Compare commits

...

72 Commits

Author SHA1 Message Date
e45e773436 Update linear_combination_generic.h (#472)
add `skip_elementwise_` to support serial splitk in linear_combination_generic.h`
2022-06-28 07:29:38 -04:00
dae6b6893b Update CHANGELOG.md 2022-06-27 23:30:49 -04:00
ba18ea9c32 Update README.md 2022-06-27 23:25:26 -04:00
9ab9110168 add leaky relu (#542)
Authored-by: Haicheng Wu <haichengw@nvidia.com>
2022-06-26 10:07:50 -04:00
e5d4669f16 Update CHANGELOG.md (#543) 2022-06-25 13:23:49 -04:00
94f01f19d5 Add implicit gemm perf
plot from @manishucsd, presented in gtc'22 cutlass talk
2022-06-23 22:47:11 -04:00
fa56763c25 Fix occupancy calculation for grouped GEMM (#532) 2022-06-18 19:53:59 -04:00
25e26a6e51 fix bugs in linear_combination_generic.h missing include cutlass/epilogue/thread/scale_type.h (#531) 2022-06-17 23:35:14 -04:00
f248e9bdb4 Create CITATION.cff
Add initial CITATION.cff
2022-06-07 21:25:16 -04:00
dceefe4f64 Increment stride correctly in warp iterator. (#516)
Co-authored-by: peisun1115 <peis@google.com>
2022-06-06 12:33:36 -04:00
c3881d097e Fix a comment about LDSM layout. (#514)
Co-authored-by: peisun1115 <peis@google.com>
2022-06-04 23:04:00 -04:00
a29dfb1c63 Fix a bug to increment stride tile correctly (#503)
* Fix a bug to increment stride tile correctly

* Update regular_tile_access_iterator_tensor_op.h

Co-authored-by: peisun1115 <peis@google.com>
Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
2022-06-03 22:54:52 -04:00
0abaac84ea [examples] Fix typos in SYRK and TRMM examples (#507) 2022-06-03 22:52:41 -04:00
858c735856 Update gather_scatter_fusion.cu
Correct the reference code in gather/scatter example to put bias add in the correct place.
2022-05-18 13:15:25 -04:00
d6f58b2d14 Update functionality.md 2022-05-11 09:34:24 -04:00
c4cf0dad82 Fix init-self compiler warnings (#493)
Fix a few errors caused by trying to initialize a class member
with itself. These errors can turn into errors if you compile
with `-Winit-self`.
2022-05-11 00:35:28 -04:00
57551902d0 Update functionality.md
add some explanations to the functionality table.
2022-05-11 00:01:19 -04:00
1604ebaf10 Update generator.py
stop generating analytical conv kernels to reduce kernel number
2022-05-08 21:47:15 -04:00
6023038bae add verification of the reduction tensor (#489)
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2022-05-06 10:24:51 -07:00
ddd8f9cf41 update float < int32_t * 4 (#488)
Co-authored-by: 赵俊涛 <zhaojuntao@zhaojuntaos-MacBook-Pro.local>
2022-05-04 13:36:05 -04:00
ec2b4fd85d b2b bias vector support (#482)
* b2b bias vector support

* add files

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2022-04-30 04:16:15 -07:00
86ce09aed1 2.9 fixes for nvrtc (#480)
* Use platform::is_same instead of std::is_same

* Don't hide cuComplex include from nvrtc

* Typo fixed

* Remove comment rename
2022-04-29 09:06:52 -04:00
21c1fa3849 add .github (#479)
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2022-04-28 12:36:59 -07:00
8c339ac039 Fix compilation in clang (#478)
- adds missing commas
- adjusts misaligned usage of CUTLASS_DEVICE between
  template declaration and specializations

Signed-off-by: Janusz Lisiecki <jlisiecki@nvidia.com>
2022-04-28 14:22:06 -04:00
e49f690fd7 Update linear_combination_generic.h 2022-04-28 14:04:53 -04:00
96dad61a75 Update CHANGELOG.md 2022-04-28 10:52:10 -04:00
cc2ea4c3fc Update README.md 2022-04-28 10:50:11 -04:00
a0de301283 Used relative paths for includes (#477) 2022-04-27 12:04:23 -07:00
319a389f42 Update CMakeLists.txt (#473)
* Update CMakeLists.txt

Add 128bit int support if using nvc++ to solve #310 

@jeffhammond, would you please give it a try?

* Update CMakeLists.txt

correct copy paste error
2022-04-27 07:02:26 -07:00
71def2f084 Use platform:: instead of std::abs and std::conditional (#452)
* Fixed template struct/class mismatch

* Use platform implementation instead of std::abs and std::conditional during nvrtc compilation

* Use platform implementation instead of std::abs and std::conditional during nvrtc compilation

* Revert absolute_value() usage
2022-04-25 14:40:22 -04:00
70f3ba57f5 Fix typo in shared memory layout description (#471) 2022-04-24 18:32:13 -04:00
dd77fadc70 Remove redundant offset def and init in shared_load_iterator.h (#456)
Signed-off-by: Fujun Han <fujun.han@iluvatar.ai>
2022-04-24 16:31:00 -04:00
be4578d517 Fixed template struct/class mismatch (#453) 2022-04-24 16:30:21 -04:00
d7b499deff Fix CUDA_PERROR_EXIT and print failing expression (#446)
`CUDA_PERROR_EXIT ` can lead to incorrect usage (see e.g. [this description](https://www.cs.technion.ac.il/users/yechiel/c++-faq/macros-with-if.html)) because it contains an incomplete `if` expression. Consider:

```
if (condition)
    CUDA_PERROR_EXIT(cudaFree(x))
else
    free(x);
```

The author of the code forgot to add a semicolon after the macro. In that case, the `else` will bind to the `if` inside the macro definition, leading to code that the author did not intend or expect. It the author does use a semicolon, the code will not compile, which is awkward.

The change adds a `do while` around the `if`, which always requires a semicolon.

This PR also adds the text of the failing expression to the printed error message.
2022-04-24 16:29:43 -04:00
310ed81ac3 fix description in example 12. (#444)
Co-authored-by: Exusial <Exusial>
2022-04-24 16:29:06 -04:00
4c0d6e1eb4 [BUGFIX]: Force unroll a loop that doesn't have compilation constant (#441)
loop times is dangerous.

Signed-off-by: Peter Han <fujun.han@iluvatar.ai>
2022-04-24 16:28:32 -04:00
167ac54c65 Fix link to Python example (#469) 2022-04-23 15:37:38 -04:00
12f4108ac2 CUTLASS 2.9 (#468) 2022-04-23 15:02:38 -04:00
dd571f0edb [style] fix code indentation (#449)
* [docs] fix typo in media/docs/layout.md

* [docs] fix comment error

* fix typo in include/cutlass/arch/simd_61.h

* fix stride comment errors in TensorLayout

* fix indentation
2022-04-03 21:13:17 -04:00
6d0d265047 Update PUBLICATIONS.md (#447) 2022-04-03 21:03:28 -04:00
f11fa975a5 Update PUBLICATIONS.md
@tsuki
2022-03-23 21:04:43 -04:00
0e71d9b450 Transposed conv2d and wgrad split k examples (#413)
* add split k wgrad example

* wgrad done

* begin transposed conv2d example

* update transposed conv2d example and add ref check

* update doc for conv2d transpose example

* add license

* add wgrad doc

* more clarification on GEMM output type

* typo fix

* clean up indent

* address comments

* rename example numbers to 34 and 35

* GEMM -> Implicit GEMM

* Revert "rename example numbers to 34 and 35"

This reverts commit 551a808c22.

* transposed_conv2d is 34

* add compiler and device version check to exit gracefully

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2022-03-23 14:52:54 -04:00
eb0d4c9213 [library] pass pointer of arguments to get_host_workspace_size() in gemm_universal() (#412)
Otherwise GemmUniversalOperation::get_host_workspace_size() will fail on SegmentFault.
2022-03-22 12:36:34 -04:00
bc45e2c023 fixed datatype error of numeric_limit for uint1b_t (#419)
Co-authored-by: Haojin Yang <haojin.yang@.hpi.uni-potsdam.de>
2022-03-22 12:30:30 -04:00
095cbba57c Example 23 - Passing correct alpha and beta values with --parallel-split-k (#424)
When split-k is enabled, we should set alpha to 1 and beta to 0 for the
split-k gemm kernel.

The fix was from hwu36. I only did fixed some minor typos along with his
fix.
2022-03-22 12:27:34 -04:00
8f1fe7a132 Fix separate compilation -dc (#433)
* Fix separate compilation `-dc`

- when cutlass is included in multiple compilation units
  compiled with `-dc` OOB_NAN_F16x8 device constant is
  instantiated multiple times causing
  Multiple definition of '_ZN7cutlass4arch13OOB_NAN_F16x8E' error
  This PR makes this variable a local constant as it is not
  modified during runtime

Signed-off-by: Janusz Lisiecki <jlisiecki@nvidia.com>

* Fix

Signed-off-by: Janusz Lisiecki <jlisiecki@nvidia.com>

* Test GH

Signed-off-by: Janusz Lisiecki <jlisiecki@nvidia.com>

* Revert test GH

Signed-off-by: Janusz Lisiecki <jlisiecki@nvidia.com>
2022-03-22 12:21:18 -04:00
3ab1eacf09 Fix typo in profiler examples (#437) 2022-03-21 12:00:13 -04:00
cd39c75e25 Fix typo in docs, code comments (#429)
* [docs] fix typo in media/docs/layout.md

* [docs] fix comment error

* fix typo in include/cutlass/arch/simd_61.h

* fix stride comment errors in TensorLayout
2022-03-15 21:54:36 -04:00
b2e1e97cb1 Update PUBLICATIONS.md
ACM Trans on Graphics from nv research.
2022-03-01 22:37:18 -05:00
96a11a1ef3 Removed trivial copy constructors on parameter classes to enable devi… (#366)
* Removed trivial copy constructors on parameter classes to enable device-side launch of CUTLASS kernels

* Added SFINAE to the `TensorRef(NonConstTensorRef const&)` constructor to avoid making it a copy-constructor for device code

* std => platform

* fix affine2

* really fix affine2

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2022-02-28 21:34:02 -05:00
e96f00586c Make cutlass::gemm::device::GemmArray usable (#295)
* Fix the build of cutlass/gemm/device/gemm_array.h and add a demo for GemmArray

* Add a reference to GemmArray to the docs

Co-authored-by: Ivan Komarov <dfyz@yandex-team.ru>
2022-02-17 20:01:05 -05:00
3cfa5db2a2 Actually use float accumulation in gemm_f16t_f16t_f16t_wmma_tensor_op… (#407)
* Actually use float accumulation in gemm_f16t_f16t_f16t_wmma_tensor_op_f32_sm70.cu

As title

* Update gemm_f16t_f16t_f16t_wmma_tensor_op_f32_sm70.cu

change the missing one

Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
2022-02-16 09:53:21 -05:00
1db6971a8d Remove unused gemm_k_iterations in GemmKernel::Params (#406)
Otherwise we get gemm_k_iterations is uninitialized warnings.
2022-02-16 09:52:45 -05:00
b954127297 Update PUBLICATIONS.md
@jackkosaian
2022-02-14 16:54:32 -05:00
d0d941efc7 [hardswish] correct implmentation (#403)
* [hardswish] correct implmentation

* seems working

* hardswish fp32/fp16x2 optimization

* [relu] half2 support

* add relu0; add multiply_add_relu0;

* cleanup

Co-authored-by: Bing Xu <bingxu@fb.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2022-02-09 14:28:53 -05:00
8a951b2940 Enable convolution with fused epilogue for Volta Tensor Cores (#402)
* Enabled convolution with epilogue fusion for Volta Tensor Cores.

* Compilation fixes

* Disabled testing Volta on Ampere architectures.
2022-01-30 23:24:50 -05:00
1e4703cbab Support parallel split K mode for porfiling (#277)
* Support parallel split K mode for porfiling

Signed-off-by: Peter Han <fujun.han@iluvatar.ai>

* Parallel Split K support

  1. find gemm kernel by preference key
  2. switch m n for redution kernel

Signed-off-by: Peter Han <fujun.han@iluvatar.ai>

* parallel splitk for fp16 gemm

* add one missing file

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2022-01-27 10:37:37 -05:00
c3353add63 Merge pull request #388 from depaulmillz/fix/headersonly
Fix utils include not being installed in header only
2022-01-26 14:22:51 -06:00
ac8825b941 Minor fix to change from LIBRARY_INIT to LIBRARY 2022-01-26 15:17:46 -05:00
8fd94806e5 Update PUBLICATIONS.md
add mlsys 2022 paper.
2022-01-17 00:08:18 -05:00
d7c9cbf0b9 Fix typo in scripts/library.py (wrong data size for u8) (#393) 2022-01-07 13:29:56 -05:00
c2ee13a0fe Add epilogue functor for residual block fusion (#391)
* Add epilogue functor for residual block fusion

* Do not run split-k tests when ActivationOp is not Identity

* explain TestSplitK param

* return early
2021-12-29 22:53:40 -05:00
f78994bb40 add the missing pieces (#392)
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2021-12-25 04:29:54 -08:00
dceabd4c5a Support half precision sigmoid activation (#378)
* Support half precision sigmoid activation

* introduce a vectorized variant using fast_tanh

* move the math to fast_math.h

* fixed compile

* .raw() -> .to_half()

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2021-12-22 14:45:06 -05:00
86fa1dc30b Fix utils include not being installed in header only 2021-12-21 12:10:26 -05:00
288af365db Added missing synchronization to avoid WAR hazards between tiles. (#386) 2021-12-20 08:34:08 -08:00
0dc3ba60b3 Refactor GELU and Sigmoid epilogue to use a common template (and add SiLu, Hardswish epilogue) (#379)
* Support half precision sigmoid activation

* introduce a vectorized variant using fast_tanh

* refactored sigmoid using the new interface

* refactored gelu

* add silu activation

* add hardswish

* remove sigmoid for now

* add description to silu and hardswish, and other doc update

* Do not ignore Round

* use constant N

* Set isHeavy = true in sigmoid and silu epilogue
2021-12-18 14:58:15 -05:00
ec4f7e5194 Updates to fused epilogue (#383)
* Enhancements and fixes to fused GEMM and Convolution epilogue.
* Need to explicitly list cudart as unit test library dependency.
2021-12-17 16:04:43 -05:00
4e666e1dfd Updated README and added issue templates. (#382) 2021-12-17 09:26:20 -05:00
3799e12f25 Merge pull request #381 from Peter9606/update-makefile-version
Update project version to 2.8.0 in CMakeLists.txt
2021-12-16 21:54:57 -05:00
fc3bc85db8 Update project version to 2.8.0 in CMakeLists.txt
Signed-off-by: Peter Han <fujun.han@iluvatar.ai>
2021-12-17 02:23:31 +00:00
49c0a58d50 Set theme jekyll-theme-minimal 2021-12-15 14:51:24 -05:00
1105 changed files with 101040 additions and 21159 deletions

23
.github/ISSUE_TEMPLATE/bug_report.md vendored Normal file
View File

@ -0,0 +1,23 @@
---
name: Bug report
about: Create a bug report to help us improve CUTLASS
title: "[BUG]"
labels: "? - Needs Triage, bug"
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**Steps/Code to reproduce bug**
Follow this guide http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports to craft a minimal bug report. This helps us reproduce the issue you're having and resolve the issue more quickly.
**Expected behavior**
A clear and concise description of what you expected to happen.
**Environment details (please complete the following information):**
- Environment location: [Bare-metal, Docker, Cloud(specify cloud provider)]
**Additional context**
Add any other context about the problem here.

View File

@ -0,0 +1,35 @@
---
name: Documentation request
about: Report incorrect or needed documentation to improve CUTLASS
title: "[DOC]"
labels: "? - Needs Triage, documentation"
assignees: ''
---
## Report incorrect documentation
**Location of incorrect documentation**
Provide links and line numbers if applicable.
**Describe the problems or issues found in the documentation**
A clear and concise description of what you found to be incorrect.
**Steps taken to verify documentation is incorrect**
List any steps you have taken:
**Suggested fix for documentation**
Detail proposed changes to fix the documentation if you have any.
---
## Report needed documentation
**Report needed documentation**
A clear and concise description of what documentation you believe it is needed and why.
**Describe the documentation you'd like**
A clear and concise description of what you want to happen.
**Steps taken to search for needed documentation**
List any steps you have taken:

View File

@ -0,0 +1,20 @@
---
name: Feature request
about: Suggest an idea for CUTLASS
title: "[FEA]"
labels: "? - Needs Triage, feature request"
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I wish I could use CUTLASS to do [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context, code examples, or references to existing implementations about the feature request here.

View File

@ -0,0 +1,10 @@
---
name: Submit question
about: Ask a general question about CUTLASS
title: "[QST]"
labels: "? - Needs Triage, question"
assignees: ''
---
**What is your question?**

11
.github/workflows/labeler.yml vendored Normal file
View File

@ -0,0 +1,11 @@
name: "Pull Request Labeler"
on:
- pull_request_target
jobs:
triage:
runs-on: ubuntu-latest
steps:
- uses: actions/labeler@main
with:
repo-token: "${{ secrets.GITHUB_TOKEN }}"

View File

@ -0,0 +1,35 @@
name: Auto Assign New Issues to Triage Project
on:
issues:
types: [opened]
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
jobs:
assign_one_project:
runs-on: ubuntu-latest
name: Assign to New Issues to Triage Project
steps:
- name: Process bug issues
uses: docker://takanabe/github-actions-automate-projects:v0.0.1
if: contains(github.event.issue.labels.*.name, 'bug') && contains(github.event.issue.labels.*.name, '? - Needs Triage')
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_PROJECT_URL: https://github.com/NVIDIA/cutlass
GITHUB_PROJECT_COLUMN_NAME: 'Needs prioritizing'
- name: Process feature issues
uses: docker://takanabe/github-actions-automate-projects:v0.0.1
if: contains(github.event.issue.labels.*.name, 'feature request') && contains(github.event.issue.labels.*.name, '? - Needs Triage')
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_PROJECT_URL: https://github.com/NVIDIA/cutlass
GITHUB_PROJECT_COLUMN_NAME: 'Needs prioritizing'
- name: Process other issues
uses: docker://takanabe/github-actions-automate-projects:v0.0.1
if: contains(github.event.issue.labels.*.name, '? - Needs Triage') && (!contains(github.event.issue.labels.*.name, 'bug') && !contains(github.event.issue.labels.*.name, 'feature request'))
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_PROJECT_URL: https://github.com/NVIDIA/cutlass
GITHUB_PROJECT_COLUMN_NAME: 'Needs prioritizing'

57
.github/workflows/stale.yml vendored Normal file
View File

@ -0,0 +1,57 @@
name: Mark inactive issues and pull requests
on:
schedule:
- cron: "0 * * * *"
jobs:
mark-inactive-30d:
runs-on: ubuntu-latest
steps:
- name: Mark 30 day inactive issues and pull requests
uses: actions/stale@v3
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
stale-issue-message: >
This issue has been labeled `inactive-30d` due to no recent activity in the past 30 days.
Please close this issue if no further response or action is needed.
Otherwise, please respond with a comment indicating any updates or changes to the original issue and/or confirm this issue still needs to be addressed.
This issue will be labeled `inactive-90d` if there is no activity in the next 60 days.
stale-issue-label: "inactive-30d"
exempt-issue-labels: "0 - Blocked,0 - Backlog,good first issue"
days-before-issue-stale: 30
days-before-issue-close: -1
stale-pr-message: >
This PR has been labeled `inactive-30d` due to no recent activity in the past 30 days.
Please close this PR if it is no longer required.
Otherwise, please respond with a comment indicating any updates.
This PR will be labeled `inactive-90d` if there is no activity in the next 60 days.
stale-pr-label: "inactive-30d"
exempt-pr-labels: "0 - Blocked,0 - Backlog,good first issue"
days-before-pr-stale: 30
days-before-pr-close: -1
operations-per-run: 50
mark-inactive-90d:
runs-on: ubuntu-latest
steps:
- name: Mark 90 day inactive issues and pull requests
uses: actions/stale@v3
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
stale-issue-message: >
This issue has been labeled `inactive-90d` due to no recent activity in the past 90 days.
Please close this issue if no further response or action is needed.
Otherwise, please respond with a comment indicating any updates or changes to the original issue and/or confirm this issue still needs to be addressed.
stale-issue-label: "inactive-90d"
exempt-issue-labels: "0 - Blocked,0 - Backlog,good first issue"
days-before-issue-stale: 90
days-before-issue-close: -1
stale-pr-message: >
This PR has been labeled `inactive-90d` due to no recent activity in the past 90 days.
Please close this PR if it is no longer required.
Otherwise, please respond with a comment indicating any updates.
stale-pr-label: "inactive-90d"
exempt-pr-labels: "0 - Blocked,0 - Backlog,good first issue"
days-before-pr-stale: 90
days-before-pr-close: -1
operations-per-run: 50

View File

@ -1,5 +1,42 @@
# NVIDIA CUTLASS Changelog
## [2.9.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.9.0) (2022-04-21)
* [First layer Convolution kernels](/test/unit/conv/device/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu) specialized for small channel counts and reduced alignment
* [Few channels](/include/cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_few_channels.h) specialization for reduced alignment capabilities
* [Fixed channels](/include/cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_fixed_channels.h) further specialized when channel count perfectly matches the access vector size
* [Unit tests](/test/unit/conv/device/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu)
* [Python-based instance emitter](/tools/library/scripts/generator.py) in the CUTLASS Library and support in the Profiler
* [BLAS3](https://docs.nvidia.com/cuda/cublas/index.html#cublas-level-3-function-reference) operators accelerated by Tensor Cores
* Supported types: f32, cf32, f64, cf64, tf32x3, complex tf32x3
* [HERK](/test/unit/gemm/device/her2k_cf32h_cf32n_tensor_op_fast_f32_sm80.cu) with [emitter](/tools/library/scripts/rank_k_operation.py)
* [SYRK](/test/unit/gemm/device/syrk_f32n_f32t_tensor_op_fast_f32_sm80.cu) with [emitter](/tools/library/scripts/rank_k_operation.py)
* [SYMM](/test/unit/gemm/device/symm_f32n_f32n_tensor_op_fast_f32_ls_sm80.cu) with [emitter](/tools/library/scripts/symm_operation.py)
* [TRMM](/test/unit/gemm/device/trmm_f32n_f32t_f32t_tensor_op_fast_f32_ls_sm80.cu) with [emitter](/tools/library/scripts/trmm_operation.py)
* [Unit tests](/test/unit/gemm/device/testbed_rank_k_universal.h)
* [CUTLASS Python](/examples/40_cutlass_py) demonstrating JIT compilation of CUTLASS kernels and a Python-based runtime using [CUDA Python](https://developer.nvidia.com/cuda-python)
* [Python-based runtime](/tools/library/scripts/rt.py) interoperable with existing emitters
* [GEMM + Softmax example](/examples/35_gemm_softmax)
* [Gather and Scatter Fusion with GEMM](/examples/36_gather_scatter_fusion) can gather inputs and scatters outputs based on indices vectors in the same GEMM kernel.
* It can select random rows in a row major matrix.
* It can select random columns in a column major matrix.
* [Back-to-back GEMM/CONV](examples/13_two_tensor_op_fusion) fully supports buffering the first GEMM/CONV results in the shared memory for the latter one to use. It can eliminate register spill when the tile size is big. Additionally, bias vector add is supported in the first GEMM/CONV.
* Supported kernels: GEMM and CONV.
* Supported types: fp16 and int8.
* Supported architectures: Turing and Ampere.
* [Transposed Convolution](/examples/34_transposed_conv2d) (a.k.a Deconvolution) support which reuses Dgrad implementation.
* [Utility functions](/tools/util/include/cutlass/util) that can pad NHWC and convert between NCHW and NHWC.
* [Small alignment implicit gemm](https://github.com/NVIDIA/cutlass/issues/242) support for Fprop/Dgrad/Wgrad so that padding is no longer mandated to use tensor cores in these kernels.
* Epilogue enhancement:
* Eliminate bank conflicts in int8 tensor core kernels.
* Half2 usage if epilogue compute type is fp16.
* More activation functions: Silu, Hardswish, Leaky Relu.
* New elementwise fusion pattern for [residual block](/include/cutlass/epilogue/thread/linear_combination_residual_block.h).
* [Group GEMM](/examples/24_gemm_grouped) thread block number calculation fix which helps to launch the intended number of threadblocks to fully occupy the GPUs.
* [Parallel GEMM splitk](https://github.com/NVIDIA/cutlass/pull/277) support in the CUTLASS profiler.
* Optimal performance using [**CUDA 11.7**](https://developer.nvidia.com/cuda-downloads)
* Updates and bugfixes from the community (thanks!)
## [2.8.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.8.0) (2021-11-19)
* **TF32x3:** emulated single-precision using Tensor Cores
@ -23,7 +60,6 @@
* Ubuntu 16.04
* CUDA 10.2
## [2.7.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.7.0) (2021-09-24)
* Mainloop fusion for GEMM: [summation over A or B](/examples/23_ampere_gemm_operand_reduction_fusion/ampere_gemm_operand_reduction_fusion.cu)
* [Strided DGRAD (optimized iterators)](/include/cutlass/conv/kernel/default_conv2d_dgrad.h)
@ -210,27 +246,33 @@
## Copyright
Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
```
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
* Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```

82
CITATION.cff Normal file
View File

@ -0,0 +1,82 @@
cff-version: 1.2.0
title: CUTLASS
message: >-
If you use this software, please cite using the
following metadata.
type: software
authors:
- given-names: Andrew
email: akerr@nvidia.com
family-names: Kerr
affiliation: NVIDIA
- given-names: Haicheng
family-names: Wu
affiliation: NVIDIA
email: haichengw@nvidia.com
- given-names: Manish
family-names: Gupta
affiliation: Google
email: manigupta@google.com
- given-names: Dustyn
family-names: Blasig
email: dblasig@nvidia.com
affiliation: NVIDIA
- given-names: Pradeep
family-names: Ramini
email: prramani@nvidia.com
affiliation: NVIDIA
- given-names: Duane
family-names: Merrill
email: dumerrill@nvidia.com
affiliation: NVIDIA
- given-names: Aniket
family-names: Shivam
email: ashivam@nvidia.com
affiliation: NVIDIA
- given-names: Piotr
family-names: Majcher
email: pmajcher@nvidia.com
affiliation: NVIDIA
- given-names: Paul
family-names: Springer
email: pspringer@nvidia.com
affiliation: NVIDIA
- given-names: Markus
family-names: Hohnerbach
affiliation: NVIDIA
email: mhohnerbach@nvidia.com
- given-names: Jin
family-names: Wang
email: jinw@nvidia.com
affiliation: NVIDIA
- given-names: Matt
family-names: Nicely
email: mnicely@nvidia.com
affiliation: NVIDIA
repository-code: 'https://github.com/NVIDIA/cutlass'
abstract: >-
CUTLASS is a collection of CUDA C++ template
abstractions for implementing high-performance
matrix-multiplication (GEMM) and related
computations at all levels and scales within CUDA.
It incorporates strategies for hierarchical
decomposition and data movement similar to those
used to implement cuBLAS and cuDNN. CUTLASS
decomposes these "moving parts" into reusable,
modular software components abstracted by C++
template classes. These thread-wide, warp-wide,
block-wide, and device-wide primitives can be
specialized and tuned via custom tiling sizes, data
types, and other algorithmic policy. The resulting
flexibility simplifies their use as building blocks
within custom kernels and applications.
keywords:
- 'cutlass, tensor cores, cuda'
license: BSD-3-Clause
license-url: https://github.com/NVIDIA/cutlass/blob/v2.9.0/LICENSE.txt
version: '2.9'
date-released: '2022-04-27'
identifiers:
- type: url
value: "https://github.com/NVIDIA/cutlass/tree/v2.9.0"
description: The GitHub release URL of tag 2.9.0

View File

@ -1,23 +1,29 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cmake_minimum_required(VERSION 3.12.4 FATAL_ERROR)
@ -32,7 +38,7 @@ endif()
message(STATUS "CMake Version: ${CMAKE_VERSION}")
project(CUTLASS VERSION 2.7.0 LANGUAGES CXX)
project(CUTLASS VERSION 2.9.0 LANGUAGES CXX)
include(${CMAKE_CURRENT_SOURCE_DIR}/CUDA.cmake)
if (CUDA_VERSION VERSION_LESS 10.2)
@ -67,21 +73,23 @@ set(CUTLASS_ENABLE_HEADERS_ONLY OFF CACHE BOOL "Enable only the header library")
if(CUTLASS_ENABLE_HEADERS_ONLY)
set(CUTLASS_ENABLE_EXAMPLES_INIT OFF)
set(CUTLASS_ENABLE_TOOLS_INIT OFF)
set(CUTLASS_ENABLE_TOOLS_INIT ON)
set(CUTLASS_ENABLE_LIBRARY_INIT OFF)
else()
set(CUTLASS_ENABLE_EXAMPLES_INIT ON)
set(CUTLASS_ENABLE_TOOLS_INIT ON)
set(CUTLASS_ENABLE_LIBRARY_INIT ON)
endif()
set(CUTLASS_TEST_UNIT_ENABLE_WARNINGS OFF CACHE BOOL "Enable warnings on waived unit tests.")
set(CUTLASS_ENABLE_EXAMPLES ${CUTLASS_ENABLE_EXAMPLES_INIT} CACHE BOOL "Enable CUTLASS Examples")
set(CUTLASS_ENABLE_TOOLS ${CUTLASS_ENABLE_TOOLS_INIT} CACHE BOOL "Enable CUTLASS Tools")
set(CUTLASS_ENABLE_LIBRARY ${CUTLASS_ENABLE_TOOLS} CACHE BOOL "Enable CUTLASS Library")
set(CUTLASS_ENABLE_PROFILER ${CUTLASS_ENABLE_TOOLS} CACHE BOOL "Enable CUTLASS Profiler")
set(CUTLASS_ENABLE_LIBRARY ${CUTLASS_ENABLE_LIBRARY_INIT} CACHE BOOL "Enable CUTLASS Library")
set(CUTLASS_ENABLE_PROFILER ${CUTLASS_ENABLE_LIBRARY} CACHE BOOL "Enable CUTLASS Profiler")
if(${CMAKE_PROJECT_NAME} STREQUAL ${PROJECT_NAME})
set(CUTLASS_ENABLE_TESTS_INIT ${CUTLASS_ENABLE_TOOLS_INIT})
set(CUTLASS_ENABLE_TESTS_INIT ${CUTLASS_ENABLE_LIBRARY}})
else()
set(CUTLASS_ENABLE_TESTS_INIT OFF)
endif()
@ -185,11 +193,9 @@ set(CUTLASS_LIBRARY_OPERATIONS "all" CACHE STRING "Comma delimited list of opera
set(CUTLASS_LIBRARY_KERNELS "" CACHE STRING "Comma delimited list of kernel name filters. If unspecified, only the largest tile size is enabled. If 'all' is specified, all kernels are enabled.")
set(CUTLASS_LIBRARY_IGNORE_KERNELS "" CACHE STRING "Comma delimited list of kernel names to exclude from build.")
# Test Levels L0, L1, L2
set(CUTLASS_TEST_LEVEL "0" CACHE STRING "Level of tests to compile.")
set(CUTLASS_TEST_ENABLE_CACHED_RESULTS ON CACHE BOOL "Enable caching and reuse of test results in unit tests")
set_property(CACHE CUTLASS_TEST_LEVEL PROPERTY STRINGS 0 1 2)
@ -197,7 +203,15 @@ list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_TEST_LEVEL=${CUTLASS_TEST_LEVEL})
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -DCUTLASS_TEST_LEVEL=${CUTLASS_TEST_LEVEL})
if (CUTLASS_TEST_ENABLE_CACHED_RESULTS)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_TEST_ENABLE_CACHED_RESULTS=1)
message(STATUS "Enable caching of reference results in conv unit tests")
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_TEST_ENABLE_CACHED_RESULTS=1)
endif()
set(CUTLASS_CONV_UNIT_TEST_RIGOROUS_SIZE_ENABLED ON CACHE BOOL "Enable/Disable rigorous conv problem sizes in conv unit tests")
if (CUTLASS_CONV_UNIT_TEST_RIGOROUS_SIZE_ENABLED)
message(STATUS "Enable rigorous conv problem sizes in conv unit tests")
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_CONV_UNIT_TEST_RIGOROUS_SIZE_ENABLED=1)
endif()
#
@ -320,6 +334,11 @@ if(CUDA_COMPILER MATCHES "[Cc]lang")
link_libraries(nvidia::cudart)
endif()
# Support for 128-bit integers if using NVIDIA C++ compiler
if (${CMAKE_CXX_COMPILER_ID} MATCHES "PGI" OR ${CMAKE_CXX_COMPILER_ID} MATCHES "NVHPC")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Mint128 ")
endif()
if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.18)
# CMake 3.18 added support for CUDA_ARCHITECTURES target property. We will use this
# property for CMake 3.18+, so we request the NEW behavior for correct compatibility.
@ -736,7 +755,7 @@ if (CUTLASS_INSTALL_TESTS)
install(
FILES "${CMAKE_BINARY_DIR}/cmake/CTestTestfile.cmake"
DESTINATION ${CUTLASS_TEST_INSTALL_PREFIX}/
DESTINATION "${CUTLASS_TEST_INSTALL_PREFIX}/"
)
endif()

View File

@ -1,23 +1,29 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
if(CUDA_COMPILER MATCHES "[Cc]lang")
@ -213,8 +219,7 @@ function(cutlass_correct_source_file_language_property)
endif()
endfunction()
# If building with all kernels, set UNITY build on by default.
if (CUTLASS_LIBRARY_KERNELS MATCHES "all")
if (MSVC OR CUTLASS_LIBRARY_KERNELS MATCHES "all")
set(CUTLASS_UNITY_BUILD_ENABLED_INIT ON)
else()
set(CUTLASS_UNITY_BUILD_ENABLED_INIT OFF)

View File

@ -1,23 +1,27 @@
Copyright (c) 2017 - 2020, NVIDIA CORPORATION. All rights reserved.
Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the NVIDIA CORPORATION nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,8 +1,22 @@
# Publications Using Cutlass
## 2022
- ["Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance"](https://arxiv.org/abs/2110.15238). Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen, Ang Chen, Yibo Zhu. _Proceedings of the 5th MLSys Conference_, August 2022.
- ["Recovering single precision accuracy from Tensor Cores while surpassing the FP32 theoretical peak performance"](https://arxiv.org/abs/2203.03341). Hiroyuki Ootomo, Rio Yokota. _International Journal of High Performance Computing_, March 2022.
## 2021
- ["Arithmetic-intensity-guided fault tolerance for neural network inference on GPUs"](https://dl.acm.org/doi/abs/10.1145/3458817.3476184). Jack Kosaian, K. V. Rashmi. _Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis_, November 2021.
- ["Real-time Neural Radiance Caching for Path Tracing"](https://d1qx31qr3h6wln.cloudfront.net/publications/paper_4.pdf). Thomas Muller, Fabrice Rousselle, Jan Novak, Alex Keller. _ACM Trans. Graph._, August 2021.
## 2020
- ["Scalable Knowledge Graph Analytics at 136 Petaflop/s"](https://www.computer.org/csdl/proceedings-article/sc/2020/999800a061/1oeORDgCM0g). Ramakrishnan Kannan, Piyush Sao, Hao Lu, Drahomira Herrmannova, Vijay Thakkar, Robert Patton, Richard Vuduc, Thomas Potok. _Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis_, November 2020.
- ["Accelerating Sparse DNN Models without Hardware-Support via Tile-Wise Sparsity
"](https://arxiv.org/abs/2008.13006). Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, Zehuan Wang, Xiaoying Jia, Xipeng Li, Minyi Guo, Yuhao Zhu. _Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis_, November 2020.
- ["Strassen's Algorithm Reloaded on GPUs"](https://dl.acm.org/doi/10.1145/3372419). Jianyu Huang, Chenhan D. Yu, Robert A. van de Geijn. _ACM Transactions on Mathematical Software_, March 2020.

113
README.md
View File

@ -1,8 +1,8 @@
![ALT](/media/images/gemm-hierarchy-with-epilogue-no-labels.png "Complete CUDA GEMM decomposition")
# CUTLASS 2.8
# CUTLASS 2.9
_CUTLASS 2.8 - November 2021_
_CUTLASS 2.9 - April 2022_
CUTLASS is a collection of CUDA C++ template abstractions for implementing
high-performance matrix-multiplication (GEMM) and related computations at all levels
@ -34,18 +34,31 @@ See the [Quick Start Guide](/media/docs/quickstart.md) to get started quickly.
See the [functionality listing](/media/docs/functionality.md) for the list of operations
supported at each level of the execution model hierarchy.
# What's New in CUTLASS 2.8
CUTLASS 2.8 is an update to CUTLASS adding:
- [TF32x3:](/examples/27_ampere_3xtf32_fast_accurate_tensorop_gemm) emulated single-precision using Tensor Cores; 45+ TFLOPs on NVIDIA A100
- [Mainloop fusion for Convolution:](/examples/25_ampere_fprop_mainloop_fusion) convolution with fused per-channel bias-add
- [Grouped GEMM:](/examples/24_gemm_grouped) similar to batched GEMM with distinct problem size per group
- [Implicit GEMM Convolution fusion](/examples/13_two_tensor_op_fusion/) supports staging 1st convolution's output accumulator in the shared memory on Turing.
- Optimal performance using [CUDA 11.5](https://developer.nvidia.com/cuda-downloads)
# What's New in CUTLASS 2.9
CUTLASS 2.9 is an update to CUTLASS adding:
- [First layer Convolution kernels](/test/unit/conv/device/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu) specialized for small channel counts and reduced alignment
- [BLAS3](https://docs.nvidia.com/cuda/cublas/index.html#cublas-level-3-function-reference) operators accelerated by Tensor Cores
- [SYRK](/test/unit/gemm/device/syrk_f32n_f32t_tensor_op_fast_f32_sm80.cu), [HERK](/test/unit/gemm/device/herk_cf32h_cf32n_tensor_op_fast_f32_sm80.cu),
- [SYR2K](/test/unit/gemm/device/syr2k_f32n_f32n_tensor_op_fast_f32_sm80.cu), [HER2K](/test/unit/gemm/device/her2k_cf32h_cf32n_tensor_op_fast_f32_sm80.cu),
- [Out-of-place TRMM](/test/unit/gemm/device/trmm_f32n_f32t_f32t_tensor_op_fast_f32_ls_sm80.cu), and
- [SYMM](/test/unit/gemm/device/symm_f32n_f32n_tensor_op_fast_f32_ls_sm80.cu), [HEMM](/test/unit/gemm/device/hemm_cf32h_cf32n_tensor_op_fast_f32_ls_sm80.cu)
- [CUTLASS Python](/examples/40_cutlass_py) demonstrating JIT compilation of CUTLASS kernels and a Python-based runtime using [CUDA Python](https://developer.nvidia.com/cuda-python)
- [GEMM + Softmax example](/examples/35_gemm_softmax)
- [Gather and Scatter Fusion with GEMM](/examples/36_gather_scatter_fusion) can gather inputs and scatters outputs based on indices vectors in the same GEMM kernel.
- [Back-to-back GEMM/CONV](examples/13_two_tensor_op_fusion) fully supports buffering the first GEMM/CONV results in the shared memory for the latter one to use. Bias Vector add is also supported in the first GEMM/CONV.
- [Transposed Convolution](/examples/34_transposed_conv2d) (a.k.a Deconvolution) support which reuses Dgrad implementation.
- [Utility functions](/tools/util/include/cutlass/util) that can pad NHWC and convert between NCHW and NHWC.
- [Small alignment implicit gemm](https://github.com/NVIDIA/cutlass/issues/242) support for Fprop/Dgrad/Wgrad so that padding is no longer mandated to use tensor cores.
- Epilogue enhancement with performance improvement, more activation functions, and more fusion patterns.
- [Group GEMM](/examples/24_gemm_grouped) thread block number calculation fix.
- Optimal performance using [CUDA 11.7](https://developer.nvidia.com/cuda-downloads)
- [Parallel GEMM splitk](https://github.com/NVIDIA/cutlass/pull/277) support in the CUTLASS profiler.
- Updates and bugfixes from the community (thanks!)
- **Deprecation announcement:** CUTLASS plans to deprecate the following:
- Maxwell and Pascal GPU architectures
- Ubuntu 16.04
- CUDA 10.2
- Updates and bugfixes from the community (thanks!)
**See the [CHANGELOG](CHANGELOG.md) for a detailed listing of releases and updates.**
@ -56,15 +69,25 @@ CUTLASS 2.8 is an update to CUTLASS adding:
CUTLASS primitives are very efficient. When used to construct device-wide GEMM kernels,
they exhibit performance comparable to cuBLAS for scalar GEMM
computations. The above figure shows CUTLASS performance relative to cuBLAS
for large matrix dimensions on an NVIDIA GeForce 2080 Ti, an NVIDIA A100, and an NVIDIA TitanV
using CUDA 11.0 Toolkit. Tensor Core operations are implemented using CUDA's
for large matrix dimensions on an [NVIDIA A100](https://www.nvidia.com/en-us/data-center/a100/),
an [NVIDIA A2](https://www.nvidia.com/en-us/data-center/products/a2/),
an [NVIDIA TitanV](https://www.nvidia.com/en-us/titan/titan-v/),
and an [NVIDIA GeForce 2080 Ti](https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/)
compiled with the [CUDA 11.5 Toolkit](https://developer.nvidia.com/cuda-downloads). Tensor Core operations are implemented using CUDA's
[mma instruction](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma).
<p align="center"><img src=/media/images/cutlass-2.9-implicit-gemm-performance.png></p>
When using CUTLASS building blocks to construct device-wide implicit gemm (Fprop, Dgrad, and Wgrad)
kernels, CUTLASS performance is also comparable to cuDNN when running Resnet-50 layers on an [NVIDIA A100](https://www.nvidia.com/en-us/data-center/a100/)
as shown in the above figure. Tensor Core operations are still implemented using CUDA's
[mma instruction](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma).
# Compatibility
CUTLASS requires a C++11 host compiler and
performs best when built with the [CUDA 11.5 Toolkit](https://developer.nvidia.com/cuda-toolkit).
It is also compatible with CUDA 11.0, CUDA 11.1, CUDA 11.2, CUDA 11.3, and CUDA 11.4.
performs best when built with the [**CUDA 11.6u2 Toolkit**](https://developer.nvidia.com/cuda-toolkit).
It is also compatible with CUDA 11.0, CUDA 11.1, CUDA 11.2, CUDA 11.3, CUDA 11.4, and CUDA 11.5.
We have tested the following environments.
@ -72,8 +95,10 @@ We have tested the following environments.
|-----------------|----------|
| Windows 10 | Microsoft Visual Studio 2015|
| | Microsoft Visual Studio 2017|
| | Microsoft Visual Studio 2019|
| Ubuntu 18.04 | GCC 7.5.0 |
| Ubuntu 20.04 | GCC 10.3.0 |
| Ubuntu 21.04 | GCC 11.2.0 |
Additionally, CUTLASS may be built with clang.
See [these instructions](media/docs/quickstart.md#clang) for more details.
@ -81,10 +106,7 @@ See [these instructions](media/docs/quickstart.md#clang) for more details.
CUTLASS runs successfully on the following NVIDIA GPUs, and it is expected to be efficient on
any Volta-, Turing-, or NVIDIA Ampere- architecture NVIDIA GPU.
For all GPUs, we recommend compiling with the [**CUDA 11.5 Toolkit**](https://developer.nvidia.com/cuda-toolkit)
for best performance.
|**GPU**|**CUDA Compute Capability**|**Minimum CUDA Toolkit**|**CUDA Toolkit Enabling Native Tensor Cores**|
|**GPU**|**CUDA Compute Capability**|**Minimum CUDA Toolkit**|**Minimum CUDA Toolkit Enabling Native Tensor Cores**|
|---|---|---|---|
|NVIDIA Tesla V100|7.0|9.2|10.1|
|NVIDIA TitanV|7.0|9.2|10.1|
@ -94,6 +116,9 @@ for best performance.
|NVIDIA A10 |8.6|11.1|11.1|
|NVIDIA GeForce 3090|8.6|11.1|11.1|
For all GPUs, we recommend compiling with the [CUDA 11.6u2 Toolkit](https://developer.nvidia.com/cuda-toolkit)
for best performance.
# Documentation
CUTLASS is described in the following documents and the accompanying
@ -227,6 +252,16 @@ examples/
13_fused_two_gemms/ # example demonstrating two GEMms fused in one kernel
22_ampere_tensorop_conv2dfprop/ # example demonstrating integer implicit GEMM convolution (forward propagation) using Ampere Tensor Cores
31_basic_syrk # example demonstrating Symetric rank-K update
32_basic_trmm #
33_ampere_3xtf32_tensorop_symm #
35_gemm_softmax # example demonstrating GEMM fused with Softmax in mixed precision using Ampere Tensor Cores
40_cutlass_py # example demonstrating CUTLASS with CUDA Python
```
### Tools
@ -482,27 +517,33 @@ The official list of CUTLASS developers and contributors is available here: [CON
# Copyright
Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
```
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
* Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -1,23 +1,29 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
message(STATUS "Configuring cublas ...")

View File

@ -1,24 +1,29 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
if(DEFINED CUDNN_ENABLED)

1
docs/_config.yml Normal file
View File

@ -0,0 +1 @@
theme: jekyll-theme-minimal

View File

@ -1,25 +1,33 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cutlass_example_add_executable(
00_basic_gemm
basic_gemm.cu

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -1,25 +1,33 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cutlass_example_add_executable(
01_cutlass_utilities
cutlass_utilities.cu

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -1,25 +1,33 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cutlass_example_add_executable(
02_dump_reg_shmem
dump_reg_shmem.cu

View File

@ -1,27 +1,31 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
*modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
*this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
*notice, this list of conditions and the following disclaimer in the
*documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its
*contributors may be used to endorse or promote products derived from this
*software without specific prior written permission.
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
*AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
*IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
*DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY DIRECT,
*INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
*DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
*OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
*NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
*EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -1,25 +1,33 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
set(TEST_COMMAND_00 RowMajor --extent=16,16)
set(TEST_COMMAND_01 \"ColumnMajorInterleaved<4>\" --extent=32,8 --output-shape=16 --vectorize=4)

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -55,27 +61,49 @@ void RegisterLayouts(std::map<std::string, std::unique_ptr<VisualizeLayoutBase>
new VisualizeLayout<cutlass::layout::ColumnMajorInterleaved<4>>},
{"RowMajorInterleaved<4>",
new VisualizeLayout<cutlass::layout::RowMajorInterleaved<4>>},
// All Ampere/Turing H/Integer matrix multiply tensor core kernels uses the same swizzling
// layout implementation with different templates.
//
// BMMA 88128 Interleaved-256
// BMMA 168256 Interleaved-256
{"TensorOpMultiplicand<1,256>",
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<1, 256>>},
// BMMA 88128 TN kblock512
// BMMA 168256 TN kblock512
{"TensorOpMultiplicand<1,512>",
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<1, 512>>},
// BMMA 168256 TN kblock1024
{"TensorOpMultiplicand<1,1024>",
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<1, 1024>>},
// Integer matrix multiply.int4 8832 Interleaved-64
// Integer matrix multiply.int4 16864 Interleaved-64
{"TensorOpMultiplicand<4,64>",
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<4, 64>>},
// Integer matrix multiply.int4 8832 TN kblock128
// Integer matrix multiply.int4 16864 TN kblock128
{"TensorOpMultiplicand<4,128>",
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<4, 128>>},
// Integer matrix multiply.int4 16864 TN kblock256
{"TensorOpMultiplicand<4,256>",
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<4, 256>>},
// Integer matrix multiply 8816 Interleaved-32
// Integer matrix multiply 16832 Interleaved-32
{"TensorOpMultiplicand<8,32>",
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<8, 32>>},
// Integer matrix multiply 8816 TN kblock64
// Integer matrix multiply 16832 TN kblock64
{"TensorOpMultiplicand<8,64>",
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<8, 64>>},
// Integer matrix multiply 16832 TN kblock128
{"TensorOpMultiplicand<8,128>",
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<8, 128>>},
// Matrix Multiply 1688 TN kblock32
// Matrix multiply 16816 TN kblock32
{"TensorOpMultiplicand<16,32>",
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<16, 32>>},
// Matrix multiply 1688 NT
// Matrix multiply 16816 NT
// Matrix multiply 16816 TN kblock64
{"TensorOpMultiplicand<16,64>",
new VisualizeLayout<cutlass::layout::TensorOpMultiplicand<16, 64>>},
// Matrix multiply 1688.TF32 TN kblock16

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -1,25 +1,33 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cutlass_example_add_executable(
04_tile_iterator
tile_iterator.cu

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -1,25 +1,33 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cutlass_example_add_executable(
05_batched_gemm
batched_gemm.cu

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -28,12 +34,16 @@
#include "cutlass/cutlass.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/gemm/device/gemm_array.h"
#include "cutlass/gemm/device/gemm_batched.h"
#pragma warning( disable : 4503)
/*
This example demonstrates how to use cutlass to compute a batched strided gemm.
This example demonstrates how to use cutlass to compute a batched strided gemm in two different ways:
1. By specifying pointers to the first matrices of the batch and the stride between the consecutive
matrices of the batch (this is called a strided batched gemm).
2. By copying pointers to all matrices of the batch to the device memory (this is called an array gemm).
In this example, both A and B matrix are non-transpose and column major matrix
batched_C = batched_A x batched_B
As an example, matrix C can be seen as
@ -89,6 +99,45 @@ The stride (batch_stride_C) between the first element of two batches is k
*/
cudaError_t cutlass_array_sgemm(
int m,
int n,
int k,
float alpha,
float const * const *A,
int lda,
float const * const *B,
int ldb,
float * const *C,
int ldc,
float beta,
int batch_count) {
using Gemm = cutlass::gemm::device::GemmArray<
float, cutlass::layout::ColumnMajor,
float, cutlass::layout::ColumnMajor,
float, cutlass::layout::ColumnMajor
>;
Gemm gemm_op;
cutlass::Status status = gemm_op({
{m, n, k},
A, lda,
B, ldb,
C, ldc,
C, ldc,
{alpha, beta},
batch_count
});
if (status != cutlass::Status::kSuccess) {
return cudaErrorUnknown;
}
return cudaSuccess;
}
cudaError_t cutlass_strided_batched_sgemm(
int m,
int n,
@ -188,7 +237,11 @@ cudaError_t strided_batched_gemm_nn_reference(
return result;
}
int main() {
cudaError_t run_batched_gemm(bool use_array) {
const char* gemm_desc = use_array ? "array" : "strided batched";
std::cout << "Running " << gemm_desc << " gemm" << std::endl;
// Arbitrary problem size
int const m = 520;
@ -293,11 +346,69 @@ int main() {
}
// run cutlass
result = cutlass_strided_batched_sgemm(
m, n, k, alpha, A, lda, batch_stride_A, B, ldb, batch_stride_B, C, ldc, batch_stride_C,
beta, batch_count);
if (result != cudaSuccess)
return result;
if (use_array) {
// allocate the host memory for the pointers to the matrices of the batch
std::vector<float*> host_ptr_A(batch_count);
std::vector<float*> host_ptr_B(batch_count);
std::vector<float*> host_ptr_C(batch_count);
// permute the batch elements to emphasize that GemmArray does not depend on matrices being separated by a fixed stride
std::vector<size_t> permutation = {14, 11, 3, 10, 1, 13, 9, 4, 6, 16, 8, 15, 7, 12, 0, 2, 5};
for (size_t b_idx = 0; b_idx < batch_count; b_idx++) {
host_ptr_A[b_idx] = A + permutation[b_idx] * batch_stride_A;
host_ptr_B[b_idx] = B + permutation[b_idx] * batch_stride_B;
host_ptr_C[b_idx] = C + permutation[b_idx] * batch_stride_C;
}
// allocate the corresponding device memory
float const **ptr_A;
float const **ptr_B;
float **ptr_C;
result = cudaMalloc(&ptr_A, batch_count * sizeof(float*));
if (result != cudaSuccess) {
std::cerr << "cudaMalloc result = " << result << std::endl;
return result;
}
result = cudaMalloc(&ptr_B, batch_count * sizeof(float*));
if (result != cudaSuccess) {
std::cerr << "cudaMalloc result = " << result << std::endl;
return result;
}
result = cudaMalloc(&ptr_C, batch_count * sizeof(float*));
if (result != cudaSuccess) {
std::cerr << "cudaMalloc result = " << result << std::endl;
return result;
}
// copy the matrix pointers to the device
result = cudaMemcpy(ptr_A, host_ptr_A.data(), batch_count * sizeof(float*), cudaMemcpyHostToDevice);
if (result != cudaSuccess) {
std::cerr << "cudaMemcpy result = " << result << std::endl;
return result;
}
result = cudaMemcpy(ptr_B, host_ptr_B.data(), batch_count * sizeof(float*), cudaMemcpyHostToDevice);
if (result != cudaSuccess) {
std::cerr << "cudaMemcpy result = " << result << std::endl;
return result;
}
result = cudaMemcpy(ptr_C, host_ptr_C.data(), batch_count * sizeof(float*), cudaMemcpyHostToDevice);
if (result != cudaSuccess) {
std::cerr << "cudaMemcpy result = " << result << std::endl;
return result;
}
result = cutlass_array_sgemm(m, n, k, alpha, ptr_A, lda, ptr_B, ldb, ptr_C, ldc, beta, batch_count);
if (result != cudaSuccess)
return result;
} else {
result = cutlass_strided_batched_sgemm(
m, n, k, alpha, A, lda, batch_stride_A, B, ldb, batch_stride_B, C, ldc, batch_stride_C,
beta, batch_count);
if (result != cudaSuccess)
return result;
}
// copy device memory to host
result = cudaMemcpy(result_C.data(), C, count_C * sizeof(float), cudaMemcpyDeviceToHost);
@ -314,7 +425,7 @@ int main() {
// Expect bit-level accuracy for this simple example
if (ref_C != result_C) {
std::cout << "CUTLASS strided batched gemm does not run correctly" << std::endl;
std::cout << "CUTLASS " << gemm_desc << " gemm does not run correctly" << std::endl;
return cudaErrorUnknown;
}
@ -335,9 +446,19 @@ int main() {
return result;
}
return result;
}
if (result == cudaSuccess) {
std::cout << "Passed." << std::endl;
int main() {
cudaError_t result = cudaSuccess;
for (bool use_array : {false, true}) {
result = run_batched_gemm(use_array);
if (result == cudaSuccess) {
std::cout << "Passed." << std::endl;
} else {
break;
}
}
// Exit.

View File

@ -1,25 +1,33 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cutlass_example_add_executable(
06_splitK_gemm
splitk_gemm.cu

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -1,25 +1,33 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cutlass_example_add_executable(
07_volta_tensorop_gemm
volta_tensorop_gemm.cu

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -1,25 +1,33 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cutlass_example_add_executable(
08_turing_tensorop_gemm
turing_tensorop_gemm.cu

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -1,26 +1,34 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cutlass_example_add_executable(
09_turing_tensorop_conv2dfprop
turing_tensorop_conv2dfprop.cu

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -333,21 +339,21 @@ struct Options {
<< " forward convolution on tensors of layout NHWC.\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement.\n\n"
<< " --n <int> Input tensor extent N\n"
<< " --h <int> Input tensor extent H\n"
<< " --w <int> Input tensor extent W\n"
<< " --c <int> Input tensor extent C\n"
<< " --k <int> Filter extent K\n"
<< " --r <int> Filter extent R\n"
<< " --s <int> Filter extent S\n\n"
<< " --alpha <float> Epilogue scalar alpha\n"
<< " --beta <float> Epilogue scalar beta\n\n"
<< " --n=<int> Input tensor extent N\n"
<< " --h=<int> Input tensor extent H\n"
<< " --w=<int> Input tensor extent W\n"
<< " --c=<int> Input tensor extent C\n"
<< " --k=<int> Filter extent K\n"
<< " --r=<int> Filter extent R\n"
<< " --s=<int> Filter extent S\n\n"
<< " --alpha=<float> Epilogue scalar alpha\n"
<< " --beta=<float> Epilogue scalar beta\n\n"
<< " --ref-check If set (true), reference check on the host is computed\n"
<< " --perf-check If set (true), performance is measured.\n"
<< " --benchmark If set (true), performance benchmarking on several layers and batch-size.\n"
<< " --iterations <int> Number of profiling iterations to perform.\n"
<< " --iterations=<int> Number of profiling iterations to perform.\n"
<< " --save-workspace If set, workspace is written to a text file.\n"
<< " --tag <string> String to replicate across the first column in the results table\n";
<< " --tag=<string> String to replicate across the first column in the results table\n";
out << "\n\nExamples:\n\n"
<< "$ ./examples/09_turing_tensorop_conv2dfprop/09_turing_tensorop_conv2dfprop --n=32 --h=224 --w=224 --c=128 --k=256 --r=1 --s=1\n\n"

View File

@ -1,26 +1,34 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# Planar Complex GEMM example
cutlass_example_add_executable(
10_planar_complex

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -167,15 +173,15 @@ struct Options {
<< " This example uses the CUTLASS Library to execute Planar Complex GEMM computations.\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement.\n\n"
<< " --m <int> GEMM M dimension\n"
<< " --n <int> GEMM N dimension\n"
<< " --k <int> GEMM K dimension\n"
<< " --batch <int> Number of GEMM operations executed in one batch\n"
<< " --alpha <f32> Epilogue scalar alpha (real part)\n"
<< " --alpha_i <f32> Epilogue scalar alpha (imaginary part)\n"
<< " --beta <f32> Epilogue scalar beta (real part)\n\n"
<< " --beta_i <f32> Epilogue scalar beta (imaginary part)\n\n"
<< " --iterations <int> Number of profiling iterations to perform.\n\n";
<< " --m=<int> GEMM M dimension\n"
<< " --n=<int> GEMM N dimension\n"
<< " --k=<int> GEMM K dimension\n"
<< " --batch=<int> Number of GEMM operations executed in one batch\n"
<< " --alpha=<f32> Epilogue scalar alpha (real part)\n"
<< " --alpha_i=<f32> Epilogue scalar alpha (imaginary part)\n"
<< " --beta=<f32> Epilogue scalar beta (real part)\n\n"
<< " --beta_i=<f32> Epilogue scalar beta (imaginary part)\n\n"
<< " --iterations=<int> Number of profiling iterations to perform.\n\n";
out << "\n\nExamples:\n\n"
<< "$ ./examples/10_planar_complex/10_planar_complex --batch=7 --m=1024 --n=512 --k=1024 \\\n"

View File

@ -1,26 +1,34 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# Planar Complex Array GEMM example
cutlass_example_add_executable(
11_planar_complex_array

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -165,15 +171,15 @@ struct Options {
<< " This example uses the CUTLASS Library to execute Planar Complex Array GEMM computations.\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement.\n\n"
<< " --m <int> GEMM M dimension\n"
<< " --n <int> GEMM N dimension\n"
<< " --k <int> GEMM K dimension\n"
<< " --batch <int> Number of GEMM operations executed in one batch\n"
<< " --alpha <f32> Epilogue scalar alpha (real part)\n"
<< " --alpha_i <f32> Epilogue scalar alpha (imaginary part)\n"
<< " --beta <f32> Epilogue scalar beta (real part)\n\n"
<< " --beta_i <f32> Epilogue scalar beta (imaginary part)\n\n"
<< " --iterations <int> Number of profiling iterations to perform.\n";
<< " --m=<int> GEMM M dimension\n"
<< " --n=<int> GEMM N dimension\n"
<< " --k=<int> GEMM K dimension\n"
<< " --batch=<int> Number of GEMM operations executed in one batch\n"
<< " --alpha=<f32> Epilogue scalar alpha (real part)\n"
<< " --alpha_i=<f32> Epilogue scalar alpha (imaginary part)\n"
<< " --beta=<f32> Epilogue scalar beta (real part)\n\n"
<< " --beta_i=<f32> Epilogue scalar beta (imaginary part)\n\n"
<< " --iterations=<int> Number of profiling iterations to perform.\n";
out << "\n\nExamples:\n\n"
<< "$ ./examples/11_planar_complex_array/11_planar_complex_array\n\n";

View File

@ -1,25 +1,33 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cutlass_example_add_executable(
12_gemm_bias_relu
gemm_bias_relu.cu

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -50,8 +56,10 @@ using ElementOutput = float; // <- data type of elements
// The code section below describes matrix layout of input and output matrices.
// Column Major for Matrix A, B and C.
//
// Note this example only works for ColumnMajor output because
// Note that if the output is column major, the bias has to be per row. i.e. every row has different bias.
// If the output is row major, the bias has to be per column, i.e. every column has different bias.
// Below list some other notices:
// 1) we only have row major epilogue.
// 2) we swap A and B if the output is column major then we can still use the
// row major epilogue.
@ -294,4 +302,3 @@ int main() {
return run();
}

View File

@ -1,45 +1,82 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cutlass_example_add_executable(
13_fused_two_gemms
fused_gemm.cu
)
cutlass_example_add_executable(
13_fused_two_convs
fused_conv2d.cu
)
target_include_directories(
13_fused_two_gemms
PRIVATE
include_directories(
.
)
add_custom_target(13_fused_two_gemms)
add_custom_target(13_fused_two_convs)
add_custom_target(13_two_tensor_op_fusion
DEPENDS 13_fused_two_gemms
13_fused_two_convs
)
foreach(FUSION_CONV_EXAMPLE
fused_two_convs_f16_sm75_rf
fused_two_convs_f16_sm75_shmem
fused_two_convs_f16_sm80_rf
fused_two_convs_f16_sm80_shmem
fused_two_convs_s8_sm75_rf
fused_two_convs_s8_sm75_shmem
fused_two_convs_s8_sm80_rf
fused_two_convs_s8_sm80_shmem
)
cutlass_example_add_executable(
13_${FUSION_CONV_EXAMPLE}
${FUSION_CONV_EXAMPLE}.cu
)
target_include_directories(
13_fused_two_convs
PRIVATE
.
add_dependencies(13_fused_two_convs 13_${FUSION_CONV_EXAMPLE})
endforeach()
foreach(FUSION_GEMM_EXAMPLE
fused_two_gemms_f16_sm75_rf
fused_two_gemms_f16_sm75_shmem
fused_two_gemms_f16_sm80_rf
fused_two_gemms_f16_sm80_shmem
fused_two_gemms_s8_sm75_rf
fused_two_gemms_s8_sm75_shmem
fused_two_gemms_s8_sm80_rf
fused_two_gemms_s8_sm80_shmem
)
cutlass_example_add_executable(
13_${FUSION_GEMM_EXAMPLE}
${FUSION_GEMM_EXAMPLE}.cu
)
add_dependencies(13_fused_two_gemms 13_${FUSION_GEMM_EXAMPLE})
endforeach()

View File

@ -48,33 +48,71 @@ addition to its own input activation tile. Therefore the input activation warp t
2nd GEMM/Conv only depends on the output warp accumulator of the 1st GEMM/Conv in the
register file, and the operation can be fully register-file-resident.
On the other hand, this constraint can be relaxed if the output accumulator of the 1st GEMM/CONV
is staged in the shared memory and then used as input for the 2nd GEMM/CONV. In this case, the
input of each warp tile can be loaded from the shared memory so they do not need to be RF-resident,
therefore each warp does not need to store the entire input matrix of 2nd GEMM in its RF. This is
illustrated in the diagram below.
<p align="center"><img src=/media/images/13_example_shmem_resident_fusion.png></p>
When applying the above constraint to convolutions, it is required that the 2nd Convolution
kernel doesn't have halos such that data used by each threadblock doesn't depend on any other
threadblock. Typically this requires the 2nd Convolution uses 1x1 filter without any paddings.
# Build and run
- Run cmake at top-level CUTLASS
- `make 13_two_tensor_op_fusion`
- Run individual benchmarks
- `./examples/13_two_tensor_op_fusion/13_fused_two_convs_f16_sm75_rf`
- `./examples/13_two_tensor_op_fusion/13_fused_two_convs_f16_sm75_shmem`
- `./examples/13_two_tensor_op_fusion/13_fused_two_convs_f16_sm80_rf`
- `./examples/13_two_tensor_op_fusion/13_fused_two_convs_f16_sm80_shmem`
- `./examples/13_two_tensor_op_fusion/13_fused_two_convs_s8_sm75_rf`
- `./examples/13_two_tensor_op_fusion/13_fused_two_convs_s8_sm75_shmem`
- `./examples/13_two_tensor_op_fusion/13_fused_two_convs_s8_sm80_rf`
- `./examples/13_two_tensor_op_fusion/13_fused_two_convs_s8_sm80_shmem`
- `./examples/13_two_tensor_op_fusion/13_fused_two_gemms_f16_sm75_rf`
- `./examples/13_two_tensor_op_fusion/13_fused_two_gemms_f16_sm75_shmem`
- `./examples/13_two_tensor_op_fusion/13_fused_two_gemms_f16_sm80_rf`
- `./examples/13_two_tensor_op_fusion/13_fused_two_gemms_f16_sm80_shmem`
- `./examples/13_two_tensor_op_fusion/13_fused_two_gemms_s8_sm75_rf`
- `./examples/13_two_tensor_op_fusion/13_fused_two_gemms_s8_sm75_shmem`
- `./examples/13_two_tensor_op_fusion/13_fused_two_gemms_s8_sm80_rf`
- `./examples/13_two_tensor_op_fusion/13_fused_two_gemms_s8_sm80_shmem`
# Copyright
Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
```
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
* Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```

