Modify to synchronize redis data to db regularly.

This commit is contained in:
Yansong Zhang
2026-02-06 10:40:39 +08:00
parent 57f76c4072
commit ce3fdb604d
10 changed files with 193 additions and 346 deletions

View File

@ -122,7 +122,7 @@ These commands assume you start from the repository root.
```bash
cd api
uv run celery -A app.celery worker -P threads -c 2 --loglevel INFO -Q api_token_update,dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention
uv run celery -A app.celery worker -P threads -c 2 --loglevel INFO -Q dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention
```
1. Optional: start Celery Beat (scheduled tasks, in a new terminal).

View File

@ -1155,6 +1155,16 @@ class CeleryScheduleTasksConfig(BaseSettings):
default=0,
)
# API token last_used_at batch update
ENABLE_API_TOKEN_LAST_USED_UPDATE_TASK: bool = Field(
description="Enable periodic batch update of API token last_used_at timestamps",
default=True,
)
API_TOKEN_LAST_USED_UPDATE_INTERVAL: int = Field(
description="Interval in minutes for batch updating API token last_used_at (default 30)",
default=30,
)
# Trigger provider refresh (simple version)
ENABLE_TRIGGER_PROVIDER_REFRESH_TASK: bool = Field(
description="Enable trigger provider refresh poller",

View File

@ -17,7 +17,6 @@ from enums.cloud_plan import CloudPlan
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from libs.api_token_cache import ApiTokenCache
from libs.api_token_updater import update_token_last_used_at
from libs.datetime_utils import naive_utc_now
from libs.login import current_user
from models import Account, Tenant, TenantAccountJoin, TenantStatus
@ -321,8 +320,8 @@ def validate_and_get_api_token(scope: str | None = None):
cached_token = ApiTokenCache.get(auth_token, scope)
if cached_token is not None:
logger.debug("Token validation served from cache for scope: %s", scope)
# Asynchronously update last_used_at (non-blocking)
_async_update_token_last_used_at(auth_token, scope)
# Record usage in Redis for later batch update (no Celery task per request)
_record_token_usage(auth_token, scope)
return cached_token
# Cache miss - use Redis lock for single-flight mode
@ -332,14 +331,14 @@ def validate_and_get_api_token(scope: str | None = None):
def _query_token_from_db(auth_token: str, scope: str | None) -> ApiToken:
"""
Query API token from database, update last_used_at, and cache the result.
Query API token from database and cache the result.
last_used_at is NOT updated here -- it is handled by the periodic batch
task via _record_token_usage().
Raises Unauthorized if token is invalid.
"""
with Session(db.engine, expire_on_commit=False) as session:
current_time = naive_utc_now()
update_token_last_used_at(auth_token, scope, current_time, session=session)
stmt = select(ApiToken).where(ApiToken.token == auth_token, ApiToken.type == scope)
api_token = session.scalar(stmt)
@ -348,6 +347,8 @@ def _query_token_from_db(auth_token: str, scope: str | None) -> ApiToken:
raise Unauthorized("Access token is invalid")
ApiTokenCache.set(auth_token, scope, api_token)
# Record usage for later batch update
_record_token_usage(auth_token, scope)
return api_token
@ -386,27 +387,19 @@ def _fetch_token_with_single_flight(auth_token: str, scope: str | None) -> ApiTo
return _query_token_from_db(auth_token, scope)
def _async_update_token_last_used_at(auth_token: str, scope: str | None):
def _record_token_usage(auth_token: str, scope: str | None):
"""
Asynchronously update the last_used_at timestamp for a token.
Record token usage in Redis for later batch update by a scheduled job.
This schedules a Celery task to update the database without blocking
the current request. The update time is passed to ensure only older
records are updated, providing natural concurrency control.
Instead of dispatching a Celery task per request, we simply SET a key in Redis.
A Celery Beat scheduled task will periodically scan these keys and batch-update
last_used_at in the database.
"""
try:
from tasks.update_api_token_last_used_task import update_api_token_last_used_task
# Record the update time for concurrency control
update_time = naive_utc_now()
update_time_iso = update_time.isoformat()
# Fire and forget - don't wait for result
update_api_token_last_used_task.delay(auth_token, scope, update_time_iso)
logger.debug("Scheduled async update for last_used_at (scope: %s, update_time: %s)", scope, update_time_iso)
key = f"api_token_active:{scope}:{auth_token}"
redis_client.set(key, naive_utc_now().isoformat(), ex=3600) # TTL 1 hour as safety net
except Exception as e:
# Don't fail the request if task scheduling fails
logger.warning("Failed to schedule last_used_at update task: %s", e)
logger.warning("Failed to record token usage: %s", e)
class DatasetApiResource(Resource):

