Merge branch 'main' into 2-5-css-icon

This commit is contained in:
Stephen Zhou
2026-02-09 11:21:56 +08:00
committed by GitHub
17 changed files with 811 additions and 560 deletions

View File

@ -3,8 +3,8 @@ from __future__ import annotations
import base64
import json
import logging
from collections.abc import Generator
from typing import Any
from collections.abc import Generator, Mapping
from typing import Any, cast
from core.mcp.auth_client import MCPClientWithAuthRetry
from core.mcp.error import MCPConnectionError
@ -17,6 +17,7 @@ from core.mcp.types import (
TextContent,
TextResourceContents,
)
from core.model_runtime.entities.llm_entities import LLMUsage, LLMUsageMetadata
from core.tools.__base.tool import Tool
from core.tools.__base.tool_runtime import ToolRuntime
from core.tools.entities.tool_entities import ToolEntity, ToolInvokeMessage, ToolProviderType
@ -46,6 +47,7 @@ class MCPTool(Tool):
self.headers = headers or {}
self.timeout = timeout
self.sse_read_timeout = sse_read_timeout
self._latest_usage = LLMUsage.empty_usage()
def tool_provider_type(self) -> ToolProviderType:
return ToolProviderType.MCP
@ -59,6 +61,10 @@ class MCPTool(Tool):
message_id: str | None = None,
) -> Generator[ToolInvokeMessage, None, None]:
result = self.invoke_remote_mcp_tool(tool_parameters)
# Extract usage metadata from MCP protocol's _meta field
self._latest_usage = self._derive_usage_from_result(result)
# handle dify tool output
for content in result.content:
if isinstance(content, TextContent):
@ -120,6 +126,99 @@ class MCPTool(Tool):
for item in json_list:
yield self.create_json_message(item)
@property
def latest_usage(self) -> LLMUsage:
return self._latest_usage
@classmethod
def _derive_usage_from_result(cls, result: CallToolResult) -> LLMUsage:
"""
Extract usage metadata from MCP tool result's _meta field.
The MCP protocol's _meta field (aliased as 'meta' in Python) can contain
usage information such as token counts, costs, and other metadata.
Args:
result: The CallToolResult from MCP tool invocation
Returns:
LLMUsage instance with values from meta or empty_usage if not found
"""
# Extract usage from the meta field if present
if result.meta:
usage_dict = cls._extract_usage_dict(result.meta)
if usage_dict is not None:
return LLMUsage.from_metadata(cast(LLMUsageMetadata, cast(object, dict(usage_dict))))
return LLMUsage.empty_usage()
@classmethod
def _extract_usage_dict(cls, payload: Mapping[str, Any]) -> Mapping[str, Any] | None:
"""
Recursively search for usage dictionary in the payload.
The MCP protocol's _meta field can contain usage data in various formats:
- Direct usage field: {"usage": {...}}
- Nested in metadata: {"metadata": {"usage": {...}}}
- Or nested within other fields
Args:
payload: The payload to search for usage data
Returns:
The usage dictionary if found, None otherwise
"""
# Check for direct usage field
usage_candidate = payload.get("usage")
if isinstance(usage_candidate, Mapping):
return usage_candidate
# Check for metadata nested usage
metadata_candidate = payload.get("metadata")
if isinstance(metadata_candidate, Mapping):
usage_candidate = metadata_candidate.get("usage")
if isinstance(usage_candidate, Mapping):
return usage_candidate
# Check for common token counting fields directly in payload
# Some MCP servers may include token counts directly
if "total_tokens" in payload or "prompt_tokens" in payload or "completion_tokens" in payload:
usage_dict: dict[str, Any] = {}
for key in (
"prompt_tokens",
"completion_tokens",
"total_tokens",
"prompt_unit_price",
"completion_unit_price",
"total_price",
"currency",
"prompt_price_unit",
"completion_price_unit",
"prompt_price",
"completion_price",
"latency",
"time_to_first_token",
"time_to_generate",
):
if key in payload:
usage_dict[key] = payload[key]
if usage_dict:
return usage_dict
# Recursively search through nested structures
for value in payload.values():
if isinstance(value, Mapping):
found = cls._extract_usage_dict(value)
if found is not None:
return found
elif isinstance(value, list) and not isinstance(value, (str, bytes, bytearray)):
for item in value:
if isinstance(item, Mapping):
found = cls._extract_usage_dict(item)
if found is not None:
return found
return None
def fork_tool_runtime(self, runtime: ToolRuntime) -> MCPTool:
return MCPTool(
entity=self.entity,

View File

@ -81,7 +81,7 @@ dependencies = [
"starlette==0.49.1",
"tiktoken~=0.9.0",
"transformers~=4.56.1",
"unstructured[docx,epub,md,ppt,pptx]~=0.16.1",
"unstructured[docx,epub,md,ppt,pptx]~=0.18.18",
"yarl~=1.18.3",
"webvtt-py~=0.5.1",
"sseclient-py~=1.8.0",

View File

@ -155,11 +155,11 @@ class AsyncWorkflowService:
task: AsyncResult[Any] | None = None
if queue_name == QueuePriority.PROFESSIONAL:
task = execute_workflow_professional.delay(task_data_dict) # type: ignore
task = execute_workflow_professional.delay(task_data_dict)
elif queue_name == QueuePriority.TEAM:
task = execute_workflow_team.delay(task_data_dict) # type: ignore
task = execute_workflow_team.delay(task_data_dict)
else: # SANDBOX
task = execute_workflow_sandbox.delay(task_data_dict) # type: ignore
task = execute_workflow_sandbox.delay(task_data_dict)
# 10. Update trigger log with task info
trigger_log.status = WorkflowTriggerStatus.QUEUED
@ -170,7 +170,7 @@ class AsyncWorkflowService:
return AsyncTriggerResponse(
workflow_trigger_log_id=trigger_log.id,
task_id=task.id, # type: ignore
task_id=task.id,
status="queued",
queue=queue_name,
)

View File

@ -6,7 +6,6 @@ from celery import shared_task
from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.models.document import Document
from extensions.ext_database import db
from models.dataset import Dataset
from services.dataset_service import DatasetCollectionBindingService
@ -58,5 +57,3 @@ def add_annotation_to_index_task(
)
except Exception:
logger.exception("Build index for annotation failed")
finally:
db.session.close()

View File

@ -5,7 +5,6 @@ import click
from celery import shared_task
from core.rag.datasource.vdb.vector_factory import Vector
from extensions.ext_database import db
from models.dataset import Dataset
from services.dataset_service import DatasetCollectionBindingService
@ -40,5 +39,3 @@ def delete_annotation_index_task(annotation_id: str, app_id: str, tenant_id: str
logger.info(click.style(f"App annotations index deleted : {app_id} latency: {end_at - start_at}", fg="green"))
except Exception:
logger.exception("Annotation deleted index failed")
finally:
db.session.close()

