Compare commits

...

108 Commits

Author SHA1 Message Date
8835435558 fix: change model mode. (#1520) 2023-11-13 23:13:01 +08:00
a80d8286c2 feat: bump version to 0.3.30 (#1519) 2023-11-13 22:50:42 +08:00
6b15827246 feat: [frontend] support vision (#1518)
Co-authored-by: Joel <iamjoel007@gmail.com>
2023-11-13 22:32:39 +08:00
41d0a8b295 feat: [backend] vision support (#1510)
Co-authored-by: Garfield Dai <dai.hai@foxmail.com>
2023-11-13 22:05:46 +08:00
d0e1ea8f06 1506 remove duplicated code (#1511) 2023-11-13 19:05:32 +08:00
f3b9647bb4 feat: add spark 3.0 tip (#1516) 2023-11-13 18:01:37 +08:00
9de67c586f feat: update free plan rules of spark (#1515) 2023-11-13 17:00:36 +08:00
92f594f5e7 Change Embedded chrome plugin Url (#1498)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
2023-11-10 16:44:26 +08:00
06d5273217 Fixed missing i18n app-debug.zh.ts items. (#1503) 2023-11-10 16:43:10 +08:00
94d7babbf1 feat: update the docs in forking applications (#1491) 2023-11-08 19:44:15 +08:00
306216dbe5 application embedded add chrome && ChatBot Chrome plugin update v1.5 (#1480)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
2023-11-08 17:59:53 +08:00
ab2e20ee0a fix: rename api based extension (#1485) 2023-11-08 13:03:50 +08:00
146e95d88f fix: api extension selector (#1486) 2023-11-08 13:03:42 +08:00
d7ae86799c feat: support basic feature of OpenAI new models (#1476) 2023-11-07 04:05:59 -06:00
7b26c9e2ef fix: code-based extension (#1477) 2023-11-07 17:56:07 +08:00
6bcafdbc87 fix: openai model name (#1474) 2023-11-07 17:41:43 +08:00
059c089f93 fix: external data tool batch retrieve bug (#1472) 2023-11-07 01:28:22 -06:00
c1e7193c4b feat: hidden api key enhancement. (#1468) 2023-11-06 23:07:30 +08:00
2423563d45 fix: external data tool parse error (#1469) 2023-11-06 08:40:01 -06:00
260672986e fix: universal chat external_data_tools NPE (#1467) 2023-11-06 08:08:53 -06:00
5d48406d64 feat: bump version to 0.3.29 (#1462) 2023-11-06 06:55:17 -06:00
2b2dbabc11 fix: prompt variables validate when using external data tools (#1465) 2023-11-06 06:31:41 -06:00
13b64bc55a fix: refresh api-based-extension (#1464) 2023-11-06 20:29:41 +08:00
279f099ba0 fix: chat style (#1463) 2023-11-06 20:11:55 +08:00
32747641e4 feat: add api-based extension & external data tool & moderation (#1459) 2023-11-06 19:36:32 +08:00
db43ed6f41 feat: add api-based extension & external data tool & moderation backend (#1403)
Co-authored-by: takatost <takatost@gmail.com>
2023-11-06 19:36:16 +08:00
7699621983 fix: Use correct typehint for return values (#1454)
Co-authored-by: lethe <lethe>
2023-11-06 04:50:51 -06:00
4dfbcd0b4e feat: support chatglm_turbo model #1443 (#1460) 2023-11-06 04:33:05 -06:00
a9ee18300e fix: service suggested api (#1452) 2023-11-04 19:59:14 +08:00
b4861d2b5c chore(deps): bump word-wrap from 1.2.3 to 1.2.5 in /web (#1440)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-11-01 11:26:25 +08:00
913f2b84a6 chore(deps-dev): bump postcss from 8.4.24 to 8.4.31 in /web (#1439)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-11-01 11:24:43 +08:00
cc89933d8f chore(deps): bump crypto-js from 4.1.1 to 4.2.0 in /web (#1437)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-11-01 11:24:33 +08:00
a14ea6582d chore(deps): bump semver from 5.7.1 to 5.7.2 in /web (#1436)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-11-01 11:24:24 +08:00
076f3289d2 feat: add spark v3.0 llm support (#1434) 2023-10-31 03:13:11 -05:00
518083dfe0 fix: metadata not saved (#1429) 2023-10-30 14:39:15 +08:00
2b366bb321 fix: delete app and setting modal is not wokring in firefox (#1427) 2023-10-29 14:22:05 +08:00
292d4c077a fix: Add icons for apps in "Related apps list" (#1425) 2023-10-27 17:55:38 +08:00
fc4c03640d fix: provider delete api key modal z-index (#1416) 2023-10-26 10:35:03 +08:00
985253197f mermaid front-end rendering initialization exception handling logic o… (#1407) 2023-10-26 10:19:04 +08:00
48b4249790 fix: workspace app avatar is abnormal (#1411) 2023-10-26 10:18:38 +08:00
fb64fcb271 feat: upgrade xinference-client to 0.5.4 (#1402) 2023-10-23 05:49:32 -05:00
41e452dcc5 fix: hex problem (#1395) 2023-10-22 04:15:54 -05:00
d218c66e25 Added diagram picture file for docker-compose yaml file visualization. (#1374) 2023-10-22 09:55:31 +08:00
e173b1cb2a Update README_CN.md (#1390) 2023-10-21 20:41:26 -05:00
9b598db559 Update README.md (#1389) 2023-10-21 20:41:15 -05:00
e122d677ad fix: return wrong when init 0 quota in trial provider (#1394) 2023-10-21 14:02:38 -05:00
4c63cbf5b1 feat: adjust anthropic (#1387) 2023-10-20 02:27:46 -05:00
288705fefd Chrome Dify Chatbot Plug-in (#1378)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
2023-10-19 07:54:43 -05:00
8c4ae98f3d feat: add advanced prompt doc link (#1363) 2023-10-19 17:52:30 +08:00
08aa367892 feat: add context missing warning (#1384)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-10-19 17:52:14 +08:00
ff527a0190 fix: not load dataset config (#1381) 2023-10-19 13:55:25 +08:00
6e05f8ca93 fix: npm run start (#1380) 2023-10-19 11:38:03 +08:00
6309d070d1 feat: enchance prompt mode copywriting (#1379) 2023-10-19 11:19:34 +08:00
fe14130b3c refactor advanced prompt core. (#1350) 2023-10-18 20:02:52 +08:00
52ebffa857 fix: app config zhipu chatglm_std model, but it still use chatglm_lit… (#1377)
Co-authored-by: wayne.wang <wayne.wang@beibei.com>
2023-10-18 05:07:36 -05:00
d14f15863d fix: i18n runtime error (#1376) 2023-10-18 16:00:56 +08:00
7c9b585a47 feat: support weixin ernie-bot-4 and chat mode (#1375) 2023-10-18 02:35:24 -05:00
c039f4af83 fix: app model config detached in completion thread (#1366) 2023-10-17 08:18:08 -05:00
07285e5f8b feat: optimize completion model agent (#1364) 2023-10-17 06:54:59 -05:00
16d80ebab3 Fix milvus configuration error (#1362)
Signed-off-by: JackLCL <chenglong.li@zilliz.com>
2023-10-17 17:40:40 +08:00
61e816f24c feat: logo (#1356) 2023-10-16 15:26:25 +08:00
2feb16d957 feat: bump version to 0.3.28 (#1349) 2023-10-14 11:49:56 -05:00
3043fbe73b remove the suggested api for completion app (#1347) 2023-10-14 10:05:33 -05:00
9f99c3f55b fix: modal z-index (#1343) 2023-10-13 05:55:03 -05:00
a07a6d8c26 feat: switch to generation model set default stop word (#1341) 2023-10-13 16:47:22 +08:00
695841a3cf Feat/advanced prompt enhancement (#1340) 2023-10-13 16:47:01 +08:00
3efaa713da feat: use xinference client instead of xinference (#1339) 2023-10-13 02:46:09 -05:00
9822f687f7 fix: max tokens of OpenAI gpt-3.5-turbo-instruct to 4097 (#1338) 2023-10-13 02:07:07 -05:00
b9d83c04bc fix: modal z-index (#1337) 2023-10-13 14:58:53 +08:00
298ad6782d Add Message Suggested Api (#1326)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
2023-10-13 14:07:32 +08:00
f4be2b8bcd fix: raise error in minimax stream generate (#1336) 2023-10-12 23:48:28 -05:00
e83e239faf fix: value.join is not a function in log list (#1332) 2023-10-13 11:34:24 +08:00
62bf7f0fc2 fix: new app with template display (#1322) 2023-10-13 10:18:33 +08:00
7dea485d57 feat: bump version to 0.3.27 (#1331) 2023-10-12 10:37:48 -05:00
5b9858a8a3 feat: advanced prompt (#1330)
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: JzoNg <jzongcode@gmail.com>
Co-authored-by: Gillian97 <jinling.sunshine@gmail.com>
2023-10-12 23:14:28 +08:00
42a5b3ec17 feat: advanced prompt backend (#1301)
Co-authored-by: takatost <takatost@gmail.com>
2023-10-12 10:13:10 -05:00
2d1cb076c6 fix: dataset segment not exist return agent response (#1329) 2023-10-12 04:40:20 -05:00
289c93d081 Feat/improve document delete logic (#1325)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-12 13:30:44 +08:00
c0fe706597 feat: adjust to only build the latest image when pushing a tag. (#1324) 2023-10-11 23:38:07 -05:00
9cba1c8bf4 fix: retriever_resource missing (#1317) 2023-10-11 14:37:11 -05:00
cbf095465c feat: remove llm client use (#1316) 2023-10-11 14:02:53 -05:00
c007dbdc13 Feat: add document of authorization (#1311) 2023-10-11 08:03:36 -05:00
ff493d017b fix: minimax tests (#1313) 2023-10-11 07:49:26 -05:00
7f6ad9653e Fix/grpc gevent compatible (#1314)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-11 20:48:35 +08:00
2851a9f04e feat: optimize minimax llm call (#1312) 2023-10-11 07:17:41 -05:00
c536f85b2e fix: compatibility issues with the tongyi model. (#1310) 2023-10-11 05:16:26 -05:00
b1352ff8b7 feat: using random sampling to check if it violates the review mechan… (#1308) 2023-10-11 04:11:20 -05:00
cc63c8499f bump version to 0.3.26 (#1307)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-11 16:11:24 +08:00
f191b8b8d1 milvus docker compose env (#1306)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-11 16:05:37 +08:00
5003db987d milvus secure check fix (#1305)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-11 13:11:06 +08:00
07aab5e868 Feat/add milvus vector db (#1302)
Co-authored-by: jyong <jyong@dify.ai>
2023-10-10 21:56:24 +08:00
875dfbbf0e fix: openllm completion start with prompt, remove it (#1303) 2023-10-10 04:44:19 -05:00
9e7efa45d4 document segmentApi Add get&update&delete operate (#1285)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
2023-10-10 13:27:06 +08:00
8bf892b306 feat: bump version to 0.3.25 (#1300) 2023-10-10 13:03:49 +08:00
8480b0197b fix: prompt for baichuan text generation models (#1299) 2023-10-10 13:01:18 +08:00
df07fb5951 feat: provider add baichuan (#1298) 2023-10-09 23:10:43 -05:00
4ab4bcc074 feat: support openllm embedding (#1293) 2023-10-09 23:09:35 -05:00
1d4f019de4 feat: add baichuan llm support (#1294)
Co-authored-by: zxhlyh <jasonapring2015@outlook.com>
2023-10-09 23:09:26 -05:00
677aacc8e3 feat: upgrade xinference client to 0.5.2 (#1292) 2023-10-09 08:12:58 -05:00
fda937175d feat: qdrant support in docker compose (#1286) 2023-10-08 12:04:04 -05:00
024250803a feat: move login_required wrapper outside (#1281) 2023-10-08 05:21:32 -05:00
b711ce33b7 Application share qrcode (#1277)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
2023-10-08 09:34:49 +08:00
52bec63275 chore(web): strong type (#1259) 2023-10-07 04:42:16 -05:00
657fa80f4d fix devcontainer issue (#1273) 2023-10-07 10:34:25 +08:00
373e90ee6d fix: detached model in completion thread (#1269) 2023-10-02 22:27:25 +08:00
41d4c5b424 fix: count down thread in completion db not commit (#1267) 2023-10-02 10:19:26 +08:00
86a9dea428 fix: db not commit when streaming output (#1266) 2023-10-01 16:41:52 +08:00
8606d80c66 fix: request timeout when openai completion (#1265) 2023-10-01 16:00:23 +08:00
572 changed files with 198784 additions and 3534 deletions