View File

@ -35,10 +35,10 @@ if [[ "${MODE}" == "worker" ]]; then
if [[ -z "${CELERY_QUEUES}" ]]; then
if [[ "${EDITION}" == "CLOUD" ]]; then
# Cloud edition: separate queues for dataset and trigger tasks
DEFAULT_QUEUES="api_token_update,dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow_professional,workflow_team,workflow_sandbox,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention"
DEFAULT_QUEUES="dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow_professional,workflow_team,workflow_sandbox,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention"
else
# Community edition (SELF_HOSTED): dataset, pipeline and workflow have separate queues
DEFAULT_QUEUES="api_token_update,dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention"
DEFAULT_QUEUES="dataset,priority_dataset,priority_pipeline,pipeline,mail,ops_trace,app_deletion,plugin,workflow_storage,conversation,workflow,schedule_poller,schedule_executor,triggered_workflow_dispatcher,trigger_refresh_executor,retention"
fi
else
DEFAULT_QUEUES="${CELERY_QUEUES}"

View File

@ -104,7 +104,6 @@ def init_app(app: DifyApp) -> Celery:
"tasks.trigger_processing_tasks", # async trigger processing
"tasks.generate_summary_index_task", # summary index generation
"tasks.regenerate_summary_index_task", # summary index regeneration
"tasks.update_api_token_last_used_task", # async API token last_used_at update
]
day = dify_config.CELERY_BEAT_SCHEDULER_TIME
@ -185,6 +184,14 @@ def init_app(app: DifyApp) -> Celery:
"task": "schedule.trigger_provider_refresh_task.trigger_provider_refresh",
"schedule": timedelta(minutes=dify_config.TRIGGER_PROVIDER_REFRESH_INTERVAL),
}
if dify_config.ENABLE_API_TOKEN_LAST_USED_UPDATE_TASK:
imports.append("schedule.update_api_token_last_used_task")
beat_schedule["batch_update_api_token_last_used"] = {
"task": "schedule.update_api_token_last_used_task.batch_update_api_token_last_used",
"schedule": timedelta(minutes=dify_config.API_TOKEN_LAST_USED_UPDATE_INTERVAL),
}
celery_app.conf.update(beat_schedule=beat_schedule, imports=imports)
return celery_app