View File

@ -1,30 +1,34 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Implicit GEMM testbed
*/
#pragma once
#include <iostream>
@ -50,6 +54,7 @@
#include "cutlass/core_io.h"
#include "cutlass/util/tensor_view_io.h"
#include "reference/device/tensor_scale_bias.h"
#include "helper.h"
#define CHECK_GT(val1, val2) \
@ -149,6 +154,7 @@ public:
cutlass::reference::host::TensorFill(view, Element(1));
}
else {
std::cerr << "Not implemented\n";
}
}
@ -275,7 +281,7 @@ public:
cudaEventElapsedTime(&totalTime, start, stop2);
std::cout << "conv2d 0 time " << conv2d0Time / (float)runs << " ms\n";
std::cout << "conv2d 1 time " << conv2d1Time / (float)runs << " ms\n";
std::cout << "total time " << totalTime / (float)runs << " ms\n";
std::cout << "Non-fusion time " << totalTime / (float)runs << " ms\n";
tensor_D0_computed.sync_host();
tensor_D1_computed.sync_host();
@ -403,6 +409,7 @@ public:
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_C0;
cutlass::HostTensor<typename B2bConv2d::ElementScaleBias, typename B2bConv2d::LayoutScaleBias> tensor_Scale0;
cutlass::HostTensor<typename B2bConv2d::ElementScaleBias, typename B2bConv2d::LayoutScaleBias> tensor_Bias0;
cutlass::HostTensor<ElementAccumulator, typename B2bConv2d::LayoutC> tensor_Z0_reference;
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_D0_reference;
cutlass::HostTensor<typename B2bConv2d::ElementB, typename B2bConv2d::LayoutB> tensor_B1;
@ -483,6 +490,7 @@ public:
if(alpha0 == ElementCompute(0)) //per-channel scale
tensor_Scale0.resize({1, problem_size_0.K});
tensor_Bias0.resize({1, problem_size_0.K});
tensor_Z0_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0));
tensor_D0_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0));
tensor_B1.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_1));
tensor_C1.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1));
@ -592,7 +600,7 @@ public:
cudaDeviceSynchronize();
float conv2dTime;
cudaEventElapsedTime(&conv2dTime, start, stop);
std::cout << "time " << conv2dTime / (float)runs << " ms\n";
std::cout << "Fusion time " << conv2dTime / (float)runs << " ms\n";
tensor_D1_computed.sync_host();
@ -603,22 +611,35 @@ public:
typename B2bConv2d::LayoutA,
typename B2bConv2d::ElementB,
typename B2bConv2d::LayoutB,
typename B2bConv2d::ElementC,
ElementAccumulator,
typename B2bConv2d::LayoutC,
ElementCompute,
ElementAccumulator,
ElementAccumulator
>(
kConvolutionalOperator,
problem_size_0,
tensor_A0.device_ref(),
tensor_B0.device_ref(),
tensor_C0.device_ref(),
tensor_Z0_reference.device_ref(),
tensor_Z0_reference.device_ref(),
ElementAccumulator(1), // intermediate alpha = 1
ElementAccumulator(0) // beta = 0
);
cutlass::reference::device::TensorScaleBiasConv2d<
ElementAccumulator,
typename B2bConv2d::ElementC,
typename B2bConv2d::LayoutC,
ElementCompute,
typename B2bConv2d::LayoutScaleBias
>(
problem_size_0,
tensor_Z0_reference.device_ref(),
tensor_D0_reference.device_ref(),
alpha0,
beta0,
nullptr, // stream
alpha0,
tensor_Scale0.device_ref(),
tensor_Bias0.device_ref());
tensor_Bias0.device_ref()
);
if(relu) {
cutlass::reference::device::TensorReLu(tensor_D0_reference.device_view());

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -38,6 +44,7 @@
#include "cutlass/util/reference/device/gemm.h"
#include "cutlass/util/reference/device/tensor_relu.h"
#include "reference/device/tensor_scale_bias.h"
#include "helper.h"
#define CHECK_GT(val1, val2) \
@ -62,6 +69,7 @@ struct B2bNonFusedGemmRun
cutlass::Distribution::Kind init_A;
cutlass::Distribution::Kind init_B;
cutlass::Distribution::Kind init_C;
cutlass::Distribution::Kind init_Bias;
uint64_t seed;
//
@ -72,9 +80,10 @@ struct B2bNonFusedGemmRun
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_Bias_ = cutlass::Distribution::Uniform,
uint64_t seed_ = 2080
):
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
init_A(init_A_), init_B(init_B_), init_C(init_C_), init_Bias(init_Bias_), seed(seed_) { }
/// Helper to initialize a tensor view
template <typename Element, typename Layout>
@ -91,7 +100,7 @@ struct B2bNonFusedGemmRun
else if (dist_kind == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(view);
}
}
else if (dist_kind == cutlass::Distribution::Gaussian) {
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
@ -100,9 +109,14 @@ struct B2bNonFusedGemmRun
cutlass::reference::host::BlockFillSequential(
view.data(), view.capacity());
}
}
else if (dist_kind == cutlass::Distribution::AllZeros) {
cutlass::reference::host::TensorFill(view, Element(0));
}
else if (dist_kind == cutlass::Distribution::AllOnes) {
cutlass::reference::host::TensorFill(view, Element(1));
}
else {
// TODO: Implement the rest
std::cerr << "Not implemented\n";
return false;
}
@ -141,6 +155,10 @@ struct B2bNonFusedGemmRun
typename Gemm0::ElementC,
typename Gemm0::LayoutC> tensor_C0(problem_size_0.mn());
cutlass::HostTensor<
ElementCompute,
typename Gemm0::LayoutC> tensor_Bias0({1, problem_size_0.n()});
cutlass::HostTensor<
typename Gemm0::ElementC,
typename Gemm0::LayoutC> tensor_D0(problem_size_0.mn());
@ -157,6 +175,10 @@ struct B2bNonFusedGemmRun
typename Gemm1::ElementC,
typename Gemm1::LayoutC> tensor_C1(problem_size_1.mn());
cutlass::HostTensor<
ElementCompute,
typename Gemm1::LayoutC> tensor_Bias1({1, problem_size_1.n()});
cutlass::HostTensor<
typename Gemm1::ElementC,
typename Gemm1::LayoutC> tensor_D1(problem_size_1.mn());
@ -169,8 +191,10 @@ struct B2bNonFusedGemmRun
CHECK_TRUE(initialize_tensor(tensor_A0.host_view(), init_A, seed + 2019));
CHECK_TRUE(initialize_tensor(tensor_B0.host_view(), init_B, seed + 2018));
CHECK_TRUE(initialize_tensor(tensor_C0.host_view(), init_C, seed + 2017));
CHECK_TRUE(initialize_tensor(tensor_Bias0.host_view(), init_Bias, seed + 2014));
CHECK_TRUE(initialize_tensor(tensor_B1.host_view(), init_B, seed + 2016));
CHECK_TRUE(initialize_tensor(tensor_C1.host_view(), init_C, seed + 2015));
CHECK_TRUE(initialize_tensor(tensor_Bias1.host_view(), init_Bias, seed + 2013));
cutlass::reference::host::TensorFill(
tensor_D0.host_view());
@ -184,9 +208,11 @@ struct B2bNonFusedGemmRun
tensor_A0.sync_device();
tensor_B0.sync_device();
tensor_C0.sync_device();
tensor_Bias0.sync_device();
tensor_D0.sync_device();
tensor_B1.sync_device();
tensor_C1.sync_device();
tensor_Bias1.sync_device();
tensor_D1.sync_device();
reference_D0.sync_device();
reference_D1.sync_device();
@ -199,7 +225,7 @@ struct B2bNonFusedGemmRun
problem_size_0,
tensor_A0.device_ref(),
tensor_B0.device_ref(),
tensor_C0.device_ref(),
{tensor_Bias0.device_data(), typename Gemm0::LayoutC::Stride(0)},
tensor_D0.device_ref(),
{alpha0, beta0}
};
@ -208,7 +234,7 @@ struct B2bNonFusedGemmRun
problem_size_1,
tensor_D0.device_ref(),
tensor_B1.device_ref(),
tensor_C1.device_ref(),
{tensor_Bias1.device_data(), typename Gemm1::LayoutC::Stride(0)},
tensor_D1.device_ref(),
{alpha1, beta1}
};
@ -235,7 +261,6 @@ struct B2bNonFusedGemmRun
//
// Run the GEMM
//
cudaEvent_t start, stop1, stop2;
cudaEventCreate(&start);
cudaEventCreate(&stop1);
@ -250,7 +275,6 @@ struct B2bNonFusedGemmRun
}
cudaEventRecord(stop1);
for(int i = 0; i < runs; i++) {
status = gemm_op_1();
CUTLASS_CHECK(status);
@ -264,7 +288,7 @@ struct B2bNonFusedGemmRun
cudaEventElapsedTime(&totalTime, start, stop2);
std::cout << "gemm 0 time " << gemm0Time / (float)runs << " ms\n";
std::cout << "gemm 1 time " << gemm1Time / (float)runs << " ms\n";
std::cout << "total time " << totalTime / (float)runs << " ms\n";
std::cout << "Non-fusion time " << totalTime / (float)runs << " ms\n";
tensor_D0.sync_host();
tensor_D1.sync_host();
@ -292,7 +316,7 @@ struct B2bNonFusedGemmRun
tensor_A0.device_ref(),
tensor_B0.device_ref(),
beta0,
tensor_C0.device_ref(),
{tensor_Bias0.device_data(), typename Gemm0::LayoutC::Stride(0)},
reference_D0.device_ref()
);
@ -306,7 +330,7 @@ struct B2bNonFusedGemmRun
reference_D0.device_ref(),
tensor_B1.device_ref(),
beta1,
tensor_C1.device_ref(),
{tensor_Bias1.device_data(), typename Gemm1::LayoutC::Stride(0)},
reference_D1.device_ref()
);
@ -319,7 +343,6 @@ struct B2bNonFusedGemmRun
reference_D0.sync_host();
reference_D1.sync_host();
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D0.host_view()), 0);
CHECK_GT(cutlass::reference::host::TensorNorm(reference_D0.host_view()), 0);
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1.host_view()), 0);
@ -343,13 +366,14 @@ struct B2bNonFusedGemmRun
<< "A0 =\n" << tensor_A0.host_view()
<< "\nB0 =\n" << tensor_B0.host_view()
<< "\nC0 =\n" << tensor_C0.host_view()
<< "\nBias0:\n" << tensor_Bias0.host_view() << "\n"
<< "\nD0 =\n" << tensor_D0.host_view()
<< "\nB1 =\n" << tensor_B1.host_view()
<< "\nC1 =\n" << tensor_C1.host_view()
<< "\nBias1:\n" << tensor_Bias1.host_view() << "\n"
<< "\n\nReference =\n" << reference_D1.host_view()
<< "\nComputed =\n" << tensor_D1.host_view();
}
return passed;
}
};
@ -366,6 +390,8 @@ struct B2bFusedGemmRun
cutlass::Distribution::Kind init_A;
cutlass::Distribution::Kind init_B;
cutlass::Distribution::Kind init_C;
cutlass::Distribution::Kind init_Scale;
cutlass::Distribution::Kind init_Bias;
uint64_t seed;
//
@ -376,9 +402,12 @@ struct B2bFusedGemmRun
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_Scale_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_Bias_ = cutlass::Distribution::Uniform,
uint64_t seed_ = 2080
):
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
init_A(init_A_), init_B(init_B_), init_C(init_C_),
init_Scale(init_Scale_), init_Bias(init_Bias_), seed(seed_) { }
/// Helper to initialize a tensor view
template <typename Element, typename Layout>
@ -404,9 +433,14 @@ struct B2bFusedGemmRun
cutlass::reference::host::BlockFillSequential(
view.data(), view.capacity());
}
}
else if (dist_kind == cutlass::Distribution::AllZeros) {
cutlass::reference::host::TensorFill(view, Element(0));
}
else if (dist_kind == cutlass::Distribution::AllOnes) {
cutlass::reference::host::TensorFill(view, Element(1));
}
else {
// TODO: Implement the rest
std::cerr << "Not implemented\n";
return false;
}
@ -445,6 +479,21 @@ struct B2bFusedGemmRun
typename B2bGemm::ElementC,
typename B2bGemm::LayoutC> tensor_C0(problem_size_0.mn());
cutlass::HostTensor<
typename B2bGemm::ElementScaleBias,
typename B2bGemm::LayoutScaleBias> tensor_Scale0;
if(alpha0 == ElementCompute(0)) //per-channel scale
tensor_Scale0.resize({1, problem_size_0.n()});
cutlass::HostTensor<
typename B2bGemm::ElementScaleBias,
typename B2bGemm::LayoutScaleBias> tensor_Bias0({1, problem_size_0.n()});
cutlass::HostTensor<
ElementAccumulator,
typename B2bGemm::LayoutC> reference_Z0(problem_size_0.mn());
cutlass::HostTensor<
typename B2bGemm::ElementC,
typename B2bGemm::LayoutC> reference_D0(problem_size_0.mn());
@ -457,6 +506,10 @@ struct B2bFusedGemmRun
typename B2bGemm::ElementC,
typename B2bGemm::LayoutC> tensor_C1(problem_size_1.mn());
cutlass::HostTensor<
ElementCompute,
typename B2bGemm::LayoutScaleBias> tensor_Bias1({1, problem_size_1.n()});
cutlass::HostTensor<
typename B2bGemm::ElementC,
typename B2bGemm::LayoutC> tensor_D1(problem_size_1.mn());
@ -469,21 +522,29 @@ struct B2bFusedGemmRun
CHECK_TRUE(initialize_tensor(tensor_A0.host_view(), init_A, seed + 2019));
CHECK_TRUE(initialize_tensor(tensor_B0.host_view(), init_B, seed + 2018));
CHECK_TRUE(initialize_tensor(tensor_C0.host_view(), init_C, seed + 2017));
if(alpha0 == ElementCompute(0)) //per-channel scale
CHECK_TRUE(initialize_tensor(tensor_Scale0.host_view(), init_Scale, seed + 2014));
CHECK_TRUE(initialize_tensor(tensor_Bias0.host_view(), init_Bias, seed + 2013));
CHECK_TRUE(initialize_tensor(tensor_B1.host_view(), init_B, seed + 2016));
CHECK_TRUE(initialize_tensor(tensor_C1.host_view(), init_C, seed + 2015));
CHECK_TRUE(initialize_tensor(tensor_Bias1.host_view(), init_Bias, seed + 2012));
cutlass::reference::host::TensorFill(
tensor_D1.host_view());
cutlass::reference::host::TensorFill(
reference_D0.host_view());
reference_D0.host_view());
cutlass::reference::host::TensorFill(
reference_D1.host_view());
tensor_A0.sync_device();
tensor_B0.sync_device();
tensor_C0.sync_device();
if(alpha0 == ElementCompute(0)) //per-channel scale
tensor_Scale0.sync_device();
tensor_Bias0.sync_device();
tensor_B1.sync_device();
tensor_C1.sync_device();
tensor_Bias1.sync_device();
tensor_D1.sync_device();
reference_D0.sync_device();
reference_D1.sync_device();
@ -498,8 +559,10 @@ struct B2bFusedGemmRun
tensor_A0.device_ref(),
tensor_B0.device_ref(),
tensor_C0.device_ref(),
tensor_Scale0.device_ref(),
tensor_Bias0.device_ref(),
tensor_B1.device_ref(),
tensor_C1.device_ref(),
{tensor_Bias1.device_data(), typename B2bGemm::LayoutC::Stride(0)},
tensor_D1.device_ref(),
{alpha0, beta0},
{alpha1, beta1},
@ -507,7 +570,18 @@ struct B2bFusedGemmRun
B2bGemm b2b_gemm_op;
cutlass::Status status = b2b_gemm_op.initialize(arguments);
cutlass::Status status = b2b_gemm_op.can_implement(arguments);
if(status != cutlass::Status::kSuccess) {
std::cout << "Problem sizes not supported.\n"
<< "Requirments:\n"
<< " problem_size_0.M = problem_size_1.M\n"
<< " problem_size_0.N = problem_size_1.K\n"
<< " ThreadblockShape0::kN = problem_size_0.N\n"
<< " ThreadblockShape1::kN = problem_size_1.N" << std::endl;
}
status = b2b_gemm_op.initialize(arguments);
CUTLASS_CHECK(status);
@ -536,28 +610,49 @@ struct B2bFusedGemmRun
cudaDeviceSynchronize();
float gemmTime;
cudaEventElapsedTime(&gemmTime, start, stop);
std::cout << "time " << gemmTime / (float)runs << " ms\n";
std::cout << "Fusion time " << gemmTime / (float)runs << " ms\n";
tensor_D1.sync_host();
//
// Verify
//
cutlass::reference::device::Gemm<
typename B2bGemm::ElementA, typename B2bGemm::LayoutA,
typename B2bGemm::ElementB, typename B2bGemm::LayoutB,
ElementAccumulator, typename B2bGemm::LayoutC,
ElementAccumulator, ElementAccumulator>
reference_gemm_0;
cutlass::reference::device::Gemm<
typename B2bGemm::ElementA, typename B2bGemm::LayoutA,
typename B2bGemm::ElementB, typename B2bGemm::LayoutB,
typename B2bGemm::ElementC, typename B2bGemm::LayoutC, ElementCompute,
ElementAccumulator, typename B2bGemm::Operator>
reference_gemm_0, reference_gemm_1;
reference_gemm_1;
reference_gemm_0(
problem_size_0,
alpha0,
ElementAccumulator(1), //intermediate alpha=1
tensor_A0.device_ref(),
tensor_B0.device_ref(),
beta0,
tensor_C0.device_ref(),
reference_D0.device_ref()
ElementAccumulator(0), //beta = 0
reference_Z0.device_ref(),
reference_Z0.device_ref(),
ElementAccumulator(0)
);
cutlass::reference::device::TensorScaleBiasGemm<
ElementAccumulator, typename B2bGemm::ElementC, typename B2bGemm::LayoutC,
ElementCompute, typename B2bGemm::LayoutScaleBias
> (
problem_size_0,
reference_Z0.device_ref(),
reference_D0.device_ref(),
alpha0,
tensor_Scale0.device_ref(),
tensor_Bias0.device_ref()
);
if(relu) {
@ -570,18 +665,15 @@ struct B2bFusedGemmRun
reference_D0.device_ref(),
tensor_B1.device_ref(),
beta1,
tensor_C1.device_ref(),
{tensor_Bias1.device_data(), typename B2bGemm::LayoutC::Stride(0)},
reference_D1.device_ref()
);
if(relu) {
cutlass::reference::device::TensorReLu(reference_D1.device_view());
}
cudaDeviceSynchronize();
reference_D0.sync_host();
reference_D1.sync_host();
CHECK_GT(cutlass::reference::host::TensorNorm(reference_D0.host_view()), 0);
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1.host_view()), 0);
@ -592,7 +684,8 @@ struct B2bFusedGemmRun
tensor_D1.host_view());
CHECK_TRUE(passed);
if (!passed) {
if (!passed)
{
std::stringstream fname;
@ -605,12 +698,14 @@ struct B2bFusedGemmRun
<< "A0 =\n" << tensor_A0.host_view()
<< "\nB0 =\n" << tensor_B0.host_view()
<< "\nC0 =\n" << tensor_C0.host_view()
<< "\nScale0:\n" << tensor_Scale0.host_view() << "\n"
<< "\nBias0:\n" << tensor_Bias0.host_view() << "\n"
<< "\nB1 =\n" << tensor_B1.host_view()
<< "\nC1 =\n" << tensor_C1.host_view()
<< "\nBias1:\n" << tensor_Bias1.host_view() << "\n"
<< "\n\nReference =\n" << reference_D1.host_view()
<< "\nComputed =\n" << tensor_D1.host_view();
}
return passed;
}

View File

@ -1,30 +1,34 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Implicit GEMM testbed
*/
#pragma once
#include <iostream>
@ -51,6 +55,7 @@
#include "cutlass/core_io.h"
#include "cutlass/util/tensor_view_io.h"
#include "reference/device/tensor_scale_bias.h"
#include "helper.h"
#define CHECK_GT(val1, val2) \
@ -87,14 +92,14 @@ public:
cutlass::HostTensor<typename Conv2d0::ElementB, typename Conv2d0::LayoutB> tensor_B0;
cutlass::HostTensor<typename Conv2d0::ElementB, typename Conv2d0::LayoutB> tensor_B0_reordered;
cutlass::HostTensor<typename Conv2d0::ElementC, typename Conv2d0::LayoutC> tensor_C0;
cutlass::HostTensor<typename Conv2d0::ElementCompute, typename Conv2d0::LayoutC> tensor_Bias0;
cutlass::HostTensor<typename Conv2d0::ElementC, typename Conv2d0::LayoutC> tensor_Bias0;
cutlass::HostTensor<typename Conv2d0::ElementC, typename Conv2d0::LayoutC> tensor_D0_computed;
cutlass::HostTensor<typename Conv2d0::ElementC, typename Conv2d0::LayoutC> tensor_D0_reference;
cutlass::HostTensor<typename Conv2d1::ElementB, typename Conv2d1::LayoutB> tensor_B1;
cutlass::HostTensor<typename Conv2d1::ElementB, typename Conv2d1::LayoutB> tensor_B1_reordered;
cutlass::HostTensor<typename Conv2d1::ElementC, typename Conv2d1::LayoutC> tensor_C1;
cutlass::HostTensor<typename Conv2d1::ElementCompute, typename Conv2d0::LayoutC> tensor_Bias1;
cutlass::HostTensor<typename Conv2d1::ElementC, typename Conv2d0::LayoutC> tensor_Bias1;
cutlass::HostTensor<typename Conv2d1::ElementC, typename Conv2d1::LayoutC> tensor_D1_computed;
cutlass::HostTensor<typename Conv2d1::ElementC, typename Conv2d1::LayoutC> tensor_D1_reference;
@ -286,7 +291,7 @@ public:
cudaEventElapsedTime(&totalTime, start, stop2);
std::cout << "conv2d 0 time " << conv2d0Time / (float)runs << " ms\n";
std::cout << "conv2d 1 time " << conv2d1Time / (float)runs << " ms\n";
std::cout << "total time " << totalTime / (float)runs << " ms\n";
std::cout << "Non-fusion time " << totalTime / (float)runs << " ms\n";
tensor_D0_computed.sync_host();
tensor_D1_computed.sync_host();
@ -375,11 +380,13 @@ public:
<< "\nB0:\n" << tensor_B0.host_view() << "\n"
<< "\nB0_reordered:\n" << tensor_B0_reordered.host_view() << "\n"
<< "\nC0:\n" << tensor_C0.host_view() << "\n"
<< "\nBias0:\n" << tensor_Bias0.host_view() << "\n"
<< "\nD0 reference:\n" << tensor_D0_reference.host_view() << "\n"
<< "\nD0 computed:\n" << tensor_D0_computed.host_view() << "\n"
<< "\nB1:\n" << tensor_B1.host_view() << "\n"
<< "\nB1_reordered:\n" << tensor_B1_reordered.host_view() << "\n"
<< "\nC1:\n" << tensor_C1.host_view() << "\n"
<< "\nBias1:\n" << tensor_Bias1.host_view() << "\n"
<< "\nD1 reference:\n" << tensor_D1_reference.host_view() << "\n"
<< "\nD1 computed:\n" << tensor_D1_computed.host_view();
@ -417,12 +424,13 @@ public:
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_C0;
cutlass::HostTensor<typename B2bConv2d::ElementScaleBias, typename B2bConv2d::LayoutScaleBias> tensor_Scale0;
cutlass::HostTensor<typename B2bConv2d::ElementScaleBias, typename B2bConv2d::LayoutScaleBias> tensor_Bias0;
cutlass::HostTensor<ElementAccumulator, typename B2bConv2d::LayoutC> tensor_Z0_reference;
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_D0_reference;
cutlass::HostTensor<typename B2bConv2d::ElementB, typename B2bConv2d::LayoutB> tensor_B1;
cutlass::HostTensor<typename B2bConv2d::ElementB, typename B2bConv2d::LayoutB> tensor_B1_reordered;
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_C1;
cutlass::HostTensor<typename B2bConv2d::ElementCompute, typename B2bConv2d::LayoutC> tensor_Bias1;
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_Bias1;
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_D1_computed;
cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_D1_reference;
@ -499,6 +507,7 @@ public:
if(alpha0 == ElementCompute(0)) //per-channel scale
tensor_Scale0.resize({1, problem_size_0.K});
tensor_Bias0.resize({1, problem_size_0.K});
tensor_Z0_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0));
tensor_D0_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0));
tensor_B1.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_1));
tensor_B1_reordered.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_1));
@ -617,7 +626,7 @@ public:
cudaDeviceSynchronize();
float conv2dTime;
cudaEventElapsedTime(&conv2dTime, start, stop);
std::cout << "time " << conv2dTime / (float)runs << " ms\n";
std::cout << "Fusion time " << conv2dTime / (float)runs << " ms\n";
tensor_D1_computed.sync_host();
@ -628,23 +637,36 @@ public:
typename B2bConv2d::LayoutA,
typename B2bConv2d::ElementB,
typename B2bConv2d::LayoutB,
typename B2bConv2d::ElementC,
typename B2bConv2d::LayoutC,
ElementCompute,
ElementAccumulator,
cutlass::NumericConverterClamp<typename B2bConv2d::ElementC, ElementCompute>
typename B2bConv2d::LayoutC,
ElementAccumulator,
ElementAccumulator
>(
kConvolutionalOperator,
problem_size_0,
tensor_A0.device_ref(),
tensor_B0.device_ref(),
tensor_C0.device_ref(),
tensor_Z0_reference.device_ref(),
tensor_Z0_reference.device_ref(),
ElementAccumulator(1), // intermediate alpha = 1
ElementAccumulator(0) // beta = 0
);
cutlass::reference::device::TensorScaleBiasConv2d<
ElementAccumulator,
typename B2bConv2d::ElementC,
typename B2bConv2d::LayoutC,
ElementCompute,
typename B2bConv2d::LayoutScaleBias,
cutlass::NumericConverterClamp<typename B2bConv2d::ElementC, ElementCompute>
>(
problem_size_0,
tensor_Z0_reference.device_ref(),
tensor_D0_reference.device_ref(),
alpha0,
beta0,
nullptr, // stream
alpha0,
tensor_Scale0.device_ref(),
tensor_Bias0.device_ref());
tensor_Bias0.device_ref()
);
if(relu) {
cutlass::reference::device::TensorReLu(tensor_D0_reference.device_view());
@ -712,6 +734,7 @@ public:
<< "\nB1:\n" << tensor_B1.host_view() << "\n"
<< "\nB1_reordered:\n" << tensor_B1_reordered.host_view() << "\n"
<< "\nC1:\n" << tensor_C1.host_view() << "\n"
<< "\nBias1:\n" << tensor_Bias1.host_view() << "\n"
<< "\nD1 reference:\n" << tensor_D1_reference.host_view() << "\n"
<< "\nD1 computed:\n" << tensor_D1_computed.host_view();

