix.sync.aligned.x2.m8n8.shared.b16 {%0, %1}, [%2];" : "=r"(x), "=r"(y) : "r"(addr));
|
||||
@ -130,7 +173,9 @@ inline __device__ void ldsm<layout::RowMajor, 2>(
|
||||
|
||||
#else
|
||||
|
||||
assert(0);
|
||||
CUTLASS_UNUSED(D);
|
||||
CUTLASS_UNUSED(ptr);
|
||||
CUTLASS_NOT_IMPLEMENTED();
|
||||
|
||||
#endif
|
||||
}
|
||||
@ -142,9 +187,9 @@ inline __device__ void ldsm<layout::RowMajor, 4>(
|
||||
Array<unsigned, 4> & D,
|
||||
void const* ptr) {
|
||||
|
||||
#if CUDA_LDMATRIX_ACTIVATED
|
||||
#if defined(CUDA_LDMATRIX_ACTIVATED)
|
||||
|
||||
unsigned addr = CUTLASS_GET_SMEM_POINTER(ptr);
|
||||
unsigned addr = cutlass_get_smem_pointer(ptr);
|
||||
|
||||
int x, y, z, w;
|
||||
asm volatile ("ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, %3}, [%4];" : "=r"(x), "=r"(y), "=r"(z), "=r"(w) : "r"(addr));
|
||||
@ -152,7 +197,9 @@ inline __device__ void ldsm<layout::RowMajor, 4>(
|
||||
|
||||
#else
|
||||
|
||||
assert(0);
|
||||
CUTLASS_UNUSED(D);
|
||||
CUTLASS_UNUSED(ptr);
|
||||
CUTLASS_NOT_IMPLEMENTED();
|
||||
|
||||
#endif
|
||||
}
|
||||
@ -167,9 +214,10 @@ template <>
|
||||
inline __device__ void ldsm<layout::ColumnMajor, 1>(
|
||||
Array<unsigned, 1> & D,
|
||||
void const* ptr) {
|
||||
|
||||
#if CUDA_LDMATRIX_ACTIVATED
|
||||
|
||||
unsigned addr = CUTLASS_GET_SMEM_POINTER(ptr);
|
||||
unsigned addr = cutlass_get_smem_pointer(ptr);
|
||||
|
||||
int x;
|
||||
asm volatile ("ldmatrix.sync.aligned.x1.trans.m8n8.shared.b16 {%0}, [%1];" : "=r"(x) : "r"(addr));
|
||||
@ -177,7 +225,9 @@ inline __device__ void ldsm<layout::ColumnMajor, 1>(
|
||||
|
||||
#else
|
||||
|
||||
assert(0);
|
||||
CUTLASS_UNUSED(D);
|
||||
CUTLASS_UNUSED(ptr);
|
||||
CUTLASS_NOT_IMPLEMENTED();
|
||||
|
||||
#endif
|
||||
}
|
||||
@ -189,9 +239,9 @@ inline __device__ void ldsm<layout::ColumnMajor, 2>(
|
||||
Array<unsigned, 2> & D,
|
||||
void const* ptr) {
|
||||
|
||||
#if CUDA_LDMATRIX_ACTIVATED
|
||||
#if defined(CUDA_LDMATRIX_ACTIVATED)
|
||||
|
||||
unsigned addr = CUTLASS_GET_SMEM_POINTER(ptr);
|
||||
unsigned addr = cutlass_get_smem_pointer(ptr);
|
||||
|
||||
int x, y;
|
||||
asm volatile ("ldmatrix.sync.aligned.x2.trans.m8n8.shared.b16 {%0, %1}, [%2];" : "=r"(x), "=r"(y) : "r"(addr));
|
||||
@ -199,7 +249,9 @@ inline __device__ void ldsm<layout::ColumnMajor, 2>(
|
||||
|
||||
#else
|
||||
|
||||
assert(0);
|
||||
CUTLASS_UNUSED(D);
|
||||
CUTLASS_UNUSED(ptr);
|
||||
CUTLASS_NOT_IMPLEMENTED();
|
||||
|
||||
#endif
|
||||
}
|
||||
@ -211,9 +263,9 @@ inline __device__ void ldsm<layout::ColumnMajor, 4>(
|
||||
Array<unsigned, 4> & D,
|
||||
void const* ptr) {
|
||||
|
||||
#if CUDA_LDMATRIX_ACTIVATED
|
||||
#if defined(CUDA_LDMATRIX_ACTIVATED)
|
||||
|
||||
unsigned addr = CUTLASS_GET_SMEM_POINTER(ptr);
|
||||
unsigned addr = cutlass_get_smem_pointer(ptr);
|
||||
|
||||
int x, y, z, w;
|
||||
asm volatile ("ldmatrix.sync.aligned.x4.trans.m8n8.shared.b16 {%0, %1, %2, %3}, [%4];" : "=r"(x), "=r"(y), "=r"(z), "=r"(w) : "r"(addr));
|
||||
@ -221,11 +273,14 @@ inline __device__ void ldsm<layout::ColumnMajor, 4>(
|
||||
|
||||
#else
|
||||
|
||||
assert(0);
|
||||
CUTLASS_UNUSED(D);
|
||||
CUTLASS_UNUSED(ptr);
|
||||
CUTLASS_NOT_IMPLEMENTED();