View File

@ -1,76 +0,0 @@
"""
Unified API Token update utilities.
This module provides a centralized method for updating API token last_used_at
to avoid code duplication between sync and async update paths.
"""
import logging
from datetime import datetime
from sqlalchemy import update
from sqlalchemy.orm import Session
from extensions.ext_database import db
from libs.datetime_utils import naive_utc_now
from models.model import ApiToken
logger = logging.getLogger(__name__)
def update_token_last_used_at(
token: str, scope: str | None, update_time: datetime, session: Session | None = None
) -> dict:
"""
Unified method to update API token last_used_at timestamp.
This method is used by both:
1. Direct database update (cache miss scenario)
2. Async Celery task (cache hit scenario)
Args:
token: The API token string
scope: The token type/scope (e.g., 'app', 'dataset')
update_time: The time to use for the update (for concurrency control)
session: Optional existing session to use (if None, creates new one)
Returns:
Dict with status, rowcount, and other metadata
"""
current_time = naive_utc_now()
def _do_update(s: Session) -> dict:
"""Execute the update within the session."""
update_stmt = (
update(ApiToken)
.where(
ApiToken.token == token,
ApiToken.type == scope,
# Only update if last_used_at is older than update_time
(ApiToken.last_used_at.is_(None) | (ApiToken.last_used_at < update_time)),
)
.values(last_used_at=current_time)
)
result = s.execute(update_stmt)
rowcount = getattr(result, "rowcount", 0)
if rowcount > 0:
s.commit()
logger.debug("Updated last_used_at for token: %s... (scope: %s)", token[:10], scope)
return {"status": "updated", "rowcount": rowcount}
else:
logger.debug("No update needed for token: %s... (already up-to-date)", token[:10])
return {"status": "no_update_needed", "reason": "last_used_at >= update_time"}
try:
if session:
# Use provided session (sync path)
return _do_update(session)
else:
# Create new session (async path)
with Session(db.engine, expire_on_commit=False) as new_session:
return _do_update(new_session)
except Exception as e:
logger.warning("Failed to update last_used_at for token: %s", e)
return {"status": "failed", "error": str(e)}

View File

@ -0,0 +1,102 @@
"""
Scheduled task to batch-update API token last_used_at timestamps.
Instead of updating the database on every request, token usage is recorded
in Redis as lightweight SET keys (api_token_active:{scope}:{token}).
This task runs periodically (default every 30 minutes) to flush those
records into the database in a single batch operation.
"""
import logging
import time
import click
from sqlalchemy import update
from sqlalchemy.orm import Session
import app
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from libs.datetime_utils import naive_utc_now
from models.model import ApiToken
logger = logging.getLogger(__name__)
ACTIVE_TOKEN_KEY_PREFIX = "api_token_active:"
@app.celery.task(queue="dataset")
def batch_update_api_token_last_used():
"""
Batch update last_used_at for all recently active API tokens.
Scans Redis for api_token_active:* keys, parses the token and scope
from each key, and performs a batch database update.
"""
click.echo(click.style("batch_update_api_token_last_used: start.", fg="green"))
start_at = time.perf_counter()
updated_count = 0
scanned_count = 0
current_time = naive_utc_now()
try:
# Collect all active token keys
keys_to_process: list[str] = []
for key in redis_client.scan_iter(match=f"{ACTIVE_TOKEN_KEY_PREFIX}*", count=200):
if isinstance(key, bytes):
key = key.decode("utf-8")
keys_to_process.append(key)
scanned_count += 1
if not keys_to_process:
click.echo(click.style("batch_update_api_token_last_used: no active tokens found.", fg="yellow"))
return
# Parse token info from keys: api_token_active:{scope}:{token}
token_scope_pairs: list[tuple[str, str | None]] = []
for key in keys_to_process:
# Strip prefix
suffix = key[len(ACTIVE_TOKEN_KEY_PREFIX):]
# Split into scope:token (scope may be "None")
parts = suffix.split(":", 1)
if len(parts) == 2:
scope_str, token = parts
scope = None if scope_str == "None" else scope_str
token_scope_pairs.append((token, scope))
# Batch update in database
with Session(db.engine, expire_on_commit=False) as session:
for token, scope in token_scope_pairs:
stmt = (
update(ApiToken)
.where(
ApiToken.token == token,
ApiToken.type == scope,
(ApiToken.last_used_at.is_(None) | (ApiToken.last_used_at < current_time)),
)
.values(last_used_at=current_time)
)
result = session.execute(stmt)
rowcount = getattr(result, "rowcount", 0)
if rowcount > 0:
updated_count += 1
if updated_count > 0:
session.commit()
# Delete processed keys from Redis
if keys_to_process:
redis_client.delete(*[k.encode("utf-8") if isinstance(k, str) else k for k in keys_to_process])
except Exception:
logger.exception("batch_update_api_token_last_used failed")
elapsed = time.perf_counter() - start_at
click.echo(
click.style(
f"batch_update_api_token_last_used: done. "
f"scanned={scanned_count}, updated={updated_count}, elapsed={elapsed:.2f}s",
fg="green",
)
)

