Compare commits

...

65 Commits

Author SHA1 Message Date
ad7b2f5e84 3.9.2 doc/version (#2279)
* 3.9.2 doc/version

* whitespace
2025-05-04 00:00:15 -04:00
40f124ef27 [CUTLASS] Add GNA to PUBLICATIONS.md (#2276)
Adds "Generalized Neighborhood Attention" to list of publications using
CUTLASS.

https://arxiv.org/abs/2504.16922

Co-authored-by: Ali Hassani <ahassani@nvidia.com>
2025-05-02 16:57:19 -04:00
89f6bf2739 Fix group scale gemm when K==128 (#2275)
Co-authored-by: Jiazhen Han <jiazhenh@nvidia.com>
2025-05-02 15:41:18 -04:00
f535c33634 3.9.1 doc/version change (#2273) 2025-05-01 00:27:00 -04:00
e3cb8a773a Import cuda, cudart, nvrtc lazily (#2251)
* Lazy cuda import

* More lazy cuda import

* More lazy cuda imports

* minor fixes

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-04-30 23:10:33 -04:00
c4bdfe821c Lazy scipy import (#2250) 2025-04-30 16:10:00 -04:00
b3ce7e12b7 Make cc a positional argument (#2249) 2025-04-30 16:09:25 -04:00
fe75ead92e Import pydot lazily (#2248) 2025-04-30 16:08:17 -04:00
35136f5564 Fix wrong detection of python version for use_rmm. (#2224) 2025-04-30 15:29:33 -04:00
e5b810bed1 Use cudaMemcpyAsync in gemm grouped with kRequiresPrecomputation schedule. (#2256)
Co-authored-by: Yuhang Qi <qiyuhang@bytedance.com>
2025-04-30 15:28:05 -04:00
2b78c2fe31 cherry-pick feature/hopper-blockwise-generalization-optimization (#2270) 2025-04-29 16:47:22 -04:00
697126019e fix blackwell grouped groupwise hang (#2267) 2025-04-29 11:54:20 -04:00
e94e888df3 Update CHANGELOG.md 2025-04-24 21:51:34 -04:00
be73ad20a5 Update CHANGELOG.md for 3.9 2025-04-24 16:54:06 -04:00
f02a7c2976 Update README.md for 3.9 2025-04-24 16:51:45 -04:00
331a1f5b3f cutlass 3.9 update (#2255)
* cutlass 3.9 update

* rebase

* fixes out of shared memory for blockwise Blackwell

* doc format

* fix issue 2253

* disable host ref by default

* fix sm120 smem capacity

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-04-24 15:42:40 -04:00
8e345c5c5b fix_missing_stdint (#2199)
* Update config.hpp

* 更新 config.hpp

* 更新 config.hpp
2025-04-23 22:21:22 -04:00
81a43e6d92 Set EpiTile correctly when TileN is not divisible by 32 (#2220)
If TileN is not divisible by 32 (e.g, 208), by default EpiTile would be set
to 128 x 32, which does not compile as TileN is required to divide EpiTileN
2025-04-21 00:02:51 -04:00
ade6376fa0 [SM90] Change register allocation for TileN=208 to avoid spills (#2219)
With the usual register allocation (producer 40, consumer 232) compiling Gemm
with tile shape 256 x 208 (cooperative) or 128 x 208 (pingpong) show lots of
register spilling (e.g. ~3000 bytes spill). For this case we can change
the register allocation to producer 24, consumer 240, which avoids spills.
2025-04-21 00:02:30 -04:00
bb4dd682dd Fix broken links and alt text in cluster launch control docs (#2234)
* Fix broken links in cluster launch control docs

* Improve titles and alt text
2025-04-21 00:01:12 -04:00
5e497243f7 fix: fig link in cute docs (#2216) 2025-04-10 14:51:41 -04:00
b3f3c7758c Update tile_iterator.cu (#2204)
Some typos in comments
2025-04-10 14:49:58 -04:00
9e1b649827 fix-left-inverse-for-nvcc114 (#2196) 2025-04-10 14:48:46 -04:00
5120b21cc3 suppress compilation warnings (#2195) 2025-04-10 14:48:01 -04:00
dd76dec4ef [Doc] Make C++ code more plausible (#2156)
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-04-10 14:35:46 -04:00
19cc2a5feb add support for sm89 in cute and the unit tests (#2177)
* add support for sm89 in cute and the unit tests

* rebase v3.9 and format code

* minor fix

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-04-10 14:16:36 -04:00
09df6ac464 [Doc]fix typo (#2174)
Co-authored-by: wenju.li <wenju.li@deepctr.cn>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-04-10 12:46:53 -04:00
df8a550d39 Update mma_atom.hpp (#2159)
remove useless code
2025-04-03 11:42:10 -04:00
79fc51f4b8 v3.9 update (#2213)
Co-authored-by: yuzhai <yuzhai@nvidia.com>
2025-04-03 02:10:16 -04:00
6f4921858b v3.9 update (#2203)
* v3.9 update

* voidD

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
2025-04-02 15:11:18 -04:00
62750a2b75 v3.9 (#2185)
* v3.8 update x

* fix blackwell gg

* doc change

* doc change

* doc change

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
2025-03-21 01:52:23 -04:00
8c4d1dc47d Treat negative zero as equivalent to positive zero in sm90_sparse_gemm_compressor.hpp (#2110)
* Treat negative zero as zero in the sparse gemm compressor

Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>

* format

Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>

* Apply patch

Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>

* sm90_sparse_gemm_compressor.hpp

* test/unit/transform/CMakeLists.txt

* test/unit/transform/device/sm90_sparse_gemm_compressor_legacy.hpp

* include/cutlass/numeric_types.h

---------

Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
2025-03-21 01:44:17 -04:00
3fe62887d8 adding blackwell (#2143) 2025-03-17 22:20:40 -04:00
bd03b22f64 fix typo (#2136)
Co-authored-by: XiaoDong <xiaod@nvidia.com>
2025-03-17 22:19:43 -04:00
6c6b78550e Fix SM90 beta=1 hang and stream-K launch errors (#2172)
* Fix stream-K occupancy calculation

* Fix beta=1 hang
2025-03-13 14:07:37 -04:00
06e560d98a Blockwise/Groupwise kernel improvement and programatic dependent launch enablement (#2161)
Co-authored-by: dePaul Miller <23461061+depaulmillz@users.noreply.github.com>
2025-03-10 14:36:11 -04:00
df18f5e4f5 Improvements for: Groupwise scaling along M for FP8 gemm (#2095)
* fix blockwise fp8 kernels

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>

* wip, < 128 not working

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>

* fix < 128

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>

* reduce diff

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>

* review comments

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>

* support partial n blocks

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>

* fix build errors

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>

---------

Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-02-27 22:39:29 -05:00
ca4fdbea70 Blockwise and Groupwise GEMM for Blackwell and Improvements for Hopper (#2139)
- Blockwise and Groupwise GEMM improvements for Hopper.
- Blockwise and Groupwise GEMM for Blackwell.
- Blockwise Grouped GEMM for Hopper.
- Static ScalePromotionInterval for Hopper FP8 GEMMs.

Co-authored-by: dePaul Miller <23461061+depaulmillz@users.noreply.github.com>
2025-02-26 12:44:58 -05:00
eefa171318 [EVT] Fix Row/Col broadcast with array arguments (#2120)
* Use constexpr in if to prevent invalid comparison.

* Move constexpr check into else scope.
2025-02-21 17:47:30 -05:00
afa1772203 truncate name for cutlass profiler (#2124)
Co-authored-by: yuzhai <yuzhai@nvidia.com>
2025-02-21 00:16:56 -05:00
9b3772dfa6 Hopper Grouped GEMM support for FP8 Accum (#2123)
* Add support for fp8accum, with profiler extension

* Update .gitignore

* contri

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-02-20 21:55:26 -05:00
b84e9802d8 update 3.8 v2 (#2112)
* update 3.8 v2

* update 3.8

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
2025-02-19 22:03:14 -05:00
e9627ce55b Always use cudaGetDriverEntryPoint with CUDA 12 (#2086)
`cudaGetDriverEntryPointByVersion` has been added to drivers in 12.5, but we don't know at compile time the driver version.
In particular, we can build with nvcc 12.8 for a 12.2 driver for instance, and this was causing the following error:

```
undefined symbol: cudaGetDriverEntryPointByVersion,
```
2025-02-11 13:04:25 -05:00
ad6e1ec19c Add ParetoQ to PUBLICATIONS.md (#2089) 2025-02-10 16:47:02 -05:00
0642d46dd4 Update 0x_gemm_tutorial.md (#2090) 2025-02-10 16:46:43 -05:00
833f6990e0 v3.8.0 update (#2082)
* 3.8 update

* fix Markus' name

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
2025-02-06 21:33:40 -05:00
affd1b693d [EVT] Add support for Row/Col broadcast PtrArray (#2033)
* Add group support to EVT row/col broadcast.

* small modifications

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-02-02 12:10:07 -05:00
6f55278121 bugfix generic-k code in top-k with softmax (#1993)
* bugfix generic-k code in top-k with softmax

* Update include/cutlass/epilogue/fusion/sm90_visitor_topk_softmax.hpp

Co-authored-by: Ali Hassani <68103095+alihassanijr@users.noreply.github.com>

* Update examples/61_hopper_gemm_with_topk_and_softmax/61_hopper_gemm_with_topk_and_softmax.cu

Co-authored-by: Ali Hassani <68103095+alihassanijr@users.noreply.github.com>

---------

Co-authored-by: Ali Hassani <68103095+alihassanijr@users.noreply.github.com>
2025-01-31 19:05:35 -05:00
3c28697b9f Groupwise scaling along M for FP8 gemm (#2037)
* FP8 groupwise scaling along M

* small updates

---------

Co-authored-by: zl <zl@deepseek.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-01-31 13:51:28 -05:00
bdd641790a Update README.md 2025-01-28 18:08:13 -05:00
cc19d4d22b fix a readme broken link (#2069) 2025-01-28 18:03:34 -05:00
47daa33c61 fix cuda 12.6 issues (#2066) 2025-01-28 17:28:29 -05:00
389e493055 CUTLASS 3.8 Release (#2059)
* CUTLASS 3.8 Release

* update

* Update README.md

* Revert "Update README.md"

This reverts commit b353e36fe8.

* update

* update

---------

Co-authored-by: Haicheng Wu <57973641+hwu36@users.noreply.github.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-01-25 02:44:06 -05:00
9eb01fa0b0 update 3.7 docs (#2051)
* update docs

* update docs

* update docs

* update docs

* update docs

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
2025-01-23 15:13:50 -05:00
b78588d163 CUTLASS 3.7 (#2045)
* CUTLASS 3.7

* clean up changelog

---------

Co-authored-by: yuzhai <yuzhai@nvidia.com>
Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-01-18 09:53:07 -05:00
902dff3663 fix assertion in integer_subbytes.h (#1961) 2025-01-09 22:47:58 -05:00
ef5620dd1d Blockwise Scaling for FP8 (#1932)
* F8 Blockwise Scaling

* two more NumProducerThreadEvents

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-01-09 11:22:09 -05:00
375e284e6a Add Line Break (#2020) 2025-01-08 23:46:59 -05:00
52b35e90ce Fix Typos (#2021)
* Fix Typo

* Fix Typo
2025-01-08 23:46:28 -05:00
24f991e879 Fix typo in library_defaults.py (#2024) 2025-01-08 15:44:11 -05:00
51b25e7b58 Add vector-types back to platform.h (#2026) 2025-01-08 15:31:59 -05:00
ZZK
7de6a59784 Add half->int8 saturate conversion to promise valid range (#1983)
* Add half->int8 saturate conversion to promise valid range

* add gpu only macro

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2025-01-08 09:01:07 -05:00
c506e16788 fix mem fence (#2030)
Co-authored-by: yuzhai <yuzhai@nvidia.com>
2025-01-07 19:02:26 -05:00
7494a180a4 fix bug: arch/mma_sm60.h Mma<2,2,1> calculate wrong (#1989) 2025-01-06 22:05:12 -05:00
cffd5d32b7 Update 0x_gemm_tutorial.md (#1982)
Shouldn't this be BLK_M, BLK_**K**, k
2025-01-06 22:04:35 -05:00
2452 changed files with 264360 additions and 7877 deletions

3
.gitignore vendored
View File

@ -1,3 +1,4 @@
# PyCache files
__pycache__/
cutlass_library.egg-info/
cutlass_library.egg-info/
/build*

