Compare commits

...

113 Commits

Author SHA1 Message Date
5809edd74b feat: bump version to 0.3.23 (#1198) 2023-09-20 00:14:36 +08:00
05bfa11915 build: update devDependencies (#1125) 2023-09-19 13:31:48 +08:00
435f804c6f fix: gpt-3.5-turbo-instruct context size to 8192 (#1196) 2023-09-19 02:10:22 +08:00
ae3f1ac0a9 feat: support gpt-3.5-turbo-instruct model (#1195) 2023-09-19 02:05:04 +08:00
269a465fc4 Feat/improve vector database logic (#1193)
Co-authored-by: jyong <jyong@dify.ai>
2023-09-18 18:15:41 +08:00
60e0bbd713 Feat/provider add zhipuai (#1192)
Co-authored-by: Joel <iamjoel007@gmail.com>
2023-09-18 18:02:05 +08:00
827c97f0d3 feat: add zhipuai (#1188) 2023-09-18 17:32:31 +08:00
c8bd76cd66 fix: inference embedding validate (#1187) 2023-09-16 03:09:36 +08:00
ec5f585df4 1111 wrong embedding model displayed in datasets (#1186) 2023-09-15 07:54:45 -05:00
1de48f33ca feat(web): service request return generics type (#1157) 2023-09-15 07:54:20 -05:00
6b41a9593e fix: text error (#1184) 2023-09-15 14:15:28 +08:00
82267083e8 fix: model param description error (#1183) 2023-09-15 11:36:01 +08:00
c385961d33 chore: Optimization model parameter description (#1181) 2023-09-15 11:14:14 +08:00
20bab6edec Restore the application template (#1174)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
2023-09-14 08:28:32 -05:00
67bed54f32 Mermaid front end rendering (#1166)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
2023-09-14 14:09:23 +08:00
leo
562a571281 fix: Improved fallback solution for avatar image loading failure (#1172) 2023-09-14 13:31:35 +08:00
fc68c81791 fix: correct invite url (#1173) 2023-09-14 12:07:34 +08:00
5d9070bc60 Feat/add blocking mode resource return (#1171)
Co-authored-by: jyong <jyong@dify.ai>
2023-09-13 18:53:35 +08:00
b11fb0dfd1 fix LocalAI is missing in lang/en (#1169) 2023-09-13 10:08:33 +08:00
d1c5c5f160 add video to cn readme (#1165) 2023-09-12 08:30:12 -05:00
0b1d1440aa Update README.md (#1164) 2023-09-12 07:48:35 -05:00
0c420d64b3 chore: hover conversation show option button (#1160) 2023-09-12 16:35:13 +08:00
f9082104ed feat: add hosted moderation (#1158) 2023-09-12 10:26:12 +08:00
983834cd52 feat: spark check (#1134) 2023-09-11 17:31:03 +08:00
96d10c8b39 feat: spark free quota verify (#1152) 2023-09-11 17:30:54 +08:00
24cb992843 feat: bump version to 0.3.22 (#1153) 2023-09-11 12:04:06 +08:00
7907c0bf58 Update bug_report.yml (#1151) 2023-09-11 10:48:37 +08:00
ebf4fd9a09 Update issue template (#1150) 2023-09-11 10:45:10 +08:00
38b9901274 fix(web): complete some ts type (#1148) 2023-09-11 09:30:17 +08:00
642842d61b Feat:dataset retiever resource (#1123)
Co-authored-by: jyong <jyong@dify.ai>
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-09-10 15:17:43 +08:00
e161c511af Feat:csv & docx support (#1139)
Co-authored-by: jyong <jyong@dify.ai>
2023-09-10 15:17:22 +08:00
f29e82685e feat: bump version to 0.3.21 (#1145) 2023-09-10 12:34:54 +08:00
3a5ae96e7b fix: TRANSFORMERS_OFFLINE orders in Dockerfile (#1144) 2023-09-10 12:26:13 +08:00
b63a685386 feat: set transformers offline default true (#1143) 2023-09-10 12:20:58 +08:00
877da82b06 feat: cache huggingface gpt2 tokenizer files (#1138) 2023-09-10 12:16:21 +08:00
6637629045 fix: remove the deprecated depends_on.condition format (#1142) 2023-09-10 12:07:20 +08:00
e925b6c572 fix: log page compatible old query (#1141) 2023-09-10 11:29:25 +08:00
5412f4aba5 fix: in log page not show user query (#1140) 2023-09-10 09:30:30 +08:00
2d5ad0d208 feat: support optional query content (#1097)
Co-authored-by: Garfield Dai <dai.hai@foxmail.com>
2023-09-10 00:12:34 +08:00
1ade70aa1e feat: bump version to 0.3.20 (#1135) 2023-09-09 23:47:14 +08:00
2658c4d57b fix: answer returned null when response_mode was blocking (#1133) 2023-09-09 23:22:21 +08:00
84c76bc04a Feat/chat add origin (#1130) 2023-09-09 19:17:12 +08:00
6effcd3755 feat: optimize celery start cmd (#1129) 2023-09-09 13:48:29 +08:00
d9866489f0 feat: add health check and depend condition in docker compose (#1113) 2023-09-09 13:47:08 +08:00
c4d8bdc3db fix: hf hosted inference check (#1128) 2023-09-09 00:29:48 +08:00
681eb1cfcc fix: click inner link no jump (#1118) 2023-09-08 10:21:42 +08:00
a5d21f3b09 fix: shortening invite url (#1100)
Co-authored-by: MatriQi <matri@aifi.io>
2023-09-07 17:15:57 +08:00
7ba068c3e4 fix: self host embedding missing base url config (#1116) 2023-09-07 14:56:38 +08:00
b201eeedbd fix: optimize styles (#1112) 2023-09-07 14:24:09 +08:00
f28cb84977 fix(web): fix AppCard Menu popover open bug (#1107) 2023-09-07 09:47:31 +08:00
714872cd58 chore: enchancment frontend readme (#1110) 2023-09-07 09:43:24 +08:00
0708bd60ee fix: try to fix chunk load error (#1109) 2023-09-06 15:47:53 +08:00
23a6c85b80 chore: handle workspace apps scrollbar (#1101) 2023-09-05 15:56:21 +08:00
4a28599fbd fix: optimize feedback and app icon (#1099) 2023-09-05 09:13:59 +08:00
7c66d3c793 feat: Optimize the description for Azure deployment name (#1091) 2023-09-04 14:26:22 +08:00
cc9edfffd8 fix: markdown code lang capitalization and line number color (#1098) 2023-09-04 11:31:25 +08:00
6fa2454c9a fix: change frontend start script (#1096) 2023-09-04 11:10:32 +08:00
487e699021 fix: ui in chat openning statement (#1094) 2023-09-04 10:26:46 +08:00
a7cdb745c1 feat: support spark v2 validate (#1086) 2023-09-01 20:53:32 +08:00
73c86ee6a0 fix: prompt of title generation (#1084) 2023-09-01 14:55:58 +08:00
48eb590065 feat: optimize last_active_at update (#1083) 2023-09-01 13:58:26 +08:00
33562a9d8d feat: optimize prompt (#1080) 2023-09-01 11:46:06 +08:00
c9194ba382 chore(api): api image multistage build (#1069) 2023-09-01 11:13:22 +08:00
a199fa6388 feat: optimize high load sql query of document segment (#1078) 2023-09-01 10:52:39 +08:00
4c8608dc61 feat: optimize conversation title generation output must be a valid JSON (#1077) 2023-09-01 10:31:42 +08:00
a6b0f788e7 feat: add visual studio code debug config. (#1068)
Co-authored-by: Keruberosu <631677014@qq.com>
2023-09-01 09:15:06 +08:00
df6604a734 feat: optimize generation of conversation title (#1075) 2023-09-01 02:28:37 +08:00
1ca86cf9ce feat: bump version to 0.3.19 (#1074) 2023-08-31 21:42:58 +08:00
78e26f8b75 fix: summary no docs (#1073) 2023-08-31 20:19:26 +08:00
2191312bb9 fix: segments query missing idx hit (#1072) 2023-08-31 19:39:44 +08:00
fcc6b41ab7 feat: decrease claude model request time by set max top_k to 10 (#1071) 2023-08-31 18:23:44 +08:00
9458b8978f feat: siderbar operation support portal (#1061) 2023-08-31 17:46:51 +08:00
d75e8aeafa feat: disable anthropic retry (#1067) 2023-08-31 16:44:46 +08:00
2eba98a465 feat: optimize anthropic connection pool (#1066) 2023-08-31 16:18:59 +08:00
a7a7aab7a0 fix: csv import error (#1063) 2023-08-31 15:42:28 +08:00
86bfbb47d5 chore: doc issue (#1062) 2023-08-31 14:54:16 +08:00
d33a269548 refactor(file extractor): file extractor (#1059) 2023-08-31 14:45:31 +08:00
d3f8ea2df0 Feat/support to invite multiple users (#1011) 2023-08-31 01:18:31 +08:00
7df56ed617 fix error weaviate vector (#1058)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-30 20:34:17 +08:00
e34dcc0406 feat: code support copy (#1057) 2023-08-30 18:08:47 +08:00
a834ba8759 feat: support rename conversation (#1056) 2023-08-30 17:32:32 +08:00
c67f345d0e Fix: disable operations of dataset when embedding unavailable (#1055)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-30 17:27:19 +08:00
8b8e510bfe fix: handle AttributeError for datasets and index (#1052) 2023-08-30 11:14:16 +08:00
3db839a5cb 773 change embed title welcome to use (#1053) 2023-08-30 11:03:25 +08:00
417c19577a feat: add LocalAI local embedding model support (#1021)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-08-29 22:22:02 +08:00
b5953039de recreate qdrant vector (#1049)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-29 15:00:36 +08:00
a43e80dd9c add qdrant migration (#1046)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-29 10:37:04 +08:00
ad5f27bc5f fix openpyxl dimensions error (#1041) 2023-08-29 10:36:48 +08:00
05e0985f29 chore: match new dataset tool format (#1044) 2023-08-29 09:07:45 +08:00
7b3314c5db fix: dataset desc (#1045) 2023-08-29 09:07:27 +08:00
a55ba6e614 Fix/ignore economy dataset (#1043)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-29 03:37:45 +08:00
f9bec1edf8 chore: perfect type definition (#1003) 2023-08-28 19:48:53 +08:00
16199e968e fix notion import limit check (#1042)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-28 16:49:03 +08:00
02452421d5 fix: pub generate message text return null (#1037) 2023-08-28 16:43:54 +08:00
3a5c7c75ad Fix/model selector (#1032) 2023-08-28 10:54:41 +08:00
a7415ecfd8 Fix/upload document limit (#1033) 2023-08-28 10:53:45 +08:00
934def5fcc Fix: eslint (#1030) 2023-08-27 17:06:16 +08:00
0796791de5 feat: hf inference endpoint stream support (#1028) 2023-08-26 19:48:34 +08:00
6c148b223d fix: dataset query truncated (#1026) 2023-08-26 17:35:17 +08:00
4b168f4838 fix: maintenance notice (#1025) 2023-08-26 16:09:55 +08:00
1c114eaef3 feat: update contributing (#1020) 2023-08-25 21:19:13 +08:00
e053215155 fix document estimate parameter (#1019)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 20:10:08 +08:00
13482b0fc1 feat: maintenance notice (#1016) 2023-08-25 19:38:52 +08:00
38fa152cc4 fix update document index technique (#1018)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 18:29:55 +08:00
2d9616c29c fix: xinference last token being ignored (#1013) 2023-08-25 18:15:05 +08:00
915e26527b update dataset index struct (#1012)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 15:52:33 +08:00
2d604d9330 Fix/filter empty segment (#1004)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 15:50:29 +08:00
e7199826cc embedding model available check (#1009)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 00:25:16 +08:00
70e24b7594 fix: loading and calc rem (#1006) 2023-08-24 23:24:33 +08:00
c1602aafc7 refactor:cache in place & function name (#1001) 2023-08-24 22:54:21 +08:00
a3fec11438 fix: styles (#1005) 2023-08-24 22:37:46 +08:00
b1fd1b3ab3 Feat/vector db manage (#997)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-24 21:27:31 +08:00
5397799aac document limit (#999)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-24 21:27:13 +08:00
494 changed files with 14304 additions and 3590 deletions

49
.github/ISSUE_TEMPLATE/bug_report.yml vendored Normal file
View File

@ -0,0 +1,49 @@
name: "🕷️ Bug report"
description: Report errors or unexpected behavior
labels:
- bug
body:
- type: markdown
attributes:
value: Please make sure to [search for existing issues](https://github.com/langgenius/dify/issues) before filing a new one!
- type: input
attributes:
label: Dify version
placeholder: 0.3.21
description: See about section in Dify console
validations:
required: true
- type: dropdown
attributes:
label: Cloud or Self Hosted
description: How / Where was Dify installed from?
multiple: true
options:
- Cloud
- Self Hosted
- Other (please specify in "Steps to Reproduce")
validations:
required: true
- type: textarea
attributes:
label: Steps to reproduce
description: We highly suggest including screenshots and a bug report log.
placeholder: Having detailed steps helps us reproduce the bug.
validations:
required: true
- type: textarea
attributes:
label: ✔️ Expected Behavior
placeholder: What were you expecting?
validations:
required: false
- type: textarea
attributes:
label: ❌ Actual Behavior
placeholder: What happened instead?
validations:
required: false

8
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@ -0,0 +1,8 @@
blank_issues_enabled: false
contact_links:
- name: "\U0001F4DA Dify user documentation"
url: https://docs.dify.ai/getting-started/readme
about: Documentation for users of Dify
- name: "\U0001F4DA Dify dev documentation"
url: https://docs.dify.ai/getting-started/install-self-hosted
about: Documentation for people interested in developing and contributing for Dify

View File

@ -0,0 +1,11 @@
name: "📚 Documentation Issue"
description: Report issues in our documentation
labels:
- ducumentation
body:
- type: textarea
attributes:
label: Provide a description of requested docs changes
placeholder: Briefly describe which document needs to be corrected and why.
validations:
required: true

View File

@ -0,0 +1,26 @@
name: "⭐ Feature or enhancement request"
description: Propose something new.
labels:
- enhancement
body:
- type: textarea
attributes:
label: Description of the new feature / enhancement
placeholder: What is the expected behavior of the proposed feature?
validations:
required: true
- type: textarea
attributes:
label: Scenario when this would be used?
placeholder: What is the scenario this would be used? Why is this important to your workflow as a dify user?
validations:
required: true
- type: textarea
attributes:
label: Supporting information
placeholder: "Having additional evidence, data, tweets, blog posts, research, ... anything is extremely helpful. This information provides context to the scenario that may otherwise be lost."
validations:
required: false
- type: markdown
attributes:
value: Please limit one request per issue.

View File

@ -0,0 +1,46 @@
name: "🌐 Localization/Translation issue"
description: Report incorrect translations.
labels:
- translation
body:
- type: markdown
attributes:
value: Please make sure to [search for existing issues](https://github.com/langgenius/dify/issues) before filing a new one!
- type: input
attributes:
label: Dify version
placeholder: 0.3.21
description: Hover over system tray icon or look at Settings
validations:
required: true
- type: input
attributes:
label: Utility with translation issue
placeholder: Some area
description: Please input here the utility with the translation issue
validations:
required: true
- type: input
attributes:
label: 🌐 Language affected
placeholder: "German"
validations:
required: true
- type: textarea
attributes:
label: ❌ Actual phrase(s)
placeholder: What is there? Please include a screenshot as that is extremely helpful.
validations:
required: true
- type: textarea
attributes:
label: ✔️ Expected phrase(s)
placeholder: What was expected?
validations:
required: true
- type: textarea
attributes:
label: Why is the current translation wrong
placeholder: Why do you feel this is incorrect?
validations:
required: true

View File

@ -1,32 +0,0 @@
---
name: "\U0001F41B Bug report"
about: Create a report to help us improve
title: ''
labels: bug
assignees: ''
---
<!--
Please provide a clear and concise description of what the bug is. Include
screenshots if needed. Please test using the latest version of the relevant
Dify packages to make sure your issue has not already been fixed.
-->
Dify version: Cloud | Self Host
## Steps To Reproduce
<!--
Your bug will get fixed much faster if we can run your code and it doesn't
have dependencies other than Dify. Issues without reproduction steps or
code examples may be immediately closed as not actionable.
-->
1.
2.
## The current behavior
## The expected behavior

View File

@ -1,20 +0,0 @@
---
name: "\U0001F680 Feature request"
about: Suggest an idea for this project
title: ''
labels: enhancement
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

View File

@ -1,10 +0,0 @@
---
name: "\U0001F914 Questions and Help"
about: Ask a usage or consultation question
title: ''
labels: ''
assignees: ''
---

View File

@ -20,7 +20,8 @@ def check_file_for_chinese_comments(file_path):
def main():
has_chinese = False
excluded_files = ["model_template.py", 'stopwords.py', 'commands.py',
'indexing_runner.py', 'web_reader_tool.py', 'spark_provider.py']
'indexing_runner.py', 'web_reader_tool.py', 'spark_provider.py',
'prompts.py']
for root, _, files in os.walk("."):
for file in files:

3
.gitignore vendored
View File

@ -149,4 +149,5 @@ sdks/python-client/build
sdks/python-client/dist
sdks/python-client/dify_client.egg-info
.vscode/
.vscode/*
!.vscode/launch.json

27
.vscode/launch.json vendored Normal file
View File

@ -0,0 +1,27 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python: Flask",
"type": "python",
"request": "launch",
"module": "flask",
"env": {
"FLASK_APP": "api/app.py",
"FLASK_DEBUG": "1",
"GEVENT_SUPPORT": "True"
},
"args": [
"run",
"--host=0.0.0.0",
"--port=5001",
"--debug"
],
"jinja": true,
"justMyCode": true
}
]
}

View File

@ -53,9 +53,9 @@ Did you have an issue, like a merge conflict, or don't know how to open a pull r
## Community channels
Stuck somewhere? Have any questions? Join the [Discord Community Server](https://discord.gg/AhzKf7dNgk). We are here to help!
Stuck somewhere? Have any questions? Join the [Discord Community Server](https://discord.gg/j3XRWSPBf7). We are here to help!
### i18n (Internationalization) Support
We are looking for contributors to help with translations in other languages. If you are interested in helping, please join the [Discord Community Server](https://discord.gg/AhzKf7dNgk) and let us know.
Also check out the [Frontend i18n README]((web/i18n/README_EN.md)) for more information.
Also check out the [Frontend i18n README]((web/i18n/README_EN.md)) for more information.