View File

@ -6,7 +6,6 @@ from celery import shared_task
from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.models.document import Document
from extensions.ext_database import db
from models.dataset import Dataset
from services.dataset_service import DatasetCollectionBindingService
@ -59,5 +58,3 @@ def update_annotation_to_index_task(
)
except Exception:
logger.exception("Build index for annotation failed")
finally:
db.session.close()

View File

@ -48,6 +48,11 @@ def batch_create_segment_to_index_task(
indexing_cache_key = f"segment_batch_import_{job_id}"
# Initialize variables with default values
upload_file_key: str | None = None
dataset_config: dict | None = None
document_config: dict | None = None
with session_factory.create_session() as session:
try:
dataset = session.get(Dataset, dataset_id)
@ -69,86 +74,115 @@ def batch_create_segment_to_index_task(
if not upload_file:
raise ValueError("UploadFile not found.")
with tempfile.TemporaryDirectory() as temp_dir:
suffix = Path(upload_file.key).suffix
file_path = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}" # type: ignore
storage.download(upload_file.key, file_path)
dataset_config = {
"id": dataset.id,
"indexing_technique": dataset.indexing_technique,
"tenant_id": dataset.tenant_id,
"embedding_model_provider": dataset.embedding_model_provider,
"embedding_model": dataset.embedding_model,
}
df = pd.read_csv(file_path)
content = []
for _, row in df.iterrows():
if dataset_document.doc_form == "qa_model":
data = {"content": row.iloc[0], "answer": row.iloc[1]}
else:
data = {"content": row.iloc[0]}
content.append(data)
if len(content) == 0:
raise ValueError("The CSV file is empty.")
document_config = {
"id": dataset_document.id,
"doc_form": dataset_document.doc_form,
"word_count": dataset_document.word_count or 0,
}
document_segments = []
embedding_model = None
if dataset.indexing_technique == "high_quality":
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
upload_file_key = upload_file.key
word_count_change = 0
if embedding_model:
tokens_list = embedding_model.get_text_embedding_num_tokens(
texts=[segment["content"] for segment in content]
)
except Exception:
logger.exception("Segments batch created index failed")
redis_client.setex(indexing_cache_key, 600, "error")
return
# Ensure required variables are set before proceeding
if upload_file_key is None or dataset_config is None or document_config is None:
logger.error("Required configuration not set due to session error")
redis_client.setex(indexing_cache_key, 600, "error")
return
with tempfile.TemporaryDirectory() as temp_dir:
suffix = Path(upload_file_key).suffix
file_path = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}" # type: ignore
storage.download(upload_file_key, file_path)
df = pd.read_csv(file_path)
content = []
for _, row in df.iterrows():
if document_config["doc_form"] == "qa_model":
data = {"content": row.iloc[0], "answer": row.iloc[1]}
else:
tokens_list = [0] * len(content)
data = {"content": row.iloc[0]}
content.append(data)
if len(content) == 0:
raise ValueError("The CSV file is empty.")
for segment, tokens in zip(content, tokens_list):
content = segment["content"]
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
max_position = (
session.query(func.max(DocumentSegment.position))
.where(DocumentSegment.document_id == dataset_document.id)
.scalar()
)
segment_document = DocumentSegment(
tenant_id=tenant_id,
dataset_id=dataset_id,
document_id=document_id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
created_by=user_id,
indexing_at=naive_utc_now(),
status="completed",
completed_at=naive_utc_now(),
)
if dataset_document.doc_form == "qa_model":
segment_document.answer = segment["answer"]
segment_document.word_count += len(segment["answer"])
word_count_change += segment_document.word_count
session.add(segment_document)
document_segments.append(segment_document)
document_segments = []
embedding_model = None
if dataset_config["indexing_technique"] == "high_quality":
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=dataset_config["tenant_id"],
provider=dataset_config["embedding_model_provider"],
model_type=ModelType.TEXT_EMBEDDING,
model=dataset_config["embedding_model"],
)
word_count_change = 0
if embedding_model:
tokens_list = embedding_model.get_text_embedding_num_tokens(texts=[segment["content"] for segment in content])
else:
tokens_list = [0] * len(content)
with session_factory.create_session() as session, session.begin():
for segment, tokens in zip(content, tokens_list):
content = segment["content"]
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
max_position = (
session.query(func.max(DocumentSegment.position))
.where(DocumentSegment.document_id == document_config["id"])
.scalar()
)
segment_document = DocumentSegment(
tenant_id=tenant_id,
dataset_id=dataset_id,
document_id=document_id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
created_by=user_id,
indexing_at=naive_utc_now(),
status="completed",
completed_at=naive_utc_now(),
)
if document_config["doc_form"] == "qa_model":
segment_document.answer = segment["answer"]
segment_document.word_count += len(segment["answer"])
word_count_change += segment_document.word_count
session.add(segment_document)
document_segments.append(segment_document)
with session_factory.create_session() as session, session.begin():
dataset_document = session.get(Document, document_id)
if dataset_document:
assert dataset_document.word_count is not None
dataset_document.word_count += word_count_change
session.add(dataset_document)
VectorService.create_segments_vector(None, document_segments, dataset, dataset_document.doc_form)
session.commit()
redis_client.setex(indexing_cache_key, 600, "completed")
end_at = time.perf_counter()
logger.info(
click.style(
f"Segment batch created job: {job_id} latency: {end_at - start_at}",
fg="green",
)
)
except Exception:
logger.exception("Segments batch created index failed")
redis_client.setex(indexing_cache_key, 600, "error")
with session_factory.create_session() as session:
dataset = session.get(Dataset, dataset_id)
if dataset:
VectorService.create_segments_vector(None, document_segments, dataset, document_config["doc_form"])
redis_client.setex(indexing_cache_key, 600, "completed")
end_at = time.perf_counter()
logger.info(
click.style(
f"Segment batch created job: {job_id} latency: {end_at - start_at}",
fg="green",
)
)