View File

@ -1,59 +0,0 @@
"""
Celery task for updating API token last_used_at timestamp asynchronously.
"""
import logging
from datetime import datetime
from celery import shared_task
from libs.api_token_updater import update_token_last_used_at
logger = logging.getLogger(__name__)
@shared_task(queue="api_token_update", bind=True)
def update_api_token_last_used_task(self, token: str, scope: str | None, update_time_iso: str):
"""
Asynchronously update the last_used_at timestamp for an API token.
Uses the unified update_token_last_used_at() method to avoid code duplication.
Queue: api_token_update (dedicated queue to isolate from other tasks and
prevent accumulation in production environment)
Args:
token: The API token string
scope: The token type/scope (e.g., 'app', 'dataset')
update_time_iso: ISO format timestamp for the update operation
Returns:
Dict with status and metadata
Raises:
Exception: Re-raises exceptions to allow Celery retry mechanism and monitoring
"""
try:
# Parse update_time from ISO format
update_time = datetime.fromisoformat(update_time_iso)
# Use unified update method
result = update_token_last_used_at(token, scope, update_time, session=None)
if result["status"] == "updated":
logger.info("Updated last_used_at for token (async): %s... (scope: %s)", token[:10], scope)
elif result["status"] == "failed":
# If update failed, log and raise for retry
error_msg = result.get("error", "Unknown error")
logger.error("Failed to update last_used_at for token (async): %s", error_msg)
raise Exception(f"Token update failed: {error_msg}")
return result
except Exception:
# Log the error with full context (logger.exception includes traceback automatically)
logger.exception("Error in update_api_token_last_used_task (token: %s..., scope: %s)", token[:10], scope)
# Raise exception to let Celery handle retry and monitoring
# This allows Flower and other monitoring tools to track failures
raise