View File

@ -16,15 +16,15 @@
## 本地开发
要设置一个可工作的开发环境,只需 fork 项目的 git 存储库,并使用适当的软件包管理器安装后端和前端依赖项,然后创建并运行 docker-compose 堆栈
要设置一个可工作的开发环境,只需 fork 项目的 git 存储库,并使用适当的软件包管理器安装后端和前端依赖项,然后创建并运行 docker-compose。
### Fork存储库
您需要 fork [存储](https://github.com/langgenius/dify)。
您需要 fork [Git 仓](https://github.com/langgenius/dify)。
### 克隆存储库
克隆您在 GitHub 上 fork 的存储库:
克隆您在 GitHub 上 fork 的库:
```
git clone git@github.com:<github_username>/dify.git

View File

@ -52,4 +52,4 @@ git clone git@github.com:<github_username>/dify.git
## コミュニティチャンネル
お困りですか?何か質問がありますか? [Discord Community サーバ](https://discord.gg/AhzKf7dNgk)に参加してください。私たちがお手伝いします!
お困りですか?何か質問がありますか? [Discord Community サーバ](https://discord.gg/j3XRWSPBf7) に参加してください。私たちがお手伝いします!

View File

@ -16,6 +16,10 @@ Out-of-the-box web sites supporting form mode and chat conversation mode
A single API encompassing plugin capabilities, context enhancement, and more, saving you backend coding effort
Visual data analysis, log review, and annotation for applications
https://github.com/langgenius/dify/assets/100913391/f6e658d5-31b3-4c16-a0af-9e191da4d0f6
## Highlighted Features
**1. LLMs support:** Choose capabilities based on different models when building your Dify AI apps. Dify is compatible with Langchain, meaning it will support various LLMs. Currently supported:

View File

@ -17,7 +17,7 @@
- 一套 API 即可包含插件、上下文增强等能力,替你省下了后端代码的编写工作
- 可视化的对应用进行数据分析,查阅日志或进行标注
https://github.com/langgenius/dify/assets/100913391/f6e658d5-31b3-4c16-a0af-9e191da4d0f6
## 核心能力
1. **模型支持:** 你可以在 Dify 上选择基于不同模型的能力来开发你的 AI 应用。Dify 兼容 Langchain这意味着我们将逐步支持多种 LLMs ,目前支持的模型供应商:

View File

@ -1,7 +1,18 @@
FROM python:3.10-slim
# packages install stage
FROM python:3.10-slim AS base
LABEL maintainer="takatost@gmail.com"
RUN apt-get update \
&& apt-get install -y --no-install-recommends gcc g++ python3-dev libc-dev libffi-dev
COPY requirements.txt /requirements.txt
RUN pip install --prefix=/pkg -r requirements.txt
# build stage
FROM python:3.10-slim AS builder
ENV FLASK_APP app.py
ENV EDITION SELF_HOSTED
ENV DEPLOY_ENV PRODUCTION
@ -15,15 +26,17 @@ EXPOSE 5001
WORKDIR /app/api
RUN apt-get update && \
apt-get install -y bash curl wget vim gcc g++ python3-dev libc-dev libffi-dev nodejs
COPY requirements.txt /app/api/requirements.txt
RUN pip install -r requirements.txt
RUN apt-get update \
&& apt-get install -y --no-install-recommends bash curl wget vim nodejs \
&& apt-get autoremove \
&& rm -rf /var/lib/apt/lists/*
COPY --from=base /pkg /usr/local
COPY . /app/api/
RUN python -c "from transformers import GPT2TokenizerFast; GPT2TokenizerFast.from_pretrained('gpt2')"
ENV TRANSFORMERS_OFFLINE true
COPY docker/entrypoint.sh /entrypoint.sh
RUN chmod +x /entrypoint.sh

View File

@ -52,11 +52,13 @@
flask run --host 0.0.0.0 --port=5001 --debug
```
7. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...
8. If you need to debug local async processing, you can run `celery -A app.celery worker -Q dataset,generation,mail`, celery can do dataset importing and other async tasks.
8. If you need to debug local async processing, you can run `celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail`, celery can do dataset importing and other async tasks.
8. Start frontend:
8. Start frontend
You can start the frontend by running `npm install && npm run dev` in web/ folder, or you can use docker to start the frontend, for example:
```
docker run -it -d --platform linux/amd64 -p 3000:3000 -e EDITION=SELF_HOSTED -e CONSOLE_URL=http://127.0.0.1:5000 --name web-self-hosted langgenius/dify-web:latest
docker run -it -d --platform linux/amd64 -p 3000:3000 -e EDITION=SELF_HOSTED -e CONSOLE_URL=http://127.0.0.1:5001 --name web-self-hosted langgenius/dify-web:latest
```
This will start a dify frontend, now you are all set, happy coding!

View File

@ -1,6 +1,6 @@
# -*- coding:utf-8 -*-
import os
from datetime import datetime
from datetime import datetime, timedelta
from werkzeug.exceptions import Forbidden
@ -145,8 +145,12 @@ def load_user(user_id):
_create_tenant_for_account(account)
session['workspace_id'] = account.current_tenant_id
account.last_active_at = datetime.utcnow()
db.session.commit()
current_time = datetime.utcnow()
# update last_active_at when last_active_at is more than 10 minutes ago
if current_time - account.last_active_at > timedelta(minutes=10):
account.last_active_at = current_time
db.session.commit()
# Log in the user with the updated user_id
flask_login.login_user(account, remember=True)

View File

@ -1,22 +1,31 @@
import datetime
import json
import math
import random
import string
import time
import uuid
import click
from tqdm import tqdm
from flask import current_app
from langchain.embeddings import OpenAIEmbeddings
from werkzeug.exceptions import NotFound
from core.embedding.cached_embedding import CacheEmbedding
from core.index.index import IndexBuilder
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
from core.model_providers.models.entity.model_params import ModelType
from core.model_providers.providers.hosted import hosted_model_providers
from core.model_providers.providers.openai_provider import OpenAIProvider
from libs.password import password_pattern, valid_password, hash_password
from libs.helper import email as email_validate
from extensions.ext_database import db
from libs.rsa import generate_key_pair
from models.account import InvitationCode, Tenant
from models.dataset import Dataset, DatasetQuery, Document
from models.model import Account
from models.account import InvitationCode, Tenant, TenantAccountJoin
from models.dataset import Dataset, DatasetQuery, Document, DatasetCollectionBinding
from models.model import Account, AppModelConfig, App
import secrets
import base64
@ -231,7 +240,13 @@ def clean_unused_dataset_indexes():
kw_index = IndexBuilder.get_index(dataset, 'economy')
# delete from vector index
if vector_index:
vector_index.delete()
if dataset.collection_binding_id:
vector_index.delete_by_group_id(dataset.id)
else:
if dataset.collection_binding_id:
vector_index.delete_by_group_id(dataset.id)
else:
vector_index.delete()
kw_index.delete()
# update document
update_params = {
@ -296,6 +311,342 @@ def sync_anthropic_hosted_providers():
click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))
@click.command('create-qdrant-indexes', help='Create qdrant indexes.')
def create_qdrant_indexes():
click.echo(click.style('Start create qdrant indexes.', fg='green'))
create_count = 0
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for dataset in datasets:
if dataset.index_struct_dict:
if dataset.index_struct_dict['type'] != 'qdrant':
try:
click.echo('Create dataset qdrant index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except Exception:
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id
)
dataset.embedding_model = embedding_model.name
dataset.embedding_model_provider = embedding_model.model_provider.provider_name
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.SYSTEM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
model_provider=model_provider)
embeddings = CacheEmbedding(embedding_model)
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if index:
index.create_qdrant_dataset(dataset)
index_struct = {
"type": 'qdrant',
"vector_store": {
"class_prefix": dataset.index_struct_dict['vector_store']['class_prefix']}
}
dataset.index_struct = json.dumps(index_struct)
db.session.commit()
create_count += 1
else:
click.echo('passed.')
except Exception as e:
click.echo(
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
continue
click.echo(click.style('Congratulations! Create {} dataset indexes.'.format(create_count), fg='green'))
@click.command('update-qdrant-indexes', help='Update qdrant indexes.')
def update_qdrant_indexes():
click.echo(click.style('Start Update qdrant indexes.', fg='green'))
create_count = 0
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for dataset in datasets:
if dataset.index_struct_dict:
if dataset.index_struct_dict['type'] != 'qdrant':
try:
click.echo('Update dataset qdrant index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
model_provider=model_provider)
embeddings = CacheEmbedding(embedding_model)
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if index:
index.update_qdrant_dataset(dataset)
create_count += 1
else:
click.echo('passed.')
except Exception as e:
click.echo(
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
continue
click.echo(click.style('Congratulations! Update {} dataset indexes.'.format(create_count), fg='green'))
@click.command('normalization-collections', help='restore all collections in one')
def normalization_collections():
click.echo(click.style('Start normalization collections.', fg='green'))
normalization_count = 0
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for dataset in datasets:
if not dataset.collection_binding_id:
try:
click.echo('restore dataset index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
model_provider=model_provider)
embeddings = CacheEmbedding(embedding_model)
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.provider_name == embedding_model.model_provider.provider_name,
DatasetCollectionBinding.model_name == embedding_model.name). \
order_by(DatasetCollectionBinding.created_at). \
first()
if not dataset_collection_binding:
dataset_collection_binding = DatasetCollectionBinding(
provider_name=embedding_model.model_provider.provider_name,
model_name=embedding_model.name,
collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node'
)
db.session.add(dataset_collection_binding)
db.session.commit()
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if index:
index.restore_dataset_in_one(dataset, dataset_collection_binding)
else:
click.echo('passed.')
original_index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if original_index:
original_index.delete_original_collection(dataset, dataset_collection_binding)
normalization_count += 1
else:
click.echo('passed.')
except Exception as e:
click.echo(
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
continue
click.echo(click.style('Congratulations! restore {} dataset indexes.'.format(normalization_count), fg='green'))
@click.command('update_app_model_configs', help='Migrate data to support paragraph variable.')
@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
def update_app_model_configs(batch_size):
pre_prompt_template = '{{default_input}}'
user_input_form_template = {
"en-US": [
{
"paragraph": {
"label": "Query",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
"zh-Hans": [
{
"paragraph": {
"label": "查询内容",
"variable": "default_input",
"required": False,
"default": ""
}
}
]
}
click.secho("Start migrate old data that the text generator can support paragraph variable.", fg='green')
total_records = db.session.query(AppModelConfig) \
.join(App, App.app_model_config_id == AppModelConfig.id) \
.filter(App.mode == 'completion') \
.count()
if total_records == 0:
click.secho("No data to migrate.", fg='green')
return
num_batches = (total_records + batch_size - 1) // batch_size
with tqdm(total=total_records, desc="Migrating Data") as pbar:
for i in range(num_batches):
offset = i * batch_size
limit = min(batch_size, total_records - offset)
click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')
data_batch = db.session.query(AppModelConfig) \
.join(App, App.app_model_config_id == AppModelConfig.id) \
.filter(App.mode == 'completion') \
.order_by(App.created_at) \
.offset(offset).limit(limit).all()
if not data_batch:
click.secho("No more data to migrate.", fg='green')
break
try:
click.secho(f"Migrating {len(data_batch)} records...", fg='green')
for data in data_batch:
# click.secho(f"Migrating data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
if data.pre_prompt is None:
data.pre_prompt = pre_prompt_template
else:
if pre_prompt_template in data.pre_prompt:
continue
data.pre_prompt += pre_prompt_template
app_data = db.session.query(App) \
.filter(App.id == data.app_id) \
.one()
account_data = db.session.query(Account) \
.join(TenantAccountJoin, Account.id == TenantAccountJoin.account_id) \
.filter(TenantAccountJoin.role == 'owner') \
.filter(TenantAccountJoin.tenant_id == app_data.tenant_id) \
.one_or_none()
if not account_data:
continue
if data.user_input_form is None or data.user_input_form == 'null':
data.user_input_form = json.dumps(user_input_form_template[account_data.interface_language])
else:
raw_json_data = json.loads(data.user_input_form)
raw_json_data.append(user_input_form_template[account_data.interface_language][0])
data.user_input_form = json.dumps(raw_json_data)
# click.secho(f"Updated data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
db.session.commit()
except Exception as e:
click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",
fg='red')
continue
click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')
pbar.update(len(data_batch))
def register_commands(app):
app.cli.add_command(reset_password)
app.cli.add_command(reset_email)
@ -304,3 +655,7 @@ def register_commands(app):
app.cli.add_command(recreate_all_dataset_indexes)
app.cli.add_command(sync_anthropic_hosted_providers)
app.cli.add_command(clean_unused_dataset_indexes)
app.cli.add_command(create_qdrant_indexes)
app.cli.add_command(update_qdrant_indexes)
app.cli.add_command(update_app_model_configs)
app.cli.add_command(normalization_collections)

View File

@ -61,6 +61,8 @@ DEFAULTS = {
'HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA': 1000000,
'HOSTED_ANTHROPIC_PAID_MIN_QUANTITY': 20,
'HOSTED_ANTHROPIC_PAID_MAX_QUANTITY': 100,
'HOSTED_MODERATION_ENABLED': 'False',
'HOSTED_MODERATION_PROVIDERS': '',
'TENANT_DOCUMENT_COUNT': 100,
'CLEAN_DAY_SETTING': 30,
'UPLOAD_FILE_SIZE_LIMIT': 15,
@ -100,7 +102,7 @@ class Config:
self.CONSOLE_URL = get_env('CONSOLE_URL')
self.API_URL = get_env('API_URL')
self.APP_URL = get_env('APP_URL')
self.CURRENT_VERSION = "0.3.18"
self.CURRENT_VERSION = "0.3.23"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
@ -230,6 +232,9 @@ class Config:
self.HOSTED_ANTHROPIC_PAID_MIN_QUANTITY = int(get_env('HOSTED_ANTHROPIC_PAID_MIN_QUANTITY'))
self.HOSTED_ANTHROPIC_PAID_MAX_QUANTITY = int(get_env('HOSTED_ANTHROPIC_PAID_MAX_QUANTITY'))
self.HOSTED_MODERATION_ENABLED = get_bool_env('HOSTED_MODERATION_ENABLED')
self.HOSTED_MODERATION_PROVIDERS = get_env('HOSTED_MODERATION_PROVIDERS')
self.STRIPE_API_KEY = get_env('STRIPE_API_KEY')
self.STRIPE_WEBHOOK_SECRET = get_env('STRIPE_WEBHOOK_SECRET')

View File

@ -16,7 +16,7 @@ model_templates = {
},
'model_config': {
'provider': 'openai',
'model_id': 'text-davinci-003',
'model_id': 'gpt-3.5-turbo-instruct',
'configs': {
'prompt_template': '',
'prompt_variables': [],
@ -30,7 +30,7 @@ model_templates = {
},
'model': json.dumps({
"provider": "openai",
"name": "text-davinci-003",
"name": "gpt-3.5-turbo-instruct",
"completion_params": {
"max_tokens": 512,
"temperature": 1,
@ -38,7 +38,18 @@ model_templates = {
"presence_penalty": 0,
"frequency_penalty": 0
}
})
}),
'user_input_form': json.dumps([
{
"paragraph": {
"label": "Query",
"variable": "query",
"required": True,
"default": ""
}
}
]),
'pre_prompt': '{{query}}'
}
},
@ -93,7 +104,7 @@ demo_model_templates = {
'mode': 'completion',
'model_config': AppModelConfig(
provider='openai',
model_id='text-davinci-003',
model_id='gpt-3.5-turbo-instruct',
configs={
'prompt_template': "Please translate the following text into {{target_language}}:\n",
'prompt_variables': [
@ -129,7 +140,7 @@ demo_model_templates = {
pre_prompt="Please translate the following text into {{target_language}}:\n",
model=json.dumps({
"provider": "openai",
"name": "text-davinci-003",
"name": "gpt-3.5-turbo-instruct",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
@ -211,7 +222,7 @@ demo_model_templates = {
'mode': 'completion',
'model_config': AppModelConfig(
provider='openai',
model_id='text-davinci-003',
model_id='gpt-3.5-turbo-instruct',
configs={
'prompt_template': "请将以下文本翻译为{{target_language}}:\n",
'prompt_variables': [
@ -247,7 +258,7 @@ demo_model_templates = {
pre_prompt="请将以下文本翻译为{{target_language}}:\n",
model=json.dumps({
"provider": "openai",
"name": "text-davinci-003",
"name": "gpt-3.5-turbo-instruct",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,