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace arch
|
||||
} // namespace cutlass
|
||||
|
||||
266
include/cutlass/arch/memory_sm80.h
Normal file
266
include/cutlass/arch/memory_sm80.h
Normal file
@ -0,0 +1,266 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
|
||||
/*! \file
|
||||
\brief Architecture-specific operators on memory added for SM80
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/arch/memory.h"
|
||||
#include "cutlass/arch/memory_sm75.h"
|
||||
#include "cutlass/arch/cache_operation.h"
|
||||
|
||||
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)
|
||||
#define CUDA_CP_ASYNC_ACTIVATED 1
|
||||
#else
|
||||
#define CUDA_CP_ASYNC_ACTIVATED 0
|
||||
#endif
|
||||
|
||||
namespace cutlass {
|
||||
namespace arch {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Initiates an asynchronous copy from global memory to shared memory.
|
||||
///
|
||||
/// LDGSTS
|
||||
///
|
||||
template <
|
||||
/// Size of the access in bytes
|
||||
int SizeInBytes,
|
||||
/// Cache operation
|
||||
CacheOperation::Kind cache_op = CacheOperation::Always>
|
||||
struct cp_async;
|
||||
|
||||
/// Initiates an asynchronous copy from global memory to shared memory. Rather than predicate
|
||||
/// the entire transfer, zeros are written to SMEM if the guard predicate is false.
|
||||
///
|
||||
/// LDGSTS
|
||||
///
|
||||
template <
|
||||
/// Size of the access in bytes
|
||||
int SizeInBytes,
|
||||
/// Cache operation
|
||||
CacheOperation::Kind cache_op = CacheOperation::Always>
|
||||
struct cp_async_zfill;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Partial specialization
|
||||
template <
|
||||
/// Size of the access in bytes
|
||||
int SizeInBytes>
|
||||
struct cp_async<SizeInBytes, CacheOperation::Always> {
|
||||
|
||||
/// Copy
|
||||
CUTLASS_DEVICE
|
||||
cp_async(void *smem_ptr, void const *global_ptr, bool pred_guard = true) {
|
||||
#if CUDA_CP_ASYNC_ACTIVATED
|
||||
|
||||
// Make sure the size is supported.
|
||||
static_assert((SizeInBytes == 4 || SizeInBytes == 8 || SizeInBytes == 16),
|
||||
"Size is not supported");
|
||||
|
||||
unsigned smem_int_ptr = cutlass_get_smem_pointer(smem_ptr);
|
||||
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" .reg .pred p;\n"
|
||||
" setp.ne.b32 p, %0, 0;\n"
|
||||
#if CUTLASS_ENABLE_L2_PREFETCH
|
||||
" @p cp.async.ca.shared.global.L2::128B [%1], [%2], %3;\n"
|
||||
#else
|
||||
" @p cp.async.ca.shared.global [%1], [%2], %3;\n"
|
||||
#endif
|
||||
"}\n" ::"r"((int)pred_guard),
|
||||
"r"(smem_int_ptr), "l"(global_ptr), "n"(SizeInBytes));
|
||||
|
||||
#else
|
||||
using AccessType = Array<uint8_t, SizeInBytes>;
|
||||
|
||||
if (pred_guard) {
|
||||
*static_cast<AccessType *>(smem_ptr) = *static_cast<AccessType const *>(global_ptr);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
/// Partial specialization
|
||||
template <
|
||||
/// Size of the access in bytes
|
||||
int SizeInBytes>
|
||||
struct cp_async_zfill<SizeInBytes, CacheOperation::Always> {
|
||||
|
||||
/// Copy with zero fill
|
||||
CUTLASS_DEVICE
|
||||
cp_async_zfill(void *smem_ptr, void const *global_ptr, bool pred_guard) {
|
||||
#if CUDA_CP_ASYNC_ACTIVATED
|
||||
|
||||
// Make sure the size is supported.