View File

@ -28,6 +28,7 @@ def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_i
"""
logger.info(click.style(f"Start clean document when document deleted: {document_id}", fg="green"))
start_at = time.perf_counter()
total_attachment_files = []
with session_factory.create_session() as session:
try:
@ -47,78 +48,91 @@ def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_i
SegmentAttachmentBinding.document_id == document_id,
)
).all()
# check segment is exist
if segments:
index_node_ids = [segment.index_node_id for segment in segments]
index_processor = IndexProcessorFactory(doc_form).init_index_processor()
attachment_ids = [attachment_file.id for _, attachment_file in attachments_with_bindings]
binding_ids = [binding.id for binding, _ in attachments_with_bindings]
total_attachment_files.extend([attachment_file.key for _, attachment_file in attachments_with_bindings])
index_node_ids = [segment.index_node_id for segment in segments]
segment_contents = [segment.content for segment in segments]
except Exception:
logger.exception("Cleaned document when document deleted failed")
return
# check segment is exist
if index_node_ids:
index_processor = IndexProcessorFactory(doc_form).init_index_processor()
with session_factory.create_session() as session:
dataset = session.query(Dataset).where(Dataset.id == dataset_id).first()
if dataset:
index_processor.clean(
dataset, index_node_ids, with_keywords=True, delete_child_chunks=True, delete_summaries=True
)
for segment in segments:
image_upload_file_ids = get_image_upload_file_ids(segment.content)
image_files = session.scalars(
select(UploadFile).where(UploadFile.id.in_(image_upload_file_ids))
).all()
for image_file in image_files:
if image_file is None:
continue
try:
storage.delete(image_file.key)
except Exception:
logger.exception(
"Delete image_files failed when storage deleted, \
image_upload_file_is: %s",
image_file.id,
)
total_image_files = []
with session_factory.create_session() as session, session.begin():
for segment_content in segment_contents:
image_upload_file_ids = get_image_upload_file_ids(segment_content)
image_files = session.scalars(select(UploadFile).where(UploadFile.id.in_(image_upload_file_ids))).all()
total_image_files.extend([image_file.key for image_file in image_files])
image_file_delete_stmt = delete(UploadFile).where(UploadFile.id.in_(image_upload_file_ids))
session.execute(image_file_delete_stmt)
image_file_delete_stmt = delete(UploadFile).where(UploadFile.id.in_(image_upload_file_ids))
session.execute(image_file_delete_stmt)
session.delete(segment)
with session_factory.create_session() as session, session.begin():
segment_delete_stmt = delete(DocumentSegment).where(DocumentSegment.document_id == document_id)
session.execute(segment_delete_stmt)
session.commit()
if file_id:
file = session.query(UploadFile).where(UploadFile.id == file_id).first()
if file:
try:
storage.delete(file.key)
except Exception:
logger.exception("Delete file failed when document deleted, file_id: %s", file_id)
session.delete(file)
# delete segment attachments
if attachments_with_bindings:
attachment_ids = [attachment_file.id for _, attachment_file in attachments_with_bindings]
binding_ids = [binding.id for binding, _ in attachments_with_bindings]
for binding, attachment_file in attachments_with_bindings:
try:
storage.delete(attachment_file.key)
except Exception:
logger.exception(
"Delete attachment_file failed when storage deleted, \
attachment_file_id: %s",
binding.attachment_id,
)
attachment_file_delete_stmt = delete(UploadFile).where(UploadFile.id.in_(attachment_ids))
session.execute(attachment_file_delete_stmt)
binding_delete_stmt = delete(SegmentAttachmentBinding).where(
SegmentAttachmentBinding.id.in_(binding_ids)
)
session.execute(binding_delete_stmt)
# delete dataset metadata binding
session.query(DatasetMetadataBinding).where(
DatasetMetadataBinding.dataset_id == dataset_id,
DatasetMetadataBinding.document_id == document_id,
).delete()
session.commit()
end_at = time.perf_counter()
logger.info(
click.style(
f"Cleaned document when document deleted: {document_id} latency: {end_at - start_at}",
fg="green",
)
)
for image_file_key in total_image_files:
try:
storage.delete(image_file_key)
except Exception:
logger.exception("Cleaned document when document deleted failed")
logger.exception(
"Delete image_files failed when storage deleted, \
image_upload_file_is: %s",
image_file_key,
)
with session_factory.create_session() as session, session.begin():
if file_id:
file = session.query(UploadFile).where(UploadFile.id == file_id).first()
if file:
try:
storage.delete(file.key)
except Exception:
logger.exception("Delete file failed when document deleted, file_id: %s", file_id)
session.delete(file)
with session_factory.create_session() as session, session.begin():
# delete segment attachments
if attachment_ids:
attachment_file_delete_stmt = delete(UploadFile).where(UploadFile.id.in_(attachment_ids))
session.execute(attachment_file_delete_stmt)
if binding_ids:
binding_delete_stmt = delete(SegmentAttachmentBinding).where(SegmentAttachmentBinding.id.in_(binding_ids))
session.execute(binding_delete_stmt)
for attachment_file_key in total_attachment_files:
try:
storage.delete(attachment_file_key)
except Exception:
logger.exception(
"Delete attachment_file failed when storage deleted, \
attachment_file_id: %s",
attachment_file_key,
)
with session_factory.create_session() as session, session.begin():
# delete dataset metadata binding
session.query(DatasetMetadataBinding).where(
DatasetMetadataBinding.dataset_id == dataset_id,
DatasetMetadataBinding.document_id == document_id,
).delete()
end_at = time.perf_counter()
logger.info(
click.style(
f"Cleaned document when document deleted: {document_id} latency: {end_at - start_at}",
fg="green",
)
)