View File

@ -1,21 +1,19 @@
"""
Integration tests for API Token Cache with Redis and Celery.
Integration tests for API Token Cache with Redis.
These tests require:
- Redis server running
- Test database configured
- Celery worker running (for full integration test)
"""
import time
from datetime import datetime, timedelta
from unittest.mock import patch
from unittest.mock import MagicMock, patch
import pytest
from extensions.ext_redis import redis_client
from libs.api_token_cache import ApiTokenCache, CachedApiToken
from libs.api_token_updater import update_token_last_used_at
from models.model import ApiToken
@ -38,18 +36,14 @@ class TestApiTokenCacheRedisIntegration:
def _cleanup(self):
"""Remove test data from Redis."""
try:
# Delete test cache key
redis_client.delete(self.cache_key)
# Delete any test tenant index
redis_client.delete("tenant_tokens:test-tenant-id")
# Delete any test locks
redis_client.delete(f"api_token_last_used_lock:{self.test_scope}:{self.test_token}")
redis_client.delete(f"api_token_active:{self.test_scope}:{self.test_token}")
except Exception:
pass # Ignore cleanup errors
def test_cache_set_and_get_with_real_redis(self):
"""Test cache set and get operations with real Redis."""
# Create a mock token
from unittest.mock import MagicMock
mock_token = MagicMock()
@ -92,30 +86,24 @@ class TestApiTokenCacheRedisIntegration:
mock_token.last_used_at = None
mock_token.created_at = datetime.now()
# Set in cache
ApiTokenCache.set(self.test_token, self.test_scope, mock_token)
# Check TTL
ttl = redis_client.ttl(self.cache_key)
assert 595 <= ttl <= 600 # Should be around 600 seconds (10 minutes)
def test_cache_null_value_for_invalid_token(self):
"""Test caching null value for invalid tokens"""
# Cache null value
"""Test caching null value for invalid tokens."""
result = ApiTokenCache.set(self.test_token, self.test_scope, None)
assert result is True
# Verify in Redis
cached_data = redis_client.get(self.cache_key)
assert cached_data == b"null"
# Get from cache should return None
cached_token = ApiTokenCache.get(self.test_token, self.test_scope)
assert cached_token is None
# Check TTL is shorter for null values
ttl = redis_client.ttl(self.cache_key)
assert 55 <= ttl <= 60 # Should be around 60 seconds
assert 55 <= ttl <= 60
def test_cache_delete_with_real_redis(self):
"""Test cache deletion with real Redis."""
@ -130,15 +118,11 @@ class TestApiTokenCacheRedisIntegration:
mock_token.last_used_at = None
mock_token.created_at = datetime.now()
# Set in cache
ApiTokenCache.set(self.test_token, self.test_scope, mock_token)
assert redis_client.exists(self.cache_key) == 1
# Delete from cache
result = ApiTokenCache.delete(self.test_token, self.test_scope)
assert result is True
# Verify deleted
assert redis_client.exists(self.cache_key) == 0
def test_tenant_index_creation(self):
@ -155,14 +139,11 @@ class TestApiTokenCacheRedisIntegration:
mock_token.last_used_at = None
mock_token.created_at = datetime.now()
# Set in cache
ApiTokenCache.set(self.test_token, self.test_scope, mock_token)
# Verify tenant index exists
index_key = f"tenant_tokens:{tenant_id}"
assert redis_client.exists(index_key) == 1
# Verify cache key is in the index
members = redis_client.smembers(index_key)
cache_keys = [m.decode("utf-8") if isinstance(m, bytes) else m for m in members]
assert self.cache_key in cache_keys
@ -173,7 +154,6 @@ class TestApiTokenCacheRedisIntegration:
tenant_id = "test-tenant-id"
# Create multiple tokens for the same tenant
for i in range(3):
token_value = f"test-token-{i}"
mock_token = MagicMock()
@ -187,21 +167,17 @@ class TestApiTokenCacheRedisIntegration:
ApiTokenCache.set(token_value, "app", mock_token)
# Verify all cached
for i in range(3):
key = f"api_token:app:test-token-{i}"
assert redis_client.exists(key) == 1
# Invalidate by tenant
result = ApiTokenCache.invalidate_by_tenant(tenant_id)
assert result is True
# Verify all deleted
for i in range(3):
key = f"api_token:app:test-token-{i}"
assert redis_client.exists(key) == 0
# Verify index also deleted
assert redis_client.exists(f"tenant_tokens:{tenant_id}") == 0
def test_concurrent_cache_access(self):
@ -218,151 +194,72 @@ class TestApiTokenCacheRedisIntegration:
mock_token.last_used_at = None
mock_token.created_at = datetime.now()
# Set once
ApiTokenCache.set(self.test_token, self.test_scope, mock_token)
# Concurrent reads
def get_from_cache():