|
||||
static_assert((SizeInBytes == 4 || SizeInBytes == 8 || SizeInBytes == 16),
|
||||
"Size is not supported");
|
||||
|
||||
unsigned smem_int_ptr = cutlass_get_smem_pointer(smem_ptr);
|
||||
int src_in_bytes = (pred_guard ? SizeInBytes : 0);
|
||||
|
||||
asm volatile(
|
||||
#if CUTLASS_ENABLE_L2_PREFETCH
|
||||
"cp.async.ca.shared.global.L2::128B [%0], [%1], %2, %3;\n" ::"r"(smem_int_ptr),
|
||||
#else
|
||||
"cp.async.ca.shared.global [%0], [%1], %2, %3;\n" ::"r"(smem_int_ptr),
|
||||
#endif
|
||||
"l"(global_ptr), "n"(SizeInBytes), "r"(src_in_bytes));
|
||||
|
||||
#else
|
||||
using AccessType = Array<uint8_t, SizeInBytes>;
|
||||
|
||||
if (pred_guard) {
|
||||
*static_cast<AccessType *>(smem_ptr) = *static_cast<AccessType const *>(global_ptr);
|
||||
}
|
||||
else {
|
||||
AccessType zeros;
|
||||
zeros.clear();
|
||||
*static_cast<AccessType *>(smem_ptr) = zeros;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Partial specialization
|
||||
template <
|
||||
/// Size of the access in bytes
|
||||
int SizeInBytes>
|
||||
struct cp_async<SizeInBytes, CacheOperation::Global> {
|
||||
|
||||
/// Copy
|
||||
CUTLASS_DEVICE
|
||||
cp_async(void *smem_ptr, void const *global_ptr, bool pred_guard = true) {
|
||||
#if CUDA_CP_ASYNC_ACTIVATED
|
||||
|
||||
static_assert(SizeInBytes == 16,
|
||||
"cp.async only supports CacheOperation::Global when access size is 16B.");
|
||||
|
||||
unsigned smem_int_ptr = cutlass_get_smem_pointer(smem_ptr);
|
||||
|
||||
asm volatile(
|
||||
"{\n"
|
||||
" .reg .pred p;\n"
|
||||
" setp.ne.b32 p, %0, 0;\n"
|
||||
#if CUTLASS_ENABLE_L2_PREFETCH
|
||||
" @p cp.async.cg.shared.global.L2::128B [%1], [%2], %3;\n"
|
||||
#else
|
||||
" @p cp.async.cg.shared.global [%1], [%2], %3;\n"
|
||||
#endif
|
||||
"}\n" ::"r"((int)pred_guard),
|
||||
"r"(smem_int_ptr), "l"(global_ptr), "n"(SizeInBytes));
|
||||
|
||||
#else
|
||||
using AccessType = Array<uint8_t, SizeInBytes>;
|
||||
|
||||
if (pred_guard) {
|
||||
*static_cast<AccessType *>(smem_ptr) = *static_cast<AccessType const *>(global_ptr);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
/// Partial specialization
|
||||
template <
|
||||
/// Size of the access in bytes
|
||||
int SizeInBytes>
|
||||
struct cp_async_zfill<SizeInBytes, CacheOperation::Global> {
|
||||
|
||||
/// Copy with zero fill
|
||||
CUTLASS_DEVICE
|
||||
cp_async_zfill(void *smem_ptr, void const *global_ptr, bool pred_guard = true) {
|
||||
#if CUDA_CP_ASYNC_ACTIVATED
|
||||
|
||||
static_assert(SizeInBytes == 16,
|
||||
"cp.async only supports CacheOperation::Global when access size is 16B.");
|
||||
|
||||
unsigned smem_int_ptr = cutlass_get_smem_pointer(smem_ptr);
|
||||
int src_in_bytes = (pred_guard ? SizeInBytes : 0);
|
||||
|
||||
asm volatile(
|
||||
#if CUTLASS_ENABLE_L2_PREFETCH
|
||||
"cp.async.cg.shared.global.L2::128B [%0], [%1], %2, %3;\n" ::"r"(smem_int_ptr),
|
||||
#else
|
||||
"cp.async.cg.shared.global [%0], [%1], %2, %3;\n" ::"r"(smem_int_ptr),
|
||||
#endif
|
||||
"l"(global_ptr), "n"(SizeInBytes), "r"(src_in_bytes));
|
||||
|
||||
#else
|
||||
using AccessType = Array<uint8_t, SizeInBytes>;
|
||||
|
||||
if (pred_guard) {
|
||||
*static_cast<AccessType *>(smem_ptr) = *static_cast<AccessType const *>(global_ptr);
|
||||
}
|
||||
else {
|
||||
AccessType zeros;
|
||||
zeros.clear();
|
||||
*static_cast<AccessType *>(smem_ptr) = zeros;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Establishes an ordering w.r.t previously issued cp.async instructions. Does not block.