View File

@ -1,28 +1,33 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <iostream>
@ -40,6 +45,7 @@
#include "cutlass/util/reference/device/gemm.h"
#include "cutlass/util/reference/device/tensor_relu.h"
#include "reference/device/tensor_scale_bias.h"
#include "helper.h"
#define CHECK_GT(val1, val2) \
@ -62,6 +68,7 @@ struct B2bInterleavedNonFusedGemmRun
cutlass::Distribution::Kind init_A;
cutlass::Distribution::Kind init_B;
cutlass::Distribution::Kind init_C;
cutlass::Distribution::Kind init_Bias;
uint64_t seed;
//
@ -72,9 +79,10 @@ struct B2bInterleavedNonFusedGemmRun
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_Bias_ = cutlass::Distribution::Uniform,
uint64_t seed_ = 2080
):
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
init_A(init_A_), init_B(init_B_), init_C(init_C_), init_Bias(init_Bias_), seed(seed_) { }
/// Helper to initialize a tensor view
template <typename Element, typename Layout>
@ -91,14 +99,23 @@ struct B2bInterleavedNonFusedGemmRun
else if (dist_kind == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(view);
}
}
else if (dist_kind == cutlass::Distribution::Gaussian) {
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
}
else if (dist_kind == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(
view.data(), view.capacity());
}
}
else if (dist_kind == cutlass::Distribution::AllZeros) {
cutlass::reference::host::TensorFill(view, Element(0));
}
else if (dist_kind == cutlass::Distribution::AllOnes) {
cutlass::reference::host::TensorFill(view, Element(1));
}
else {
// TODO: Implement the rest
std::cerr << "Not implemented\n";
return false;
}
@ -141,6 +158,10 @@ struct B2bInterleavedNonFusedGemmRun
typename Gemm0::ElementC,
typename Gemm0::LayoutC> tensor_C0(problem_size_0.mn());
cutlass::HostTensor<
typename Gemm0::ElementC,
typename Gemm0::LayoutC> tensor_Bias0({1, problem_size_0.n()});
cutlass::HostTensor<
typename Gemm0::ElementC,
typename Gemm0::LayoutC> tensor_D0(problem_size_0.mn());
@ -161,6 +182,10 @@ struct B2bInterleavedNonFusedGemmRun
typename Gemm1::ElementC,
typename Gemm1::LayoutC> tensor_C1(problem_size_1.mn());
cutlass::HostTensor<
typename Gemm0::ElementC,
typename Gemm1::LayoutC> tensor_Bias1({1, problem_size_1.n()});
cutlass::HostTensor<
typename Gemm1::ElementC,
typename Gemm1::LayoutC> tensor_D1(problem_size_1.mn());
@ -173,8 +198,10 @@ struct B2bInterleavedNonFusedGemmRun
CHECK_TRUE(initialize_tensor(tensor_A0.host_view(), init_A, seed + 2019));
CHECK_TRUE(initialize_tensor(tensor_B0.host_view(), init_B, seed + 2018));
CHECK_TRUE(initialize_tensor(tensor_C0.host_view(), init_C, seed + 2017));
CHECK_TRUE(initialize_tensor(tensor_Bias0.host_view(), init_Bias, seed + 2014));
CHECK_TRUE(initialize_tensor(tensor_B1.host_view(), init_B, seed + 2016));
CHECK_TRUE(initialize_tensor(tensor_C1.host_view(), init_C, seed + 2015));
CHECK_TRUE(initialize_tensor(tensor_Bias1.host_view(), init_Bias, seed + 2013));
//Reorder B0 and B1
cutlass::reorder_column<InterleavedK_>(
@ -195,10 +222,12 @@ struct B2bInterleavedNonFusedGemmRun
tensor_B0.sync_device();
tensor_B0_reordered.sync_device();
tensor_C0.sync_device();
tensor_Bias0.sync_device();
tensor_D0.sync_device();
tensor_B1.sync_device();
tensor_B1_reordered.sync_device();
tensor_C1.sync_device();
tensor_Bias1.sync_device();
tensor_D1.sync_device();
reference_D0.sync_device();
reference_D1.sync_device();
@ -211,7 +240,7 @@ struct B2bInterleavedNonFusedGemmRun
problem_size_0,
tensor_A0.device_ref(),
tensor_B0_reordered.device_ref(),
tensor_C0.device_ref(),
{tensor_Bias0.device_data(), typename Gemm0::LayoutC::Stride(0)},
tensor_D0.device_ref(),
{alpha0, beta0}
};
@ -220,7 +249,7 @@ struct B2bInterleavedNonFusedGemmRun
problem_size_1,
tensor_D0.device_ref(),
tensor_B1_reordered.device_ref(),
tensor_C1.device_ref(),
{tensor_Bias1.device_data(), typename Gemm1::LayoutC::Stride(0)},
tensor_D1.device_ref(),
{alpha1, beta1}
};
@ -259,8 +288,7 @@ struct B2bInterleavedNonFusedGemmRun
CUTLASS_CHECK(status);
}
cudaEventRecord(stop1);
cudaEventRecord(stop1);
for(int i = 0; i < runs; i++) {
status = gemm_op_1();
@ -275,7 +303,7 @@ struct B2bInterleavedNonFusedGemmRun
cudaEventElapsedTime(&totalTime, start, stop2);
std::cout << "gemm 0 time " << gemm0Time / (float)runs << " ms\n";
std::cout << "gemm 1 time " << gemm1Time / (float)runs << " ms\n";
std::cout << "total time " << totalTime / (float)runs << " ms\n";
std::cout << "Non-fusion time " << totalTime / (float)runs << " ms\n";
tensor_D0.sync_host();
tensor_D1.sync_host();
@ -303,7 +331,7 @@ struct B2bInterleavedNonFusedGemmRun
tensor_A0.device_ref(),
tensor_B0.device_ref(),
beta0,
tensor_C0.device_ref(),
{tensor_Bias0.device_data(), typename Gemm0::LayoutC::Stride(0)},
reference_D0.device_ref()
);
@ -316,8 +344,8 @@ struct B2bInterleavedNonFusedGemmRun
alpha1,
reference_D0.device_ref(),
tensor_B1.device_ref(),
beta1,
tensor_C1.device_ref(),
beta1,
{tensor_Bias1.device_data(), typename Gemm1::LayoutC::Stride(0)},
reference_D1.device_ref()
);
@ -325,6 +353,7 @@ struct B2bInterleavedNonFusedGemmRun
cutlass::reference::device::TensorReLu(reference_D1.device_view());
}
// Wait for kernels to finish
cudaDeviceSynchronize();
reference_D0.sync_host();
reference_D1.sync_host();
@ -353,14 +382,15 @@ struct B2bInterleavedNonFusedGemmRun
<< "\nB0 =\n" << tensor_B0.host_view()
<< "\nB0_reordered =\n" << tensor_B0_reordered.host_view()
<< "\nC0 =\n" << tensor_C0.host_view()
<< "\nBias0:\n" << tensor_Bias0.host_view() << "\n"
<< "\nD0 =\n" << tensor_D0.host_view()
<< "\nB1 =\n" << tensor_B1.host_view()
<< "\nB1_reordered =\n" << tensor_B1_reordered.host_view()
<< "\nC1 =\n" << tensor_C1.host_view()
<< "\nBias1:\n" << tensor_Bias1.host_view() << "\n"
<< "\n\nReference =\n" << reference_D1.host_view()
<< "\nComputed =\n" << tensor_D1.host_view();
}
return passed;
}
};
@ -377,6 +407,8 @@ struct B2bInterleavedFusedGemmRun
cutlass::Distribution::Kind init_A;
cutlass::Distribution::Kind init_B;
cutlass::Distribution::Kind init_C;
cutlass::Distribution::Kind init_Scale;
cutlass::Distribution::Kind init_Bias;
uint64_t seed;
//
@ -387,9 +419,12 @@ struct B2bInterleavedFusedGemmRun
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_Scale_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_Bias_ = cutlass::Distribution::Uniform,
uint64_t seed_ = 2080
):
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
init_A(init_A_), init_B(init_B_), init_C(init_C_),
init_Scale(init_Scale_), init_Bias(init_Bias_), seed(seed_) { }
/// Helper to initialize a tensor view
template <typename Element, typename Layout>
@ -407,13 +442,22 @@ struct B2bInterleavedFusedGemmRun
cutlass::reference::host::TensorFillIdentity(view);
}
else if (dist_kind == cutlass::Distribution::Gaussian) {
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
}
else if (dist_kind == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(
view.data(), view.capacity());
}
}
else if (dist_kind == cutlass::Distribution::AllZeros) {
cutlass::reference::host::TensorFill(view, Element(0));
}
else if (dist_kind == cutlass::Distribution::AllOnes) {
cutlass::reference::host::TensorFill(view, Element(1));
}
else {
// TODO: Implement the rest
std::cerr << "Not implemented\n";
return false;
}
@ -431,7 +475,7 @@ struct B2bInterleavedFusedGemmRun
ElementCompute alpha0 = ElementCompute(1),
ElementCompute beta0 = ElementCompute(0),
ElementCompute alpha1 = ElementCompute(1),
ElementCompute beta1 = ElementCompute(0),
ElementCompute beta1 = ElementCompute(0),
bool relu = true,
int warm_ups = 1,
int runs = 100) {
@ -456,6 +500,21 @@ struct B2bInterleavedFusedGemmRun
typename B2bGemm::ElementC,
typename B2bGemm::LayoutC> tensor_C0(problem_size_0.mn());
cutlass::HostTensor<
typename B2bGemm::ElementScaleBias,
typename B2bGemm::LayoutScaleBias> tensor_Scale0;
if(alpha0 == ElementCompute(0)) //per-channel scale
tensor_Scale0.resize({1, problem_size_0.n()});
cutlass::HostTensor<
typename B2bGemm::ElementScaleBias,
typename B2bGemm::LayoutScaleBias> tensor_Bias0({1, problem_size_0.n()});
cutlass::HostTensor<
ElementAccumulator,
typename B2bGemm::LayoutC> reference_Z0(problem_size_0.mn());
cutlass::HostTensor<
typename B2bGemm::ElementC,
typename B2bGemm::LayoutC> reference_D0(problem_size_0.mn());
@ -472,6 +531,10 @@ struct B2bInterleavedFusedGemmRun
typename B2bGemm::ElementC,
typename B2bGemm::LayoutC> tensor_C1(problem_size_1.mn());
cutlass::HostTensor<
typename B2bGemm::ElementC,
typename B2bGemm::LayoutScaleBias> tensor_Bias1({1, problem_size_1.n()});
cutlass::HostTensor<
typename B2bGemm::ElementC,
typename B2bGemm::LayoutC> tensor_D1(problem_size_1.mn());
@ -484,8 +547,12 @@ struct B2bInterleavedFusedGemmRun
CHECK_TRUE(initialize_tensor(tensor_A0.host_view(), init_A, seed + 2019));
CHECK_TRUE(initialize_tensor(tensor_B0.host_view(), init_B, seed + 2018));
CHECK_TRUE(initialize_tensor(tensor_C0.host_view(), init_C, seed + 2017));
if(alpha0 == ElementCompute(0)) //per-channel scale
CHECK_TRUE(initialize_tensor(tensor_Scale0.host_view(), init_Scale, seed + 2014));
CHECK_TRUE(initialize_tensor(tensor_Bias0.host_view(), init_Bias, seed + 2013));
CHECK_TRUE(initialize_tensor(tensor_B1.host_view(), init_B, seed + 2016));
CHECK_TRUE(initialize_tensor(tensor_C1.host_view(), init_C, seed + 2015));
CHECK_TRUE(initialize_tensor(tensor_Bias1.host_view(), init_Bias, seed + 2012));
//Reorder B0
cutlass::reorder_column<16>(
@ -504,9 +571,13 @@ struct B2bInterleavedFusedGemmRun
tensor_B0.sync_device();
tensor_B0_reordered.sync_device();
tensor_C0.sync_device();
if(alpha0 == ElementCompute(0)) //per-channel scale
tensor_Scale0.sync_device();
tensor_Bias0.sync_device();
tensor_B1.sync_device();
tensor_B1_reordered.sync_device();
tensor_C1.sync_device();
tensor_Bias1.sync_device();
tensor_D1.sync_device();
reference_D0.sync_device();
reference_D1.sync_device();
@ -521,17 +592,29 @@ struct B2bInterleavedFusedGemmRun
tensor_A0.device_ref(),
tensor_B0_reordered.device_ref(),
tensor_C0.device_ref(),
tensor_Scale0.device_ref(),
tensor_Bias0.device_ref(),
tensor_B1_reordered.device_ref(),
tensor_C1.device_ref(),
{tensor_Bias1.device_data(), typename B2bGemm::LayoutC::Stride(0)},
tensor_D1.device_ref(),
{alpha0, beta0},
{alpha1, beta1},
1, /*threadblock_swizzle_k_tile*/
};
B2bGemm b2b_gemm_op;
cutlass::Status status = b2b_gemm_op.initialize(arguments);
cutlass::Status status = b2b_gemm_op.can_implement(arguments);
if(status != cutlass::Status::kSuccess) {
std::cout << "Problem sizes not supported.\n"
<< "Requirments:\n"
<< " problem_size_0.M = problem_size_1.M\n"
<< " problem_size_0.N = problem_size_1.K\n"
<< " ThreadblockShape0::kN = problem_size_0.N\n"
<< " ThreadblockShape1::kN = problem_size_1.N" << std::endl;
}
status = b2b_gemm_op.initialize(arguments);
CUTLASS_CHECK(status);
@ -560,28 +643,49 @@ struct B2bInterleavedFusedGemmRun
cudaDeviceSynchronize();
float gemmTime;
cudaEventElapsedTime(&gemmTime, start, stop);
std::cout << "time " << gemmTime / (float)runs << " ms\n";
std::cout << "Fusion time " << gemmTime / (float)runs << " ms\n";
tensor_D1.sync_host();
//
// Verify
//
cutlass::reference::device::Gemm<
typename B2bGemm::ElementA, typename B2bGemm::LayoutA,
typename B2bGemm::ElementB, typename B2bGemm::LayoutB,
ElementAccumulator, typename B2bGemm::LayoutC,
ElementAccumulator, ElementAccumulator>
reference_gemm_0;
cutlass::reference::device::Gemm<
typename B2bGemm::ElementA, typename B2bGemm::LayoutA,
typename B2bGemm::ElementB, typename B2bGemm::LayoutB,
typename B2bGemm::ElementC, typename B2bGemm::LayoutC, ElementCompute,
ElementAccumulator, typename B2bGemm::Operator>
reference_gemm_0, reference_gemm_1;
reference_gemm_1;
reference_gemm_0(
problem_size_0,
alpha0,
ElementAccumulator(1), //intermediate alpha=1
tensor_A0.device_ref(),
tensor_B0.device_ref(),
beta0,
tensor_C0.device_ref(),
reference_D0.device_ref()
ElementAccumulator(0), //beta = 0
reference_Z0.device_ref(),
reference_Z0.device_ref(),
ElementAccumulator(0)
);
cutlass::reference::device::TensorScaleBiasGemm<
ElementAccumulator, typename B2bGemm::ElementC, typename B2bGemm::LayoutC,
ElementCompute, typename B2bGemm::LayoutScaleBias
> (
problem_size_0,
reference_Z0.device_ref(),
reference_D0.device_ref(),
alpha0,
tensor_Scale0.device_ref(),
tensor_Bias0.device_ref()
);
if(relu) {
@ -594,18 +698,15 @@ struct B2bInterleavedFusedGemmRun
reference_D0.device_ref(),
tensor_B1.device_ref(),
beta1,
tensor_C1.device_ref(),
{tensor_Bias1.device_data(), typename B2bGemm::LayoutC::Stride(0)},
reference_D1.device_ref()
);
if(relu) {
cutlass::reference::device::TensorReLu(reference_D1.device_view());
}
cudaDeviceSynchronize();
reference_D0.sync_host();
reference_D1.sync_host();
reference_D0.sync_host();
reference_D1.sync_host();
CHECK_GT(cutlass::reference::host::TensorNorm(reference_D0.host_view()), 0);
CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1.host_view()), 0);
@ -616,7 +717,8 @@ struct B2bInterleavedFusedGemmRun
tensor_D1.host_view());
CHECK_TRUE(passed);
if (!passed) {
if (!passed)
{
std::stringstream fname;
@ -630,13 +732,15 @@ struct B2bInterleavedFusedGemmRun
<< "\nB0 =\n" << tensor_B0.host_view()
<< "\nB0_reordered =\n" << tensor_B0_reordered.host_view()
<< "\nC0 =\n" << tensor_C0.host_view()
<< "\nScale0:\n" << tensor_Scale0.host_view() << "\n"
<< "\nBias0:\n" << tensor_Bias0.host_view() << "\n"
<< "\nB1 =\n" << tensor_B1.host_view()
<< "\nB1_reordered =\n" << tensor_B1_reordered.host_view()
<< "\nC1 =\n" << tensor_C1.host_view()
<< "\nBias1:\n" << tensor_Bias1.host_view() << "\n"
<< "\n\nReference =\n" << reference_D1.host_view()
<< "\nComputed =\n" << tensor_D1.host_view();
}
return passed;
}

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -40,6 +46,7 @@
#include "kernel/b2b_gemm.h"
#include "kernel/default_b2b_gemm.h"
#include "kernel/default_b2b_gemm_smem_accumulator.h"
////////////////////////////////////////////////////////////////////////////////
@ -102,6 +109,8 @@ template <
int Stages =
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
ElementC_, ElementAccumulator_>::kStages,
/// Stage accumulator in shared memory
bool SmemAccumulator = false,
/// Access granularity of A matrix in units of elements
int AlignmentA =
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
@ -149,6 +158,10 @@ class B2bGemm {
static ComplexTransform const kTransformA = ComplexTransform::kNone;
static ComplexTransform const kTransformB = ComplexTransform::kNone;
/// Derived types
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor;
/// Define the kernel
using B2bGemmKernel = typename kernel::DefaultB2bGemm<
ElementA,
@ -172,7 +185,8 @@ class B2bGemm {
ThreadblockSwizzle,
kStages,
kSplitKSerial,
Operator
Operator,
SmemAccumulator
>::B2bGemmKernel;
/// Argument structure
@ -187,6 +201,8 @@ class B2bGemm {
TensorRef<ElementA const, LayoutA> ref_A0;
TensorRef<ElementB const, LayoutB> ref_B0;
TensorRef<ElementC const, LayoutC> ref_C0;
TensorRef<ElementScaleBias const, LayoutScaleBias> ref_Scale0;
TensorRef<ElementScaleBias const, LayoutScaleBias> ref_Bias0;
TensorRef<ElementB const, LayoutB> ref_B1;
TensorRef<ElementC const, LayoutC> ref_C1;
TensorRef<ElementC, LayoutC> ref_D1;
@ -212,6 +228,8 @@ class B2bGemm {
TensorRef<ElementA const, LayoutA> ref_A0_,
TensorRef<ElementB const, LayoutB> ref_B0_,
TensorRef<ElementC const, LayoutC> ref_C0_,
TensorRef<ElementScaleBias const, LayoutScaleBias> ref_Scale0_,
TensorRef<ElementScaleBias const, LayoutScaleBias> ref_Bias0_,
TensorRef<ElementB const, LayoutB> ref_B1_,
TensorRef<ElementC const, LayoutC> ref_C1_,
TensorRef<ElementC, LayoutC> ref_D1_,
@ -226,6 +244,8 @@ class B2bGemm {
ref_A0(ref_A0_),
ref_B0(ref_B0_),
ref_C0(ref_C0_),
ref_Scale0(ref_Scale0_),
ref_Bias0(ref_Bias0_),
ref_B1(ref_B1_),
ref_C1(ref_C1_),
ref_D1(ref_D1_),
@ -338,6 +358,8 @@ public:
args.ref_A0.non_const_ref(),
args.ref_B0.non_const_ref(),
args.ref_C0.non_const_ref(),
args.ref_Scale0.non_const_ref(),
args.ref_Bias0.non_const_ref(),
args.ref_B1.non_const_ref(),
args.ref_C1.non_const_ref(),
args.ref_D1,
@ -358,12 +380,14 @@ public:
}
}
params_.ref_A0.reset(args.ref_A.non_const_ref().data());
params_.ref_B0.reset(args.ref_B.non_const_ref().data());
params_.ref_C0.reset(args.ref_C.non_const_ref().data());
params_.ref_B1.reset(args.ref_B.non_const_ref().data());
params_.ref_C1.reset(args.ref_C.non_const_ref().data());
params_.ref_D1.reset(args.ref_D.data());
params_.ref_A0.reset(args.ref_A0.non_const_ref().data());
params_.ref_B0.reset(args.ref_B0.non_const_ref().data());
params_.ref_C0.reset(args.ref_C0.non_const_ref().data());
params_.ref_Scale0.reset(args.ref_Scale0.non_const_ref().data());
params_.ref_Bias0.reset(args.ref_Bias0.non_const_ref().data());
params_.ref_B1.reset(args.ref_B1.non_const_ref().data());
params_.ref_C1.reset(args.ref_C1.non_const_ref().data());
params_.ref_D1.reset(args.ref_D1.data());
params_.output_op_0 = args.epilogue0;
params_.output_op_1 = args.epilogue1;
params_.semaphore = static_cast<int *>(workspace);

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -36,6 +42,10 @@
#include "kernel/b2b_implicit_gemm_convolution.h"
#include "kernel/default_b2b_conv2d_fprop.h"
#include "kernel/default_b2b_conv2d_fprop_sm75.h"
#include "kernel/default_b2b_conv2d_fprop_sm80.h"
#include "kernel/default_b2b_conv2d_fprop_smem_accumulator_sm75.h"
#include "kernel/default_b2b_conv2d_fprop_smem_accumulator_sm80.h"
namespace cutlass {
namespace conv {

View File

@ -1,138 +0,0 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include "b2b_conv2d_fprop_implicit_gemm_s8ncxhwx_s8cxrskx_s8ncxhwx_tensor_op_s32_sm75.h"
#include "b2b_conv2d_fprop_implicit_gemm_s8ncxhwx_s8cxrskx_s8ncxhwx_tensor_op_s32_sm80.h"
#include "b2b_conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm75.h"
#include "b2b_conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.h"
int run_sm75() {
bool notSupported = false;
// Turing Tensor Core operations exposed with mma.sync are first available in CUDA 10.2.
//
// CUTLASS must be compiled with CUDA 10.2 Toolkit to run these examples.
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2))) {
notSupported = true;
}
cudaDeviceProp props;
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (error != cudaSuccess) {
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
return -1;
}
if (!(props.major == 7 && props.minor >= 5)) {
notSupported = true;
}
if (notSupported) {
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
return 0;
}
bool pass = 1;
std::cout << "Running on SM75" << std::endl;
pass &= run_nonfused_conv2d_fprop_optimized_f16_sm75();
pass &= run_fused_conv2d_fprop_optimized_f16_sm75();
pass &= run_fused_conv2d_fprop_optimized_f16_sm75_rf_res();
pass &= run_nonfused_conv2d_fprop_optimized_s8_sm75();
pass &= run_fused_conv2d_fprop_optimized_s8_sm75();
pass &= run_fused_conv2d_fprop_optimized_s8_sm75_rf_res();
if(pass)
return 1;
else
return -1;
}
int run_sm80() {
bool notSupported = false;
// Ampere Tensor Core operations exposed with mma.sync are first available in CUDA 11.0.
//
// CUTLASS must be compiled with CUDA 11 Toolkit to run Conv2dFprop examples.
if (!(__CUDACC_VER_MAJOR__ > 11 || (__CUDACC_VER_MAJOR__ == 11 && __CUDACC_VER_MINOR__ >= 0))) {
notSupported = true;
}
cudaDeviceProp props;
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (error != cudaSuccess) {
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
return -1;
}
if (!(props.major == 8 && props.minor >= 0)) {
notSupported = true;
}
if (notSupported) {
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
return 0;
}
bool pass = 1;
std::cout << "Running on SM80" << std::endl;
pass &= run_nonfused_conv2d_fprop_optimized_f16_sm80();
pass &= run_fused_conv2d_fprop_optimized_f16_sm80();
pass &= run_nonfused_conv2d_fprop_optimized_s8_sm80();
pass &= run_fused_conv2d_fprop_optimized_s8_sm80();
if(pass)
return 1;
else
return -1;
}
int main() {
int result = 0;
result = run_sm80();
if(!result) { // not supported
result = run_sm75();
if(!result) {
std::cout << "This example isn't supported on current architecture" << std::endl;
}
}
if(result >= 0)
return 0;
else
return -1;
}

View File

@ -1,141 +0,0 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include "b2b_gemm_f16t_f16n_f16t_tensor_op_f16_sm75.h"
#include "b2b_gemm_f16t_f16n_f16t_tensor_op_f16_sm80.h"
#include "b2b_gemm_s8n_s8t_s8n_tensor_op_s32_sm75.h"
#include "b2b_gemm_s8n_s8t_s8n_tensor_op_s32_sm80.h"
int run_sm75() {
bool notSupported = false;
// Turing Tensor Core operations exposed with mma.sync are first available in CUDA 10.2.
//
// CUTLASS must be compiled with CUDA 10.2 Toolkit to run these examples.
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2))) {
notSupported = true;
}
cudaDeviceProp props;
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (error != cudaSuccess) {
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
return -1;
}
if (!(props.major == 7 && props.minor >= 5)) {
notSupported = true;
}
if (notSupported) {
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
return 0;
}
bool pass = true;
std::cout << "Running on SM75" << std::endl;
pass &= run_nonfused_gemm_f16();
pass &= run_fused_gemm_f16();
pass &= run_nonfused_gemm_s8();
pass &= run_fused_gemm_s8();
if(pass)
return 1;
else
return -1;
}
int run_sm80() {
bool notSupported = false;
// Ampere Tensor Core operations exposed with mma.sync are first available in CUDA 11.0.
//
// CUTLASS must be compiled with CUDA 11 Toolkit to run Conv2dFprop examples.
if (!(__CUDACC_VER_MAJOR__ > 11 || (__CUDACC_VER_MAJOR__ == 11 && __CUDACC_VER_MINOR__ >= 0))) {
notSupported = true;
}
cudaDeviceProp props;
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (error != cudaSuccess) {
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
return -1;
}
if (!(props.major == 8 && props.minor >= 0)) {
notSupported = true;
}
if (notSupported) {
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
return 0;
}
bool pass = true;
std::cout << "Running on SM80" << std::endl;
pass &= run_nonfused_gemm_f16_sm80();
pass &= run_fused_gemm_f16_sm80();
pass &= run_nonfused_gemm_s8_sm80();
pass &= run_fused_gemm_s8_sm80();
if(pass)
return 1;
else
return -1;
}
int main() {
int result = 0;
result = run_sm80();
if(!result) { // not supported
result = run_sm75();
if(!result) {
std::cout << "This example isn't supported on current architecture" << std::endl;
}
}
if(result >= 0)
return 0;
else
return -1;
}