return ApiTokenCache.get(self.test_token, self.test_scope)
# Execute 50 concurrent reads
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = [executor.submit(get_from_cache) for _ in range(50)]
results = [f.result() for f in concurrent.futures.as_completed(futures)]
# All should succeed
assert len(results) == 50
assert all(r is not None for r in results)
assert all(isinstance(r, CachedApiToken) for r in results)
class TestApiTokenUpdaterIntegration:
"""Integration tests for unified token updater."""
class TestTokenUsageRecording:
"""Tests for recording token usage in Redis (batch update approach)."""
@pytest.mark.usefixtures("db_session")
def test_update_token_last_used_at_with_session(self, db_session):
"""Test unified update method with provided session."""
# Create a test token in database
test_token = ApiToken()
test_token.id = "test-updater-id"
test_token.token = "test-updater-token"
test_token.type = "app"
test_token.app_id = "test-app"
test_token.tenant_id = "test-tenant"
test_token.last_used_at = datetime.now() - timedelta(minutes=10)
test_token.created_at = datetime.now() - timedelta(days=30)
db_session.add(test_token)
db_session.commit()
def setup_method(self):
self.test_token = "test-usage-token"
self.test_scope = "app"
self.active_key = f"api_token_active:{self.test_scope}:{self.test_token}"
def teardown_method(self):
try:
# Update using unified method
start_time = datetime.now()
result = update_token_last_used_at(test_token.token, test_token.type, start_time, session=db_session)
redis_client.delete(self.active_key)
except Exception:
pass
# Verify result
assert result["status"] == "updated"
assert result["rowcount"] == 1
def test_record_token_usage_sets_redis_key(self):
"""Test that _record_token_usage writes an active key to Redis."""
from controllers.service_api.wraps import _record_token_usage
# Verify in database
db_session.refresh(test_token)
assert test_token.last_used_at >= start_time
_record_token_usage(self.test_token, self.test_scope)
finally:
# Cleanup
db_session.delete(test_token)
db_session.commit()
# Key should exist
assert redis_client.exists(self.active_key) == 1
# Value should be an ISO timestamp
value = redis_client.get(self.active_key)
if isinstance(value, bytes):
value = value.decode("utf-8")
datetime.fromisoformat(value) # Should not raise
@pytest.mark.celery_integration
class TestCeleryTaskIntegration:
"""
Integration tests for Celery task.
def test_record_token_usage_has_ttl(self):
"""Test that active keys have a TTL as safety net."""
from controllers.service_api.wraps import _record_token_usage
Requires Celery worker running with api_token_update queue.
Run with: pytest -m celery_integration
"""
_record_token_usage(self.test_token, self.test_scope)
@pytest.mark.usefixtures("db_session")
def test_celery_task_execution(self, db_session):
"""Test Celery task can be executed successfully."""
from tasks.update_api_token_last_used_task import update_api_token_last_used_task
ttl = redis_client.ttl(self.active_key)
assert 3595 <= ttl <= 3600 # ~1 hour
# Create a test token in database
test_token = ApiToken()
test_token.id = "test-celery-id"
test_token.token = "test-celery-token"
test_token.type = "app"
test_token.app_id = "test-app"
test_token.tenant_id = "test-tenant"
test_token.last_used_at = datetime.now() - timedelta(minutes=10)
test_token.created_at = datetime.now() - timedelta(days=30)
def test_record_token_usage_overwrites(self):
"""Test that repeated calls overwrite the same key (no accumulation)."""
from controllers.service_api.wraps import _record_token_usage
db_session.add(test_token)
db_session.commit()
_record_token_usage(self.test_token, self.test_scope)
first_value = redis_client.get(self.active_key)
try:
# Send task
start_time_iso = datetime.now().isoformat()
result = update_api_token_last_used_task.delay(test_token.token, test_token.type, start_time_iso)
time.sleep(0.01) # Tiny delay so timestamp differs
# Wait for task to complete (with timeout)
task_result = result.get(timeout=10)
_record_token_usage(self.test_token, self.test_scope)
second_value = redis_client.get(self.active_key)
# Verify task executed
assert task_result["status"] in ["updated", "no_update_needed"]
# Verify in database
db_session.refresh(test_token)
# last_used_at should be updated or already recent
assert test_token.last_used_at is not None
finally:
# Cleanup
db_session.delete(test_token)