View File

@ -1,11 +1,8 @@
FROM mcr.microsoft.com/devcontainers/anaconda:0-3
FROM mcr.microsoft.com/devcontainers/python:3.10
COPY . .
# Copy environment.yml (if found) to a temp location so we update the environment. Also
# copy "noop.txt" so the COPY instruction does not fail if no environment.yml exists.
COPY environment.yml* .devcontainer/noop.txt /tmp/conda-tmp/
RUN if [ -f "/tmp/conda-tmp/environment.yml" ]; then umask 0002 && /opt/conda/bin/conda env update -n base -f /tmp/conda-tmp/environment.yml; fi \
&& rm -rf /tmp/conda-tmp
# [Optional] Uncomment this section to install additional OS packages.
# RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
# && apt-get -y install --no-install-recommends <your-package-list-here>
# && apt-get -y install --no-install-recommends <your-package-list-here>

View File

@ -1,13 +1,12 @@
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
// README at: https://github.com/devcontainers/templates/tree/main/src/anaconda
{
"name": "Anaconda (Python 3)",
"name": "Python 3.10",
"build": {
"context": "..",
"dockerfile": "Dockerfile"
},
"features": {
"ghcr.io/dhoeric/features/act:1": {},
"ghcr.io/devcontainers/features/node:1": {
"nodeGypDependencies": true,
"version": "lts"

View File

@ -31,7 +31,7 @@ jobs:
with:
images: langgenius/dify-api
tags: |
type=raw,value=latest,enable={{is_default_branch}}
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
type=ref,event=branch
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
type=semver,pattern={{major}}.{{minor}}.{{patch}}

View File

@ -31,7 +31,7 @@ jobs:
with:
images: langgenius/dify-web
tags: |
type=raw,value=latest,enable={{is_default_branch}}
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
type=ref,event=branch
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
type=semver,pattern={{major}}.{{minor}}.{{patch}}

View File

@ -1,37 +0,0 @@
import os
import re
from zhon.hanzi import punctuation
def has_chinese_characters(text):
for char in text:
if '\u4e00' <= char <= '\u9fff' or char in punctuation:
return True
return False
def check_file_for_chinese_comments(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
for line_number, line in enumerate(file, start=1):
if has_chinese_characters(line):
print(f"Found Chinese characters in {file_path} on line {line_number}:")
print(line.strip())
return True
return False
def main():
has_chinese = False
excluded_files = ["model_template.py", 'stopwords.py', 'commands.py',
'indexing_runner.py', 'web_reader_tool.py', 'spark_provider.py',
'prompts.py']
for root, _, files in os.walk("."):
for file in files:
if file.endswith(".py") and file not in excluded_files:
file_path = os.path.join(root, file)
if check_file_for_chinese_comments(file_path):
has_chinese = True
if has_chinese:
raise Exception("Found Chinese characters in Python files. Please remove them.")
if __name__ == "__main__":
main()

View File

@ -1,31 +0,0 @@
name: Check for Chinese comments
on:
push:
branches:
- 'main'
pull_request:
branches:
- main
jobs:
check-chinese-comments:
runs-on: ubuntu-latest
steps:
- name: Check out repository
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install zhon
- name: Run script to check for Chinese comments
run: |
python .github/workflows/check_no_chinese_comments.py

1
.gitignore vendored
View File

@ -144,6 +144,7 @@ docker/volumes/app/storage/*
docker/volumes/db/data/*
docker/volumes/redis/data/*
docker/volumes/weaviate/*
docker/volumes/qdrant/*
sdks/python-client/build
sdks/python-client/dist

View File

@ -37,7 +37,6 @@ https://github.com/langgenius/dify/assets/100913391/f6e658d5-31b3-4c16-a0af-9e19
We provide the following free resources for registered Dify cloud users (sign up at [dify.ai](https://dify.ai)):
* 600,000 free Claude model tokens to build Claude-powered apps
* 200 free OpenAI queries to build OpenAI-based apps

View File

@ -36,7 +36,6 @@ https://github.com/langgenius/dify/assets/100913391/f6e658d5-31b3-4c16-a0af-9e19
我们为所有注册云端版的用户免费提供以下资源(登录 [dify.ai](https://cloud.dify.ai) 即可使用):
* 60 万 Tokens Claude 模型的消息调用额度,用于创建基于 Claude 模型的 AI 应用
* 200 次 OpenAI 模型的消息调用额度,用于创建基于 OpenAI 模型的 AI 应用
* 300 万 讯飞星火大模型 Token 的调用额度,用于创建基于讯飞星火大模型的 AI 应用
* 100 万 MiniMax Token 的调用额度,用于创建基于 MiniMax 模型的 AI 应用

View File

@ -18,6 +18,9 @@ SERVICE_API_URL=http://127.0.0.1:5001
APP_API_URL=http://127.0.0.1:5001
APP_WEB_URL=http://127.0.0.1:3000
# Files URL
FILES_URL=http://127.0.0.1:5001
# celery configuration
CELERY_BROKER_URL=redis://:difyai123456@localhost:6379/1
@ -50,7 +53,7 @@ S3_REGION=your-region
WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
CONSOLE_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
# Vector database configuration, support: weaviate, qdrant
# Vector database configuration, support: weaviate, qdrant, milvus
VECTOR_STORE=weaviate
# Weaviate configuration
@ -59,9 +62,24 @@ WEAVIATE_API_KEY=WVF5YThaHlkYwhGUSmCRgsX3tD5ngdN8pkih
WEAVIATE_GRPC_ENABLED=false
WEAVIATE_BATCH_SIZE=100
# Qdrant configuration, use `path:` prefix for local mode or `https://your-qdrant-cluster-url.qdrant.io` for remote mode
QDRANT_URL=path:storage/qdrant
QDRANT_API_KEY=your-qdrant-api-key
# Qdrant configuration, use `http://localhost:6333` for local mode or `https://your-qdrant-cluster-url.qdrant.io` for remote mode
QDRANT_URL=http://localhost:6333
QDRANT_API_KEY=difyai123456
# Milvus configuration
MILVUS_HOST=127.0.0.1
MILVUS_PORT=19530
MILVUS_USER=root
MILVUS_PASSWORD=Milvus
MILVUS_SECURE=false
# Upload configuration
UPLOAD_FILE_SIZE_LIMIT=15
UPLOAD_FILE_BATCH_LIMIT=5
UPLOAD_IMAGE_FILE_SIZE_LIMIT=10
# Model Configuration
MULTIMODAL_SEND_IMAGE_FORMAT=base64
# Mail configuration, support: resend
MAIL_TYPE=

View File

@ -10,7 +10,7 @@
"request": "launch",
"module": "flask",
"env": {
"FLASK_APP": "api/app.py",
"FLASK_APP": "app.py",
"FLASK_DEBUG": "1",
"GEVENT_SUPPORT": "True"
},