View File

@ -29,6 +29,7 @@ model_config_fields = {
'suggested_questions': fields.Raw(attribute='suggested_questions_list'),
'suggested_questions_after_answer': fields.Raw(attribute='suggested_questions_after_answer_dict'),
'speech_to_text': fields.Raw(attribute='speech_to_text_dict'),
'retriever_resource': fields.Raw(attribute='retriever_resource_dict'),
'more_like_this': fields.Raw(attribute='more_like_this_dict'),
'sensitive_word_avoidance': fields.Raw(attribute='sensitive_word_avoidance_dict'),
'model': fields.Raw(attribute='model_dict'),

View File

@ -39,9 +39,10 @@ class CompletionMessageApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json')
parser.add_argument('query', type=str, location='json', default='')
parser.add_argument('model_config', type=dict, required=True, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('retriever_from', type=str, required=False, default='dev', location='json')
args = parser.parse_args()
streaming = args['response_mode'] != 'blocking'
@ -115,6 +116,7 @@ class ChatMessageApi(Resource):
parser.add_argument('model_config', type=dict, required=True, location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('retriever_from', type=str, required=False, default='dev', location='json')
args = parser.parse_args()
streaming = args['response_mode'] != 'blocking'

View File

@ -16,26 +16,25 @@ from services.account_service import RegisterService
class ActivateCheckApi(Resource):
def get(self):
parser = reqparse.RequestParser()
parser.add_argument('workspace_id', type=str, required=True, nullable=False, location='args')
parser.add_argument('email', type=email, required=True, nullable=False, location='args')
parser.add_argument('workspace_id', type=str, required=False, nullable=True, location='args')
parser.add_argument('email', type=email, required=False, nullable=True, location='args')
parser.add_argument('token', type=str, required=True, nullable=False, location='args')
args = parser.parse_args()
account = RegisterService.get_account_if_token_valid(args['workspace_id'], args['email'], args['token'])
workspaceId = args['workspace_id']
reg_email = args['email']
token = args['token']
tenant = db.session.query(Tenant).filter(
Tenant.id == args['workspace_id'],
Tenant.status == 'normal'
).first()
invitation = RegisterService.get_invitation_if_token_valid(workspaceId, reg_email, token)
return {'is_valid': account is not None, 'workspace_name': tenant.name}
return {'is_valid': invitation is not None, 'workspace_name': invitation['tenant'].name if invitation else None}
class ActivateApi(Resource):
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('workspace_id', type=str, required=True, nullable=False, location='json')
parser.add_argument('email', type=email, required=True, nullable=False, location='json')
parser.add_argument('workspace_id', type=str, required=False, nullable=True, location='json')
parser.add_argument('email', type=email, required=False, nullable=True, location='json')
parser.add_argument('token', type=str, required=True, nullable=False, location='json')
parser.add_argument('name', type=str_len(30), required=True, nullable=False, location='json')
parser.add_argument('password', type=valid_password, required=True, nullable=False, location='json')
@ -44,12 +43,13 @@ class ActivateApi(Resource):
parser.add_argument('timezone', type=timezone, required=True, nullable=False, location='json')
args = parser.parse_args()
account = RegisterService.get_account_if_token_valid(args['workspace_id'], args['email'], args['token'])
if account is None:
invitation = RegisterService.get_invitation_if_token_valid(args['workspace_id'], args['email'], args['token'])
if invitation is None:
raise AlreadyActivateError()
RegisterService.revoke_token(args['workspace_id'], args['email'], args['token'])
account = invitation['account']
account.name = args['name']
# generate password salt

View File

@ -87,13 +87,19 @@ class DatasetListApi(Resource):
# raise ProviderNotInitializeError(
# f"No Embedding Model available. Please configure a valid provider "
# f"in the Settings -> Model Provider.")
model_names = [item['model_name'] for item in valid_model_list]
model_names = []
for valid_model in valid_model_list:
model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
data = marshal(datasets, dataset_detail_fields)
for item in data:
if item['embedding_model'] in model_names:
item['embedding_available'] = True
if item['indexing_technique'] == 'high_quality':
item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
if item_model in model_names:
item['embedding_available'] = True
else:
item['embedding_available'] = False
else:
item['embedding_available'] = False
item['embedding_available'] = True
response = {
'data': data,
'has_more': len(datasets) == limit,
@ -119,14 +125,6 @@ class DatasetListApi(Resource):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
try:
dataset = DatasetService.create_empty_dataset(
@ -150,20 +148,39 @@ class DatasetApi(Resource):
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(
dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
return marshal(dataset, dataset_detail_fields), 200
data = marshal(dataset, dataset_detail_fields)
# check embedding setting
provider_service = ProviderService()
# get valid model list
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id, ModelType.EMBEDDINGS.value)
model_names = []
for valid_model in valid_model_list:
model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
if data['indexing_technique'] == 'high_quality':
item_model = f"{data['embedding_model']}:{data['embedding_model_provider']}"
if item_model in model_names:
data['embedding_available'] = True
else:
data['embedding_available'] = False
else:
data['embedding_available'] = True
return data, 200
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
parser = reqparse.RequestParser()
parser.add_argument('name', nullable=False,
@ -251,6 +268,7 @@ class DatasetIndexingEstimateApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
parser.add_argument('indexing_technique', type=str, required=True, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('dataset_id', type=str, required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, location='json')
@ -272,7 +290,8 @@ class DatasetIndexingEstimateApi(Resource):
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
args['process_rule'], args['doc_form'],
args['doc_language'], args['dataset_id'])
args['doc_language'], args['dataset_id'],
args['indexing_technique'])
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
@ -287,7 +306,8 @@ class DatasetIndexingEstimateApi(Resource):
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
args['info_list']['notion_info_list'],
args['process_rule'], args['doc_form'],
args['doc_language'], args['dataset_id'])
args['doc_language'], args['dataset_id'],
args['indexing_technique'])
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "

View File

@ -3,7 +3,7 @@ import random
from datetime import datetime
from typing import List
from flask import request
from flask import request, current_app
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, fields, marshal, marshal_with, reqparse
@ -138,6 +138,10 @@ class GetProcessRuleApi(Resource):
req_data = request.args
document_id = req_data.get('document_id')
# get default rules
mode = DocumentService.DEFAULT_RULES['mode']
rules = DocumentService.DEFAULT_RULES['rules']
if document_id:
# get the latest process rule
document = Document.query.get_or_404(document_id)
@ -158,11 +162,9 @@ class GetProcessRuleApi(Resource):
order_by(DatasetProcessRule.created_at.desc()). \
limit(1). \
one_or_none()
mode = dataset_process_rule.mode
rules = dataset_process_rule.rules_dict
else:
mode = DocumentService.DEFAULT_RULES['mode']
rules = DocumentService.DEFAULT_RULES['rules']
if dataset_process_rule:
mode = dataset_process_rule.mode
rules = dataset_process_rule.rules_dict
return {
'mode': mode,
@ -275,7 +277,8 @@ class DatasetDocumentListApi(Resource):
parser.add_argument('duplicate', type=bool, nullable=False, location='json')
parser.add_argument('original_document_id', type=str, required=False, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
location='json')
args = parser.parse_args()
if not dataset.indexing_technique and not args['indexing_technique']:
@ -284,20 +287,6 @@ class DatasetDocumentListApi(Resource):
# validate args
DocumentService.document_create_args_validate(args)
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
try:
documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user)
except ProviderTokenNotInitError as ex:
@ -335,17 +324,20 @@ class DatasetInitApi(Resource):
parser.add_argument('data_source', type=dict, required=True, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
location='json')
args = parser.parse_args()
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
if args['indexing_technique'] == 'high_quality':
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# validate args
DocumentService.document_create_args_validate(args)
@ -414,7 +406,8 @@ class DocumentIndexingEstimateApi(DocumentResource):
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, [file],
data_process_rule_dict, None, dataset_id)
data_process_rule_dict, None,
'English', dataset_id)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
@ -483,7 +476,8 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
indexing_runner = IndexingRunner()
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
data_process_rule_dict, None, dataset_id)
data_process_rule_dict, None,
'English', dataset_id)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
@ -497,7 +491,7 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
info_list,
data_process_rule_dict,
None, dataset_id)
None, 'English', dataset_id)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
@ -725,6 +719,12 @@ class DocumentDeleteApi(DocumentResource):
def delete(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
document = self.get_document(dataset_id, document_id)
try:
@ -787,6 +787,12 @@ class DocumentStatusApi(DocumentResource):
def patch(self, dataset_id, document_id, action):
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
document = self.get_document(dataset_id, document_id)
# The role of the current user in the ta table must be admin or owner
@ -855,6 +861,14 @@ class DocumentStatusApi(DocumentResource):
if not document.archived:
raise InvalidActionError('Document is not archived.')
# check document limit
if current_app.config['EDITION'] == 'CLOUD':
documents_count = DocumentService.get_tenant_documents_count()
total_count = documents_count + 1
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
if total_count > tenant_document_count:
raise ValueError(f"All your documents have overed limit {tenant_document_count}.")
document.archived = False
document.archived_at = None
document.archived_by = None
@ -872,6 +886,10 @@ class DocumentStatusApi(DocumentResource):
class DocumentPauseApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id):
"""pause document."""
dataset_id = str(dataset_id)
@ -901,6 +919,9 @@ class DocumentPauseApi(DocumentResource):
class DocumentRecoverApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id):
"""recover document."""
dataset_id = str(dataset_id)
@ -926,6 +947,21 @@ class DocumentRecoverApi(DocumentResource):
return {'result': 'success'}, 204
class DocumentLimitApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self):
"""get document limit"""
documents_count = DocumentService.get_tenant_documents_count()
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
return {
'documents_count': documents_count,
'documents_limit': tenant_document_count
}, 200
api.add_resource(GetProcessRuleApi, '/datasets/process-rule')
api.add_resource(DatasetDocumentListApi,
'/datasets/<uuid:dataset_id>/documents')
@ -951,3 +987,4 @@ api.add_resource(DocumentStatusApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/status/<string:action>')
api.add_resource(DocumentPauseApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause')
api.add_resource(DocumentRecoverApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume')
api.add_resource(DocumentLimitApi, '/datasets/limit')

View File

@ -149,7 +149,8 @@ class DatasetDocumentSegmentApi(Resource):
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
@ -158,20 +159,20 @@ class DatasetDocumentSegmentApi(Resource):
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
if dataset.indexing_technique == 'high_quality':
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id),
@ -244,18 +245,19 @@ class DatasetDocumentSegmentAddApi(Resource):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
if dataset.indexing_technique == 'high_quality':
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
@ -284,25 +286,28 @@ class DatasetDocumentSegmentUpdateApi(Resource):
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# check segment
if dataset.indexing_technique == 'high_quality':
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# check segment
segment_id = str(segment_id)
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id),
@ -339,6 +344,8 @@ class DatasetDocumentSegmentUpdateApi(Resource):
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
@ -378,18 +385,6 @@ class DatasetDocumentSegmentBatchImportApi(Resource):
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# get file from request
file = request.files['file']
# check file

View File

@ -26,7 +26,7 @@ from models.model import UploadFile
cache = TTLCache(maxsize=None, ttl=30)
ALLOWED_EXTENSIONS = ['txt', 'markdown', 'md', 'pdf', 'html', 'htm', 'xlsx']
ALLOWED_EXTENSIONS = ['txt', 'markdown', 'md', 'pdf', 'html', 'htm', 'xlsx', 'docx', 'csv']
PREVIEW_WORDS_LIMIT = 3000
@ -83,7 +83,7 @@ class FileApi(Resource):
raise FileTooLargeError(message)
extension = file.filename.split('.')[-1]
if extension not in ALLOWED_EXTENSIONS:
if extension.lower() not in ALLOWED_EXTENSIONS:
raise UnsupportedFileTypeError()
# user uuid as file name
@ -136,7 +136,7 @@ class FilePreviewApi(Resource):
# extract text from file
extension = upload_file.extension
if extension not in ALLOWED_EXTENSIONS:
if extension.lower() not in ALLOWED_EXTENSIONS:
raise UnsupportedFileTypeError()
text = FileExtractor.load(upload_file, return_text=True)

View File

@ -31,8 +31,9 @@ class CompletionApi(InstalledAppResource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json')
parser.add_argument('query', type=str, location='json', default='')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('retriever_from', type=str, required=False, default='explore_app', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
@ -92,6 +93,7 @@ class ChatApi(InstalledAppResource):
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='explore_app', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'

View File

@ -30,6 +30,25 @@ class MessageListApi(InstalledAppResource):
'rating': fields.String
}
retriever_resource_fields = {
'id': fields.String,
'message_id': fields.String,
'position': fields.Integer,
'dataset_id': fields.String,
'dataset_name': fields.String,
'document_id': fields.String,
'document_name': fields.String,
'data_source_type': fields.String,
'segment_id': fields.String,
'score': fields.Float,
'hit_count': fields.Integer,
'word_count': fields.Integer,
'segment_position': fields.Integer,
'index_node_hash': fields.String,
'content': fields.String,
'created_at': TimestampField
}
message_fields = {
'id': fields.String,
'conversation_id': fields.String,
@ -37,6 +56,7 @@ class MessageListApi(InstalledAppResource):
'query': fields.String,
'answer': fields.String,
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField
}

View File

@ -24,6 +24,7 @@ class AppParameterApi(InstalledAppResource):
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'retriever_resource': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
}
@ -39,6 +40,7 @@ class AppParameterApi(InstalledAppResource):
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
}

View File

@ -29,6 +29,7 @@ class UniversalChatApi(UniversalChatResource):
parser.add_argument('provider', type=str, required=True, location='json')
parser.add_argument('model', type=str, required=True, location='json')
parser.add_argument('tools', type=list, required=True, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='universal_app', location='json')
args = parser.parse_args()
app_model_config = app_model.app_model_config

View File

@ -36,6 +36,25 @@ class UniversalChatMessageListApi(UniversalChatResource):
'created_at': TimestampField
}
retriever_resource_fields = {
'id': fields.String,
'message_id': fields.String,
'position': fields.Integer,
'dataset_id': fields.String,
'dataset_name': fields.String,
'document_id': fields.String,
'document_name': fields.String,
'data_source_type': fields.String,
'segment_id': fields.String,
'score': fields.Float,
'hit_count': fields.Integer,
'word_count': fields.Integer,
'segment_position': fields.Integer,
'index_node_hash': fields.String,
'content': fields.String,
'created_at': TimestampField
}
message_fields = {
'id': fields.String,
'conversation_id': fields.String,
@ -43,6 +62,7 @@ class UniversalChatMessageListApi(UniversalChatResource):
'query': fields.String,
'answer': fields.String,
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField,
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
}

View File

@ -1,4 +1,6 @@
# -*- coding:utf-8 -*-
import json
from flask_restful import marshal_with, fields
from controllers.console import api
@ -14,6 +16,7 @@ class UniversalChatParameterApi(UniversalChatResource):
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'retriever_resource': fields.Raw,
}
@marshal_with(parameters_fields)
@ -21,12 +24,14 @@ class UniversalChatParameterApi(UniversalChatResource):
"""Retrieve app parameters."""
app_model = universal_app
app_model_config = app_model.app_model_config
app_model_config.retriever_resource = json.dumps({'enabled': True})
return {
'opening_statement': app_model_config.opening_statement,
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
}

View File

@ -47,6 +47,7 @@ def universal_chat_app_required(view=None):
suggested_questions=json.dumps([]),
suggested_questions_after_answer=json.dumps({'enabled': True}),
speech_to_text=json.dumps({'enabled': True}),
retriever_resource=json.dumps({'enabled': True}),
more_like_this=None,
sensitive_word_avoidance=None,
model=json.dumps({