View File

@ -1,4 +1,133 @@
# NVIDIA CUTLASS Changelog
## [3.9.2](https://github.com/NVIDIA/cutlass/releases/tag/v3.9.2) (2025-05-03)
* Fixed [Blockwise](./examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling.cu) and [Groupwise](./examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_groupwise_scaling.cu) GEMM hang issue when problem size K is 128.
* Optimal code generation with CUDA toolkit versions 12.9.
## [3.9.1](https://github.com/NVIDIA/cutlass/releases/tag/v3.9.1) (2025-04-30)
* Fixed Group Gemm hang issue in CUTLASS 3.x
* Improved Hopper [Blockwise](./examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling.cu) and [Groupwise](./examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_groupwise_scaling.cu) GEMM performance.
## [3.9.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.9.0) (2025-04-24)
* Support for Blackwell SM120 kernels for GeForce GPUs in CUTLASS 3.x API:
- Collective mainloops that target for:
* [Blockscaled datatypes with support for dense GEMM](./include/cutlass/gemm/collective/sm120_blockscaled_mma_tma.hpp)
* [Blockscaled datatypes with support for sparse GEMM](./include/cutlass/gemm/collective/sm120_blockscaled_sparse_mma_tma.hpp)
- New [GEMM](./include/cutlass/gemm/dispatch_policy.hpp) and [epilogue](./include/cutlass/epilogue/dispatch_policy.hpp) dispatch policies for collectives, kernel layers, and builders.
- [Blackwell SM120 epilogue](./include/cutlass/epilogue/fusion/sm120_visitor_store_tma_warpspecialized.hpp) and [full set of EVT fusions](./include/cutlass/epilogue/fusion/sm120_callbacks_tma_warpspecialized.hpp).
* Set of examples that demonstrate the usage of the 3.x API for targeting Blackwell SM120 architecture:
- [Blockscaled GEMM with NVFP4 input datatype and BF16 output tensor](./examples/79_blackwell_geforce_gemm/79a_blackwell_geforce_nvfp4_bf16_gemm.cu).
- [Blockscaled GEMM with NVFP4 input datatype and NVFP4 output tensor with scale factor generation](./examples/79_blackwell_geforce_gemm/79b_blackwell_geforce_nvfp4_nvfp4_gemm.cu).
- [Blockscaled GEMM with mixed input datatype (MXFP8 and MXFP6) and BF16 output tensor](./examples/79_blackwell_geforce_gemm/79c_blackwell_geforce_mixed_mxfp8_mxfp6_bf16_gemm.cu).
- [Grouped GEMM with nvfp4 datatype](./examples/79_blackwell_geforce_gemm/79d_blackwell_geforce_nvfp4_grouped_gemm.cu).
- [Sparse Blockscaled GEMM with mxfp8 input datatype and BF16 output tensor](./examples/80_blackwell_geforce_sparse_gemm/80a_blackwell_geforce_mxfp8_bf16_sparse_gemm.cu).
- [Sparse Blockscaled GEMM with NVFP4 input datatype and NVFP4 output tensor](./examples/80_blackwell_geforce_sparse_gemm/80b_blackwell_geforce_nvfp4_nvfp4_sparse_gemm.cu).
* Set of unit tests that demonstrate the usage of both [sparse](./test/unit/gemm/device/sm120_blockscaled_sparse_tensorop_gemm/) and [dense](./test/unit/gemm/device/sm120_blockscaled_tensorop_gemm/) Blackwell SM120 blockscaled GEMM.
* Support for Blackwell SM100 Sparse kernels:
- Collective mainloop that target for
* [SM100 Sparse GEMM](./include/cutlass/gemm/collective/sm100_sparse_mma_warpspecialized.hpp)
* Set of example that demonstrate the usage of the 3.x API for targeting Blackwell SM100 Sparse GEMM:
- [Sparse GEMM](./examples/83_blackwell_sparse_gemm/83_blackwell_sparse_gemm.cu)
- [Blockscaled Sparse GEMM with NVFP4 input data type](./examples/84_blackwell_narrow_precision_sparse_gemm/84a_blackwell_nvfp4_bf16_sparse_gemm.cu)
- [Blockscaled Sparse GEMM with mixed input data type (MXFP8 and MXFP4)](./examples/84_blackwell_narrow_precision_sparse_gemm/84b_blackwell_mixed_mxfp8_bf16_sparse_gemm.cu)
* Set of unit tests that demonstrate the usage of [sparse](./test/unit/gemm/device/sm100_sparse_tensorop_gemm) and [blockscaled sparse](./test/unit/gemm/device/sm100_blockscaled_sparse_tensorop_gemm) Blackwell SM100 GEMM.
* A new Multi-head Latent Attention (MLA) for SM100 Blackwell architecture in CUTLASS [example](./examples/77_blackwell_fmha/) covers the flashMLA-like weight-absorbed decoding use-case.
* A new FMHA Backward kernel for SM100 Blackwell architecture extends CUTLASS [example](./examples/77_blackwell_fmha/) to show how the five backward pass MMAs can be fused into a single kernel to achieve high performance.
* A new [distributed GEMM example](./examples/82_blackwell_distributed_gemm/82_blackwell_distributed_gemm.cu) for SM100 Blackwell architecture.
* Enhancement and new support of block-wise and group-wise GEMM for Hopper and Blackwell architectures:
- Enhancement of [blockwise GEMM](./examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling.cu) for Hopper architecture.
- Enhancement of [groupwise GEMM](./examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_groupwise_scaling.cu) for Hopper architecture.
- Support for [grouped GEMM with blockwise and groupwise scaling](./examples/68_hopper_fp8_warp_specialized_grouped_gemm_with_blockwise_scaling/) for Hopper architecture.
- Support for [grouped-wise GEMM](./tools/profiler/src/blockwise_gemm_operation_profiler.cu) in CUTLASS profiler.
- Support for [blockwise GEMM](./examples/81_blackwell_gemm_blockwise/81_blackwell_gemm_blockwise.cu) for Blackwell architecture.
- Support for [groupwise GEMM](./examples/81_blackwell_gemm_blockwise/81_blackwell_gemm_groupwise.cu) for Blackwell architecture.
- Support for [grouped GEMM with blockwise](./examples/81_blackwell_gemm_blockwise/81_blackwell_grouped_gemm_blockwise.cu) and [groupwise scaling](./examples/81_blackwell_gemm_blockwise/81_blackwell_grouped_gemm_groupwise.cu) for Blackwell architecture.
* Added support for enhanced kernel performance search (auto-tuning) in CUTLASS profiler:
- Sorting performance results by GFLOPs/second: Users can now sort the final performance report based on GFLOPs/second, making it easier to identify the most efficient kernels.
- Exhaustive search for best kernel performance in GFLOPs/second: The profiler now searches for the best-performing kernel across a range of problem sizes, swizzle sizes, rasterization orders, and dynamic cluster configurations to maximize performance.
- Performance search under a fixed GEMM shape: Enables exhaustive tuning within a fixed GEMM shape, exploring various kernel parameters to find the best configuration.
- More detailed introductions and examples to leverage this feature can be found in [profiler.md](./media/docs/cpp/profiler.md#exhaustive-search-mode-and-top-k-output-ranking-according-to-performance-in-gflopss).
* Support `void` as the D element in sm100 kernel epilogues.
* Various improvements and fixes from the community and CUTLASS team. Thanks to everyone who submitted PRs!
* Optimal code generation with CUDA toolkit versions 12.8U1.
## [3.8.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.8.0) (2025-01-25)
* Support for new CuTe building blocks specifically for Blackwell SM100 architecture:
- [5th generation Blackwell Tensor Core instructions (TCGen05)](./include/cute/atom/mma_traits_sm100.hpp) via CuTe MMA atoms.
- Extensions to [Tensor Memory Accelerator](./include/cute/atom/copy_traits_sm100_tma.hpp) via CuTe Copy atoms.
- Exposure of Blackwell's new tensor memory (note: distinct from TMA) as [`tmem`](./include/cute/pointer.hpp) across CuTe as a first class data locale.
- Exposure of [`tmem->rmem`, `rmem->tmem` and `smem->tmem data movement instructions`](./include/cute/atom/copy_traits_sm100.hpp) as copy atoms in CuTe.
- [`make_tmem_copy()`](./include/cute/atom/copy_traits_sm100.hpp) utility method to ease creation of tiled copies for tmem copy atoms.
- Support for [new variants of LDSM on Blackwell](./include/cute/atom/copy_traits_sm100.hpp) via CuTe Copy atoms.
* Support for new CUTLASS building blocks specifically for Blackwell SM100 architecture:
- Various narrow precision [FP4, FP6, and FP8](./include/cutlass/exmy_base.h) formats as well as their [block-scaled variants NVFP4, MXFP4, MXFP6, and MXFP8](./include/cutlass/float_subbyte.h)
- [Pipelines that implement Blackwell specific synchronization](./include/cutlass/pipeline/sm100_pipeline.hpp).
- [Cluster launch control API supporting preferred and fallback cluster shapes](./include/cutlass/cluster_launch.hpp).
- Data types including NVFP4, MXFP4, MXFP6, and MXFP8 and all their supported element and scale factor types.
- Tile schedulers using [Blackwell's Cluster Launch Control (CLC) feature](./media/docs/cpp/blackwell_cluster_launch_control.md) to implement dynamic persistence scheduling for [GEMMs](./include/cutlass/gemm/kernel/sm100_tile_scheduler.hpp), and [stream-K](./include/cutlass/gemm/kernel/sm100_tile_scheduler_stream_k.hpp).
- Extensions to testbeds and reference check code for unit tests and CUTLASS profiler.
* Full support for Blackwell SM100 kernels in CUTLASS 3.x API:
- [Blackwell specific kernel layers](./include/cutlass/gemm/kernel/sm100_gemm_tma_warpspecialized.hpp) that
+ Implement a new warp-specialization recipe tuned specifically for Blackwell SM100 architecture.
+ Leverage all the new features such as CLC based tile scheduling, preferred cluster, and TMEM based double buffering of accumulators.
+ Support stream-K load balancing for all kernel types everywhere via composable scheduler support.
- Blackwell collective mainloops that target the TCGen05 MMA instructions (both SS and TS) for
* [Non-block scaled data types without support for pointer array and grouped GEMM with TMA](./include/cutlass/gemm/collective/sm100_mma_warpspecialized.hpp)
* [Non-block scaled data types with support for pointer array and grouped GEMM with TMA](./include/cutlass/gemm/collective/sm100_mma_array_warpspecialized.hpp)
* [Block scaled data types without support for pointer array and grouped GEMM with TMA](./include/cutlass/gemm/collective/sm100_blockscaled_mma_warpspecialized.hpp)
* [Block scaled data types with support for pointer array and grouped GEMM with TMA](./include/cutlass/gemm/collective/sm100_blockscaled_mma_array_warpspecialized.hpp)
- Blackwell [collective mainloop for convolution kernels](./include/cutlass/conv/collective/sm100_implicit_gemm_umma_warpspecialized.hpp) supporting non-block scaled data types for fprop, dgrad, and wgrad.
- New [GEMM](./include/cutlass/gemm/dispatch_policy.hpp), [convolution](./include/cutlass/conv/dispatch_policy.hpp), and [epilogue](./include/cutlass/epilogue/dispatch_policy.hpp) dispatch policies for collectives, kernel layers, and builders.
- [Blackwell epilogue that supports loading accumulators from `tmem`](./include/cutlass/epilogue/collective/sm100_epilogue_tma_warpspecialized.hpp) and [full set of EVT fusions]().
* CUTLASS library and profiler integration for block scaled data types for kernel emission, profiling, and verification.
- Support for preferred and fallback cluster shapes via profiler command line arguments parsing to set dynamic cluster shapes.
- Support for dynamic datatypes by parsing profiler via profiler command line arguments parsing to set dynamic datatype setting in TCGen05 MMA instruction descriptors.
- Support for mixed input GEMM kernels on Hopper in the profiler.
* New CUTLASS profiler flag `use-cuda-graphs` to reduce overheads when benchmarking launch-bound kernels.
* A new 3.x version of grouped GEMM to the CUTLASS library and generates kernels for Hopper and Blackwell. Now grouped GEMM support is enabled in the CUTLASS profiler (`./cutlass_profiler --operation=GroupedGemm --help` for details).
* Set of examples that demonstrate the usage of the 3.x API for targeting Blackwell SM100 architecture:
- [Basic FP16 and FP8 GEMMs with minimal changes from Hopper examples](./examples/70_blackwell_gemm/), demonstrating ease of migration for off the shelf kernels using the 3.x collective builder API.
- GEMM with [opt-in collective builder schedules showcasing available recipes](./examples/71_blackwell_gemm_with_collective_builder/71_blackwell_gemm_with_collective_builder.cu) for Blackwell.
- Block scaled data type GEMMs targeting Blackwell's native block scaled Tensor Cores:
+ [NVFP4 inputs with BF16 output](./examples/72_blackwell_narrow_precision_gemm/72a_blackwell_nvfp4_bf16_gemm.cu)
+ [NVFP4 inputs with NVFP4 output](./examples/72_blackwell_narrow_precision_gemm/72b_blackwell_nvfp4_nvfp4_gemm.cu)
+ [Mixed MXFP8 and MXFP6 inputs with BF16 output](./examples/72_blackwell_narrow_precision_gemm/72c_blackwell_mixed_mxfp8_bf16_gemm.cu)
- GEMM example demonstrating [Blackwell's new preferred cluster support via dynamic cluster shapes](./examples/73_blackwell_gemm_preferred_cluster/blackwell_gemm_preferred_cluster.cu) for increased occupancy.