View File

@ -1,30 +1,33 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Tests for device-wide GEMM interface
*/
#include <iostream>
@ -35,24 +38,25 @@
#include "device/b2b_implicit_gemm_convolution.h"
#include "b2b_conv2d_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::conv::Conv2dProblemSize conv2d_f16_sm75_problem_size_0 (
{128, 56, 56, 64}, // input size (NHWC)
{32, 56, 56, 64}, // input size (NHWC)
{64, 3, 3, 64}, // filter size (KRSC)
{1, 1, 1, 1}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{128, 56, 56, 64} // output size (NPQK)
{32, 56, 56, 64} // output size (NPQK)
);
cutlass::conv::Conv2dProblemSize conv2d_f16_sm75_problem_size_1 (
{128, 56, 56, 64}, // input size (NHWC)
{256, 1, 1, 64}, // filter size (KRSC)
{32, 56, 56, 64}, // input size (NHWC)
{128, 1, 1, 64}, // filter size (KRSC)
{0, 0, 0, 0}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{128, 56, 56, 256} // output size (NPQK)
{32, 56, 56, 128} // output size (NPQK)
);
bool run_nonfused_conv2d_fprop_optimized_f16_sm75() {
@ -64,14 +68,14 @@ bool run_nonfused_conv2d_fprop_optimized_f16_sm75() {
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(1); //use beta for bias
ElementCompute beta0 = ElementCompute(1); //beta=1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //use beta for bias
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
@ -138,83 +142,6 @@ bool run_nonfused_conv2d_fprop_optimized_f16_sm75() {
return pass;
}
bool run_fused_conv2d_fprop_optimized_f16_sm75() {
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //use beta for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 256, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using EpilogueOutputOp0 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
InstructionShape::kM * InstructionShape::kN / 32,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
>;
using EpilogueOutputOp1 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
128 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
const bool SmemAccumulator = true;
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
ElementA, cutlass::layout::TensorNHWC,
ElementB, cutlass::layout::TensorNHWC,
ElementC, cutlass::layout::TensorNHWC,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2,
cutlass::arch::OpMultiplyAdd,
cutlass::conv::IteratorAlgorithm::kOptimized,
SmemAccumulator
>::Kernel;
using B2bConv2dFprop = cutlass::conv::device::B2bImplicitGemmConvolution<B2bConv2dFpropKernel>;
B2bFusedConv2dRun<B2bConv2dFprop> fusedConv2d;
std::cout << "Running Fused back-to-back FP16 Optimized Convolution Fprops with shared memory staging...\n";
bool pass = fusedConv2d.run(conv2d_f16_sm75_problem_size_0, conv2d_f16_sm75_problem_size_1, cutlass::conv::SplitKMode::kSerial,
alpha0, beta0, alpha1, beta1);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
bool run_fused_conv2d_fprop_optimized_f16_sm75_rf_res() {
using ElementA = cutlass::half_t;
@ -224,14 +151,15 @@ bool run_fused_conv2d_fprop_optimized_f16_sm75_rf_res() {
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //use beta for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 256, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 256, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<16, 64, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<16, 128, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using EpilogueOutputOp0 =
@ -292,5 +220,15 @@ bool run_fused_conv2d_fprop_optimized_f16_sm75_rf_res() {
return pass;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_conv2d_fprop_optimized_f16_sm75,
&run_fused_conv2d_fprop_optimized_f16_sm75_rf_res
};
return testRun(75, funcs, "conv f16 RF residency");
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,234 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include <iostream>
#include "cutlass/cutlass.h"
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
#include "cutlass/conv/device/implicit_gemm_convolution.h"
#include "device/b2b_implicit_gemm_convolution.h"
#include "b2b_conv2d_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::conv::Conv2dProblemSize conv2d_f16_sm75_problem_size_0 (
{32, 56, 56, 64}, // input size (NHWC)
{64, 3, 3, 64}, // filter size (KRSC)
{1, 1, 1, 1}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{32, 56, 56, 64} // output size (NPQK)
);
cutlass::conv::Conv2dProblemSize conv2d_f16_sm75_problem_size_1 (
{32, 56, 56, 64}, // input size (NHWC)
{256, 1, 1, 64}, // filter size (KRSC)
{0, 0, 0, 0}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{32, 56, 56, 256} // output size (NPQK)
);
bool run_nonfused_conv2d_fprop_optimized_f16_sm75() {
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(1); //beta=1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
ElementA, cutlass::layout::TensorNHWC,
ElementB, cutlass::layout::TensorNHWC,
ElementC, cutlass::layout::TensorNHWC,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
ThreadblockShape0,
WarpShape0,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
128 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2,
cutlass::arch::OpMultiplyAdd,
cutlass::conv::IteratorAlgorithm::kOptimized
>::Kernel;
using Conv2dFprop0 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel0>;
using Conv2dFpropKernel1 = typename cutlass::conv::kernel::DefaultConv2dFprop<
ElementA, cutlass::layout::TensorNHWC,
ElementB, cutlass::layout::TensorNHWC,
ElementC, cutlass::layout::TensorNHWC,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
ThreadblockShape1,
WarpShape1,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
128 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2,
cutlass::arch::OpMultiplyAdd,
cutlass::conv::IteratorAlgorithm::kOptimized
>::Kernel;
using Conv2dFprop1 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel1>;
B2bNonFusedConv2dRun<Conv2dFprop0, Conv2dFprop1> nonFusedConv2d;
std::cout << "Running Non-fused back-to-back FP16 Optimized Convolution Fprops...\n";
bool pass = nonFusedConv2d.run(conv2d_f16_sm75_problem_size_0, conv2d_f16_sm75_problem_size_1, cutlass::conv::SplitKMode::kSerial,
alpha0, beta0, alpha1, beta1);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
bool run_fused_conv2d_fprop_optimized_f16_sm75_shmem() {
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 256, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using EpilogueOutputOp0 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
InstructionShape::kM * InstructionShape::kN / 32,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
>;
using EpilogueOutputOp1 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
128 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
const bool SmemAccumulator = true;
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
ElementA, cutlass::layout::TensorNHWC,
ElementB, cutlass::layout::TensorNHWC,
ElementC, cutlass::layout::TensorNHWC,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2,
cutlass::arch::OpMultiplyAdd,
cutlass::conv::IteratorAlgorithm::kOptimized,
SmemAccumulator
>::Kernel;
using B2bConv2dFprop = cutlass::conv::device::B2bImplicitGemmConvolution<B2bConv2dFpropKernel>;
B2bFusedConv2dRun<B2bConv2dFprop> fusedConv2d;
std::cout << "Running Fused back-to-back FP16 Optimized Convolution Fprops with shared memory staging...\n";
bool pass = fusedConv2d.run(conv2d_f16_sm75_problem_size_0, conv2d_f16_sm75_problem_size_1, cutlass::conv::SplitKMode::kSerial,
alpha0, beta0, alpha1, beta1);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_conv2d_fprop_optimized_f16_sm75,
&run_fused_conv2d_fprop_optimized_f16_sm75_shmem
};
return testRun(75, funcs, "conv f16 shmem staging");
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -1,30 +1,33 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Tests for device-wide GEMM interface
*/
#include <iostream>
@ -35,24 +38,25 @@
#include "device/b2b_implicit_gemm_convolution.h"
#include "b2b_conv2d_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::conv::Conv2dProblemSize conv2d_f16_sm80_problem_size_0 (
{128, 56, 56, 64}, // input size (NHWC)
{32, 56, 56, 64}, // input size (NHWC)
{64, 3, 3, 64}, // filter size (KRSC)
{1, 1, 1, 1}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{128, 56, 56, 64} // output size (NPQK)
{32, 56, 56, 64} // output size (NPQK)
);
cutlass::conv::Conv2dProblemSize conv2d_f16_sm80_problem_size_1 (
{128, 56, 56, 64}, // input size (NHWC)
{64, 1, 1, 64}, // filter size (KRSC)
{32, 56, 56, 64}, // input size (NHWC)
{128, 1, 1, 64}, // filter size (KRSC)
{0, 0, 0, 0}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{128, 56, 56, 64} // output size (NPQK)
{32, 56, 56, 128} // output size (NPQK)
);
@ -65,14 +69,14 @@ bool run_nonfused_conv2d_fprop_optimized_f16_sm80() {
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(0);
ElementCompute beta0 = ElementCompute(1); //beta=1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(0);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
@ -90,7 +94,7 @@ bool run_nonfused_conv2d_fprop_optimized_f16_sm80() {
128 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3,
@ -114,7 +118,8 @@ bool run_nonfused_conv2d_fprop_optimized_f16_sm80() {
ElementC,
128 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3,
@ -138,8 +143,7 @@ bool run_nonfused_conv2d_fprop_optimized_f16_sm80() {
return pass;
}
bool run_fused_conv2d_fprop_optimized_f16_sm80() {
bool run_fused_conv2d_fprop_optimized_f16_sm80_rf_res() {
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
@ -147,14 +151,15 @@ bool run_fused_conv2d_fprop_optimized_f16_sm80() {
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(0);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 128, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
using EpilogueOutputOp0 =
@ -171,7 +176,8 @@ bool run_fused_conv2d_fprop_optimized_f16_sm80() {
ElementC,
128 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
@ -198,7 +204,7 @@ bool run_fused_conv2d_fprop_optimized_f16_sm80() {
B2bFusedConv2dRun<B2bConv2dFprop> fusedConv2d;
std::cout << "Running Fused back-to-back FP16 Optimized Convolution Fprops...\n";
std::cout << "Running Fused back-to-back FP16 Optimized Convolution Fprops with RF Residency...\n";
bool pass = fusedConv2d.run(conv2d_f16_sm80_problem_size_0, conv2d_f16_sm80_problem_size_1, cutlass::conv::SplitKMode::kSerial,
alpha0, beta0, alpha1, beta1);
@ -208,7 +214,20 @@ bool run_fused_conv2d_fprop_optimized_f16_sm80() {
std::cout << "Fail\n";
return pass;
return true;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_conv2d_fprop_optimized_f16_sm80,
&run_fused_conv2d_fprop_optimized_f16_sm80_rf_res
};
return testRun(80, funcs, "conv f16 RF residency");
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,236 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include <iostream>
#include "cutlass/cutlass.h"
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
#include "cutlass/conv/device/implicit_gemm_convolution.h"
#include "device/b2b_implicit_gemm_convolution.h"
#include "b2b_conv2d_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::conv::Conv2dProblemSize conv2d_f16_sm80_problem_size_0 (
{32, 56, 56, 64}, // input size (NHWC)
{64, 3, 3, 64}, // filter size (KRSC)
{1, 1, 1, 1}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{32, 56, 56, 64} // output size (NPQK)
);
cutlass::conv::Conv2dProblemSize conv2d_f16_sm80_problem_size_1 (
{32, 56, 56, 64}, // input size (NHWC)
{256, 1, 1, 64}, // filter size (KRSC)
{0, 0, 0, 0}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{32, 56, 56, 256} // output size (NPQK)
);
bool run_nonfused_conv2d_fprop_optimized_f16_sm80() {
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(1); //beta=1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
ElementA, cutlass::layout::TensorNHWC,
ElementB, cutlass::layout::TensorNHWC,
ElementC, cutlass::layout::TensorNHWC,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape0,
WarpShape0,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
128 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3,
cutlass::arch::OpMultiplyAdd,
cutlass::conv::IteratorAlgorithm::kOptimized
>::Kernel;
using Conv2dFprop0 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel0>;
using Conv2dFpropKernel1 = typename cutlass::conv::kernel::DefaultConv2dFprop<
ElementA, cutlass::layout::TensorNHWC,
ElementB, cutlass::layout::TensorNHWC,
ElementC, cutlass::layout::TensorNHWC,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape1,
WarpShape1,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
128 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3,
cutlass::arch::OpMultiplyAdd,
cutlass::conv::IteratorAlgorithm::kOptimized
>::Kernel;
using Conv2dFprop1 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel1>;
B2bNonFusedConv2dRun<Conv2dFprop0, Conv2dFprop1> nonFusedConv2d;
std::cout << "Running Non-fused back-to-back FP16 Optimized Convolution Fprops...\n";
bool pass = nonFusedConv2d.run(conv2d_f16_sm80_problem_size_0, conv2d_f16_sm80_problem_size_1, cutlass::conv::SplitKMode::kSerial,
alpha0, beta0, alpha1, beta1);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
bool run_fused_conv2d_fprop_optimized_f16_sm80_shmem() {
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 256, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
using EpilogueOutputOp0 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
InstructionShape::kM * InstructionShape::kN / 32,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
>;
using EpilogueOutputOp1 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
128 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
const bool SmemAccumulator = true;
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
ElementA, cutlass::layout::TensorNHWC,
ElementB, cutlass::layout::TensorNHWC,
ElementC, cutlass::layout::TensorNHWC,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3,
cutlass::arch::OpMultiplyAdd,
cutlass::conv::IteratorAlgorithm::kOptimized,
SmemAccumulator
>::Kernel;
using B2bConv2dFprop = cutlass::conv::device::B2bImplicitGemmConvolution<B2bConv2dFpropKernel>;
B2bFusedConv2dRun<B2bConv2dFprop> fusedConv2d;
std::cout << "Running Fused back-to-back FP16 Optimized Convolution Fprops with shared memory staging...\n";
bool pass = fusedConv2d.run(conv2d_f16_sm80_problem_size_0, conv2d_f16_sm80_problem_size_1, cutlass::conv::SplitKMode::kSerial,
alpha0, beta0, alpha1, beta1);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_conv2d_fprop_optimized_f16_sm80,
&run_fused_conv2d_fprop_optimized_f16_sm80_shmem
};
return testRun(80, funcs, "conv f16 shmem staging");
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,238 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include <iostream>
#include "cutlass/cutlass.h"
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
#include "cutlass/conv/device/implicit_gemm_convolution.h"
#include "device/b2b_implicit_gemm_convolution.h"
#include "b2b_interleaved_conv2d_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::conv::Conv2dProblemSize conv2d_s8_sm75_problem_size_0 (
{32, 56, 56, 64}, // input size (NHWC)
{64, 3, 3, 64}, // filter size (KRSC)
{1, 1, 1, 1}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{32, 56, 56, 64} // output size (NPQK)
);
cutlass::conv::Conv2dProblemSize conv2d_s8_sm75_problem_size_1 (
{32, 56, 56, 64}, // input size (NHWC)
{128, 1, 1, 64}, // filter size (KRSC)
{0, 0, 0, 0}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{32, 56, 56, 128} // output size (NPQK)
);
bool run_nonfused_conv2d_fprop_optimized_s8_sm75() {
using ElementA = int8_t;
using ElementB = int8_t;
using ElementC = int8_t;
using ElementAccumulator = int32_t;
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(1); //beta=1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
ElementA, cutlass::layout::TensorNCxHWx<32>,
ElementB, cutlass::layout::TensorCxRSKx<32>,
ElementC, cutlass::layout::TensorNCxHWx<32>,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
ThreadblockShape0,
WarpShape0,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
64 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2,
cutlass::arch::OpMultiplyAddSaturate,
cutlass::conv::IteratorAlgorithm::kOptimized
>::Kernel;
using Conv2dFprop0 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel0>;
using Conv2dFpropKernel1 = typename cutlass::conv::kernel::DefaultConv2dFprop<
ElementA, cutlass::layout::TensorNCxHWx<32>,
ElementB, cutlass::layout::TensorCxRSKx<32>,
ElementC, cutlass::layout::TensorNCxHWx<32>,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
ThreadblockShape1,
WarpShape1,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
64 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2,
cutlass::arch::OpMultiplyAddSaturate,
cutlass::conv::IteratorAlgorithm::kOptimized
>::Kernel;
using Conv2dFprop1 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel1>;
B2bInterleavedNonFusedConv2dRun<Conv2dFprop0, Conv2dFprop1, 32> nonFusedConv2d;
std::cout << "Running Non-fused back-to-back INT8 interleaved Optimized Convolution Fprops...\n";
bool pass = nonFusedConv2d.run(conv2d_s8_sm75_problem_size_0, conv2d_s8_sm75_problem_size_1, cutlass::conv::SplitKMode::kSerial,
alpha0, beta0, alpha1, beta1);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
bool run_fused_conv2d_fprop_optimized_s8_sm75_rf_res() {
using ElementA = int8_t;
using ElementB = int8_t;
using ElementC = int8_t;
using ElementAccumulator = int32_t;
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<16, 64, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<16, 128, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using EpilogueOutputOp0 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
InstructionShape::kM * InstructionShape::kN / 32,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
>;
using EpilogueOutputOp1 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
64 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
const bool SmemAccumulator = false;
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
ElementA, cutlass::layout::TensorNCxHWx<32>,
ElementB, cutlass::layout::TensorCxRSKx<32>,
ElementC, cutlass::layout::TensorNCxHWx<32>,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2,
cutlass::arch::OpMultiplyAddSaturate,
cutlass::conv::IteratorAlgorithm::kOptimized,
SmemAccumulator
>::Kernel;
using B2bConv2dFprop = cutlass::conv::device::B2bImplicitGemmConvolution<B2bConv2dFpropKernel>;
B2bInterleavedFusedConv2dRun<B2bConv2dFprop, 32> fusedConv2d;
std::cout << "Running Fused back-to-back INT8 interleaved Optimized Convolution Fprops with RF residency...\n";
bool pass = fusedConv2d.run(conv2d_s8_sm75_problem_size_0, conv2d_s8_sm75_problem_size_1, cutlass::conv::SplitKMode::kSerial,
alpha0, beta0, alpha1, beta1);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_conv2d_fprop_optimized_s8_sm75,
&run_fused_conv2d_fprop_optimized_s8_sm75_rf_res
};
return testRun(75, funcs, "conv int8 RF residency");
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -1,30 +1,33 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Tests for device-wide GEMM interface
*/
#include <iostream>
@ -35,24 +38,25 @@
#include "device/b2b_implicit_gemm_convolution.h"
#include "b2b_interleaved_conv2d_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::conv::Conv2dProblemSize conv2d_s8_sm75_problem_size_0 (
{128, 56, 56, 64}, // input size (NHWC)
{32, 56, 56, 64}, // input size (NHWC)
{64, 3, 3, 64}, // filter size (KRSC)
{1, 1, 1, 1}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{128, 56, 56, 64} // output size (NPQK)
{32, 56, 56, 64} // output size (NPQK)
);
cutlass::conv::Conv2dProblemSize conv2d_s8_sm75_problem_size_1 (
{128, 56, 56, 64}, // input size (NHWC)
{32, 56, 56, 64}, // input size (NHWC)
{256, 1, 1, 64}, // filter size (KRSC)
{0, 0, 0, 0}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{128, 56, 56, 256} // output size (NPQK)
{32, 56, 56, 256} // output size (NPQK)
);
bool run_nonfused_conv2d_fprop_optimized_s8_sm75() {
@ -64,14 +68,14 @@ bool run_nonfused_conv2d_fprop_optimized_s8_sm75() {
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(0);
ElementCompute beta0 = ElementCompute(1); //beta=1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
@ -89,7 +93,7 @@ bool run_nonfused_conv2d_fprop_optimized_s8_sm75() {
64 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2,
@ -113,7 +117,8 @@ bool run_nonfused_conv2d_fprop_optimized_s8_sm75() {
ElementC,
64 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2,
@ -137,7 +142,7 @@ bool run_nonfused_conv2d_fprop_optimized_s8_sm75() {
return pass;
}
bool run_fused_conv2d_fprop_optimized_s8_sm75() {
bool run_fused_conv2d_fprop_optimized_s8_sm75_shmem() {
using ElementA = int8_t;
using ElementB = int8_t;
@ -146,9 +151,10 @@ bool run_fused_conv2d_fprop_optimized_s8_sm75() {
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 32>;
@ -170,7 +176,8 @@ bool run_fused_conv2d_fprop_optimized_s8_sm75() {
ElementC,
64 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
@ -213,81 +220,19 @@ bool run_fused_conv2d_fprop_optimized_s8_sm75() {
return pass;
}
bool run_fused_conv2d_fprop_optimized_s8_sm75_rf_res() {
using ElementA = int8_t;
using ElementB = int8_t;
using ElementC = int8_t;
using ElementAccumulator = int32_t;
using ElementCompute = float;
int main() {
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1);
std::vector<bool (*)()>funcs = {
&run_nonfused_conv2d_fprop_optimized_s8_sm75,
&run_fused_conv2d_fprop_optimized_s8_sm75_shmem
};
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 256, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 256, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
return testRun(75, funcs, "conv int8 shmem staging");
using EpilogueOutputOp0 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
InstructionShape::kM * InstructionShape::kN / 32,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
>;
using EpilogueOutputOp1 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
64 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute
>;
const bool SmemAccumulator = false;
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
ElementA, cutlass::layout::TensorNCxHWx<32>,
ElementB, cutlass::layout::TensorCxRSKx<32>,
ElementC, cutlass::layout::TensorNCxHWx<32>,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2,
cutlass::arch::OpMultiplyAddSaturate,
cutlass::conv::IteratorAlgorithm::kOptimized,
SmemAccumulator
>::Kernel;
using B2bConv2dFprop = cutlass::conv::device::B2bImplicitGemmConvolution<B2bConv2dFpropKernel>;
B2bInterleavedFusedConv2dRun<B2bConv2dFprop, 32> fusedConv2d;
std::cout << "Running Fused back-to-back INT8 interleaved Optimized Convolution Fprops with RF residency...\n";
bool pass = fusedConv2d.run(conv2d_s8_sm75_problem_size_0, conv2d_s8_sm75_problem_size_1, cutlass::conv::SplitKMode::kSerial,
alpha0, beta0, alpha1, beta1);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -1,30 +1,33 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Tests for device-wide GEMM interface
*/
#include <iostream>
@ -35,24 +38,25 @@
#include "device/b2b_implicit_gemm_convolution.h"
#include "b2b_interleaved_conv2d_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::conv::Conv2dProblemSize conv2d_s8_sm80_problem_size_0 (
{128, 56, 56, 64}, // input size (NHWC)
{32, 56, 56, 64}, // input size (NHWC)
{64, 3, 3, 64}, // filter size (KRSC)
{1, 1, 1, 1}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{128, 56, 56, 64} // output size (NPQK)
{32, 56, 56, 64} // output size (NPQK)
);
cutlass::conv::Conv2dProblemSize conv2d_s8_sm80_problem_size_1 (
{128, 56, 56, 64}, // input size (NHWC)
{64, 1, 1, 64}, // filter size (KRSC)
{32, 56, 56, 64}, // input size (NHWC)
{128, 1, 1, 64}, // filter size (KRSC)
{0, 0, 0, 0}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{128, 56, 56, 64} // output size (NPQK)
{32, 56, 56, 128} // output size (NPQK)
);
bool run_nonfused_conv2d_fprop_optimized_s8_sm80() {
@ -64,14 +68,14 @@ bool run_nonfused_conv2d_fprop_optimized_s8_sm80() {
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(0);
ElementCompute beta0 = ElementCompute(1); //beta=1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(0);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>;
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
@ -89,7 +93,7 @@ bool run_nonfused_conv2d_fprop_optimized_s8_sm80() {
64 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3,
@ -113,7 +117,8 @@ bool run_nonfused_conv2d_fprop_optimized_s8_sm80() {
ElementC,
64 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3,
@ -137,7 +142,8 @@ bool run_nonfused_conv2d_fprop_optimized_s8_sm80() {
return pass;
}
bool run_fused_conv2d_fprop_optimized_s8_sm80() {
bool run_fused_conv2d_fprop_optimized_s8_sm80_rf_res() {
using ElementA = int8_t;
using ElementB = int8_t;
@ -146,14 +152,15 @@ bool run_fused_conv2d_fprop_optimized_s8_sm80() {
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(0);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<16, 64, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<16, 128, 64>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>;
using EpilogueOutputOp0 =
@ -170,7 +177,8 @@ bool run_fused_conv2d_fprop_optimized_s8_sm80() {
ElementC,
64 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
@ -199,7 +207,7 @@ bool run_fused_conv2d_fprop_optimized_s8_sm80() {
B2bInterleavedFusedConv2dRun<B2bConv2dFprop, 32> fusedConv2d;
std::cout << "Running Fused back-to-back INT8 interleaved Optimized Convolution Fprops...\n";
std::cout << "Running Fused back-to-back INT8 interleaved Optimized Convolution Fprops with RF residency...\n";
bool pass = fusedConv2d.run(conv2d_s8_sm80_problem_size_0, conv2d_s8_sm80_problem_size_1, cutlass::conv::SplitKMode::kSerial,
alpha0, beta0, alpha1, beta1);
@ -211,6 +219,18 @@ bool run_fused_conv2d_fprop_optimized_s8_sm80() {
return pass;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_conv2d_fprop_optimized_s8_sm80,
&run_fused_conv2d_fprop_optimized_s8_sm80_rf_res
};
return testRun(80, funcs, "conv int8 RF residency");
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,237 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include <iostream>
#include "cutlass/cutlass.h"
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
#include "cutlass/conv/device/implicit_gemm_convolution.h"
#include "device/b2b_implicit_gemm_convolution.h"
#include "b2b_interleaved_conv2d_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::conv::Conv2dProblemSize conv2d_s8_sm80_problem_size_0 (
{32, 56, 56, 64}, // input size (NHWC)
{64, 3, 3, 64}, // filter size (KRSC)
{1, 1, 1, 1}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{32, 56, 56, 64} // output size (NPQK)
);
cutlass::conv::Conv2dProblemSize conv2d_s8_sm80_problem_size_1 (
{32, 56, 56, 64}, // input size (NHWC)
{256, 1, 1, 64}, // filter size (KRSC)
{0, 0, 0, 0}, // padding (pad_h, _, pad_w, _)
{1, 1}, // stride (stride_h, stride_w)
{1, 1}, // dilation (dilation_h, dilation_w)
{32, 56, 56, 256} // output size (NPQK)
);
bool run_nonfused_conv2d_fprop_optimized_s8_sm80() {
using ElementA = int8_t;
using ElementB = int8_t;
using ElementC = int8_t;
using ElementAccumulator = int32_t;
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(1); //beta=1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>;
using Conv2dFpropKernel0 = typename cutlass::conv::kernel::DefaultConv2dFprop<
ElementA, cutlass::layout::TensorNCxHWx<32>,
ElementB, cutlass::layout::TensorCxRSKx<32>,
ElementC, cutlass::layout::TensorNCxHWx<32>,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape0,
WarpShape0,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
64 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3,
cutlass::arch::OpMultiplyAddSaturate,
cutlass::conv::IteratorAlgorithm::kOptimized
>::Kernel;
using Conv2dFprop0 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel0>;
using Conv2dFpropKernel1 = typename cutlass::conv::kernel::DefaultConv2dFprop<
ElementA, cutlass::layout::TensorNCxHWx<32>,
ElementB, cutlass::layout::TensorCxRSKx<32>,
ElementC, cutlass::layout::TensorNCxHWx<32>,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape1,
WarpShape1,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
64 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3,
cutlass::arch::OpMultiplyAddSaturate,
cutlass::conv::IteratorAlgorithm::kOptimized
>::Kernel;
using Conv2dFprop1 = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel1>;
B2bInterleavedNonFusedConv2dRun<Conv2dFprop0, Conv2dFprop1, 32> nonFusedConv2d;
std::cout << "Running Non-fused back-to-back INT8 interleaved Optimized Convolution Fprops...\n";
bool pass = nonFusedConv2d.run(conv2d_s8_sm80_problem_size_0, conv2d_s8_sm80_problem_size_1, cutlass::conv::SplitKMode::kSerial,
alpha0, beta0, alpha1, beta1);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
bool run_fused_conv2d_fprop_optimized_s8_sm80_shmem() {
using ElementA = int8_t;
using ElementB = int8_t;
using ElementC = int8_t;
using ElementAccumulator = int32_t;
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 256, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>;
using EpilogueOutputOp0 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
8 * InstructionShape::kN / 32,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
>;
using EpilogueOutputOp1 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementC,
64 / cutlass::sizeof_bits<ElementC>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
const bool SmemAccumulator = true;
using B2bConv2dFpropKernel = typename cutlass::conv::kernel::DefaultB2bConv2dFprop<
ElementA, cutlass::layout::TensorNCxHWx<32>,
ElementB, cutlass::layout::TensorCxRSKx<32>,
ElementC, cutlass::layout::TensorNCxHWx<32>,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3,
cutlass::arch::OpMultiplyAddSaturate,
cutlass::conv::IteratorAlgorithm::kOptimized,
SmemAccumulator
>::Kernel;
using B2bConv2dFprop = cutlass::conv::device::B2bImplicitGemmConvolution<B2bConv2dFpropKernel>;
B2bInterleavedFusedConv2dRun<B2bConv2dFprop, 32> fusedConv2d;
std::cout << "Running Fused back-to-back INT8 interleaved Optimized Convolution Fprops with shared memory staging...\n";
bool pass = fusedConv2d.run(conv2d_s8_sm80_problem_size_0, conv2d_s8_sm80_problem_size_1, cutlass::conv::SplitKMode::kSerial,
alpha0, beta0, alpha1, beta1);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_conv2d_fprop_optimized_s8_sm80,
&run_fused_conv2d_fprop_optimized_s8_sm80_shmem
};
return testRun(80, funcs, "conv int8 shmem staging");
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,210 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include <iostream>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/gemm.h"
#include "device/b2b_gemm.h"
#include "b2b_gemm_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::gemm::GemmCoord gemm_f16_sm75_problem_size_0(128*640, 64, 576);
cutlass::gemm::GemmCoord gemm_f16_sm75_problem_size_1(128*640, 128, 64);
bool run_nonfused_gemm_f16() {
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(1); //beta = 1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta = 1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Gemm0 = cutlass::gemm::device::Gemm<
cutlass::half_t,
cutlass::layout::RowMajor,
cutlass::half_t,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
ThreadblockShape0,
WarpShape0,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2
>;
using Gemm1 = cutlass::gemm::device::Gemm<
cutlass::half_t,
cutlass::layout::RowMajor,
cutlass::half_t,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
ThreadblockShape1,
WarpShape1,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2
>;
B2bNonFusedGemmRun<Gemm0, Gemm1> nonFusedGemm;
std::cout << "Running Non-fused back-to-back FP16 TN GEMMs...\n";
bool pass = nonFusedGemm.run(gemm_f16_sm75_problem_size_0, gemm_f16_sm75_problem_size_1, alpha0, beta0, alpha1, beta1);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
bool run_fused_gemm_f16_rf_res() {
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 128, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using EpilogueOutputOp0 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
InstructionShape::kM * InstructionShape::kN / 32,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
>;
using EpilogueOutputOp1 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
using B2bGemm = cutlass::gemm::device::B2bGemm<
cutlass::half_t,
cutlass::layout::RowMajor,
cutlass::half_t,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2
>;
B2bFusedGemmRun<B2bGemm> fusedGemm;
std::cout << "Running Fused back-to-back FP16 TN GEMMs with RF Residency...\n";
bool passed = fusedGemm.run(gemm_f16_sm75_problem_size_0, gemm_f16_sm75_problem_size_1, alpha0, beta0, alpha1, beta1);
if(passed)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return passed;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_gemm_f16,
&run_fused_gemm_f16_rf_res
};
return testRun(75, funcs, "gemm f16 RF residency");
}
///////////////////////////////////////////////////////////////////////////////

View File

@ -1,29 +1,33 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <iostream>
#include "cutlass/cutlass.h"
@ -38,11 +42,12 @@
#include "device/b2b_gemm.h"
#include "b2b_gemm_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::gemm::GemmCoord gemm_f16_sm75_problem_size_0(128*1600, 64, 576);
cutlass::gemm::GemmCoord gemm_f16_sm75_problem_size_1(128*1600, 128, 64);
cutlass::gemm::GemmCoord gemm_f16_sm75_problem_size_0(128*640, 64, 576);
cutlass::gemm::GemmCoord gemm_f16_sm75_problem_size_1(128*640, 256, 64);
bool run_nonfused_gemm_f16() {
@ -50,13 +55,13 @@ bool run_nonfused_gemm_f16() {
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(2);
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(2);
ElementCompute beta1 = ElementCompute(1);
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(1); //beta = 1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta = 1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
@ -79,7 +84,7 @@ bool run_nonfused_gemm_f16() {
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2
@ -101,7 +106,8 @@ bool run_nonfused_gemm_f16() {
ElementOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2
@ -119,21 +125,22 @@ bool run_nonfused_gemm_f16() {
return pass;
}
bool run_fused_gemm_f16() {
bool run_fused_gemm_f16_shmem() {
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(2);
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(2);
ElementCompute beta1 = ElementCompute(1);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 128, 32>;
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 256, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using EpilogueOutputOp0 =
@ -150,10 +157,12 @@ bool run_fused_gemm_f16() {
ElementOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
const bool SmemAccumulator = true;
using B2bGemm = cutlass::gemm::device::B2bGemm<
cutlass::half_t,
@ -173,12 +182,13 @@ bool run_fused_gemm_f16() {
EpilogueOutputOp0,
EpilogueOutputOp1,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2
2,
SmemAccumulator
>;
B2bFusedGemmRun<B2bGemm> fusedGemm;
std::cout << "Running Fused back-to-back FP16 TN GEMMs...\n";
std::cout << "Running Fused back-to-back FP16 TN GEMMs with shared memory staging...\n";
bool passed = fusedGemm.run(gemm_f16_sm75_problem_size_0, gemm_f16_sm75_problem_size_1, alpha0, beta0, alpha1, beta1);
if(passed)
std::cout << "Pass\n";
@ -187,4 +197,18 @@ bool run_fused_gemm_f16() {
return passed;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_gemm_f16,
&run_fused_gemm_f16_shmem
};
return testRun(75, funcs, "gemm f16 shmem staging");
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -1,29 +1,33 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <iostream>
#include "cutlass/cutlass.h"
@ -38,11 +42,12 @@
#include "device/b2b_gemm.h"
#include "b2b_gemm_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::gemm::GemmCoord gemm_f16_sm80_problem_size_0(128*1600, 64, 576);
cutlass::gemm::GemmCoord gemm_f16_sm80_problem_size_1(128*1600, 128, 64);
cutlass::gemm::GemmCoord gemm_f16_sm80_problem_size_0(128*640, 64, 576);
cutlass::gemm::GemmCoord gemm_f16_sm80_problem_size_1(128*640, 128, 64);
bool run_nonfused_gemm_f16_sm80() {
@ -50,15 +55,15 @@ bool run_nonfused_gemm_f16_sm80() {
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(2);
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(2);
ElementCompute beta1 = ElementCompute(1);
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(1); //beta=1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 32>;
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
using Gemm0 = cutlass::gemm::device::Gemm<
@ -79,7 +84,7 @@ bool run_nonfused_gemm_f16_sm80() {
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3
@ -101,7 +106,8 @@ bool run_nonfused_gemm_f16_sm80() {
ElementOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3
@ -119,21 +125,22 @@ bool run_nonfused_gemm_f16_sm80() {
return pass;
}
bool run_fused_gemm_f16_sm80() {
bool run_fused_gemm_f16_sm80_rf_res() {
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(2);
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(2);
ElementCompute beta1 = ElementCompute(1);
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<16, 64, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<16, 128, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
using EpilogueOutputOp0 =
@ -150,11 +157,10 @@ bool run_fused_gemm_f16_sm80() {
ElementOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
using B2bGemm = cutlass::gemm::device::B2bGemm<
cutlass::half_t,
cutlass::layout::RowMajor,
@ -178,7 +184,7 @@ bool run_fused_gemm_f16_sm80() {
B2bFusedGemmRun<B2bGemm> fusedGemm;
std::cout << "Running Fused back-to-back FP16 TN GEMMs...\n";
std::cout << "Running Fused back-to-back FP16 TN GEMMs with RF residency...\n";
bool passed = fusedGemm.run(gemm_f16_sm80_problem_size_0, gemm_f16_sm80_problem_size_1, alpha0, beta0, alpha1, beta1);
if(passed)
std::cout << "Pass\n";
@ -188,4 +194,20 @@ bool run_fused_gemm_f16_sm80() {
return passed;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_gemm_f16_sm80,
&run_fused_gemm_f16_sm80_rf_res
};
return testRun(80, funcs, "gemm f16 RF residency");
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,217 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include <iostream>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/gemm.h"
#include "device/b2b_gemm.h"
#include "b2b_gemm_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::gemm::GemmCoord gemm_f16_sm80_problem_size_0(128*640, 64, 576);
cutlass::gemm::GemmCoord gemm_f16_sm80_problem_size_1(128*640, 256, 64);
bool run_nonfused_gemm_f16_sm80() {
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(1); //beta=1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 256, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
using Gemm0 = cutlass::gemm::device::Gemm<
cutlass::half_t,
cutlass::layout::RowMajor,
cutlass::half_t,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape0,
WarpShape0,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3
>;
using Gemm1 = cutlass::gemm::device::Gemm<
cutlass::half_t,
cutlass::layout::RowMajor,
cutlass::half_t,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape1,
WarpShape1,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3
>;
B2bNonFusedGemmRun<Gemm0, Gemm1> nonFusedGemm;
std::cout << "Running Non-fused back-to-back FP16 TN GEMMs...\n";
bool pass = nonFusedGemm.run(gemm_f16_sm80_problem_size_0, gemm_f16_sm80_problem_size_1, alpha0, beta0, alpha1, beta1);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
bool run_fused_gemm_f16_sm80_shmem() {
using ElementOutput = cutlass::half_t;
using ElementAccumulator = cutlass::half_t;
using ElementCompute = cutlass::half_t;
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 256, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
using EpilogueOutputOp0 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
InstructionShape::kM * InstructionShape::kN / 32,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
>;
using EpilogueOutputOp1 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
const bool SmemAccumulator = true;
using B2bGemm = cutlass::gemm::device::B2bGemm<
cutlass::half_t,
cutlass::layout::RowMajor,
cutlass::half_t,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
3,
SmemAccumulator
>;
B2bFusedGemmRun<B2bGemm> fusedGemm;
std::cout << "Running Fused back-to-back FP16 TN GEMMs with shared memory staging...\n";
bool passed = fusedGemm.run(gemm_f16_sm80_problem_size_0, gemm_f16_sm80_problem_size_1, alpha0, beta0, alpha1, beta1);
if(passed)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return passed;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_gemm_f16_sm80,
&run_fused_gemm_f16_sm80_shmem
};
return testRun(80, funcs, "gemm f16 shmem staging");
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -1,29 +1,33 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <iostream>
#include "cutlass/cutlass.h"
@ -38,11 +42,12 @@
#include "device/b2b_gemm.h"
#include "b2b_interleaved_gemm_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::gemm::GemmCoord gemm_s8_sm75_problem_size_0(128*1600, 64, 576);
cutlass::gemm::GemmCoord gemm_s8_sm75_problem_size_1(128*1600, 128, 64);
cutlass::gemm::GemmCoord gemm_s8_sm75_problem_size_0(128*640, 64, 576);
cutlass::gemm::GemmCoord gemm_s8_sm75_problem_size_1(128*640, 128, 64);
bool run_nonfused_gemm_s8() {
@ -50,15 +55,15 @@ bool run_nonfused_gemm_s8() {
using ElementAccumulator = int32_t;
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(2);
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(2);
ElementCompute beta1 = ElementCompute(1);
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(1); //beta = 1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta = 1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 32, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 64, 64>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using Gemm0 = cutlass::gemm::device::Gemm<
@ -79,7 +84,7 @@ bool run_nonfused_gemm_s8() {
64 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2
@ -101,7 +106,8 @@ bool run_nonfused_gemm_s8() {
ElementOutput,
64 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2
@ -119,21 +125,23 @@ bool run_nonfused_gemm_s8() {
return pass;
}
bool run_fused_gemm_s8() {
bool run_fused_gemm_s8_rf_res() {
using ElementOutput = int8_t;
using ElementAccumulator = int32_t;
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(2);
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(2);
ElementCompute beta1 = ElementCompute(1);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 128, 64>;
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 128, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using EpilogueOutputOp0 =
@ -150,7 +158,8 @@ bool run_fused_gemm_s8() {
ElementOutput,
64 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
using B2bGemm = cutlass::gemm::device::B2bGemm<
@ -176,7 +185,7 @@ bool run_fused_gemm_s8() {
B2bInterleavedFusedGemmRun<B2bGemm, 32> fusedGemm;
std::cout << "Running Fused back-to-back INT8 NT interleaved GEMMs...\n";
std::cout << "Running Fused back-to-back INT8 NT interleaved GEMMs with RF Residency...\n";
bool passed = fusedGemm.run(gemm_s8_sm75_problem_size_0, gemm_s8_sm75_problem_size_1, alpha0, beta0, alpha1, beta1);
if(passed)
std::cout << "Pass\n";
@ -186,4 +195,18 @@ bool run_fused_gemm_s8() {
return passed;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_gemm_s8,
&run_fused_gemm_s8_rf_res
};
return testRun(75, funcs, "gemm int8 RF residency");
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,214 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include <iostream>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/gemm.h"
#include "device/b2b_gemm.h"
#include "b2b_interleaved_gemm_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::gemm::GemmCoord gemm_s8_sm75_problem_size_0(128*640, 64, 576);
cutlass::gemm::GemmCoord gemm_s8_sm75_problem_size_1(128*640, 256, 64);
bool run_nonfused_gemm_s8() {
using ElementOutput = int8_t;
using ElementAccumulator = int32_t;
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(1); //beta = 1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta = 1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using Gemm0 = cutlass::gemm::device::Gemm<
int8_t,
cutlass::layout::ColumnMajorInterleaved<32>,
int8_t,
cutlass::layout::RowMajorInterleaved<32>,
ElementOutput,
cutlass::layout::ColumnMajorInterleaved<32>,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
ThreadblockShape0,
WarpShape0,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
64 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2
>;
using Gemm1 = cutlass::gemm::device::Gemm<
int8_t,
cutlass::layout::ColumnMajorInterleaved<32>,
int8_t,
cutlass::layout::RowMajorInterleaved<32>,
ElementOutput,
cutlass::layout::ColumnMajorInterleaved<32>,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
ThreadblockShape1,
WarpShape1,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
64 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2
>;
B2bInterleavedNonFusedGemmRun<Gemm0, Gemm1, 32> nonFusedGemm;
std::cout << "Running Non-fused back-to-back INT8 NT interleaved GEMMs...\n";
bool pass = nonFusedGemm.run(gemm_s8_sm75_problem_size_0, gemm_s8_sm75_problem_size_1, alpha0, beta0, alpha1, beta1);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
bool run_fused_gemm_s8_shmem() {
using ElementOutput = int8_t;
using ElementAccumulator = int32_t;
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 32>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 32>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 256, 32>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 32>;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>;
using EpilogueOutputOp0 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
InstructionShape::kM * InstructionShape::kN / 32,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
>;
using EpilogueOutputOp1 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
64 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
const bool SmemAccumulator = true;
using B2bGemm = cutlass::gemm::device::B2bGemm<
int8_t,
cutlass::layout::ColumnMajorInterleaved<32>,
int8_t,
cutlass::layout::RowMajorInterleaved<32>,
ElementOutput,
cutlass::layout::ColumnMajorInterleaved<32>,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>,
2,
SmemAccumulator
>;
B2bInterleavedFusedGemmRun<B2bGemm, 32> fusedGemm;
std::cout << "Running Fused back-to-back INT8 NT interleaved GEMMs with shared memory staging...\n";
bool passed = fusedGemm.run(gemm_s8_sm75_problem_size_0, gemm_s8_sm75_problem_size_1, alpha0, beta0, alpha1, beta1);
if(passed)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return passed;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_gemm_s8,
&run_fused_gemm_s8_shmem
};
return testRun(75, funcs, "gemm int8 shmem staing");
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -1,29 +1,33 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <iostream>
#include "cutlass/cutlass.h"
@ -38,11 +42,12 @@
#include "device/b2b_gemm.h"
#include "b2b_interleaved_gemm_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::gemm::GemmCoord gemm_s8_sm80_problem_size_0(128*1600, 64, 576);
cutlass::gemm::GemmCoord gemm_s8_sm80_problem_size_1(128*1600, 128, 64);
cutlass::gemm::GemmCoord gemm_s8_sm80_problem_size_0(128*640, 64, 576);
cutlass::gemm::GemmCoord gemm_s8_sm80_problem_size_1(128*640, 128, 64);
bool run_nonfused_gemm_s8_sm80() {
@ -50,10 +55,10 @@ bool run_nonfused_gemm_s8_sm80() {
using ElementAccumulator = int32_t;
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(2);
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(2);
ElementCompute beta1 = ElementCompute(0);
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(1); //beta=1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
@ -79,7 +84,7 @@ bool run_nonfused_gemm_s8_sm80() {
64 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
3,
@ -106,7 +111,7 @@ bool run_nonfused_gemm_s8_sm80() {
64 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
3,
@ -128,21 +133,23 @@ bool run_nonfused_gemm_s8_sm80() {
return pass;
}
bool run_fused_gemm_s8_sm80() {
bool run_fused_gemm_s8_sm80_rf_res() {
using ElementOutput = int8_t;
using ElementAccumulator = int32_t;
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(2);
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(2);
ElementCompute beta1 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<16, 64, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 128, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<32, 128, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<16, 128, 64>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>;
using EpilogueOutputOp0 =
@ -160,9 +167,11 @@ bool run_fused_gemm_s8_sm80() {
64 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
const bool SmemAccumulator = false;
using B2bGemm = cutlass::gemm::device::B2bGemm<
int8_t,
cutlass::layout::ColumnMajorInterleaved<32>,
@ -182,6 +191,7 @@ bool run_fused_gemm_s8_sm80() {
EpilogueOutputOp1,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
3,
SmemAccumulator,
16,
16,
false,
@ -190,7 +200,7 @@ bool run_fused_gemm_s8_sm80() {
B2bInterleavedFusedGemmRun<B2bGemm, 32> fusedGemm;
std::cout << "Running Fused back-to-back INT8 NT interleaved GEMMs...\n";
std::cout << "Running Fused back-to-back INT8 NT interleaved GEMMs with RF residency...\n";
bool passed = fusedGemm.run(gemm_s8_sm80_problem_size_0, gemm_s8_sm80_problem_size_1, alpha0, beta0, alpha1, beta1);
if(passed)
std::cout << "Pass\n";
@ -199,4 +209,19 @@ bool run_fused_gemm_s8_sm80() {
return passed;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_gemm_s8_sm80,
&run_fused_gemm_s8_sm80_rf_res
};
return testRun(80, funcs, "gemm int8 RF residency");
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,226 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include <iostream>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/gemm.h"
#include "device/b2b_gemm.h"
#include "b2b_interleaved_gemm_run.h"
#include "test_run.h"
////////////////////////////////////////////////////////////////////////////////
cutlass::gemm::GemmCoord gemm_s8_sm80_problem_size_0(128*640, 64, 576);
cutlass::gemm::GemmCoord gemm_s8_sm80_problem_size_1(128*640, 256, 64);
bool run_nonfused_gemm_s8_sm80() {
using ElementOutput = int8_t;
using ElementAccumulator = int32_t;
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(1);
ElementCompute beta0 = ElementCompute(1); //beta=1 for bias
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<128, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<128, 128, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>;
using Gemm0 = cutlass::gemm::device::Gemm<
int8_t,
cutlass::layout::ColumnMajorInterleaved<32>,
int8_t,
cutlass::layout::RowMajorInterleaved<32>,
ElementOutput,
cutlass::layout::ColumnMajorInterleaved<32>,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape0,
WarpShape0,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
64 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
3,
16,
16,
false,
cutlass::arch::OpMultiplyAddSaturate
>;
using Gemm1 = cutlass::gemm::device::Gemm<
int8_t,
cutlass::layout::ColumnMajorInterleaved<32>,
int8_t,
cutlass::layout::RowMajorInterleaved<32>,
ElementOutput,
cutlass::layout::ColumnMajorInterleaved<32>,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape1,
WarpShape1,
InstructionShape,
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
64 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
3,
16,
16,
false,
cutlass::arch::OpMultiplyAddSaturate
>;
B2bInterleavedNonFusedGemmRun<Gemm0, Gemm1, 32> nonFusedGemm;
std::cout << "Running Non-fused back-to-back INT8 NT interleaved GEMMs...\n";
bool pass = nonFusedGemm.run(gemm_s8_sm80_problem_size_0, gemm_s8_sm80_problem_size_1, alpha0, beta0, alpha1, beta1);
if(pass)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return pass;
}
bool run_fused_gemm_s8_sm80_shmem() {
using ElementOutput = int8_t;
using ElementAccumulator = int32_t;
using ElementCompute = float;
ElementCompute alpha0 = ElementCompute(1);
//Fused kernel has built-in bias, setting beta=0
ElementCompute beta0 = ElementCompute(0);
ElementCompute alpha1 = ElementCompute(1);
ElementCompute beta1 = ElementCompute(1); //beta=1 for bias
using ThreadblockShape0 = cutlass::gemm::GemmShape<64, 64, 64>;
using WarpShape0 = cutlass::gemm::GemmShape<32, 32, 64>;
using ThreadblockShape1 = cutlass::gemm::GemmShape<64, 256, 64>;
using WarpShape1 = cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>;
using EpilogueOutputOp0 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
8 * InstructionShape::kN / 32,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling
>;
using EpilogueOutputOp1 =
cutlass::epilogue::thread::LinearCombinationRelu<
ElementOutput,
64 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementCompute,
cutlass::epilogue::thread::ScaleType::NoBetaScaling
>;
const bool SmemAccumulator = true;
using B2bGemm = cutlass::gemm::device::B2bGemm<
int8_t,
cutlass::layout::ColumnMajorInterleaved<32>,
int8_t,
cutlass::layout::RowMajorInterleaved<32>,
ElementOutput,
cutlass::layout::ColumnMajorInterleaved<32>,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
3,
SmemAccumulator,
16,
16,
false,
cutlass::arch::OpMultiplyAddSaturate
>;
B2bInterleavedFusedGemmRun<B2bGemm, 32> fusedGemm;
std::cout << "Running Fused back-to-back INT8 NT interleaved GEMMs with shared memory staging...\n";
bool passed = fusedGemm.run(gemm_s8_sm80_problem_size_0, gemm_s8_sm80_problem_size_1, alpha0, beta0, alpha1, beta1);
if(passed)
std::cout << "Pass\n";
else
std::cout << "Fail\n";
return passed;
}
int main() {
std::vector<bool (*)()>funcs = {
&run_nonfused_gemm_s8_sm80,
&run_fused_gemm_s8_sm80_shmem
};
return testRun(80, funcs, "gemm int8 shmem staging");
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -73,6 +79,8 @@ struct B2bGemm {
typename B2bMma::IteratorB0::TensorRef ref_B0;
typename Epilogue::OutputTileIterator::Params params_C0;
typename Epilogue::OutputTileIterator::TensorRef ref_C0;
typename B2bMma::IteratorAccumulatorScaleBias::TensorRef ref_Scale0;
typename B2bMma::IteratorAccumulatorScaleBias::TensorRef ref_Bias0;
typename B2bMma::IteratorB1::Params params_B1;
typename B2bMma::IteratorB1::TensorRef ref_B1;
typename Epilogue::OutputTileIterator::Params params_C1;
@ -103,6 +111,8 @@ struct B2bGemm {
typename B2bMma::IteratorA0::TensorRef ref_A0,
typename B2bMma::IteratorB0::TensorRef ref_B0,
typename Epilogue::OutputTileIterator::TensorRef ref_C0,
typename B2bMma::IteratorAccumulatorScaleBias::TensorRef ref_Scale0,
typename B2bMma::IteratorAccumulatorScaleBias::TensorRef ref_Bias0,
typename B2bMma::IteratorB1::TensorRef ref_B1,
typename Epilogue::OutputTileIterator::TensorRef ref_C1,
typename Epilogue::OutputTileIterator::TensorRef ref_D1,
@ -120,6 +130,8 @@ struct B2bGemm {
ref_B0(ref_B0),
params_C0(ref_C0.layout()),
ref_C0(ref_C0),
ref_Scale0(ref_Scale0),
ref_Bias0(ref_Bias0),
params_B1(ref_B1.layout()),
ref_B1(ref_B1),
params_C1(ref_C1.layout()),
@ -202,6 +214,19 @@ struct B2bGemm {
return Status::kErrorMisalignedOperand;
}
// Determine if fusion sizes are valid
if(problem_size_0.m() != problem_size_1.m())
return Status::kErrorInvalidProblem;
if(problem_size_0.n() != problem_size_1.k())
return Status::kErrorInvalidProblem;
if(problem_size_0.n() > B2bMma::Shape0::kN)
return Status::kErrorInvalidProblem;
if(problem_size_1.n() > B2bMma::Shape1::kN)
return Status::kErrorInvalidProblem;
return Status::kSuccess;
}
@ -286,6 +311,29 @@ struct B2bGemm {
int warp_idx = __shfl_sync(0x1f, threadIdx.x / 32, 0);
int lane_idx = threadIdx.x % 32;
// Construct iterators to accumulator scale/bias vector
typename B2bMma::IteratorAccumulatorScaleBias iterator_Scale0(
params.ref_Scale0.data(),
{1, params.problem_size_0.n()},
thread_idx,
warp_idx,
MatrixCoord(
0, threadblock_tile_offset.n() * B2bMma::Shape0::kN
)
);
typename B2bMma::IteratorAccumulatorScaleBias iterator_Bias0(
params.ref_Bias0.data(),
{1, params.problem_size_0.n()},
thread_idx,
warp_idx,
MatrixCoord(
0, threadblock_tile_offset.n() * B2bMma::Shape0::kN
)
);
//
// Main loop
//
@ -303,7 +351,8 @@ struct B2bGemm {
if (!kSplitKSerial || gemm_k_iterations_0 > 0) {
// Compute threadblock-scoped matrix multiply-add
b2bMma(gemm_k_iterations_0, accumulators, iterator_A0, iterator_B0, iterator_B1, src_accum, output_op_0);
b2bMma(gemm_k_iterations_0, accumulators, iterator_A0, iterator_B0,
iterator_Scale0, iterator_Bias0, iterator_B1, src_accum, output_op_0);
}
//