View File

@ -6,6 +6,9 @@ from werkzeug.exceptions import Unauthorized
if not os.environ.get("DEBUG") or os.environ.get("DEBUG").lower() != 'true':
from gevent import monkey
monkey.patch_all()
if os.environ.get("VECTOR_STORE") == 'milvus':
import grpc.experimental.gevent
grpc.experimental.gevent.init_gevent()
import logging
import json
@ -16,7 +19,7 @@ from flask_cors import CORS
from core.model_providers.providers import hosted
from extensions import ext_celery, ext_sentry, ext_redis, ext_login, ext_migrate, \
ext_database, ext_storage, ext_mail, ext_stripe
ext_database, ext_storage, ext_mail, ext_stripe, ext_code_based_extension
from extensions.ext_database import db
from extensions.ext_login import login_manager
@ -76,6 +79,7 @@ def create_app(test_config=None) -> Flask:
def initialize_extensions(app):
# Since the application instance is now created, pass it to each Flask
# extension instance to bind it to the Flask application instance (app)
ext_code_based_extension.init()
ext_database.init_app(app)
ext_migrate.init(app, db)
ext_redis.init_app(app)
@ -122,6 +126,7 @@ def register_blueprints(app):
from controllers.service_api import bp as service_api_bp
from controllers.web import bp as web_bp
from controllers.console import bp as console_app_bp
from controllers.files import bp as files_bp
CORS(service_api_bp,
allow_headers=['Content-Type', 'Authorization', 'X-App-Code'],
@ -151,6 +156,12 @@ def register_blueprints(app):
app.register_blueprint(console_app_bp)
CORS(files_bp,
allow_headers=['Content-Type'],
methods=['GET', 'PUT', 'POST', 'DELETE', 'OPTIONS', 'PATCH']
)
app.register_blueprint(files_bp)
# create app
app = create_app()

View File

@ -26,6 +26,7 @@ DEFAULTS = {
'SERVICE_API_URL': 'https://api.dify.ai',
'APP_WEB_URL': 'https://udify.app',
'APP_API_URL': 'https://udify.app',
'FILES_URL': '',
'STORAGE_TYPE': 'local',
'STORAGE_LOCAL_PATH': 'storage',
'CHECK_UPDATE_URL': 'https://updates.dify.ai',
@ -57,6 +58,9 @@ DEFAULTS = {
'CLEAN_DAY_SETTING': 30,
'UPLOAD_FILE_SIZE_LIMIT': 15,
'UPLOAD_FILE_BATCH_LIMIT': 5,
'UPLOAD_IMAGE_FILE_SIZE_LIMIT': 10,
'OUTPUT_MODERATION_BUFFER_SIZE': 300,
'MULTIMODAL_SEND_IMAGE_FORMAT': 'base64'
}
@ -83,78 +87,65 @@ class Config:
"""Application configuration class."""
def __init__(self):
# app settings
self.CONSOLE_API_URL = get_env('CONSOLE_URL') if get_env('CONSOLE_URL') else get_env('CONSOLE_API_URL')
self.CONSOLE_WEB_URL = get_env('CONSOLE_URL') if get_env('CONSOLE_URL') else get_env('CONSOLE_WEB_URL')
self.SERVICE_API_URL = get_env('API_URL') if get_env('API_URL') else get_env('SERVICE_API_URL')
self.APP_WEB_URL = get_env('APP_URL') if get_env('APP_URL') else get_env('APP_WEB_URL')
self.APP_API_URL = get_env('APP_URL') if get_env('APP_URL') else get_env('APP_API_URL')
self.CONSOLE_URL = get_env('CONSOLE_URL')
self.API_URL = get_env('API_URL')
self.APP_URL = get_env('APP_URL')
self.CURRENT_VERSION = "0.3.24"
# ------------------------
# General Configurations.
# ------------------------
self.CURRENT_VERSION = "0.3.30"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
self.TESTING = False
self.LOG_LEVEL = get_env('LOG_LEVEL')
# The backend URL prefix of the console API.
# used to concatenate the login authorization callback or notion integration callback.
self.CONSOLE_API_URL = get_env('CONSOLE_URL') if get_env('CONSOLE_URL') else get_env('CONSOLE_API_URL')
# The front-end URL prefix of the console web.
# used to concatenate some front-end addresses and for CORS configuration use.
self.CONSOLE_WEB_URL = get_env('CONSOLE_URL') if get_env('CONSOLE_URL') else get_env('CONSOLE_WEB_URL')
# WebApp API backend Url prefix.
# used to declare the back-end URL for the front-end API.
self.APP_API_URL = get_env('APP_URL') if get_env('APP_URL') else get_env('APP_API_URL')
# WebApp Url prefix.
# used to display WebAPP API Base Url to the front-end.
self.APP_WEB_URL = get_env('APP_URL') if get_env('APP_URL') else get_env('APP_WEB_URL')
# Service API Url prefix.
# used to display Service API Base Url to the front-end.
self.SERVICE_API_URL = get_env('API_URL') if get_env('API_URL') else get_env('SERVICE_API_URL')
# File preview or download Url prefix.
# used to display File preview or download Url to the front-end or as Multi-model inputs;
# Url is signed and has expiration time.
self.FILES_URL = get_env('FILES_URL') if get_env('FILES_URL') else self.CONSOLE_API_URL
# Fallback Url prefix.
# Will be deprecated in the future.
self.CONSOLE_URL = get_env('CONSOLE_URL')
self.API_URL = get_env('API_URL')
self.APP_URL = get_env('APP_URL')
# Your App secret key will be used for securely signing the session cookie
# Make sure you are changing this key for your deployment with a strong key.
# You can generate a strong key using `openssl rand -base64 42`.
# Alternatively you can set it with `SECRET_KEY` environment variable.
self.SECRET_KEY = get_env('SECRET_KEY')
# redis settings
self.REDIS_HOST = get_env('REDIS_HOST')
self.REDIS_PORT = get_env('REDIS_PORT')
self.REDIS_USERNAME = get_env('REDIS_USERNAME')
self.REDIS_PASSWORD = get_env('REDIS_PASSWORD')
self.REDIS_DB = get_env('REDIS_DB')
self.REDIS_USE_SSL = get_bool_env('REDIS_USE_SSL')
# storage settings
self.STORAGE_TYPE = get_env('STORAGE_TYPE')
self.STORAGE_LOCAL_PATH = get_env('STORAGE_LOCAL_PATH')
self.S3_ENDPOINT = get_env('S3_ENDPOINT')
self.S3_BUCKET_NAME = get_env('S3_BUCKET_NAME')
self.S3_ACCESS_KEY = get_env('S3_ACCESS_KEY')
self.S3_SECRET_KEY = get_env('S3_SECRET_KEY')
self.S3_REGION = get_env('S3_REGION')
# vector store settings, only support weaviate, qdrant
self.VECTOR_STORE = get_env('VECTOR_STORE')
# weaviate settings
self.WEAVIATE_ENDPOINT = get_env('WEAVIATE_ENDPOINT')
self.WEAVIATE_API_KEY = get_env('WEAVIATE_API_KEY')
self.WEAVIATE_GRPC_ENABLED = get_bool_env('WEAVIATE_GRPC_ENABLED')
self.WEAVIATE_BATCH_SIZE = int(get_env('WEAVIATE_BATCH_SIZE'))
# qdrant settings
self.QDRANT_URL = get_env('QDRANT_URL')
self.QDRANT_API_KEY = get_env('QDRANT_API_KEY')
# cors settings
self.CONSOLE_CORS_ALLOW_ORIGINS = get_cors_allow_origins(
'CONSOLE_CORS_ALLOW_ORIGINS', self.CONSOLE_WEB_URL)
self.WEB_API_CORS_ALLOW_ORIGINS = get_cors_allow_origins(
'WEB_API_CORS_ALLOW_ORIGINS', '*')
# mail settings
self.MAIL_TYPE = get_env('MAIL_TYPE')
self.MAIL_DEFAULT_SEND_FROM = get_env('MAIL_DEFAULT_SEND_FROM')
self.RESEND_API_KEY = get_env('RESEND_API_KEY')
# sentry settings
self.SENTRY_DSN = get_env('SENTRY_DSN')
self.SENTRY_TRACES_SAMPLE_RATE = float(get_env('SENTRY_TRACES_SAMPLE_RATE'))
self.SENTRY_PROFILES_SAMPLE_RATE = float(get_env('SENTRY_PROFILES_SAMPLE_RATE'))
# check update url
self.CHECK_UPDATE_URL = get_env('CHECK_UPDATE_URL')
# database settings
# ------------------------
# Database Configurations.
# ------------------------
db_credentials = {
key: get_env(key) for key in
['DB_USERNAME', 'DB_PASSWORD', 'DB_HOST', 'DB_PORT', 'DB_DATABASE']
@ -168,14 +159,102 @@ class Config:
self.SQLALCHEMY_ECHO = get_bool_env('SQLALCHEMY_ECHO')
# celery settings
# ------------------------
# Redis Configurations.
# ------------------------
self.REDIS_HOST = get_env('REDIS_HOST')
self.REDIS_PORT = get_env('REDIS_PORT')
self.REDIS_USERNAME = get_env('REDIS_USERNAME')
self.REDIS_PASSWORD = get_env('REDIS_PASSWORD')
self.REDIS_DB = get_env('REDIS_DB')
self.REDIS_USE_SSL = get_bool_env('REDIS_USE_SSL')
# ------------------------
# Celery worker Configurations.
# ------------------------
self.CELERY_BROKER_URL = get_env('CELERY_BROKER_URL')
self.CELERY_BACKEND = get_env('CELERY_BACKEND')
self.CELERY_RESULT_BACKEND = 'db+{}'.format(self.SQLALCHEMY_DATABASE_URI) \
if self.CELERY_BACKEND == 'database' else self.CELERY_BROKER_URL
self.BROKER_USE_SSL = self.CELERY_BROKER_URL.startswith('rediss://')
# hosted provider credentials
# ------------------------
# File Storage Configurations.
# ------------------------
self.STORAGE_TYPE = get_env('STORAGE_TYPE')
self.STORAGE_LOCAL_PATH = get_env('STORAGE_LOCAL_PATH')
self.S3_ENDPOINT = get_env('S3_ENDPOINT')
self.S3_BUCKET_NAME = get_env('S3_BUCKET_NAME')
self.S3_ACCESS_KEY = get_env('S3_ACCESS_KEY')
self.S3_SECRET_KEY = get_env('S3_SECRET_KEY')
self.S3_REGION = get_env('S3_REGION')
# ------------------------
# Vector Store Configurations.
# Currently, only support: qdrant, milvus, zilliz, weaviate
# ------------------------
self.VECTOR_STORE = get_env('VECTOR_STORE')
# qdrant settings
self.QDRANT_URL = get_env('QDRANT_URL')
self.QDRANT_API_KEY = get_env('QDRANT_API_KEY')
# milvus / zilliz setting
self.MILVUS_HOST = get_env('MILVUS_HOST')
self.MILVUS_PORT = get_env('MILVUS_PORT')
self.MILVUS_USER = get_env('MILVUS_USER')
self.MILVUS_PASSWORD = get_env('MILVUS_PASSWORD')
self.MILVUS_SECURE = get_env('MILVUS_SECURE')
# weaviate settings
self.WEAVIATE_ENDPOINT = get_env('WEAVIATE_ENDPOINT')
self.WEAVIATE_API_KEY = get_env('WEAVIATE_API_KEY')
self.WEAVIATE_GRPC_ENABLED = get_bool_env('WEAVIATE_GRPC_ENABLED')
self.WEAVIATE_BATCH_SIZE = int(get_env('WEAVIATE_BATCH_SIZE'))
# ------------------------
# Mail Configurations.
# ------------------------
self.MAIL_TYPE = get_env('MAIL_TYPE')
self.MAIL_DEFAULT_SEND_FROM = get_env('MAIL_DEFAULT_SEND_FROM')
self.RESEND_API_KEY = get_env('RESEND_API_KEY')
# ------------------------
# Sentry Configurations.
# ------------------------
self.SENTRY_DSN = get_env('SENTRY_DSN')
self.SENTRY_TRACES_SAMPLE_RATE = float(get_env('SENTRY_TRACES_SAMPLE_RATE'))
self.SENTRY_PROFILES_SAMPLE_RATE = float(get_env('SENTRY_PROFILES_SAMPLE_RATE'))
# ------------------------
# Business Configurations.
# ------------------------
# multi model send image format, support base64, url, default is base64
self.MULTIMODAL_SEND_IMAGE_FORMAT = get_env('MULTIMODAL_SEND_IMAGE_FORMAT')
# Dataset Configurations.
self.TENANT_DOCUMENT_COUNT = get_env('TENANT_DOCUMENT_COUNT')
self.CLEAN_DAY_SETTING = get_env('CLEAN_DAY_SETTING')
# File upload Configurations.
self.UPLOAD_FILE_SIZE_LIMIT = int(get_env('UPLOAD_FILE_SIZE_LIMIT'))
self.UPLOAD_FILE_BATCH_LIMIT = int(get_env('UPLOAD_FILE_BATCH_LIMIT'))
self.UPLOAD_IMAGE_FILE_SIZE_LIMIT = int(get_env('UPLOAD_IMAGE_FILE_SIZE_LIMIT'))
# Moderation in app Configurations.
self.OUTPUT_MODERATION_BUFFER_SIZE = int(get_env('OUTPUT_MODERATION_BUFFER_SIZE'))
# Notion integration setting
self.NOTION_CLIENT_ID = get_env('NOTION_CLIENT_ID')
self.NOTION_CLIENT_SECRET = get_env('NOTION_CLIENT_SECRET')
self.NOTION_INTEGRATION_TYPE = get_env('NOTION_INTEGRATION_TYPE')
self.NOTION_INTERNAL_SECRET = get_env('NOTION_INTERNAL_SECRET')
self.NOTION_INTEGRATION_TOKEN = get_env('NOTION_INTEGRATION_TOKEN')
# ------------------------
# Platform Configurations.
# ------------------------
self.HOSTED_OPENAI_ENABLED = get_bool_env('HOSTED_OPENAI_ENABLED')
self.HOSTED_OPENAI_API_KEY = get_env('HOSTED_OPENAI_API_KEY')
self.HOSTED_OPENAI_API_BASE = get_env('HOSTED_OPENAI_API_BASE')
@ -203,23 +282,6 @@ class Config:
self.HOSTED_MODERATION_ENABLED = get_bool_env('HOSTED_MODERATION_ENABLED')
self.HOSTED_MODERATION_PROVIDERS = get_env('HOSTED_MODERATION_PROVIDERS')
self.STRIPE_API_KEY = get_env('STRIPE_API_KEY')
self.STRIPE_WEBHOOK_SECRET = get_env('STRIPE_WEBHOOK_SECRET')
# notion import setting
self.NOTION_CLIENT_ID = get_env('NOTION_CLIENT_ID')
self.NOTION_CLIENT_SECRET = get_env('NOTION_CLIENT_SECRET')
self.NOTION_INTEGRATION_TYPE = get_env('NOTION_INTEGRATION_TYPE')
self.NOTION_INTERNAL_SECRET = get_env('NOTION_INTERNAL_SECRET')
self.NOTION_INTEGRATION_TOKEN = get_env('NOTION_INTEGRATION_TOKEN')
self.TENANT_DOCUMENT_COUNT = get_env('TENANT_DOCUMENT_COUNT')
self.CLEAN_DAY_SETTING = get_env('CLEAN_DAY_SETTING')
# uploading settings
self.UPLOAD_FILE_SIZE_LIMIT = int(get_env('UPLOAD_FILE_SIZE_LIMIT'))
self.UPLOAD_FILE_BATCH_LIMIT = int(get_env('UPLOAD_FILE_BATCH_LIMIT'))
class CloudEditionConfig(Config):
@ -234,18 +296,5 @@ class CloudEditionConfig(Config):
self.GOOGLE_CLIENT_SECRET = get_env('GOOGLE_CLIENT_SECRET')
self.OAUTH_REDIRECT_PATH = get_env('OAUTH_REDIRECT_PATH')
class TestConfig(Config):
def __init__(self):
super().__init__()
self.EDITION = "SELF_HOSTED"
self.TESTING = True
db_credentials = {
key: get_env(key) for key in ['DB_USERNAME', 'DB_PASSWORD', 'DB_HOST', 'DB_PORT']
}
# use a different database for testing: dify_test
self.SQLALCHEMY_DATABASE_URI = f"postgresql://{db_credentials['DB_USERNAME']}:{db_credentials['DB_PASSWORD']}@{db_credentials['DB_HOST']}:{db_credentials['DB_PORT']}/dify_test"
self.STRIPE_API_KEY = get_env('STRIPE_API_KEY')
self.STRIPE_WEBHOOK_SECRET = get_env('STRIPE_WEBHOOK_SECRET')