|
||||
CUTLASS_DEVICE
|
||||
void cp_async_fence() {
|
||||
#if CUDA_CP_ASYNC_ACTIVATED
|
||||
asm volatile("cp.async.commit_group;\n" ::);
|
||||
#endif
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Blocks until all but <N> previous cp.async.commit_group operations have committed.
|
||||
template <int N>
|
||||
CUTLASS_DEVICE void cp_async_wait() {
|
||||
#if CUDA_CP_ASYNC_ACTIVATED
|
||||
asm volatile("cp.async.wait_group %0;\n" ::"n"(N));
|
||||
#endif
|
||||
}
|
||||
|
||||
/// Blocks until all previous cp.async.commit_group operations have committed.
|
||||
template <>
|
||||
CUTLASS_DEVICE void cp_async_wait<0>() {
|
||||
#if CUDA_CP_ASYNC_ACTIVATED
|
||||
asm volatile("cp.async.wait_all;\n" ::);
|
||||
#endif
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace arch
|
||||
} // namespace cutlass
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -30,7 +30,10 @@
|
||||
|
||||
#include "cutlass/array.h"
|
||||
#include "cutlass/numeric_types.h"
|
||||
#include "cutlass/functional.h"
|
||||
|
||||
#include "cutlass/gemm/gemm.h"
|
||||
#include "cutlass/arch/arch.h"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -49,6 +52,26 @@ struct OpMultiplyAddSaturate;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Tag indicating the input is converted to a narrower type (BF16)
|
||||
struct OpMultiplyAddFastBF16;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Tag indicating the input is converted to a narrower type (F16)
|
||||
struct OpMultiplyAddFastF16;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Tag indicating the complex multiply-add operation
|
||||
struct OpMultiplyAddComplex;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Tag indicating the gaussian complex multiply-add operation
|
||||
struct OpMultiplyAddGaussianComplex;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Tag indicating the inner product is defined by (XOR, POPC)
|
||||
struct OpXorPopc;
|
||||
|
||||
@ -108,11 +131,12 @@ template <
|
||||
/// Layout of C matrix (concept: MatrixLayout)
|
||||
typename LayoutC,
|
||||
/// Inner product operator
|
||||
typename Operator
|
||||
typename Operator_
|
||||
>
|
||||
struct Mma<gemm::GemmShape<1, 1, 1>, 1, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, Operator> {
|
||||
struct Mma<gemm::GemmShape<1, 1, 1>, 1, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, Operator_> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 1, 1>;
|
||||
using Operator = Operator_;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -122,12 +146,50 @@ struct Mma<gemm::GemmShape<1, 1, 1>, 1, ElementA, LayoutA, ElementB, LayoutB, El
|
||||
Array<ElementC, 1> const &c
|
||||
) {
|
||||
|
||||
d[0] = a[0] * b[0] + c[0];
|
||||
multiply_add<ElementA, ElementB, ElementC> op;
|
||||
|
||||
d[0] = op(a[0], b[0], c[0]);
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Specifies internal data type for computation
|
||||
struct SPFormatType {
|
||||
enum Kind {
|
||||
Thread
|
||||
};
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Matrix multiply-add operation
|
||||
template <
|
||||
/// Size of the matrix product (concept: GemmShape)
|
||||
typename Shape_,
|
||||
/// Number of threads participating
|
||||
int kThreads_,
|
||||
/// Data type of A elements
|
||||
typename ElementA,
|
||||
/// Layout of A matrix (concept: MatrixLayout)
|
||||
typename LayoutA,
|
||||
/// Data type of B elements
|
||||
typename ElementB,
|
||||
/// Layout of B matrix (concept: MatrixLayout)
|
||||
typename LayoutB,
|
||||
/// Element type of C matrix
|
||||
typename ElementC,
|
||||
/// Layout of C matrix (concept: MatrixLayout)
|
||||
typename LayoutC,
|
||||
/// Inner product operator
|
||||
typename Operator,
|
||||
/// Specifies meta data format