View File

@ -81,26 +81,35 @@ def _document_indexing(dataset_id: str, document_ids: Sequence[str]):
session.commit()
return
for document_id in document_ids:
logger.info(click.style(f"Start process document: {document_id}", fg="green"))
document = (
session.query(Document).where(Document.id == document_id, Document.dataset_id == dataset_id).first()
)
# Phase 1: Update status to parsing (short transaction)
with session_factory.create_session() as session, session.begin():
documents = (
session.query(Document).where(Document.id.in_(document_ids), Document.dataset_id == dataset_id).all()
)
for document in documents:
if document:
document.indexing_status = "parsing"
document.processing_started_at = naive_utc_now()
documents.append(document)
session.add(document)
session.commit()
# Transaction committed and closed
try:
indexing_runner = IndexingRunner()
indexing_runner.run(documents)
end_at = time.perf_counter()
logger.info(click.style(f"Processed dataset: {dataset_id} latency: {end_at - start_at}", fg="green"))
# Phase 2: Execute indexing (no transaction - IndexingRunner creates its own sessions)
has_error = False
try:
indexing_runner = IndexingRunner()
indexing_runner.run(documents)
end_at = time.perf_counter()
logger.info(click.style(f"Processed dataset: {dataset_id} latency: {end_at - start_at}", fg="green"))
except DocumentIsPausedError as ex:
logger.info(click.style(str(ex), fg="yellow"))
has_error = True
except Exception:
logger.exception("Document indexing task failed, dataset_id: %s", dataset_id)
has_error = True
if not has_error:
with session_factory.create_session() as session:
# Trigger summary index generation for completed documents if enabled
# Only generate for high_quality indexing technique and when summary_index_setting is enabled
# Re-query dataset to get latest summary_index_setting (in case it was updated)
@ -115,17 +124,18 @@ def _document_indexing(dataset_id: str, document_ids: Sequence[str]):
# expire all session to get latest document's indexing status
session.expire_all()
# Check each document's indexing status and trigger summary generation if completed
for document_id in document_ids:
# Re-query document to get latest status (IndexingRunner may have updated it)
document = (
session.query(Document)
.where(Document.id == document_id, Document.dataset_id == dataset_id)
.first()
)
documents = (
session.query(Document)
.where(Document.id.in_(document_ids), Document.dataset_id == dataset_id)
.all()
)
for document in documents:
if document:
logger.info(
"Checking document %s for summary generation: status=%s, doc_form=%s, need_summary=%s",
document_id,
document.id,
document.indexing_status,
document.doc_form,
document.need_summary,
@ -136,46 +146,36 @@ def _document_indexing(dataset_id: str, document_ids: Sequence[str]):
and document.need_summary is True
):
try:
generate_summary_index_task.delay(dataset.id, document_id, None)
generate_summary_index_task.delay(dataset.id, document.id, None)
logger.info(
"Queued summary index generation task for document %s in dataset %s "
"after indexing completed",
document_id,
document.id,
dataset.id,
)
except Exception:
logger.exception(
"Failed to queue summary index generation task for document %s",
document_id,
document.id,
)
# Don't fail the entire indexing process if summary task queuing fails
else:
logger.info(
"Skipping summary generation for document %s: "
"status=%s, doc_form=%s, need_summary=%s",
document_id,
document.id,
document.indexing_status,
document.doc_form,
document.need_summary,
)
else:
logger.warning("Document %s not found after indexing", document_id)
else:
logger.info(
"Summary index generation skipped for dataset %s: summary_index_setting.enable=%s",
dataset.id,
summary_index_setting.get("enable") if summary_index_setting else None,
)
logger.warning("Document %s not found after indexing", document.id)
else:
logger.info(
"Summary index generation skipped for dataset %s: indexing_technique=%s (not 'high_quality')",
dataset.id,
dataset.indexing_technique,
)
except DocumentIsPausedError as ex:
logger.info(click.style(str(ex), fg="yellow"))
except Exception:
logger.exception("Document indexing task failed, dataset_id: %s", dataset_id)
def _document_indexing_with_tenant_queue(

View File

@ -36,25 +36,19 @@ def document_indexing_update_task(dataset_id: str, document_id: str):
document.indexing_status = "parsing"
document.processing_started_at = naive_utc_now()
# delete all document segment and index
try:
dataset = session.query(Dataset).where(Dataset.id == dataset_id).first()
if not dataset:
raise Exception("Dataset not found")
dataset = session.query(Dataset).where(Dataset.id == dataset_id).first()
if not dataset:
return
index_type = document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
segments = session.scalars(select(DocumentSegment).where(DocumentSegment.document_id == document_id)).all()
if segments:
index_node_ids = [segment.index_node_id for segment in segments]
# delete from vector index
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
segment_ids = [segment.id for segment in segments]
segment_delete_stmt = delete(DocumentSegment).where(DocumentSegment.id.in_(segment_ids))
session.execute(segment_delete_stmt)
index_type = document.doc_form
segments = session.scalars(select(DocumentSegment).where(DocumentSegment.document_id == document_id)).all()
index_node_ids = [segment.index_node_id for segment in segments]
clean_success = False
try:
index_processor = IndexProcessorFactory(index_type).init_index_processor()
if index_node_ids:
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
end_at = time.perf_counter()
logger.info(
click.style(
@ -64,15 +58,21 @@ def document_indexing_update_task(dataset_id: str, document_id: str):
fg="green",
)
)
except Exception:
logger.exception("Cleaned document when document update data source or process rule failed")
clean_success = True
except Exception:
logger.exception("Failed to clean document index during update, document_id: %s", document_id)
try:
indexing_runner = IndexingRunner()
indexing_runner.run([document])
end_at = time.perf_counter()
logger.info(click.style(f"update document: {document.id} latency: {end_at - start_at}", fg="green"))
except DocumentIsPausedError as ex:
logger.info(click.style(str(ex), fg="yellow"))
except Exception:
logger.exception("document_indexing_update_task failed, document_id: %s", document_id)
if clean_success:
with session_factory.create_session() as session, session.begin():
segment_delete_stmt = delete(DocumentSegment).where(DocumentSegment.document_id == document_id)
session.execute(segment_delete_stmt)
try:
indexing_runner = IndexingRunner()
indexing_runner.run([document])
end_at = time.perf_counter()
logger.info(click.style(f"update document: {document.id} latency: {end_at - start_at}", fg="green"))
except DocumentIsPausedError as ex:
logger.info(click.style(str(ex), fg="yellow"))
except Exception:
logger.exception("document_indexing_update_task failed, document_id: %s", document_id)

View File

@ -6,9 +6,8 @@ improving performance by offloading storage operations to background workers.
"""
from celery import shared_task # type: ignore[import-untyped]
from sqlalchemy.orm import Session
from extensions.ext_database import db
from core.db.session_factory import session_factory
from services.workflow_draft_variable_service import DraftVarFileDeletion, WorkflowDraftVariableService
@ -17,6 +16,6 @@ def save_workflow_execution_task(
self,
deletions: list[DraftVarFileDeletion],
):
with Session(bind=db.engine) as session, session.begin():
with session_factory.create_session() as session, session.begin():
srv = WorkflowDraftVariableService(session=session)
srv.delete_workflow_draft_variable_file(deletions=deletions)

View File

@ -605,26 +605,20 @@ class TestBatchCreateSegmentToIndexTask:
mock_storage.download.side_effect = mock_download
# Execute the task
# Execute the task - should raise ValueError for empty CSV
job_id = str(uuid.uuid4())
batch_create_segment_to_index_task(
job_id=job_id,
upload_file_id=upload_file.id,
dataset_id=dataset.id,
document_id=document.id,
tenant_id=tenant.id,
user_id=account.id,
)
with pytest.raises(ValueError, match="The CSV file is empty"):
batch_create_segment_to_index_task(
job_id=job_id,
upload_file_id=upload_file.id,
dataset_id=dataset.id,
document_id=document.id,
tenant_id=tenant.id,
user_id=account.id,
)
# Verify error handling
# Check Redis cache was set to error status
from extensions.ext_redis import redis_client
cache_key = f"segment_batch_import_{job_id}"
cache_value = redis_client.get(cache_key)
assert cache_value == b"error"
# Verify no segments were created
# Since exception was raised, no segments should be created
from extensions.ext_database import db
segments = db.session.query(DocumentSegment).all()