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -0,0 +1,749 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief
Default kernel-level implicit GEMM convolution definitions combine threadblock-scoped
matrix multiply-add with the appropriate threadblock-scoped epilogue.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/conv/kernel/default_conv2d.h"
#include "cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_analytic.h"
#include "cutlass/conv/threadblock/conv2d_fprop_filter_tile_access_iterator_analytic.h"
#include "cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_optimized.h"
#include "cutlass/conv/threadblock/conv2d_fprop_filter_tile_access_iterator_optimized.h"
#include "cutlass/transform/threadblock/predicated_vector_access_iterator.h"
#include "cutlass/transform/threadblock/vector_iterator.h"
#include "cutlass/transform/warp/vector_fragment_iterator.h"
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
#include "kernel/default_b2b_conv2d_fprop.h"
#include "kernel/b2b_implicit_gemm_convolution.h"
#include "threadblock/b2b_implicit_gemm_pipelined.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace conv {
namespace kernel {
/////////////////////////////////////////////////////////////////////////////////////////////////
// OpClassTensorOp convolutions
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Analytic IteratorAlgorithm
/// and 2 stage pipeline.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
typename MathOperatorTag
>
struct DefaultB2bConv2dFprop <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kAnalytic
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
2, MathOperatorTag>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
2, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA0 = typename MmaCore0::IteratorThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, LayoutA,
ThreadMapA0
>
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB0 = typename MmaCore0::IteratorThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, LayoutB,
ThreadMapB0
>
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
// Use fragment iterator for A operand
using AccumulatorLayout = cutlass::layout::ColumnMajor;
using FragmentIteratorA1 =
cutlass::gemm::warp::MmaTensorOpFragmentIterator<
cutlass::MatrixShape<MmaCore1::WarpShape::kM, MmaCore1::InstructionShape::kK>, //warp shape
cutlass::MatrixShape<MmaCore0::WarpShape::kM, MmaCore0::WarpShape::kN>, //accumulator shape
MmaCore1::Shape::kK, //kBlocksColumn
ElementAccumulator, ElementA, AccumulatorLayout, InstructionShape, EpilogueOutputOp0>;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 2;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape1::kM, WarpShape1::kK>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Warp-level iterators to load scale and bias vectors
using FragmentIteratorA1ScaleBias = cutlass::transform::warp::VectorFragmentIterator<
MatrixShape<1, IteratorAccumulatorScaleBias::Fragment::kElements>, ElementScaleBias,
LayoutScaleBias, InstructionShape, kElementsPerAccess>;
// Define iterators over tiles from the B operand
using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, LayoutB,
ThreadMapB1
>
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmPipelined<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
IteratorB0,
SmemIteratorB0,
ThreadblockShape1,
FragmentIteratorA1,
IteratorAccumulatorScaleBias,
FragmentIteratorA1ScaleBias,
IteratorB1,
SmemIteratorB1,
ElementC,
LayoutC,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1
>;
// Define the epilogue
using Epilogue = typename detail::DefaultConvEpilogue<
ArchTag,
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Analytic IteratorAlgorithm and 2 stage
/// pipeline with interleaved layout.
template <
typename ElementA,
typename ElementB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
typename MathOperatorTag,
int InterleavedK
>
struct DefaultB2bConv2dFprop <
ElementA,
layout::TensorNCxHWx<InterleavedK>,
ElementB,
layout::TensorCxRSKx<InterleavedK>,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kAnalytic,
false
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
2, MathOperatorTag, true>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
2, MathOperatorTag, true>;
// Define iterators over tiles from the A operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
using ThreadMapA0 = typename MmaCore0::SmemThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, layout::TensorNCxHWx<InterleavedK>,
ThreadMapA0
>
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
using ThreadMapB0 = typename MmaCore0::SmemThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB0
>
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
// Use fragment iterator for A operand
using AccumulatorLayout = cutlass::layout::RowMajor;
using FragmentIteratorA1 =
cutlass::gemm::warp::MmaTensorOpFragmentIterator<
cutlass::MatrixShape<MmaCore1::WarpShape::kM, MmaCore1::InstructionShape::kK>, //warp shape
cutlass::MatrixShape<MmaCore0::WarpShape::kM, MmaCore0::WarpShape::kN>, //accumulator shape
MmaCore1::Shape::kK, //kBlocksColumn
ElementAccumulator, ElementA, AccumulatorLayout, InstructionShape, EpilogueOutputOp0>;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 4;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape1::kM, WarpShape1::kK>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Warp-level iterators to load scale and bias vectors
using FragmentIteratorA1ScaleBias = cutlass::transform::warp::VectorFragmentIterator<
MatrixShape<1, IteratorAccumulatorScaleBias::Fragment::kElements>, ElementScaleBias,
LayoutScaleBias, InstructionShape, kElementsPerAccess>;
// Define iterators over tiles from the B operand
using ThreadMapB1 = typename MmaCore1::SmemThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB1
>
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmPipelined<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
IteratorB0,
SmemIteratorB0,
ThreadblockShape1,
FragmentIteratorA1,
IteratorAccumulatorScaleBias,
FragmentIteratorA1ScaleBias,
IteratorB1,
SmemIteratorB1,
ElementC,
LayoutC,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultInterleavedConvEpilogue<
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1,
EpilogueOutputOp1::kCount,
InterleavedK
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Optimized IteratorAlgorithm
/// and 2 stage pipeline.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
typename MathOperatorTag
>
struct DefaultB2bConv2dFprop <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kOptimized
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
2, MathOperatorTag>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
2, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA0 = typename MmaCore0::IteratorThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, LayoutA,
ThreadMapA0
>
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB0 = typename MmaCore0::IteratorThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, LayoutB,
ThreadMapB0
>
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
// Use fragment iterator for A operand
using AccumulatorLayout = cutlass::layout::ColumnMajor;
using FragmentIteratorA1 =
cutlass::gemm::warp::MmaTensorOpFragmentIterator<
cutlass::MatrixShape<MmaCore1::WarpShape::kM, MmaCore1::InstructionShape::kK>, //warp shape
cutlass::MatrixShape<MmaCore0::WarpShape::kM, MmaCore0::WarpShape::kN>, //accumulator shape
MmaCore1::Shape::kK, //kBlocksColumn
ElementAccumulator, ElementA, AccumulatorLayout, InstructionShape, EpilogueOutputOp0>;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 2;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape1::kM, WarpShape1::kK>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Warp-level iterators to load scale and bias vectors
using FragmentIteratorA1ScaleBias = cutlass::transform::warp::VectorFragmentIterator<
MatrixShape<1, IteratorAccumulatorScaleBias::Fragment::kElements>, ElementScaleBias,
LayoutScaleBias, InstructionShape, kElementsPerAccess>;
// Define iterators over tiles from the B operand
using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, LayoutB,
ThreadMapB1
>
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmPipelined<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
IteratorB0,
SmemIteratorB0,
ThreadblockShape1,
FragmentIteratorA1,
IteratorAccumulatorScaleBias,
FragmentIteratorA1ScaleBias,
IteratorB1,
SmemIteratorB1,
ElementC,
LayoutC,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1
>;
// Define the epilogue
using Epilogue = typename detail::DefaultConvEpilogue<
ArchTag,
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Optimized IteratorAlgorithm and 2 stage
/// pipeline with interleaved layout.
template <
typename ElementA,
typename ElementB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
typename MathOperatorTag,
int InterleavedK
>
struct DefaultB2bConv2dFprop <
ElementA,
layout::TensorNCxHWx<InterleavedK>,
ElementB,
layout::TensorCxRSKx<InterleavedK>,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kOptimized
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
2, MathOperatorTag, true>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
2, MathOperatorTag, true>;
// Define iterators over tiles from the A operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
// Define iterators over tiles from the A operand
using ThreadMapA0 = typename MmaCore0::SmemThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, layout::TensorNCxHWx<InterleavedK>,
ThreadMapA0
>
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB0 = typename MmaCore0::SmemThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB0
>
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
// Use fragment iterator for A operand
using AccumulatorLayout = cutlass::layout::RowMajor;
using FragmentIteratorA1 =
cutlass::gemm::warp::MmaTensorOpFragmentIterator<
cutlass::MatrixShape<MmaCore1::WarpShape::kM, MmaCore1::InstructionShape::kK>, //warp shape
cutlass::MatrixShape<MmaCore0::WarpShape::kM, MmaCore0::WarpShape::kN>, //accumulator shape
MmaCore1::Shape::kK, //kBlocksColumn
ElementAccumulator, ElementA, AccumulatorLayout, InstructionShape, EpilogueOutputOp0>;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 4;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape1::kM, WarpShape1::kK>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Warp-level iterators to load scale and bias vectors
using FragmentIteratorA1ScaleBias = cutlass::transform::warp::VectorFragmentIterator<
MatrixShape<1, IteratorAccumulatorScaleBias::Fragment::kElements>, ElementScaleBias,
LayoutScaleBias, InstructionShape, kElementsPerAccess>;
using ThreadMapB1 = typename MmaCore1::SmemThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB1
>
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmPipelined<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
IteratorB0,
SmemIteratorB0,
ThreadblockShape1,
FragmentIteratorA1,
IteratorAccumulatorScaleBias,
FragmentIteratorA1ScaleBias,
IteratorB1,
SmemIteratorB1,
ElementC,
LayoutC,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultInterleavedConvEpilogue<
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1,
EpilogueOutputOp1::kCount,
InterleavedK
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace kernel
} // namespace conv
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,740 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief
Default kernel-level implicit GEMM convolution definitions combine threadblock-scoped
matrix multiply-add with the appropriate threadblock-scoped epilogue.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/conv/kernel/default_conv2d.h"
#include "cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_analytic.h"
#include "cutlass/conv/threadblock/conv2d_fprop_filter_tile_access_iterator_analytic.h"
#include "cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_optimized.h"
#include "cutlass/conv/threadblock/conv2d_fprop_filter_tile_access_iterator_optimized.h"
#include "cutlass/transform/threadblock/predicated_vector_access_iterator.h"
#include "cutlass/transform/threadblock/vector_iterator.h"
#include "cutlass/transform/warp/vector_fragment_iterator.h"
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
#include "kernel/default_b2b_conv2d_fprop.h"
#include "kernel/b2b_implicit_gemm_convolution.h"
#include "threadblock/b2b_implicit_gemm_multistage.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace conv {
namespace kernel {
/////////////////////////////////////////////////////////////////////////////////////////////////
// OpClassTensorOp convolutions
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Analytic IteratorAlgorithm and multistage
/// pipeline.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag
>
struct DefaultB2bConv2dFprop <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kAnalytic
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
Stages, MathOperatorTag>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
Stages, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA0 = typename MmaCore0::IteratorThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, LayoutA,
ThreadMapA0
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB0 = typename MmaCore0::IteratorThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, LayoutB,
ThreadMapB0
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
// Use fragment iterator for A operand
using AccumulatorLayout = cutlass::layout::ColumnMajor;
using FragmentIteratorA1 =
cutlass::gemm::warp::MmaTensorOpFragmentIterator<
cutlass::MatrixShape<MmaCore1::WarpShape::kM, MmaCore1::InstructionShape::kK>, //warp shape
cutlass::MatrixShape<MmaCore0::WarpShape::kM, MmaCore0::WarpShape::kN>, //accumulator shape
MmaCore1::Shape::kK, //kBlocksColumn
ElementAccumulator, ElementA, AccumulatorLayout, InstructionShape, EpilogueOutputOp0>;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 2;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape1::kM, WarpShape1::kK>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Warp-level iterators to load scale and bias vectors
using FragmentIteratorA1ScaleBias = cutlass::transform::warp::VectorFragmentIterator<
MatrixShape<1, IteratorAccumulatorScaleBias::Fragment::kElements>, ElementScaleBias,
LayoutScaleBias, InstructionShape, kElementsPerAccess>;
// Define iterators over tiles from the B operand
using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, LayoutB,
ThreadMapB1
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmMultistage<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
arch::CacheOperation::Always,
IteratorB0,
SmemIteratorB0,
arch::CacheOperation::Global,
ThreadblockShape1,
FragmentIteratorA1,
IteratorAccumulatorScaleBias,
FragmentIteratorA1ScaleBias,
IteratorB1,
SmemIteratorB1,
arch::CacheOperation::Global,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1,
Stages
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueTensorOp<
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1,
EpilogueOutputOp1::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Analytic IteratorAlgorithm and multistage
/// pipeline with interleaved layout.
template <
typename ElementA,
typename ElementB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag,
int InterleavedK
>
struct DefaultB2bConv2dFprop <
ElementA,
layout::TensorNCxHWx<InterleavedK>,
ElementB,
layout::TensorCxRSKx<InterleavedK>,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kAnalytic
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
Stages, MathOperatorTag, true>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
Stages, MathOperatorTag, true>;
// Define iterators over tiles from the A operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
using ThreadMapA0 = typename MmaCore0::SmemThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, layout::TensorNCxHWx<InterleavedK>,
ThreadMapA0
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
using ThreadMapB0 = typename MmaCore0::SmemThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB0
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
// Use fragment iterator for A operand
using AccumulatorLayout = cutlass::layout::RowMajor;
using FragmentIteratorA1 =
cutlass::gemm::warp::MmaTensorOpFragmentIterator<
cutlass::MatrixShape<MmaCore1::WarpShape::kM, MmaCore1::InstructionShape::kK>, //warp shape
cutlass::MatrixShape<MmaCore0::WarpShape::kM, MmaCore0::WarpShape::kN>, //accumulator shape
MmaCore1::Shape::kK, //kBlocksColumn
ElementAccumulator, ElementA, AccumulatorLayout, InstructionShape, EpilogueOutputOp0>;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 4;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape1::kM, WarpShape1::kK>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Warp-level iterators to load scale and bias vectors
using FragmentIteratorA1ScaleBias = cutlass::transform::warp::VectorFragmentIterator<
MatrixShape<1, IteratorAccumulatorScaleBias::Fragment::kElements>, ElementScaleBias,
LayoutScaleBias, InstructionShape, kElementsPerAccess>;
using ThreadMapB1 = typename MmaCore1::SmemThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB1
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmMultistage<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
arch::CacheOperation::Always,
IteratorB0,
SmemIteratorB0,
arch::CacheOperation::Global,
ThreadblockShape1,
FragmentIteratorA1,
IteratorAccumulatorScaleBias,
FragmentIteratorA1ScaleBias,
IteratorB1,
SmemIteratorB1,
arch::CacheOperation::Global,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1,
Stages
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultInterleavedConvEpilogue<
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1,
EpilogueOutputOp1::kCount,
InterleavedK
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Optimized IteratorAlgorithm and
/// multistage pipeline.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag
>
struct DefaultB2bConv2dFprop <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kOptimized
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
Stages, MathOperatorTag>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
Stages, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA0 = typename MmaCore0::IteratorThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, LayoutA,
ThreadMapA0
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB0 = typename MmaCore0::IteratorThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, LayoutB,
ThreadMapB0
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
// Use fragment iterator for A operand
using AccumulatorLayout = cutlass::layout::ColumnMajor;
using FragmentIteratorA1 =
cutlass::gemm::warp::MmaTensorOpFragmentIterator<
cutlass::MatrixShape<MmaCore1::WarpShape::kM, MmaCore1::InstructionShape::kK>, //warp shape
cutlass::MatrixShape<MmaCore0::WarpShape::kM, MmaCore0::WarpShape::kN>, //accumulator shape
MmaCore1::Shape::kK, //kBlocksColumn
ElementAccumulator, ElementA, AccumulatorLayout, InstructionShape, EpilogueOutputOp0>;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 2;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape1::kM, WarpShape1::kK>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Warp-level iterators to load scale and bias vectors
using FragmentIteratorA1ScaleBias = cutlass::transform::warp::VectorFragmentIterator<
MatrixShape<1, IteratorAccumulatorScaleBias::Fragment::kElements>, ElementScaleBias,
LayoutScaleBias, InstructionShape, kElementsPerAccess>;
// Define iterators over tiles from the B operand
using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, LayoutB,
ThreadMapB1
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmMultistage<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
arch::CacheOperation::Always,
IteratorB0,
SmemIteratorB0,
arch::CacheOperation::Global,
ThreadblockShape1,
FragmentIteratorA1,
IteratorAccumulatorScaleBias,
FragmentIteratorA1ScaleBias,
IteratorB1,
SmemIteratorB1,
arch::CacheOperation::Global,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1,
Stages
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueTensorOp<
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1,
EpilogueOutputOp1::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Optimzed IteratorAlgorithm and
// multistage pipeline with interleaved layout.
template <
typename ElementA,
typename ElementB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag,
int InterleavedK
>
struct DefaultB2bConv2dFprop <
ElementA,
layout::TensorNCxHWx<InterleavedK>,
ElementB,
layout::TensorCxRSKx<InterleavedK>,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kOptimized
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
Stages, MathOperatorTag, true>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
Stages, MathOperatorTag, true>;
// Define iterators over tiles from the A operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
using ThreadMapA0 = typename MmaCore0::SmemThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, layout::TensorNCxHWx<InterleavedK>,
ThreadMapA0
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
using ThreadMapB0 = typename MmaCore0::SmemThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB0
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
// Use fragment iterator for A operand
using AccumulatorLayout = cutlass::layout::RowMajor;
using FragmentIteratorA1 =
cutlass::gemm::warp::MmaTensorOpFragmentIterator<
cutlass::MatrixShape<MmaCore1::WarpShape::kM, MmaCore1::InstructionShape::kK>, //warp shape
cutlass::MatrixShape<MmaCore0::WarpShape::kM, MmaCore0::WarpShape::kN>, //accumulator shape
MmaCore1::Shape::kK, //kBlocksColumn
ElementAccumulator, ElementA, AccumulatorLayout, InstructionShape, EpilogueOutputOp0>;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 4;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape1::kM, WarpShape1::kK>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Warp-level iterators to load scale and bias vectors
using FragmentIteratorA1ScaleBias = cutlass::transform::warp::VectorFragmentIterator<
MatrixShape<1, IteratorAccumulatorScaleBias::Fragment::kElements>, ElementScaleBias,
LayoutScaleBias, InstructionShape, kElementsPerAccess>;
using ThreadMapB1 = typename MmaCore1::SmemThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB1
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmMultistage<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
arch::CacheOperation::Always,
IteratorB0,
SmemIteratorB0,
arch::CacheOperation::Global,
ThreadblockShape1,
FragmentIteratorA1,
IteratorAccumulatorScaleBias,
FragmentIteratorA1ScaleBias,
IteratorB1,
SmemIteratorB1,
arch::CacheOperation::Global,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1,
Stages
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultInterleavedConvEpilogue<
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1,
EpilogueOutputOp1::kCount,
InterleavedK
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace kernel
} // namespace conv
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,817 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief
Default kernel-level implicit GEMM convolution definitions combine threadblock-scoped
matrix multiply-add with the appropriate threadblock-scoped epilogue.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/conv/kernel/default_conv2d.h"
#include "cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_analytic.h"
#include "cutlass/conv/threadblock/conv2d_fprop_filter_tile_access_iterator_analytic.h"
#include "cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_optimized.h"
#include "cutlass/conv/threadblock/conv2d_fprop_filter_tile_access_iterator_optimized.h"
#include "cutlass/transform/threadblock/predicated_vector_access_iterator.h"
#include "cutlass/transform/threadblock/vector_iterator.h"
#include "cutlass/transform/warp/vector_fragment_iterator.h"
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
#include "kernel/default_b2b_conv2d_fprop.h"
#include "kernel/b2b_implicit_gemm_convolution.h"
#include "threadblock/b2b_implicit_gemm_pipelined_smem_accumulator.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace conv {
namespace kernel {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Analytic IteratorAlgorithm
/// and 2 stage pipeline.
/// Accumulator will be staged in shared memory.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
typename MathOperatorTag
>
struct DefaultB2bConv2dFprop <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kAnalytic,
true
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
2, MathOperatorTag>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
2, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA0 = typename MmaCore0::IteratorThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, LayoutA,
ThreadMapA0
>
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB0 = typename MmaCore0::IteratorThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, LayoutB,
ThreadMapB0
>
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 2;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Define iterators over tiles from the B operand
using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, LayoutB,
ThreadMapB1
>
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp;
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Use fragment iterator for the accumulator
using SmemAccumulatorLayout = cutlass::layout::RowMajor;
using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp<
WarpShape0, InstructionShape,
ElementAccumulator,
typename WarpMmaTensorOp0::Policy::Operator::FragmentC,
SmemAccumulatorLayout
>;
// Store Accumulator tiles to Shared Memory
using SmemIteratorD0 =
cutlass::epilogue::warp::TileIteratorTensorOp<
WarpShape0,
InstructionShape,
ElementC,
SmemAccumulatorLayout
>;
static int const kThreadCount = 32;
// load warp tile from Shared Memory accumulator
using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileIterator<
MatrixShape<WarpShape1::kM, InstructionShape::kK>, cutlass::gemm::Operand::kA,
ElementA, SmemAccumulatorLayout,
MatrixShape<InstructionShape::kM, InstructionShape::kK>,
WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount>;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmPipelinedSmemAccumulator<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
IteratorB0,
SmemIteratorB0,
IteratorAccumulatorScaleBias,
FragmentIteratorAccumulator,
SmemIteratorD0,
ThreadblockShape1,
WarpIteratorA1,
IteratorB1,
SmemIteratorB1,
ElementC,
LayoutC,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1
>;
// Define the epilogue
using Epilogue = typename detail::DefaultConvEpilogue<
ArchTag,
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Analytic IteratorAlgorithm and 2 stage
/// pipeline with interleaved layout.
/// Accumulator will be staged in shared memory.
template <
typename ElementA,
typename ElementB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
typename MathOperatorTag,
int InterleavedK
>
struct DefaultB2bConv2dFprop <
ElementA,
layout::TensorNCxHWx<InterleavedK>,
ElementB,
layout::TensorCxRSKx<InterleavedK>,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kAnalytic,
true
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
2, MathOperatorTag, true>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
2, MathOperatorTag, true>;
// Define iterators over tiles from the A operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
using ThreadMapA0 = typename MmaCore0::SmemThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, layout::TensorNCxHWx<InterleavedK>,
ThreadMapA0
>
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
using ThreadMapB0 = typename MmaCore0::SmemThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB0
>
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 4; //For interleaved layout
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Define iterators over tiles from the B operand
using ThreadMapB1 = typename MmaCore1::SmemThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB1
>
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp;
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Use fragment iterator for the accumulator
using SmemAccumulatorLayout = cutlass::layout::ColumnMajorInterleaved<16>;
using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp<
WarpShape0, InstructionShape,
ElementAccumulator,
typename WarpMmaTensorOp0::Policy::Operator::FragmentC,
SmemAccumulatorLayout
>;
// Store Accumulator tiles to Shared Memory
using SmemIteratorD0 =
cutlass::epilogue::warp::TileIteratorTensorOp<
WarpShape0,
InstructionShape,
ElementC,
SmemAccumulatorLayout
>;
static int const kThreadCount = 32;
// load warp tile from Shared Memory accumulator
using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileIteratorCanonical<
MatrixShape<WarpShape1::kM, InstructionShape::kK>, cutlass::gemm::Operand::kA,
ElementA, SmemAccumulatorLayout,
MatrixShape<InstructionShape::kM, InstructionShape::kK>,
WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount>;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmPipelinedSmemAccumulator<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
IteratorB0,
SmemIteratorB0,
IteratorAccumulatorScaleBias,
FragmentIteratorAccumulator,
SmemIteratorD0,
ThreadblockShape1,
WarpIteratorA1,
IteratorB1,
SmemIteratorB1,
ElementC,
LayoutC,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultInterleavedConvEpilogue<
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1,
EpilogueOutputOp1::kCount,
InterleavedK
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Optimized IteratorAlgorithm
/// and 2 stage pipeline.
/// Accumulator will be staged in shared memory.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
typename MathOperatorTag
>
struct DefaultB2bConv2dFprop <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kOptimized,
true
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
2, MathOperatorTag>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
2, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA0 = typename MmaCore0::IteratorThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, LayoutA,
ThreadMapA0
>
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB0 = typename MmaCore0::IteratorThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, LayoutB,
ThreadMapB0
>
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 2;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Define iterators over tiles from the B operand
using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, LayoutB,
ThreadMapB1
>
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp;
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Use fragment iterator for the accumulator
using SmemAccumulatorLayout = cutlass::layout::RowMajor;
using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp<
WarpShape0, InstructionShape,
ElementAccumulator,
typename WarpMmaTensorOp0::Policy::Operator::FragmentC,
SmemAccumulatorLayout
>;
// Store Accumulator tiles to Shared Memory
using SmemIteratorD0 =
cutlass::epilogue::warp::TileIteratorTensorOp<
WarpShape0,
InstructionShape,
ElementC,
SmemAccumulatorLayout
>;
static int const kThreadCount = 32;
// load warp tile from Shared Memory accumulator
using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileIterator<
MatrixShape<WarpShape1::kM, InstructionShape::kK>, cutlass::gemm::Operand::kA,
ElementA, SmemAccumulatorLayout,
MatrixShape<InstructionShape::kM, InstructionShape::kK>,
WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount>;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmPipelinedSmemAccumulator<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
IteratorB0,
SmemIteratorB0,
IteratorAccumulatorScaleBias,
FragmentIteratorAccumulator,
SmemIteratorD0,
ThreadblockShape1,
WarpIteratorA1,
IteratorB1,
SmemIteratorB1,
ElementC,
LayoutC,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1
>;
// Define the epilogue
using Epilogue = typename detail::DefaultConvEpilogue<
ArchTag,
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Optimized IteratorAlgorithm and 2 stage
/// pipeline with interleaved layout.
/// Accumulator will be staged in shared memory.
template <
typename ElementA,
typename ElementB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
typename MathOperatorTag,
int InterleavedK
>
struct DefaultB2bConv2dFprop <
ElementA,
layout::TensorNCxHWx<InterleavedK>,
ElementB,
layout::TensorCxRSKx<InterleavedK>,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kOptimized,
true
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
2, MathOperatorTag, true>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
2, MathOperatorTag, true>;
// Define iterators over tiles from the A operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
// Define iterators over tiles from the A operand
using ThreadMapA0 = typename MmaCore0::SmemThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, layout::TensorNCxHWx<InterleavedK>,
ThreadMapA0
>
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
using ThreadMapB0 = typename MmaCore0::SmemThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB0
>
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 4; //For interleaved layout
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
using ThreadMapB1 = typename MmaCore1::SmemThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB1
>
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp;
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Use fragment iterator for the accumulator
using SmemAccumulatorLayout = cutlass::layout::ColumnMajorInterleaved<16>;
using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp<
WarpShape0, InstructionShape,
ElementAccumulator,
typename WarpMmaTensorOp0::Policy::Operator::FragmentC,
SmemAccumulatorLayout
>;
// Store Accumulator tiles to Shared Memory
using SmemIteratorD0 =
cutlass::epilogue::warp::TileIteratorTensorOp<
WarpShape0,
InstructionShape,
ElementC,
SmemAccumulatorLayout
>;
static int const kThreadCount = 32;
// load warp tile from Shared Memory accumulator
using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileIteratorCanonical<
MatrixShape<WarpShape1::kM, InstructionShape::kK>, cutlass::gemm::Operand::kA,
ElementA, SmemAccumulatorLayout,
MatrixShape<InstructionShape::kM, InstructionShape::kK>,
WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount>;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmPipelinedSmemAccumulator<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
IteratorB0,
SmemIteratorB0,
IteratorAccumulatorScaleBias,
FragmentIteratorAccumulator,
SmemIteratorD0,
ThreadblockShape1,
WarpIteratorA1,
IteratorB1,
SmemIteratorB1,
ElementC,
LayoutC,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultInterleavedConvEpilogue<
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1,
EpilogueOutputOp1::kCount,
InterleavedK
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace kernel
} // namespace conv
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,804 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief
Default kernel-level implicit GEMM convolution definitions combine threadblock-scoped
matrix multiply-add with the appropriate threadblock-scoped epilogue.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/conv/kernel/default_conv2d.h"
#include "cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_analytic.h"
#include "cutlass/conv/threadblock/conv2d_fprop_filter_tile_access_iterator_analytic.h"
#include "cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_optimized.h"
#include "cutlass/conv/threadblock/conv2d_fprop_filter_tile_access_iterator_optimized.h"
#include "cutlass/transform/threadblock/predicated_vector_access_iterator.h"
#include "cutlass/transform/threadblock/vector_iterator.h"
#include "cutlass/transform/warp/vector_fragment_iterator.h"
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
#include "kernel/default_b2b_conv2d_fprop.h"
#include "kernel/b2b_implicit_gemm_convolution.h"
#include "threadblock/b2b_implicit_gemm_multistage_smem_accumulator.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace conv {
namespace kernel {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Analytic IteratorAlgorithm and multistage
/// pipeline.
/// Accumulator will be staged in shared memory.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag
>
struct DefaultB2bConv2dFprop <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kAnalytic,
true
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
Stages, MathOperatorTag>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
Stages, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA0 = typename MmaCore0::IteratorThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, LayoutA,
ThreadMapA0
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB0 = typename MmaCore0::IteratorThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, LayoutB,
ThreadMapB0
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 2;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Define iterators over tiles from the B operand
using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, LayoutB,
ThreadMapB1
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp;
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Use fragment iterator for the accumulator
using SmemAccumulatorLayout = cutlass::layout::RowMajor;
using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp<
WarpShape0, InstructionShape,
ElementAccumulator,
typename WarpMmaTensorOp0::Policy::Operator::FragmentC,
SmemAccumulatorLayout
>;
// Store Accumulator tiles to Shared Memory
using SmemIteratorD0 =
cutlass::epilogue::warp::TileIteratorTensorOp<
WarpShape0,
InstructionShape,
ElementC,
SmemAccumulatorLayout
>;
static int const kThreadCount = 32;
// load warp tile from Shared Memory accumulator
using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileIterator<
MatrixShape<WarpShape1::kM, InstructionShape::kK>, cutlass::gemm::Operand::kA,
ElementA, SmemAccumulatorLayout,
MatrixShape<InstructionShape::kM, InstructionShape::kK>,
WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount>;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmMultistageSmemAccumulator<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
arch::CacheOperation::Always,
IteratorB0,
SmemIteratorB0,
arch::CacheOperation::Global,
IteratorAccumulatorScaleBias,
FragmentIteratorAccumulator,
SmemIteratorD0,
ThreadblockShape1,
WarpIteratorA1,
IteratorB1,
SmemIteratorB1,
arch::CacheOperation::Global,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1,
Stages
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueTensorOp<
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1,
EpilogueOutputOp1::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Analytic IteratorAlgorithm and multistage
/// pipeline with interleaved layout.
/// Accumulator will be staged in shared memory.
template <
typename ElementA,
typename ElementB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag,
int InterleavedK
>
struct DefaultB2bConv2dFprop <
ElementA,
layout::TensorNCxHWx<InterleavedK>,
ElementB,
layout::TensorCxRSKx<InterleavedK>,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kAnalytic,
true
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
Stages, MathOperatorTag, true>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
Stages, MathOperatorTag, true>;
// Define iterators over tiles from the A operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
using ThreadMapA0 = typename MmaCore0::SmemThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, layout::TensorNCxHWx<InterleavedK>,
ThreadMapA0
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
using ThreadMapB0 = typename MmaCore0::SmemThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB0
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 4;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
using ThreadMapB1 = typename MmaCore1::SmemThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB1
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp;
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Use fragment iterator for the accumulator
using SmemAccumulatorLayout = cutlass::layout::ColumnMajorInterleaved<16>;
using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp<
WarpShape0, InstructionShape,
ElementAccumulator,
typename WarpMmaTensorOp0::Policy::Operator::FragmentC,
SmemAccumulatorLayout
>;
// Store Accumulator tiles to Shared Memory
using SmemIteratorD0 =
cutlass::epilogue::warp::TileIteratorTensorOp<
WarpShape0,
InstructionShape,
ElementC,
SmemAccumulatorLayout
>;
static int const kThreadCount = 32;
// load warp tile from Shared Memory accumulator
using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileIteratorCanonical<
MatrixShape<WarpShape1::kM, InstructionShape::kK>, cutlass::gemm::Operand::kA,
ElementA, SmemAccumulatorLayout,
MatrixShape<InstructionShape::kM, InstructionShape::kK>,
WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount>;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmMultistageSmemAccumulator<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
arch::CacheOperation::Always,
IteratorB0,
SmemIteratorB0,
arch::CacheOperation::Global,
IteratorAccumulatorScaleBias,
FragmentIteratorAccumulator,
SmemIteratorD0,
ThreadblockShape1,
WarpIteratorA1,
IteratorB1,
SmemIteratorB1,
arch::CacheOperation::Global,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1,
Stages
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultInterleavedConvEpilogue<
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1,
EpilogueOutputOp1::kCount,
InterleavedK
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Optimized IteratorAlgorithm and
/// multistage pipeline.
/// Accumulator will be staged in shared memory.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag
>
struct DefaultB2bConv2dFprop <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kOptimized,
true
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
Stages, MathOperatorTag>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
Stages, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA0 = typename MmaCore0::IteratorThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, LayoutA,
ThreadMapA0
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB0 = typename MmaCore0::IteratorThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, LayoutB,
ThreadMapB0
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 2;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Define iterators over tiles from the B operand
using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, LayoutB,
ThreadMapB1
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp;
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Use fragment iterator for the accumulator
using SmemAccumulatorLayout = cutlass::layout::RowMajor;
using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp<
WarpShape0, InstructionShape,
ElementAccumulator,
typename WarpMmaTensorOp0::Policy::Operator::FragmentC,
SmemAccumulatorLayout
>;
// Store Accumulator tiles to Shared Memory
using SmemIteratorD0 =
cutlass::epilogue::warp::TileIteratorTensorOp<
WarpShape0,
InstructionShape,
ElementC,
SmemAccumulatorLayout
>;
static int const kThreadCount = 32;
// load warp tile from Shared Memory accumulator
using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileIterator<
MatrixShape<WarpShape1::kM, InstructionShape::kK>, cutlass::gemm::Operand::kA,
ElementA, SmemAccumulatorLayout,
MatrixShape<InstructionShape::kM, InstructionShape::kK>,
WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount>;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmMultistageSmemAccumulator<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
arch::CacheOperation::Always,
IteratorB0,
SmemIteratorB0,
arch::CacheOperation::Global,
IteratorAccumulatorScaleBias,
FragmentIteratorAccumulator,
SmemIteratorD0,
ThreadblockShape1,
WarpIteratorA1,
IteratorB1,
SmemIteratorB1,
arch::CacheOperation::Global,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1,
Stages
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueTensorOp<
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1,
EpilogueOutputOp1::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dFprop specialization for Optimzed IteratorAlgorithm and
// multistage pipeline with interleaved layout.
/// Accumulator will be staged in shared memory.
template <
typename ElementA,
typename ElementB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape0,
typename ThreadblockShape1,
typename WarpShape0,
typename WarpShape1,
typename InstructionShape,
typename EpilogueOutputOp0,
typename EpilogueOutputOp1,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag,
int InterleavedK
>
struct DefaultB2bConv2dFprop <
ElementA,
layout::TensorNCxHWx<InterleavedK>,
ElementB,
layout::TensorCxRSKx<InterleavedK>,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kOptimized,
true
> {
// Define the core components from GEMM
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
Stages, MathOperatorTag, true>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
ElementB, layout::RowMajorInterleaved<InterleavedK>,
ElementAccumulator, LayoutC, arch::OpClassTensorOp,
Stages, MathOperatorTag, true>;
// Define iterators over tiles from the A operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
using ThreadMapA0 = typename MmaCore0::SmemThreadMapA;
using IteratorA0 =
cutlass::conv::threadblock::Conv2dFpropActivationTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, layout::TensorNCxHWx<InterleavedK>,
ThreadMapA0
>;
using SmemIteratorA0 = typename MmaCore0::SmemIteratorA;
// Define iterators over tiles from the B operand
// Note GEMM shared memory threadmap is used here because conv global memory
// layout needs to be mapped to fprop which is similar to the crosswise
// layout which is used by the interleaved GEMM shared memory threadmap.
// The Interleaved GEMM global memory layout is similar to the congruous
// layout.
using ThreadMapB0 = typename MmaCore0::SmemThreadMapB;
using IteratorB0 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB0
>;
using SmemIteratorB0 = typename MmaCore0::SmemIteratorB;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp0::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 4;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
using ThreadMapB1 = typename MmaCore1::SmemThreadMapB;
using IteratorB1 =
cutlass::conv::threadblock::Conv2dFpropFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, layout::TensorCxRSKx<InterleavedK>,
ThreadMapB1
>;
using SmemIteratorB1 = typename MmaCore1::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp;
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Use fragment iterator for the accumulator
using SmemAccumulatorLayout = cutlass::layout::ColumnMajorInterleaved<16>;
using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp<
WarpShape0, InstructionShape,
ElementAccumulator,
typename WarpMmaTensorOp0::Policy::Operator::FragmentC,
SmemAccumulatorLayout
>;
// Store Accumulator tiles to Shared Memory
using SmemIteratorD0 =
cutlass::epilogue::warp::TileIteratorTensorOp<
WarpShape0,
InstructionShape,
ElementC,
SmemAccumulatorLayout
>;
static int const kThreadCount = 32;
// load warp tile from Shared Memory accumulator
using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileIteratorCanonical<
MatrixShape<WarpShape1::kM, InstructionShape::kK>, cutlass::gemm::Operand::kA,
ElementA, SmemAccumulatorLayout,
MatrixShape<InstructionShape::kM, InstructionShape::kK>,
WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount>;
// Define the Mma
using B2bMma = threadblock::B2bImplicitGemmMultistageSmemAccumulator<
ThreadblockShape0,
IteratorA0,
SmemIteratorA0,
arch::CacheOperation::Always,
IteratorB0,
SmemIteratorB0,
arch::CacheOperation::Global,
IteratorAccumulatorScaleBias,
FragmentIteratorAccumulator,
SmemIteratorD0,
ThreadblockShape1,
WarpIteratorA1,
IteratorB1,
SmemIteratorB1,
arch::CacheOperation::Global,
EpilogueOutputOp0,
MmaPolicy0,
MmaPolicy1,
Stages
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultInterleavedConvEpilogue<
ThreadblockShape1,
WarpMmaTensorOp1,
1,
EpilogueOutputOp1,
EpilogueOutputOp1::kCount,
InterleavedK
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::B2bImplicitGemmConvolution<
B2bMma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kFprop
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace kernel
} // namespace conv
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -111,7 +117,9 @@ template <
/// If true, kernel is configured to support serial reduction in the epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator
typename Operator,
/// Stage accumulator in shared memory
bool SmemAccumulator = false
>
struct DefaultB2bGemm;

View File

@ -0,0 +1,397 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief
Default kernel-level GEMM definitions combine threadblock-scoped matrix multiply-add with
the appropriate threadblock-scoped epilogue.
Note, CUTLASS epilogues universally target row-major outputs. Column-major outputs are
accommodated by exchanging A and B operands and assuming transposed layouts. Partial
specializations here choose 'device::GemmTransposed' to implement this functionality.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/numeric_types.h"
#include "cutlass/epilogue/threadblock/epilogue.h"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/gemm/kernel/gemm_pipelined.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm75.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm70.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm80.h"
#include "cutlass/gemm/threadblock/default_mma_core_simt.h"
#include "cutlass/gemm/threadblock/threadblock_swizzle.h"
#include "cutlass/epilogue/threadblock/default_epilogue_tensor_op.h"
#include "cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h"
#include "cutlass/epilogue/threadblock/default_epilogue_simt.h"
#include "cutlass/transform/threadblock/predicated_tile_iterator.h"
#include "cutlass/transform/threadblock/vector_iterator.h"
#include "cutlass/transform/threadblock/predicated_vector_access_iterator.h"
#include "kernel/b2b_gemm.h"
#include "threadblock/default_b2b_mma.h"
#include "threadblock/default_b2b_mma_smem_accumulator.h"
////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace kernel {
////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for Ampere Architecture
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of A matrix in units of elements
int kAlignmentB,
/// Element type for C and D matrix operands
typename ElementC,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape0,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape1,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape0,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape1,
/// Warp-level tile size (concept: GemmShape)
typename InstructionShape,
/// Epilogue output operator
typename EpilogueOutputOp0,
/// Epilogue output operator
typename EpilogueOutputOp1,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// Number of stages used in the pipelined mainloop
int Stages,
/// If true, kernel is configured to support serial reduction in the
/// epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator>
struct DefaultB2bGemm<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementC,
layout::RowMajor, ElementAccumulator, arch::OpClassTensorOp,
arch::Sm80, ThreadblockShape0, ThreadblockShape1,
WarpShape0, WarpShape1, InstructionShape,
EpilogueOutputOp0, EpilogueOutputOp1, ThreadblockSwizzle, Stages, SplitKSerial,
Operator, true> {
/// Define the threadblock-scoped matrix multiply-accumulate
using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma<
ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB,
ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp, arch::Sm80,
ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1,
InstructionShape, Stages, Operator, EpilogueOutputOp0, false, true>::ThreadblockB2bMma;
static const int kPartitionsK1 = ThreadblockShape1::kK / WarpShape1::kK;
/// Define the epilogue
using Epilogue =
typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
ThreadblockShape1, typename B2bMma::Operator1, kPartitionsK1, EpilogueOutputOp1,
EpilogueOutputOp1::kCount>::Epilogue;
/// Define the kernel-level GEMM operator.
using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
};
////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for Turing Architecture
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for C and D matrix operands
typename ElementC,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape0,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape1,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape0,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape1,
/// Warp-level tile size (concept: GemmShape)
typename InstructionShape,
/// Epilogue output operator
typename EpilogueOutputOp0,
/// Epilogue output operator
typename EpilogueOutputOp1,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// If true, kernel is configured to support serial reduction in the epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator
>
struct DefaultB2bGemm<
ElementA, LayoutA, kAlignmentA,
ElementB, LayoutB, kAlignmentB,
ElementC, layout::RowMajor,
ElementAccumulator,
arch::OpClassTensorOp,
arch::Sm75,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
EpilogueOutputOp0,
EpilogueOutputOp1,
ThreadblockSwizzle,
2,
SplitKSerial,
Operator,
true
> {
/// Define the threadblock-scoped matrix multiply-accumulate
using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma<
ElementA,
LayoutA,
kAlignmentA,
ElementB,
LayoutB,
kAlignmentB,
ElementAccumulator,
layout::RowMajor,
arch::OpClassTensorOp,
arch::Sm75,
ThreadblockShape0,
ThreadblockShape1,
WarpShape0,
WarpShape1,
InstructionShape,
2,
Operator,
EpilogueOutputOp0,
false,
true
>::ThreadblockB2bMma;
static const int kPartitionsK1 = ThreadblockShape1::kK / WarpShape1::kK;
/// Define the epilogue
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<
ThreadblockShape1,
typename B2bMma::Operator1,
kPartitionsK1,
EpilogueOutputOp1,
EpilogueOutputOp1::kCount
>::Epilogue;
/// Define the kernel-level GEMM operator.
using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
};
/// Partial specialization for Ampere Integer Matrix Multiply Interleaved layout
template <
/// Element type for A matrix operand
typename ElementA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for C and D matrix operands
typename ElementC,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape0,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape1,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape0,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape1,
/// Warp-level tile size (concept: GemmShape)
typename InstructionShape,
/// Epilogue output operator
typename EpilogueOutputOp0,
/// Epilogue output operator
typename EpilogueOutputOp1,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// Number of stages used in the pipelined mainloop
int Stages,
/// Number of Interleaved k
int InterleavedK,
/// If true, kernel is configured to support serial reduction in the
/// epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator>
struct DefaultB2bGemm<
ElementA, layout::ColumnMajorInterleaved<InterleavedK>, kAlignmentA,
ElementB, layout::RowMajorInterleaved<InterleavedK>, kAlignmentB,
ElementC, layout::ColumnMajorInterleaved<InterleavedK>, int32_t,
arch::OpClassTensorOp, arch::Sm80,
ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1,
InstructionShape, EpilogueOutputOp0, EpilogueOutputOp1,
ThreadblockSwizzle, Stages,
SplitKSerial, Operator, true> {
using LayoutA = layout::ColumnMajorInterleaved<InterleavedK>;
using LayoutB = layout::RowMajorInterleaved<InterleavedK>;
using LayoutC = layout::ColumnMajorInterleaved<InterleavedK>;
using ElementAccumulator = int32_t;
/// Define the threadblock-scoped matrix multiply-accumulate
using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma<
ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB,
ElementAccumulator, LayoutC, arch::OpClassTensorOp, arch::Sm80,
ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1,
InstructionShape, Stages, Operator, EpilogueOutputOp0,
true, true>::ThreadblockB2bMma;
static const int kPartitionsK1 = ThreadblockShape1::kK / WarpShape1::kK;
/// Define the epilogue
using Epilogue = typename cutlass::epilogue::threadblock::
DefaultInterleavedEpilogueTensorOp<
ThreadblockShape1, typename B2bMma::Operator1, kPartitionsK1, EpilogueOutputOp1,
64 / sizeof_bits<ElementC>::value, InterleavedK>::Epilogue;
/// Define the kernel-level GEMM operator.
using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
};
////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for Turing Integer Tensor Core Interleaved layout
template <
/// Element type for A matrix operand
typename ElementA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for C and D matrix operands
typename ElementC,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape0,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape1,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape0,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape1,
/// Warp-level tile size (concept: GemmShape)
typename InstructionShape,
/// Epilogue output operator
typename EpilogueOutputOp0,
/// Epilogue output operator
typename EpilogueOutputOp1,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// Number of Interleaved k
int InterleavedK,
/// If true, kernel is configured to support serial reduction in the
/// epilogue
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator>
struct DefaultB2bGemm<ElementA, layout::ColumnMajorInterleaved<InterleavedK>,
kAlignmentA, ElementB,
layout::RowMajorInterleaved<InterleavedK>, kAlignmentB,
ElementC, layout::ColumnMajorInterleaved<InterleavedK>,
int32_t, arch::OpClassTensorOp, arch::Sm75,
ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1,
InstructionShape, EpilogueOutputOp0, EpilogueOutputOp1,
ThreadblockSwizzle, 2, SplitKSerial, Operator, true> {
using LayoutA = layout::ColumnMajorInterleaved<InterleavedK>;
using LayoutB = layout::RowMajorInterleaved<InterleavedK>;
using LayoutC = layout::ColumnMajorInterleaved<InterleavedK>;
using ElementAccumulator = int32_t;
/// Define the threadblock-scoped matrix multiply-accumulate
using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma<
ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB,
ElementAccumulator, LayoutC, arch::OpClassTensorOp, arch::Sm75,
ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1,
InstructionShape, 2, Operator, EpilogueOutputOp0, true, true>::ThreadblockB2bMma;
static const int kPartitionsK1 = ThreadblockShape1::kK / WarpShape1::kK;
/// Define the epilogue for the 2nd Gemm
using Epilogue = typename cutlass::epilogue::threadblock::
DefaultInterleavedEpilogueTensorOp<
ThreadblockShape1, typename B2bMma::Operator1, kPartitionsK1, EpilogueOutputOp1,
64 / sizeof_bits<ElementC>::value, InterleavedK>::Epilogue;
/// Define the kernel-level GEMM operator.
using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle, SplitKSerial>;
};
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
} // namespace kernel
} // namespace gemm
} // namespace cutlass