View File

@ -31,6 +31,7 @@ model_templates = {
'model': json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 512,
"temperature": 1,
@ -81,6 +82,7 @@ model_templates = {
'model': json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 512,
"temperature": 1,
@ -137,10 +139,11 @@ demo_model_templates = {
},
opening_statement='',
suggested_questions=None,
pre_prompt="Please translate the following text into {{target_language}}:\n",
pre_prompt="Please translate the following text into {{target_language}}:\n{{query}}\ntranslate:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
@ -169,6 +172,13 @@ demo_model_templates = {
'Italian',
]
}
},{
"paragraph": {
"label": "Query",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
@ -200,6 +210,7 @@ demo_model_templates = {
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,
@ -255,10 +266,11 @@ demo_model_templates = {
},
opening_statement='',
suggested_questions=None,
pre_prompt="请将以下文本翻译为{{target_language}}:\n",
pre_prompt="请将以下文本翻译为{{target_language}}:\n{{query}}\n翻译:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
@ -287,6 +299,13 @@ demo_model_templates = {
"意大利语",
]
}
},{
"paragraph": {
"label": "文本内容",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
@ -318,6 +337,7 @@ demo_model_templates = {
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,

View File

@ -6,10 +6,10 @@ bp = Blueprint('console', __name__, url_prefix='/console/api')
api = ExternalApi(bp)
# Import other controllers
from . import setup, version, apikey, admin
from . import extension, setup, version, apikey, admin
# Import app controllers
from .app import app, site, completion, model_config, statistic, conversation, message, generator, audio
from .app import advanced_prompt_template, app, site, completion, model_config, statistic, conversation, message, generator, audio
# Import auth controllers
from .auth import login, oauth, data_source_oauth, activate

View File

@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
import flask_restful
from flask_restful import Resource, fields, marshal_with
from werkzeug.exceptions import Forbidden

View File

@ -0,0 +1,25 @@
from flask_restful import Resource, reqparse
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from libs.login import login_required
from services.advanced_prompt_template_service import AdvancedPromptTemplateService
class AdvancedPromptTemplateList(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
parser = reqparse.RequestParser()
parser.add_argument('app_mode', type=str, required=True, location='args')
parser.add_argument('model_mode', type=str, required=True, location='args')
parser.add_argument('has_context', type=str, required=False, default='true', location='args')
parser.add_argument('model_name', type=str, required=True, location='args')
args = parser.parse_args()
return AdvancedPromptTemplateService.get_prompt(args)
api.add_resource(AdvancedPromptTemplateList, '/app/prompt-templates')

View File

@ -3,10 +3,9 @@ import json
import logging
from datetime import datetime
import flask
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with, abort, inputs
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with, abort, inputs
from werkzeug.exceptions import Forbidden
from constants.model_template import model_templates, demo_model_templates
@ -17,11 +16,9 @@ from controllers.console.wraps import account_initialization_required
from core.model_providers.error import ProviderTokenNotInitError, LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from core.model_providers.model_provider_factory import ModelProviderFactory
from core.model_providers.models.entity.model_params import ModelType
from events.app_event import app_was_created, app_was_deleted
from fields.app_fields import app_pagination_fields, app_detail_fields, template_list_fields, \
app_detail_fields_with_site
from libs.helper import TimestampField
from extensions.ext_database import db
from models.model import App, AppModelConfig, Site
from services.app_model_config_service import AppModelConfigService

View File

@ -2,8 +2,8 @@
import logging
from flask import request
from core.login.login import login_required
from werkzeug.exceptions import InternalServerError, NotFound
from libs.login import login_required
from werkzeug.exceptions import InternalServerError
import services
from controllers.console import api