- [GEMM with CLC based StreamK scheduler for load balancing](./examples/74_blackwell_gemm_streamk/blackwell_gemm_streamk.cu).
- Grouped GEMM for [vanilla FP8 data inputs](./examples/75_blackwell_grouped_gemm/75_blackwell_grouped_gemm.cu) and [NVFP4 block scaled inputs](./examples/75_blackwell_grouped_gemm/75_blackwell_grouped_gemm_block_scaled.cu).
- Convolution kernels for [fprop](./examples/76_blackwell_conv/76_blackwell_conv_fprop.cu), [dgrad](./examples/76_blackwell_conv/76_blackwell_conv_dgrad.cu), and [wgrad](./examples/76_blackwell_conv/76_blackwell_conv_wgrad.cu).
- [Fused multi-head attention fprop kernel](./examples/77_blackwell_fmha/77_blackwell_fmha.cu) supporting fp16/bf16/fp8 data types across head dims of 32,64, and 128.
- A new BF16x9 GEMM [kernel](./examples/78_blackwell_emulated_bf16x9_gemm/78_blackwell_emulated_bf16x9_gemm.cu) that emulates FP32 GEMM (SGEMM) using BF16 operations.
* Set of examples that demonstrate the usage of the 3.x API for targeting Hopper architecture:
- A set of new [Hopper grouped GEMM kernels](./examples/69_hopper_mixed_dtype_grouped_gemm/) that support mixed A and B datatypes.
- A new [Hopper FP8 GEMM with groupwise scaling](./examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_groupwise_scaling.cu).
* Documentation updates:
- [Quickstart - instantiating a Blackwell block-scaled GEMM](./media/docs/cpp/quickstart.md#instantiating-a-blackwell-gemm-kernel).
- Detailed [Blackwell block-scaled GEMM functionality documentation](./media/docs/cpp/blackwell_functionality.md)
- A new [functionality documentation](./media/docs/cpp/functionality.md) specifically for 3.x API comprehensively documenting all supported kernel types, data types, kernel features, minimum CUDA tookit support etc for 3.x supported architectures.
- Updates to [compatibility](./README.md#compatibility) section regarding supported compilers, operating systems, CUDA Toolkits, Hardware Architectures, and [Target Architecture](./README.md#Target-Architecture).
- Updates to [profiler documentation](./media/docs/cpp/profiler.md) for testing mixed input GEMM kernels on Hopper.
## [3.7.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.7.0) (2025-01-11)
- [Hopper blockwise scaling FP8 GEMM](./examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling.cu) uses 2D scaling tensor, assigning one value per threadblock. This allows a finer-grained scaling to be applied for each output tile per gemm-k iteration. The operands and scaling tensors are loaded from global memory to shared memory using TMA and cp_async, respectively. The scaling is applied inside the mainloop. Details with figures are [here](https://github.com/NVIDIA/cutlass/pull/1932#issue-2645398439).
- [Distributed GEMM](./examples/65_distributed_gemm/65_distributed_gemm.cu) is a new (experimental) API which can turn existing CUTLASS GEMM kernels into pipelined Tensor Parallel GEMMs that run efficiently on NVLink-based network of GPUs. Its pipelining schedules can hide most of the communication behind computation, and relies on point-to-point communication, which can simply use CUDA runtime's peer device access feature. It also utilizes remote TMA loads and memcopies with CUDA graphs to handle communication primarily through the Copy Engine, leaving all SMs free for Hopper's persistent kernels. For more details you can refer to the [DistGEMM blog post](https://blog.shi-labs.com/distributed-gemm-88be6a481e2b).
- Improved persistent grid launch for Hopper kernels with large cluster sizes (>= size of 4) using the new `make_kernel_hardware_info` API as shown in [example 48](./examples/48_hopper_warp_specialized_gemm/48_hopper_warp_specialized_gemm.cu).
- Enabled high precision accumulation for Hopper FP8 Sparse GEMM.
- Potential API breaking changes:
+ Fix `cute::UniversalCopy` for type safety.
+ No longer implicitly select `cute::SM80_CP_ASYNC_*` based on input tensors. This avoids implicit downstream synchronization requirements. To use `SM80_CP_ASYNC`, users must explicitly select the appropriate CopyAtom.
+ Fix `cute::SM80_CP_ASYNC_CACHEALWAYS`, `cute::SM80_CP_ASYNC_CACHEGLOBAL`, `cute::SM80_CP_ASYNC_CACHEALWAYS_ZFILL`, `cute::SM80_CP_ASYNC_CACHEGLOBAL_ZFILL` to avoid implicitly selecting `ZFILL` behavior on predication.
+ Remove `cute::copy_vec<T>` in favor of `cute::copy_aligned` and `cute::copy(AutoVectorizingCopyWithAssumedAlignment<NumBits>,...)`.
+ A refactor of default epilogue struct `DefaultEpilogue` [API](./include/cutlass/epilogue/collective/default_epilogue.hpp) to avoid reading non-void `ElementC` value for `ElementC = void` kernel.
- New CUTLASS profiler flags: `profiling-duration`, `min-iterations`, and `kernels-file` documented in [profiler.md](./media/docs/cpp/profiler.md#cutlass-profiler).
- Various improvements and fixes from the community and CUTLASS team. Thanks to everyone who submitted PRs!
- Optimal code generation with CUDA toolkit versions 12.6.
## [3.6.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.6.0) (2024-10-03)
- [Hopper structured sparse GEMM](./examples/62_hopper_sparse_gemm/62_hopper_sparse_gemm.cu).
@ -7,19 +136,14 @@
+ [INT8](./test/unit/gemm/device/sm90_sparse_gemm_s8_s8_s32_tensor_op_s32.cu)
+ [TF32](./test/unit/gemm/device/sm90_sparse_gemm_tf32_tf32_f32_tensor_op_f32.cu)
- A refactor to the CUTLASS 3.x convolution `kernel::ConvUniversal` [API](./include/cutlass/conv/kernel/sm90_implicit_gemm_tma_warpspecialized.hpp) to bring it in line with `gemm::GemmUniversal`. Now the 3.x convolution API is no longer considered as a beta API.
- Improve [mixed input GEMM](./examples/55_hopper_mixed_dtype_gemm/README.md).
+ Added a [lookup table implementation](./examples/55_hopper_mixed_dtype_gemm/55_hopper_int4_fp8_gemm.cu) for `INT4`x`FP8` scale-only mode.
+ Added [layout pre-shuffling](./examples/55_hopper_mixed_dtype_gemm/55_hopper_int4_fp8_gemm.cu#L50-55) to optimize memory loading.
+ Added [interleaved conversion](./examples/55_hopper_mixed_dtype_gemm/55_hopper_int4_bf16_gemm.cu#L50-52) for `{INT4, UINT4, INT8}` x `{FP16, BF16}`.
+ Other general optimizations.
- The suffixes of the mixed input kernel schedules have been removed. Use `KernelTmaWarpSpecialized`, `KernelTmaWarpSpecializedPingpong` and `KernelTmaWarpSpecializedCooperative` instead.
- [An improved mixed input GEMM](./examples/55_hopper_mixed_dtype_gemm/README.md) and a [lookup table implementation](./examples/55_hopper_mixed_dtype_gemm/55_hopper_int4_fp8_gemm.cu) for `INT4`x`FP8` scale-only mode.
- [EVT nodes for Top-K selection and softmax](./include/cutlass/epilogue/fusion/sm90_visitor_topk_softmax.hpp) and [GEMM example using those](./examples/61_hopper_gemm_with_topk_and_softmax/61_hopper_gemm_with_topk_and_softmax.cu).
- [Programmatic Dependent Launch](./include/cutlass/arch/grid_dependency_control.h) (PDL) that leverages a new Hopper feature to speedup two back-to-back kernels, and its corresponding [documentations](./media/docs/dependent_kernel_launch.md).
- [A new debugging tool, synclog](./include/cutlass/arch/synclog.hpp), for dumping out all synchronization events from within a kernel to a file. Please see [synclog documentation](./media/docs/utilities.md#debugging-asynchronous-kernels-with-cutlasss-built-in-synclog-tool) for details.
- [Programmatic Dependent Launch](./include/cutlass/arch/grid_dependency_control.h) (PDL) that leverages a new Hopper feature to speedup two back-to-back kernels, and its corresponding [documentations](./media/docs/cpp/dependent_kernel_launch.md).
- [A new debugging tool, synclog](./include/cutlass/arch/synclog.hpp), for dumping out all synchronization events from within a kernel to a file. Please see [synclog documentation](./media/docs/cpp/utilities.md#debugging-asynchronous-kernels-with-cutlasss-built-in-synclog-tool) for details.
- A new TMA-enabled [epilogue](./include/cutlass/epilogue/collective/sm90_epilogue_array_tma_warpspecialized.hpp) for grouped GEMM that brings significant performance improvement, as well as its EVT support.
- A SIMT-enabled pointer-array [epilogue](./include/cutlass/epilogue/collective/sm70_epilogue_vectorized_array.hpp).
- A new [Ping-Pong kernel schedule for Grouped GEMM](./include/cutlass/gemm/kernel/sm90_gemm_array_tma_warpspecialized_pingpong.hpp) and some other optimizations.
- [A new instantiation strategy for CUTLASS profiler kernels](./python/cutlass_library/sm90_shapes.py) along with [improved documentation for instantiation level in CUTLASS profiler](./media/docs/profiler.md#instantiating-more-kernels-with-hopper).
- [A new instantiation strategy for CUTLASS profiler kernels](./python/cutlass_library/sm90_shapes.py) along with [improved documentation for instantiation level in CUTLASS profiler](./media/docs/cpp/profiler.md#instantiating-more-kernels-with-hopper).
- A new hardware support for comparisons and computations of [`cutlass::bfloat16_t`](./include/cutlass/bfloat16.h)
- Fixed use of isnan on Windows for [`half_t`](./test/unit/core/functional.cu).
- Various improvements and fixes from the community and CUTLASS team. Thanks to everyone who submitted PRs!
@ -29,7 +153,7 @@
- [Minimal SM90 WGMMA + TMA GEMM example in 100 lines of code](./examples/cute/tutorial/wgmma_sm90.cu)
- [Exposure of L2 `cache_hint`s in TMA copy atoms](./include/cute/arch/copy_sm90_tma.hpp#L48)
- Exposure of raster order and tile swizzle extent in [CUTLASS library profiler](./media/docs/profiler.md#GEMM), and
- Exposure of raster order and tile swizzle extent in [CUTLASS library profiler](./media/docs/cpp/profiler.md#GEMM), and
[example 48](./examples/48_hopper_warp_specialized_gemm/48_hopper_warp_specialized_gemm.cu).
- [TMA store based and EVT supported epilogues](./include/cutlass/epilogue/collective/sm90_epilogue_array_tma_warpspecialized.hpp) for [Hopper pointer array batched kernels](./test/unit/gemm/device/sm90_gemm_f16_f16_f16_tensor_op_f32_ptr_array.cu).
- A new [`GemmSparseUniversal` API for CUTLASS 2.x Ampere kernels](./include/cutlass/gemm/device/gemm_sparse_universal.h) to enable serial and parallel split-k for sparse tensor cores and new tiny tile sizes to better support LLM inferrence:
@ -42,7 +166,7 @@
- Support for residual add (beta != 0) in convolution kernels.
- A new convolution [epilogue](./examples/16_ampere_tensorop_conv2dfprop/ampere_tensorop_conv2dfprop.cu#L269) for CUTLASS 2.x to support non-packed NHWC output.
- A refactor of [include files throughout CUTLASS core directories](./include/cutlass/gemm/collective/collective_mma_decl.hpp) to reduce circular dependencies and [tests to guard against them](./test/self_contained_includes/CMakeLists.txt).
- [A guide for setting up VSCode to work well with CUTLASS](./media/docs/ide_setup.md) and [expanded code style guide](./media/docs/programming_guidelines.md).
- [A guide for setting up VSCode to work well with CUTLASS](./media/docs/cpp/ide_setup.md) and [expanded code style guide](./media/docs/cpp/programming_guidelines.md).
- Better support for MSVC as a host compiler.
- Many performance optimizations, improvements, and bug fixes including fixes for FlashAttention-2.
- Optimal code generation with CUDA toolkit versions 12.4 and 12.5u1.
@ -50,7 +174,7 @@
## [3.5.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.5.0) (2024-04-09)
- Implicit GEMM Convolutions targeting Hopper SM90A via WGMMA + [TMA im2col](./include/cute/atom/copy_traits_sm90_im2col.hpp)
+ Native implementation in CUTLASS 3.x using CuTe, mirroring the [same design hierarchy as that of GEMMs](./media/docs/gemm_api_3x.md).
+ Native implementation in CUTLASS 3.x using CuTe, mirroring the [same design hierarchy as that of GEMMs](./media/docs/cpp/gemm_api_3x.md).
+ Support for 1D, 2D, and 3D convolutions in a [rank-agnostic fashion](./include/cutlass/conv/convnd_problem_shape.hpp).
+ Support for [Fprop](./test/unit/conv/device_3x/fprop/sm90_conv3d_fprop_implicit_gemm_s8_s8_s32_tensorop_s32.cu), [Dgrad](./test/unit/conv/device_3x/dgrad/sm90_conv2d_dgrad_implicit_gemm_f16_f16_f32_tensorop_f16.cu), and [Wgrad](./test/unit/conv/device_3x/wgrad/sm90_conv1d_wgrad_implicit_gemm_f16_f16_f32_tensorop_f16.cu) algorithms
+ [CUTLASS profiler support](./python/cutlass_library/conv3x_emitter.py) for 2D and 3D convolutions implemented via the 3.x API.
@ -62,7 +186,7 @@
- 32x and 16x tile sizes are added to CUTLASS 2.x to improve the performance of narrow-tall and wide-short matrices.