View File

@ -83,23 +83,127 @@ def mock_documents(document_ids, dataset_id):
def mock_db_session():
"""Mock database session via session_factory.create_session()."""
with patch("tasks.document_indexing_task.session_factory") as mock_sf:
session = MagicMock()
# Ensure tests that expect session.close() to be called can observe it via the context manager
session.close = MagicMock()
cm = MagicMock()
cm.__enter__.return_value = session
# Link __exit__ to session.close so "close" expectations reflect context manager teardown
sessions = [] # Track all created sessions
# Shared mock data that all sessions will access
shared_mock_data = {"dataset": None, "documents": None, "doc_iter": None}
def _exit_side_effect(*args, **kwargs):
session.close()
def create_session_side_effect():
session = MagicMock()
session.close = MagicMock()
cm.__exit__.side_effect = _exit_side_effect
mock_sf.create_session.return_value = cm
# Track commit calls
commit_mock = MagicMock()
session.commit = commit_mock
cm = MagicMock()
cm.__enter__.return_value = session
query = MagicMock()
session.query.return_value = query
query.where.return_value = query
yield session
def _exit_side_effect(*args, **kwargs):
session.close()
cm.__exit__.side_effect = _exit_side_effect
# Support session.begin() for transactions
begin_cm = MagicMock()
begin_cm.__enter__.return_value = session
def begin_exit_side_effect(*args, **kwargs):
# Auto-commit on transaction exit (like SQLAlchemy)
session.commit()
# Also mark wrapper's commit as called
if sessions:
sessions[0].commit()
begin_cm.__exit__ = MagicMock(side_effect=begin_exit_side_effect)
session.begin = MagicMock(return_value=begin_cm)
sessions.append(session)
# Setup query with side_effect to handle both Dataset and Document queries
def query_side_effect(*args):
query = MagicMock()
if args and args[0] == Dataset and shared_mock_data["dataset"] is not None:
where_result = MagicMock()
where_result.first.return_value = shared_mock_data["dataset"]
query.where = MagicMock(return_value=where_result)
elif args and args[0] == Document and shared_mock_data["documents"] is not None:
# Support both .first() and .all() calls with chaining
where_result = MagicMock()
where_result.where = MagicMock(return_value=where_result)
# Create an iterator for .first() calls if not exists
if shared_mock_data["doc_iter"] is None:
docs = shared_mock_data["documents"] or [None]
shared_mock_data["doc_iter"] = iter(docs)
where_result.first = lambda: next(shared_mock_data["doc_iter"], None)
docs_or_empty = shared_mock_data["documents"] or []
where_result.all = MagicMock(return_value=docs_or_empty)
query.where = MagicMock(return_value=where_result)
else:
query.where = MagicMock(return_value=query)
return query
session.query = MagicMock(side_effect=query_side_effect)
return cm
mock_sf.create_session.side_effect = create_session_side_effect
# Create a wrapper that behaves like the first session but has access to all sessions
class SessionWrapper:
def __init__(self):
self._sessions = sessions
self._shared_data = shared_mock_data
# Create a default session for setup phase
self._default_session = MagicMock()
self._default_session.close = MagicMock()
self._default_session.commit = MagicMock()
# Support session.begin() for default session too
begin_cm = MagicMock()
begin_cm.__enter__.return_value = self._default_session
def default_begin_exit_side_effect(*args, **kwargs):
self._default_session.commit()
begin_cm.__exit__ = MagicMock(side_effect=default_begin_exit_side_effect)
self._default_session.begin = MagicMock(return_value=begin_cm)
def default_query_side_effect(*args):
query = MagicMock()
if args and args[0] == Dataset and shared_mock_data["dataset"] is not None:
where_result = MagicMock()
where_result.first.return_value = shared_mock_data["dataset"]
query.where = MagicMock(return_value=where_result)
elif args and args[0] == Document and shared_mock_data["documents"] is not None:
where_result = MagicMock()
where_result.where = MagicMock(return_value=where_result)
if shared_mock_data["doc_iter"] is None:
docs = shared_mock_data["documents"] or [None]
shared_mock_data["doc_iter"] = iter(docs)
where_result.first = lambda: next(shared_mock_data["doc_iter"], None)
docs_or_empty = shared_mock_data["documents"] or []
where_result.all = MagicMock(return_value=docs_or_empty)
query.where = MagicMock(return_value=where_result)
else:
query.where = MagicMock(return_value=query)
return query
self._default_session.query = MagicMock(side_effect=default_query_side_effect)
def __getattr__(self, name):
# Forward all attribute access to the first session, or default if none created yet
target_session = self._sessions[0] if self._sessions else self._default_session
return getattr(target_session, name)
@property
def all_sessions(self):
"""Access all created sessions for testing."""
return self._sessions
wrapper = SessionWrapper()
yield wrapper
@pytest.fixture
@ -252,18 +356,9 @@ class TestTaskEnqueuing:
use the deprecated function.
"""
# Arrange
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
# Return documents one by one for each call
mock_query.where.return_value.first.side_effect = mock_documents
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
with patch("tasks.document_indexing_task.FeatureService.get_features") as mock_features:
mock_features.return_value.billing.enabled = False
@ -304,21 +399,9 @@ class TestBatchProcessing:
doc.processing_started_at = None
mock_documents.append(doc)
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
# Create an iterator for documents
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
# Return documents one by one for each call
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
with patch("tasks.document_indexing_task.FeatureService.get_features") as mock_features:
mock_features.return_value.billing.enabled = False
@ -357,19 +440,9 @@ class TestBatchProcessing:
doc.stopped_at = None
mock_documents.append(doc)
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
mock_feature_service.get_features.return_value.billing.enabled = True
mock_feature_service.get_features.return_value.billing.subscription.plan = CloudPlan.PROFESSIONAL
@ -407,19 +480,9 @@ class TestBatchProcessing:
doc.stopped_at = None
mock_documents.append(doc)
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
mock_feature_service.get_features.return_value.billing.enabled = True
mock_feature_service.get_features.return_value.billing.subscription.plan = CloudPlan.SANDBOX
@ -444,7 +507,10 @@ class TestBatchProcessing:
"""
# Arrange
document_ids = []
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
# Set shared mock data with empty documents list
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = []
with patch("tasks.document_indexing_task.FeatureService.get_features") as mock_features:
mock_features.return_value.billing.enabled = False
@ -482,19 +548,9 @@ class TestProgressTracking:
doc.processing_started_at = None
mock_documents.append(doc)
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
with patch("tasks.document_indexing_task.FeatureService.get_features") as mock_features:
mock_features.return_value.billing.enabled = False
@ -528,19 +584,9 @@ class TestProgressTracking:
doc.processing_started_at = None
mock_documents.append(doc)
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
with patch("tasks.document_indexing_task.FeatureService.get_features") as mock_features:
mock_features.return_value.billing.enabled = False
@ -635,19 +681,9 @@ class TestErrorHandling:
doc.stopped_at = None
mock_documents.append(doc)
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
# Set up to trigger vector space limit error
mock_feature_service.get_features.return_value.billing.enabled = True
@ -674,17 +710,9 @@ class TestErrorHandling:
Errors during indexing should be caught and logged, but not crash the task.
"""
# Arrange
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first.side_effect = mock_documents
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
# Make IndexingRunner raise an exception
mock_indexing_runner.run.side_effect = Exception("Indexing failed")
@ -708,17 +736,9 @@ class TestErrorHandling:
but not treated as a failure.
"""
# Arrange
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first.side_effect = mock_documents
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
# Make IndexingRunner raise DocumentIsPausedError
mock_indexing_runner.run.side_effect = DocumentIsPausedError("Document is paused")
@ -853,17 +873,9 @@ class TestTaskCancellation:
Session cleanup should happen in finally block.
"""
# Arrange
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first.side_effect = mock_documents
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
with patch("tasks.document_indexing_task.FeatureService.get_features") as mock_features:
mock_features.return_value.billing.enabled = False
@ -883,17 +895,9 @@ class TestTaskCancellation:
Session cleanup should happen even when errors occur.
"""
# Arrange
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first.side_effect = mock_documents
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
# Make IndexingRunner raise an exception
mock_indexing_runner.run.side_effect = Exception("Test error")
@ -962,6 +966,7 @@ class TestAdvancedScenarios:
document_ids = [str(uuid.uuid4()) for _ in range(3)]
# Create only 2 documents (simulate one missing)
# The new code uses .all() which will only return existing documents
mock_documents = []
for i, doc_id in enumerate([document_ids[0], document_ids[2]]): # Skip middle one
doc = MagicMock(spec=Document)
@ -971,21 +976,9 @@ class TestAdvancedScenarios:
doc.processing_started_at = None
mock_documents.append(doc)
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
# Create iterator that returns None for missing document
doc_responses = [mock_documents[0], None, mock_documents[1]]
doc_iter = iter(doc_responses)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data - .all() will only return existing documents
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
with patch("tasks.document_indexing_task.FeatureService.get_features") as mock_features:
mock_features.return_value.billing.enabled = False
@ -1075,19 +1068,9 @@ class TestAdvancedScenarios:
doc.stopped_at = None
mock_documents.append(doc)
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
# Set vector space exactly at limit
mock_feature_service.get_features.return_value.billing.enabled = True
@ -1219,19 +1202,9 @@ class TestAdvancedScenarios:
doc.processing_started_at = None
mock_documents.append(doc)
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
# Billing disabled - limits should not be checked
mock_feature_service.get_features.return_value.billing.enabled = False
@ -1273,19 +1246,9 @@ class TestIntegration:
# Set up rpop to return None for concurrency check (no more tasks)
mock_redis.rpop.side_effect = [None]
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
with patch("tasks.document_indexing_task.FeatureService.get_features") as mock_features:
mock_features.return_value.billing.enabled = False
@ -1321,19 +1284,9 @@ class TestIntegration:
# Set up rpop to return None for concurrency check (no more tasks)
mock_redis.rpop.side_effect = [None]
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
with patch("tasks.document_indexing_task.FeatureService.get_features") as mock_features:
mock_features.return_value.billing.enabled = False
@ -1415,17 +1368,9 @@ class TestEdgeCases:
mock_document.indexing_status = "waiting"
mock_document.processing_started_at = None
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: mock_document
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = [mock_document]
with patch("tasks.document_indexing_task.FeatureService.get_features") as mock_features:
mock_features.return_value.billing.enabled = False
@ -1465,17 +1410,9 @@ class TestEdgeCases:
mock_document.indexing_status = "waiting"
mock_document.processing_started_at = None
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: mock_document
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = [mock_document]
with patch("tasks.document_indexing_task.FeatureService.get_features") as mock_features:
mock_features.return_value.billing.enabled = False
@ -1555,19 +1492,9 @@ class TestEdgeCases:
doc.processing_started_at = None
mock_documents.append(doc)
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
# Set vector space limit to 0 (unlimited)
mock_feature_service.get_features.return_value.billing.enabled = True
@ -1612,19 +1539,9 @@ class TestEdgeCases:
doc.processing_started_at = None
mock_documents.append(doc)
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
# Set negative vector space limit
mock_feature_service.get_features.return_value.billing.enabled = True
@ -1675,19 +1592,9 @@ class TestPerformanceScenarios:
doc.processing_started_at = None
mock_documents.append(doc)
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
# Configure billing with sufficient limits
mock_feature_service.get_features.return_value.billing.enabled = True
@ -1826,19 +1733,9 @@ class TestRobustness:
doc.processing_started_at = None
mock_documents.append(doc)
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
# Make IndexingRunner raise an exception
mock_indexing_runner.run.side_effect = RuntimeError("Unexpected indexing error")
@ -1866,7 +1763,7 @@ class TestRobustness:
- No exceptions occur
Expected behavior:
- Database session is closed
- All database sessions are closed
- No connection leaks
"""
# Arrange
@ -1879,19 +1776,9 @@ class TestRobustness:
doc.processing_started_at = None
mock_documents.append(doc)
mock_db_session.query.return_value.where.return_value.first.return_value = mock_dataset
doc_iter = iter(mock_documents)
def mock_query_side_effect(*args):
mock_query = MagicMock()
if args[0] == Dataset:
mock_query.where.return_value.first.return_value = mock_dataset
elif args[0] == Document:
mock_query.where.return_value.first = lambda: next(doc_iter, None)
return mock_query
mock_db_session.query.side_effect = mock_query_side_effect
# Set shared mock data so all sessions can access it
mock_db_session._shared_data["dataset"] = mock_dataset
mock_db_session._shared_data["documents"] = mock_documents
with patch("tasks.document_indexing_task.FeatureService.get_features") as mock_features:
mock_features.return_value.billing.enabled = False
@ -1899,10 +1786,11 @@ class TestRobustness:
# Act
_document_indexing(dataset_id, document_ids)
# Assert
assert mock_db_session.close.called
# Verify close is called exactly once
assert mock_db_session.close.call_count == 1
# Assert - All created sessions should be closed
# The code creates multiple sessions: validation, Phase 1 (parsing), Phase 3 (summary)
assert len(mock_db_session.all_sessions) >= 1
for session in mock_db_session.all_sessions:
assert session.close.called, "All sessions should be closed"
def test_task_proxy_handles_feature_service_failure(self, tenant_id, dataset_id, document_ids, mock_redis):
"""