View File

@ -5,7 +5,7 @@ from typing import Generator, Union
import flask_login
from flask import Response, stream_with_context
from core.login.login import login_required
from libs.login import login_required
from werkzeug.exceptions import InternalServerError, NotFound
import services
@ -40,12 +40,14 @@ class CompletionMessageApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json', default='')
parser.add_argument('files', type=list, required=False, location='json')
parser.add_argument('model_config', type=dict, required=True, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('retriever_from', type=str, required=False, default='dev', location='json')
args = parser.parse_args()
streaming = args['response_mode'] != 'blocking'
args['auto_generate_name'] = False
account = flask_login.current_user
@ -113,6 +115,7 @@ class ChatMessageApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('files', type=list, required=False, location='json')
parser.add_argument('model_config', type=dict, required=True, location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
@ -120,6 +123,7 @@ class ChatMessageApi(Resource):
args = parser.parse_args()
streaming = args['response_mode'] != 'blocking'
args['auto_generate_name'] = False
account = flask_login.current_user

View File

@ -2,8 +2,8 @@ from datetime import datetime
import pytz
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with
from flask_restful.inputs import int_range
from sqlalchemy import or_, func
from sqlalchemy.orm import joinedload
@ -15,7 +15,7 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from fields.conversation_fields import conversation_pagination_fields, conversation_detail_fields, \
conversation_message_detail_fields, conversation_with_summary_pagination_fields
from libs.helper import TimestampField, datetime_string, uuid_value
from libs.helper import datetime_string
from extensions.ext_database import db
from models.model import Message, MessageAnnotation, Conversation
@ -108,7 +108,7 @@ class CompletionConversationDetailApi(Resource):
conversation_id = str(conversation_id)
return _get_conversation(app_id, conversation_id, 'completion')
@setup_required
@login_required
@account_initialization_required
@ -230,7 +230,7 @@ class ChatConversationDetailApi(Resource):
conversation_id = str(conversation_id)
return _get_conversation(app_id, conversation_id, 'chat')
@setup_required
@login_required
@account_initialization_required
@ -253,8 +253,6 @@ class ChatConversationDetailApi(Resource):
return {'result': 'success'}, 204
api.add_resource(CompletionConversationApi, '/apps/<uuid:app_id>/completion-conversations')
api.add_resource(CompletionConversationDetailApi, '/apps/<uuid:app_id>/completion-conversations/<uuid:conversation_id>')
api.add_resource(ChatConversationApi, '/apps/<uuid:app_id>/chat-conversations')

View File

@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from controllers.console import api
@ -12,35 +12,6 @@ from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededE
LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError, ModelCurrentlyNotSupportError
class IntroductionGenerateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('prompt_template', type=str, required=True, location='json')
args = parser.parse_args()
account = current_user
try:
answer = LLMGenerator.generate_introduction(
account.current_tenant_id,
args['prompt_template']
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
raise CompletionRequestError(str(e))
return {'introduction': answer}
class RuleGenerateApi(Resource):
@setup_required
@login_required
@ -72,5 +43,4 @@ class RuleGenerateApi(Resource):
return rules
api.add_resource(IntroductionGenerateApi, '/introduction-generate')
api.add_resource(RuleGenerateApi, '/rule-generate')

View File

@ -16,9 +16,9 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.login.login import login_required
from libs.login import login_required
from fields.conversation_fields import message_detail_fields
from libs.helper import uuid_value, TimestampField
from libs.helper import uuid_value
from libs.infinite_scroll_pagination import InfiniteScrollPagination
from extensions.ext_database import db
from models.model import MessageAnnotation, Conversation, Message, MessageFeedback
@ -295,8 +295,8 @@ class MessageSuggestedQuestionApi(Resource):
try:
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
user=current_user,
message_id=message_id,
user=current_user,
check_enabled=False
)
except MessageNotExistsError:
@ -329,7 +329,7 @@ class MessageApi(Resource):
message_id = str(message_id)
# get app info
app_model = _get_app(app_id, 'chat')
app_model = _get_app(app_id)
message = db.session.query(Message).filter(
Message.id == message_id,

View File

@ -1,5 +1,4 @@
# -*- coding:utf-8 -*-
import json
from flask import request
from flask_restful import Resource
@ -9,7 +8,7 @@ from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.login.login import login_required
from libs.login import login_required
from events.app_event import app_model_config_was_updated
from extensions.ext_database import db
from models.model import AppModelConfig

View File

@ -1,7 +1,7 @@
# -*- coding:utf-8 -*-
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with
from werkzeug.exceptions import NotFound, Forbidden
from controllers.console import api

View File

@ -5,7 +5,7 @@ from datetime import datetime
import pytz
from flask import jsonify
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from controllers.console import api

View File

@ -1,16 +1,13 @@
import logging
from datetime import datetime
from typing import Optional
import flask_login
import requests
from flask import request, redirect, current_app, session
from flask import request, redirect, current_app
from flask_login import current_user
from flask_restful import Resource
from werkzeug.exceptions import Forbidden
from core.login.login import login_required
from libs.login import login_required
from libs.oauth_data_source import NotionOAuth
from controllers.console import api
from ..setup import setup_required

View File

@ -1,11 +1,10 @@
import datetime
import json
from cachetools import TTLCache
from flask import request, current_app
from flask import request
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, marshal_with, fields, reqparse, marshal
from libs.login import login_required
from flask_restful import Resource, marshal_with, reqparse
from werkzeug.exceptions import NotFound
from controllers.console import api
@ -15,14 +14,11 @@ from core.data_loader.loader.notion import NotionLoader
from core.indexing_runner import IndexingRunner
from extensions.ext_database import db
from fields.data_source_fields import integrate_notion_info_list_fields, integrate_list_fields
from libs.helper import TimestampField
from models.dataset import Document
from models.source import DataSourceBinding
from services.dataset_service import DatasetService, DocumentService
from tasks.document_indexing_sync_task import document_indexing_sync_task
cache = TTLCache(maxsize=None, ttl=30)
class DataSourceApi(Resource):

View File

@ -4,8 +4,8 @@ from flask import request, current_app
from flask_login import current_user
from controllers.console.apikey import api_key_list, api_key_fields
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal, marshal_with
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal, marshal_with
from werkzeug.exceptions import NotFound, Forbidden
import services
from controllers.console import api

View File

@ -1,11 +1,10 @@
# -*- coding:utf-8 -*-
import random
from datetime import datetime
from typing import List
from flask import request, current_app
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, fields, marshal, marshal_with, reqparse
from sqlalchemy import desc, asc
from werkzeug.exceptions import NotFound, Forbidden
@ -25,7 +24,6 @@ from core.model_providers.model_factory import ModelFactory
from extensions.ext_redis import redis_client
from fields.document_fields import document_with_segments_fields, document_fields, \
dataset_and_document_fields, document_status_fields
from libs.helper import TimestampField
from extensions.ext_database import db
from models.dataset import DatasetProcessRule, Dataset
from models.dataset import Document, DocumentSegment

View File

@ -14,13 +14,12 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_providers.model_factory import ModelFactory
from core.login.login import login_required
from libs.login import login_required
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from fields.segment_fields import segment_fields
from models.dataset import DocumentSegment
from libs.helper import TimestampField
from services.dataset_service import DatasetService, DocumentService, SegmentService
from tasks.enable_segment_to_index_task import enable_segment_to_index_task
from tasks.disable_segment_from_index_task import disable_segment_from_index_task

View File

@ -1,9 +1,9 @@
from cachetools import TTLCache
from flask import request, current_app
from flask_login import current_user
import services
from core.login.login import login_required
from flask_restful import Resource, marshal_with, fields
from libs.login import login_required
from flask_restful import Resource, marshal_with
from controllers.console import api
from controllers.console.datasets.error import NoFileUploadedError, TooManyFilesError, FileTooLargeError, \
@ -15,9 +15,6 @@ from fields.file_fields import upload_config_fields, file_fields
from services.file_service import FileService
cache = TTLCache(maxsize=None, ttl=30)
ALLOWED_EXTENSIONS = ['txt', 'markdown', 'md', 'pdf', 'html', 'htm', 'xlsx', 'docx', 'csv']
PREVIEW_WORDS_LIMIT = 3000
@ -30,9 +27,11 @@ class FileApi(Resource):
def get(self):
file_size_limit = current_app.config.get("UPLOAD_FILE_SIZE_LIMIT")
batch_count_limit = current_app.config.get("UPLOAD_FILE_BATCH_LIMIT")
image_file_size_limit = current_app.config.get("UPLOAD_IMAGE_FILE_SIZE_LIMIT")
return {
'file_size_limit': file_size_limit,
'batch_count_limit': batch_count_limit
'batch_count_limit': batch_count_limit,
'image_file_size_limit': image_file_size_limit
}, 200
@setup_required
@ -51,7 +50,7 @@ class FileApi(Resource):
if len(request.files) > 1:
raise TooManyFilesError()
try:
upload_file = FileService.upload_file(file)
upload_file = FileService.upload_file(file, current_user)
except services.errors.file.FileTooLargeError as file_too_large_error:
raise FileTooLargeError(file_too_large_error.description)
except services.errors.file.UnsupportedFileTypeError:

View File

@ -1,7 +1,7 @@
import logging
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal
from werkzeug.exceptions import InternalServerError, NotFound, Forbidden

View File

@ -1,6 +1,7 @@
# -*- coding:utf-8 -*-
import json
import logging
from datetime import datetime
from typing import Generator, Union
from flask import Response, stream_with_context
@ -17,6 +18,7 @@ from controllers.console.explore.wraps import InstalledAppResource
from core.conversation_message_task import PubHandler
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from extensions.ext_database import db
from libs.helper import uuid_value
from services.completion_service import CompletionService
@ -32,11 +34,16 @@ class CompletionApi(InstalledAppResource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json', default='')
parser.add_argument('files', type=list, required=False, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('retriever_from', type=str, required=False, default='explore_app', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
args['auto_generate_name'] = False
installed_app.last_used_at = datetime.utcnow()
db.session.commit()
try:
response = CompletionService.completion(
@ -91,12 +98,17 @@ class ChatApi(InstalledAppResource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('files', type=list, required=False, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='explore_app', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
args['auto_generate_name'] = False
installed_app.last_used_at = datetime.utcnow()
db.session.commit()
try:
response = CompletionService.completion(