+ [Ampere FP16 TN](./test/unit/gemm/device/gemm_f16t_f16n_f16t_tensor_op_f32_sm80.cu) and [NT](./test/unit/gemm/device/gemm_f16n_f16t_f16t_tensor_op_f32_sm80.cu#L227-L301), [Ampere INT8 TN](./test/unit/gemm/device/gemm_s8t_s8n_s8t_tensor_op_s32_sm80.cu#L392-L1342), [Ampere INT4 TN](./test/unit/gemm/device/gemm_s4t_s4n_s4t_tensor_op_s32_sm80.cu#L372-L934).
+ [Turing FP16 TN](./test/unit/gemm/device/gemm_f16t_f16n_f16t_tensor_op_f32_sm75.cu#L55-L394), [Turing INT8 TN](./test/unit/gemm/device/gemm_s8t_s8n_s8t_tensor_op_s32_sm75.cu#L166-L537), [Turing INT4 TN](./test/unit/gemm/device/gemm_s4t_s4n_s4t_tensor_op_s32_sm75.cu#L310-L564).
- Updates to CuTe documentation for [`cute::Tensor<>`](./media/docs/cute/03_tensor.md), [MMA atoms](./media/docs/cute/0t_mma_atom.md), and an overhauled [CuTe GEMM tutorial series](./examples/cute/tutorial).
- Updates to CuTe documentation for [`cute::Tensor<>`](./media/docs/cpp/cute/03_tensor.md), [MMA atoms](./media/docs/cpp/cute/0t_mma_atom.md), and an overhauled [CuTe GEMM tutorial series](./examples/cute/tutorial).
- Extensions to CuTe to support [L2 prefetching](./include/cute/algorithm/prefetch.hpp) and [TMA store+reductions](./include/cute/arch/copy_sm90_tma.hpp#L1337).
- Remove C++11 requirement on a few CUTLASS 2.x API header files. All CUTLASS files now require C++17.
- Fixes to greatly reduce build warnings.
@ -81,7 +205,7 @@
* Beta release of [Group-GEMM](./examples/57_hopper_grouped_gemm) utilizing TMA and WGMMA (requires CUDA 12.3 or above).
* [Ampere Sparse GEMM](./examples/15_ampere_sparse_tensorop_gemm/ampere_sparse_tensorop_gemm_with_visitor.cu) supports Epilogue Visitor Tree (EVT) now.
* NamedBarriers usability improvement and list of [ReservedNamedBarriers](./include/cutlass/arch/barrier.h) has been officially released.
* Improved [CuTe documentation](./media/docs/cute/) including improved clarity and depth of [Quickstart](./media/docs/cute/00_quickstart.md), [CuTe Layout](./media/docs/cute/01_layout.md), and [CuTe Layout Algebra](./media/docs/cute/02_layout_algebra.md). Associated code comments, post-conditions, and details in [CuTe Core Unit Tests](./test/unit/cute/core/) also improved.
* Improved [CuTe documentation](./media/docs/cpp/cute/) including improved clarity and depth of [Quickstart](./media/docs/cute/00_quickstart.md), [CuTe Layout](./media/docs/cpp/cute/01_layout.md), and [CuTe Layout Algebra](./media/docs/cpp/cute/02_layout_algebra.md). Associated code comments, post-conditions, and details in [CuTe Core Unit Tests](./test/unit/cute/core/) also improved.
## [3.3](https://github.com/NVIDIA/cutlass/releases/tag/v3.3.0) (2023-10-31)
* [Mixed-input Hopper GEMMs](./examples/55_hopper_mixed_dtype_gemm) support covering 16-bit x 8-bit input operand types.
@ -132,7 +256,7 @@
* Epilogue builders. Similar to mainloop builders (see [example 49](./examples/49_hopper_gemm_with_collective_builder/49_collective_builder.cu)), epilogue builders aim to generate the best-possible epilogue while exposing incremental opt-ins for greater customization.
* Profiler support for overriding kernel and epilogue builder auto schedules for 3.x API kernels, allowing specific policies to be run in the CUTLASS profiler.
* Performance optimizations for the [*warp-specialized persistent ping-pong*](./include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized_pingpong.hpp) kernel.
* Changes to the [GEMM API 3.x](./media/docs/gemm_api_3x.md), involving the host-facing arguments and the underlying `Params` structs.
* Changes to the [GEMM API 3.x](./media/docs/cpp/gemm_api_3x.md), involving the host-facing arguments and the underlying `Params` structs.
* [FMHA Backward Pass](./examples/41_fused_multi_head_attention/fused_multi_head_attention_backward.cu) from Meta xFormers.
* [Streamk GEMM with Broadcast](./examples/47_ampere_gemm_universal_streamk/ampere_gemm_universal_streamk_broadcast.cu) enables epilogue broadcast with StreamK GEMM.
* [Batched B2B GEMM](./examples/13_two_tensor_op_fusion) now can run multiple Back-to-Back GEMM with the same problem size in parallel.
@ -144,10 +268,10 @@
* Updates and bugfixes from the community (thanks!)
## [3.0.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.0.0) (2023-01-23)
* [CuTe](./media/docs/cute/00_quickstart.md), a [new core library and backend](./include/cute) for CUTLASS 3.0 that defines a single Layout vocabulary type and an associated algebra of layouts for a much more expressive and composable abstraction for tensors, sets of parallel agents, and operations by said agents on tensors.
* [A new conceptual operation hierarchy](./media/docs/cutlass_3x_design.md) that replaces the architecture-centric hierarchy of CUTLASS 2.x and [documentation for CUTLASS 3.0's GEMM API changes](./media/docs/gemm_api_3x.md).
* Strict API backwards compatibility that exposes both 2.x and 3.x API kernels through the same [`device::GemmUniversalAdapter`](./include/cutlass/gemm/device/gemm_universal_adapter.h) and [`kernel::GemmUniversal`](./include/cutlass/gemm/kernel/gemm_universal.hpp) types, allowing users to include both APIs in the same translation units. More information can be found in the [3.x backwards compatibility section](./media/docs/cutlass_3x_backwards_compatibility.md).
* Updates to [Functionality](./media/docs/functionality.md) which directs users on which kernels are supported via CUTLASS-2 and CUTLASS-3.
* [CuTe](./media/docs/cpp/cute/00_quickstart.md), a [new core library and backend](./include/cute) for CUTLASS 3.0 that defines a single Layout vocabulary type and an associated algebra of layouts for a much more expressive and composable abstraction for tensors, sets of parallel agents, and operations by said agents on tensors.
* [A new conceptual operation hierarchy](./media/docs/cpp/cutlass_3x_design.md) that replaces the architecture-centric hierarchy of CUTLASS 2.x and [documentation for CUTLASS 3.0's GEMM API changes](./media/docs/cpp/gemm_api_3x.md).
* Strict API backwards compatibility that exposes both 2.x and 3.x API kernels through the same [`device::GemmUniversalAdapter`](./include/cutlass/gemm/device/gemm_universal_adapter.h) and [`kernel::GemmUniversal`](./include/cutlass/gemm/kernel/gemm_universal.hpp) types, allowing users to include both APIs in the same translation units. More information can be found in the [3.x backwards compatibility section](./media/docs/cpp/cutlass_3x_backwards_compatibility.md).
* Updates to [Functionality](./media/docs/cpp/functionality.md) which directs users on which kernels are supported via CUTLASS-2 and CUTLASS-3.
* Updates to [Compatibility](./README.md#compatibility) Section regarding supported compilers, operating systems, CUDA Toolkits, Hardware Architectures and [Target Architecture](./README.md#Target-Architecture).
* New warp-specialized GEMM [kernel schedules](./include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized.hpp) and [mainloops](./include/cutlass/gemm/collective/sm90_mma_tma_gmma_ss_warpspecialized.hpp) targeting Hopper architecture that achieve great performance with TMA, WGMMA, and threadblock clusters.
* Extensions to CUTLASS profiler to support threadblock cluster shapes in library and profiler tile configurations.
@ -325,7 +449,7 @@
* Global memory iterators supporting Fprop, Dgrad, and Wgrad
* `MmaMultistage` for implicit GEMM convolution for NVIDIA Ampere architecture
* `MmaPipeline` for implicit GEMM convolution for NVIDIA Volta and Turing architectures
* [Documentation](./media/docs/implicit_gemm_convolution.md) describing Implicit GEMM Convolution algorithm and implementation
* [Documentation](./media/docs/cpp/implicit_gemm_convolution.md) describing Implicit GEMM Convolution algorithm and implementation
## [2.3.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.3.0) (2020-09-23)
* [NVIDIA Ampere Architecture features](https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/)
@ -339,7 +463,7 @@
* NVIDIA Ampere GPU Architecture examples and documentation:
* [Tensor Float 32](./examples/14_ampere_tf32_tensorop_gemm/ampere_tf32_tensorop_gemm.cu) and
* [Sparse Tensor Cores](./examples/15_ampere_sparse_tensorop_gemm/ampere_sparse_tensorop_gemm.cu)
* Documentation added on CUTLASS [efficient row-major epilogue](./media/docs/gemm_api.md#efficient-epilogue)
* Documentation added on CUTLASS [efficient row-major epilogue](./media/docs/cpp/gemm_api.md#efficient-epilogue)
## [2.2.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.2.0) (2020-06-08)
* [NVIDIA Ampere Architecture features](https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/)
@ -359,7 +483,7 @@
* Disabled F16C by default for compatibility - enable on cmake command line with `-DCUTLASS_ENABLE_F16C=ON`
## [2.1.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.1.0) (2020-04-06)
* BLAS-style host-side API added to [CUTLASS Library](./media/docs/quickstart.md#cutlass-library)
* BLAS-style host-side API added to [CUTLASS Library](./media/docs/cpp/quickstart.md#cutlass-library)
* API to launch compiled kernel instances for GEMM and planar complex GEMM
* Planar Complex GEMM kernels targeting Volta and Turing Tensor Cores
* Computes complex matrix products on matrices stored as disjoint real and imaginary parts
@ -373,10 +497,10 @@
* Encapsulated functionality embodying modern C++11 programming techniques
* Optimized containers and data types for efficient, generic, portable device code
* Updates to:
* [Quick start guide](./media/docs/quickstart.md)
* [Quick start guide](./media/docs/cpp/quickstart.md)
* [Documentation](./README.md#documentation)
* [Utilities](./media/docs/utilities.md)
* [CUTLASS Profiler](./media/docs/profiler.md)
* [Utilities](./media/docs/cpp/utilities.md)
* [CUTLASS Profiler](./media/docs/cpp/profiler.md)
* Native Turing Tensor Cores
* Efficient GEMM kernels targeting Turing Tensor Cores
* Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands
@ -440,7 +564,7 @@
## Copyright
Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
```
@ -469,4 +593,3 @@ SPDX-License-Identifier: BSD-3-Clause
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
@ -102,6 +102,8 @@ set(CMAKE_CUDA_STANDARD_REQUIRED ON)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS --expt-relaxed-constexpr)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -ftemplate-backtrace-limit=0)
if(CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT)
set(CMAKE_INSTALL_PREFIX install CACHE PATH "Default installation location." FORCE)
endif()
@ -114,6 +116,13 @@ set(CUTLASS_TEST_LEVEL "0" CACHE STRING "Level of tests to compile.")
find_package(Python3 3.5 COMPONENTS Interpreter REQUIRED)
################################################################################
include(customConfigs.cmake)
################################################################################
set(CUTLASS_ENABLE_HEADERS_ONLY OFF CACHE BOOL "Enable only the header library")
if(CUTLASS_ENABLE_HEADERS_ONLY)
@ -143,14 +152,14 @@ set(CUTLASS_ENABLE_PERFORMANCE ${CUTLASS_ENABLE_PROFILER} CACHE BOOL "Enable CUT
set(CUTLASS_ENABLE_TESTS ${CUTLASS_ENABLE_TESTS_INIT} CACHE BOOL "Enable CUTLASS Tests")
set(CUTLASS_ENABLE_GTEST_UNIT_TESTS ${CUTLASS_ENABLE_TESTS} CACHE BOOL "Enable CUTLASS GTest-based Unit Tests")
set(CUTLASS_USE_SYSTEM_GOOGLETEST OFF CACHE BOOL "Use system/external installation of GTest")
set(CUTLASS_USE_PACKED_TUPLE ON CACHE BOOL "If ON, make cute::tuple be new standard-layout tuple type; if OFF, use the original cute::tuple implementation that is _not_ standard-layout.")
if (CUTLASS_USE_PACKED_TUPLE)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTE_USE_PACKED_TUPLE=1)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DCUTLASS_USE_PACKED_TUPLE=1")
message(STATUS "Make cute::tuple be the new standard-layout tuple type")
elseif()
message(STATUS "Use the original cute::tuple implementation that is _not_ standard-layout")
if (CUTLASS_ENABLE_TESTS AND CUTLASS_ENABLE_PROFILER)
set(CUTLASS_ENABLE_PROFILER_UNIT_TESTS_INIT ON)
else()
set(CUTLASS_ENABLE_PROFILER_UNIT_TESTS_INIT OFF)
endif()
set(CUTLASS_ENABLE_PROFILER_UNIT_TESTS ${CUTLASS_ENABLE_PROFILER_UNIT_TESTS_INIT} CACHE BOOL "Enable CUTLASS Profiler-based Unit Tests")
set(CUTLASS_ENABLE_SELF_CONTAINED_INCLUDES_CHECK ON CACHE BOOL "Enable CUTLASS check for self-contained header includes")
################################################################################
@ -164,6 +173,11 @@ endif()
if (CUDA_VERSION VERSION_GREATER_EQUAL 12.0)