View File

@ -1,4 +1,5 @@
import base64
from decimal import Decimal
from unittest.mock import Mock, patch
import pytest
@ -9,8 +10,10 @@ from core.mcp.types import (
CallToolResult,
EmbeddedResource,
ImageContent,
TextContent,
TextResourceContents,
)
from core.model_runtime.entities.llm_entities import LLMUsage
from core.tools.__base.tool_runtime import ToolRuntime
from core.tools.entities.common_entities import I18nObject
from core.tools.entities.tool_entities import ToolEntity, ToolIdentity, ToolInvokeMessage
@ -120,3 +123,231 @@ class TestMCPToolInvoke:
# Validate values
values = {m.message.variable_name: m.message.variable_value for m in var_msgs}
assert values == {"a": 1, "b": "x"}
class TestMCPToolUsageExtraction:
"""Test usage metadata extraction from MCP tool results."""
def test_extract_usage_dict_from_direct_usage_field(self) -> None:
"""Test extraction when usage is directly in meta.usage field."""
meta = {
"usage": {
"prompt_tokens": 100,
"completion_tokens": 50,
"total_tokens": 150,
"total_price": "0.001",
"currency": "USD",
}
}
usage_dict = MCPTool._extract_usage_dict(meta)
assert usage_dict is not None
assert usage_dict["prompt_tokens"] == 100
assert usage_dict["completion_tokens"] == 50
assert usage_dict["total_tokens"] == 150
assert usage_dict["total_price"] == "0.001"
assert usage_dict["currency"] == "USD"
def test_extract_usage_dict_from_nested_metadata(self) -> None:
"""Test extraction when usage is nested in meta.metadata.usage."""
meta = {
"metadata": {
"usage": {
"prompt_tokens": 200,
"completion_tokens": 100,
"total_tokens": 300,
}
}
}
usage_dict = MCPTool._extract_usage_dict(meta)
assert usage_dict is not None
assert usage_dict["prompt_tokens"] == 200
assert usage_dict["total_tokens"] == 300
def test_extract_usage_dict_from_flat_token_fields(self) -> None:
"""Test extraction when token counts are directly in meta."""
meta = {
"prompt_tokens": 150,
"completion_tokens": 75,
"total_tokens": 225,
"currency": "EUR",
}
usage_dict = MCPTool._extract_usage_dict(meta)
assert usage_dict is not None
assert usage_dict["prompt_tokens"] == 150
assert usage_dict["completion_tokens"] == 75
assert usage_dict["total_tokens"] == 225
assert usage_dict["currency"] == "EUR"
def test_extract_usage_dict_recursive(self) -> None:
"""Test recursive search through nested structures."""
meta = {
"custom": {
"nested": {
"usage": {
"total_tokens": 500,
"prompt_tokens": 300,
"completion_tokens": 200,
}
}
}
}
usage_dict = MCPTool._extract_usage_dict(meta)
assert usage_dict is not None
assert usage_dict["total_tokens"] == 500
def test_extract_usage_dict_from_list(self) -> None:
"""Test extraction from nested list structures."""
meta = {
"items": [
{"usage": {"total_tokens": 100}},
{"other": "data"},
]
}
usage_dict = MCPTool._extract_usage_dict(meta)
assert usage_dict is not None
assert usage_dict["total_tokens"] == 100
def test_extract_usage_dict_returns_none_when_missing(self) -> None:
"""Test that None is returned when no usage data is present."""
meta = {"other": "data", "custom": {"nested": {"value": 123}}}
usage_dict = MCPTool._extract_usage_dict(meta)
assert usage_dict is None
def test_extract_usage_dict_empty_meta(self) -> None:
"""Test with empty meta dict."""
usage_dict = MCPTool._extract_usage_dict({})
assert usage_dict is None
def test_derive_usage_from_result_with_meta(self) -> None:
"""Test _derive_usage_from_result with populated meta."""
meta = {
"usage": {
"prompt_tokens": 100,
"completion_tokens": 50,
"total_tokens": 150,
"total_price": "0.0015",
"currency": "USD",
}
}
result = CallToolResult(content=[], _meta=meta)
usage = MCPTool._derive_usage_from_result(result)
assert isinstance(usage, LLMUsage)
assert usage.prompt_tokens == 100
assert usage.completion_tokens == 50
assert usage.total_tokens == 150
assert usage.total_price == Decimal("0.0015")
assert usage.currency == "USD"
def test_derive_usage_from_result_without_meta(self) -> None:
"""Test _derive_usage_from_result with no meta returns empty usage."""
result = CallToolResult(content=[], meta=None)
usage = MCPTool._derive_usage_from_result(result)
assert isinstance(usage, LLMUsage)
assert usage.total_tokens == 0
assert usage.prompt_tokens == 0
assert usage.completion_tokens == 0
def test_derive_usage_from_result_calculates_total_tokens(self) -> None:
"""Test that total_tokens is calculated when missing."""
meta = {
"usage": {
"prompt_tokens": 100,
"completion_tokens": 50,
# total_tokens is missing
}
}
result = CallToolResult(content=[], _meta=meta)
usage = MCPTool._derive_usage_from_result(result)
assert usage.total_tokens == 150 # 100 + 50
assert usage.prompt_tokens == 100
assert usage.completion_tokens == 50
def test_invoke_sets_latest_usage_from_meta(self) -> None:
"""Test that _invoke sets _latest_usage from result meta."""
tool = _make_mcp_tool()
meta = {
"usage": {
"prompt_tokens": 200,
"completion_tokens": 100,
"total_tokens": 300,
"total_price": "0.003",
"currency": "USD",
}
}
result = CallToolResult(content=[TextContent(type="text", text="test")], _meta=meta)
with patch.object(tool, "invoke_remote_mcp_tool", return_value=result):
list(tool._invoke(user_id="test_user", tool_parameters={}))
# Verify latest_usage was set correctly
assert tool.latest_usage.prompt_tokens == 200
assert tool.latest_usage.completion_tokens == 100
assert tool.latest_usage.total_tokens == 300
assert tool.latest_usage.total_price == Decimal("0.003")
def test_invoke_with_no_meta_returns_empty_usage(self) -> None:
"""Test that _invoke returns empty usage when no meta is present."""
tool = _make_mcp_tool()
result = CallToolResult(content=[TextContent(type="text", text="test")], _meta=None)
with patch.object(tool, "invoke_remote_mcp_tool", return_value=result):
list(tool._invoke(user_id="test_user", tool_parameters={}))
# Verify latest_usage is empty
assert tool.latest_usage.total_tokens == 0
assert tool.latest_usage.prompt_tokens == 0
assert tool.latest_usage.completion_tokens == 0
def test_latest_usage_property_returns_llm_usage(self) -> None:
"""Test that latest_usage property returns LLMUsage instance."""
tool = _make_mcp_tool()
assert isinstance(tool.latest_usage, LLMUsage)
def test_initial_usage_is_empty(self) -> None:
"""Test that MCPTool is initialized with empty usage."""
tool = _make_mcp_tool()
assert tool.latest_usage.total_tokens == 0
assert tool.latest_usage.prompt_tokens == 0
assert tool.latest_usage.completion_tokens == 0
assert tool.latest_usage.total_price == Decimal(0)
@pytest.mark.parametrize(
"meta_data",
[
# Direct usage field
{"usage": {"prompt_tokens": 10, "completion_tokens": 5, "total_tokens": 15}},
# Nested metadata
{"metadata": {"usage": {"total_tokens": 100}}},
# Flat token fields
{"total_tokens": 50, "prompt_tokens": 30, "completion_tokens": 20},
# With price info
{
"usage": {
"total_tokens": 150,
"total_price": "0.002",
"currency": "EUR",
}
},
# Deep nested
{"level1": {"level2": {"usage": {"total_tokens": 200}}}},
],
)
def test_various_meta_formats(self, meta_data) -> None:
"""Test that various meta formats are correctly parsed."""
result = CallToolResult(content=[], _meta=meta_data)
usage = MCPTool._derive_usage_from_result(result)
assert isinstance(usage, LLMUsage)
# Should have at least some usage data
if meta_data.get("usage", {}).get("total_tokens") or meta_data.get("total_tokens"):
expected_total = (
meta_data.get("usage", {}).get("total_tokens")
or meta_data.get("total_tokens")
or meta_data.get("metadata", {}).get("usage", {}).get("total_tokens")
or meta_data.get("level1", {}).get("level2", {}).get("usage", {}).get("total_tokens")
)
if expected_total:
assert usage.total_tokens == expected_total