View File

@ -38,7 +38,8 @@ class ConversationListApi(InstalledAppResource):
user=current_user,
last_id=args['last_id'],
limit=args['limit'],
pinned=pinned
pinned=pinned,
exclude_debug_conversation=True
)
except LastConversationNotExistsError:
raise NotFound("Last Conversation Not Exists.")
@ -71,11 +72,18 @@ class ConversationRenameApi(InstalledAppResource):
conversation_id = str(c_id)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
parser.add_argument('name', type=str, required=False, location='json')
parser.add_argument('auto_generate', type=bool, required=False, default='False', location='json')
args = parser.parse_args()
try:
return ConversationService.rename(app_model, conversation_id, current_user, args['name'])
return ConversationService.rename(
app_model,
conversation_id,
current_user,
args['name'],
args['auto_generate']
)
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")

View File

@ -2,8 +2,8 @@
from datetime import datetime
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with, inputs
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with, inputs
from sqlalchemy import and_
from werkzeug.exceptions import NotFound, Forbidden, BadRequest
@ -12,7 +12,6 @@ from controllers.console.explore.wraps import InstalledAppResource
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
from fields.installed_app_fields import installed_app_list_fields
from libs.helper import TimestampField
from models.model import App, InstalledApp, RecommendedApp
from services.account_service import TenantService
@ -40,8 +39,9 @@ class InstalledAppsListApi(Resource):
}
for installed_app in installed_apps
]
installed_apps.sort(key=lambda app: (-app['is_pinned'], app['last_used_at']
if app['last_used_at'] is not None else datetime.min))
installed_apps.sort(key=lambda app: (-app['is_pinned'],
app['last_used_at'] is None,
-app['last_used_at'].timestamp() if app['last_used_at'] is not None else 0))
return {'installed_apps': installed_apps}

View File

@ -1,5 +1,6 @@
# -*- coding:utf-8 -*-
from flask_restful import marshal_with, fields
from flask import current_app
from controllers.console import api
from controllers.console.explore.wraps import InstalledAppResource
@ -19,6 +20,10 @@ class AppParameterApi(InstalledAppResource):
'options': fields.List(fields.String)
}
system_parameters_fields = {
'image_file_size_limit': fields.String
}
parameters_fields = {
'opening_statement': fields.String,
'suggested_questions': fields.Raw,
@ -27,6 +32,9 @@ class AppParameterApi(InstalledAppResource):
'retriever_resource': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
'sensitive_word_avoidance': fields.Raw,
'file_upload': fields.Raw,
'system_parameters': fields.Nested(system_parameters_fields)
}
@marshal_with(parameters_fields)
@ -42,7 +50,12 @@ class AppParameterApi(InstalledAppResource):
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict,
'file_upload': app_model_config.file_upload_dict,
'system_parameters': {
'image_file_size_limit': current_app.config.get('UPLOAD_IMAGE_FILE_SIZE_LIMIT')
}
}

View File

@ -1,6 +1,6 @@
# -*- coding:utf-8 -*-
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, fields, marshal_with
from sqlalchemy import and_

View File

@ -9,6 +9,7 @@ from controllers.console.explore.wraps import InstalledAppResource
from libs.helper import uuid_value, TimestampField
from services.errors.message import MessageNotExistsError
from services.saved_message_service import SavedMessageService
from fields.conversation_fields import message_file_fields
feedback_fields = {
'rating': fields.String
@ -19,6 +20,7 @@ message_fields = {
'inputs': fields.Raw,
'query': fields.String,
'answer': fields.String,
'message_files': fields.List(fields.Nested(message_file_fields), attribute='files'),
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'created_at': TimestampField
}

View File

@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource
from functools import wraps

View File

@ -0,0 +1,114 @@
from flask_restful import Resource, reqparse, marshal_with
from flask_login import current_user
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from libs.login import login_required
from models.api_based_extension import APIBasedExtension
from fields.api_based_extension_fields import api_based_extension_fields
from services.code_based_extension_service import CodeBasedExtensionService
from services.api_based_extension_service import APIBasedExtensionService
class CodeBasedExtensionAPI(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
parser = reqparse.RequestParser()
parser.add_argument('module', type=str, required=True, location='args')
args = parser.parse_args()
return {
'module': args['module'],
'data': CodeBasedExtensionService.get_code_based_extension(args['module'])
}
class APIBasedExtensionAPI(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_based_extension_fields)
def get(self):
tenant_id = current_user.current_tenant_id
return APIBasedExtensionService.get_all_by_tenant_id(tenant_id)
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_based_extension_fields)
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
parser.add_argument('api_endpoint', type=str, required=True, location='json')
parser.add_argument('api_key', type=str, required=True, location='json')
args = parser.parse_args()
extension_data = APIBasedExtension(
tenant_id=current_user.current_tenant_id,
name=args['name'],
api_endpoint=args['api_endpoint'],
api_key=args['api_key']
)
return APIBasedExtensionService.save(extension_data)
class APIBasedExtensionDetailAPI(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_based_extension_fields)
def get(self, id):
api_based_extension_id = str(id)
tenant_id = current_user.current_tenant_id
return APIBasedExtensionService.get_with_tenant_id(tenant_id, api_based_extension_id)
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_based_extension_fields)
def post(self, id):
api_based_extension_id = str(id)
tenant_id = current_user.current_tenant_id
extension_data_from_db = APIBasedExtensionService.get_with_tenant_id(tenant_id, api_based_extension_id)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
parser.add_argument('api_endpoint', type=str, required=True, location='json')
parser.add_argument('api_key', type=str, required=True, location='json')
args = parser.parse_args()
extension_data_from_db.name = args['name']
extension_data_from_db.api_endpoint = args['api_endpoint']
if args['api_key'] != '[__HIDDEN__]':
extension_data_from_db.api_key = args['api_key']
return APIBasedExtensionService.save(extension_data_from_db)
@setup_required
@login_required
@account_initialization_required
def delete(self, id):
api_based_extension_id = str(id)
tenant_id = current_user.current_tenant_id
extension_data_from_db = APIBasedExtensionService.get_with_tenant_id(tenant_id, api_based_extension_id)
APIBasedExtensionService.delete(extension_data_from_db)
return {'result': 'success'}
api.add_resource(CodeBasedExtensionAPI, '/code-based-extension')
api.add_resource(APIBasedExtensionAPI, '/api-based-extension')
api.add_resource(APIBasedExtensionDetailAPI, '/api-based-extension/<uuid:id>')

View File

@ -25,6 +25,7 @@ class UniversalChatApi(UniversalChatResource):
parser = reqparse.RequestParser()
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('files', type=list, required=False, location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('provider', type=str, required=True, location='json')
parser.add_argument('model', type=str, required=True, location='json')
@ -60,6 +61,8 @@ class UniversalChatApi(UniversalChatResource):
del args['model']
del args['tools']
args['auto_generate_name'] = False
try:
response = CompletionService.completion(
app_model=app_model,

View File

@ -65,11 +65,18 @@ class UniversalChatConversationRenameApi(UniversalChatResource):
conversation_id = str(c_id)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
parser.add_argument('name', type=str, required=False, location='json')
parser.add_argument('auto_generate', type=bool, required=False, default='False', location='json')
args = parser.parse_args()
try:
return ConversationService.rename(app_model, conversation_id, current_user, args['name'])
return ConversationService.rename(
app_model,
conversation_id,
current_user,
args['name'],
args['auto_generate']
)
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")

View File

@ -2,7 +2,7 @@ import json
from functools import wraps
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required

View File

@ -4,7 +4,7 @@ from datetime import datetime
import pytz
from flask import current_app, request
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with
from services.errors.account import CurrentPasswordIncorrectError as ServiceCurrentPasswordIncorrectError

View File

@ -1,7 +1,7 @@
# -*- coding:utf-8 -*-
from flask import current_app
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with, abort, fields, marshal
import services

View File

@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden

View File

@ -1,5 +1,5 @@
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from controllers.console import api

View File

@ -1,6 +1,6 @@
# -*- coding:utf-8 -*-
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden

View File

@ -1,7 +1,7 @@
import json
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, abort, reqparse
from werkzeug.exceptions import Forbidden

View File

@ -3,9 +3,8 @@ import logging
from flask import request
from flask_login import current_user
from core.login.login import login_required
from libs.login import login_required
from flask_restful import Resource, fields, marshal_with, reqparse, marshal, inputs
from flask_restful.inputs import int_range
from controllers.console import api
from controllers.console.admin import admin_required

View File

@ -0,0 +1,10 @@
# -*- coding:utf-8 -*-
from flask import Blueprint
from libs.external_api import ExternalApi
bp = Blueprint('files', __name__)
api = ExternalApi(bp)
from . import image_preview

View File

@ -0,0 +1,40 @@
from flask import request, Response
from flask_restful import Resource
import services
from controllers.files import api
from libs.exception import BaseHTTPException
from services.file_service import FileService
class ImagePreviewApi(Resource):
def get(self, file_id):
file_id = str(file_id)
timestamp = request.args.get('timestamp')
nonce = request.args.get('nonce')
sign = request.args.get('sign')
if not timestamp or not nonce or not sign:
return {'content': 'Invalid request.'}, 400
try:
generator, mimetype = FileService.get_image_preview(
file_id,
timestamp,
nonce,
sign
)
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError()
return Response(generator, mimetype=mimetype)
api.add_resource(ImagePreviewApi, '/files/<uuid:file_id>/image-preview')
class UnsupportedFileTypeError(BaseHTTPException):
error_code = 'unsupported_file_type'
description = "File type not allowed."
code = 415

View File

@ -7,6 +7,6 @@ bp = Blueprint('service_api', __name__, url_prefix='/v1')
api = ExternalApi(bp)
from .app import completion, app, conversation, message, audio
from .app import completion, app, conversation, message, audio, file
from .dataset import document, segment, dataset