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 90a)
endif()
if (CUDA_VERSION VERSION_GREATER_EQUAL 12.8)
list(APPEND CUTLASS_NVCC_ARCHS_SUPPORTED 100 100a 101 101a 120 120a)
endif()
set(CUTLASS_NVCC_ARCHS ${CUTLASS_NVCC_ARCHS_SUPPORTED} CACHE STRING "The SM architectures requested.")
set(CUTLASS_NVCC_ARCHS_ENABLED ${CUTLASS_NVCC_ARCHS} CACHE STRING "The SM architectures to build code for.")
@ -370,7 +384,21 @@ endif()
if (CUTLASS_ENABLE_GDC_FOR_SM90)
message(STATUS "Grid Dependency Control (GDC) is enabled for SM90 kernels (required for programmatic dependent launches).")
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_ENABLE_GDC_FOR_SM90=1)
list(APPEND CUTLASS_CUDA_FLAGS -DCUTLASS_ENABLE_GDC_FOR_SM90=1)
endif()
if (NOT DEFINED CUTLASS_ENABLE_GDC_FOR_SM100_DEFAULT)
set(CUTLASS_ENABLE_GDC_FOR_SM100_DEFAULT ON)
endif()
set(CUTLASS_ENABLE_GDC_FOR_SM100
${CUTLASS_ENABLE_GDC_FOR_SM100_DEFAULT}
CACHE BOOL
"Enables Grid Dependency Control (GDC) for SM100 kernels (required for PDL).")
if (CUTLASS_ENABLE_GDC_FOR_SM100)
message(STATUS "Grid Dependency Control (GDC) is enabled for SM100 kernels (required for programmatic dependent launches).")
list(APPEND CUTLASS_CUDA_FLAGS -DCUTLASS_ENABLE_GDC_FOR_SM100=1)
endif()
set(CUTLASS_ENABLE_SYNCLOG OFF CACHE BOOL "Enable synchronization event logging for race condition debugging. WARNING: This redefines __syncthreads() and __syncwarp() in all downstream code!")
@ -383,9 +411,18 @@ endif()
###################################################################################################
#
# Blackwell features
#
###################################################################################################
# Warnings-as-error exceptions and warning suppressions for Clang builds
if (CUTLASS_CLANG_HOST_COMPILE)
set(FLAGS_TO_ADD
"-Wno-error=implicit-int-conversion"
"-Wno-error=pass-failed"
@ -393,20 +430,20 @@ if (CUTLASS_CLANG_HOST_COMPILE)
"-Wno-sign-conversion"
"-Wno-unused-parameter"
)
foreach(FLAG ${FLAGS_TO_ADD})
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${FLAG}")
list(APPEND CUTLASS_CUDA_NVCC_FLAGS "${FLAG}")
list(APPEND CUTLASS_CUDA_CLANG_FLAGS "${FLAG}")
endforeach()
endif()
if (NOT MSVC AND CUTLASS_NVCC_KEEP)
# MSVC flow handles caching already, but for other generators we handle it here.
set(CUTLASS_NVCC_KEEP_DIR ${CMAKE_CURRENT_BINARY_DIR}/tmp CACHE PATH "Location to store NVCC scratch files")
file(MAKE_DIRECTORY ${CUTLASS_NVCC_KEEP_DIR})
list(APPEND CUTLASS_CUDA_NVCC_FLAGS --keep -v) # --keep-dir may not work with nvcc for some directories.
list(APPEND CUTLASS_CUDA_NVCC_FLAGS --keep -v -objtemp) # --keep-dir may not work with nvcc for some directories.
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -save-temps=${CUTLASS_NVCC_KEEP_DIR})
endif()
@ -433,6 +470,13 @@ if(UNIX)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -Xcompiler=-fno-strict-aliasing)
endif()
# Known ctk11.4 issue (fixed later)
# Also see https://stackoverflow.com/questions/64523302/cuda-missing-return-statement-at-end-of-non-void-function-in-constexpr-if-fun
if (CUDA_VERSION VERSION_LESS 11.5.0)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -Xcudafe "--diag_suppress=implicit_return_from_non_void_function" )
message("CUDA_VERSION check pass ${CUDA_VERSION}")
endif()
# Don't leak lineinfo in release builds
if (NOT CMAKE_BUILD_TYPE MATCHES "Release")
list(APPEND CUTLASS_CUDA_CLANG_FLAGS -gmlt)
@ -465,7 +509,7 @@ if (CUTLASS_CLANG_DEVICE_COMPILE)
link_libraries(nvidia::cudart)
link_libraries(nvidia::cuda_driver)
endif()
#Report CUDA build flags
@ -540,7 +584,7 @@ function(cutlass_apply_cuda_gencode_flags TARGET)
list(APPEND __CMAKE_CUDA_ARCHS ${ARCH}-real)
endif()
if(CUTLASS_NVCC_EMBED_PTX AND NOT CUTLASS_CLANG_DEVICE_COMPILE)
# If we're using clang for device compilation, the ptx is inserted
# If we're using clang for device compilation, the ptx is inserted
# via another command line option and the `-virtual` flags will cause an error.
list(APPEND __CMAKE_CUDA_ARCHS ${ARCH}-virtual)
endif()
@ -669,6 +713,7 @@ target_include_directories(
CUTLASS
SYSTEM INTERFACE
$<BUILD_INTERFACE:${CUDA_TOOLKIT_ROOT_DIR}/include>
$<BUILD_INTERFACE:${CUDA_TOOLKIT_ROOT_DIR}/include/cccl>
)
install(
@ -901,7 +946,7 @@ function(cutlass_add_executable_tests NAME TARGET)
if (NOT __DO_NOT_LOWERCASE_TEST_NAME)
string(TOLOWER "${TESTCASE_NAME}" TESTCASE_NAME)
endif()
# The following rigmarole is needed to deal with spaces and possible quotes in
# command line arguments. The options are passed "by reference" as the actual
# variable names holding the real options. We then expand these in a way that
@ -958,6 +1003,100 @@ function(cutlass_add_executable_tests NAME TARGET)
endfunction()
function(cutlass_generate_profiler_tests NAME)
set(options)
set(oneValueArgs)
set(multiValueArgs DEPENDS DEPENDEES CUTLASS_PROFILER_EXTRA_OPTIONS)
cmake_parse_arguments(_ "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if (NOT CUTLASS_BUILD_FOR_PROFILER_REGRESSIONS AND NOT CUTLASS_BUILD_FOR_PROFILER_PERFORMANCE_REGRESSIONS)
return()
endif()
install(
FILES ${CUTLASS_PROFILER_REGRESSION_LIST_FILE}
DESTINATION ${CMAKE_INSTALL_INFODIR}/cutlass/
RENAME profiler_regressions.csv
)
# Generate cmake test targets for each entry in the testlist csv
if (NOT EXISTS "${CUTLASS_PROFILER_REGRESSION_LIST_FILE}")
message(SEND_ERROR "Profiler unit tests list path is invalid: CUTLASS_PROFILER_REGRESSION_LIST_FILE = ${CUTLASS_PROFILER_REGRESSION_LIST_FILE}")
else()
message(STATUS "Using ${CUTLASS_PROFILER_REGRESSION_LIST_FILE} to generate profiler-based tests.")
endif()
file(STRINGS ${CUTLASS_PROFILER_REGRESSION_LIST_FILE} TEST_LIST)
foreach(TEST IN LISTS TEST_LIST)
set(TEMP_TEST ${TEST})
if ("${TEST}" MATCHES " *cutlass_profiler.*")
# Generate a flattened name for the test from the test command line.
string(REPLACE "," ";" TEST_NAME_LIST ${TEMP_TEST})
string(REGEX REPLACE "\\*" "_" TEST_NAME "${TEMP_TEST}")
string(REGEX REPLACE "\\\"\\{\\\"\\\"input_params.*\\{.*\\}\\}\\\"" "" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "\\\"\\{\\\"\\\"input_params.*\\{.*\\}\\}\\\"" "" TEST "${TEST}")
string(REGEX REPLACE "," ";" TEST "${TEST}")
string(REGEX MATCHALL "[a-zA-Z0-9_=]+" TEST_NAME "${TEST_NAME}")
list(FILTER TEST_NAME EXCLUDE REGEX "cutlass_profiler|mode=trace|providers=cutlass")
list(JOIN TEST_NAME "_" TEST_NAME)
string(REGEX REPLACE "_verification_required=(true|false)" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "_verification_providers=device" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "batch_count=" "batch" TEST_NAME "${TEST_NAME}")
string(REPLACE "cluster_m=" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "_cluster_n=" "x" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "_cluster_k=[0-9]+" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "cluster_m_fallback=" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "_cluster_n_fallback=" "x" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "_cluster_k_fallback=[0-9]+" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "runtime_input_datatype_a=" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "runtime_input_datatype_b=" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "swizzle_size=" "" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "verification_enabled=(true|false)" "" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "warmup_iterations=[0-9]+" "" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "profiling_iterations=[0-9]+" "" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "sleep_duration=[0-9]+" "" TEST_NAME "${TEST_NAME}")
string(REGEX REPLACE "profiling_enabled=(true|false)" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "=" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "_error_on_no_match" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "_error_if_nothing_is_profiled" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "kernels" "" TEST_NAME "${TEST_NAME}")
string(REPLACE "operation" "" TEST_NAME "${TEST_NAME}")
if (NOT __DO_NOT_LOWERCASE_TEST_NAME)
string(TOLOWER "${TEST_NAME}" TEST_NAME)
endif()
# Munge the test command
string(REPLACE "cutlass_profiler" "" TEST "${TEST}")
set(TEST "${TEST}" ${__CUTLASS_PROFILER_EXTRA_OPTIONS} "--junit-output=${TEST_NAME}")
set(TEST_COMMAND_${TEST_NAME} "${TEST}")
list(APPEND TEST_COMMAND_VARS ${TEST_NAME})
endif()
endforeach()
cutlass_add_executable_tests(
${NAME} cutlass_profiler
DEPENDS ${__DEPENDS}
DEPENDEES ${__DEPENDEES}
TEST_COMMAND_OPTIONS ${TEST_COMMAND_VARS}
TEST_COMMAND_OPTIONS_PREFIX TEST_COMMAND_
DISABLE_EXECUTABLE_INSTALL_RULE
# Uncomment the following line when alloc/dealloc tracking
# is fixed for all configurations.
# TEST_SETS_SUPPORTED tmem_alloc_tracking
)
endfunction()
if (CUTLASS_ENABLE_TOOLS)
add_subdirectory(tools)
if (CUTLASS_ENABLE_PROFILER)
@ -975,6 +1114,14 @@ if (CUTLASS_ENABLE_TESTS)
if (CUTLASS_ENABLE_GTEST_UNIT_TESTS)
add_dependencies(test_all test_unit)
endif()
if (CUTLASS_ENABLE_PROFILER_UNIT_TESTS AND CUTLASS_BUILD_FOR_PROFILER_REGRESSIONS)
# Generate profiler based unit test
cutlass_generate_profiler_tests(
tup
DEPENDEES test_unit
)
endif()
endif()
if (CUTLASS_INSTALL_TESTS)

View File

@ -2,51 +2,104 @@
[README](./README.md#documentation) > **Contributors**
# CUTLASS Developers and Contributors
# CUTLASS Developers **
This is the official list of CUTLASS developers and contributors.
## DEVELOPERS
Vijay Thakkar<br />
Pradeep Ramani<br />
Cris Cecka<br />
Aniket Shivam<br />
Jack Kosaian<br />
Mark Hoemmen<br />
Richard Cai<br />
Honghao Lu<br />
Ethan Yan<br />
Haicheng Wu<br />
Andrew Kerr<br />
Dustyn Blasig<br />
Fengqi Qiao<br />
Duane Merrill<br />
Yujia Zhai<br />
Rawn Henry<br />
Sergey Klevtsov<br />
Shang Zhang<br />
Piotr Majcher<br />
Paul Springer<br />
Markus Hohnerbach<br />
Jin Wang<br />
Dustyn Blasig<br />
Albert Xu<br />
Junkai Wu<br />
Xiuxia Zhang<br />
Haicheng Wu<br />
Jack Yang<br />
Pradeep Ramani<br />
Aditya Atluri<br />
Han Li<br />
Nick Zhao<br />
Ivan Yin<br />
Yu-Jung Chen<br />
Markus Hoehnerbach<br />
Honghao Lu<br />
Mihir Awatramani<br />
Hao Sheng<br />
Zekun Fan<br />
Aniket Shivam<br />
Siyu Liu<br />
Richard Cai<br />
Vikas Gupta<br />
Ethan Yan<br />
Vijay Thakkar<br />
Cris Cecka<br />
Lawrence Ryan<br />
Qun Song<br />
Daniel Ricketts<br />
dePaul Miller<br />
Yuhan Li<br />
Saman Ashkiani<br />
Jack Chen<br />
Shang Zhang<br />
Petrick Liu<br />
Questa Wang<br />
Pramod Shenoy<br />
Jack Kosaian<br />
Yujia Zhai<br />
Zhaodong Chen<br />
Manas Sahni<br />
Shunfan Shao<br />
Fengqi Qiao<br />
Serif Yesil<br />
Aragorn Guan<br />
Heidi He<br />
Xiao Song<br />
Sergey Klevtsov<br />
Jiang Shao<br />
Ruqing Xu<br />
Mengyu Guo<br />
Tao Xie<br />
Linfeng Zheng<br />
Harrison Barclay<br />
Wenfei Tang<br />
Diksha Gohlyan<br />
Alexander Zhurkevich<br />
Siyuan Fu<br />
Hua Huang<br />
Xiufan Liang<br />
Ian Tramble<br />
Ali Hassani<br />
Shreya Gaur<br />
** _The list is sorted in order of the author's first contribution to the CUTLASS project._
# CUTE Developers
## CuTe
Cris Cecka<br />
Vijay Thakkar<br />
## CUTLASS Product Manager
# CUTLASS Product Manager
Matthew Nicely<br />
## Former CUTLASS Developers
Manish Gupta<br />
Naila Farooqui<br />
David Tanner<br />
Manikandan Ananth<br />
Zhaodong Chen<br />
Chinmay Talegaonkar<br />
## CONTRIBUTORS
# Former CUTLASS Developers
Manish Gupta<br />
Duane Merrill<br />
Piotr Majcher<br />
Naila Farooqui<br />
Mark Hoemmen<br />
Rawn Henry<br />
Jin Wang<br />
Timmy Liu<br />
Manikandan Ananth<br />
David Tanner<br />
# Acknowledgements
Tri Dao<br />
Jay Shah<br />
Timothy Costa<br />
Julien Demouth<br />
Brian Fahs<br />
@ -56,25 +109,15 @@ Mostafa Hagog<br />
Fei Hu<br />
Alan Kaatz<br />
Tina Li<br />
Timmy Liu<br />
Wei Liu<br />
Tim Martin<br />
Duane Merrill<br />
Kevin Siu<br />
Markus Tavenrath<br />
John Tran<br />
Vicki Wang<br />
Junkai Wu<br />
Fung Xie<br />
Albert Xu<br />
Yang Xu<br />
Jack Yang<br />
Scott Yokim<br />
Xiuxia Zhang<br />
Nick Zhao<br />
## ACKNOWLEDGEMENTS
Girish Bharambe<br />
Luke Durant<br />
Carter Edwards<br />
@ -85,3 +128,35 @@ Bryce Lelbach<br />
Joel McCormack<br />
Kyrylo Perelygin<br />
Sean Treichler<br />
# Copyright
Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
```
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,4 +1,4 @@
Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
Redistribution and use in source and binary forms, with or without