View File

@ -0,0 +1,275 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/* \file
\brief Defines device-side elementwise operations on TensorView. Note, the operations defined
in this header are not specialized for any particular data layout and are therefore not
intended to offer the best possible performance. Rather, they are intended to be generic
reference implementations to support the CUTLASS unit tests.
*/
#pragma once
// Cutlass includes
#include "cutlass/cutlass.h"
#include "cutlass/tensor_view.h"
#include "cutlass/gemm/gemm.h"
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace reference {
namespace device {
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace kernel {
template <
typename TensorRefIn, ///< Input TensorRef Type
typename TensorRefOut, ///< Output TensorRef Type
typename ScalarType, ///< alpha Type
typename TensorRefScalar, ///< Scale/Bias TensorRef Type
typename OutputTile,
typename ConvertOp = NumericConverter<typename TensorRefOut::Element, ScalarType>
>
__global__ void TensorScaleBiasGemm(
gemm::GemmCoord problem_size,
TensorRefIn tensor_in, ///< input tensor
TensorRefOut tensor_out, ///< output tensor
ScalarType alpha, ///< alpha
TensorRefScalar tensor_scale, ///< scale tensor
TensorRefScalar tensor_bias ///< bias tensor
) {
ConvertOp convert_op;
MatrixCoord output_coord(
MatrixCoord::Index((threadIdx.x + blockIdx.x * blockDim.x) * OutputTile::kRow),
MatrixCoord::Index((threadIdx.y + blockIdx.y * blockDim.y) * OutputTile::kColumn)
);
// Update the output tensor
for (int j = 0; j < OutputTile::kRow; ++j) {
for (int i = 0; i < OutputTile::kColumn; ++i) {
MatrixCoord coord = output_coord + MatrixCoord(i, j);
if (coord.row() < problem_size.m() && coord.column() < problem_size.n()) {
ScalarType scale = alpha;
if(tensor_scale.good())
scale = tensor_scale.at({0, coord.column()});
ScalarType bias = ScalarType(0);
if(tensor_bias.good())
bias = tensor_bias.at({0, coord.column()});
tensor_out.at(coord) = convert_op(
scale * ScalarType(tensor_in.at(coord)) + bias);
}
}
}
}
template <
typename TensorRefIn, ///< Input TensorRef Type
typename TensorRefOut, ///< Output TensorRef Type
typename ScalarType, ///< alpha Type
typename TensorRefScalar, ///< Scale/Bias TensorRef Type
typename ConvertOp = NumericConverter<typename TensorRefOut::Element, ScalarType>,
int kThreadM = 4, // shape of a thread's tile in the GEMM M dimension
int kThreadN = 4, // shape of a thread's tile in the GEMM N dimension
int kCtaShapeM = 16, // shape of a threadblock in units of threads
int kCtaShapeN = 8 // shape of a threadblock in units of threads
>
__global__ void TensorScaleBiasConv2d(
conv::Conv2dProblemSize problem_size,
TensorRefIn tensor_in, ///< input tensor
TensorRefOut tensor_out, ///< output tensor
ScalarType alpha, ///< alpha
TensorRefScalar tensor_scale, ///< scale tensor
TensorRefScalar tensor_bias ///< bias tensor
) {
ConvertOp convert_op;
int64_t npq_start = int64_t(blockIdx.x) * kCtaShapeM * kThreadM + threadIdx.x * kThreadM;
int k_start = blockIdx.y * kCtaShapeN * kThreadN + threadIdx.y * kThreadN;
int thread_n[kThreadM];
int thread_p[kThreadM];
int thread_q[kThreadM];
// Compute N, P, Q coordinates for each row of a thread's tile
int64_t PQ = int64_t(problem_size.P) * problem_size.Q;
CUTLASS_PRAGMA_UNROLL
for (int m = 0; m < kThreadM; ++m) {
int64_t npq = npq_start + m;
thread_n[m] = int(npq / PQ);
int64_t residual = npq % PQ;
thread_p[m] = int(residual / problem_size.Q);
thread_q[m] = int(residual % problem_size.Q);
}
// Write out the results
CUTLASS_PRAGMA_UNROLL
for (int m = 0; m < kThreadM; ++m) {
if (thread_n[m] < problem_size.N && thread_p[m] < problem_size.P && thread_q[m] < problem_size.Q) {
CUTLASS_PRAGMA_UNROLL
for (int n = 0; n < kThreadN; ++n) {
int thread_k = k_start + n;
if (thread_k < problem_size.K) {
ScalarType scale = alpha;
if(tensor_scale.good())
scale = tensor_scale.at({0, thread_k});
ScalarType bias = ScalarType(0);
if(tensor_bias.good())
bias = tensor_bias.at({0, thread_k});
tensor_out.at({thread_n[m], thread_p[m], thread_q[m], thread_k}) = convert_op(
scale * ScalarType(
tensor_in.at({thread_n[m], thread_p[m], thread_q[m], thread_k})
) + bias);
}
}
}
}
}
}
/// Apply scale and bias on a tensor
template <
typename ElementIn, ///< Input Type
typename ElementOut, ///< Output Type
typename Layout, ///< Layout of input/output tensor
typename ScalarType, ///< alpha Type
typename LayoutScaleBias, ///< Layout of scale and bias
typename ConvertOp = NumericConverter<ElementOut, ScalarType>
>
void TensorScaleBiasGemm(
gemm::GemmCoord problem_size,
TensorRef<ElementIn, Layout> tensor_in, ///< input tensor
TensorRef<ElementOut, Layout> tensor_out, ///< output tensor
ScalarType alpha, ///< alpha
TensorRef<ScalarType, LayoutScaleBias> tensor_scale, ///< scale tensor
TensorRef<ScalarType, LayoutScaleBias> tensor_bias ///< bias tensor
) {
using OutputTile = MatrixShape<4, 4>;
dim3 block(16, 8);
dim3 grid(
(problem_size.m() + block.x * OutputTile::kRow - 1) / (block.x * OutputTile::kRow),
(problem_size.n() + block.y * OutputTile::kColumn - 1) / (block.y * OutputTile::kColumn)
);
kernel::TensorScaleBiasGemm<
TensorRef<ElementIn, Layout>,
TensorRef<ElementOut, Layout>,
ScalarType,
TensorRef<ScalarType, LayoutScaleBias>,
OutputTile,
ConvertOp
><<< grid, block >>> (
problem_size,
tensor_in,
tensor_out,
alpha,
tensor_scale,
tensor_bias
);
}
/// Apply scale and bias on a tensor
template <
typename ElementIn, ///< Input Type
typename ElementOut, ///< Output Type
typename Layout, ///< Layout of input/output tensor
typename ScalarType, ///< alpha Type
typename LayoutScaleBias, ///< Layout of scale and bias
typename ConvertOp = NumericConverter<ElementOut, ScalarType>
>
void TensorScaleBiasConv2d(
conv::Conv2dProblemSize problem_size,
TensorRef<ElementIn, Layout> tensor_in, ///< input tensor
TensorRef<ElementOut, Layout> tensor_out, ///< output tensor
ScalarType alpha, ///< alpha
TensorRef<ScalarType, LayoutScaleBias> tensor_scale, ///< scale tensor
TensorRef<ScalarType, LayoutScaleBias> tensor_bias ///< bias tensor
) {
int const kThreadM = 4; // shape of a thread's tile in the GEMM M dimension
int const kThreadN = 4; // shape of a thread's tile in the GEMM N dimension
int const kCtaShapeM = 16; // shape of a threadblock in units of threads
int const kCtaShapeN = 8; // shape of a threadblock in units of threads
int64_t npq = int64_t(problem_size.N) * problem_size.P * problem_size.Q;
int64_t blocks_m = (npq + (kCtaShapeM * kThreadM) - 1) / (kCtaShapeM * kThreadM);
dim3 block(kCtaShapeM, kCtaShapeN);
dim3 grid(uint32_t(blocks_m), (problem_size.K + (kCtaShapeN * kThreadN) - 1) / (kCtaShapeN * kThreadN));
kernel::TensorScaleBiasConv2d<
TensorRef<ElementIn, Layout>,
TensorRef<ElementOut, Layout>,
ScalarType,
TensorRef<ScalarType, LayoutScaleBias>,
ConvertOp,
kThreadM,
kThreadN,
kCtaShapeM,
kCtaShapeN
><<< grid, block >>> (
problem_size,
tensor_in,
tensor_out,
alpha,
tensor_scale,
tensor_bias
);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace device
} // namespace reference
} // namespace cutlass

View File

@ -0,0 +1,95 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include <iostream>
// Run tests on GPUs
int testRun(int arch, std::vector<bool (*)()> & test_funcs, const std::string & test_name) {
bool supported = false;
int arch_major = arch / 10;
int arch_minor = arch - arch / 10 * 10;
if(arch_major >= 8) {
// Ampere Tensor Core operations exposed with mma.sync are first available in CUDA 11.0.
//
// CUTLASS must be compiled with CUDA 11 Toolkit to run Conv2dFprop examples.
if (__CUDACC_VER_MAJOR__ > 11 || (__CUDACC_VER_MAJOR__ == 11 && __CUDACC_VER_MINOR__ >= 0)) {
supported = true;
}
}
else if(arch_major >= 7) {
// Turing Tensor Core operations exposed with mma.sync are first available in CUDA 10.2.
//
// CUTLASS must be compiled with CUDA 10.2 Toolkit to run these examples.
if (__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2)) {
supported = true;
}
}
cudaDeviceProp props;
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (error != cudaSuccess) {
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
return -1;
}
if (!(props.major == arch_major && props.minor == arch_minor)) {
supported = false;
}
if (!supported) {
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
std::cout << "This example isn't supported on current architecture" << std::endl;
return 0;
}
bool pass = true;
std::cout << "Device: " << props.name << std::endl;
std::cout << "Arch: SM" << arch << std::endl;
std::cout << "Test: " << test_name << std::endl;
for(auto func : test_funcs) {
pass &= func();
}
if(pass)
return 0;
else
return -1;
}

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -693,7 +699,7 @@ public:
// Mainloop
//
CUTLASS_GEMM_LOOP
CUTLASS_PRAGMA_UNROLL
for (gemm_k_iterations_1 = FragmentIteratorA1::Policy::kIterations / Base::kWarpGemmIterations1 - (Base::kStages - 1);
gemm_k_iterations_1 > (-Base::kStages + 1); gemm_k_iterations_1--) {
//
@ -739,7 +745,6 @@ public:
this->warp_tile_iterator_B1_.load(warp_loaded_frag_B1[(warp_mma_k + 1) % 2]);
++this->warp_tile_iterator_B1_;
if (warp_mma_k > 0)
warp_mma1.transform(warp_transformed_frag_A1[warp_mma_k % 2],
warp_transformed_frag_B1[warp_mma_k % 2],

View File

@ -0,0 +1,816 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Template for a multistage threadblock-scoped Implicit GEMM Convolution kernel.
*/
#pragma once
#include "cutlass/aligned_buffer.h"
#include "cutlass/arch/memory.h"
#include "cutlass/array.h"
#include "cutlass/cutlass.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/matrix_shape.h"
#include "cutlass/numeric_types.h"
#include "cutlass/arch/cache_operation.h"
#include "cutlass/gemm/threadblock/mma_base.h"
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
#include "threadblock/b2b_mma_base_smem_accumulator.h"
#include "cutlass/epilogue/threadblock/epilogue_smem_accumulator.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace conv {
namespace threadblock {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Structure to compute the matrix product targeting CUDA cores and SIMT math
/// instructions.
template <
/// Size of the Gemm problem - concept: gemm::GemmShape<>
typename Shape0_,
/// Iterates over tiles of A operand in global memory
// (concept: ReadableTileIterator | ForwardTileIterator |
// MaskedTileIterator)
typename IteratorA0_,
/// Iterates over tiles of A operand in shared memory
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
typename SmemIteratorA0_,
/// Cache operation for operand A
cutlass::arch::CacheOperation::Kind CacheOpA0,
/// Iterates over tiles of B operand in global memory
// (concept: ReadableTileIterator | ForwardTileIterator |
// MaskedTileIterator)
typename IteratorB0_,
/// Iterates over tiles of B operand in shared memory
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
typename SmemIteratorB0_,
/// Cache operation for operand B
cutlass::arch::CacheOperation::Kind CacheOpB0,
/// Iterates over vectors of scale and bias vector in global memory
// (concept: VectorIterator)
typename IteratorAccumulatorScaleBias_,
/// Iterates over accumulator tile
typename FragmentIteratorAccumulator_,
/// Iterates over accumulator tile in shared memory
typename SmemIteratorD0_,
/// Size of the Gemm problem - concept: gemm::GemmShape<>
typename Shape1_,
/// Iterates over the intermediate accumulator tile
// (concept::MmaTensorOpFragmentIterator)
typename WarpIteratorA1_,
/// Iterates over tiles of B operand in global memory
// (concept: ReadableTileIterator | ForwardTileIterator |
// MaskedTileIterator)
typename IteratorB1_,
/// Iterates over tiles of B operand in shared memory
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
typename SmemIteratorB1_,
/// Cache operation for operand B
cutlass::arch::CacheOperation::Kind CacheOpB1,
/// Output operator for 1st Gemm(concept: epilogue::thread::LinearCombinationClamp, etc...)
typename OutputOp_,
/// Policy describing tuning details (concept: MmaPolicy)
typename Policy0_,
/// Policy describing tuning details (concept: MmaPolicy)
typename Policy1_,
/// Number of stages,
int Stages,
/// Used for partial specialization
typename Enable = bool>
class B2bImplicitGemmMultistageSmemAccumulator :
public gemm::threadblock::B2bMmaBaseSmemAccumulator<Shape0_, Shape1_, Policy0_, Policy1_, SmemIteratorD0_, Stages> {
public:
///< Base class
using Base = gemm::threadblock::B2bMmaBaseSmemAccumulator<Shape0_, Shape1_, Policy0_, Policy1_, SmemIteratorD0_, Stages>;
///< Size of the Gemm problem - concept: gemm::GemmShape<>
using Shape0 = Shape0_;
///< Iterates over tiles of A operand in global memory
using IteratorA0 = IteratorA0_;
///< Iterates over tiles of B operand in global memory
using IteratorB0 = IteratorB0_;
///< Iterates over tiles of the scale and bias vectors in global memory
using IteratorAccumulatorScaleBias = IteratorAccumulatorScaleBias_;
///< Policy describing tuning details
using Policy0 = Policy0_;
using SmemIteratorA0 = SmemIteratorA0_;
using SmemIteratorB0 = SmemIteratorB0_;
using SmemIteratorD0 = SmemIteratorD0_; ///< Iterates over accumulator tile in shared memory
using FragmentIteratorAccumulator = FragmentIteratorAccumulator_; ///< Iterates over accumulator tile
///< Size of the Gemm problem - concept: gemm::GemmShape<>
using Shape1 = Shape1_;
///< Iterates over tiles of B operand in global memory
using IteratorB1 = IteratorB1_;
///< Policy describing tuning details
using Policy1 = Policy1_;
using SmemIteratorB1 = SmemIteratorB1_;
using WarpIteratorA1 = WarpIteratorA1_; ///< Iterates over the intermediate accumulator tile in shared memory
///< Epilogue after 1st Gemm
using OutputOp = OutputOp_;
static const bool PerChannelScale = (OutputOp::kScale ==
epilogue::thread::ScaleType::OnlyAlphaPerChannelScaling);
static cutlass::arch::CacheOperation::Kind const kCacheOpA0 = CacheOpA0;
static cutlass::arch::CacheOperation::Kind const kCacheOpB0 = CacheOpB0;
static cutlass::arch::CacheOperation::Kind const kCacheOpB1 = CacheOpB1;
//
// Dependent types
//
using ElementC = typename Policy0::Operator::ElementC;
/// Fragment of accumulator tile
using FragmentC0 = typename Policy0::Operator::FragmentC;
/// Warp-level Mma
using Operator0 = typename Policy0::Operator;
/// Fragment of Scale and Bias loaded from global memory
using FragmentA1ScaleBias = typename IteratorAccumulatorScaleBias::Fragment;
/// Fragment of accumulator tile
using FragmentC1 = typename Policy1::Operator::FragmentC;
/// Warp-level Mma
using Operator1 = typename Policy1::Operator;
/// Epilog in shared memory
using Epilogue0 = epilogue::threadblock::EpilogueSmemAccumulator<
SmemIteratorD0, ///< SmemTileIterator
FragmentIteratorAccumulator, ///< AccumulatorFragmentIterator
IteratorAccumulatorScaleBias, ///< ScaleBiasIterator
OutputOp>; ///< Output operator
/// Internal structure exposed for introspection.
struct Detail {
static_assert(Base::kWarpGemmIterations0 > 1,
"The pipelined structure requires at least two warp-level "
"GEMM operations.");
static_assert(Base::kWarpGemmIterations1 > 1,
"The pipelined structure requires at least two warp-level "
"GEMM operations.");
/// Number of cp.async instructions to load one stage of operand A
static int const AsyncCopyIterationsPerStageA0 =
IteratorA0::ThreadMap::Iterations::kCount;
/// Number of cp.async instructions to load one stage of operand B
static int const AsyncCopyIterationsPerStageB0 =
IteratorB0::ThreadMap::Iterations::kCount;
/// Number of cp.async instructions to load one stage of operand B
static int const AsyncCopyIterationsPerStageB1 =
IteratorB1::ThreadMap::Iterations::kCount;
/// Number of stages
static int const kStages = Stages;
/// Number of cp.async instructions to load on group of operand A
static int const kAccessesPerGroupA0 =
(AsyncCopyIterationsPerStageA0 + Base::kWarpGemmIterations0 - 1) / Base::kWarpGemmIterations0;
/// Number of cp.async instructions to load on group of operand B
static int const kAccessesPerGroupB0 =
(AsyncCopyIterationsPerStageB0 + Base::kWarpGemmIterations0 - 1) / Base::kWarpGemmIterations0;
/// Number of cp.async instructions to load on group of operand B
static int const kAccessesPerGroupB1 =
(AsyncCopyIterationsPerStageB1 + Base::kWarpGemmIterations1 - 1) / Base::kWarpGemmIterations1;
};
private:
using WarpLoadedFragmentA0 = typename Operator0::FragmentA;
using WarpLoadedFragmentB0 = typename Operator0::FragmentB;
using WarpLoadedFragmentA1 = typename Operator1::FragmentA;
using WarpLoadedFragmentB1 = typename Operator1::FragmentB;
using WarpTransformedFragmentA0 = typename Operator0::TransformedFragmentA;
using WarpTransformedFragmentB0 = typename Operator0::TransformedFragmentB;
using WarpTransformedFragmentA1 = typename Operator1::TransformedFragmentA;
using WarpTransformedFragmentB1 = typename Operator1::TransformedFragmentB;
private:
//
// Data members
//
/// Iterator to write threadblock-scoped tile of A operand to shared memory
SmemIteratorA0 smem_iterator_A0_;
/// Iterator to write threadblock-scoped tile of B operand to shared memory
SmemIteratorB0 smem_iterator_B0_;
/// Shared Memory Iterator to store accumulator tile
SmemIteratorD0 smem_iterator_D0_;
/// Iterator to load a warp-scoped tile of A1 operand from intermediate accumulator tile
WarpIteratorA1 warp_tile_iterator_A1_;
/// Iterator to write threadblock-scoped tile of B operand to shared memory
SmemIteratorB1 smem_iterator_B1_;
public:
/// Construct from tensor references
CUTLASS_DEVICE
B2bImplicitGemmMultistageSmemAccumulator(
///< Shared storage needed for internal use by threadblock-scoped GEMM
typename Base::B2bMmaSharedStorage &shared_storage,
///< ID within the threadblock
int thread_idx,
///< ID of warp
int warp_idx,
///< ID of each thread within a warp
int lane_idx
):
Base(shared_storage, thread_idx, warp_idx, lane_idx),
smem_iterator_A0_(shared_storage.b2b_mma_shared_storage.shared_storage0.operand_A_ref(), thread_idx),
smem_iterator_B0_(shared_storage.b2b_mma_shared_storage.shared_storage0.operand_B_ref(), thread_idx),
smem_iterator_D0_(shared_storage.accumulator_shared_storage0.accum_ref(), lane_idx),
warp_tile_iterator_A1_(shared_storage.accumulator_shared_storage0.accum_ref(), lane_idx),
smem_iterator_B1_(shared_storage.b2b_mma_shared_storage.shared_storage1.operand_B_ref(), thread_idx)
{
// Compute warp location within threadblock tile by mapping the warp_id to
// three coordinates:
// _m: the warp's position within the threadblock along the M dimension
// _n: the warp's position within the threadblock along the N dimension
// _k: the warp's position within the threadblock along the K dimension
int warp_idx_mn_0 = warp_idx % (Base::WarpCount0::kM * Base::WarpCount0::kN);
int warp_idx_k_0 = warp_idx / (Base::WarpCount0::kM * Base::WarpCount0::kN);
int warp_idx_m_0 = warp_idx_mn_0 % Base::WarpCount0::kM;
int warp_idx_n_0 = warp_idx_mn_0 / Base::WarpCount0::kM;
int warp_idx_mn_1 = warp_idx % (Base::WarpCount1::kM * Base::WarpCount1::kN);
int warp_idx_k_1 = warp_idx / (Base::WarpCount1::kM * Base::WarpCount1::kN);
int warp_idx_m_1 = warp_idx_mn_1 % Base::WarpCount1::kM;
int warp_idx_n_1 = warp_idx_mn_1 / Base::WarpCount1::kM;
// Add per-warp offsets in units of warp-level tiles
this->warp_tile_iterator_A0_.add_tile_offset(
{warp_idx_m_0, Base::kWarpGemmIterations0 * warp_idx_k_0});
this->warp_tile_iterator_B0_.add_tile_offset(
{Base::kWarpGemmIterations0 * warp_idx_k_0, warp_idx_n_0});
warp_tile_iterator_A1_.add_tile_offset(
{warp_idx_m_1, Base::kWarpGemmIterations1 * warp_idx_k_1});
this->warp_tile_iterator_B1_.add_tile_offset(
{Base::kWarpGemmIterations1 * warp_idx_k_1, warp_idx_n_1});
// Add smem accumulator iterator warp offset
smem_iterator_D0_.add_tile_offset({ warp_idx_m_0 * SmemIteratorD0::TileIterations::kRow,
warp_idx_n_0 * SmemIteratorD0::TileIterations::kColumn});
}
CUTLASS_DEVICE
void copy_tiles_and_advance_0(
IteratorA0 &iterator_A0, IteratorB0 &iterator_B0,
int group_start_A0 = 0, int group_start_B0 = 0) {
iterator_A0.set_iteration_index(group_start_A0);
this->smem_iterator_A0_.set_iteration_index(group_start_A0);
// Async Copy for operand A
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < Detail::kAccessesPerGroupA0; ++j) {
if (group_start_A0 + j < Detail::AsyncCopyIterationsPerStageA0) {
typename IteratorA0::AccessType *dst_ptr =
reinterpret_cast<typename IteratorA0::AccessType *>(
this->smem_iterator_A0_.get());
int const kSrcBytes = sizeof_bits<typename IteratorA0::Element>::value *
IteratorA0::ThreadMap::kElementsPerAccess / 8;
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpA0>(
dst_ptr, iterator_A0.get(), iterator_A0.valid());
++iterator_A0;
++this->smem_iterator_A0_;
}
}
iterator_B0.set_iteration_index(group_start_B0);
this->smem_iterator_B0_.set_iteration_index(group_start_B0);
// Async Copy for operand B
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < Detail::kAccessesPerGroupB0; ++j) {
if (group_start_B0 + j < Detail::AsyncCopyIterationsPerStageB0) {
typename IteratorB0::AccessType *dst_ptr =
reinterpret_cast<typename IteratorB0::AccessType *>(
this->smem_iterator_B0_.get());
int const kSrcBytes = sizeof_bits<typename IteratorB0::Element>::value *
IteratorB0::ThreadMap::kElementsPerAccess / 8;
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB0>(
dst_ptr, iterator_B0.get(), iterator_B0.valid());
++iterator_B0;
++this->smem_iterator_B0_;
}
}
}
CUTLASS_DEVICE
void copy_tiles_and_advance_1(
IteratorB1 &iterator_B1,
int group_start_B1 = 0) {
iterator_B1.set_iteration_index(group_start_B1);
this->smem_iterator_B1_.set_iteration_index(group_start_B1);
// Async Copy for operand B
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < Detail::kAccessesPerGroupB1; ++j) {
if (group_start_B1 + j < Detail::AsyncCopyIterationsPerStageB1) {
typename IteratorB1::AccessType *dst_ptr =
reinterpret_cast<typename IteratorB1::AccessType *>(
this->smem_iterator_B1_.get());
int const kSrcBytes = sizeof_bits<typename IteratorB1::Element>::value *
IteratorB1::ThreadMap::kElementsPerAccess / 8;
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB1>(
dst_ptr, iterator_B1.get(), iterator_B1.valid());
++iterator_B1;
++this->smem_iterator_B1_;
}
}
}
/// Perform a threadblock-scoped matrix multiply-accumulate
CUTLASS_DEVICE
void operator()(
///< problem size of GEMM
int gemm_k_iterations_0,
///< destination accumulator tile
FragmentC1 &accum,
///< iterator over A0 operand in global memory
IteratorA0 iterator_A0,
///< iterator over B0 operand in global memory
IteratorB0 iterator_B0,
///< iterator over A1 operand scale vector in global memory
IteratorAccumulatorScaleBias iterator_accum0_scale,
///< iterator over A1 operand bias vector in global memory
IteratorAccumulatorScaleBias iterator_accum0_bias,
///< iterator over B1 operand in global memory
IteratorB1 iterator_B1,
///< initial value of accumulator
FragmentC0 const &src_accum,
///< epilogue operation after 1st Gemm
OutputOp output_op_0,
///< Imaginary strides used for planar-complex only - ignored here
int64_t imag_stride_A = 0,
int64_t imag_stride_B = 0) {
//
// Prologue
//
// Issue several complete stages
CUTLASS_PRAGMA_UNROLL
for (int stage = 0; stage < Base::kStages - 1;
++stage, --gemm_k_iterations_0) {
iterator_A0.set_iteration_index(0);
this->smem_iterator_A0_.set_iteration_index(0);
// Async Copy for operand A
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < Detail::AsyncCopyIterationsPerStageA0; ++j) {
typename IteratorA0::AccessType *dst_ptr =
reinterpret_cast<typename IteratorA0::AccessType *>(
this->smem_iterator_A0_.get());
int const kSrcBytes =
sizeof_bits<typename IteratorA0::Element>::value *
IteratorA0::ThreadMap::kElementsPerAccess / 8;
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpA0>(
dst_ptr, iterator_A0.get(), iterator_A0.valid());
++iterator_A0;
++this->smem_iterator_A0_;
}
iterator_B0.set_iteration_index(0);
this->smem_iterator_B0_.set_iteration_index(0);
// Async Copy for operand B
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < Detail::AsyncCopyIterationsPerStageB0; ++j) {
typename IteratorB0::AccessType *dst_ptr =
reinterpret_cast<typename IteratorB0::AccessType *>(
this->smem_iterator_B0_.get());
int const kSrcBytes =
sizeof_bits<typename IteratorB0::Element>::value *
IteratorB0::ThreadMap::kElementsPerAccess / 8;
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB0>(
dst_ptr, iterator_B0.get(), iterator_B0.valid());
++iterator_B0;
++this->smem_iterator_B0_;
}
// Move to the next stage
iterator_A0.advance();
iterator_B0.advance();
this->smem_iterator_A0_.add_tile_offset({0, 1});
this->smem_iterator_B0_.add_tile_offset({1, 0});
// Inserts a fence to group cp.async instructions into stages.
cutlass::arch::cp_async_fence();
}
// Perform accumulation in the 'd' output operand
FragmentC0 accum0 = src_accum;
// Waits until kStages-2 stages have committed.
cutlass::arch::cp_async_wait<Base::kStages - 2>();
__syncthreads();
// Pair of fragments used to overlap shared memory loads and math
// instructions
WarpLoadedFragmentA0 warp_loaded_frag_A0[2];
WarpLoadedFragmentB0 warp_loaded_frag_B0[2];
WarpTransformedFragmentA0 warp_transformed_frag_A0[2];
WarpTransformedFragmentB0 warp_transformed_frag_B0[2];
Operator0 warp_mma0;
this->warp_tile_iterator_A0_.set_kgroup_index(0);
this->warp_tile_iterator_B0_.set_kgroup_index(0);
this->warp_tile_iterator_A0_.load(warp_loaded_frag_A0[0]);
this->warp_tile_iterator_B0_.load(warp_loaded_frag_B0[0]);
++this->warp_tile_iterator_A0_;
++this->warp_tile_iterator_B0_;
// Start issuing the first group of the next stage outside of the mainloop
copy_tiles_and_advance_0(iterator_A0, iterator_B0);
int smem_write_stage_idx = Base::kStages - 1;
int smem_read_stage_idx = 0;
warp_mma0.transform(warp_transformed_frag_A0[0], warp_transformed_frag_B0[0],
warp_loaded_frag_A0[0], warp_loaded_frag_B0[0]);
//
// Mainloop
//
CUTLASS_GEMM_LOOP
for (; gemm_k_iterations_0 > (-Base::kStages + 1);) {
//
// Loop over GEMM K dimension
//
// Computes a warp-level GEMM on data held in shared memory
// Each "warp_mma_k" refers to a warp-level matrix multiply-accumulate
CUTLASS_PRAGMA_UNROLL
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations0;
++warp_mma_k) {
// Load warp-level tiles from shared memory, wrapping to k offset if
// this is the last group as the case may be.
this->warp_tile_iterator_A0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);
this->warp_tile_iterator_B0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);
this->warp_tile_iterator_A0_.load(warp_loaded_frag_A0[(warp_mma_k + 1) % 2]);
this->warp_tile_iterator_B0_.load(warp_loaded_frag_B0[(warp_mma_k + 1) % 2]);
++this->warp_tile_iterator_A0_;
++this->warp_tile_iterator_B0_;
if (warp_mma_k > 0)
warp_mma0.transform(warp_transformed_frag_A0[warp_mma_k % 2],
warp_transformed_frag_B0[warp_mma_k % 2],
warp_loaded_frag_A0[warp_mma_k % 2],
warp_loaded_frag_B0[warp_mma_k % 2]);
// Issue global->shared copies for the next stage
int group_start_iteration_A0, group_start_iteration_B0;
if (warp_mma_k + 1 == Base::kWarpGemmIterations0) {
group_start_iteration_A0 = 0;
group_start_iteration_B0 = 0;
} else {
group_start_iteration_A0 =
(warp_mma_k + 1) * Detail::kAccessesPerGroupA0;
group_start_iteration_B0 =
(warp_mma_k + 1) * Detail::kAccessesPerGroupB0;
}
copy_tiles_and_advance_0(iterator_A0, iterator_B0, group_start_iteration_A0,
group_start_iteration_B0);
warp_mma0(
accum0,
warp_transformed_frag_A0[warp_mma_k % 2],
warp_transformed_frag_B0[warp_mma_k % 2],
accum0
);
if (warp_mma_k + 1 == Base::kWarpGemmIterations0)
warp_mma0.transform(warp_transformed_frag_A0[(warp_mma_k + 1) % 2],
warp_transformed_frag_B0[(warp_mma_k + 1) % 2],
warp_loaded_frag_A0[(warp_mma_k + 1) % 2],
warp_loaded_frag_B0[(warp_mma_k + 1) % 2]);
if (warp_mma_k + 2 == Base::kWarpGemmIterations0) {
// Inserts a fence to group cp.async instructions into stages.
cutlass::arch::cp_async_fence();
// Waits until kStages-2 stages of cp.async have committed
arch::cp_async_wait<Base::kStages - 2>();
__syncthreads();
// Move to the next stage
iterator_A0.advance();
iterator_B0.advance();
this->smem_iterator_A0_.add_tile_offset({0, 1});
this->smem_iterator_B0_.add_tile_offset({1, 0});
// Add negative offsets to return iterators to the 'start' of the
// circular buffer in shared memory
if (smem_write_stage_idx == (Base::kStages - 1)) {
this->smem_iterator_A0_.add_tile_offset({0, -Base::kStages});
this->smem_iterator_B0_.add_tile_offset({-Base::kStages, 0});
smem_write_stage_idx = 0;
} else {
++smem_write_stage_idx;
}
if (smem_read_stage_idx == (Base::kStages - 1)) {
this->warp_tile_iterator_A0_.add_tile_offset(
{0, -Base::kStages * Policy0::kPartitionsK *
Base::kWarpGemmIterations0});
this->warp_tile_iterator_B0_.add_tile_offset(
{-Base::kStages * Policy0::kPartitionsK *
Base::kWarpGemmIterations0,
0});
smem_read_stage_idx = 0;
} else {
++smem_read_stage_idx;
}
--gemm_k_iterations_0;
}
}
}
// Insert fence and wait for all outstanding cp.async operations to commit.
cutlass::arch::cp_async_fence();
cutlass::arch::cp_async_wait<0>();
__syncthreads();
/// Epilogue for the first Implicit Gemm
Epilogue0 epilogue0;
epilogue0(output_op_0, smem_iterator_D0_, accum0, iterator_accum0_scale, iterator_accum0_bias);
__syncthreads();
// 2nd Implicit Gemm
//
// Prologue
//
int gemm_k_iterations_1 = Shape0::kN / Shape1::kK;
// Issue several complete stages
CUTLASS_PRAGMA_UNROLL
for (int stage = 0; stage < Base::kStages - 1;
++stage, --gemm_k_iterations_1) {
iterator_B1.set_iteration_index(0);
this->smem_iterator_B1_.set_iteration_index(0);
// Async Copy for operand B
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < Detail::AsyncCopyIterationsPerStageB1; ++j) {
typename IteratorB1::AccessType *dst_ptr =
reinterpret_cast<typename IteratorB1::AccessType *>(
this->smem_iterator_B1_.get());
int const kSrcBytes =
sizeof_bits<typename IteratorB1::Element>::value *
IteratorB1::ThreadMap::kElementsPerAccess / 8;
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB1>(
dst_ptr, iterator_B1.get(), iterator_B1.valid());
++iterator_B1;
++this->smem_iterator_B1_;
}
// Move to the next stage
iterator_B1.advance();
this->smem_iterator_B1_.add_tile_offset({1, 0});
// Inserts a fence to group cp.async instructions into stages.
cutlass::arch::cp_async_fence();
}
// Waits until kStages-2 stages have committed.
cutlass::arch::cp_async_wait<Base::kStages - 2>();
__syncthreads();
// Pair of fragments used to overlap shared memory loads and math
// instructions
WarpLoadedFragmentA1 warp_loaded_frag_A1[2];
WarpLoadedFragmentB1 warp_loaded_frag_B1[2];
WarpTransformedFragmentA1 warp_transformed_frag_A1[2];
WarpTransformedFragmentB1 warp_transformed_frag_B1[2];
Operator1 warp_mma1;
warp_tile_iterator_A1_.load(warp_loaded_frag_A1[0]);
++warp_tile_iterator_A1_;
this->warp_tile_iterator_B1_.set_kgroup_index(0);
this->warp_tile_iterator_B1_.load(warp_loaded_frag_B1[0]);
++this->warp_tile_iterator_B1_;
// Start issuing the first group of the next stage outside of the mainloop
copy_tiles_and_advance_1(iterator_B1);
smem_write_stage_idx = Base::kStages - 1;
smem_read_stage_idx = 0;
warp_mma1.transform(warp_transformed_frag_A1[0], warp_transformed_frag_B1[0],
warp_loaded_frag_A1[0], warp_loaded_frag_B1[0]);
//
// Mainloop
//
CUTLASS_PRAGMA_UNROLL
for ( gemm_k_iterations_1 = Shape0::kN / Shape1::kK - (Base::kStages - 1);
gemm_k_iterations_1 > (-Base::kStages + 1); gemm_k_iterations_1--) {
//
// Loop over GEMM K dimension
//
// Computes a warp-level GEMM on data held in shared memory
// Each "warp_mma_k" refers to a warp-level matrix multiply-accumulate
CUTLASS_PRAGMA_UNROLL
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations1;
++warp_mma_k) {
// Load warp-level tile from accumulator fragment
// skip warp tile loading for the last kgroup
if(gemm_k_iterations_1 > (-Base::kStages + 2) || warp_mma_k < Base::kWarpGemmIterations1 - 1) {
warp_tile_iterator_A1_.load(warp_loaded_frag_A1[(warp_mma_k + 1) % 2]);
}
++warp_tile_iterator_A1_;
// Load warp-level tiles from shared memory, wrapping to k offset if
// this is the last group as the case may be.
this->warp_tile_iterator_B1_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations1);
this->warp_tile_iterator_B1_.load(warp_loaded_frag_B1[(warp_mma_k + 1) % 2]);
++this->warp_tile_iterator_B1_;
if (warp_mma_k > 0)
warp_mma1.transform(warp_transformed_frag_A1[warp_mma_k % 2],
warp_transformed_frag_B1[warp_mma_k % 2],
warp_loaded_frag_A1[warp_mma_k % 2],
warp_loaded_frag_B1[warp_mma_k % 2]);
// Issue global->shared copies for the next stage
int group_start_iteration_B1;
if (warp_mma_k + 1 == Base::kWarpGemmIterations1) {
group_start_iteration_B1 = 0;
} else {
group_start_iteration_B1 =
(warp_mma_k + 1) * Detail::kAccessesPerGroupB1;
}
copy_tiles_and_advance_1(iterator_B1,
group_start_iteration_B1);
warp_mma1(
accum,
warp_transformed_frag_A1[warp_mma_k % 2],
warp_transformed_frag_B1[warp_mma_k % 2],
accum
);
if (warp_mma_k + 1 == Base::kWarpGemmIterations1)
warp_mma1.transform(warp_transformed_frag_A1[(warp_mma_k + 1) % 2],
warp_transformed_frag_B1[(warp_mma_k + 1) % 2],
warp_loaded_frag_A1[(warp_mma_k + 1) % 2],
warp_loaded_frag_B1[(warp_mma_k + 1) % 2]);
if (warp_mma_k + 2 == Base::kWarpGemmIterations1) {
// Inserts a fence to group cp.async instructions into stages.
cutlass::arch::cp_async_fence();
// Waits until kStages-2 stages of cp.async have committed
arch::cp_async_wait<Base::kStages - 2>();
__syncthreads();
// Move to the next stage
iterator_B1.advance();
this->smem_iterator_B1_.add_tile_offset({1, 0});
// Add negative offsets to return iterators to the 'start' of the
// circular buffer in shared memory
if (smem_write_stage_idx == (Base::kStages - 1)) {
this->smem_iterator_B1_.add_tile_offset({-Base::kStages, 0});
smem_write_stage_idx = 0;
} else {
++smem_write_stage_idx;
}
if (smem_read_stage_idx == (Base::kStages - 1)) {
this->warp_tile_iterator_B1_.add_tile_offset(
{-Base::kStages * Policy1::kPartitionsK *
Base::kWarpGemmIterations1,
0});
smem_read_stage_idx = 0;
} else {
++smem_read_stage_idx;
}
}
}
}
// Insert fence and wait for all outstanding cp.async operations to commit.
cutlass::arch::cp_async_fence();
cutlass::arch::cp_async_wait<0>();
__syncthreads();
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace threadblock
} // namespace gemm
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -67,8 +73,7 @@ template <
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
typename SmemIteratorB0_,
/// Iterates over vectors of scale and bias vector in global memory
// (concept: ReadableTileIterator | ForwardTileIterator |
// MaskedTileIterator)
// (concept: VectorIterator)
typename IteratorAccumulatorScaleBias_,
/// Iterates over accumulator tile
typename FragmentIteratorAccumulator_,
@ -94,19 +99,19 @@ template <
typename Policy0_,
/// Policy describing tuning details (concept: MmaPolicy)
typename Policy1_,
/// Transformation applied to A operand
/// Transformation applied to A0 operand
typename TransformA0_ = NumericArrayConverter<
typename SmemIteratorA0_::Element,
typename IteratorA0_::Element,
IteratorA0_::Fragment::kElements>,
///
/// Transformation applied to B operand
/// Transformation applied to B0 operand
typename TransformB0_ = NumericArrayConverter<
typename SmemIteratorB0_::Element,
typename IteratorB0_::Element,
IteratorB0_::Fragment::kElements>,
///
/// Transformation applied to B operand
/// Transformation applied to B1 operand
typename TransformB1_ = NumericArrayConverter<
typename SmemIteratorB1_::Element,
typename IteratorB1_::Element,
@ -396,7 +401,6 @@ public:
iterator_A.load(tb_frag_A);
iterator_B0.load(tb_frag_B0);
++iterator_A;
++iterator_B0;
}
@ -452,11 +456,8 @@ public:
smem_write_stage_idx = 1;
// int gemm_k_iterations_1 = FragmentIteratorA1::Policy::kIterations / Base::kWarpGemmIterations1;
int gemm_k_iterations_1 = Shape0::kN / Shape1::kK;
// Issue loads during the first warp-level matrix multiply-add *AFTER* issuing
// shared memory loads (which have the tighest latency requirement).
//
// Mainloop
@ -477,6 +478,7 @@ public:
if (warp_mma_k == Base::kWarpGemmIterations1 - 1) {
// Write fragments to shared memory
this->smem_iterator_B1_.store(transform_B1(tb_frag_B1));
__syncthreads();
@ -489,7 +491,8 @@ public:
}
else {
this->warp_tile_iterator_B1_.add_tile_offset(
{-Base::kStages * Policy1::kPartitionsK * Base::kWarpGemmIterations1,
{-Base::kStages * Policy1::kPartitionsK *
Base::kWarpGemmIterations1,
0});
}
@ -501,7 +504,7 @@ public:
// skip warp tile loading for the last kgroup
if(gemm_k_iterations_1 > 1 || warp_mma_k < Base::kWarpGemmIterations1 - 1)
warp_tile_iterator_A1_.load(warp_frag_A1[(warp_mma_k + 1) % 2]);
warp_tile_iterator_A1_.load(warp_frag_A1[(warp_mma_k + 1) % 2]);
this->warp_tile_iterator_B1_.load(warp_frag_B1[(warp_mma_k + 1) % 2]);
++warp_tile_iterator_A1_;

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -64,11 +70,11 @@ template <
/// Used for partial specialization
typename Enable = bool>
class B2bMmaBaseSmemAccumulator :
public B2bMmaBase<Shape0_, Shape1_, Policy0_, Policy1_, 2> {
public B2bMmaBase<Shape0_, Shape1_, Policy0_, Policy1_, Stages> {
public:
///< Base class
using Base = B2bMmaBase<Shape0_, Shape1_, Policy0_, Policy1_, 2>;
using Base = B2bMmaBase<Shape0_, Shape1_, Policy0_, Policy1_, Stages>;
///< Size of the Gemm problem - concept: gemm::GemmShape<>
using Shape0 = Shape0_;
@ -146,7 +152,6 @@ class B2bMmaBaseSmemAccumulator :
AccumulatorSharedStorage0 accumulator_shared_storage0;
};
public:
/// Construct from tensor references

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -76,6 +82,11 @@ template <
/// Iterates over the intermediate accumulator tile
// (concept::MmaTensorOpFragmentIterator)
typename FragmentIteratorA1_,
/// Iterates over vectors of scale and bias vector in global memory
// (concept: VectorIterator)
typename IteratorAccumulatorScaleBias_,
/// WarpIterator to load Scale or Bias vector from threadblock fragment
typename FragmentIteratorA1ScaleBias_,
/// Iterates over tiles of B operand in global memory
// (concept: ReadableTileIterator | ForwardTileIterator |
// MaskedTileIterator)
@ -120,6 +131,10 @@ public:
using Shape1 = Shape1_;
///< Iterates over intermediate accumulator tile
using FragmentIteratorA1 = FragmentIteratorA1_;
///< Iterates over tiles of the scale and bias vectors in global memory
using IteratorAccumulatorScaleBias = IteratorAccumulatorScaleBias_;
///< WarpIterator to load Scale or Bias vector from threadblock fragment
using FragmentIteratorA1ScaleBias = FragmentIteratorA1ScaleBias_;
///< Iterates over tiles of B operand in global memory
using IteratorB1 = IteratorB1_;
///< Policy describing tuning details
@ -134,6 +149,9 @@ public:
///< Epilogue after 1st Gemm
using OutputOp = OutputOp_;
static const bool PerChannelScale = (OutputOp::kScale ==
epilogue::thread::ScaleType::OnlyAlphaPerChannelScaling);
static cutlass::arch::CacheOperation::Kind const kCacheOpA0 = CacheOpA0;
static cutlass::arch::CacheOperation::Kind const kCacheOpB0 = CacheOpB0;
@ -148,6 +166,9 @@ public:
/// Warp-level Mma
using Operator0 = typename Policy0::Operator;
/// Fragment of Scale and Bias loaded from global memory
using FragmentA1ScaleBias = typename IteratorAccumulatorScaleBias::Fragment;
/// Fragment of accumulator tile
using FragmentC1 = typename Policy1::Operator::FragmentC;
@ -211,6 +232,8 @@ public:
using WarpLoadedFragmentB0 = typename Operator0::FragmentB;
/// Warp Fragment of operand A1 loaded from accmulator tile
using WarpLoadedFragmentA1 = typename FragmentIteratorA1::Fragment;
using WarpLoadedFragmentA1ScaleBias =
typename FragmentIteratorA1ScaleBias::Fragment;
using WarpLoadedFragmentB1 = typename Operator1::FragmentB;
using WarpTransformedFragmentA0 = typename Operator0::TransformedFragmentA;
using WarpTransformedFragmentB0 = typename Operator0::TransformedFragmentB;
@ -375,11 +398,15 @@ public:
int gemm_k_iterations_0,
///< destination accumulator tile
FragmentC1 &accum,
///< iterator over A operand in global memory
///< iterator over A0 operand in global memory
IteratorA0 iterator_A0,
///< iterator over B operand in global memory
///< iterator over B0 operand in global memory
IteratorB0 iterator_B0,
///< iterator over B operand in global memory
///< iterator over A1 operand scale vector in global memory
IteratorAccumulatorScaleBias iterator_A1_scale,
///< iterator over A1 operand bias vector in global memory
IteratorAccumulatorScaleBias iterator_A1_bias,
///< iterator over B1 operand in global memory
IteratorB1 iterator_B1,
///< initial value of accumulator
FragmentC0 const &src_accum,
@ -617,6 +644,20 @@ public:
/// Iterator to load a warp-scoped tile of A1 operand from intermediate accumulator tile
FragmentIteratorA1 warp_tile_iterator_A1_(accum0);
FragmentA1ScaleBias tb_frag_A1_scale;
FragmentA1ScaleBias tb_frag_A1_bias;
FragmentIteratorA1ScaleBias warp_tile_iterator_A1_scale_(tb_frag_A1_scale);
FragmentIteratorA1ScaleBias warp_tile_iterator_A1_bias_(tb_frag_A1_bias);
if(PerChannelScale) {
tb_frag_A1_scale.clear();
iterator_A1_scale.load(tb_frag_A1_scale);
++iterator_A1_scale;
}
tb_frag_A1_bias.clear();
iterator_A1_bias.load(tb_frag_A1_bias);
++iterator_A1_bias;
//
// Prologue
@ -672,18 +713,29 @@ public:
// Pair of fragments used to overlap shared memory loads and math
// instructions
WarpLoadedFragmentA1 warp_loaded_frag_A1[2];
WarpLoadedFragmentA1ScaleBias warp_loaded_frag_A1_scale[2];
WarpLoadedFragmentA1ScaleBias warp_loaded_frag_A1_bias[2];
WarpLoadedFragmentB1 warp_loaded_frag_B1[2];
WarpTransformedFragmentA1 warp_transformed_frag_A1[2];
WarpTransformedFragmentB1 warp_transformed_frag_B1[2];
Operator1 warp_mma1;
this->warp_tile_iterator_B1_.set_kgroup_index(0);
warp_tile_iterator_A1_.load(warp_loaded_frag_A1[0], output_op_0);
this->warp_tile_iterator_B1_.load(warp_loaded_frag_B1[0]);
if(PerChannelScale) {
warp_tile_iterator_A1_scale_.load(warp_loaded_frag_A1_scale[0]);
++warp_tile_iterator_A1_scale_;
}
warp_tile_iterator_A1_bias_.load(warp_loaded_frag_A1_bias[0]);
++warp_tile_iterator_A1_bias_;
warp_tile_iterator_A1_.load(warp_loaded_frag_A1[0],
warp_loaded_frag_A1_scale[0],
warp_loaded_frag_A1_bias[0],
output_op_0);
++warp_tile_iterator_A1_;
this->warp_tile_iterator_B1_.set_kgroup_index(0);
this->warp_tile_iterator_B1_.load(warp_loaded_frag_B1[0]);
++this->warp_tile_iterator_B1_;
iterator_B1.clear_mask(gemm_k_iterations_1 == 0);
@ -711,15 +763,37 @@ public:
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations1;
++warp_mma_k) {
// Load threadblock-level scale/bias vector from global memory
if (warp_mma_k + 1 == Base::kWarpGemmIterations1) {
if(PerChannelScale) {
tb_frag_A1_scale.clear();
iterator_A1_scale.load(tb_frag_A1_scale);
++iterator_A1_scale;
}
tb_frag_A1_bias.clear();
iterator_A1_bias.load(tb_frag_A1_bias);
++iterator_A1_bias;
}
// Load warp-level scale bias fragment from threadblock scale/bias vector
if(PerChannelScale) {
warp_tile_iterator_A1_scale_.load(warp_loaded_frag_A1_scale[(warp_mma_k + 1) % 2]);
++warp_tile_iterator_A1_scale_;
}
warp_tile_iterator_A1_bias_.load(warp_loaded_frag_A1_bias[(warp_mma_k + 1) % 2]);
++warp_tile_iterator_A1_bias_;
// Load warp-level tile from accumulator fragment
warp_tile_iterator_A1_.load(warp_loaded_frag_A1[(warp_mma_k + 1) % 2],
warp_loaded_frag_A1_scale[(warp_mma_k + 1) % 2],
warp_loaded_frag_A1_bias[(warp_mma_k + 1) % 2],
output_op_0);
++warp_tile_iterator_A1_;
// Load warp-level tiles from shared memory, wrapping to k offset if
// this is the last group as the case may be.
this->warp_tile_iterator_B1_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations1);
warp_tile_iterator_A1_.load(warp_loaded_frag_A1[(warp_mma_k + 1) % 2], output_op_0);
this->warp_tile_iterator_B1_.load(warp_loaded_frag_B1[(warp_mma_k + 1) % 2]);
++warp_tile_iterator_A1_;
++this->warp_tile_iterator_B1_;
if (warp_mma_k > 0)