View File

@ -1,5 +1,6 @@
# -*- coding:utf-8 -*-
from flask_restful import fields, marshal_with
from flask import current_app
from controllers.service_api import api
from controllers.service_api.wraps import AppApiResource
@ -20,6 +21,10 @@ class AppParameterApi(AppApiResource):
'options': fields.List(fields.String)
}
system_parameters_fields = {
'image_file_size_limit': fields.String
}
parameters_fields = {
'opening_statement': fields.String,
'suggested_questions': fields.Raw,
@ -28,6 +33,9 @@ class AppParameterApi(AppApiResource):
'retriever_resource': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
'sensitive_word_avoidance': fields.Raw,
'file_upload': fields.Raw,
'system_parameters': fields.Nested(system_parameters_fields)
}
@marshal_with(parameters_fields)
@ -42,7 +50,12 @@ class AppParameterApi(AppApiResource):
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict,
'file_upload': app_model_config.file_upload_dict,
'system_parameters': {
'image_file_size_limit': current_app.config.get('UPLOAD_IMAGE_FILE_SIZE_LIMIT')
}
}

View File

@ -28,6 +28,7 @@ class CompletionApi(AppApiResource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json', default='')
parser.add_argument('files', type=list, required=False, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('user', type=str, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='dev', location='json')
@ -39,13 +40,15 @@ class CompletionApi(AppApiResource):
if end_user is None and args['user'] is not None:
end_user = create_or_update_end_user_for_user_id(app_model, args['user'])
args['auto_generate_name'] = False
try:
response = CompletionService.completion(
app_model=app_model,
user=end_user,
args=args,
from_source='api',
streaming=streaming
streaming=streaming,
)
return compact_response(response)
@ -90,10 +93,12 @@ class ChatApi(AppApiResource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('files', type=list, required=False, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('user', type=str, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='dev', location='json')
parser.add_argument('auto_generate_name', type=bool, required=False, default='True', location='json')
args = parser.parse_args()
@ -183,4 +188,3 @@ api.add_resource(CompletionApi, '/completion-messages')
api.add_resource(CompletionStopApi, '/completion-messages/<string:task_id>/stop')
api.add_resource(ChatApi, '/chat-messages')
api.add_resource(ChatStopApi, '/chat-messages/<string:task_id>/stop')

View File

@ -54,6 +54,7 @@ class ConversationDetailApi(AppApiResource):
raise NotFound("Conversation Not Exists.")
return {"result": "success"}, 204
class ConversationRenameApi(AppApiResource):
@marshal_with(simple_conversation_fields)
@ -64,15 +65,22 @@ class ConversationRenameApi(AppApiResource):
conversation_id = str(c_id)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
parser.add_argument('name', type=str, required=False, location='json')
parser.add_argument('user', type=str, location='json')
parser.add_argument('auto_generate', type=bool, required=False, default='False', location='json')
args = parser.parse_args()
if end_user is None and args['user'] is not None:
end_user = create_or_update_end_user_for_user_id(app_model, args['user'])
try:
return ConversationService.rename(app_model, conversation_id, end_user, args['name'])
return ConversationService.rename(
app_model,
conversation_id,
end_user,
args['name'],
args['auto_generate']
)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")

View File

@ -75,3 +75,26 @@ class ProviderNotSupportSpeechToTextError(BaseHTTPException):
description = "Provider not support speech to text."
code = 400
class NoFileUploadedError(BaseHTTPException):
error_code = 'no_file_uploaded'
description = "Please upload your file."
code = 400
class TooManyFilesError(BaseHTTPException):
error_code = 'too_many_files'
description = "Only one file is allowed."
code = 400
class FileTooLargeError(BaseHTTPException):
error_code = 'file_too_large'
description = "File size exceeded. {message}"
code = 413
class UnsupportedFileTypeError(BaseHTTPException):
error_code = 'unsupported_file_type'
description = "File type not allowed."
code = 415

View File

@ -0,0 +1,42 @@
from flask import request
from flask_restful import marshal_with
from controllers.service_api import api
from controllers.service_api.wraps import AppApiResource
from controllers.service_api.app import create_or_update_end_user_for_user_id
from controllers.service_api.app.error import NoFileUploadedError, TooManyFilesError, FileTooLargeError, \
UnsupportedFileTypeError
import services
from services.file_service import FileService
from fields.file_fields import file_fields
class FileApi(AppApiResource):
@marshal_with(file_fields)
def post(self, app_model, end_user):
file = request.files['file']
user_args = request.form.get('user')
if end_user is None and user_args is not None:
end_user = create_or_update_end_user_for_user_id(app_model, user_args)
# check file
if 'file' not in request.files:
raise NoFileUploadedError()
if len(request.files) > 1:
raise TooManyFilesError()
try:
upload_file = FileService.upload_file(file, end_user)
except services.errors.file.FileTooLargeError as file_too_large_error:
raise FileTooLargeError(file_too_large_error.description)
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError()
return upload_file, 201
api.add_resource(FileApi, '/files/upload')

View File

@ -10,7 +10,9 @@ from controllers.service_api.app.error import NotChatAppError
from controllers.service_api.wraps import AppApiResource
from libs.helper import TimestampField, uuid_value
from services.message_service import MessageService
from extensions.ext_database import db
from models.model import Message, EndUser
from fields.conversation_fields import message_file_fields
class MessageListApi(AppApiResource):
feedback_fields = {
@ -41,6 +43,7 @@ class MessageListApi(AppApiResource):
'inputs': fields.Raw,
'query': fields.String,
'answer': fields.String,
'message_files': fields.List(fields.Nested(message_file_fields), attribute='files'),
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField
@ -96,5 +99,38 @@ class MessageFeedbackApi(AppApiResource):
return {'result': 'success'}
class MessageSuggestedApi(AppApiResource):
def get(self, app_model, end_user, message_id):
message_id = str(message_id)
if app_model.mode != 'chat':
raise NotChatAppError()
try:
message = db.session.query(Message).filter(
Message.id == message_id,
Message.app_id == app_model.id,
).first()
if end_user is None and message.from_end_user_id is not None:
user = db.session.query(EndUser) \
.filter(
EndUser.tenant_id == app_model.tenant_id,
EndUser.id == message.from_end_user_id,
EndUser.type == 'service_api'
).first()
else:
user = end_user
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
user=user,
message_id=message_id,
check_enabled=False
)
except services.errors.message.MessageNotExistsError:
raise NotFound("Message Not Exists.")
return {'result': 'success', 'data': questions}
api.add_resource(MessageListApi, '/messages')
api.add_resource(MessageFeedbackApi, '/messages/<uuid:message_id>/feedbacks')
api.add_resource(MessageSuggestedApi, '/messages/<uuid:message_id>/suggested')

View File

@ -4,12 +4,9 @@ import services.dataset_service
from controllers.service_api import api
from controllers.service_api.dataset.error import DatasetNameDuplicateError
from controllers.service_api.wraps import DatasetApiResource
from core.login.login import current_user
from libs.login import current_user
from core.model_providers.models.entity.model_params import ModelType
from extensions.ext_database import db
from fields.dataset_fields import dataset_detail_fields
from models.account import Account, TenantAccountJoin
from models.dataset import Dataset
from services.dataset_service import DatasetService
from services.provider_service import ProviderService

View File

@ -1,9 +1,8 @@
import datetime
import json
import uuid
from flask import current_app, request
from flask import request
from flask_restful import reqparse, marshal
from flask_login import current_user
from sqlalchemy import desc
from werkzeug.exceptions import NotFound
@ -13,13 +12,11 @@ from controllers.service_api.app.error import ProviderNotInitializeError
from controllers.service_api.dataset.error import ArchivedDocumentImmutableError, DocumentIndexingError, \
NoFileUploadedError, TooManyFilesError
from controllers.service_api.wraps import DatasetApiResource
from core.login.login import current_user
from libs.login import current_user
from core.model_providers.error import ProviderTokenNotInitError
from extensions.ext_database import db
from extensions.ext_storage import storage
from fields.document_fields import document_fields, document_status_fields
from models.dataset import Dataset, Document, DocumentSegment
from models.model import UploadFile
from services.dataset_service import DocumentService
from services.file_service import FileService
@ -177,7 +174,7 @@ class DocumentAddByFileApi(DatasetApiResource):
if len(request.files) > 1:
raise TooManyFilesError()
upload_file = FileService.upload_file(file)
upload_file = FileService.upload_file(file, current_user)
data_source = {
'type': 'upload_file',
'info_list': {
@ -239,7 +236,7 @@ class DocumentUpdateByFileApi(DatasetApiResource):
if len(request.files) > 1:
raise TooManyFilesError()
upload_file = FileService.upload_file(file)
upload_file = FileService.upload_file(file, current_user)
data_source = {
'type': 'upload_file',
'info_list': {