|
||||
SPFormatType::Kind SPFormat = SPFormatType::Thread
|
||||
>
|
||||
struct SparseMma;
|
||||
|
||||
} // namespace arch
|
||||
} // namespace cutlass
|
||||
|
||||
@ -142,4 +204,6 @@ struct Mma<gemm::GemmShape<1, 1, 1>, 1, ElementA, LayoutA, ElementB, LayoutB, El
|
||||
#include "cutlass/arch/mma_sm61.h"
|
||||
#include "cutlass/arch/mma_sm70.h"
|
||||
#include "cutlass/arch/mma_sm75.h"
|
||||
#include "cutlass/arch/mma_sm80.h"
|
||||
#include "cutlass/arch/mma_sparse_sm80.h"
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -30,6 +30,8 @@
|
||||
|
||||
#include "cutlass/arch/mma.h"
|
||||
#include "cutlass/complex.h"
|
||||
#include "cutlass/quaternion.h"
|
||||
#include "cutlass/functional.h"
|
||||
|
||||
#include "cutlass/layout/matrix.h"
|
||||
#include "cutlass/gemm/gemm.h"
|
||||
@ -53,6 +55,7 @@ template <
|
||||
struct Mma<gemm::GemmShape<1, 1, 1>, 1, float, LayoutA, float, LayoutB, float, LayoutC, OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 1, 1>;
|
||||
using Operator = OpMultiplyAdd;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -79,6 +82,7 @@ template <
|
||||
struct Mma<gemm::GemmShape<1, 1, 1>, 1, double, LayoutA, double, LayoutB, double, LayoutC, OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 1, 1>;
|
||||
using Operator = OpMultiplyAdd;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -106,6 +110,7 @@ template <
|
||||
struct Mma<gemm::GemmShape<1, 1, 1>, 1, int, LayoutA, int, LayoutB, int, LayoutC, OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 1, 1>;
|
||||
using Operator = OpMultiplyAdd;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -142,6 +147,7 @@ struct Mma<
|
||||
OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 1, 1>;
|
||||
using Operator = OpMultiplyAddComplex;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -181,6 +187,7 @@ struct Mma<
|
||||
OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 1, 1>;
|
||||
using Operator = OpMultiplyAddComplex;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -218,6 +225,7 @@ struct Mma<
|
||||
OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 1, 1>;
|
||||
using Operator = OpMultiplyAddComplex;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -255,6 +263,7 @@ struct Mma<
|
||||
OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 1, 1>;
|
||||
using Operator = OpMultiplyAddComplex;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -292,6 +301,7 @@ struct Mma<
|
||||
OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 1, 1>;
|
||||
using Operator = OpMultiplyAddComplex;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -327,6 +337,7 @@ struct Mma<
|
||||
OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 1, 1>;
|
||||
using Operator = OpMultiplyAddComplex;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -355,7 +366,8 @@ template <
|
||||
struct Mma<gemm::GemmShape<1, 1, 1>, 1, half_t, LayoutA, half_t, LayoutB, float, LayoutC, OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 1, 1>;
|
||||
|
||||
using Operator = OpMultiplyAdd;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
Array<float, 1> &d,
|
||||
@ -369,5 +381,35 @@ struct Mma<gemm::GemmShape<1, 1, 1>, 1, half_t, LayoutA, half_t, LayoutB, float,
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Matrix multiply-add operation for Quaternions
|
||||
template <
|
||||
/// Layout of A matrix
|
||||
typename LayoutA,
|
||||
/// Layout of B matrix
|
||||
typename LayoutB,
|
||||
/// Layout of C matrix
|
||||
typename LayoutC
|
||||
>
|
||||
struct Mma<gemm::GemmShape<1, 1, 1>, 1, Quaternion<float>, LayoutA, Quaternion<float>, LayoutB, Quaternion<float>, LayoutC, OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 1, 1>;
|
||||
using Operator = OpMultiplyAdd;