View File

@ -49,46 +49,43 @@ class MemberInviteEmailApi(Resource):
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('email', type=str, required=True, location='json')
parser.add_argument('emails', type=str, required=True, location='json', action='append')
parser.add_argument('role', type=str, required=True, default='admin', location='json')
args = parser.parse_args()
invitee_email = args['email']
invitee_emails = args['emails']
invitee_role = args['role']
if invitee_role not in ['admin', 'normal']:
return {'code': 'invalid-role', 'message': 'Invalid role'}, 400
inviter = current_user
try:
token = RegisterService.invite_new_member(inviter.current_tenant, invitee_email, role=invitee_role,
inviter=inviter)
account = db.session.query(Account, TenantAccountJoin.role).join(
TenantAccountJoin, Account.id == TenantAccountJoin.account_id
).filter(Account.email == args['email']).first()
account, role = account
account = marshal(account, account_fields)
account['role'] = role
except services.errors.account.CannotOperateSelfError as e:
return {'code': 'cannot-operate-self', 'message': str(e)}, 400
except services.errors.account.NoPermissionError as e:
return {'code': 'forbidden', 'message': str(e)}, 403
except services.errors.account.AccountAlreadyInTenantError as e:
return {'code': 'email-taken', 'message': str(e)}, 409
except Exception as e:
return {'code': 'unexpected-error', 'message': str(e)}, 500
# todo:413
invitation_results = []
console_web_url = current_app.config.get("CONSOLE_WEB_URL")
for invitee_email in invitee_emails:
try:
token = RegisterService.invite_new_member(inviter.current_tenant, invitee_email, role=invitee_role,
inviter=inviter)
account = db.session.query(Account, TenantAccountJoin.role).join(
TenantAccountJoin, Account.id == TenantAccountJoin.account_id
).filter(Account.email == invitee_email).first()
account, role = account
invitation_results.append({
'status': 'success',
'email': invitee_email,
'url': f'{console_web_url}/activate?email={invitee_email}&token={token}'
})
account = marshal(account, account_fields)
account['role'] = role
except Exception as e:
invitation_results.append({
'status': 'failed',
'email': invitee_email,
'message': str(e)
})
return {
'result': 'success',
'account': account,
'invite_url': '{}/activate?workspace_id={}&email={}&token={}'.format(
current_app.config.get("CONSOLE_WEB_URL"),
str(current_user.current_tenant_id),
invitee_email,
token
)
'invitation_results': invitation_results,
}, 201

View File

@ -246,7 +246,8 @@ class ModelProviderModelParameterRuleApi(Resource):
'enabled': v.enabled,
'min': v.min,
'max': v.max,
'default': v.default
'default': v.default,
'precision': v.precision
}
for k, v in vars(parameter_rules).items()
}
@ -285,6 +286,25 @@ class ModelProviderFreeQuotaSubmitApi(Resource):
return result
class ModelProviderFreeQuotaQualificationVerifyApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider_name: str):
parser = reqparse.RequestParser()
parser.add_argument('token', type=str, required=False, nullable=True, location='args')
args = parser.parse_args()
provider_service = ProviderService()
result = provider_service.free_quota_qualification_verify(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
token=args['token']
)
return result
api.add_resource(ModelProviderListApi, '/workspaces/current/model-providers')
api.add_resource(ModelProviderValidateApi, '/workspaces/current/model-providers/<string:provider_name>/validate')
api.add_resource(ModelProviderUpdateApi, '/workspaces/current/model-providers/<string:provider_name>')
@ -300,3 +320,5 @@ api.add_resource(ModelProviderPaymentCheckoutUrlApi,
'/workspaces/current/model-providers/<string:provider_name>/checkout-url')
api.add_resource(ModelProviderFreeQuotaSubmitApi,
'/workspaces/current/model-providers/<string:provider_name>/free-quota-submit')
api.add_resource(ModelProviderFreeQuotaQualificationVerifyApi,
'/workspaces/current/model-providers/<string:provider_name>/free-quota-qualification-verify')

View File

@ -25,6 +25,7 @@ class AppParameterApi(AppApiResource):
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'retriever_resource': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
}
@ -39,6 +40,7 @@ class AppParameterApi(AppApiResource):
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
}

View File

@ -27,9 +27,11 @@ class CompletionApi(AppApiResource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json')
parser.add_argument('query', type=str, location='json', default='')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('user', type=str, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='dev', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
@ -91,6 +93,8 @@ class ChatApi(AppApiResource):
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('user', type=str, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='dev', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'

View File

@ -16,6 +16,24 @@ class MessageListApi(AppApiResource):
feedback_fields = {
'rating': fields.String
}
retriever_resource_fields = {
'id': fields.String,
'message_id': fields.String,
'position': fields.Integer,
'dataset_id': fields.String,
'dataset_name': fields.String,
'document_id': fields.String,
'document_name': fields.String,
'data_source_type': fields.String,
'segment_id': fields.String,
'score': fields.Float,
'hit_count': fields.Integer,
'word_count': fields.Integer,
'segment_position': fields.Integer,
'index_node_hash': fields.String,
'content': fields.String,
'created_at': TimestampField
}
message_fields = {
'id': fields.String,
@ -24,6 +42,7 @@ class MessageListApi(AppApiResource):
'query': fields.String,
'answer': fields.String,
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField
}

View File

@ -24,6 +24,7 @@ class AppParameterApi(WebApiResource):
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'retriever_resource': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
}
@ -38,6 +39,7 @@ class AppParameterApi(WebApiResource):
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
}

View File

@ -29,8 +29,10 @@ class CompletionApi(WebApiResource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json')
parser.add_argument('query', type=str, location='json', default='')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('retriever_from', type=str, required=False, default='web_app', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
@ -88,6 +90,8 @@ class ChatApi(WebApiResource):
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='web_app', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'

View File

@ -29,6 +29,25 @@ class MessageListApi(WebApiResource):
'rating': fields.String
}
retriever_resource_fields = {
'id': fields.String,
'message_id': fields.String,
'position': fields.Integer,
'dataset_id': fields.String,
'dataset_name': fields.String,
'document_id': fields.String,
'document_name': fields.String,
'data_source_type': fields.String,
'segment_id': fields.String,
'score': fields.Float,
'hit_count': fields.Integer,
'word_count': fields.Integer,
'segment_position': fields.Integer,
'index_node_hash': fields.String,
'content': fields.String,
'created_at': TimestampField
}
message_fields = {
'id': fields.String,
'conversation_id': fields.String,
@ -36,6 +55,7 @@ class MessageListApi(WebApiResource):
'query': fields.String,
'answer': fields.String,
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField
}

View File

@ -1,3 +1,4 @@
import json
from typing import Tuple, List, Any, Union, Sequence, Optional, cast
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
@ -52,7 +53,11 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
elif len(self.tools) == 1:
tool = next(iter(self.tools))
tool = cast(DatasetRetrieverTool, tool)
rst = tool.run(tool_input={'dataset_id': tool.dataset_id, 'query': kwargs['input']})
rst = tool.run(tool_input={'query': kwargs['input']})
# output = ''
# rst_json = json.loads(rst)
# for item in rst_json:
# output += f'{item["content"]}\n'
return AgentFinish(return_values={"output": rst}, log=rst)
if intermediate_steps:
@ -60,7 +65,13 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
return AgentFinish(return_values={"output": observation}, log=observation)
try:
return super().plan(intermediate_steps, callbacks, **kwargs)
agent_decision = super().plan(intermediate_steps, callbacks, **kwargs)
if isinstance(agent_decision, AgentAction):
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
return agent_decision
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
raise new_exception

View File

@ -45,7 +45,7 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
:return:
"""
original_max_tokens = self.llm.max_tokens
self.llm.max_tokens = 15
self.llm.max_tokens = 40
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
messages = prompt.to_messages()
@ -97,6 +97,13 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
messages, functions=self.functions, callbacks=callbacks
)
agent_decision = _parse_ai_message(predicted_message)
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
return agent_decision
@classmethod

View File

@ -90,7 +90,7 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
elif len(self.dataset_tools) == 1:
tool = next(iter(self.dataset_tools))
tool = cast(DatasetRetrieverTool, tool)
rst = tool.run(tool_input={'dataset_id': tool.dataset_id, 'query': kwargs['input']})
rst = tool.run(tool_input={'query': kwargs['input']})
return AgentFinish(return_values={"output": rst}, log=rst)
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
@ -102,7 +102,13 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
raise new_exception
try:
return self.output_parser.parse(full_output)
agent_decision = self.output_parser.parse(full_output)
if isinstance(agent_decision, AgentAction):
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
return agent_decision
except OutputParserException:
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
"I don't know how to respond to that."}, "")

View File

@ -106,7 +106,13 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
raise new_exception
try:
return self.output_parser.parse(full_output)
agent_decision = self.output_parser.parse(full_output)
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
return agent_decision
except OutputParserException:
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
"I don't know how to respond to that."}, "")

View File

@ -16,6 +16,8 @@ from core.agent.agent.structed_multi_dataset_router_agent import StructuredMulti
from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
from langchain.agents import AgentExecutor as LCAgentExecutor
from core.helper import moderation
from core.model_providers.error import LLMError
from core.model_providers.models.llm.base import BaseLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
@ -116,6 +118,18 @@ class AgentExecutor:
return self.agent.should_use_agent(query)
def run(self, query: str) -> AgentExecuteResult:
moderation_result = moderation.check_moderation(
self.configuration.model_instance.model_provider,
query
)
if not moderation_result:
return AgentExecuteResult(
output="I apologize for any confusion, but I'm an AI assistant to be helpful, harmless, and honest.",
strategy=self.configuration.strategy,
configuration=self.configuration
)
agent_executor = LCAgentExecutor.from_agent_and_tools(
agent=self.agent,
tools=self.configuration.tools,
@ -128,7 +142,9 @@ class AgentExecutor:
try:
output = agent_executor.run(query)
except Exception:
except LLMError as ex:
raise ex
except Exception as ex:
logging.exception("agent_executor run failed")
output = None

View File

@ -6,7 +6,7 @@ from typing import Any, Dict, List, Union, Optional
from langchain.agents import openai_functions_agent, openai_functions_multi_agent
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AgentAction, AgentFinish, LLMResult, ChatGeneration
from langchain.schema import AgentAction, AgentFinish, LLMResult, ChatGeneration, BaseMessage
from core.callback_handler.entity.agent_loop import AgentLoop
from core.conversation_message_task import ConversationMessageTask
@ -18,9 +18,9 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
"""Callback Handler that prints to std out."""
raise_error: bool = True
def __init__(self, model_instant: BaseLLM, conversation_message_task: ConversationMessageTask) -> None:
def __init__(self, model_instance: BaseLLM, conversation_message_task: ConversationMessageTask) -> None:
"""Initialize callback handler."""
self.model_instant = model_instant
self.model_instance = model_instance
self.conversation_message_task = conversation_message_task
self._agent_loops = []
self._current_loop = None
@ -46,6 +46,21 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
"""Whether to ignore chain callbacks."""
return True
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
**kwargs: Any
) -> Any:
if not self._current_loop:
# Agent start with a LLM query
self._current_loop = AgentLoop(
position=len(self._agent_loops) + 1,
prompt="\n".join([message.content for message in messages[0]]),
status='llm_started',
started_at=time.perf_counter()
)
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
@ -70,7 +85,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
if response.llm_output:
self._current_loop.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
else:
self._current_loop.prompt_tokens = self.model_instant.get_num_tokens(
self._current_loop.prompt_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self._current_loop.prompt)]
)
completion_generation = response.generations[0][0]
@ -87,7 +102,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
if response.llm_output:
self._current_loop.completion_tokens = response.llm_output['token_usage']['completion_tokens']
else:
self._current_loop.completion_tokens = self.model_instant.get_num_tokens(
self._current_loop.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self._current_loop.completion)]
)
@ -162,7 +177,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
self._current_loop.latency = self._current_loop.completed_at - self._current_loop.started_at
self.conversation_message_task.on_agent_end(
self._message_agent_thought, self.model_instant, self._current_loop
self._message_agent_thought, self.model_instance, self._current_loop
)
self._agent_loops.append(self._current_loop)
@ -193,7 +208,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
)
self.conversation_message_task.on_agent_end(
self._message_agent_thought, self.model_instant, self._current_loop
self._message_agent_thought, self.model_instance, self._current_loop
)
self._agent_loops.append(self._current_loop)

View File

@ -1,5 +1,6 @@
import json
import logging
from json import JSONDecodeError
from typing import Any, Dict, List, Union, Optional
@ -44,10 +45,15 @@ class DatasetToolCallbackHandler(BaseCallbackHandler):
input_str: str,
**kwargs: Any,
) -> None:
# tool_name = serialized.get('name')
input_dict = json.loads(input_str.replace("'", "\""))
dataset_id = input_dict.get('dataset_id')
query = input_dict.get('query')
tool_name: str = serialized.get('name')
dataset_id = tool_name.removeprefix('dataset-')
try:
input_dict = json.loads(input_str.replace("'", "\""))
query = input_dict.get('query')
except JSONDecodeError:
query = input_str
self.conversation_message_task.on_dataset_query_end(DatasetQueryObj(dataset_id=dataset_id, query=query))
def on_tool_end(
@ -58,12 +64,9 @@ class DatasetToolCallbackHandler(BaseCallbackHandler):
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
# kwargs={'name': 'Search'}
# llm_prefix='Thought:'
# observation_prefix='Observation: '
# output='53 years'
pass
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:

View File

@ -6,4 +6,3 @@ class LLMMessage(BaseModel):
prompt_tokens: int = 0
completion: str = ''
completion_tokens: int = 0
latency: float = 0.0

View File

@ -2,6 +2,7 @@ from typing import List
from langchain.schema import Document
from core.conversation_message_task import ConversationMessageTask
from extensions.ext_database import db
from models.dataset import DocumentSegment
@ -9,8 +10,9 @@ from models.dataset import DocumentSegment
class DatasetIndexToolCallbackHandler:
"""Callback handler for dataset tool."""
def __init__(self, dataset_id: str) -> None:
def __init__(self, dataset_id: str, conversation_message_task: ConversationMessageTask) -> None:
self.dataset_id = dataset_id
self.conversation_message_task = conversation_message_task
def on_tool_end(self, documents: List[Document]) -> None:
"""Handle tool end."""
@ -27,3 +29,7 @@ class DatasetIndexToolCallbackHandler:
)
db.session.commit()
def return_retriever_resource_info(self, resource: List):
"""Handle return_retriever_resource_info."""
self.conversation_message_task.on_dataset_query_finish(resource)

View File

@ -1,5 +1,4 @@
import logging
import time
from typing import Any, Dict, List, Union
from langchain.callbacks.base import BaseCallbackHandler
@ -32,7 +31,6 @@ class LLMCallbackHandler(BaseCallbackHandler):
messages: List[List[BaseMessage]],
**kwargs: Any
) -> Any:
self.start_at = time.perf_counter()
real_prompts = []
for message in messages[0]:
if message.type == 'human':
@ -53,8 +51,6 @@ class LLMCallbackHandler(BaseCallbackHandler):
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
self.start_at = time.perf_counter()
self.llm_message.prompt = [{
"role": 'user',
"text": prompts[0]
@ -63,14 +59,22 @@ class LLMCallbackHandler(BaseCallbackHandler):
self.llm_message.prompt_tokens = self.model_instance.get_num_tokens([PromptMessage(content=prompts[0])])
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
end_at = time.perf_counter()
self.llm_message.latency = end_at - self.start_at
if not self.conversation_message_task.streaming:
self.conversation_message_task.append_message_text(response.generations[0][0].text)
self.llm_message.completion = response.generations[0][0].text
self.llm_message.completion_tokens = self.model_instance.get_num_tokens([PromptMessage(content=self.llm_message.completion)])
if response.llm_output and 'token_usage' in response.llm_output:
if 'prompt_tokens' in response.llm_output['token_usage']:
self.llm_message.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
if 'completion_tokens' in response.llm_output['token_usage']:
self.llm_message.completion_tokens = response.llm_output['token_usage']['completion_tokens']
else:
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)])
else:
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)])
self.conversation_message_task.save_message(self.llm_message)
@ -89,8 +93,6 @@ class LLMCallbackHandler(BaseCallbackHandler):
"""Do nothing."""
if isinstance(error, ConversationTaskStoppedException):
if self.conversation_message_task.streaming:
end_at = time.perf_counter()
self.llm_message.latency = end_at - self.start_at
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)]
)