View File

@ -1,7 +1,17 @@
# Publications Using Cutlass
## 2025
- ["Comet: Fine-grained Computation-communication Overlapping for Mixture-of-Experts"](https://arxiv.org/abs/2502.19811). Shulai Zhang, Ningxin Zheng, Haibin Lin, Ziheng Jiang, Wenlei Bao, Chengquan Jiang, Qi Hou, Weihao Cui, Size Zheng, Li-Wen Chang, Quan Chen, Xin Liu. _arXiv_, February 2025.
- ["ParetoQ: Scaling Laws in Extremely Low-bit LLM Quantization"](https://arxiv.org/abs/2502.02631). Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy, Lisa Jin, Yunyang Xiong, Yangyang Shi, Lin Xiao, Yuandong Tian, Bilge Soran, Raghuraman Krishnamoorthi, Tijmen Blankevoort, Vikas Chandra. _arXiv_, February 2025.
- ["Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light"](https://arxiv.org/abs/2504.16922). Ali Hassani, Fengzhe Zhou, Aditya Kane, Jiannan Huang, Chieh-Yun Chen, Min Shi, Steven Walton, Markus Hoehnerbach, Vijay Thakkar, Michael Isaev, Qinsheng Zhang, Bing Xu, Haicheng Wu, Wen-mei Hwu, Ming-Yu Liu, Humphrey Shi. _arXiv_, April 2025.
## 2024
- ["DeepSeek-V3 Technical Report"](https://arxiv.org/abs/2412.19437). DeepSeek-AI. _arXiv_, December 2024.
- ["ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference"](https://arxiv.org/abs/2410.21465). Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie Chi, Beidi Chen. _arXiv_, October 2024.
- ["FLUX: Fast Software-based Communication Overlap On GPUs Through Kernel Fusion"](https://arxiv.org/abs/2406.06858). Li-Wen Chang, Wenlei Bao, Qi Hou, Chengquan Jiang, Ningxin Zheng, Yinmin Zhong, Xuanrun Zhang, Zuquan Song, Chengji Yao, Ziheng Jiang, Haibin Lin, Xin Jin, Xin Liu. _arXiv_, June 2024.
@ -60,3 +70,35 @@
"](https://arxiv.org/abs/2008.13006). Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, Zehuan Wang, Xiaoying Jia, Xipeng Li, Minyi Guo, Yuhao Zhu. _Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis_, November 2020.
- ["Strassen's Algorithm Reloaded on GPUs"](https://dl.acm.org/doi/10.1145/3372419). Jianyu Huang, Chenhan D. Yu, Robert A. van de Geijn. _ACM Transactions on Mathematical Software_, March 2020.
## Copyright
Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
```
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```

274
README.md
View File

@ -1,8 +1,8 @@
![ALT](./media/images/gemm-hierarchy-with-epilogue-no-labels.png "Complete CUDA GEMM decomposition")
# CUTLASS 3.6.0
# CUTLASS 3.9.2
_CUTLASS 3.6.0 - October 2024_
_CUTLASS 3.9.2 - May 2025_
CUTLASS is a collection of CUDA C++ template abstractions for implementing
high-performance matrix-matrix multiplication (GEMM) and related computations at all levels
@ -16,76 +16,85 @@ as building blocks within custom kernels and applications.
To support a wide variety of applications, CUTLASS provides extensive support for
mixed-precision computations, providing specialized data-movement and
multiply-accumulate abstractions for half-precision floating
point (FP16), BFloat16 (BF16), Tensor Float 32 (TF32),
single-precision floating point (FP32),
[FP32 emulation via tensor core instruction](./examples/27_ampere_3xtf32_fast_accurate_tensorop_gemm),
double-precision floating
point (FP64) types, integer data types (4b and 8b), and binary data types (1b).
CUTLASS demonstrates warp-synchronous matrix multiply operations
multiply-accumulate abstractions for FP64, FP32, TF32, FP16, BF16,
[FP32 emulation via tensor core instruction](./examples/27_ampere_3xtf32_fast_accurate_tensorop_gemm),
8b floating point types (e5m2 and e4m3),
block scaled data types (NVIDIA NVFP4 and OCP standard MXFP4, MXFP6, MXFP8),
narrow integer types (4 and 8b signed and unsigned integers),
and binary 1b data types (where architectures allow for the
native support of such data types).
CUTLASS demonstrates optimal matrix multiply operations
targeting the programmable, high-throughput _Tensor Cores_ implemented by
NVIDIA's Volta, Turing, Ampere, and Hopper architectures.
NVIDIA's Volta, Turing, Ampere, Ada, Hopper, and Blackwell architectures.
See the [Quick Start Guide](./media/docs/quickstart.md) to get started quickly.
In addition to GEMMs, CUTLASS implements high-performance convolution via
the implicit GEMM algorithm. Implicit GEMM is the formulation of a convolution
operation as a GEMM thereby taking advantage of CUTLASS's modular GEMM pipeline.
This allows CUTLASS to build convolutions by reusing highly-optimized GEMM components.
See the [functionality listing](./media/docs/functionality.md) for the list of operations
supported at each level of the execution model hierarchy.
See the [Quick Start Guide](./media/docs/cpp/quickstart.md) to get started quickly.
CUTLASS 3.0 introduced a new core library, CuTe, to describe and manipulate tensors of threads and data.
CuTe is a collection of C++ CUDA template abstractions for defining and operating on hierarchically multidimensional layouts of threads and data. CuTe provides `Layout` and `Tensor` objects that compactly package the type, shape, memory space, and layout of data, while performing the complicated indexing for the user. This lets programmers focus on the logical descriptions of their algorithms while CuTe does the mechanical bookkeeping for them. With these tools, we can quickly design, implement, and modify all dense linear algebra operations.
See the [functionality docs](./media/docs/cpp/functionality.md) for a more comprehensive
list of kernel level features, data types, instructions, and minimum supported by CUTLASS on each GPU
architecture.
The core abstractions of CuTe are hierarchically multidimensional layouts which can be composed with data arrays to represent tensors. The representation of layouts is powerful enough to represent nearly everything we need to implement efficient dense linear algebra. Layouts can also be combined and manipulated via functional composition, on which we build a large set of common operations such as tiling and partitioning.
# What's New in CUTLASS 3.9
CUTLASS 3.0 and beyond adopts CuTe throughout the GEMM hierarchy in its templates. This greatly simplifies the design
and improves code composability and readability. More documentation specific to CuTe can be found in its [dedicated documentation directory](./media/docs/cute/00_quickstart.md).
* Support for Blackwell SM120 kernels for GeForce GPUs in CUTLASS 3.x API:
- Collective mainloops that target for:
* [Blockscaled datatypes with support for dense GEMM](./include/cutlass/gemm/collective/sm120_blockscaled_mma_tma.hpp)
* [Blockscaled datatypes with support for sparse GEMM](./include/cutlass/gemm/collective/sm120_blockscaled_sparse_mma_tma.hpp)
- New [GEMM](./include/cutlass/gemm/dispatch_policy.hpp) and [epilogue](./include/cutlass/epilogue/dispatch_policy.hpp) dispatch policies for collectives, kernel layers, and builders.
- [Blackwell SM120 epilogue](./include/cutlass/epilogue/fusion/sm120_visitor_store_tma_warpspecialized.hpp) and [full set of EVT fusions](./include/cutlass/epilogue/fusion/sm120_callbacks_tma_warpspecialized.hpp).
* Set of examples that demonstrate the usage of the 3.x API for targeting Blackwell SM120 architecture:
- [Blockscaled GEMM with NVFP4 input datatype and BF16 output tensor](./examples/79_blackwell_geforce_gemm/79a_blackwell_geforce_nvfp4_bf16_gemm.cu).
- [Blockscaled GEMM with NVFP4 input datatype and NVFP4 output tensor with scale factor generation](./examples/79_blackwell_geforce_gemm/79b_blackwell_geforce_nvfp4_nvfp4_gemm.cu).
- [Blockscaled GEMM with mixed input datatype (MXFP8 and MXFP6) and BF16 output tensor](./examples/79_blackwell_geforce_gemm/79c_blackwell_geforce_mixed_mxfp8_mxfp6_bf16_gemm.cu).
- [Grouped GEMM with nvfp4 datatype](./examples/79_blackwell_geforce_gemm/79d_blackwell_geforce_nvfp4_grouped_gemm.cu).
- [Sparse Blockscaled GEMM with mxfp8 input datatype and BF16 output tensor](./examples/80_blackwell_geforce_sparse_gemm/80a_blackwell_geforce_mxfp8_bf16_sparse_gemm.cu).
- [Sparse Blockscaled GEMM with NVFP4 input datatype and NVFP4 output tensor](./examples/80_blackwell_geforce_sparse_gemm/80b_blackwell_geforce_nvfp4_nvfp4_sparse_gemm.cu).
* Set of unit tests that demonstrate the usage of both [sparse](./test/unit/gemm/device/sm120_blockscaled_sparse_tensorop_gemm/) and [dense](./test/unit/gemm/device/sm120_blockscaled_tensorop_gemm/) Blackwell SM120 blockscaled GEMM.
* Support for Blackwell SM100 Sparse kernels:
- Collective mainloop that target for
* [SM100 Sparse GEMM](./include/cutlass/gemm/collective/sm100_sparse_mma_warpspecialized.hpp)
* Set of example that demonstrate the usage of the 3.x API for targeting Blackwell SM100 Sparse GEMM:
- [Sparse GEMM](./examples/83_blackwell_sparse_gemm/83_blackwell_sparse_gemm.cu)
- [Blockscaled Sparse GEMM with NVFP4 input data type](./examples/84_blackwell_narrow_precision_sparse_gemm/84a_blackwell_nvfp4_bf16_sparse_gemm.cu)
- [Blockscaled Sparse GEMM with mixed input data type (MXFP8 and MXFP4)](./examples/84_blackwell_narrow_precision_sparse_gemm/84b_blackwell_mixed_mxfp8_bf16_sparse_gemm.cu)
* Set of unit tests that demonstrate the usage of [sparse](./test/unit/gemm/device/sm100_sparse_tensorop_gemm) and [blockscaled sparse](./test/unit/gemm/device/sm100_blockscaled_sparse_tensorop_gemm) Blackwell SM100 GEMM.
* A new Multi-head Latent Attention (MLA) for SM100 Blackwell architecture in CUTLASS [example](./examples/77_blackwell_fmha/) covers the flashMLA-like weight-absorbed decoding use-case.
* A new FMHA Backward kernel for SM100 Blackwell architecture extends CUTLASS [example](./examples/77_blackwell_fmha/) to show how the five backward pass MMAs can be fused into a single kernel to achieve high performance.
* A new [distributed GEMM example](./examples/82_blackwell_distributed_gemm/82_blackwell_distributed_gemm.cu) for SM100 Blackwell architecture.
* Enhancement and new support of block-wise and group-wise GEMM for Hopper and Blackwell architectures:
- Enhancement of [blockwise GEMM](./examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling.cu) for Hopper architecture.
- Enhancement of [groupwise GEMM](./examples/67_hopper_fp8_warp_specialized_gemm_with_blockwise_scaling/67_hopper_fp8_warp_specialized_gemm_with_groupwise_scaling.cu) for Hopper architecture.
- Support for [grouped GEMM with blockwise and groupwise scaling](./examples/68_hopper_fp8_warp_specialized_grouped_gemm_with_blockwise_scaling/) for Hopper architecture.
- Support for [grouped-wise GEMM](./tools/profiler/src/blockwise_gemm_operation_profiler.cu) in CUTLASS profiler.
- Support for [blockwise GEMM](./examples/81_blackwell_gemm_blockwise/81_blackwell_gemm_blockwise.cu) for Blackwell architecture.
- Support for [groupwise GEMM](./examples/81_blackwell_gemm_blockwise/81_blackwell_gemm_groupwise.cu) for Blackwell architecture.
- Support for [grouped GEMM with blockwise](./examples/81_blackwell_gemm_blockwise/81_blackwell_grouped_gemm_blockwise.cu) and [groupwise scaling](./examples/81_blackwell_gemm_blockwise/81_blackwell_grouped_gemm_groupwise.cu) for Blackwell architecture.
* Added support for enhanced kernel performance search (auto-tuning) in CUTLASS profiler:
- Sorting performance results by GFLOPs/second: Users can now sort the final performance report based on GFLOPs/second, making it easier to identify the most efficient kernels.
- Exhaustive search for best kernel performance in GFLOPs/second: The profiler now searches for the best-performing kernel across a range of problem sizes, swizzle sizes, rasterization orders, and dynamic cluster configurations to maximize performance.
- Performance search under a fixed GEMM shape: Enables exhaustive tuning within a fixed GEMM shape, exploring various kernel parameters to find the best configuration.
- More detailed introductions and examples to leverage this feature can be found in [profiler.md](./media/docs/cpp/profiler.md#exhaustive-search-mode-and-top-k-output-ranking-according-to-performance-in-gflopss).
* Support `void` as the D element in sm100 kernel epilogues.
In addition to GEMMs, CUTLASS implements high-performance convolution via the implicit GEMM algorithm. Implicit GEMM is the formulation of a convolution operation as a GEMM thereby taking advantage of CUTLASS's modular GEMM pipeline. This allows CUTLASS to build convolutions by reusing highly-optimized GEMM components.
Note: CUTLASS 3.x builds are known to be down on Windows platforms for all CUDA toolkits.
CUTLASS team is working on a fix.
# What's New in CUTLASS 3.6
CUTLASS 3.6.0 is an update to CUTLASS adding:
- [Hopper structured sparse GEMM](./examples/62_hopper_sparse_gemm/62_hopper_sparse_gemm.cu).
+ [FP16](./test/unit/gemm/device/sm90_sparse_gemm_f16_f16_f32_tensor_op_f32.cu)
+ [FP8](./test/unit/gemm/device/sm90_sparse_gemm_f8_f8_f32_tensor_op_f32.cu)
+ [INT8](./test/unit/gemm/device/sm90_sparse_gemm_s8_s8_s32_tensor_op_s32.cu)
+ [TF32](./test/unit/gemm/device/sm90_sparse_gemm_tf32_tf32_f32_tensor_op_f32.cu)
- A refactor to the CUTLASS 3.x convolution `kernel::ConvUniversal` [API](./include/cutlass/conv/kernel/sm90_implicit_gemm_tma_warpspecialized.hpp) to bring it in line with `gemm::GemmUniversal`. Now the 3.x convolution API is no longer considered as a beta API.
- [An improved mixed input GEMM](./examples/55_hopper_mixed_dtype_gemm/README.md) and a [lookup table implementation](./examples/55_hopper_mixed_dtype_gemm/55_hopper_int4_fp8_gemm.cu) for `INT4`x`FP8` scale-only mode.
- [EVT nodes for Top-K selection and softmax](./include/cutlass/epilogue/fusion/sm90_visitor_topk_softmax.hpp) and [GEMM example using those](./examples/61_hopper_gemm_with_topk_and_softmax/61_hopper_gemm_with_topk_and_softmax.cu).
- [Programmatic Dependent Launch](./include/cutlass/arch/grid_dependency_control.h) (PDL) that leverages a new Hopper feature to speedup two back-to-back kernels, and its corresponding [documentations](./media/docs/dependent_kernel_launch.md).
- [A new debugging tool, synclog](./include/cutlass/arch/synclog.hpp), for dumping out all synchronization events from within a kernel to a file. Please see [synclog documentation](./media/docs/utilities.md#debugging-asynchronous-kernels-with-cutlasss-built-in-synclog-tool) for details.
- A new TMA-enabled [epilogue](./include/cutlass/epilogue/collective/sm90_epilogue_array_tma_warpspecialized.hpp) for grouped GEMM that brings significant performance improvement, as well as its EVT support.
- A SIMT-enabled pointer-array [epilogue](./include/cutlass/epilogue/collective/sm70_epilogue_vectorized_array.hpp).
- A new [Ping-Pong kernel schedule for Grouped GEMM](./include/cutlass/gemm/kernel/sm90_gemm_array_tma_warpspecialized_pingpong.hpp) and some other optimizations.
- [A new instantiation strategy for CUTLASS profiler kernels](./python/cutlass_library/sm90_shapes.py) along with [improved documentation for instantiation level in CUTLASS profiler](./media/docs/profiler.md#instantiating-more-kernels-with-hopper).
- A new hardware support for comparisons and computations of [`cutlass::bfloat16_t`](./include/cutlass/bfloat16.h)
- Fixed use of isnan on Windows for [`half_t`](./test/unit/core/functional.cu).
Minimum requirements:
- Architecture: Volta
- Compiler: Must support at least C++17
- CUDA Toolkit version: 11.4
Starting from CUTLASS 3.0, CUTLASS removed support for the following:
- Maxwell and Pascal GPU architectures
- Ubuntu 16.04
- CUDA 10.2
- C++ language versions less than 17.
**See the [CHANGELOG](CHANGELOG.md) for a detailed listing of releases and updates.**
**See the [CHANGELOG](CHANGELOG.md) for details of all past releases and updates.**
# Performance
<p align="center"><img src=media/images/cutlass-3.5.1-gemm-peak-performance.png></p>
<p align="center"><img src=media/images/cutlass-3.5.1-gemm-peak-performance-fp8.png></p>
CUTLASS primitives are very efficient. When used to construct device-wide GEMM kernels,
they exhibit peak performance comparable to cuBLAS for scalar GEMM
computations. The above figure shows the continual CUTLASS performance improvements
they exhibit nearly optimal utilization of peak theoretical throughput. The figure below
shows CUTLASS 3.8's performance as a % of theoretical peak utilization