View File

@ -0,0 +1,867 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Template for a double-buffered threadblock-scoped GEMM kernel.
*/
#pragma once
#include "cutlass/aligned_buffer.h"
#include "cutlass/arch/memory.h"
#include "cutlass/array.h"
#include "cutlass/cutlass.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/matrix_shape.h"
#include "cutlass/numeric_types.h"
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
#include "threadblock/b2b_mma_base_smem_accumulator.h"
#include "cutlass/epilogue/threadblock/epilogue_smem_accumulator.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace threadblock {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Structure to compute the matrix product targeting CUDA cores and SIMT math
/// instructions.
template <
/// Size of the Gemm problem - concept: gemm::GemmShape<>
typename Shape0_,
/// Iterates over tiles of A operand in global memory
// (concept: ReadableTileIterator | ForwardTileIterator |
// MaskedTileIterator)
typename IteratorA0_,
/// Iterates over tiles of A operand in shared memory
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
typename SmemIteratorA0_,
/// Cache operation for operand A
cutlass::arch::CacheOperation::Kind CacheOpA0,
/// Iterates over tiles of B operand in global memory
// (concept: ReadableTileIterator | ForwardTileIterator |
// MaskedTileIterator)
typename IteratorB0_,
/// Iterates over tiles of B operand in shared memory
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
typename SmemIteratorB0_,
/// Cache operation for operand B
cutlass::arch::CacheOperation::Kind CacheOpB0,
/// Iterates over vectors of scale and bias vector in global memory
// (concept: VectorIterator)
typename IteratorAccumulatorScaleBias_,
/// Iterates over accumulator tile
typename FragmentIteratorAccumulator_,
/// Iterates over accumulator tile in shared memory
typename SmemIteratorD0_,
/// Size of the Gemm problem - concept: gemm::GemmShape<>
typename Shape1_,
/// Iterates over the intermediate accumulator tile in shared memory
typename WarpIteratorA1_,
/// Iterates over tiles of B operand in global memory
// (concept: ReadableTileIterator | ForwardTileIterator |
// MaskedTileIterator)
typename IteratorB1_,
/// Iterates over tiles of B operand in shared memory
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
typename SmemIteratorB1_,
/// Cache operation for operand B
cutlass::arch::CacheOperation::Kind CacheOpB1,
/// Data type of accumulator matrix
typename ElementC_,
/// Data type of accumulator matrix
typename LayoutC_,
/// Output operator for 1st Gemm(concept: epilogue::thread::LinearCombinationClamp, etc...)
typename OutputOp_,
/// Policy describing tuning details (concept: MmaPolicy)
typename Policy0_,
/// Policy describing tuning details (concept: MmaPolicy)
typename Policy1_,
/// Number of stages,
int Stages,
/// Used for partial specialization
typename Enable = bool>
class B2bMmaMultistageSmemAccumulator :
public gemm::threadblock::B2bMmaBaseSmemAccumulator<Shape0_, Shape1_, Policy0_, Policy1_, SmemIteratorD0_, Stages> {
public:
///< Base class
using Base = gemm::threadblock::B2bMmaBaseSmemAccumulator<Shape0_, Shape1_, Policy0_, Policy1_, SmemIteratorD0_, Stages>;
///< Size of the Gemm problem - concept: gemm::GemmShape<>
using Shape0 = Shape0_;
///< Iterates over tiles of A operand in global memory
using IteratorA0 = IteratorA0_;
///< Iterates over tiles of B operand in global memory
using IteratorB0 = IteratorB0_;
///< Iterates over tiles of the scale and bias vectors in global memory
using IteratorAccumulatorScaleBias = IteratorAccumulatorScaleBias_;
///< Policy describing tuning details
using Policy0 = Policy0_;
using SmemIteratorA0 = SmemIteratorA0_;
using SmemIteratorB0 = SmemIteratorB0_;
using SmemIteratorD0 = SmemIteratorD0_; ///< Iterates over accumulator tile in shared memory
using FragmentIteratorAccumulator = FragmentIteratorAccumulator_; ///< Iterates over accumulator tile
///< Size of the Gemm problem - concept: gemm::GemmShape<>
using Shape1 = Shape1_;
///< Iterates over tiles of B operand in global memory
using IteratorB1 = IteratorB1_;
///< Policy describing tuning details
using Policy1 = Policy1_;
using SmemIteratorB1 = SmemIteratorB1_;
using WarpIteratorA1 = WarpIteratorA1_; ///< Iterates over the intermediate accumulator tile in shared memory
///< Data type of accumulator matrix
using ElementC = ElementC_;
///< Layout of accumulator matrix
using LayoutC = LayoutC_;
///< Epilogue after 1st Gemm
using OutputOp = OutputOp_;
static cutlass::arch::CacheOperation::Kind const kCacheOpA0 = CacheOpA0;
static cutlass::arch::CacheOperation::Kind const kCacheOpB0 = CacheOpB0;
static cutlass::arch::CacheOperation::Kind const kCacheOpB1 = CacheOpB1;
//
// Dependent types
//
/// Fragment of accumulator tile
using FragmentC0 = typename Policy0::Operator::FragmentC;
/// Warp-level Mma
using Operator0 = typename Policy0::Operator;
/// Fragment of Scale and Bias loaded from global memory
using FragmentA1ScaleBias = typename IteratorAccumulatorScaleBias::Fragment;
/// Fragment of accumulator tile
using FragmentC1 = typename Policy1::Operator::FragmentC;
/// Warp-level Mma
using Operator1 = typename Policy1::Operator;
/// Epilog in shared memory
using Epilogue0 = epilogue::threadblock::EpilogueSmemAccumulator<
SmemIteratorD0, ///< SmemTileIterator
FragmentIteratorAccumulator, ///< AccumulatorFragmentIterator
IteratorAccumulatorScaleBias, ///< ScaleBiasIterator
OutputOp>; ///< Output operator
/// Minimum architecture is Sm80 to support cp.async
using ArchTag = arch::Sm80;
/// Complex transform on A operand
static ComplexTransform const kTransformA0 = Operator0::kTransformA;
/// Complex transform on B operand
static ComplexTransform const kTransformB0 = Operator0::kTransformB;
/// Complex transform on B operand
static ComplexTransform const kTransformB1 = Operator1::kTransformB;
/// Internal structure exposed for introspection.
struct Detail {
static_assert(Base::kWarpGemmIterations0 > 1,
"The pipelined structure requires at least two warp-level "
"GEMM operations.");
static_assert(Base::kWarpGemmIterations1 > 1,
"The pipelined structure requires at least two warp-level "
"GEMM operations.");
/// Number of cp.async instructions to load one stage of operand A
static int const TBLDGSTSIterationsA0 =
IteratorA0::ThreadMap::Iterations::kCount;
/// Number of cp.async instructions to load one stage of operand B
static int const TBLDGSTSIterationsB0 =
IteratorB0::ThreadMap::Iterations::kCount;
/// Number of cp.async instructions to load one stage of operand B
static int const TBLDGSTSIterationsB1 =
IteratorB1::ThreadMap::Iterations::kCount;
/// Number of stages
static int const kStages = Stages;
/// Number of cp.async instructions to load on group of operand A
static int const kAccessesPerGroupA0 =
(TBLDGSTSIterationsA0 + Base::kWarpGemmIterations0 - 1) / Base::kWarpGemmIterations0;
/// Number of cp.async instructions to load on group of operand B
static int const kAccessesPerGroupB0 =
(TBLDGSTSIterationsB0 + Base::kWarpGemmIterations0 - 1) / Base::kWarpGemmIterations0;
/// Number of cp.async instructions to load on group of operand B
static int const kAccessesPerGroupB1 =
(TBLDGSTSIterationsB1 + Base::kWarpGemmIterations1 - 1) / Base::kWarpGemmIterations1;
};
private:
using WarpLoadedFragmentA0 = typename Operator0::FragmentA;
using WarpLoadedFragmentB0 = typename Operator0::FragmentB;
using WarpLoadedFragmentA1 = typename Operator1::FragmentA;
using WarpLoadedFragmentB1 = typename Operator1::FragmentB;
using WarpTransformedFragmentA0 = typename Operator0::TransformedFragmentA;
using WarpTransformedFragmentB0 = typename Operator0::TransformedFragmentB;
using WarpTransformedFragmentA1 = typename Operator1::TransformedFragmentA;
using WarpTransformedFragmentB1 = typename Operator1::TransformedFragmentB;
private:
//
// Data members
//
/// Iterator to write threadblock-scoped tile of A operand to shared memory
SmemIteratorA0 smem_iterator_A0_;
/// Iterator to write threadblock-scoped tile of B operand to shared memory
SmemIteratorB0 smem_iterator_B0_;
/// Shared Memory Iterator to store accumulator tile
SmemIteratorD0 smem_iterator_D0_;
/// Iterator to load a warp-scoped tile of A1 operand from intermediate accumulator tile
WarpIteratorA1 warp_tile_iterator_A1_;
/// Iterator to write threadblock-scoped tile of B operand to shared memory
SmemIteratorB1 smem_iterator_B1_;
public:
/// Construct from tensor references
CUTLASS_DEVICE
B2bMmaMultistageSmemAccumulator(
///< Shared storage needed for internal use by threadblock-scoped GEMM
typename Base::B2bMmaSharedStorage &shared_storage,
///< ID within the threadblock
int thread_idx,
///< ID of warp
int warp_idx,
///< ID of each thread within a warp
int lane_idx
):
Base(shared_storage, thread_idx, warp_idx, lane_idx),
smem_iterator_A0_(shared_storage.b2b_mma_shared_storage.shared_storage0.operand_A_ref(), thread_idx),
smem_iterator_B0_(shared_storage.b2b_mma_shared_storage.shared_storage0.operand_B_ref(), thread_idx),
smem_iterator_D0_(shared_storage.accumulator_shared_storage0.accum_ref(), lane_idx),
warp_tile_iterator_A1_(shared_storage.accumulator_shared_storage0.accum_ref(), lane_idx),
smem_iterator_B1_(shared_storage.b2b_mma_shared_storage.shared_storage1.operand_B_ref(), thread_idx)
{
// Compute warp location within threadblock tile by mapping the warp_id to
// three coordinates:
// _m: the warp's position within the threadblock along the M dimension
// _n: the warp's position within the threadblock along the N dimension
// _k: the warp's position within the threadblock along the K dimension
int warp_idx_mn_0 = warp_idx % (Base::WarpCount0::kM * Base::WarpCount0::kN);
int warp_idx_k_0 = warp_idx / (Base::WarpCount0::kM * Base::WarpCount0::kN);
int warp_idx_m_0 = warp_idx_mn_0 % Base::WarpCount0::kM;
int warp_idx_n_0 = warp_idx_mn_0 / Base::WarpCount0::kM;
int warp_idx_mn_1 = warp_idx % (Base::WarpCount1::kM * Base::WarpCount1::kN);
int warp_idx_k_1 = warp_idx / (Base::WarpCount1::kM * Base::WarpCount1::kN);
int warp_idx_m_1 = warp_idx_mn_1 % Base::WarpCount1::kM;
int warp_idx_n_1 = warp_idx_mn_1 / Base::WarpCount1::kM;
// Add per-warp offsets in units of warp-level tiles
this->warp_tile_iterator_A0_.add_tile_offset(
{warp_idx_m_0, Base::kWarpGemmIterations0 * warp_idx_k_0});
this->warp_tile_iterator_B0_.add_tile_offset(
{Base::kWarpGemmIterations0 * warp_idx_k_0, warp_idx_n_0});
warp_tile_iterator_A1_.add_tile_offset(
{warp_idx_m_1, Base::kWarpGemmIterations1 * warp_idx_k_1});
this->warp_tile_iterator_B1_.add_tile_offset(
{Base::kWarpGemmIterations1 * warp_idx_k_1, warp_idx_n_1});
// Add smem accumulator iterator warp offset
smem_iterator_D0_.add_tile_offset({ warp_idx_m_0 * SmemIteratorD0::TileIterations::kRow,
warp_idx_n_0 * SmemIteratorD0::TileIterations::kColumn});
}
CUTLASS_DEVICE
void copy_tiles_and_advance_0(IteratorA0 &iterator_A0, IteratorB0 &iterator_B0,
int group_start_A0 = 0, int group_start_B0 = 0) {
iterator_A0.set_iteration_index(group_start_A0 *
IteratorA0::kAccessesPerVector);
this->smem_iterator_A0_.set_iteration_index(group_start_A0);
// LDGSTS for operand A
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < Detail::kAccessesPerGroupA0; ++j) {
if (group_start_A0 + j < Detail::TBLDGSTSIterationsA0) {
typename IteratorA0::AccessType *dst_ptr =
reinterpret_cast<typename IteratorA0::AccessType *>(
this->smem_iterator_A0_.get());
int const kSrcBytes = sizeof_bits<typename IteratorA0::Element>::value *
IteratorA0::ThreadMap::kElementsPerAccess /
IteratorA0::kAccessesPerVector / 8;
CUTLASS_PRAGMA_UNROLL
for (int v = 0; v < IteratorA0::kAccessesPerVector; ++v) {
auto gmem_ptr = iterator_A0.get();
cutlass::arch::cp_async<kSrcBytes, kCacheOpA0>(
dst_ptr + v, gmem_ptr, iterator_A0.valid());
++iterator_A0;
}
++this->smem_iterator_A0_;
}
}
iterator_B0.set_iteration_index(group_start_B0 *
IteratorB0::kAccessesPerVector);
this->smem_iterator_B0_.set_iteration_index(group_start_B0);
// LDGSTS for operand B
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < Detail::kAccessesPerGroupB0; ++j) {
if (group_start_B0 + j < Detail::TBLDGSTSIterationsB0) {
typename IteratorB0::AccessType *dst_ptr =
reinterpret_cast<typename IteratorB0::AccessType *>(
this->smem_iterator_B0_.get());
int const kSrcBytes = sizeof_bits<typename IteratorB0::Element>::value *
IteratorB0::ThreadMap::kElementsPerAccess /
IteratorB0::kAccessesPerVector / 8;
CUTLASS_PRAGMA_UNROLL
for (int v = 0; v < IteratorB0::kAccessesPerVector; ++v) {
auto gmem_ptr = iterator_B0.get();
cutlass::arch::cp_async<kSrcBytes, kCacheOpB0>(
dst_ptr + v, gmem_ptr, iterator_B0.valid());
++iterator_B0;
}
++this->smem_iterator_B0_;
}
}
}
CUTLASS_DEVICE
void copy_tiles_and_advance_1(IteratorB1 &iterator_B1,
int group_start_B1 = 0) {
iterator_B1.set_iteration_index(group_start_B1 *
IteratorB1::kAccessesPerVector);
this->smem_iterator_B1_.set_iteration_index(group_start_B1);
// LDGSTS for operand B
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < Detail::kAccessesPerGroupB1; ++j) {
if (group_start_B1 + j < Detail::TBLDGSTSIterationsB1) {
typename IteratorB1::AccessType *dst_ptr =
reinterpret_cast<typename IteratorB1::AccessType *>(
this->smem_iterator_B1_.get());
int const kSrcBytes = sizeof_bits<typename IteratorB1::Element>::value *
IteratorB1::ThreadMap::kElementsPerAccess /
IteratorB1::kAccessesPerVector / 8;
CUTLASS_PRAGMA_UNROLL
for (int v = 0; v < IteratorB1::kAccessesPerVector; ++v) {
auto gmem_ptr = iterator_B1.get();
cutlass::arch::cp_async<kSrcBytes, kCacheOpB1>(
dst_ptr + v, gmem_ptr, iterator_B1.valid());
++iterator_B1;
}
++this->smem_iterator_B1_;
}
}
}
/// Perform a threadblock-scoped matrix multiply-accumulate
CUTLASS_DEVICE
void operator()(
///< problem size of GEMM
int gemm_k_iterations_0,
///< destination accumulator tile
FragmentC1 &accum,
///< iterator over A0 operand in global memory
IteratorA0 iterator_A0,
///< iterator over B0 operand in global memory
IteratorB0 iterator_B0,
///< iterator over A1 operand scale vector in global memory
IteratorAccumulatorScaleBias iterator_accum0_scale,
///< iterator over A1 operand bias vector in global memory
IteratorAccumulatorScaleBias iterator_accum0_bias,
///< iterator over B1 operand in global memory
IteratorB1 iterator_B1,
///< initial value of accumulator
FragmentC0 const &src_accum,
///< epilogue operation after 1st Gemm
OutputOp output_op_0)
{
//
// Prologue
//
// Issue several complete stages
CUTLASS_PRAGMA_UNROLL
for (int stage = 0; stage < Base::kStages - 1;
++stage, --gemm_k_iterations_0) {
iterator_A0.clear_mask(gemm_k_iterations_0 == 0);
iterator_B0.clear_mask(gemm_k_iterations_0 == 0);
iterator_A0.set_iteration_index(0);
this->smem_iterator_A0_.set_iteration_index(0);
// LDGSTS for operand A
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < Detail::TBLDGSTSIterationsA0; ++j) {
typename IteratorA0::AccessType *dst_ptr =
reinterpret_cast<typename IteratorA0::AccessType *>(
this->smem_iterator_A0_.get());
CUTLASS_PRAGMA_UNROLL
for (int v = 0; v < IteratorA0::kAccessesPerVector; ++v) {
int const kSrcBytes =
sizeof_bits<typename IteratorA0::Element>::value *
IteratorA0::ThreadMap::kElementsPerAccess /
IteratorA0::kAccessesPerVector / 8;
int src_bytes = (iterator_A0.valid() ? kSrcBytes : 0);
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpA0>(
dst_ptr + v, iterator_A0.get(), iterator_A0.valid());
++iterator_A0;
}
++this->smem_iterator_A0_;
}
iterator_B0.set_iteration_index(0);
this->smem_iterator_B0_.set_iteration_index(0);
// LDGSTS for operand B
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < Detail::TBLDGSTSIterationsB0; ++j) {
typename IteratorB0::AccessType *dst_ptr =
reinterpret_cast<typename IteratorB0::AccessType *>(
this->smem_iterator_B0_.get());
CUTLASS_PRAGMA_UNROLL
for (int v = 0; v < IteratorB0::kAccessesPerVector; ++v) {
int const kSrcBytes =
sizeof_bits<typename IteratorB0::Element>::value *
IteratorB0::ThreadMap::kElementsPerAccess /
IteratorB0::kAccessesPerVector / 8;
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB0>(
dst_ptr + v, iterator_B0.get(), iterator_B0.valid());
++iterator_B0;
}
++this->smem_iterator_B0_;
}
// Move to the next stage
iterator_A0.add_tile_offset({0, 1});
iterator_B0.add_tile_offset({1, 0});
this->smem_iterator_A0_.add_tile_offset({0, 1});
this->smem_iterator_B0_.add_tile_offset({1, 0});
// Defines the boundary of a stage of cp.async.
cutlass::arch::cp_async_fence();
}
// Perform accumulation in the 'd' output operand
FragmentC0 accum0 = src_accum;
// DEPBAR+SYNC
cutlass::arch::cp_async_wait<Base::kStages - 2>();
__syncthreads();
// Pair of fragments used to overlap shared memory loads and math
// instructions
WarpLoadedFragmentA0 warp_loaded_frag_A0[2];
WarpLoadedFragmentB0 warp_loaded_frag_B0[2];
WarpTransformedFragmentA0 warp_transformed_frag_A0[2];
WarpTransformedFragmentB0 warp_transformed_frag_B0[2];
Operator0 warp_mma0;
this->warp_tile_iterator_A0_.set_kgroup_index(0);
this->warp_tile_iterator_B0_.set_kgroup_index(0);
this->warp_tile_iterator_A0_.load(warp_loaded_frag_A0[0]);
this->warp_tile_iterator_B0_.load(warp_loaded_frag_B0[0]);
++this->warp_tile_iterator_A0_;
++this->warp_tile_iterator_B0_;
iterator_A0.clear_mask(gemm_k_iterations_0 == 0);
iterator_B0.clear_mask(gemm_k_iterations_0 == 0);
int smem_write_stage_idx = Base::kStages - 1;
int smem_read_stage_idx = 0;
warp_mma0.transform(warp_transformed_frag_A0[0], warp_transformed_frag_B0[0],
warp_loaded_frag_A0[0], warp_loaded_frag_B0[0]);
//
// Mainloop
//
CUTLASS_GEMM_LOOP
for (; gemm_k_iterations_0 > (-Base::kStages + 1);) {
//
// Loop over GEMM K dimension
//
// Computes a warp-level GEMM on data held in shared memory
// Each "warp_mma_k" refers to a warp-level matrix multiply-accumulate
CUTLASS_PRAGMA_UNROLL
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations0;
++warp_mma_k) {
// Load warp-level tiles from shared memory, wrapping to k offset if
// this is the last group as the case may be.
this->warp_tile_iterator_A0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);
this->warp_tile_iterator_B0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);
this->warp_tile_iterator_A0_.load(warp_loaded_frag_A0[(warp_mma_k + 1) % 2]);
this->warp_tile_iterator_B0_.load(warp_loaded_frag_B0[(warp_mma_k + 1) % 2]);
++this->warp_tile_iterator_A0_;
++this->warp_tile_iterator_B0_;
if (warp_mma_k > 0)
warp_mma0.transform(warp_transformed_frag_A0[warp_mma_k % 2],
warp_transformed_frag_B0[warp_mma_k % 2],
warp_loaded_frag_A0[warp_mma_k % 2],
warp_loaded_frag_B0[warp_mma_k % 2]);
warp_mma0(
accum0,
warp_transformed_frag_A0[warp_mma_k % 2],
warp_transformed_frag_B0[warp_mma_k % 2],
accum0
);
// Issue global->shared copies for the this stage
if (warp_mma_k < Base::kWarpGemmIterations0 - 1) {
int group_start_iteration_A0, group_start_iteration_B0;
group_start_iteration_A0 = warp_mma_k * Detail::kAccessesPerGroupA0;
group_start_iteration_B0 = warp_mma_k * Detail::kAccessesPerGroupB0;
copy_tiles_and_advance_0(iterator_A0, iterator_B0, group_start_iteration_A0,
group_start_iteration_B0);
}
if (warp_mma_k + 2 == Base::kWarpGemmIterations0) {
int group_start_iteration_A0, group_start_iteration_B0;
group_start_iteration_A0 =
(warp_mma_k + 1) * Detail::kAccessesPerGroupA0;
group_start_iteration_B0 =
(warp_mma_k + 1) * Detail::kAccessesPerGroupB0;
copy_tiles_and_advance_0(iterator_A0, iterator_B0, group_start_iteration_A0,
group_start_iteration_B0);
// Inserts a memory fence between stages of cp.async instructions.
cutlass::arch::cp_async_fence();
// Waits until kStages-2 stages have committed.
arch::cp_async_wait<Base::kStages - 2>();
__syncthreads();
// Move to the next stage
iterator_A0.add_tile_offset({0, 1});
iterator_B0.add_tile_offset({1, 0});
this->smem_iterator_A0_.add_tile_offset({0, 1});
this->smem_iterator_B0_.add_tile_offset({1, 0});
// Add negative offsets to return iterators to the 'start' of the
// circular buffer in shared memory
if (smem_write_stage_idx == (Base::kStages - 1)) {
this->smem_iterator_A0_.add_tile_offset({0, -Base::kStages});
this->smem_iterator_B0_.add_tile_offset({-Base::kStages, 0});
smem_write_stage_idx = 0;
} else {
++smem_write_stage_idx;
}
if (smem_read_stage_idx == (Base::kStages - 1)) {
this->warp_tile_iterator_A0_.add_tile_offset(
{0, -Base::kStages * Policy0::kPartitionsK *
Base::kWarpGemmIterations0});
this->warp_tile_iterator_B0_.add_tile_offset(
{-Base::kStages * Policy0::kPartitionsK *
Base::kWarpGemmIterations0,
0});
smem_read_stage_idx = 0;
} else {
++smem_read_stage_idx;
}
--gemm_k_iterations_0;
iterator_A0.clear_mask(gemm_k_iterations_0 == 0);
iterator_B0.clear_mask(gemm_k_iterations_0 == 0);
}
// Do any conversions feeding the first stage at the end of the loop so
// we can start right away on mma instructions
if (warp_mma_k + 1 == Base::kWarpGemmIterations0)
warp_mma0.transform(warp_transformed_frag_A0[(warp_mma_k + 1) % 2],
warp_transformed_frag_B0[(warp_mma_k + 1) % 2],
warp_loaded_frag_A0[(warp_mma_k + 1) % 2],
warp_loaded_frag_B0[(warp_mma_k + 1) % 2]);
}
}
/// Epilogue for the first Implicit Gemm
Epilogue0 epilogue0;
epilogue0(output_op_0, smem_iterator_D0_, accum0, iterator_accum0_scale, iterator_accum0_bias);
__syncthreads();
// 2nd Gemm
//
// Prologue
//
int gemm_k_iterations_1 = Shape0::kN / Shape1::kK;
// Issue several complete stages
CUTLASS_PRAGMA_UNROLL
for (int stage = 0; stage < Base::kStages - 1;
++stage, --gemm_k_iterations_1) {
iterator_B1.clear_mask(gemm_k_iterations_1 == 0);
iterator_B1.set_iteration_index(0);
this->smem_iterator_B1_.set_iteration_index(0);
// LDGSTS for operand B
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < Detail::TBLDGSTSIterationsB1; ++j) {
typename IteratorB1::AccessType *dst_ptr =
reinterpret_cast<typename IteratorB1::AccessType *>(
this->smem_iterator_B1_.get());
CUTLASS_PRAGMA_UNROLL
for (int v = 0; v < IteratorB1::kAccessesPerVector; ++v) {
int const kSrcBytes =
sizeof_bits<typename IteratorB1::Element>::value *
IteratorB1::ThreadMap::kElementsPerAccess /
IteratorB1::kAccessesPerVector / 8;
cutlass::arch::cp_async_zfill<kSrcBytes, kCacheOpB1>(
dst_ptr + v, iterator_B1.get(), iterator_B1.valid());
++iterator_B1;
}
++this->smem_iterator_B1_;
}
// Move to the next stage
iterator_B1.add_tile_offset({1, 0});
this->smem_iterator_B1_.add_tile_offset({1, 0});
// Defines the boundary of a stage of cp.async.
cutlass::arch::cp_async_fence();
}
// DEPBAR+SYNC
cutlass::arch::cp_async_wait<Base::kStages - 2>();
__syncthreads();
// Pair of fragments used to overlap shared memory loads and math
// instructions
WarpLoadedFragmentA1 warp_loaded_frag_A1[2];
WarpLoadedFragmentB1 warp_loaded_frag_B1[2];
WarpTransformedFragmentA1 warp_transformed_frag_A1[2];
WarpTransformedFragmentB1 warp_transformed_frag_B1[2];
Operator1 warp_mma1;
warp_tile_iterator_A1_.load(warp_loaded_frag_A1[0]);
++warp_tile_iterator_A1_;
this->warp_tile_iterator_B1_.set_kgroup_index(0);
this->warp_tile_iterator_B1_.load(warp_loaded_frag_B1[0]);
++this->warp_tile_iterator_B1_;
iterator_B1.clear_mask(gemm_k_iterations_1 == 0);
smem_write_stage_idx = Base::kStages - 1;
smem_read_stage_idx = 0;
warp_mma1.transform(warp_transformed_frag_A1[0], warp_transformed_frag_B1[0],
warp_loaded_frag_A1[0], warp_loaded_frag_B1[0]);
//
// Mainloop
//
CUTLASS_PRAGMA_UNROLL
for ( gemm_k_iterations_1 = Shape0::kN / Shape1::kK - (Base::kStages - 1);
gemm_k_iterations_1 > (-Base::kStages + 1); gemm_k_iterations_1--) {
//
// Loop over GEMM K dimension
//
// Computes a warp-level GEMM on data held in shared memory
// Each "warp_mma_k" refers to a warp-level matrix multiply-accumulate
CUTLASS_PRAGMA_UNROLL
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations1;
++warp_mma_k) {
// Load warp-level tile from accumulator fragment
// skip warp tile loading for the last kgroup
if(gemm_k_iterations_1 > (-Base::kStages + 2) || warp_mma_k < Base::kWarpGemmIterations1 - 1) {
warp_tile_iterator_A1_.load(warp_loaded_frag_A1[(warp_mma_k + 1) % 2]);
}
++warp_tile_iterator_A1_;
// Load warp-level tiles from shared memory, wrapping to k offset if
// this is the last group as the case may be.
this->warp_tile_iterator_B1_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations1);
this->warp_tile_iterator_B1_.load(warp_loaded_frag_B1[(warp_mma_k + 1) % 2]);
++this->warp_tile_iterator_B1_;
if (warp_mma_k > 0)
warp_mma1.transform(warp_transformed_frag_A1[warp_mma_k % 2],
warp_transformed_frag_B1[warp_mma_k % 2],
warp_loaded_frag_A1[warp_mma_k % 2],
warp_loaded_frag_B1[warp_mma_k % 2]);
warp_mma1(
accum,
warp_transformed_frag_A1[warp_mma_k % 2],
warp_transformed_frag_B1[warp_mma_k % 2],
accum
);
// Issue global->shared copies for the this stage
if (warp_mma_k < Base::kWarpGemmIterations1 - 1) {
int group_start_iteration_B1;
group_start_iteration_B1 = warp_mma_k * Detail::kAccessesPerGroupB1;
copy_tiles_and_advance_1(iterator_B1, group_start_iteration_B1);
}
if (warp_mma_k + 2 == Base::kWarpGemmIterations1) {
int group_start_iteration_B1;
group_start_iteration_B1 =
(warp_mma_k + 1) * Detail::kAccessesPerGroupB1;
copy_tiles_and_advance_1(iterator_B1, group_start_iteration_B1);
// Inserts a memory fence between stages of cp.async instructions.
cutlass::arch::cp_async_fence();
// Waits until kStages-2 stages have committed.
arch::cp_async_wait<Base::kStages - 2>();
__syncthreads();
// Move to the next stage
iterator_B1.add_tile_offset({1, 0});
this->smem_iterator_B1_.add_tile_offset({1, 0});
// Add negative offsets to return iterators to the 'start' of the
// circular buffer in shared memory
if (smem_write_stage_idx == (Base::kStages - 1)) {
this->smem_iterator_B1_.add_tile_offset({-Base::kStages, 0});
smem_write_stage_idx = 0;
} else {
++smem_write_stage_idx;
}
if (smem_read_stage_idx == (Base::kStages - 1)) {
this->warp_tile_iterator_B1_.add_tile_offset(
{-Base::kStages * Policy1::kPartitionsK *
Base::kWarpGemmIterations1,
0});
smem_read_stage_idx = 0;
} else {
++smem_read_stage_idx;
}
iterator_B1.clear_mask(gemm_k_iterations_1 == 1);
}
// Do any conversions feeding the first stage at the end of the loop so
// we can start right away on mma instructions
if (warp_mma_k + 1 == Base::kWarpGemmIterations1)
warp_mma1.transform(warp_transformed_frag_A1[(warp_mma_k + 1) % 2],
warp_transformed_frag_B1[(warp_mma_k + 1) % 2],
warp_loaded_frag_A1[(warp_mma_k + 1) % 2],
warp_loaded_frag_B1[(warp_mma_k + 1) % 2]);
}
}
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace threadblock
} // namespace gemm
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -70,6 +76,11 @@ template <
/// Iterates over the intermediate accumulator tile
// (concept::MmaTensorOpFragmentIterator)
typename FragmentIteratorA1_,
/// Iterates over vectors of scale and bias vector in global memory
// (concept: VectorIterator)
typename IteratorAccumulatorScaleBias_,
/// FragmentIterator to load Scale or Bias vector from threadblock fragment
typename FragmentIteratorA1ScaleBias_,
/// Iterates over tiles of B operand in global memory
// (concept: ReadableTileIterator | ForwardTileIterator | MaskedTileIterator)
typename IteratorB1_,
@ -106,7 +117,8 @@ template <
/// Used for partial specialization
typename Enable = bool
>
class B2bMmaPipelined : public B2bMmaBase<Shape0_, Shape1_, Policy0_, Policy1_, 2> {
class B2bMmaPipelined :
public B2bMmaBase<Shape0_, Shape1_, Policy0_, Policy1_, 2> {
public:
///< Base class
@ -122,6 +134,9 @@ public:
using Shape1 = Shape1_; ///< Size of the Gemm problem - concept: gemm::GemmShape<>
using FragmentIteratorA1 = FragmentIteratorA1_; ///< Iterates over intermediate accumulator tile
using IteratorAccumulatorScaleBias = IteratorAccumulatorScaleBias_; ///< Iterates over tiles of the scale and bias vectors in global memory
using FragmentIteratorA1ScaleBias =
FragmentIteratorA1ScaleBias_; ///< WarpIterator to load Scale or Bias vector from the threadblock fragment
using IteratorB1 = IteratorB1_; ///< Iterates over tiles of B operand in global memory
using Policy1 = Policy1_; ///< Policy describing tuning details
@ -130,9 +145,12 @@ public:
using ElementC = ElementC_; ///< Data type of accumulator matrix
using LayoutC = LayoutC_; ///< Layout of accumulator matrix
using OutputOp = OutputOp_; ///< Epilogue after 1st Gemm
static const bool PerChannelScale = (OutputOp::kScale ==
epilogue::thread::ScaleType::OnlyAlphaPerChannelScaling);
using TransformA0 = TransformA0_;
using TransformB0 = TransformB0_;
using TransformB1 = TransformB1_;
@ -152,6 +170,9 @@ public:
/// Warp-level Mma
using Operator0 = typename Policy0::Operator;
/// Fragment of Scale and Bias loaded from global memory
using FragmentA1ScaleBias = typename IteratorAccumulatorScaleBias::Fragment;
/// Fragment of operand B loaded from global memory
using FragmentB1 = typename IteratorB1::Fragment;
@ -161,7 +182,7 @@ public:
/// Warp-level Mma
using Operator1 = typename Policy1::Operator;
/// Obtain the arch tag from the warp-level operator
using ArchTag = typename Policy0::Operator::ArchTag;
@ -174,7 +195,7 @@ public:
/// Complex transform on B1 operand
static ComplexTransform const kTransformB1 = Operator1::kTransformB;
// staticaly assert kStages for MmaPipelined is two (Double-buffered pipeline)
/// staticaly assert kStages for MmaPipelined is two (Double-buffered pipeline)
static_assert((Base::kStages==2), "MmaPipelined requires kStages set to value 2");
private:
@ -183,6 +204,9 @@ private:
using WarpFragmentB0 = typename Operator0::FragmentB;
/// Warp Fragment of operand A1 loaded from accmulator tile
using WarpFragmentA1 = typename FragmentIteratorA1::Fragment;
/// Warp Fragment of operand A1 scale and bias loaded from threadblock fragment
using WarpFragmentA1ScaleBias =
typename FragmentIteratorA1ScaleBias::Fragment;
using WarpFragmentB1 = typename Operator1::FragmentB;
protected:
@ -237,16 +261,18 @@ public:
/// Perform a threadblock-scoped matrix multiply-accumulate
CUTLASS_DEVICE
void operator()(
int gemm_k_iterations_0, ///< number of iterations of the mainloop
FragmentC1 &accum, ///< destination accumulator tile
IteratorA0 iterator_A, ///< iterator over A operand in global memory
IteratorB0 iterator_B0, ///< iterator over B0 operand in global memory
IteratorB1 iterator_B1, ///< iterator over B1 operand in global memory
FragmentC0 const &src_accum, ///< source accumualtor tile
OutputOp output_op_0, ///< epilogue operation after 1st Gemm
int gemm_k_iterations_0, ///< number of iterations of the mainloop
FragmentC1 &accum, ///< destination accumulator tile
IteratorA0 iterator_A, ///< iterator over A operand in global memory
IteratorB0 iterator_B0, ///< iterator over B0 operand in global memory
IteratorAccumulatorScaleBias iterator_A1_scale, ///< iterator over A1 operand scale vectors in global memory
IteratorAccumulatorScaleBias iterator_A1_bias, ///< iterator over A1 operand bias vectors in global memory
IteratorB1 iterator_B1, ///< iterator over B1 operand in global memory
FragmentC0 const &src_accum, ///< source accumualtor tile
OutputOp output_op_0, ///< epilogue operation after 1st Gemm
TransformA0 transform_A0 = TransformA0(), ///< transformation applied to A0 fragment
TransformB0 transform_B0 = TransformB0(), ///< transformation applied to B0 fragment
TransformB1 transform_B1 = TransformB1()) { ///< transformation applied to B1 fragment
TransformB0 transform_B0 = TransformB0(), ///< transformation applied to B0 fragment
TransformB1 transform_B1 = TransformB1()) { ///< transformation applied to B1 fragment
//
// Prologue
@ -268,8 +294,8 @@ public:
++iterator_A;
++iterator_B0;
this->smem_iterator_A_.store(tb_frag_A);
this->smem_iterator_B0_.store(tb_frag_B0);
this->smem_iterator_A_.store(transform_A0(tb_frag_A));
this->smem_iterator_B0_.store(transform_B0(tb_frag_B0));
++this->smem_iterator_A_;
++this->smem_iterator_B0_;
@ -294,23 +320,19 @@ public:
int smem_write_stage_idx = 1;
// Avoid reading out of bounds
if (gemm_k_iterations_0 <= 1) {
iterator_A.clear_mask();
iterator_B0.clear_mask();
}
iterator_A.clear_mask(gemm_k_iterations_0 <= 1);
iterator_B0.clear_mask(gemm_k_iterations_0 <= 1);
// Issue loads during the first warp-level matrix multiply-add *AFTER* issuing
// shared memory loads (which have the tighest latency requirement).
iterator_A.load(tb_frag_A);
//
// Mainloop
//
// Note: The main loop does not support Base::WarpGemmIterations == 2.
// Note: The main loop does not support Base::kWarpGemmIterations == 2.
CUTLASS_GEMM_LOOP
for (; gemm_k_iterations_0 > 0; --gemm_k_iterations_0) {
//
// Loop over GEMM K dimension
//
@ -324,19 +346,14 @@ public:
if (warp_mma_k == Base::kWarpGemmIterations0 - 1) {
// Write fragments to shared memory
this->smem_iterator_A_.store(tb_frag_A);
this->smem_iterator_A_.store(transform_A0(tb_frag_A));
this->smem_iterator_B0_.store(tb_frag_B0);
this->smem_iterator_B0_.store(transform_B0(tb_frag_B0));
__syncthreads();
// Issue loads during the first warp-level matrix multiply-add *AFTER* issuing
// shared memory loads (which have the tighest latency requirement).
iterator_A.load(tb_frag_A);
++this->smem_iterator_B0_;
++this->smem_iterator_A_;
++this->smem_iterator_B0_;
// Add negative offsets to return iterators to the 'start' of the circular buffer in shared memory
if (smem_write_stage_idx == 1) {
@ -365,19 +382,18 @@ public:
if (warp_mma_k == 0) {
iterator_A.load(tb_frag_A);
iterator_B0.load(tb_frag_B0);
++iterator_A;
++iterator_B0;
// Avoid reading out of bounds if this was the last loop iteration
if (gemm_k_iterations_0 <= 2) {
iterator_A.clear_mask();
iterator_B0.clear_mask();
}
iterator_A.clear_mask(gemm_k_iterations_0 <= 2);
iterator_B0.clear_mask(gemm_k_iterations_0 <= 2);
}
warp_mma0(accum0, warp_frag_A0[warp_mma_k % 2], warp_frag_B0[warp_mma_k % 2], accum0);
warp_mma0(accum0, warp_frag_A0[warp_mma_k % 2],
warp_frag_B0[warp_mma_k % 2], accum0);
}
}
@ -390,32 +406,53 @@ public:
// Prologue
//
FragmentA1ScaleBias tb_frag_A1_scale;
FragmentA1ScaleBias tb_frag_A1_bias;
FragmentIteratorA1ScaleBias warp_tile_iterator_A1_scale_(tb_frag_A1_scale);
FragmentIteratorA1ScaleBias warp_tile_iterator_A1_bias_(tb_frag_A1_bias);
FragmentB1 tb_frag_B1;
if(PerChannelScale)
tb_frag_A1_scale.clear();
tb_frag_A1_bias.clear();
tb_frag_B1.clear();
// The last kblock is loaded in the prolog
if(PerChannelScale)
iterator_A1_scale.load(tb_frag_A1_scale);
iterator_A1_bias.load(tb_frag_A1_bias);
iterator_B1.load(tb_frag_B1);
if(PerChannelScale)
++iterator_A1_scale;
++iterator_A1_bias;
++iterator_B1;
this->smem_iterator_B1_.store(tb_frag_B1);
this->smem_iterator_B1_.store(transform_B1(tb_frag_B1));
++this->smem_iterator_B1_;
__syncthreads();
// Pair of fragments used to overlap shared memory loads and math instructions
WarpFragmentA1ScaleBias warp_frag_A1_scale[2];
WarpFragmentA1ScaleBias warp_frag_A1_bias[2];
WarpFragmentA1 warp_frag_A1[2];
WarpFragmentB1 warp_frag_B1[2];
//warp_tile_iterator_A1_.set_kgroup_index(0);
this->warp_tile_iterator_B1_.set_kgroup_index(0);
warp_tile_iterator_A1_.load(warp_frag_A1[0], output_op_0);
if(PerChannelScale)
warp_tile_iterator_A1_scale_.load(warp_frag_A1_scale[0]);
warp_tile_iterator_A1_bias_.load(warp_frag_A1_bias[0]);
warp_tile_iterator_A1_.load(warp_frag_A1[0], warp_frag_A1_scale[0],
warp_frag_A1_bias[0], output_op_0);
this->warp_tile_iterator_B1_.load(warp_frag_B1[0]);
++warp_tile_iterator_A1_;
if(PerChannelScale)
++warp_tile_iterator_A1_scale_;
++warp_tile_iterator_A1_bias_;
++this->warp_tile_iterator_B1_;
Operator1 warp_mma1;
@ -425,9 +462,7 @@ public:
int gemm_k_iterations_1 = FragmentIteratorA1::Policy::kIterations / Base::kWarpGemmIterations1;
// Avoid reading out of bounds
if (gemm_k_iterations_1 <= 1) {
iterator_B1.clear_mask();
}
iterator_B1.clear_mask(gemm_k_iterations_1 <= 1);
//
// Mainloop
@ -450,8 +485,7 @@ public:
if (warp_mma_k == Base::kWarpGemmIterations1 - 1) {
// Write fragments to shared memory
this->smem_iterator_B1_.store(tb_frag_B1);
this->smem_iterator_B1_.store(transform_B1(tb_frag_B1));
__syncthreads();
++this->smem_iterator_B1_;
@ -468,14 +502,31 @@ public:
}
smem_write_stage_idx ^= 1;
if(PerChannelScale) {
tb_frag_A1_scale.clear();
iterator_A1_scale.load(tb_frag_A1_scale);
++iterator_A1_scale;
}
tb_frag_A1_bias.clear();
iterator_A1_bias.load(tb_frag_A1_bias);
++iterator_A1_bias;
}
this->warp_tile_iterator_B1_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations1);
warp_tile_iterator_A1_.load(warp_frag_A1[(warp_mma_k + 1) % 2], output_op_0);
if(PerChannelScale)
warp_tile_iterator_A1_scale_.load(warp_frag_A1_scale[(warp_mma_k + 1) % 2]);
warp_tile_iterator_A1_bias_.load(warp_frag_A1_bias[(warp_mma_k + 1) % 2]);
warp_tile_iterator_A1_.load(warp_frag_A1[(warp_mma_k + 1) % 2],
warp_frag_A1_scale[(warp_mma_k + 1) % 2],
warp_frag_A1_bias[(warp_mma_k + 1) % 2],
output_op_0);
this->warp_tile_iterator_B1_.load(warp_frag_B1[(warp_mma_k + 1) % 2]);
if(PerChannelScale)
++warp_tile_iterator_A1_scale_;
++warp_tile_iterator_A1_bias_;
++warp_tile_iterator_A1_;
++this->warp_tile_iterator_B1_;
@ -484,17 +535,14 @@ public:
iterator_B1.load(tb_frag_B1);
++iterator_B1;
// Avoid reading out of bounds if this was the last loop iteration
if (gemm_k_iterations_1 <= 2) {
iterator_B1.clear_mask();
}
iterator_B1.clear_mask(gemm_k_iterations_1 <= 2);
}
warp_mma1(accum, warp_frag_A1[warp_mma_k % 2], warp_frag_B1[warp_mma_k % 2], accum);
warp_mma1(accum, warp_frag_A1[warp_mma_k % 2],
warp_frag_B1[warp_mma_k % 2], accum);
}
}
}
};