|
||||
using Element = Quaternion<float>;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
Array<Element, 1> &d,
|
||||
Array<Element, 1> const &a,
|
||||
Array<Element, 1> const &b,
|
||||
Array<Element, 1> const &c
|
||||
) {
|
||||
multiply_add<Element, Element, Element> op;
|
||||
d[0] = op(a[0], b[0], c[0]);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -55,6 +55,7 @@ struct Mma<
|
||||
OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<2, 1, 1>;
|
||||
using Operator = OpMultiplyAdd;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -99,6 +100,7 @@ struct Mma<
|
||||
OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 2, 1>;
|
||||
using Operator = OpMultiplyAdd;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -143,6 +145,7 @@ struct Mma <
|
||||
OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<2, 2, 1>;
|
||||
using Operator = OpMultiplyAdd;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -196,7 +199,8 @@ struct Mma<
|
||||
OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<2, 2, 1>;
|
||||
|
||||
using Operator = OpMultiplyAdd;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
Array<half_t, 4> &d,
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -51,7 +51,8 @@ struct Mma<
|
||||
OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 1, 4>;
|
||||
|
||||
using Operator = OpMultiplyAdd;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
Array<int, 1> &d,
|
||||
@ -98,6 +99,7 @@ struct Mma<
|
||||
OpMultiplyAdd> {
|
||||
|
||||
using Shape = gemm::GemmShape<1, 1, 2>;
|
||||
using Operator = OpMultiplyAdd;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
@ -18,7 +18,7 @@
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
@ -27,7 +27,11 @@
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#if defined(__CUDACC_RTC__)
|
||||
#include <cuda/std/cassert>
|
||||
#else
|
||||
#include <assert.h>
|
||||
#endif
|
||||
|
||||
#include "mma.h"
|
||||
#include "cutlass/layout/matrix.h"
|
||||
@ -84,6 +88,7 @@ struct Mma<
|
||||
using FragmentC = Array<half_t, 8>;
|
||||
|
||||
using Operator = OpMultiplyAdd;
|
||||
using ArchTag = arch::Sm70;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -139,6 +144,7 @@ struct Mma<
|
||||
using FragmentC = Array<half_t, 8>;
|
||||
|
||||
using Operator = OpMultiplyAdd;
|
||||
using ArchTag = arch::Sm70;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -194,6 +200,7 @@ struct Mma<
|
||||
using FragmentC = Array<half_t, 8>;
|
||||
|
||||
using Operator = OpMultiplyAdd;
|
||||
using ArchTag = arch::Sm70;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -249,6 +256,7 @@ struct Mma<
|
||||
using FragmentC = Array<half_t, 8>;
|
||||
|
||||
using Operator = OpMultiplyAdd;
|
||||
using ArchTag = arch::Sm70;
|
||||
|
||||
CUTLASS_HOST_DEVICE
|
||||
void operator()(
|
||||
@ -310,6 +318,7 @@ struct Mma<
|
||||
using FragmentC = Array<float, 8>;
|
||||
|
||||
using Operator = OpMultiplyAdd;
|
||||
using ArchTag = arch::Sm70;
|
||||
|
||||
/// Multiply-add
|
||||
CUTLASS_HOST_DEVICE
|
||||
@ -385,6 +394,7 @@ struct Mma<
|
||||
using FragmentC = Array<float, 8>;
|
||||
|
||||
using Operator = OpMultiplyAdd;
|
||||
using ArchTag = arch::Sm70;
|
||||
|
||||
/// Multiply-add
|
||||
CUTLASS_HOST_DEVICE
|
||||
@ -460,6 +470,7 @@ struct Mma<
|
||||
using FragmentC = Array<float, 8>;
|
||||
|
||||
using Operator = OpMultiplyAdd;
|
||||
using ArchTag = arch::Sm70;
|
||||
|
||||
/// Multiply-add
|
||||
CUTLASS_HOST_DEVICE
|
||||
@ -535,6 +546,7 @@ struct Mma<
|
||||
using FragmentC = Array<float, 8>;
|
||||
|
||||
using Operator = OpMultiplyAdd;
|
||||
using ArchTag = arch::Sm70;
|
||||
|
||||
/// Multiply-add
|
||||
CUTLASS_HOST_DEVICE
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user