on various input and output data types when run on NVIDIA Blackwell SM100 architecture GPU.
<p align="center"><img src=media/images/cutlass-3.8-blackwell-gemm-peak-performance.svg></p>
The two figures below show the continual CUTLASS performance improvements
on an [NVIDIA H100](https://www.nvidia.com/en-us/data-center/h100/) (NVIDIA Hopper architecture) since
CUTLASS 3.1.
CUTLASS 3.5.1 was compiled with the [CUDA 12.5u1 Toolkit](https://developer.nvidia.com/cuda-downloads).
@ -93,20 +102,45 @@ Tensor Core operations are implemented using CUDA's
[mma](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma) and
[wgmma](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#asynchronous-warpgroup-level-matrix-instructions) instructions.
<p align="center"><img src=media/images/cutlass-2.9-implicit-gemm-performance.png></p>
<p align="center"><img src=media/images/cutlass-3.5.1-gemm-peak-performance.png></p>
<p align="center"><img src=media/images/cutlass-3.5.1-gemm-peak-performance-fp8.png></p>
When using CUTLASS building blocks to construct device-wide implicit gemm (Fprop, Dgrad, and Wgrad)
kernels, CUTLASS performance is also comparable to cuDNN when running Resnet-50 layers on an [NVIDIA A100](https://www.nvidia.com/en-us/data-center/a100/)
as shown in the above figure. Tensor Core operations are implemented using CUDA's
[mma instruction](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma).
# CuTe
CUTLASS 3.0 introduced a new core library, CuTe, to describe and manipulate tensors of threads and data.
CuTe is a collection of C++ CUDA template abstractions for
defining and operating on hierarchically multidimensional layouts of threads and data.
CuTe provides `Layout` and `Tensor` objects that compactly package the type,
shape, memory space, and layout of data, while performing the complicated indexing for the user.
This lets programmers focus on the logical descriptions of their algorithms while
CuTe does the mechanical bookkeeping for them. With these tools, we can quickly design,
implement, and modify all dense linear algebra operations.
The core abstractions of CuTe are hierarchically multidimensional layouts
which can be composed with data arrays to represent tensors.
The representation of layouts is powerful enough to represent nearly
everything we need to implement efficient dense linear algebra.
Layouts can also be combined and manipulated via functional composition, on which we build a large set of common operations such as tiling and partitioning.
CUTLASS 3.0 and beyond adopts CuTe throughout the GEMM hierarchy in its templates.
This greatly simplifies the design and improves code composability and readability.
More documentation specific to CuTe can be found in its
[dedicated documentation directory](./media/docs/cpp/cute/00_quickstart.md).
# Compatibility
Minimum requirements:
- Architecture: Volta (compute capability 7.0)
- Compiler: Must support at least C++17
- CUDA Toolkit version: 11.4
CUTLASS requires a C++17 host compiler and
performs best when built with the [**CUDA 12.4 Toolkit**](https://developer.nvidia.com/cuda-downloads).
It is also compatible with CUDA 11.4, CUDA 11.5, CUDA 11.6, CUDA 11.7, CUDA 11.8, CUDA 12.0, CUDA 12.1, CUDA 12.2.2, CUDA 12.3.1 and CUDA 12.3.2.
performs best when built with the [**CUDA 12.8 Toolkit**](https://developer.nvidia.com/cuda-downloads).
It is also compatible with CUDA 11.4, CUDA 11.5, CUDA 11.6, CUDA 11.7, CUDA 11.8, and all other CUDA 12.x versions.
## Operating Systems
We have tested the following environments.
|**Operating System** | **Compiler** |
@ -114,73 +148,101 @@ We have tested the following environments.
| Ubuntu 18.04 | GCC 7.5.0 |
| Ubuntu 20.04 | GCC 10.3.0 |
| Ubuntu 22.04 | GCC 11.2.0 |
| Ubuntu 22.04 | Clang 10.0.0 |
| Ubuntu 22.04 | Clang 14.0.6 |
| Ubuntu 22.04 | Clang 17.0.6 |
| Windows 10.0 | Visual Studio 2019 v16.11.27 |
Note: GCC 8.5.0 has known regressions regarding fold expressions and overloaded operators. Using GCC 7.5.0 or (preferred) GCC >= 9 is recommended.
Note: CUTLASS 3.x builds are known to be down on Windows platforms for all CUDA toolkits.
CUTLASS team is working on a fix.
## Hardware
CUTLASS runs successfully on the following NVIDIA GPUs, and it is expected to be efficient on Volta, Turing, Ampere, Ada, and Hopper architecture based NVIDIA GPUs.
|**GPU**|**CUDA Compute Capability**|**Minimum CUDA Toolkit Required by CUTLASS-3**|
|---|---|---|
|NVIDIA V100 Tensor Core GPU |7.0|11.4|
|NVIDIA TitanV |7.0|11.4|
|NVIDIA GeForce RTX 2080 TI, 2080, 2070 |7.5|11.4|
|NVIDIA GeForce RTX 20x0 series |7.5|11.4|
|NVIDIA T4 |7.5|11.4|
|NVIDIA A100 Tensor Core GPU |8.0|11.4|
|NVIDIA A10 |8.6|11.4|
|NVIDIA GeForce RTX 3090 |8.6|11.4|
|NVIDIA GeForce RTX 4090 |8.9|11.8|
|NVIDIA GeForce RTX 30x0 series |8.6|11.4|
|NVIDIA GeForce RTX 40x0 series |8.9|11.8|
|NVIDIA L40 |8.9|11.8|
|NVIDIA H100 Tensor Core GPU |9.0|11.8|
|NVIDIA H200 Tensor Core GPU |9.0|11.8|
|NVIDIA B200 Tensor Core GPU |10.0|12.8|
|NVIDIA GeForce RTX 50x0 series |10.0|12.8|
## Target Architecture
In general, PTX code generated for one target architecture can be run on future architectures (i.e., it is forward compatible). However, CUDA 12.0 introduced the concept of "architecture-accelerated features" whose PTX does not have forward compatibility guarantees. Several Hopper PTX instructions fall under this category of architecture-accelerated features, and thus require a `sm_90a` target architecture (note the "a" appended). For more details on this and other architecture-accelerated instructions, please refer to the [CUDA Documentation](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#feature-availability).
In general, PTX code generated for one target architecture can be run on future architectures
(i.e., it is forward compatible).
However, CUDA 12.0 introduced the concept of "architecture-accelerated features" whose
PTX does not have forward compatibility guarantees.
Several Hopper and Blackwell PTX instructions fall under this category of
architecture-accelerated features, and thus require a `sm_90a` or `sm100a` target architecture
(note the "a" appended). For more details on this and other architecture-accelerated instructions,
please refer to the [CUDA Documentation](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#feature-availability).
The target architecture information is passed on to CUTLASS via the cmake flag `CUTLASS_NVCC_ARCHS`. In order to maximize performance on Hopper GH100, users are required to build CUTLASS with `90a` as the target architecture. If a user accidentally builds a kernel which uses SM90a features (e.g. Hopper Tensor Core Instructions), using the SM90 target (note the lack of "a"), with either CUDA Toolkit 12 or 11.8, the kernel is expected to fail with a runtime error.
The target architecture information is passed on to CUTLASS via the cmake flag
`CUTLASS_NVCC_ARCHS`. In order to maximize performance on Hopper GH100,
users are required to build CUTLASS with `90a` as the target architecture.
If a user accidentally builds a kernel which uses SM90a features
(e.g. Hopper Tensor Core Instructions), using the SM90 target
(note the lack of "a"), with either CUDA Toolkit 12 or 11.8,
the kernel is expected to fail with a runtime error.
```
cmake .. -DCUTLASS_NVCC_ARCHS="90a"
cmake .. -DCUTLASS_NVCC_ARCHS="90a"
```
Or
```
cmake .. -DCUTLASS_NVCC_ARCHS="100a"
```
Please refer to the [functionality documentation](./media/docs/functionality.md) for details on which kernels require which target architectures.
Note: The NVIDIA Blackwell SM100 architecture used in the datacenter
products has a different compute capability than the one underpinning
NVIDIA Blackwell GeForce RTX 50 series GPUs. As a result, kernels
compiled for Blackwell SM100 architecture with arch conditional features
(using `sm100a`) are not compatible with RTX 50 series GPUs.
Please refer to the [functionality documentation](./media/docs/cpp/functionality.md)
for details on which kernels require which target architectures.
# Documentation
CUTLASS is described in the following documents and the accompanying
[Doxygen documentation](https://nvidia.github.io/cutlass).
- [Quick Start Guide](./media/docs/quickstart.md) - build and run CUTLASS
- [Functionality](./media/docs/functionality.md) - summarizes functionality available in CUTLASS
- [Efficient GEMM in CUDA](./media/docs/efficient_gemm.md) - describes how GEMM kernels may be implemented efficiently in CUDA
- [CUTLASS 3.x Design](./media/docs/cutlass_3x_design.md) - describes the CUTLASS 3.x design, its benefits, and how CuTe enables us to write much more composable components
- [GEMM API 3.x](./media/docs/gemm_api_3x.md) - describes the CUTLASS 3.x GEMM model and C++ template concepts
- [GEMM API 2.x](./media/docs/gemm_api.md) - describes the CUTLASS 2.x GEMM model and C++ template concepts
- [Implicit GEMM Convolution](./media/docs/implicit_gemm_convolution.md) - describes 2-D and 3-D convolution in CUTLASS
- [Code Organization](./media/docs/code_organization.md) - describes the organization and contents of the CUTLASS project
- [Terminology](./media/docs/terminology.md) - describes terms used in the code
- [Programming Guidelines](./media/docs/programming_guidelines.md) - guidelines for writing efficient modern CUDA C++
- [Fundamental types](./media/docs/fundamental_types.md) - describes basic C++ classes used in CUTLASS to represent numeric quantities and arrays
- [Layouts](./media/docs/layout.md) - describes layouts of matrices and tensors in memory
- [Tile Iterators](./media/docs/tile_iterator_concept.md) - describes C++ concepts for iterating over tiles of matrices in memory
- [CUTLASS Profiler](./media/docs/profiler.md) - command-line driven profiling application
- [CUTLASS Utilities](./media/docs/utilities.md) - additional templates used to facilate rapid development
- [Dependent kernel launch](./media/docs/dependent_kernel_launch.md) - describes a new feature in Hopper which allows overlapping dependent
- [Quick Start Guide](./media/docs/cpp/quickstart.md) - basics of building and running CUTLASS
- [Functionality](./media/docs/cpp/functionality.md) - summarizes functionality available in CUTLASS
- [Efficient GEMM in CUDA](./media/docs/cpp/efficient_gemm.md) - describes how GEMM kernels may be implemented efficiently in CUDA
- [CUTLASS 3.x Design](./media/docs/cpp/cutlass_3x_design.md) - describes the CUTLASS 3.x design, its benefits, and how CuTe enables us to write much more composable components
- [GEMM API 3.x](./media/docs/cpp/gemm_api_3x.md) - describes the CUTLASS 3.x GEMM model and C++ template concepts
- [GEMM API 2.x](./media/docs/cpp/gemm_api.md) - describes the CUTLASS 2.x GEMM model and C++ template concepts
- [Implicit GEMM Convolution](./media/docs/cpp/implicit_gemm_convolution.md) - describes 2-D and 3-D convolution in CUTLASS
- [Code Organization](./media/docs/cpp/code_organization.md) - describes the organization and contents of the CUTLASS project
- [Terminology](./media/docs/cpp/terminology.md) - describes terms used in the code
- [Programming Guidelines](./media/docs/cpp/programming_guidelines.md) - guidelines for writing efficient modern CUDA C++
- [Fundamental types](./media/docs/cpp/fundamental_types.md) - describes basic C++ classes used in CUTLASS to represent numeric quantities and arrays
- [Layouts](./media/docs/cpp/layout.md) - describes layouts of matrices and tensors in memory
- [Tile Iterators](./media/docs/cpp/tile_iterator_concept.md) - describes C++ concepts for iterating over tiles of matrices in memory
- [CUTLASS Profiler](./media/docs/cpp/profiler.md) - command-line driven profiling application
- [CUTLASS Utilities](./media/docs/cpp/utilities.md) - additional templates used to facilitate rapid development
- [Dependent kernel launch](./media/docs/cpp/dependent_kernel_launch.md) - describes a new feature in Hopper which allows overlapping dependent
kernels in the same stream, and how it is used in CUTLASS.
# Resources
We have also described the structure of an efficient GEMM in our talk at the
[GPU Technology Conference 2018](http://on-demand.gputechconf.com/gtc/2018/presentation/s8854-cutlass-software-primitives-for-dense-linear-algebra-at-all-levels-and-scales-within-cuda.pdf).
- [CUTLASS: Software Primitives for Dense Linear Algebra at All Levels and Scales within CUDA](https://www.nvidia.com/en-us/on-demand/session/gtcsiliconvalley2018-s8854/)
- [Developing CUDA Kernels to Push Tensor Cores to the Absolute Limit on NVIDIA A100](https://www.nvidia.com/en-us/on-demand/session/gtcsj20-s21745/)
- [Accelerating Convolution with Tensor Cores in CUTLASS](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31883/)
- [Accelerating Backward Data Gradient by Increasing Tensor Core Utilization in CUTLASS](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41996/)
- [CUTLASS: Python API, Enhancements, and NVIDIA Hopper](https://www.nvidia.com/en-us/on-demand/session/gtcfall22-a41131/)
- [CUTLASS: Software Primitives for Dense Linear Algebra at All Levels and Scales within CUDA](https://www.nvidia.com/en-us/on-demand/session/gtcsiliconvalley2018-s8854/)
- [Developing CUDA Kernels to Push Tensor Cores to the Absolute Limit on NVIDIA A100](https://www.nvidia.com/en-us/on-demand/session/gtcsj20-s21745/)
- [Accelerating Convolution with Tensor Cores in CUTLASS](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31883/)
- [Accelerating Backward Data Gradient by Increasing Tensor Core Utilization in CUTLASS](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41996/)
- [CUTLASS: Python API, Enhancements, and NVIDIA Hopper](https://www.nvidia.com/en-us/on-demand/session/gtcfall22-a41131/)
# Building CUTLASS
@ -189,7 +251,7 @@ projects. Client applications should target CUTLASS's `include/` directory in th
paths.
CUTLASS unit tests, examples, and utilities can be build with CMake.
The minimum version of CMake is given in the [Quickstart guide](./media/docs/quickstart.md).
The minimum version of CMake is given in the [Quickstart guide](./media/docs/cpp/quickstart.md).
Make sure the `CUDACXX` environment variable points to NVCC in the CUDA Toolkit installed
on your system.
@ -234,7 +296,7 @@ CUTLASS is arranged as a header-only library along with Utilities, Tools, Exampl
and template concepts defined in the CUTLASS project.
A detailed explanation of the source code organization may be found in the
[CUTLASS documentation](./media/docs/code_organization.md), but several main components are summarized below.
[CUTLASS documentation](./media/docs/cpp/code_organization.md), but several main components are summarized below.
## CUTLASS Template Library
@ -308,7 +370,7 @@ tools/
The `test/unit/` directory consist of unit tests implemented with Google Test that demonstrate
basic usage of Core API components and complete tests of the CUTLASS GEMM computations.
Instructions for building and running the Unit tests are described in the [Quickstart guide](./media/docs/quickstart.md).
Instructions for building and running the Unit tests are described in the [Quickstart guide](./media/docs/cpp/quickstart.md).
# Performance Profiling
@ -524,9 +586,9 @@ reference_device: Passed
## More Details on Compiling CUTLASS Kernels and CUTLASS Profiler
- Please follow the links for more CMake examples on selectively compiling CUTLASS kernels:
- [GEMM CMake Examples](./media/docs/quickstart.md#gemm-cmake-examples)
- [Implicit GEMM convolution CMake Examples](./media/docs/quickstart.md#convolution-cmake-examples)
- [Further details about the CUTLASS Profiler are described here.](./media/docs/profiler.md)
- [GEMM CMake Examples](./media/docs/cpp/quickstart.md#gemm-cmake-examples)
- [Implicit GEMM convolution CMake Examples](./media/docs/cpp/quickstart.md#convolution-cmake-examples)
- [Further details about the CUTLASS Profiler are described here.](./media/docs/cpp/profiler.md)
# About
@ -540,7 +602,7 @@ The official list of CUTLASS developers and contributors is available here: [CON
# Copyright
Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
```