View File

@ -0,0 +1,543 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Template for a double-buffered threadblock-scoped Back-to-back fused GEMM kernel.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/array.h"
#include "cutlass/aligned_buffer.h"
#include "cutlass/numeric_conversion.h"
#include "cutlass/numeric_types.h"
#include "cutlass/matrix_shape.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
#include "threadblock/b2b_mma_base_smem_accumulator.h"
#include "cutlass/epilogue/threadblock/epilogue_smem_accumulator.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace threadblock {
////////////////////////////////////////////////////////////////////////////////////////////////
/// Structure to compute the matrix product targeting CUDA cores and SIMT math instructions.
template <
/// Size of the Gemm problem - concept: gemm::GemmShape<>
typename Shape0_,
/// Iterates over tiles of A operand in global memory
// (concept: ReadableTileIterator | ForwardTileIterator | MaskedTileIterator)
typename IteratorA0_,
/// Iterates over tiles of A operand in shared memory
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
typename SmemIteratorA0_,
/// Iterates over tiles of B operand in global memory
// (concept: ReadableTileIterator | ForwardTileIterator | MaskedTileIterator)
typename IteratorB0_,
/// Iterates over tiles of B operand in shared memory
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
typename SmemIteratorB0_,
/// Iterates over vectors of scale and bias vector in global memory
// (concept: VectorIterator)
typename IteratorAccumulatorScaleBias_,
/// Iterates over accumulator tile
typename FragmentIteratorAccumulator_,
/// Iterates over accumulator tile in shared memory
typename SmemIteratorD0_,
/// Size of the Gemm problem - concept: gemm::GemmShape<>
typename Shape1_,
/// Iterates over the intermediate accumulator tile in shared memory
typename WarpIteratorA1_,
/// Iterates over tiles of B operand in global memory
// (concept: ReadableTileIterator | ForwardTileIterator | MaskedTileIterator)
typename IteratorB1_,
/// Iterates over tiles of B operand in shared memory
/// (concept: WriteableTileIterator | RandomAccessTileIterator)
typename SmemIteratorB1_,
/// Data type of accumulator matrix
typename ElementC_,
/// Data type of accumulator matrix
typename LayoutC_,
/// Output operator for 1st Gemm(concept: epilogue::thread::LinearCombinationClamp, etc...)
typename OutputOp_,
/// Policy describing tuning details (concept: MmaPipelinedPolicy)
typename Policy0_,
/// Policy describing tuning details (concept: MmaPipelinedPolicy)
typename Policy1_,
/// Transformation applied to A0 operand
typename TransformA0_ = NumericArrayConverter<
typename SmemIteratorA0_::Element,
typename IteratorA0_::Element,
IteratorA0_::Fragment::kElements>,
///
/// Transformation applied to B0 operand
typename TransformB0_ = NumericArrayConverter<
typename SmemIteratorB0_::Element,
typename IteratorB0_::Element,
IteratorB0_::Fragment::kElements>,
///
/// Transformation applied to B1 operand
typename TransformB1_ = NumericArrayConverter<
typename SmemIteratorB1_::Element,
typename IteratorB1_::Element,
IteratorB1_::Fragment::kElements>,
/// Used for partial specialization
typename Enable = bool
>
class B2bMmaPipelinedSmemAccumulator :
public B2bMmaBaseSmemAccumulator<Shape0_, Shape1_, Policy0_, Policy1_, SmemIteratorD0_, 2> {
public:
///< Base class
using Base = B2bMmaBaseSmemAccumulator<Shape0_, Shape1_, Policy0_, Policy1_, SmemIteratorD0_, 2>;
using Shape0 = Shape0_; ///< Size of the Gemm problem - concept: gemm::GemmShape<>
using IteratorA0 = IteratorA0_; ///< Iterates over tiles of A operand in global memory
using IteratorB0 = IteratorB0_; ///< Iterates over tiles of B operand in global memory
using IteratorAccumulatorScaleBias = IteratorAccumulatorScaleBias_; ///< Iterates over tiles of the scale and bias vectors in global memory
using Policy0 = Policy0_; ///< Policy0 describing tuning details
using SmemIteratorA0 = SmemIteratorA0_;
using SmemIteratorB0 = SmemIteratorB0_;
using SmemIteratorD0 = SmemIteratorD0_; ///< Iterates over accumulator tile in shared memory
using FragmentIteratorAccumulator = FragmentIteratorAccumulator_; ///< Iterates over accumulator tile
using Shape1 = Shape1_; ///< Size of the Gemm problem - concept: gemm::GemmShape<>
using IteratorB1 = IteratorB1_; ///< Iterates over tiles of B operand in global memory
using Policy1 = Policy1_; ///< Policy1 describing tuning details
using SmemIteratorB1 = SmemIteratorB1_;
using WarpIteratorA1 = WarpIteratorA1_; ///< Iterates over the intermediate accumulator tile in shared memory
using ElementC = ElementC_; ///< Data type of accumulator matrix
using LayoutC = LayoutC_; ///< Layout of accumulator matrix
using OutputOp = OutputOp_; ///< Epilogue after 1st Gemm
using TransformA0 = TransformA0_;
using TransformB0 = TransformB0_;
using TransformB1 = TransformB1_;
//
// Dependent types
//
/// Fragment of operand A loaded from global memory
using FragmentA0 = typename IteratorA0::Fragment;
/// Fragment of operand B loaded from global memory
using FragmentB0 = typename IteratorB0::Fragment;
/// Fragment of accumulator tile
using FragmentC0 = typename Policy0::Operator::FragmentC;
/// Warp-level Mma
using Operator0 = typename Policy0::Operator;
/// Fragment of operand B loaded from global memory
using FragmentB1 = typename IteratorB1::Fragment;
/// Fragment of accumulator tile
using FragmentC1 = typename Policy1::Operator::FragmentC;
/// Warp-level Mma
using Operator1 = typename Policy1::Operator;
/// Obtain the arch tag from the warp-level operator
using ArchTag = typename Policy0::Operator::ArchTag;
/// Complex transform on A0 operand
static ComplexTransform const kTransformA0 = Operator0::kTransformA;
/// Complex transform on B0 operand
static ComplexTransform const kTransformB0 = Operator0::kTransformB;
/// Complex transform on B1 operand
static ComplexTransform const kTransformB1 = Operator1::kTransformB;
/// staticaly assert kStages for MmaPipelined is two (Double-buffered pipeline)
static_assert((Base::kStages==2), "MmaPipelined requires kStages set to value 2");
/// Epilog in shared memory
using Epilogue0 = epilogue::threadblock::EpilogueSmemAccumulator<
SmemIteratorD0, ///< SmemTileIterator
FragmentIteratorAccumulator, ///< AccumulatorFragmentIterator
IteratorAccumulatorScaleBias, ///< ScaleBiasIterator
OutputOp>; ///< Output operator
private:
using WarpFragmentA0 = typename Operator0::FragmentA;
using WarpFragmentB0 = typename Operator0::FragmentB;
using WarpFragmentA1 = typename Operator1::FragmentA;
using WarpFragmentB1 = typename Operator1::FragmentB;
protected:
/// Iterator to write threadblock-scoped tile of A operand to shared memory
SmemIteratorA0 smem_iterator_A_;
/// Iterator to write threadblock-scoped tile of B0 operand to shared memory
SmemIteratorB0 smem_iterator_B0_;
/// Shared Memory Iterator to store accumulator tile
SmemIteratorD0 smem_iterator_D0_;
/// Iterator to load a warp-scoped tile of A1 operand from intermediate accumulator tile
WarpIteratorA1 warp_tile_iterator_A1_;
/// Iterator to write threadblock-scoped tile of B1 operand to shared memory
SmemIteratorB1 smem_iterator_B1_;
public:
/// Construct from tensor references
CUTLASS_DEVICE
B2bMmaPipelinedSmemAccumulator(
typename Base::B2bMmaSharedStorage &shared_storage, ///< Shared storage needed for internal use by threadblock-scoped GEMM
int thread_idx, ///< ID within the threadblock
int warp_idx, ///< ID of warp
int lane_idx ///< ID of each thread within a warp
):
Base(shared_storage, thread_idx, warp_idx, lane_idx),
smem_iterator_A_(shared_storage.b2b_mma_shared_storage.shared_storage0.operand_A_ref(), thread_idx),
smem_iterator_B0_(shared_storage.b2b_mma_shared_storage.shared_storage0.operand_B_ref(), thread_idx),
smem_iterator_D0_(shared_storage.accumulator_shared_storage0.accum_ref(), lane_idx),
warp_tile_iterator_A1_(shared_storage.accumulator_shared_storage0.accum_ref(), lane_idx),
smem_iterator_B1_(shared_storage.b2b_mma_shared_storage.shared_storage1.operand_B_ref(), thread_idx) {
// Compute warp location within threadblock tile by mapping the warp_id to
// three coordinates:
// _m: the warp's position within the threadblock along the M dimension
// _n: the warp's position within the threadblock along the N dimension
// _k: the warp's position within the threadblock along the K dimension
int warp_idx_mn_0 = warp_idx % (Base::WarpCount0::kM * Base::WarpCount0::kN);
int warp_idx_k_0 = warp_idx / (Base::WarpCount0::kM * Base::WarpCount0::kN);
int warp_idx_m_0 = warp_idx_mn_0 % Base::WarpCount0::kM;
int warp_idx_n_0 = warp_idx_mn_0 / Base::WarpCount0::kM;
int tile_offset_k_0 = Base::kWarpGemmIterations0 * warp_idx_k_0;
int warp_idx_mn_1 = warp_idx % (Base::WarpCount1::kM * Base::WarpCount1::kN);
int warp_idx_k_1 = warp_idx / (Base::WarpCount1::kM * Base::WarpCount1::kN);
int warp_idx_m_1 = warp_idx_mn_1 % Base::WarpCount1::kM;
int warp_idx_n_1 = warp_idx_mn_1 / Base::WarpCount1::kM;
int tile_offset_k_1 = Base::kWarpGemmIterations1 * warp_idx_k_1;
// Add per-warp offsets in units of warp-level tiles
this->warp_tile_iterator_A0_.add_tile_offset({warp_idx_m_0, tile_offset_k_0});
this->warp_tile_iterator_B0_.add_tile_offset({tile_offset_k_0, warp_idx_n_0});
warp_tile_iterator_A1_.add_tile_offset({warp_idx_m_1, tile_offset_k_1});
this->warp_tile_iterator_B1_.add_tile_offset({tile_offset_k_1, warp_idx_n_1});
// Add smem accumulator iterator warp offset
smem_iterator_D0_.add_tile_offset({ warp_idx_m_0 * SmemIteratorD0::TileIterations::kRow,
warp_idx_n_0 * SmemIteratorD0::TileIterations::kColumn});
}
/// Perform a threadblock-scoped matrix multiply-accumulate
CUTLASS_DEVICE
void operator()(
int gemm_k_iterations_0, ///< number of iterations of the mainloop
FragmentC1 &accum, ///< destination accumulator tile
IteratorA0 iterator_A, ///< iterator over A operand in global memory
IteratorB0 iterator_B0, ///< iterator over B0 operand in global memory
IteratorAccumulatorScaleBias iterator_accum0_scale, ///< iterator over D0 scale vector in global memory
IteratorAccumulatorScaleBias iterator_accum0_bias, ///< iterator over D0 bias vector in global memory
IteratorB1 iterator_B1, ///< iterator over B1 operand in global memory
FragmentC0 const &src_accum, ///< source accumualtor tile
OutputOp output_op_0, ///< epilogue operation after 1st Gemm
TransformA0 transform_A0 = TransformA0(), ///< transformation applied to A0 fragment
TransformB0 transform_B0 = TransformB0(), ///< transformation applied to B0 fragment
TransformB1 transform_B1 = TransformB1()) { ///< transformation applied to B1 fragment
//
// Prologue
//
// Perform accumulation in the 'd' output operand
FragmentC0 accum0 = src_accum;
FragmentA0 tb_frag_A;
FragmentB0 tb_frag_B0;
tb_frag_A.clear();
tb_frag_B0.clear();
// The last kblock is loaded in the prolog
iterator_A.load(tb_frag_A);
iterator_B0.load(tb_frag_B0);
++iterator_A;
++iterator_B0;
this->smem_iterator_A_.store(transform_A0(tb_frag_A));
this->smem_iterator_B0_.store(transform_B0(tb_frag_B0));
++this->smem_iterator_A_;
++this->smem_iterator_B0_;
__syncthreads();
// Pair of fragments used to overlap shared memory loads and math instructions
WarpFragmentA0 warp_frag_A0[2];
WarpFragmentB0 warp_frag_B0[2];
this->warp_tile_iterator_A0_.set_kgroup_index(0);
this->warp_tile_iterator_B0_.set_kgroup_index(0);
this->warp_tile_iterator_A0_.load(warp_frag_A0[0]);
this->warp_tile_iterator_B0_.load(warp_frag_B0[0]);
++this->warp_tile_iterator_A0_;
++this->warp_tile_iterator_B0_;
Operator0 warp_mma0;
int smem_write_stage_idx = 1;
// Avoid reading out of bounds
iterator_A.clear_mask(gemm_k_iterations_0 <= 1);
iterator_B0.clear_mask(gemm_k_iterations_0 <= 1);
// Issue loads during the first warp-level matrix multiply-add *AFTER* issuing
// shared memory loads (which have the tighest latency requirement).
//
// Mainloop
//
// Note: The main loop does not support Base::kWarpGemmIterations == 2.
CUTLASS_GEMM_LOOP
for (; gemm_k_iterations_0 > 0; --gemm_k_iterations_0) {
//
// Loop over GEMM K dimension
//
CUTLASS_PRAGMA_UNROLL
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations0; ++warp_mma_k) {
// Load warp-level tiles from shared memory, wrapping to k offset if this is the last group
// as the case may be.
if (warp_mma_k == Base::kWarpGemmIterations0 - 1) {
// Write fragments to shared memory
this->smem_iterator_A_.store(transform_A0(tb_frag_A));
this->smem_iterator_B0_.store(transform_B0(tb_frag_B0));
__syncthreads();
++this->smem_iterator_A_;
++this->smem_iterator_B0_;
// Add negative offsets to return iterators to the 'start' of the circular buffer in shared memory
if (smem_write_stage_idx == 1) {
this->smem_iterator_A_.add_tile_offset({0, -Base::kStages});
this->smem_iterator_B0_.add_tile_offset({-Base::kStages, 0});
}
else {
this->warp_tile_iterator_A0_.add_tile_offset(
{0, -Base::kStages * Policy0::kPartitionsK * Base::kWarpGemmIterations0});
this->warp_tile_iterator_B0_.add_tile_offset(
{-Base::kStages * Policy0::kPartitionsK * Base::kWarpGemmIterations0,
0});
}
smem_write_stage_idx ^= 1;
}
this->warp_tile_iterator_A0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);
this->warp_tile_iterator_B0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);
this->warp_tile_iterator_A0_.load(warp_frag_A0[(warp_mma_k + 1) % 2]);
this->warp_tile_iterator_B0_.load(warp_frag_B0[(warp_mma_k + 1) % 2]);
++this->warp_tile_iterator_A0_;
++this->warp_tile_iterator_B0_;
if (warp_mma_k == 0) {
iterator_A.load(tb_frag_A);
iterator_B0.load(tb_frag_B0);
++iterator_A;
++iterator_B0;
// Avoid reading out of bounds if this was the last loop iteration
iterator_A.clear_mask(gemm_k_iterations_0 <= 2);
iterator_B0.clear_mask(gemm_k_iterations_0 <= 2);
}
warp_mma0(accum0, warp_frag_A0[warp_mma_k % 2],
warp_frag_B0[warp_mma_k % 2], accum0);
}
}
/// Epilogue for the first Implicit Gemm
Epilogue0 epilogue0;
epilogue0(output_op_0, smem_iterator_D0_, accum0, iterator_accum0_scale, iterator_accum0_bias);
__syncthreads();
//2nd Gemm
//
// Prologue
//
FragmentB1 tb_frag_B1;
tb_frag_B1.clear();
// The last kblock is loaded in the prolog
iterator_B1.load(tb_frag_B1);
++iterator_B1;
this->smem_iterator_B1_.store(transform_B1(tb_frag_B1));
++this->smem_iterator_B1_;
__syncthreads();
// Pair of fragments used to overlap shared memory loads and math instructions
WarpFragmentA1 warp_frag_A1[2];
WarpFragmentB1 warp_frag_B1[2];
this->warp_tile_iterator_B1_.set_kgroup_index(0);
warp_tile_iterator_A1_.load(warp_frag_A1[0]);
this->warp_tile_iterator_B1_.load(warp_frag_B1[0]);
++warp_tile_iterator_A1_;
++this->warp_tile_iterator_B1_;
Operator1 warp_mma1;
smem_write_stage_idx = 1;
int gemm_k_iterations_1 = Shape0::kN / Shape1::kK;
// Avoid reading out of bounds
iterator_B1.clear_mask(gemm_k_iterations_1 <= 1);
//
// Mainloop
//
// Note: The main loop does not support Base::kWarpGemmIterations == 2.
CUTLASS_PRAGMA_UNROLL
for (; gemm_k_iterations_1 > 0; --gemm_k_iterations_1) {
//
// Loop over GEMM K dimension
//
CUTLASS_PRAGMA_UNROLL
for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations1; ++warp_mma_k) {
// Load warp-level tiles from shared memory, wrapping to k offset if this is the last group
// as the case may be.
if (warp_mma_k == Base::kWarpGemmIterations1 - 1) {
// Write fragments to shared memory
this->smem_iterator_B1_.store(transform_B1(tb_frag_B1));
__syncthreads();
++this->smem_iterator_B1_;
// Add negative offsets to return iterators to the 'start' of the circular buffer in shared memory
if (smem_write_stage_idx == 1) {
this->smem_iterator_B1_.add_tile_offset({-Base::kStages, 0});
}
else {
this->warp_tile_iterator_B1_.add_tile_offset(
{-Base::kStages * Policy1::kPartitionsK *
Base::kWarpGemmIterations1,
0});
}
smem_write_stage_idx ^= 1;
}
this->warp_tile_iterator_B1_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations1);
// skip warp tile loading for the last kgroup
if(gemm_k_iterations_1 > 1 || warp_mma_k < Base::kWarpGemmIterations1 - 1)
warp_tile_iterator_A1_.load(warp_frag_A1[(warp_mma_k + 1) % 2]);
this->warp_tile_iterator_B1_.load(warp_frag_B1[(warp_mma_k + 1) % 2]);
++warp_tile_iterator_A1_;
++this->warp_tile_iterator_B1_;
if (warp_mma_k == 0) {
iterator_B1.load(tb_frag_B1);
++iterator_B1;
// Avoid reading out of bounds if this was the last loop iteration
iterator_B1.clear_mask(gemm_k_iterations_1 <= 2);
}
warp_mma1(accum, warp_frag_A1[warp_mma_k % 2],
warp_frag_B1[warp_mma_k % 2], accum);
}
}
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace threadblock
} // namespace gemm
} // namespace cutlass

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -34,6 +40,10 @@
#include "cutlass/transform/threadblock/predicated_tile_iterator.h"
#include "cutlass/transform/threadblock/predicated_tile_iterator_2dthreadtile.h"
#include "cutlass/transform/threadblock/predicated_vector_access_iterator.h"
#include "cutlass/transform/threadblock/vector_iterator.h"
#include "cutlass/transform/warp/vector_fragment_iterator.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm70.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm75.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm80.h"
@ -89,7 +99,9 @@ template <
typename EpilogueOutputOp,
/// Store the accumulators in row major or column major. Row major is used
/// when output layout is interleaved.
bool AccumulatorsInRowMajor = false>
bool AccumulatorsInRowMajor = false,
/// Staging the accumulators in shared memory.
bool SmemAccumulator = false>
struct DefaultB2bMma;
////////////////////////////////////////////////////////////////////////////////
@ -162,6 +174,22 @@ struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
MmaCore1::Shape::kK, //kBlocksColumn
ElementAccumulator, ElementA, AccumulatorLayout, InstructionShape, EpilogueOutputOp>;
using ElementScaleBias = typename EpilogueOutputOp::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 2;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape1::kM, WarpShape1::kK>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Warp-level iterators to load scale and bias vectors
using FragmentIteratorA1ScaleBias = cutlass::transform::warp::VectorFragmentIterator<
MatrixShape<1, IteratorAccumulatorScaleBias::Fragment::kElements>, ElementScaleBias,
LayoutScaleBias, InstructionShape, kElementsPerAccess>;
// Define iterators over tiles from the B operand
using IteratorB1 =
cutlass::transform::threadblock::PredicatedTileIterator<
@ -173,6 +201,7 @@ struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA,
IteratorB0, typename MmaCore0::SmemIteratorB,
typename MmaCore1::Shape, FragmentIteratorA1,
IteratorAccumulatorScaleBias, FragmentIteratorA1ScaleBias,
IteratorB1, typename MmaCore1::SmemIteratorB,
ElementAccumulator, layout::RowMajor,
EpilogueOutputOp,
@ -268,6 +297,24 @@ struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
MmaCore1::Shape::kK, //kBlocksColumn
ElementAccumulator, ElementA, AccumulatorLayout, InstructionShape, EpilogueOutputOp>;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 2;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape1::kM, WarpShape1::kK>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Warp-level iterators to load scale and bias vectors
using FragmentIteratorA1ScaleBias = cutlass::transform::warp::VectorFragmentIterator<
MatrixShape<1, IteratorAccumulatorScaleBias::Fragment::kElements>, ElementScaleBias,
LayoutScaleBias, InstructionShape, kElementsPerAccess>;
// Define iterators over tiles from the B operand
using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB;
using AccessTypeB1 = cutlass::Array<ElementB, kAlignmentB>;
@ -282,6 +329,7 @@ struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
MmaCore0::kCacheOpA,
IteratorB0, typename MmaCore0::SmemIteratorB, MmaCore0::kCacheOpB,
typename MmaCore1::Shape, FragmentIteratorA1,
IteratorAccumulatorScaleBias, FragmentIteratorA1ScaleBias,
IteratorB1, typename MmaCore1::SmemIteratorB, MmaCore1::kCacheOpB,
ElementAccumulator, layout::RowMajor,
EpilogueOutputOp,
@ -369,6 +417,22 @@ struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
ElementAccumulator, ElementA, AccumulatorLayout,
InstructionShape, EpilogueOutputOp>;
using ElementScaleBias = typename EpilogueOutputOp::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 4;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape1::kM, WarpShape1::kK>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Warp-level iterators to load scale and bias vectors
using FragmentIteratorA1ScaleBias = cutlass::transform::warp::VectorFragmentIterator<
MatrixShape<1, IteratorAccumulatorScaleBias::Fragment::kElements>, ElementScaleBias,
LayoutScaleBias, InstructionShape, kElementsPerAccess>;
// Define iterators over tiles from the B operand
using IteratorB1 =
cutlass::transform::threadblock::PredicatedTileIterator<
@ -376,12 +440,12 @@ struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
ElementB, LayoutB, 0, typename MmaCore1::IteratorThreadMapB>;
// Define the threadblock-scoped pipelined matrix multiply
using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaPipelined<
typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA,
IteratorB0, typename MmaCore0::SmemIteratorB,
typename MmaCore1::Shape, FragmentIteratorA1,
IteratorAccumulatorScaleBias, FragmentIteratorA1ScaleBias,
IteratorB1, typename MmaCore1::SmemIteratorB,
ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>,
EpilogueOutputOp,
@ -471,6 +535,23 @@ struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
ElementAccumulator, ElementA, AccumulatorLayout,
InstructionShape, EpilogueOutputOp>;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 4;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape1::kM, WarpShape1::kK>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Warp-level iterators to load scale and bias vectors
using FragmentIteratorA1ScaleBias = cutlass::transform::warp::VectorFragmentIterator<
MatrixShape<1, IteratorAccumulatorScaleBias::Fragment::kElements>, ElementScaleBias,
LayoutScaleBias, InstructionShape, kElementsPerAccess>;
// Define iterators over tiles from the B operand
using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB;
using IteratorB1 =
@ -486,6 +567,7 @@ struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
MmaCore0::kCacheOpA,
IteratorB0, typename MmaCore0::SmemIteratorB, MmaCore0::kCacheOpB,
typename MmaCore1::Shape, FragmentIteratorA1,
IteratorAccumulatorScaleBias, FragmentIteratorA1ScaleBias,
IteratorB1, typename MmaCore1::SmemIteratorB, MmaCore1::kCacheOpB,
ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>,
EpilogueOutputOp,

View File

@ -0,0 +1,605 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Template for a pipelined GEMM kernel. Does not compute batching or support split-K.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
#include "cutlass/arch/arch.h"
#include "cutlass/transform/threadblock/predicated_tile_iterator.h"
#include "cutlass/transform/threadblock/predicated_tile_iterator_2dthreadtile.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm70.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm75.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm80.h"
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
#include "threadblock/b2b_mma_pipelined_smem_accumulator.h"
#include "threadblock/b2b_mma_multistage_smem_accumulator.h"
////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace threadblock {
////////////////////////////////////////////////////////////////////////////////
/// Specialization for row-major output with 2-stage pipeline
/// Accumulator will be staged in shared memory.
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Tag indicating architecture to tune for
typename ArchTag,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape0,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape1,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape0,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape1,
/// Instruction-level tile size (concept: GemmShape)
typename InstructionShape,
/// Operation performed by GEMM
typename Operator,
/// Epilogue output operator
typename EpilogueOutputOp>
struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
kAlignmentB, ElementAccumulator, layout::RowMajor,
arch::OpClassTensorOp, ArchTag,
ThreadblockShape0, ThreadblockShape1,
WarpShape0, WarpShape1,
InstructionShape, 2, Operator, EpilogueOutputOp, false, true> {
// Define the MmaCore components
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementAccumulator, layout::RowMajor,
arch::OpClassTensorOp, 2, Operator>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementAccumulator, layout::RowMajor,
arch::OpClassTensorOp, 2, Operator>;
// Define iterators over tiles from the A operand
using IteratorA0 =
cutlass::transform::threadblock::PredicatedTileIterator<
cutlass::MatrixShape<MmaCore0::Shape::kM, MmaCore0::Shape::kK>,
ElementA, LayoutA, 1, typename MmaCore0::IteratorThreadMapA, kAlignmentA>;
// Define iterators over tiles from the B operand
using IteratorB0 =
cutlass::transform::threadblock::PredicatedTileIterator<
cutlass::MatrixShape<MmaCore0::Shape::kK, MmaCore0::Shape::kN>,
ElementB, LayoutB, 0, typename MmaCore0::IteratorThreadMapB, kAlignmentB>;
// Define iterators over tiles from the B operand
using IteratorB1 =
cutlass::transform::threadblock::PredicatedTileIterator<
cutlass::MatrixShape<MmaCore1::Shape::kK, MmaCore1::Shape::kN>,
ElementB, LayoutB, 0, typename MmaCore1::IteratorThreadMapB, kAlignmentB>;
// Warp-level GEMM components
using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp;
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
// Use fragment iterator for the accumulator
using SmemAccumulatorLayout = cutlass::layout::RowMajor;
using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp<
WarpShape0, InstructionShape,
ElementAccumulator,
typename WarpMmaTensorOp0::Policy::Operator::FragmentC,
SmemAccumulatorLayout
>;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 2;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Store Accumulator tiles to Shared Memory
using SmemIteratorD0 =
cutlass::epilogue::warp::TileIteratorTensorOp<
WarpShape0,
InstructionShape,
typename EpilogueOutputOp::ElementOutput,
SmemAccumulatorLayout
>;
static int const kThreadCount = 32;
// load warp tile from Shared Memory accumulator
using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileIterator<
MatrixShape<WarpShape1::kM, InstructionShape::kK>, cutlass::gemm::Operand::kA,
ElementA, SmemAccumulatorLayout,
MatrixShape<InstructionShape::kM, InstructionShape::kK>,
WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount>;
// Define the threadblock-scoped pipelined matrix multiply
using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaPipelinedSmemAccumulator<
typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA,
IteratorB0, typename MmaCore0::SmemIteratorB,
IteratorAccumulatorScaleBias,
FragmentIteratorAccumulator, SmemIteratorD0,
typename MmaCore1::Shape, WarpIteratorA1,
IteratorB1, typename MmaCore1::SmemIteratorB,
ElementAccumulator, layout::RowMajor,
EpilogueOutputOp,
typename MmaCore0::MmaPolicy, typename MmaCore1::MmaPolicy>;
};
////////////////////////////////////////////////////////////////////////////////
/// Specialization for row-major output for multi-stage
/// Accumulator will be staged in shared memory.
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Tag indicating architecture to tune for
typename ArchTag,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape0,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape1,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape0,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape1,
/// Instruction-level tile size (concept: GemmShape)
typename InstructionShape,
/// Number of stages used in the multistage mainloop
int Stages,
/// Operation performed by GEMM
typename Operator,
/// Epilogue output operator
typename EpilogueOutputOp>
struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
kAlignmentB, ElementAccumulator, layout::RowMajor,
arch::OpClassTensorOp, ArchTag,
ThreadblockShape0, ThreadblockShape1,
WarpShape0, WarpShape1,
InstructionShape, Stages, Operator, EpilogueOutputOp, false, true> {
static cutlass::arch::CacheOperation::Kind const CacheOpA =
((sizeof_bits<ElementA>::value * kAlignmentA) == 128)
? cutlass::arch::CacheOperation::Global
: cutlass::arch::CacheOperation::Always;
static cutlass::arch::CacheOperation::Kind const CacheOpB =
((sizeof_bits<ElementB>::value * kAlignmentB) == 128)
? cutlass::arch::CacheOperation::Global
: cutlass::arch::CacheOperation::Always;
// Define the MmaCore components
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
Stages, Operator, false, CacheOpA, CacheOpB>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
Stages, Operator, false, CacheOpA, CacheOpB>;
// Define iterators over tiles from the A operand
using ThreadMapA0 = typename MmaCore0::IteratorThreadMapA;
using AccessTypeA0 = cutlass::Array<ElementA, kAlignmentA>;
using IteratorA0 =
cutlass::transform::threadblock::PredicatedTileAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, LayoutA, 1, ThreadMapA0, AccessTypeA0>;
// Define iterators over tiles from the B operand
using ThreadMapB0 = typename MmaCore0::IteratorThreadMapB;
using AccessTypeB0 = cutlass::Array<ElementB, kAlignmentB>;
using IteratorB0 =
cutlass::transform::threadblock::PredicatedTileAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>,
ElementB, LayoutB, 0, ThreadMapB0, AccessTypeB0>;
// Define iterators over tiles from the B operand
using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB;
using AccessTypeB1 = cutlass::Array<ElementB, kAlignmentB>;
using IteratorB1 =
cutlass::transform::threadblock::PredicatedTileAccessIterator<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, LayoutB, 0, ThreadMapB1, AccessTypeB1>;
// Warp-level GEMM components
using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp;
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
// Use fragment iterator for the accumulator
using SmemAccumulatorLayout = cutlass::layout::RowMajor;
using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp<
WarpShape0, InstructionShape,
ElementAccumulator,
typename WarpMmaTensorOp0::Policy::Operator::FragmentC,
SmemAccumulatorLayout
>;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 2;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Store Accumulator tiles to Shared Memory
using SmemIteratorD0 =
cutlass::epilogue::warp::TileIteratorTensorOp<
WarpShape0,
InstructionShape,
typename EpilogueOutputOp::ElementOutput,
SmemAccumulatorLayout
>;
static int const kThreadCount = 32;
// load warp tile from Shared Memory accumulator
using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileIterator<
MatrixShape<WarpShape1::kM, InstructionShape::kK>, cutlass::gemm::Operand::kA,
ElementA, SmemAccumulatorLayout,
MatrixShape<InstructionShape::kM, InstructionShape::kK>,
WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount>;
// Define the threadblock-scoped pipelined matrix multiply
using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaMultistageSmemAccumulator<
typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA,
MmaCore0::kCacheOpA,
IteratorB0, typename MmaCore0::SmemIteratorB, MmaCore0::kCacheOpB,
IteratorAccumulatorScaleBias,
FragmentIteratorAccumulator, SmemIteratorD0,
typename MmaCore1::Shape, WarpIteratorA1,
IteratorB1, typename MmaCore1::SmemIteratorB, MmaCore1::kCacheOpB,
ElementAccumulator, layout::RowMajor,
EpilogueOutputOp,
typename MmaCore0::MmaPolicy, typename MmaCore1::MmaPolicy, Stages>;
};
////////////////////////////////////////////////////////////////////////////////
/// Specialization for column-major-interleaved output with 2-stage pipeline
/// Accumulator will be staged in shared memory.
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Tag indicating architecture to tune for
typename OperatorClass,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape0,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape1,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape0,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape1,
/// Instruction-level tile size (concept: GemmShape)
typename InstructionShape,
/// Operation performed by GEMM
typename Operator,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Number of Interleaved K
int InterleavedK>
struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
kAlignmentB, ElementAccumulator,
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, arch::Sm75,
ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1,
InstructionShape, 2, Operator, EpilogueOutputOp, true, true> {
// Define the MmaCore components
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementAccumulator,
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, 2, Operator,
true>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementAccumulator,
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, 2, Operator,
true>;
static_assert(kAlignmentA == 128 / sizeof_bits<ElementA>::value,
"Alignment must match thread data map's vector length");
static_assert(kAlignmentB ==128 / sizeof_bits<ElementB>::value,
"Alignment must match thread data map's vector length");
// Define iterators over tiles from the A operand
using IteratorA0 = cutlass::transform::threadblock::PredicatedTileIterator<
cutlass::MatrixShape<MmaCore0::Shape::kM, MmaCore0::Shape::kK>, ElementA,
LayoutA, 1, typename MmaCore0::IteratorThreadMapA>;
// Define iterators over tiles from the B operand
using IteratorB0 = cutlass::transform::threadblock::PredicatedTileIterator<
cutlass::MatrixShape<MmaCore0::Shape::kK, MmaCore0::Shape::kN>, ElementB,
LayoutB, 0, typename MmaCore0::IteratorThreadMapB>;
// Define iterators over tiles from the B operand
using IteratorB1 =
cutlass::transform::threadblock::PredicatedTileIterator<
cutlass::MatrixShape<MmaCore1::Shape::kK, MmaCore1::Shape::kN>,
ElementB, LayoutB, 0, typename MmaCore1::IteratorThreadMapB>;
// Warp-level GEMM components
using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp;
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
// Use fragment iterator for the accumulator
using SmemAccumulatorLayout = cutlass::layout::ColumnMajorInterleaved<16>;
using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp<
WarpShape0, InstructionShape,
ElementAccumulator,
typename WarpMmaTensorOp0::Policy::Operator::FragmentC,
SmemAccumulatorLayout
>;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 4; //For interleaved layout
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Store Accumulator tiles to Shared Memory
using SmemIteratorD0 =
cutlass::epilogue::warp::TileIteratorTensorOp<
WarpShape0,
InstructionShape,
typename EpilogueOutputOp::ElementOutput,
SmemAccumulatorLayout
>;
static int const kThreadCount = 32;
// load warp tile from Shared Memory accumulator
using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileIteratorCanonical<
MatrixShape<WarpShape1::kM, InstructionShape::kK>, cutlass::gemm::Operand::kA,
ElementA, SmemAccumulatorLayout,
MatrixShape<InstructionShape::kM, InstructionShape::kK>,
WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount>;
// Define the threadblock-scoped pipelined matrix multiply
using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaPipelinedSmemAccumulator<
typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA,
IteratorB0, typename MmaCore0::SmemIteratorB,
IteratorAccumulatorScaleBias,
FragmentIteratorAccumulator, SmemIteratorD0,
typename MmaCore1::Shape, WarpIteratorA1,
IteratorB1, typename MmaCore1::SmemIteratorB,
ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>,
EpilogueOutputOp,
typename MmaCore0::MmaPolicy, typename MmaCore1::MmaPolicy>;
};
////////////////////////////////////////////////////////////////////////////////
/// Specialization for column-major-interleaved output with multi-stage
/// Accumulator will be staged in shared memory.
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Tag indicating architecture to tune for
typename OperatorClass,
/// Tag indicating architecture to tune for
typename ArchTag,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape0,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape1,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape0,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape1,
/// Instruction-level tile size (concept: GemmShape)
typename InstructionShape,
/// Number of stages used in the multistage mainloop
int Stages,
/// Operation performed by GEMM
typename Operator,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Number of Interleaved K
int InterleavedK>
struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
kAlignmentB, ElementAccumulator,
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, ArchTag,
ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1,
InstructionShape, Stages, Operator, EpilogueOutputOp, true, true> {
// Define the MmaCore components
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementAccumulator,
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, Stages,
Operator, true>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementAccumulator,
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, Stages,
Operator, true>;
// Define iterators over tiles from the A operand
using ThreadMapA0 = typename MmaCore0::IteratorThreadMapA;
using AccessTypeA = cutlass::Array<ElementA, kAlignmentA>;
using IteratorA0 =
cutlass::transform::threadblock::PredicatedTileAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>,
ElementA, LayoutA, 1, ThreadMapA0, AccessTypeA>;
// Define iterators over tiles from the B operand
using ThreadMapB0 = typename MmaCore0::IteratorThreadMapB;
using AccessTypeB = cutlass::Array<ElementB, kAlignmentB>;
using IteratorB0 =
cutlass::transform::threadblock::PredicatedTileAccessIterator<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, LayoutB, 0, ThreadMapB0, AccessTypeB>;
// Define iterators over tiles from the B operand
using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB;
using IteratorB1 =
cutlass::transform::threadblock::PredicatedTileAccessIterator<
cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>,
ElementB, LayoutB, 0, ThreadMapB1, AccessTypeB>;
// Warp-level GEMM components
using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp;
using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp;
using MmaPolicy0 = typename MmaCore0::MmaPolicy;
using MmaPolicy1 = typename MmaCore1::MmaPolicy;
// Use fragment iterator for the accumulator
using SmemAccumulatorLayout = cutlass::layout::ColumnMajorInterleaved<16>;
using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp<
WarpShape0, InstructionShape,
ElementAccumulator,
typename WarpMmaTensorOp0::Policy::Operator::FragmentC,
SmemAccumulatorLayout
>;
/// Define iterators over tiles from scale/bias vectors
using ElementScaleBias = typename EpilogueOutputOp::ElementCompute;
using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter
static int const kElementsPerAccess = 4;
using IteratorAccumulatorScaleBias =
cutlass::transform::threadblock::VectorIterator<
cutlass::transform::threadblock::PredicatedVectorAccessIterator<
cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>,
cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>,
ElementScaleBias, LayoutScaleBias, kElementsPerAccess>
>;
// Store Accumulator tiles to Shared Memory
using SmemIteratorD0 =
cutlass::epilogue::warp::TileIteratorTensorOp<
WarpShape0,
InstructionShape,
typename EpilogueOutputOp::ElementOutput,
SmemAccumulatorLayout
>;
static int const kThreadCount = 32;
// load warp tile from Shared Memory accumulator
using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileIteratorCanonical<
MatrixShape<WarpShape1::kM, InstructionShape::kK>, cutlass::gemm::Operand::kA,
ElementA, SmemAccumulatorLayout,
MatrixShape<InstructionShape::kM, InstructionShape::kK>,
WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount>;
// Define the threadblock-scoped multistage matrix multiply
using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaMultistageSmemAccumulator<
typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA,
MmaCore0::kCacheOpA,
IteratorB0, typename MmaCore0::SmemIteratorB, MmaCore0::kCacheOpB,
IteratorAccumulatorScaleBias,
FragmentIteratorAccumulator, SmemIteratorD0,
typename MmaCore1::Shape, WarpIteratorA1,
IteratorB1, typename MmaCore1::SmemIteratorB, MmaCore1::kCacheOpB,
ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>,
EpilogueOutputOp,
typename MmaCore0::MmaPolicy, typename MmaCore1::MmaPolicy, Stages>;
};
////////////////////////////////////////////////////////////////////////////////
} // namespace threadblock
} // namespace gemm
} // namespace cutlass
////////////////////////////////////////////////////////////////////////////////

View File

@ -1,25 +1,33 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cutlass_example_add_executable(
14_ampere_tf32_tensorop_gemm
ampere_tf32_tensorop_gemm.cu

View File

@ -1,24 +1,30 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
@ -132,12 +138,12 @@ struct Options {
<< " This example uses the CUTLASS Library to execute TF32 tensorop GEMM computations.\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement.\n\n"
<< " --m <int> GEMM M dimension\n"
<< " --n <int> GEMM N dimension\n"
<< " --k <int> GEMM K dimension\n"
<< " --alpha <f32> Epilogue scalar alpha\n"
<< " --beta <f32> Epilogue scalar beta\n\n"
<< " --iterations <int> Number of profiling iterations to perform.\n\n";
<< " --m=<int> GEMM M dimension\n"
<< " --n=<int> GEMM N dimension\n"
<< " --k=<int> GEMM K dimension\n"
<< " --alpha=<f32> Epilogue scalar alpha\n"
<< " --beta=<f32> Epilogue scalar beta\n\n"
<< " --iterations=<int> Number of profiling iterations to perform.\n\n";
out << "\n\nExamples:\n\n"
<< "$ ./examples/14_ampere_tf32_tensorop_gemm/14_ampere_tf32_tensorop_gemm --m=1024 --n=512 --k=1024 \\\n"

View File

@ -1,25 +1,33 @@
# Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without modification, are permitted
# provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or other materials
# provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific prior written
# permission.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cutlass_example_add_executable(
15_ampere_sparse_tensorop_gemm
ampere_sparse_tensorop_gemm.cu

Some files were not shown because too many files have changed in this diff Show More