View File

@ -1,15 +1,33 @@
import enum
import logging
from typing import List, Dict, Optional, Any
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from pydantic import BaseModel
from core.model_providers.error import LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.moderation import openai_moderation
class SensitiveWordAvoidanceRule(BaseModel):
class Type(enum.Enum):
MODERATION = "moderation"
KEYWORDS = "keywords"
type: Type
canned_response: str = 'Your content violates our usage policy. Please revise and try again.'
extra_params: dict = {}
class SensitiveWordAvoidanceChain(Chain):
input_key: str = "input" #: :meta private:
output_key: str = "output" #: :meta private:
sensitive_words: List[str] = []
canned_response: str = None
model_instance: BaseLLM
sensitive_word_avoidance_rule: SensitiveWordAvoidanceRule
@property
def _chain_type(self) -> str:
@ -31,11 +49,24 @@ class SensitiveWordAvoidanceChain(Chain):
"""
return [self.output_key]
def _check_sensitive_word(self, text: str) -> str:
for word in self.sensitive_words:
def _check_sensitive_word(self, text: str) -> bool:
for word in self.sensitive_word_avoidance_rule.extra_params.get('sensitive_words', []):
if word in text:
return self.canned_response
return text
return False
return True
def _check_moderation(self, text: str) -> bool:
moderation_model_instance = ModelFactory.get_moderation_model(
tenant_id=self.model_instance.model_provider.provider.tenant_id,
model_provider_name='openai',
model_name=openai_moderation.DEFAULT_MODEL
)
try:
return moderation_model_instance.run(text=text)
except Exception as ex:
logging.exception(ex)
raise LLMBadRequestError('Rate limit exceeded, please try again later.')
def _call(
self,
@ -43,5 +74,19 @@ class SensitiveWordAvoidanceChain(Chain):
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
text = inputs[self.input_key]
output = self._check_sensitive_word(text)
return {self.output_key: output}
if self.sensitive_word_avoidance_rule.type == SensitiveWordAvoidanceRule.Type.KEYWORDS:
result = self._check_sensitive_word(text)
else:
result = self._check_moderation(text)
if not result:
raise SensitiveWordAvoidanceError(self.sensitive_word_avoidance_rule.canned_response)
return {self.output_key: text}
class SensitiveWordAvoidanceError(Exception):
def __init__(self, message):
super().__init__(message)
self.message = message

View File

@ -1,31 +1,32 @@
import json
import logging
import re
from typing import Optional, List, Union, Tuple
from typing import Optional, List, Union
from langchain.schema import BaseMessage
from requests.exceptions import ChunkedEncodingError
from core.agent.agent_executor import AgentExecuteResult, PlanningStrategy
from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
from core.callback_handler.llm_callback_handler import LLMCallbackHandler
from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceError
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
from core.model_providers.error import LLMBadRequestError
from core.memory.read_only_conversation_token_db_buffer_shared_memory import \
ReadOnlyConversationTokenDBBufferSharedMemory
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.message import PromptMessage, to_prompt_messages
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.llm.base import BaseLLM
from core.orchestrator_rule_parser import OrchestratorRuleParser
from core.prompt.prompt_builder import PromptBuilder
from core.prompt.prompt_template import JinjaPromptTemplate
from core.prompt.prompts import MORE_LIKE_THIS_GENERATE_PROMPT
from models.dataset import DocumentSegment, Dataset, Document
from models.model import App, AppModelConfig, Account, Conversation, Message, EndUser
class Completion:
@classmethod
def generate(cls, task_id: str, app: App, app_model_config: AppModelConfig, query: str, inputs: dict,
user: Union[Account, EndUser], conversation: Optional[Conversation], streaming: bool, is_override: bool = False):
user: Union[Account, EndUser], conversation: Optional[Conversation], streaming: bool,
is_override: bool = False, retriever_from: str = 'dev'):
"""
errors: ProviderTokenNotInitError
"""
@ -76,29 +77,53 @@ class Completion:
app_model_config=app_model_config
)
# parse sensitive_word_avoidance_chain
chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
sensitive_word_avoidance_chain = orchestrator_rule_parser.to_sensitive_word_avoidance_chain([chain_callback])
if sensitive_word_avoidance_chain:
query = sensitive_word_avoidance_chain.run(query)
# get agent executor
agent_executor = orchestrator_rule_parser.to_agent_executor(
conversation_message_task=conversation_message_task,
memory=memory,
rest_tokens=rest_tokens_for_context_and_memory,
chain_callback=chain_callback
)
# run agent executor
agent_execute_result = None
if agent_executor:
should_use_agent = agent_executor.should_use_agent(query)
if should_use_agent:
agent_execute_result = agent_executor.run(query)
# run the final llm
try:
# parse sensitive_word_avoidance_chain
chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
sensitive_word_avoidance_chain = orchestrator_rule_parser.to_sensitive_word_avoidance_chain(
final_model_instance, [chain_callback])
if sensitive_word_avoidance_chain:
try:
query = sensitive_word_avoidance_chain.run(query)
except SensitiveWordAvoidanceError as ex:
cls.run_final_llm(
model_instance=final_model_instance,
mode=app.mode,
app_model_config=app_model_config,
query=query,
inputs=inputs,
agent_execute_result=None,
conversation_message_task=conversation_message_task,
memory=memory,
fake_response=ex.message
)
return
# get agent executor
agent_executor = orchestrator_rule_parser.to_agent_executor(
conversation_message_task=conversation_message_task,
memory=memory,
rest_tokens=rest_tokens_for_context_and_memory,
chain_callback=chain_callback,
retriever_from=retriever_from
)
# run agent executor
agent_execute_result = None
if agent_executor:
should_use_agent = agent_executor.should_use_agent(query)
if should_use_agent:
agent_execute_result = agent_executor.run(query)
# When no extra pre prompt is specified,
# the output of the agent can be used directly as the main output content without calling LLM again
fake_response = None
if not app_model_config.pre_prompt and agent_execute_result and agent_execute_result.output \
and agent_execute_result.strategy not in [PlanningStrategy.ROUTER,
PlanningStrategy.REACT_ROUTER]:
fake_response = agent_execute_result.output
# run the final llm
cls.run_final_llm(
model_instance=final_model_instance,
mode=app.mode,
@ -107,7 +132,8 @@ class Completion:
inputs=inputs,
agent_execute_result=agent_execute_result,
conversation_message_task=conversation_message_task,
memory=memory
memory=memory,
fake_response=fake_response
)
except ConversationTaskStoppedException:
return
@ -118,17 +144,12 @@ class Completion:
return
@classmethod
def run_final_llm(cls, model_instance: BaseLLM, mode: str, app_model_config: AppModelConfig, query: str, inputs: dict,
def run_final_llm(cls, model_instance: BaseLLM, mode: str, app_model_config: AppModelConfig, query: str,
inputs: dict,
agent_execute_result: Optional[AgentExecuteResult],
conversation_message_task: ConversationMessageTask,
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory]):
# When no extra pre prompt is specified,
# the output of the agent can be used directly as the main output content without calling LLM again
fake_response = None
if not app_model_config.pre_prompt and agent_execute_result and agent_execute_result.output \
and agent_execute_result.strategy not in [PlanningStrategy.ROUTER, PlanningStrategy.REACT_ROUTER]:
fake_response = agent_execute_result.output
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory],
fake_response: Optional[str]):
# get llm prompt
prompt_messages, stop_words = model_instance.get_prompt(
mode=mode,
@ -150,7 +171,6 @@ class Completion:
callbacks=[LLMCallbackHandler(model_instance, conversation_message_task)],
fake_response=fake_response
)
return response
@classmethod

View File

@ -1,6 +1,6 @@
import decimal
import json
from typing import Optional, Union
import time
from typing import Optional, Union, List
from core.callback_handler.entity.agent_loop import AgentLoop
from core.callback_handler.entity.dataset_query import DatasetQueryObj
@ -15,13 +15,16 @@ from events.message_event import message_was_created
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import DatasetQuery
from models.model import AppModelConfig, Conversation, Account, Message, EndUser, App, MessageAgentThought, MessageChain
from models.model import AppModelConfig, Conversation, Account, Message, EndUser, App, MessageAgentThought, \
MessageChain, DatasetRetrieverResource
class ConversationMessageTask:
def __init__(self, task_id: str, app: App, app_model_config: AppModelConfig, user: Account,
inputs: dict, query: str, streaming: bool, model_instance: BaseLLM,
conversation: Optional[Conversation] = None, is_override: bool = False):
self.start_at = time.perf_counter()
self.task_id = task_id
self.app = app
@ -41,6 +44,8 @@ class ConversationMessageTask:
self.message = None
self.retriever_resource = None
self.model_dict = self.app_model_config.model_dict
self.provider_name = self.model_dict.get('provider')
self.model_name = self.model_dict.get('name')
@ -58,6 +63,7 @@ class ConversationMessageTask:
)
def init(self):
override_model_configs = None
if self.is_override:
override_model_configs = self.app_model_config.to_dict()
@ -137,7 +143,8 @@ class ConversationMessageTask:
db.session.flush()
def append_message_text(self, text: str):
self._pub_handler.pub_text(text)
if text is not None:
self._pub_handler.pub_text(text)
def save_message(self, llm_message: LLMMessage, by_stopped: bool = False):
message_tokens = llm_message.prompt_tokens
@ -156,11 +163,12 @@ class ConversationMessageTask:
self.message.message_tokens = message_tokens
self.message.message_unit_price = message_unit_price
self.message.message_price_unit = message_price_unit
self.message.answer = PromptBuilder.process_template(llm_message.completion.strip()) if llm_message.completion else ''
self.message.answer = PromptBuilder.process_template(
llm_message.completion.strip()) if llm_message.completion else ''
self.message.answer_tokens = answer_tokens
self.message.answer_unit_price = answer_unit_price
self.message.answer_price_unit = answer_price_unit
self.message.provider_response_latency = llm_message.latency
self.message.provider_response_latency = time.perf_counter() - self.start_at
self.message.total_price = total_price
db.session.commit()
@ -215,18 +223,18 @@ class ConversationMessageTask:
return message_agent_thought
def on_agent_end(self, message_agent_thought: MessageAgentThought, agent_model_instant: BaseLLM,
def on_agent_end(self, message_agent_thought: MessageAgentThought, agent_model_instance: BaseLLM,
agent_loop: AgentLoop):
agent_message_unit_price = agent_model_instant.get_tokens_unit_price(MessageType.HUMAN)
agent_message_price_unit = agent_model_instant.get_price_unit(MessageType.HUMAN)
agent_answer_unit_price = agent_model_instant.get_tokens_unit_price(MessageType.ASSISTANT)
agent_answer_price_unit = agent_model_instant.get_price_unit(MessageType.ASSISTANT)
agent_message_unit_price = agent_model_instance.get_tokens_unit_price(MessageType.HUMAN)
agent_message_price_unit = agent_model_instance.get_price_unit(MessageType.HUMAN)
agent_answer_unit_price = agent_model_instance.get_tokens_unit_price(MessageType.ASSISTANT)
agent_answer_price_unit = agent_model_instance.get_price_unit(MessageType.ASSISTANT)
loop_message_tokens = agent_loop.prompt_tokens
loop_answer_tokens = agent_loop.completion_tokens
loop_message_total_price = agent_model_instant.calc_tokens_price(loop_message_tokens, MessageType.HUMAN)
loop_answer_total_price = agent_model_instant.calc_tokens_price(loop_answer_tokens, MessageType.ASSISTANT)
loop_message_total_price = agent_model_instance.calc_tokens_price(loop_message_tokens, MessageType.HUMAN)
loop_answer_total_price = agent_model_instance.calc_tokens_price(loop_answer_tokens, MessageType.ASSISTANT)
loop_total_price = loop_message_total_price + loop_answer_total_price
message_agent_thought.observation = agent_loop.tool_output
@ -240,7 +248,7 @@ class ConversationMessageTask:
message_agent_thought.latency = agent_loop.latency
message_agent_thought.tokens = agent_loop.prompt_tokens + agent_loop.completion_tokens
message_agent_thought.total_price = loop_total_price
message_agent_thought.currency = agent_model_instant.get_currency()
message_agent_thought.currency = agent_model_instance.get_currency()
db.session.flush()
def on_dataset_query_end(self, dataset_query_obj: DatasetQueryObj):
@ -255,7 +263,36 @@ class ConversationMessageTask:
db.session.add(dataset_query)
def on_dataset_query_finish(self, resource: List):
if resource and len(resource) > 0:
for item in resource:
dataset_retriever_resource = DatasetRetrieverResource(
message_id=self.message.id,
position=item.get('position'),
dataset_id=item.get('dataset_id'),
dataset_name=item.get('dataset_name'),
document_id=item.get('document_id'),
document_name=item.get('document_name'),
data_source_type=item.get('data_source_type'),
segment_id=item.get('segment_id'),
score=item.get('score') if 'score' in item else None,
hit_count=item.get('hit_count') if 'hit_count' else None,
word_count=item.get('word_count') if 'word_count' in item else None,
segment_position=item.get('segment_position') if 'segment_position' in item else None,
index_node_hash=item.get('index_node_hash') if 'index_node_hash' in item else None,
content=item.get('content'),
retriever_from=item.get('retriever_from'),
created_by=self.user.id
)
db.session.add(dataset_retriever_resource)
db.session.flush()
self.retriever_resource = resource
def message_end(self):
self._pub_handler.pub_message_end(self.retriever_resource)
def end(self):
self._pub_handler.pub_message_end(self.retriever_resource)
self._pub_handler.pub_end()
@ -349,6 +386,23 @@ class PubHandler:
self.pub_end()
raise ConversationTaskStoppedException()
def pub_message_end(self, retriever_resource: List):
content = {
'event': 'message_end',
'data': {
'task_id': self._task_id,
'message_id': self._message.id,
'mode': self._conversation.mode,
'conversation_id': self._conversation.id
}
}
if retriever_resource:
content['data']['retriever_resources'] = retriever_resource
redis_client.publish(self._channel, json.dumps(content))
if self._is_stopped():
self.pub_end()
raise ConversationTaskStoppedException()
def pub_end(self):
content = {

View File

@ -6,7 +6,7 @@ import requests
from langchain.document_loaders import TextLoader, Docx2txtLoader
from langchain.schema import Document
from core.data_loader.loader.csv import CSVLoader
from core.data_loader.loader.csv_loader import CSVLoader
from core.data_loader.loader.excel import ExcelLoader
from core.data_loader.loader.html import HTMLLoader
from core.data_loader.loader.markdown import MarkdownLoader
@ -47,17 +47,18 @@ class FileExtractor:
upload_file: Optional[UploadFile] = None) -> Union[List[Document] | str]:
input_file = Path(file_path)
delimiter = '\n'
if input_file.suffix == '.xlsx':
file_extension = input_file.suffix.lower()
if file_extension == '.xlsx':
loader = ExcelLoader(file_path)
elif input_file.suffix == '.pdf':
elif file_extension == '.pdf':
loader = PdfLoader(file_path, upload_file=upload_file)
elif input_file.suffix in ['.md', '.markdown']:
elif file_extension in ['.md', '.markdown']:
loader = MarkdownLoader(file_path, autodetect_encoding=True)
elif input_file.suffix in ['.htm', '.html']:
elif file_extension in ['.htm', '.html']:
loader = HTMLLoader(file_path)
elif input_file.suffix == '.docx':
elif file_extension == '.docx':
loader = Docx2txtLoader(file_path)
elif input_file.suffix == '.csv':
elif file_extension == '.csv':
loader = CSVLoader(file_path, autodetect_encoding=True)
else:
# txt

View File

@ -1,10 +1,10 @@
import logging
import csv
from typing import Optional, Dict, List
from langchain.document_loaders import CSVLoader as LCCSVLoader
from langchain.document_loaders.helpers import detect_file_encodings
from models.dataset import Document
from langchain.schema import Document
logger = logging.getLogger(__name__)

View File

@ -30,6 +30,8 @@ class ExcelLoader(BaseLoader):
wb = load_workbook(filename=self._file_path, read_only=True)
# loop over all sheets
for sheet in wb:
if 'A1:A1' == sheet.calculate_dimension():
sheet.reset_dimensions()
for row in sheet.iter_rows(values_only=True):
if all(v is None for v in row):
continue
@ -38,7 +40,7 @@ class ExcelLoader(BaseLoader):
else:
row_dict = dict(zip(keys, list(map(str, row))))
row_dict = {k: v for k, v in row_dict.items() if v}
item = ''.join(f'{k}:{v}\n' for k, v in row_dict.items())
item = ''.join(f'{k}:{v};' for k, v in row_dict.items())
document = Document(page_content=item, metadata={'source': self._file_path})
data.append(document)

View File

@ -67,12 +67,13 @@ class DatesetDocumentStore:
if max_position is None:
max_position = 0
embedding_model = ModelFactory.get_embedding_model(
tenant_id=self._dataset.tenant_id,
model_provider_name=self._dataset.embedding_model_provider,
model_name=self._dataset.embedding_model
)
embedding_model = None
if self._dataset.indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=self._dataset.tenant_id,
model_provider_name=self._dataset.embedding_model_provider,
model_name=self._dataset.embedding_model
)
for doc in docs:
if not isinstance(doc, Document):
@ -88,7 +89,7 @@ class DatesetDocumentStore:
)
# calc embedding use tokens
tokens = embedding_model.get_num_tokens(doc.page_content)
tokens = embedding_model.get_num_tokens(doc.page_content) if embedding_model else 0
if not segment_document:
max_position += 1

View File

@ -1,3 +1,4 @@
import json
import logging
from langchain.schema import OutputParserException
@ -22,18 +23,25 @@ class LLMGenerator:
if len(query) > 2000:
query = query[:300] + "...[TRUNCATED]..." + query[-300:]
prompt = prompt.format(query=query)
query = query.replace("\n", " ")
prompt += query + "\n"
model_instance = ModelFactory.get_text_generation_model(
tenant_id=tenant_id,
model_kwargs=ModelKwargs(
max_tokens=50
temperature=1,
max_tokens=100
)
)
prompts = [PromptMessage(content=prompt)]
response = model_instance.run(prompts)
answer = response.content
result_dict = json.loads(answer)
answer = result_dict['Your Output']
return answer.strip()
@classmethod