View File

@ -1,4 +1,4 @@
# Copyright (c) 2019 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2019 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,4 +1,4 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

92
customConfigs.cmake Normal file
View File

@ -0,0 +1,92 @@
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# Profiler based functional testing
set(CUTLASS_BUILD_FOR_PROFILER_REGRESSIONS OFF CACHE BOOL "Utilize profiler-based functional regressions")
set(CUTLASS_PROFILER_REGRESSION_TEST_LEVEL ${CUTLASS_TEST_LEVEL} CACHE STRING "Profiler functional regression test level")
find_package(Python3 3.5 COMPONENTS Interpreter REQUIRED)
function(cutlass_generate_kernel_filter_and_testlists_files)
set(options)
set(oneValueArgs TEST_SET_NAME)
set(multiValueArgs)
cmake_parse_arguments(_ "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
execute_process(
COMMAND ${CMAKE_COMMAND} -E env PYTHONPATH=${CUTLASS_LIBRARY_PACKAGE_DIR}
${Python3_EXECUTABLE} ${CUTLASS_SOURCE_DIR}/python/cutlass_library/generator.py
--generator-target=${__TEST_SET_NAME}
--cuda-version=${CUDA_VERSION_MAJOR}.${CUDA_VERSION_MINOR}
--architectures=${CUTLASS_NVCC_ARCHS}
--kernels=\*
--disable-cutlass-package-imports
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
RESULT_VARIABLE cutlass_FILTER_GENERATION_RESULT
OUTPUT_VARIABLE cutlass_FILTER_GENERATION_OUTPUT
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/library_filter_generation.log
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/library_filter_generation.log
)
if(NOT cutlass_FILTER_GENERATION_RESULT EQUAL 0)
message(FATAL_ERROR "Error generating kernel filters and testlists files. See ${CMAKE_CURRENT_BINARY_DIR}/library_filter_generation.log")
endif()
endfunction()
if(CUTLASS_BUILD_FOR_PROFILER_REGRESSIONS)
set(PROFILER_ARCH_LIST 100a 101a 120a)
foreach(ARCH IN LISTS CUTLASS_NVCC_ARCHS)
if(NOT (ARCH IN_LIST PROFILER_ARCH_LIST))
message(FATAL_ERROR "Only SM100a/101a/120a compute capability is supported with profiler-based unit tests")
endif()
endforeach()
if(CUTLASS_PROFILER_REGRESSION_TEST_LEVEL EQUAL 0)
message(STATUS "Building for L0 profiler-based functional regressions")
cutlass_generate_kernel_filter_and_testlists_files(TEST_SET_NAME kernel_testlist_l0)
set(KERNEL_FILTER_FILE ${CMAKE_CURRENT_BINARY_DIR}/FK_functional_L0_testlist_SM${CUTLASS_NVCC_ARCHS}_cutlass3x_gemm_kernel_filter.list CACHE STRING "Kernel set")
set(CUTLASS_PROFILER_REGRESSION_LIST_FILE ${CMAKE_CURRENT_BINARY_DIR}/FK_functional_L0_testlist_SM${CUTLASS_NVCC_ARCHS}_cutlass3x_gemm.csv CACHE STRING "Regression set")
elseif (CUTLASS_PROFILER_REGRESSION_TEST_LEVEL EQUAL 1)
message(STATUS "Building for L1 profiler-based functional regressions")
cutlass_generate_kernel_filter_and_testlists_files(TEST_SET_NAME kernel_testlist_l1)
set(KERNEL_FILTER_FILE ${CMAKE_CURRENT_BINARY_DIR}/FK_functional_L1_testlist_SM${CUTLASS_NVCC_ARCHS}_cutlass3x_gemm_kernel_filter.list CACHE STRING "Kernel set")
set(CUTLASS_PROFILER_REGRESSION_LIST_FILE ${CMAKE_CURRENT_BINARY_DIR}/FK_functional_L1_testlist_SM${CUTLASS_NVCC_ARCHS}_cutlass3x_gemm.csv CACHE STRING "Regression set")
endif()
endif()

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
@ -34,7 +34,7 @@
addressable memory, and then store it back into addressable memory.
TileIterator is a core concept in CUTLASS that enables efficient loading and storing of data to
and from addressable memory. The PredicateTileIterator accepts a ThreadMap type, which defines
and from addressable memory. The PredicatedTileIterator accepts a ThreadMap type, which defines
the mapping of threads to a "tile" in memory. This separation of concerns enables user-defined
thread mappings to be specified.
@ -124,7 +124,7 @@ __global__ void copy(
cudaError_t TestTileIterator(int M, int K) {
// For this example, we chose a <64, 4> tile shape. The PredicateTileIterator expects
// For this example, we chose a <64, 4> tile shape. The PredicatedTileIterator expects
// PitchLinearShape and PitchLinear layout.
using Shape = cutlass::layout::PitchLinearShape<64, 4>;
using Layout = cutlass::layout::PitchLinear;
@ -136,7 +136,7 @@ cudaError_t TestTileIterator(int M, int K) {
// dimension then along the strided dimension.
using ThreadMap = cutlass::transform::PitchLinearStripminedThreadMap<Shape, kThreads>;
// Define the PredicateTileIterator, using TileShape, Element, Layout, and ThreadMap types
// Define the PredicatedTileIterator, using TileShape, Element, Layout, and ThreadMap types
using Iterator = cutlass::transform::threadblock::PredicatedTileIterator<
Shape, Element, Layout, 1, ThreadMap>;

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without

View File

@ -86,7 +86,7 @@ threadblock. Typically this requires the 2nd Convolution uses 1x1 filter without
# Copyright
Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
```
@ -115,4 +115,3 @@ SPDX-License-Identifier: BSD-3-Clause
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

View File

@ -1,5 +1,5 @@
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without

Some files were not shown because too many files have changed in this diff Show More