11
api/uv.lock generated
View File

@ -1653,7 +1653,7 @@ requires-dist = [
{ name = "starlette", specifier = "==0.49.1" },
{ name = "tiktoken", specifier = "~=0.9.0" },
{ name = "transformers", specifier = "~=4.56.1" },
{ name = "unstructured", extras = ["docx", "epub", "md", "ppt", "pptx"], specifier = "~=0.16.1" },
{ name = "unstructured", extras = ["docx", "epub", "md", "ppt", "pptx"], specifier = "~=0.18.18" },
{ name = "weave", specifier = ">=0.52.16" },
{ name = "weaviate-client", specifier = "==4.17.0" },
{ name = "webvtt-py", specifier = "~=0.5.1" },
@ -6814,12 +6814,12 @@ wheels = [
[[package]]
name = "unstructured"
version = "0.16.25"
version = "0.18.31"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "backoff" },
{ name = "beautifulsoup4" },
{ name = "chardet" },
{ name = "charset-normalizer" },
{ name = "dataclasses-json" },
{ name = "emoji" },
{ name = "filetype" },
@ -6827,6 +6827,7 @@ dependencies = [
{ name = "langdetect" },
{ name = "lxml" },
{ name = "nltk" },
{ name = "numba" },
{ name = "numpy" },
{ name = "psutil" },
{ name = "python-iso639" },
@ -6839,9 +6840,9 @@ dependencies = [
{ name = "unstructured-client" },
{ name = "wrapt" },
]
sdist = { url = "https://files.pythonhosted.org/packages/64/31/98c4c78e305d1294888adf87fd5ee30577a4c393951341ca32b43f167f1e/unstructured-0.16.25.tar.gz", hash = "sha256:73b9b0f51dbb687af572ecdb849a6811710b9cac797ddeab8ee80fa07d8aa5e6", size = 1683097, upload-time = "2025-03-07T11:19:39.507Z" }
sdist = { url = "https://files.pythonhosted.org/packages/a9/5f/64285bd69a538bc28753f1423fcaa9d64cd79a9e7c097171b1f0d27e9cdb/unstructured-0.18.31.tar.gz", hash = "sha256:af4bbe32d1894ae6e755f0da6fc0dd307a1d0adeebe0e7cc6278f6cf744339ca", size = 1707700, upload-time = "2026-01-27T15:33:05.378Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/12/4f/ad08585b5c8a33c82ea119494c4d3023f4796958c56e668b15cc282ec0a0/unstructured-0.16.25-py3-none-any.whl", hash = "sha256:14719ccef2830216cf1c5bf654f75e2bf07b17ca5dcee9da5ac74618130fd337", size = 1769286, upload-time = "2025-03-07T11:19:37.299Z" },
{ url = "https://files.pythonhosted.org/packages/c8/4a/9c43f39d9e443c9bc3f2e379b305bca27110adc653b071221b3132c18de5/unstructured-0.18.31-py3-none-any.whl", hash = "sha256:fab4641176cb9b192ed38048758aa0d9843121d03626d18f42275afb31e5b2d3", size = 1794889, upload-time = "2026-01-27T15:33:03.136Z" },
]
[package.optional-dependencies]

View File

@ -194,11 +194,11 @@ const ConfigContent: FC<Props> = ({
</div>
{type === RETRIEVE_TYPE.multiWay && (
<>
<div className="my-2 flex h-6 items-center py-1">
<div className="system-xs-semibold-uppercase mr-2 shrink-0 text-text-secondary">
<div className="my-2 flex flex-col items-center py-1">
<div className="system-xs-semibold-uppercase mb-2 mr-2 shrink-0 text-text-secondary">
{t('rerankSettings', { ns: 'dataset' })}
</div>
<Divider bgStyle="gradient" className="mx-0 !h-px" />
<Divider bgStyle="gradient" className="m-0 !h-px" />
</div>
{
selectedDatasetsMode.inconsistentEmbeddingModel

View File

@ -308,7 +308,7 @@ export const useMarketplaceAllPlugins = (providers: ModelProvider[], searchText:
}, [plugins, collectionPlugins, exclude])
return {
plugins: allPlugins,
plugins: searchText ? plugins : allPlugins,
isLoading: isCollectionLoading || isPluginsLoading,
}
}