View File

@ -0,0 +1,34 @@
import logging
import openai
from core.model_providers.error import LLMBadRequestError
from core.model_providers.providers.base import BaseModelProvider
from core.model_providers.providers.hosted import hosted_config, hosted_model_providers
from models.provider import ProviderType
def check_moderation(model_provider: BaseModelProvider, text: str) -> bool:
if hosted_config.moderation.enabled is True and hosted_model_providers.openai:
if model_provider.provider.provider_type == ProviderType.SYSTEM.value \
and model_provider.provider_name in hosted_config.moderation.providers:
# 2000 text per chunk
length = 2000
text_chunks = [text[i:i + length] for i in range(0, len(text), length)]
max_text_chunks = 32
chunks = [text_chunks[i:i + max_text_chunks] for i in range(0, len(text_chunks), max_text_chunks)]
for text_chunk in chunks:
try:
moderation_result = openai.Moderation.create(input=text_chunk,
api_key=hosted_model_providers.openai.api_key)
except Exception as ex:
logging.exception(ex)
raise LLMBadRequestError('Rate limit exceeded, please try again later.')
for result in moderation_result.results:
if result['flagged'] is True:
return False
return True

View File

@ -16,6 +16,10 @@ class BaseIndex(ABC):
def create(self, texts: list[Document], **kwargs) -> BaseIndex:
raise NotImplementedError
@abstractmethod
def create_with_collection_name(self, texts: list[Document], collection_name: str, **kwargs) -> BaseIndex:
raise NotImplementedError
@abstractmethod
def add_texts(self, texts: list[Document], **kwargs):
raise NotImplementedError
@ -28,6 +32,10 @@ class BaseIndex(ABC):
def delete_by_ids(self, ids: list[str]) -> None:
raise NotImplementedError
@abstractmethod
def delete_by_group_id(self, group_id: str) -> None:
raise NotImplementedError
@abstractmethod
def delete_by_document_id(self, document_id: str):
raise NotImplementedError

View File

@ -1,10 +1,18 @@
import json
from flask import current_app
from langchain.embeddings import OpenAIEmbeddings
from core.embedding.cached_embedding import CacheEmbedding
from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
from core.index.vector_index.vector_index import VectorIndex
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
from core.model_providers.models.entity.model_params import ModelKwargs
from core.model_providers.models.llm.openai_model import OpenAIModel
from core.model_providers.providers.openai_provider import OpenAIProvider
from models.dataset import Dataset
from models.provider import Provider, ProviderType
class IndexBuilder:
@ -35,4 +43,13 @@ class IndexBuilder:
)
)
else:
raise ValueError('Unknown indexing technique')
raise ValueError('Unknown indexing technique')
@classmethod
def get_default_high_quality_index(cls, dataset: Dataset):
embeddings = OpenAIEmbeddings(openai_api_key=' ')
return VectorIndex(
dataset=dataset,
config=current_app.config,
embeddings=embeddings
)

View File

@ -25,7 +25,33 @@ class KeywordTableIndex(BaseIndex):
keyword_table = {}
for text in texts:
keywords = keyword_table_handler.extract_keywords(text.page_content, self._config.max_keywords_per_chunk)
self._update_segment_keywords(text.metadata['doc_id'], list(keywords))
self._update_segment_keywords(self.dataset.id, text.metadata['doc_id'], list(keywords))
keyword_table = self._add_text_to_keyword_table(keyword_table, text.metadata['doc_id'], list(keywords))
dataset_keyword_table = DatasetKeywordTable(
dataset_id=self.dataset.id,
keyword_table=json.dumps({
'__type__': 'keyword_table',
'__data__': {
"index_id": self.dataset.id,
"summary": None,
"table": {}
}
}, cls=SetEncoder)
)
db.session.add(dataset_keyword_table)
db.session.commit()
self._save_dataset_keyword_table(keyword_table)
return self
def create_with_collection_name(self, texts: list[Document], collection_name: str, **kwargs) -> BaseIndex:
keyword_table_handler = JiebaKeywordTableHandler()
keyword_table = {}
for text in texts:
keywords = keyword_table_handler.extract_keywords(text.page_content, self._config.max_keywords_per_chunk)
self._update_segment_keywords(self.dataset.id, text.metadata['doc_id'], list(keywords))
keyword_table = self._add_text_to_keyword_table(keyword_table, text.metadata['doc_id'], list(keywords))
dataset_keyword_table = DatasetKeywordTable(
@ -52,7 +78,7 @@ class KeywordTableIndex(BaseIndex):
keyword_table = self._get_dataset_keyword_table()
for text in texts:
keywords = keyword_table_handler.extract_keywords(text.page_content, self._config.max_keywords_per_chunk)
self._update_segment_keywords(text.metadata['doc_id'], list(keywords))
self._update_segment_keywords(self.dataset.id, text.metadata['doc_id'], list(keywords))
keyword_table = self._add_text_to_keyword_table(keyword_table, text.metadata['doc_id'], list(keywords))
self._save_dataset_keyword_table(keyword_table)
@ -74,7 +100,7 @@ class KeywordTableIndex(BaseIndex):
DocumentSegment.document_id == document_id
).all()
ids = [segment.id for segment in segments]
ids = [segment.index_node_id for segment in segments]
keyword_table = self._get_dataset_keyword_table()
keyword_table = self._delete_ids_from_keyword_table(keyword_table, ids)
@ -120,6 +146,12 @@ class KeywordTableIndex(BaseIndex):
db.session.delete(dataset_keyword_table)
db.session.commit()
def delete_by_group_id(self, group_id: str) -> None:
dataset_keyword_table = self.dataset.dataset_keyword_table
if dataset_keyword_table:
db.session.delete(dataset_keyword_table)
db.session.commit()
def _save_dataset_keyword_table(self, keyword_table):
keyword_table_dict = {
'__type__': 'keyword_table',
@ -199,15 +231,18 @@ class KeywordTableIndex(BaseIndex):
return sorted_chunk_indices[: k]
def _update_segment_keywords(self, node_id: str, keywords: List[str]):
document_segment = db.session.query(DocumentSegment).filter(DocumentSegment.index_node_id == node_id).first()
def _update_segment_keywords(self, dataset_id: str, node_id: str, keywords: List[str]):
document_segment = db.session.query(DocumentSegment).filter(
DocumentSegment.dataset_id == dataset_id,
DocumentSegment.index_node_id == node_id
).first()
if document_segment:
document_segment.keywords = keywords
db.session.commit()
def create_segment_keywords(self, node_id: str, keywords: List[str]):
keyword_table = self._get_dataset_keyword_table()
self._update_segment_keywords(node_id, keywords)
self._update_segment_keywords(self.dataset.id, node_id, keywords)
keyword_table = self._add_text_to_keyword_table(keyword_table, node_id, keywords)
self._save_dataset_keyword_table(keyword_table)

View File

@ -10,17 +10,17 @@ from weaviate import UnexpectedStatusCodeException
from core.index.base import BaseIndex
from extensions.ext_database import db
from models.dataset import Dataset, DocumentSegment
from models.dataset import Dataset, DocumentSegment, DatasetCollectionBinding
from models.dataset import Document as DatasetDocument
class BaseVectorIndex(BaseIndex):
def __init__(self, dataset: Dataset, embeddings: Embeddings):
super().__init__(dataset)
self._embeddings = embeddings
self._vector_store = None
def get_type(self) -> str:
raise NotImplementedError
@ -110,6 +110,12 @@ class BaseVectorIndex(BaseIndex):
for node_id in ids:
vector_store.del_text(node_id)
def delete_by_group_id(self, group_id: str) -> None:
vector_store = self._get_vector_store()
vector_store = cast(self._get_vector_store_class(), vector_store)
vector_store.delete()
def delete(self) -> None:
vector_store = self._get_vector_store()
vector_store = cast(self._get_vector_store_class(), vector_store)
@ -143,7 +149,7 @@ class BaseVectorIndex(BaseIndex):
DocumentSegment.status == 'completed',
DocumentSegment.enabled == True
).all()
for segment in segments:
document = Document(
page_content=segment.content,
@ -173,3 +179,123 @@ class BaseVectorIndex(BaseIndex):
self.dataset = dataset
logging.info(f"Dataset {dataset.id} recreate successfully.")
def create_qdrant_dataset(self, dataset: Dataset):
logging.info(f"create_qdrant_dataset {dataset.id}")
try:
self.delete()
except UnexpectedStatusCodeException as e:
if e.status_code != 400:
# 400 means index not exists
raise e
dataset_documents = db.session.query(DatasetDocument).filter(
DatasetDocument.dataset_id == dataset.id,
DatasetDocument.indexing_status == 'completed',
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).all()
documents = []
for dataset_document in dataset_documents:
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.status == 'completed',
DocumentSegment.enabled == True
).all()
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)
documents.append(document)
if documents:
try:
self.create(documents)
except Exception as e:
raise e
logging.info(f"Dataset {dataset.id} recreate successfully.")
def update_qdrant_dataset(self, dataset: Dataset):
logging.info(f"update_qdrant_dataset {dataset.id}")
segment = db.session.query(DocumentSegment).filter(
DocumentSegment.dataset_id == dataset.id,
DocumentSegment.status == 'completed',
DocumentSegment.enabled == True
).first()
if segment:
try:
exist = self.text_exists(segment.index_node_id)
if exist:
index_struct = {
"type": 'qdrant',
"vector_store": {"class_prefix": dataset.index_struct_dict['vector_store']['class_prefix']}
}
dataset.index_struct = json.dumps(index_struct)
db.session.commit()
except Exception as e:
raise e
logging.info(f"Dataset {dataset.id} recreate successfully.")
def restore_dataset_in_one(self, dataset: Dataset, dataset_collection_binding: DatasetCollectionBinding):
logging.info(f"restore dataset in_one,_dataset {dataset.id}")
dataset_documents = db.session.query(DatasetDocument).filter(
DatasetDocument.dataset_id == dataset.id,
DatasetDocument.indexing_status == 'completed',
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).all()
documents = []
for dataset_document in dataset_documents:
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.status == 'completed',
DocumentSegment.enabled == True
).all()
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)
documents.append(document)
if documents:
try:
self.create_with_collection_name(documents, dataset_collection_binding.collection_name)
except Exception as e:
raise e
logging.info(f"Dataset {dataset.id} recreate successfully.")
def delete_original_collection(self, dataset: Dataset, dataset_collection_binding: DatasetCollectionBinding):
logging.info(f"delete original collection: {dataset.id}")
self.delete()
dataset.collection_binding_id = dataset_collection_binding.id
db.session.add(dataset)
db.session.commit()
logging.info(f"Dataset {dataset.id} recreate successfully.")

View File

@ -0,0 +1,127 @@
from typing import Optional, cast
from langchain.embeddings.base import Embeddings
from langchain.schema import Document, BaseRetriever
from langchain.vectorstores import VectorStore, milvus
from pydantic import BaseModel, root_validator
from core.index.base import BaseIndex
from core.index.vector_index.base import BaseVectorIndex
from core.vector_store.milvus_vector_store import MilvusVectorStore
from core.vector_store.weaviate_vector_store import WeaviateVectorStore
from models.dataset import Dataset
class MilvusConfig(BaseModel):
endpoint: str
user: str
password: str
batch_size: int = 100
@root_validator()
def validate_config(cls, values: dict) -> dict:
if not values['endpoint']:
raise ValueError("config MILVUS_ENDPOINT is required")
if not values['user']:
raise ValueError("config MILVUS_USER is required")
if not values['password']:
raise ValueError("config MILVUS_PASSWORD is required")
return values
class MilvusVectorIndex(BaseVectorIndex):
def __init__(self, dataset: Dataset, config: MilvusConfig, embeddings: Embeddings):
super().__init__(dataset, embeddings)
self._client = self._init_client(config)
def get_type(self) -> str:
return 'milvus'
def get_index_name(self, dataset: Dataset) -> str:
if self.dataset.index_struct_dict:
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix']
if not class_prefix.endswith('_Node'):
# original class_prefix
class_prefix += '_Node'
return class_prefix
dataset_id = dataset.id
return "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
def to_index_struct(self) -> dict:
return {
"type": self.get_type(),
"vector_store": {"class_prefix": self.get_index_name(self.dataset)}
}
def create(self, texts: list[Document], **kwargs) -> BaseIndex:
uuids = self._get_uuids(texts)
self._vector_store = WeaviateVectorStore.from_documents(
texts,
self._embeddings,
client=self._client,
index_name=self.get_index_name(self.dataset),
uuids=uuids,
by_text=False
)
return self
def create_with_collection_name(self, texts: list[Document], collection_name: str, **kwargs) -> BaseIndex:
uuids = self._get_uuids(texts)
self._vector_store = WeaviateVectorStore.from_documents(
texts,
self._embeddings,
client=self._client,
index_name=collection_name,
uuids=uuids,
by_text=False
)
return self
def _get_vector_store(self) -> VectorStore:
"""Only for created index."""
if self._vector_store:
return self._vector_store
attributes = ['doc_id', 'dataset_id', 'document_id']
if self._is_origin():
attributes = ['doc_id']
return WeaviateVectorStore(
client=self._client,
index_name=self.get_index_name(self.dataset),
text_key='text',
embedding=self._embeddings,
attributes=attributes,
by_text=False
)
def _get_vector_store_class(self) -> type:
return MilvusVectorStore
def delete_by_document_id(self, document_id: str):
if self._is_origin():
self.recreate_dataset(self.dataset)
return
vector_store = self._get_vector_store()
vector_store = cast(self._get_vector_store_class(), vector_store)
vector_store.del_texts({
"operator": "Equal",
"path": ["document_id"],
"valueText": document_id
})
def _is_origin(self):
if self.dataset.index_struct_dict:
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix']
if not class_prefix.endswith('_Node'):
# original class_prefix
return True
return False

File diff suppressed because it is too large Load Diff

View File

@ -6,18 +6,20 @@ from langchain.embeddings.base import Embeddings
from langchain.schema import Document, BaseRetriever
from langchain.vectorstores import VectorStore
from pydantic import BaseModel
from qdrant_client.http.models import HnswConfigDiff
from core.index.base import BaseIndex
from core.index.vector_index.base import BaseVectorIndex
from core.vector_store.qdrant_vector_store import QdrantVectorStore
from models.dataset import Dataset
from extensions.ext_database import db
from models.dataset import Dataset, DatasetCollectionBinding
class QdrantConfig(BaseModel):
endpoint: str
api_key: Optional[str]
root_path: Optional[str]
def to_qdrant_params(self):
if self.endpoint and self.endpoint.startswith('path:'):
path = self.endpoint.replace('path:', '')
@ -43,16 +45,26 @@ class QdrantVectorIndex(BaseVectorIndex):
return 'qdrant'
def get_index_name(self, dataset: Dataset) -> str:
if self.dataset.index_struct_dict:
return self.dataset.index_struct_dict['vector_store']['collection_name']
if dataset.collection_binding_id:
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.id == dataset.collection_binding_id). \
one_or_none()
if dataset_collection_binding:
return dataset_collection_binding.collection_name
else:
raise ValueError('Dataset Collection Bindings is not exist!')
else:
if self.dataset.index_struct_dict:
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix']
return class_prefix
dataset_id = dataset.id
return "Index_" + dataset_id.replace("-", "_")
dataset_id = dataset.id
return "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
def to_index_struct(self) -> dict:
return {
"type": self.get_type(),
"vector_store": {"collection_name": self.get_index_name(self.dataset)}
"vector_store": {"class_prefix": self.get_index_name(self.dataset)}
}
def create(self, texts: list[Document], **kwargs) -> BaseIndex:
@ -62,7 +74,28 @@ class QdrantVectorIndex(BaseVectorIndex):
self._embeddings,
collection_name=self.get_index_name(self.dataset),
ids=uuids,
content_payload_key='text',
content_payload_key='page_content',
group_id=self.dataset.id,
group_payload_key='group_id',
hnsw_config=HnswConfigDiff(m=0, payload_m=16, ef_construct=100, full_scan_threshold=10000,
max_indexing_threads=0, on_disk=False),
**self._client_config.to_qdrant_params()
)
return self
def create_with_collection_name(self, texts: list[Document], collection_name: str, **kwargs) -> BaseIndex:
uuids = self._get_uuids(texts)
self._vector_store = QdrantVectorStore.from_documents(
texts,
self._embeddings,
collection_name=collection_name,
ids=uuids,
content_payload_key='page_content',
group_id=self.dataset.id,
group_payload_key='group_id',
hnsw_config=HnswConfigDiff(m=0, payload_m=16, ef_construct=100, full_scan_threshold=10000,
max_indexing_threads=0, on_disk=False),
**self._client_config.to_qdrant_params()
)
@ -72,7 +105,7 @@ class QdrantVectorIndex(BaseVectorIndex):
"""Only for created index."""
if self._vector_store:
return self._vector_store
attributes = ['doc_id', 'dataset_id', 'document_id']
client = qdrant_client.QdrantClient(
**self._client_config.to_qdrant_params()
)
@ -81,16 +114,15 @@ class QdrantVectorIndex(BaseVectorIndex):
client=client,
collection_name=self.get_index_name(self.dataset),
embeddings=self._embeddings,
content_payload_key='text'
content_payload_key='page_content',
group_id=self.dataset.id,
group_payload_key='group_id'
)
def _get_vector_store_class(self) -> type:
return QdrantVectorStore
def delete_by_document_id(self, document_id: str):
if self._is_origin():
self.recreate_dataset(self.dataset)
return
vector_store = self._get_vector_store()
vector_store = cast(self._get_vector_store_class(), vector_store)
@ -106,10 +138,42 @@ class QdrantVectorIndex(BaseVectorIndex):
],
))
def delete_by_ids(self, ids: list[str]) -> None:
vector_store = self._get_vector_store()
vector_store = cast(self._get_vector_store_class(), vector_store)
from qdrant_client.http import models
for node_id in ids:
vector_store.del_texts(models.Filter(
must=[
models.FieldCondition(
key="metadata.doc_id",
match=models.MatchValue(value=node_id),
),
],
))
def delete_by_group_id(self, group_id: str) -> None:
vector_store = self._get_vector_store()
vector_store = cast(self._get_vector_store_class(), vector_store)
from qdrant_client.http import models
vector_store.del_texts(models.Filter(
must=[
models.FieldCondition(
key="group_id",
match=models.MatchValue(value=group_id),
),
],
))
def _is_origin(self):
if self.dataset.index_struct_dict:
class_prefix: str = self.dataset.index_struct_dict['vector_store']['collection_name']
if class_prefix.startswith('Vector_'):
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix']
if not class_prefix.endswith('_Node'):
# original class_prefix
return True