db_session.commit()
@pytest.mark.usefixtures("db_session")
def test_concurrent_celery_tasks_with_redis_lock(self, db_session):
"""Test multiple Celery tasks with Redis lock (防抖)."""
from tasks.update_api_token_last_used_task import update_api_token_last_used_task
# Create a test token
test_token = ApiToken()
test_token.id = "test-concurrent-id"
test_token.token = "test-concurrent-token"
test_token.type = "app"
test_token.app_id = "test-app"
test_token.tenant_id = "test-tenant"
test_token.last_used_at = datetime.now() - timedelta(minutes=10)
test_token.created_at = datetime.now() - timedelta(days=30)
db_session.add(test_token)
db_session.commit()
try:
# Send 10 tasks concurrently
start_time_iso = datetime.now().isoformat()
tasks = []
for _ in range(10):
result = update_api_token_last_used_task.delay(test_token.token, test_token.type, start_time_iso)
tasks.append(result)
# Wait for all tasks
results = [task.get(timeout=15) for task in tasks]
# Count how many actually updated
updated_count = sum(1 for r in results if r["status"] == "updated")
skipped_count = sum(1 for r in results if r["status"] == "skipped")
# Due to Redis lock, most should be skipped
assert skipped_count >= 8 # At least 8 out of 10 should be skipped
assert updated_count <= 2 # At most 2 should actually update
finally:
# Cleanup
db_session.delete(test_token)
db_session.commit()
# Key count should still be 1 (overwritten, not accumulated)
assert redis_client.exists(self.active_key) == 1
class TestEndToEndCacheFlow:
@ -376,11 +273,9 @@ class TestEndToEndCacheFlow:
2. Second request (cache hit) -> return from cache
3. Verify Redis state
"""
test_token_value = "test-e2e-token"
test_scope = "app"
# Create test token in DB
test_token = ApiToken()
test_token.id = "test-e2e-id"
test_token.token = test_token_value
@ -397,7 +292,6 @@ class TestEndToEndCacheFlow:
# Step 1: Cache miss - set token in cache
ApiTokenCache.set(test_token_value, test_scope, test_token)
# Verify cached
cache_key = f"api_token:{test_scope}:{test_token_value}"
assert redis_client.exists(cache_key) == 1
@ -415,11 +309,9 @@ class TestEndToEndCacheFlow:
# Step 4: Delete and verify cleanup
ApiTokenCache.delete(test_token_value, test_scope)
assert redis_client.exists(cache_key) == 0
# Index should be cleaned up
assert cache_key.encode() not in redis_client.smembers(index_key)
finally:
# Cleanup
db_session.delete(test_token)
db_session.commit()
redis_client.delete(f"api_token:{test_scope}:{test_token_value}")
@ -433,7 +325,6 @@ class TestEndToEndCacheFlow:
test_token_value = "test-concurrent-token"
test_scope = "app"
# Setup cache
mock_token = MagicMock()
mock_token.id = "concurrent-id"
mock_token.app_id = "test-app"
@ -446,7 +337,6 @@ class TestEndToEndCacheFlow:
ApiTokenCache.set(test_token_value, test_scope, mock_token)
try:
# Simulate 100 concurrent cache reads
def read_cache():
return ApiTokenCache.get(test_token_value, test_scope)
@ -456,18 +346,12 @@ class TestEndToEndCacheFlow:
results = [f.result() for f in concurrent.futures.as_completed(futures)]
elapsed = time.time() - start_time
# All should succeed
assert len(results) == 100
assert all(r is not None for r in results)
# Should be fast (< 1 second for 100 reads)
assert elapsed < 1.0, f"Too slow: {elapsed}s for 100 cache reads"
print(f"\n✓ 100 concurrent cache reads in {elapsed:.3f}s")
print(f"✓ Average: {(elapsed / 100) * 1000:.2f}ms per read")
finally:
# Cleanup
ApiTokenCache.delete(test_token_value, test_scope)
redis_client.delete(f"tenant_tokens:{mock_token.tenant_id}")
@ -480,29 +364,22 @@ class TestRedisFailover:
"""Test system degrades gracefully when Redis is unavailable."""
from redis import RedisError
# Simulate Redis failure
mock_redis.get.side_effect = RedisError("Connection failed")
mock_redis.setex.side_effect = RedisError("Connection failed")
# Cache operations should not raise exceptions
result_get = ApiTokenCache.get("test-token", "app")
assert result_get is None # Returns None (fallback)
assert result_get is None
result_set = ApiTokenCache.set("test-token", "app", None)
assert result_set is False # Returns False (fallback)
# Application should continue working (using database directly)
assert result_set is False
if __name__ == "__main__":
# Run integration tests
pytest.main(
[
__file__,
"-v",
"-s",
"--tb=short",
"-m",
"not celery_integration", # Skip Celery tests by default
]
)