View File

@ -91,6 +91,20 @@ class WeaviateVectorIndex(BaseVectorIndex):
return self
def create_with_collection_name(self, texts: list[Document], collection_name: str, **kwargs) -> BaseIndex:
uuids = self._get_uuids(texts)
self._vector_store = WeaviateVectorStore.from_documents(
texts,
self._embeddings,
client=self._client,
index_name=self.get_index_name(self.dataset),
uuids=uuids,
by_text=False
)
return self
def _get_vector_store(self) -> VectorStore:
"""Only for created index."""
if self._vector_store:

View File

@ -217,25 +217,29 @@ class IndexingRunner:
db.session.commit()
def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None) -> dict:
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
indexing_technique: str = 'economy') -> dict:
"""
Estimate the indexing for the document.
"""
embedding_model = None
if dataset_id:
dataset = Dataset.query.filter_by(
id=dataset_id
).first()
if not dataset:
raise ValueError('Dataset not found.')
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
else:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=tenant_id
)
if indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=tenant_id
)
tokens = 0
preview_texts = []
total_segments = 0
@ -263,8 +267,8 @@ class IndexingRunner:
for document in documents:
if len(preview_texts) < 5:
preview_texts.append(document.page_content)
tokens += embedding_model.get_num_tokens(self.filter_string(document.page_content))
if indexing_technique == 'high_quality' or embedding_model:
tokens += embedding_model.get_num_tokens(self.filter_string(document.page_content))
if doc_form and doc_form == 'qa_model':
text_generation_model = ModelFactory.get_text_generation_model(
@ -286,32 +290,35 @@ class IndexingRunner:
return {
"total_segments": total_segments,
"tokens": tokens,
"total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)),
"currency": embedding_model.get_currency(),
"total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0,
"currency": embedding_model.get_currency() if embedding_model else 'USD',
"preview": preview_texts
}
def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict,
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None) -> dict:
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
indexing_technique: str = 'economy') -> dict:
"""
Estimate the indexing for the document.
"""
embedding_model = None
if dataset_id:
dataset = Dataset.query.filter_by(
id=dataset_id
).first()
if not dataset:
raise ValueError('Dataset not found.')
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
else:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=tenant_id
)
if indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=tenant_id
)
# load data from notion
tokens = 0
preview_texts = []
@ -356,8 +363,8 @@ class IndexingRunner:
for document in documents:
if len(preview_texts) < 5:
preview_texts.append(document.page_content)
tokens += embedding_model.get_num_tokens(document.page_content)
if indexing_technique == 'high_quality' or embedding_model:
tokens += embedding_model.get_num_tokens(document.page_content)
if doc_form and doc_form == 'qa_model':
text_generation_model = ModelFactory.get_text_generation_model(
@ -379,8 +386,8 @@ class IndexingRunner:
return {
"total_segments": total_segments,
"tokens": tokens,
"total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)),
"currency": embedding_model.get_currency(),
"total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0,
"currency": embedding_model.get_currency() if embedding_model else 'USD',
"preview": preview_texts
}
@ -399,7 +406,8 @@ class IndexingRunner:
filter(UploadFile.id == data_source_info['upload_file_id']). \
one_or_none()
text_docs = FileExtractor.load(file_detail)
if file_detail:
text_docs = FileExtractor.load(file_detail)
elif dataset_document.data_source_type == 'notion_import':
loader = NotionLoader.from_document(dataset_document)
text_docs = loader.load()
@ -525,12 +533,13 @@ class IndexingRunner:
documents = splitter.split_documents([text_doc])
split_documents = []
for document_node in documents:
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document_node.page_content)
document_node.metadata['doc_id'] = doc_id
document_node.metadata['doc_hash'] = hash
split_documents.append(document_node)
if document_node.page_content.strip():
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document_node.page_content)
document_node.metadata['doc_id'] = doc_id
document_node.metadata['doc_hash'] = hash
split_documents.append(document_node)
all_documents.extend(split_documents)
# processing qa document
if document_form == 'qa_model':
@ -656,12 +665,13 @@ class IndexingRunner:
"""
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
embedding_model = None
if dataset.indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
# chunk nodes by chunk size
indexing_start_at = time.perf_counter()
@ -671,11 +681,11 @@ class IndexingRunner:
# check document is paused
self._check_document_paused_status(dataset_document.id)
chunk_documents = documents[i:i + chunk_size]
tokens += sum(
embedding_model.get_num_tokens(document.page_content)
for document in chunk_documents
)
if dataset.indexing_technique == 'high_quality' or embedding_model:
tokens += sum(
embedding_model.get_num_tokens(document.page_content)
for document in chunk_documents
)
# save vector index
if vector_index:

View File

@ -8,6 +8,7 @@ from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.embedding.base import BaseEmbedding
from core.model_providers.models.entity.model_params import ModelKwargs, ModelType
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.moderation.base import BaseModeration
from core.model_providers.models.speech2text.base import BaseSpeech2Text
from extensions.ext_database import db
from models.provider import TenantDefaultModel
@ -180,7 +181,7 @@ class ModelFactory:
def get_moderation_model(cls,
tenant_id: str,
model_provider_name: str,
model_name: str) -> Optional[BaseProviderModel]:
model_name: str) -> Optional[BaseModeration]:
"""
get moderation model.

View File

@ -45,6 +45,9 @@ class ModelProviderFactory:
elif provider_name == 'wenxin':
from core.model_providers.providers.wenxin_provider import WenxinProvider
return WenxinProvider
elif provider_name == 'zhipuai':
from core.model_providers.providers.zhipuai_provider import ZhipuAIProvider
return ZhipuAIProvider
elif provider_name == 'chatglm':
from core.model_providers.providers.chatglm_provider import ChatGLMProvider
return ChatGLMProvider
@ -63,6 +66,9 @@ class ModelProviderFactory:
elif provider_name == 'openllm':
from core.model_providers.providers.openllm_provider import OpenLLMProvider
return OpenLLMProvider
elif provider_name == 'localai':
from core.model_providers.providers.localai_provider import LocalAIProvider
return LocalAIProvider
else:
raise NotImplementedError

View File

@ -0,0 +1,29 @@
from langchain.embeddings import LocalAIEmbeddings
from replicate.exceptions import ModelError, ReplicateError
from core.model_providers.error import LLMBadRequestError
from core.model_providers.providers.base import BaseModelProvider
from core.model_providers.models.embedding.base import BaseEmbedding
class LocalAIEmbedding(BaseEmbedding):
def __init__(self, model_provider: BaseModelProvider, name: str):
credentials = model_provider.get_model_credentials(
model_name=name,
model_type=self.type
)
client = LocalAIEmbeddings(
model=name,
openai_api_key="1",
openai_api_base=credentials['server_url'],
)
super().__init__(model_provider, client, name)
def handle_exceptions(self, ex: Exception) -> Exception:
if isinstance(ex, (ModelError, ReplicateError)):
return LLMBadRequestError(f"LocalAI embedding: {str(ex)}")
else:
return ex

View File

@ -0,0 +1,22 @@
from core.model_providers.error import LLMBadRequestError
from core.model_providers.providers.base import BaseModelProvider
from core.model_providers.models.embedding.base import BaseEmbedding
from core.third_party.langchain.embeddings.zhipuai_embedding import ZhipuAIEmbeddings
class ZhipuAIEmbedding(BaseEmbedding):
def __init__(self, model_provider: BaseModelProvider, name: str):
credentials = model_provider.get_model_credentials(
model_name=name,
model_type=self.type
)
client = ZhipuAIEmbeddings(
model=name,
**credentials,
)
super().__init__(model_provider, client, name)
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"ZhipuAI embedding: {str(ex)}")

View File

@ -8,6 +8,7 @@ class LLMRunResult(BaseModel):
content: str
prompt_tokens: int
completion_tokens: int
source: list = None
class MessageType(enum.Enum):

View File

@ -49,6 +49,7 @@ class KwargRule(Generic[T], BaseModel):
max: Optional[T] = None
default: Optional[T] = None
alias: Optional[str] = None
precision: Optional[int] = None
class ModelKwargsRules(BaseModel):

View File

@ -1,11 +1,8 @@
import decimal
import logging
from functools import wraps
from typing import List, Optional, Any
import anthropic
from langchain.callbacks.manager import Callbacks
from langchain.chat_models import ChatAnthropic
from langchain.schema import LLMResult
from core.model_providers.error import LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError, \
@ -13,6 +10,7 @@ from core.model_providers.error import LLMBadRequestError, LLMAPIConnectionError
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage, MessageType
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
from core.third_party.langchain.llms.anthropic_llm import AnthropicLLM
class AnthropicModel(BaseLLM):
@ -20,7 +18,7 @@ class AnthropicModel(BaseLLM):
def _init_client(self) -> Any:
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
return ChatAnthropic(
return AnthropicLLM(
model=self.name,
streaming=self.streaming,
callbacks=self.callbacks,
@ -75,7 +73,7 @@ class AnthropicModel(BaseLLM):
else:
return ex
@classmethod
def support_streaming(cls):
@property
def support_streaming(self):
return True

View File

@ -141,6 +141,6 @@ class AzureOpenAIModel(BaseLLM):
else:
return ex
@classmethod
def support_streaming(cls):
return True
@property
def support_streaming(self):
return True

View File

@ -10,6 +10,7 @@ from langchain.memory.chat_memory import BaseChatMemory
from langchain.schema import LLMResult, SystemMessage, AIMessage, HumanMessage, BaseMessage, ChatGeneration
from core.callback_handler.std_out_callback_handler import DifyStreamingStdOutCallbackHandler, DifyStdOutCallbackHandler
from core.helper import moderation
from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.entity.message import PromptMessage, MessageType, LLMRunResult, to_prompt_messages
from core.model_providers.models.entity.model_params import ModelType, ModelKwargs, ModelMode, ModelKwargsRules
@ -116,6 +117,15 @@ class BaseLLM(BaseProviderModel):
:param callbacks:
:return:
"""
moderation_result = moderation.check_moderation(
self.model_provider,
"\n".join([message.content for message in messages])
)
if not moderation_result:
kwargs['fake_response'] = "I apologize for any confusion, " \
"but I'm an AI assistant to be helpful, harmless, and honest."
if self.deduct_quota:
self.model_provider.check_quota_over_limit()
@ -138,7 +148,7 @@ class BaseLLM(BaseProviderModel):
result = self._run(
messages=messages,
stop=stop,
callbacks=callbacks if not (self.streaming and not self.support_streaming()) else None,
callbacks=callbacks if not (self.streaming and not self.support_streaming) else None,
**kwargs
)
except Exception as ex:
@ -149,7 +159,7 @@ class BaseLLM(BaseProviderModel):
else:
completion_content = result.generations[0][0].text
if self.streaming and not self.support_streaming():
if self.streaming and not self.support_streaming:
# use FakeLLM to simulate streaming when current model not support streaming but streaming is True
prompts = self._get_prompt_from_messages(messages, ModelMode.CHAT)
fake_llm = FakeLLM(
@ -298,8 +308,8 @@ class BaseLLM(BaseProviderModel):
else:
self.client.callbacks.extend(callbacks)
@classmethod
def support_streaming(cls):
@property
def support_streaming(self):
return False
def get_prompt(self, mode: str,
@ -342,7 +352,7 @@ class BaseLLM(BaseProviderModel):
if order == 'context_prompt':
prompt += context_prompt_content
elif order == 'pre_prompt':
prompt += (pre_prompt_content + '\n\n') if pre_prompt_content else ''
prompt += pre_prompt_content
query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'

View File

@ -61,7 +61,3 @@ class ChatGLMModel(BaseLLM):
return LLMBadRequestError(f"ChatGLM: {str(ex)}")
else:
return ex
@classmethod
def support_streaming(cls):
return False

View File

@ -1,6 +1,5 @@
from typing import List, Optional, Any
from langchain import HuggingFaceHub
from langchain.callbacks.manager import Callbacks
from langchain.schema import LLMResult
@ -9,6 +8,7 @@ from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
from core.third_party.langchain.llms.huggingface_endpoint_llm import HuggingFaceEndpointLLM
from core.third_party.langchain.llms.huggingface_hub_llm import HuggingFaceHubLLM
class HuggingfaceHubModel(BaseLLM):
@ -17,15 +17,21 @@ class HuggingfaceHubModel(BaseLLM):
def _init_client(self) -> Any:
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
if self.credentials['huggingfacehub_api_type'] == 'inference_endpoints':
streaming = self.streaming
if 'baichuan' in self.name.lower():
streaming = False
client = HuggingFaceEndpointLLM(
endpoint_url=self.credentials['huggingfacehub_endpoint_url'],
task=self.credentials['task_type'],
model_kwargs=provider_model_kwargs,
huggingfacehub_api_token=self.credentials['huggingfacehub_api_token'],
callbacks=self.callbacks
callbacks=self.callbacks,
streaming=streaming
)
else:
client = HuggingFaceHub(
client = HuggingFaceHubLLM(
repo_id=self.name,
task=self.credentials['task_type'],
model_kwargs=provider_model_kwargs,
@ -76,7 +82,12 @@ class HuggingfaceHubModel(BaseLLM):
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"Huggingface Hub: {str(ex)}")
@classmethod
def support_streaming(cls):
return False
@property
def support_streaming(self):
if self.credentials['huggingfacehub_api_type'] == 'inference_endpoints':
if 'baichuan' in self.name.lower():
return False
return True
else:
return False

View File

@ -0,0 +1,131 @@
import logging
from typing import List, Optional, Any
import openai
from langchain.callbacks.manager import Callbacks
from langchain.schema import LLMResult, get_buffer_string
from core.model_providers.error import LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError, \
LLMRateLimitError, LLMAuthorizationError
from core.model_providers.providers.base import BaseModelProvider
from core.third_party.langchain.llms.chat_open_ai import EnhanceChatOpenAI
from core.third_party.langchain.llms.open_ai import EnhanceOpenAI
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
class LocalAIModel(BaseLLM):
def __init__(self, model_provider: BaseModelProvider,
name: str,
model_kwargs: ModelKwargs,
streaming: bool = False,
callbacks: Callbacks = None):
credentials = model_provider.get_model_credentials(
model_name=name,
model_type=self.type
)
if credentials['completion_type'] == 'chat_completion':
self.model_mode = ModelMode.CHAT
else:
self.model_mode = ModelMode.COMPLETION
super().__init__(model_provider, name, model_kwargs, streaming, callbacks)
def _init_client(self) -> Any:
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
if self.model_mode == ModelMode.COMPLETION:
client = EnhanceOpenAI(
model_name=self.name,
streaming=self.streaming,
callbacks=self.callbacks,
request_timeout=60,
openai_api_key="1",
openai_api_base=self.credentials['server_url'] + '/v1',
**provider_model_kwargs
)
else:
extra_model_kwargs = {
'top_p': provider_model_kwargs.get('top_p')
}
client = EnhanceChatOpenAI(
model_name=self.name,
temperature=provider_model_kwargs.get('temperature'),
max_tokens=provider_model_kwargs.get('max_tokens'),
model_kwargs=extra_model_kwargs,
streaming=self.streaming,
callbacks=self.callbacks,
request_timeout=60,
openai_api_key="1",
openai_api_base=self.credentials['server_url'] + '/v1'
)
return client
def _run(self, messages: List[PromptMessage],
stop: Optional[List[str]] = None,
callbacks: Callbacks = None,
**kwargs) -> LLMResult:
"""
run predict by prompt messages and stop words.
:param messages:
:param stop:
:param callbacks:
:return:
"""
prompts = self._get_prompt_from_messages(messages)
return self._client.generate([prompts], stop, callbacks)
def get_num_tokens(self, messages: List[PromptMessage]) -> int:
"""
get num tokens of prompt messages.
:param messages:
:return:
"""
prompts = self._get_prompt_from_messages(messages)
if isinstance(prompts, str):
return self._client.get_num_tokens(prompts)
else:
return max(sum([self._client.get_num_tokens(get_buffer_string([m])) for m in prompts]) - len(prompts), 0)
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
if self.model_mode == ModelMode.COMPLETION:
for k, v in provider_model_kwargs.items():
if hasattr(self.client, k):
setattr(self.client, k, v)
else:
extra_model_kwargs = {
'top_p': provider_model_kwargs.get('top_p')
}
self.client.temperature = provider_model_kwargs.get('temperature')
self.client.max_tokens = provider_model_kwargs.get('max_tokens')
self.client.model_kwargs = extra_model_kwargs
def handle_exceptions(self, ex: Exception) -> Exception:
if isinstance(ex, openai.error.InvalidRequestError):
logging.warning("Invalid request to LocalAI API.")
return LLMBadRequestError(str(ex))
elif isinstance(ex, openai.error.APIConnectionError):
logging.warning("Failed to connect to LocalAI API.")
return LLMAPIConnectionError(ex.__class__.__name__ + ":" + str(ex))
elif isinstance(ex, (openai.error.APIError, openai.error.ServiceUnavailableError, openai.error.Timeout)):
logging.warning("LocalAI service unavailable.")
return LLMAPIUnavailableError(ex.__class__.__name__ + ":" + str(ex))
elif isinstance(ex, openai.error.RateLimitError):
return LLMRateLimitError(str(ex))
elif isinstance(ex, openai.error.AuthenticationError):
return LLMAuthorizationError(str(ex))
elif isinstance(ex, openai.error.OpenAIError):
return LLMBadRequestError(ex.__class__.__name__ + ":" + str(ex))
else:
return ex
@classmethod
def support_streaming(cls):
return True

View File

@ -17,6 +17,7 @@ from core.model_providers.models.entity.model_params import ModelMode, ModelKwar
from models.provider import ProviderType, ProviderQuotaType
COMPLETION_MODELS = [
'gpt-3.5-turbo-instruct', # 4,096 tokens
'text-davinci-003', # 4,097 tokens
]
@ -31,6 +32,7 @@ MODEL_MAX_TOKENS = {
'gpt-4': 8192,
'gpt-4-32k': 32768,
'gpt-3.5-turbo': 4096,
'gpt-3.5-turbo-instruct': 8192,
'gpt-3.5-turbo-16k': 16384,
'text-davinci-003': 4097,
}
@ -154,8 +156,8 @@ class OpenAIModel(BaseLLM):
else:
return ex
@classmethod
def support_streaming(cls):
@property
def support_streaming(self):
return True
# def is_model_valid_or_raise(self):

View File

@ -63,7 +63,3 @@ class OpenLLMModel(BaseLLM):
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"OpenLLM: {str(ex)}")
@classmethod
def support_streaming(cls):
return False

View File

@ -91,6 +91,6 @@ class ReplicateModel(BaseLLM):
else:
return ex
@classmethod
def support_streaming(cls):
return True
@property
def support_streaming(self):
return True

View File

@ -65,6 +65,6 @@ class SparkModel(BaseLLM):
else:
return ex
@classmethod
def support_streaming(cls):
return True
@property
def support_streaming(self):
return True

View File

@ -69,6 +69,6 @@ class TongyiModel(BaseLLM):
else:
return ex
@classmethod
def support_streaming(cls):
@property
def support_streaming(self):
return True

View File

@ -57,7 +57,3 @@ class WenxinModel(BaseLLM):
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"Wenxin: {str(ex)}")
@classmethod
def support_streaming(cls):
return False

View File

@ -74,6 +74,6 @@ class XinferenceModel(BaseLLM):
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"Xinference: {str(ex)}")
@classmethod
def support_streaming(cls):
@property
def support_streaming(self):
return True

View File

@ -0,0 +1,61 @@
from typing import List, Optional, Any
from langchain.callbacks.manager import Callbacks
from langchain.schema import LLMResult
from core.model_providers.error import LLMBadRequestError
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
from core.third_party.langchain.llms.zhipuai_llm import ZhipuAIChatLLM
class ZhipuAIModel(BaseLLM):
model_mode: ModelMode = ModelMode.CHAT
def _init_client(self) -> Any:
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
return ZhipuAIChatLLM(
streaming=self.streaming,
callbacks=self.callbacks,
**self.credentials,
**provider_model_kwargs
)
def _run(self, messages: List[PromptMessage],
stop: Optional[List[str]] = None,
callbacks: Callbacks = None,
**kwargs) -> LLMResult:
"""
run predict by prompt messages and stop words.
:param messages:
:param stop:
:param callbacks:
:return:
"""
prompts = self._get_prompt_from_messages(messages)
return self._client.generate([prompts], stop, callbacks)
def get_num_tokens(self, messages: List[PromptMessage]) -> int:
"""
get num tokens of prompt messages.
:param messages:
:return:
"""
prompts = self._get_prompt_from_messages(messages)
return max(self._client.get_num_tokens_from_messages(prompts), 0)
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
for k, v in provider_model_kwargs.items():
if hasattr(self.client, k):
setattr(self.client, k, v)
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"ZhipuAI: {str(ex)}")
@property
def support_streaming(self):
return True

View File

@ -0,0 +1,29 @@
from abc import abstractmethod
from typing import Any
from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.entity.model_params import ModelType
from core.model_providers.providers.base import BaseModelProvider
class BaseModeration(BaseProviderModel):
name: str
type: ModelType = ModelType.MODERATION
def __init__(self, model_provider: BaseModelProvider, client: Any, name: str):
super().__init__(model_provider, client)
self.name = name
def run(self, text: str) -> bool:
try:
return self._run(text)
except Exception as ex:
raise self.handle_exceptions(ex)
@abstractmethod
def _run(self, text: str) -> bool:
raise NotImplementedError
@abstractmethod
def handle_exceptions(self, ex: Exception) -> Exception:
raise NotImplementedError

View File

@ -4,29 +4,39 @@ import openai
from core.model_providers.error import LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError, \
LLMRateLimitError, LLMAuthorizationError
from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.entity.model_params import ModelType
from core.model_providers.models.moderation.base import BaseModeration
from core.model_providers.providers.base import BaseModelProvider
DEFAULT_AUDIO_MODEL = 'whisper-1'
DEFAULT_MODEL = 'whisper-1'
class OpenAIModeration(BaseProviderModel):
type: ModelType = ModelType.MODERATION
class OpenAIModeration(BaseModeration):
def __init__(self, model_provider: BaseModelProvider, name: str):
super().__init__(model_provider, openai.Moderation)
super().__init__(model_provider, openai.Moderation, name)
def run(self, text):
def _run(self, text: str) -> bool:
credentials = self.model_provider.get_model_credentials(
model_name=DEFAULT_AUDIO_MODEL,
model_name=self.name,
model_type=self.type
)
try:
return self._client.create(input=text, api_key=credentials['openai_api_key'])
except Exception as ex:
raise self.handle_exceptions(ex)
# 2000 text per chunk
length = 2000
text_chunks = [text[i:i + length] for i in range(0, len(text), length)]
max_text_chunks = 32
chunks = [text_chunks[i:i + max_text_chunks] for i in range(0, len(text_chunks), max_text_chunks)]
for text_chunk in chunks:
moderation_result = self._client.create(input=text_chunk,
api_key=credentials['openai_api_key'])
for result in moderation_result.results:
if result['flagged'] is True:
return False
return True
def handle_exceptions(self, ex: Exception) -> Exception:
if isinstance(ex, openai.error.InvalidRequestError):

View File

@ -5,7 +5,6 @@ from typing import Type, Optional
import anthropic
from flask import current_app
from langchain.chat_models import ChatAnthropic
from langchain.schema import HumanMessage
from core.helper import encrypter
@ -16,6 +15,7 @@ from core.model_providers.models.llm.anthropic_model import AnthropicModel
from core.model_providers.models.llm.base import ModelType
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
from core.model_providers.providers.hosted import hosted_model_providers
from core.third_party.langchain.llms.anthropic_llm import AnthropicLLM
from models.provider import ProviderType
@ -69,11 +69,11 @@ class AnthropicProvider(BaseModelProvider):
:return:
"""
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=1, default=1),
top_p=KwargRule[float](min=0, max=1, default=0.7),
temperature=KwargRule[float](min=0, max=1, default=1, precision=2),
top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](alias="max_tokens_to_sample", min=10, max=100000, default=256),
max_tokens=KwargRule[int](alias="max_tokens_to_sample", min=10, max=100000, default=256, precision=0),
)
@classmethod
@ -92,7 +92,7 @@ class AnthropicProvider(BaseModelProvider):
if 'anthropic_api_url' in credentials:
credential_kwargs['anthropic_api_url'] = credentials['anthropic_api_url']
chat_llm = ChatAnthropic(
chat_llm = AnthropicLLM(
model='claude-instant-1',
max_tokens_to_sample=10,
temperature=0,

View File

@ -164,14 +164,14 @@ class AzureOpenAIProvider(BaseModelProvider):
model_credentials = self.get_model_credentials(model_name, model_type)
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=2, default=1),
top_p=KwargRule[float](min=0, max=1, default=1),
presence_penalty=KwargRule[float](min=-2, max=2, default=0),
frequency_penalty=KwargRule[float](min=-2, max=2, default=0),
temperature=KwargRule[float](min=0, max=2, default=1, precision=2),
top_p=KwargRule[float](min=0, max=1, default=1, precision=2),
presence_penalty=KwargRule[float](min=-2, max=2, default=0, precision=2),
frequency_penalty=KwargRule[float](min=-2, max=2, default=0, precision=2),
max_tokens=KwargRule[int](min=10, max=base_model_max_tokens.get(
model_credentials['base_model_name'],
4097
), default=16),
), default=16, precision=0),
)
@classmethod

View File

@ -64,11 +64,11 @@ class ChatGLMProvider(BaseModelProvider):
}
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=2, default=1),
top_p=KwargRule[float](min=0, max=1, default=0.7),
temperature=KwargRule[float](min=0, max=2, default=1, precision=2),
top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](alias='max_token', min=10, max=model_max_tokens.get(model_name), default=2048),
max_tokens=KwargRule[int](alias='max_token', min=10, max=model_max_tokens.get(model_name), default=2048, precision=0),
)
@classmethod

View File

@ -45,6 +45,18 @@ class HostedModelProviders(BaseModel):
hosted_model_providers = HostedModelProviders()
class HostedModerationConfig(BaseModel):
enabled: bool = False
providers: list[str] = []
class HostedConfig(BaseModel):
moderation = HostedModerationConfig()
hosted_config = HostedConfig()
def init_app(app: Flask):
if os.environ.get("DEBUG") and os.environ.get("DEBUG").lower() == 'true':
langchain.verbose = True
@ -78,3 +90,9 @@ def init_app(app: Flask):
paid_min_quantity=app.config.get("HOSTED_ANTHROPIC_PAID_MIN_QUANTITY"),
paid_max_quantity=app.config.get("HOSTED_ANTHROPIC_PAID_MAX_QUANTITY"),
)
if app.config.get("HOSTED_MODERATION_ENABLED") and app.config.get("HOSTED_MODERATION_PROVIDERS"):
hosted_config.moderation = HostedModerationConfig(
enabled=app.config.get("HOSTED_MODERATION_ENABLED"),
providers=app.config.get("HOSTED_MODERATION_PROVIDERS").split(',')
)

View File

@ -47,11 +47,11 @@ class HuggingfaceHubProvider(BaseModelProvider):
:return:
"""
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=2, default=1),
top_p=KwargRule[float](min=0.01, max=0.99, default=0.7),
temperature=KwargRule[float](min=0, max=2, default=1, precision=2),
top_p=KwargRule[float](min=0.01, max=0.99, default=0.7, precision=2),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](alias='max_new_tokens', min=10, max=4000, default=200),
max_tokens=KwargRule[int](alias='max_new_tokens', min=10, max=4000, default=200, precision=0),
)
@classmethod
@ -89,7 +89,8 @@ class HuggingfaceHubProvider(BaseModelProvider):
raise CredentialsValidateFailedError('Task Type must be provided.')
if credentials['task_type'] not in ("text2text-generation", "text-generation", "summarization"):
raise CredentialsValidateFailedError('Task Type must be one of text2text-generation, text-generation, summarization.')
raise CredentialsValidateFailedError('Task Type must be one of text2text-generation, '
'text-generation, summarization.')
try:
llm = HuggingFaceEndpointLLM(

View File

@ -0,0 +1,164 @@
import json
from typing import Type
from langchain.embeddings import LocalAIEmbeddings
from langchain.schema import HumanMessage
from core.helper import encrypter
from core.model_providers.models.embedding.localai_embedding import LocalAIEmbedding
from core.model_providers.models.entity.model_params import ModelKwargsRules, ModelType, KwargRule
from core.model_providers.models.llm.localai_model import LocalAIModel
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
from core.model_providers.models.base import BaseProviderModel
from core.third_party.langchain.llms.chat_open_ai import EnhanceChatOpenAI
from core.third_party.langchain.llms.open_ai import EnhanceOpenAI
from models.provider import ProviderType
class LocalAIProvider(BaseModelProvider):
@property
def provider_name(self):
"""
Returns the name of a provider.
"""
return 'localai'
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
return []
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
"""
Returns the model class.
:param model_type:
:return:
"""
if model_type == ModelType.TEXT_GENERATION:
model_class = LocalAIModel
elif model_type == ModelType.EMBEDDINGS:
model_class = LocalAIEmbedding
else:
raise NotImplementedError
return model_class
def get_model_parameter_rules(self, model_name: str, model_type: ModelType) -> ModelKwargsRules:
"""
get model parameter rules.
:param model_name:
:param model_type:
:return:
"""
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=2, default=0.7, precision=2),
top_p=KwargRule[float](min=0, max=1, default=1, precision=2),
max_tokens=KwargRule[int](min=10, max=4097, default=16, precision=0),
)
@classmethod
def is_model_credentials_valid_or_raise(cls, model_name: str, model_type: ModelType, credentials: dict):
"""
check model credentials valid.
:param model_name:
:param model_type:
:param credentials:
"""
if 'server_url' not in credentials:
raise CredentialsValidateFailedError('LocalAI Server URL must be provided.')
try:
if model_type == ModelType.EMBEDDINGS:
model = LocalAIEmbeddings(
model=model_name,
openai_api_key='1',
openai_api_base=credentials['server_url']
)
model.embed_query("ping")
else:
if ('completion_type' not in credentials
or credentials['completion_type'] not in ['completion', 'chat_completion']):
raise CredentialsValidateFailedError('LocalAI Completion Type must be provided.')
if credentials['completion_type'] == 'chat_completion':
model = EnhanceChatOpenAI(
model_name=model_name,
openai_api_key='1',
openai_api_base=credentials['server_url'] + '/v1',
max_tokens=10,
request_timeout=60,
)
model([HumanMessage(content='ping')])
else:
model = EnhanceOpenAI(
model_name=model_name,
openai_api_key='1',
openai_api_base=credentials['server_url'] + '/v1',
max_tokens=10,
request_timeout=60,
)
model('ping')
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
@classmethod
def encrypt_model_credentials(cls, tenant_id: str, model_name: str, model_type: ModelType,
credentials: dict) -> dict:
"""
encrypt model credentials for save.
:param tenant_id:
:param model_name:
:param model_type:
:param credentials:
:return:
"""
credentials['server_url'] = encrypter.encrypt_token(tenant_id, credentials['server_url'])
return credentials
def get_model_credentials(self, model_name: str, model_type: ModelType, obfuscated: bool = False) -> dict:
"""
get credentials for llm use.
:param model_name:
:param model_type:
:param obfuscated:
:return:
"""
if self.provider.provider_type != ProviderType.CUSTOM.value:
raise NotImplementedError
provider_model = self._get_provider_model(model_name, model_type)
if not provider_model.encrypted_config:
return {
'server_url': None,
}
credentials = json.loads(provider_model.encrypted_config)
if credentials['server_url']:
credentials['server_url'] = encrypter.decrypt_token(
self.provider.tenant_id,
credentials['server_url']
)
if obfuscated:
credentials['server_url'] = encrypter.obfuscated_token(credentials['server_url'])
return credentials
@classmethod
def is_provider_credentials_valid_or_raise(cls, credentials: dict):
return
@classmethod
def encrypt_provider_credentials(cls, tenant_id: str, credentials: dict) -> dict:
return {}
def get_provider_credentials(self, obfuscated: bool = False) -> dict:
return {}

Some files were not shown because too many files have changed in this diff Show More