View File

@ -2,6 +2,7 @@
Unit tests for API Token Cache module.
"""
import json
from datetime import datetime
from unittest.mock import MagicMock, patch
@ -42,10 +43,8 @@ class TestApiTokenCache:
def test_serialize_token(self):
"""Test token serialization."""
import orjson
serialized = ApiTokenCache._serialize_token(self.mock_token)
data = orjson.loads(serialized) # orjson to parse bytes
data = json.loads(serialized)
assert data["id"] == "test-token-id-123"
assert data["app_id"] == "test-app-id-456"
@ -57,8 +56,6 @@ class TestApiTokenCache:
def test_serialize_token_with_nulls(self):
"""Test token serialization with None values."""
import orjson
mock_token = MagicMock()
mock_token.id = "test-id"
mock_token.app_id = None
@ -69,7 +66,7 @@ class TestApiTokenCache:
mock_token.created_at = datetime(2026, 1, 1, 0, 0, 0)
serialized = ApiTokenCache._serialize_token(mock_token)
data = orjson.loads(serialized) # orjson to parse bytes
data = json.loads(serialized)
assert data["app_id"] is None
assert data["tenant_id"] is None
@ -77,9 +74,7 @@ class TestApiTokenCache:
def test_deserialize_token(self):
"""Test token deserialization."""
import orjson
cached_data = orjson.dumps(
cached_data = json.dumps(
{
"id": "test-id",
"app_id": "test-app",
@ -115,9 +110,7 @@ class TestApiTokenCache:
@patch("libs.api_token_cache.redis_client")
def test_get_cache_hit(self, mock_redis):
"""Test cache hit scenario."""
import orjson
cached_data = orjson.dumps(
cached_data = json.dumps(
{
"id": "test-id",
"app_id": "test-app",
@ -127,8 +120,8 @@ class TestApiTokenCache:
"last_used_at": "2026-02-03T10:00:00",
"created_at": "2026-01-01T00:00:00",
}
)
mock_redis.get.return_value = cached_data # orjson returns bytes
).encode("utf-8")
mock_redis.get.return_value = cached_data
result = ApiTokenCache.get("test-token", "app")
@ -168,7 +161,7 @@ class TestApiTokenCache:
args = mock_redis.setex.call_args[0]
assert args[0] == f"{CACHE_KEY_PREFIX}:app:invalid-token"
assert args[1] == CACHE_NULL_TTL_SECONDS
assert args[2] == b"null" # orjson returns bytes
assert args[2] == b"null"
@patch("libs.api_token_cache.redis_client")
def test_delete_with_scope(self, mock_redis):
@ -238,7 +231,7 @@ class TestApiTokenCacheIntegration:
# 2. Simulate cache hit
cached_data = ApiTokenCache._serialize_token(mock_token)
mock_redis.get.return_value = cached_data # Already bytes from orjson
mock_redis.get.return_value = cached_data # bytes from model_dump_json().encode()
retrieved = ApiTokenCache.get("token-abc", "app")
assert retrieved is not None
@ -255,7 +248,7 @@ class TestApiTokenCacheIntegration:
ApiTokenCache.set("non-existent-token", "app", None)
args = mock_redis.setex.call_args[0]
assert args[2] == b"null" # orjson returns bytes
assert args[2] == b"null"
assert args[1] == CACHE_NULL_TTL_SECONDS # Shorter TTL for null values