View File

@ -1,7 +1,6 @@
from flask_login import current_user
from flask_restful import reqparse, marshal
from werkzeug.exceptions import NotFound
from controllers.service_api import api
from controllers.service_api.app.error import ProviderNotInitializeError
from controllers.service_api.wraps import DatasetApiResource
@ -9,8 +8,8 @@ from core.model_providers.error import ProviderTokenNotInitError, LLMBadRequestE
from core.model_providers.model_factory import ModelFactory
from extensions.ext_database import db
from fields.segment_fields import segment_fields
from models.dataset import Dataset
from services.dataset_service import DocumentService, SegmentService
from models.dataset import Dataset, DocumentSegment
from services.dataset_service import DatasetService, DocumentService, SegmentService
class SegmentApi(DatasetApiResource):
@ -24,6 +23,8 @@ class SegmentApi(DatasetApiResource):
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
@ -55,5 +56,146 @@ class SegmentApi(DatasetApiResource):
'doc_form': document.doc_form
}, 200
def get(self, tenant_id, dataset_id, document_id):
"""Create single segment."""
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
if not document:
raise NotFound('Document not found.')
# check embedding model setting
if dataset.indexing_technique == 'high_quality':
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
parser = reqparse.RequestParser()
parser.add_argument('status', type=str,
action='append', default=[], location='args')
parser.add_argument('keyword', type=str, default=None, location='args')
args = parser.parse_args()
status_list = args['status']
keyword = args['keyword']
query = DocumentSegment.query.filter(
DocumentSegment.document_id == str(document_id),
DocumentSegment.tenant_id == current_user.current_tenant_id
)
if status_list:
query = query.filter(DocumentSegment.status.in_(status_list))
if keyword:
query = query.where(DocumentSegment.content.ilike(f'%{keyword}%'))
total = query.count()
segments = query.order_by(DocumentSegment.position).all()
return {
'data': marshal(segments, segment_fields),
'doc_form': document.doc_form,
'total': total
}, 200
class DatasetSegmentApi(DatasetApiResource):
def delete(self, tenant_id, dataset_id, document_id, segment_id):
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
# check segment
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id),
DocumentSegment.tenant_id == current_user.current_tenant_id
).first()
if not segment:
raise NotFound('Segment not found.')
SegmentService.delete_segment(segment, document, dataset)
return {'result': 'success'}, 200
def post(self, tenant_id, dataset_id, document_id, segment_id):
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
if dataset.indexing_technique == 'high_quality':
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# check segment
segment_id = str(segment_id)
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id),
DocumentSegment.tenant_id == current_user.current_tenant_id
).first()
if not segment:
raise NotFound('Segment not found.')
# validate args
parser = reqparse.RequestParser()
parser.add_argument('segments', type=dict, required=False, nullable=True, location='json')
args = parser.parse_args()
SegmentService.segment_create_args_validate(args['segments'], document)
segment = SegmentService.update_segment(args['segments'], segment, document, dataset)
return {
'data': marshal(segment, segment_fields),
'doc_form': document.doc_form
}, 200
api.add_resource(SegmentApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments')
api.add_resource(DatasetSegmentApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>')

View File

@ -7,10 +7,9 @@ from flask_login import user_logged_in
from flask_restful import Resource
from werkzeug.exceptions import NotFound, Unauthorized
from core.login.login import _get_user
from libs.login import _get_user
from extensions.ext_database import db
from models.account import Tenant, TenantAccountJoin, Account
from models.dataset import Dataset
from models.model import ApiToken, App

View File

@ -7,4 +7,4 @@ bp = Blueprint('web', __name__, url_prefix='/api')
api = ExternalApi(bp)
from . import completion, app, conversation, message, site, saved_message, audio, passport
from . import completion, app, conversation, message, site, saved_message, audio, passport, file

View File

@ -1,5 +1,6 @@
# -*- coding:utf-8 -*-
from flask_restful import marshal_with, fields
from flask import current_app
from controllers.web import api
from controllers.web.wraps import WebApiResource
@ -19,6 +20,10 @@ class AppParameterApi(WebApiResource):
'options': fields.List(fields.String)
}
system_parameters_fields = {
'image_file_size_limit': fields.String
}
parameters_fields = {
'opening_statement': fields.String,
'suggested_questions': fields.Raw,
@ -27,6 +32,9 @@ class AppParameterApi(WebApiResource):
'retriever_resource': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
'sensitive_word_avoidance': fields.Raw,
'file_upload': fields.Raw,
'system_parameters': fields.Nested(system_parameters_fields)
}
@marshal_with(parameters_fields)
@ -41,7 +49,12 @@ class AppParameterApi(WebApiResource):
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict,
'file_upload': app_model_config.file_upload_dict,
'system_parameters': {
'image_file_size_limit': current_app.config.get('UPLOAD_IMAGE_FILE_SIZE_LIMIT')
}
}

View File

@ -30,12 +30,14 @@ class CompletionApi(WebApiResource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json', default='')
parser.add_argument('files', type=list, required=False, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('retriever_from', type=str, required=False, default='web_app', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
args['auto_generate_name'] = False
try:
response = CompletionService.completion(
@ -88,6 +90,7 @@ class ChatApi(WebApiResource):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('files', type=list, required=False, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='web_app', location='json')
@ -95,6 +98,7 @@ class ChatApi(WebApiResource):
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
args['auto_generate_name'] = False
try:
response = CompletionService.completion(
@ -139,7 +143,7 @@ class ChatStopApi(WebApiResource):
return {'result': 'success'}, 200
def compact_response(response: Union[dict | Generator]) -> Response:
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:

View File

@ -67,11 +67,18 @@ class ConversationRenameApi(WebApiResource):
conversation_id = str(c_id)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
parser.add_argument('name', type=str, required=False, location='json')
parser.add_argument('auto_generate', type=bool, required=False, default='False', location='json')
args = parser.parse_args()
try:
return ConversationService.rename(app_model, conversation_id, end_user, args['name'])
return ConversationService.rename(
app_model,
conversation_id,
end_user,
args['name'],
args['auto_generate']
)
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")

View File

@ -85,4 +85,28 @@ class UnsupportedAudioTypeError(BaseHTTPException):
class ProviderNotSupportSpeechToTextError(BaseHTTPException):
error_code = 'provider_not_support_speech_to_text'
description = "Provider not support speech to text."
code = 400
code = 400
class NoFileUploadedError(BaseHTTPException):
error_code = 'no_file_uploaded'
description = "Please upload your file."
code = 400
class TooManyFilesError(BaseHTTPException):
error_code = 'too_many_files'
description = "Only one file is allowed."
code = 400
class FileTooLargeError(BaseHTTPException):
error_code = 'file_too_large'
description = "File size exceeded. {message}"
code = 413
class UnsupportedFileTypeError(BaseHTTPException):
error_code = 'unsupported_file_type'
description = "File type not allowed."
code = 415

View File

@ -0,0 +1,36 @@
from flask import request
from flask_restful import marshal_with
from controllers.web import api
from controllers.web.wraps import WebApiResource
from controllers.web.error import NoFileUploadedError, TooManyFilesError, FileTooLargeError, \
UnsupportedFileTypeError
import services
from services.file_service import FileService
from fields.file_fields import file_fields
class FileApi(WebApiResource):
@marshal_with(file_fields)
def post(self, app_model, end_user):
# get file from request
file = request.files['file']
# check file
if 'file' not in request.files:
raise NoFileUploadedError()
if len(request.files) > 1:
raise TooManyFilesError()
try:
upload_file = FileService.upload_file(file, end_user)
except services.errors.file.FileTooLargeError as file_too_large_error:
raise FileTooLargeError(file_too_large_error.description)
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError()
return upload_file, 201
api.add_resource(FileApi, '/files/upload')

View File

@ -22,6 +22,7 @@ from services.errors.app import MoreLikeThisDisabledError
from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError, SuggestedQuestionsAfterAnswerDisabledError
from services.message_service import MessageService
from fields.conversation_fields import message_file_fields
class MessageListApi(WebApiResource):
@ -54,6 +55,7 @@ class MessageListApi(WebApiResource):
'inputs': fields.Raw,
'query': fields.String,
'answer': fields.String,
'message_files': fields.List(fields.Nested(message_file_fields), attribute='files'),
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField
@ -115,7 +117,7 @@ class MessageMoreLikeThisApi(WebApiResource):
streaming = args['response_mode'] == 'streaming'
try:
response = CompletionService.generate_more_like_this(app_model, end_user, message_id, streaming)
response = CompletionService.generate_more_like_this(app_model, end_user, message_id, streaming, 'web_app')
return compact_response(response)
except MessageNotExistsError:
raise NotFound("Message Not Exists.")

View File

@ -8,6 +8,8 @@ from controllers.web.wraps import WebApiResource
from libs.helper import uuid_value, TimestampField
from services.errors.message import MessageNotExistsError
from services.saved_message_service import SavedMessageService
from fields.conversation_fields import message_file_fields
feedback_fields = {
'rating': fields.String
@ -18,6 +20,7 @@ message_fields = {
'inputs': fields.Raw,
'query': fields.String,
'answer': fields.String,
'message_files': fields.List(fields.Nested(message_file_fields), attribute='files'),
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'created_at': TimestampField
}

View File

@ -0,0 +1 @@
import core.moderation.base

View File

@ -2,14 +2,18 @@ import json
from typing import Tuple, List, Any, Union, Sequence, Optional, cast
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
from langchain.agents.openai_functions_agent.base import _format_intermediate_steps, _parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema import AgentAction, AgentFinish, SystemMessage, Generation, LLMResult, AIMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools import BaseTool
from pydantic import root_validator
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.third_party.langchain.llms.fake import FakeLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
@ -24,6 +28,10 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
arbitrary_types_allowed = True
@root_validator
def validate_llm(cls, values: dict) -> dict:
return values
def should_use_agent(self, query: str):
"""
return should use agent
@ -65,17 +73,57 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
return AgentFinish(return_values={"output": observation}, log=observation)
try:
agent_decision = super().plan(intermediate_steps, callbacks, **kwargs)
agent_decision = self.real_plan(intermediate_steps, callbacks, **kwargs)
if isinstance(agent_decision, AgentAction):
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
if isinstance(tool_inputs, dict) and 'query' in tool_inputs and 'chat_history' not in kwargs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
else:
agent_decision.return_values['output'] = ''
return agent_decision
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
raise new_exception
def real_plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
functions=self.functions,
)
ai_message = AIMessage(
content=result.content,
additional_kwargs={
'function_call': result.function_call
}
)
agent_decision = _parse_ai_message(ai_message)
return agent_decision
async def aplan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
@ -87,7 +135,7 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
model_instance: BaseLLM,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
@ -96,11 +144,15 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
),
**kwargs: Any,
) -> BaseSingleActionAgent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
prompt = cls.create_prompt(
extra_prompt_messages=extra_prompt_messages,
system_message=system_message,
)
return cls(
model_instance=model_instance,
llm=FakeLLM(response=''),
prompt=prompt,
tools=tools,
callback_manager=callback_manager,
**kwargs,
)

View File

@ -5,21 +5,40 @@ from langchain.agents.openai_functions_agent.base import _parse_ai_message, \
_format_intermediate_steps
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.chat_models.openai import _convert_message_to_dict, _import_tiktoken
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema import AgentAction, AgentFinish, SystemMessage, AIMessage, HumanMessage, BaseMessage, \
get_buffer_string
from langchain.tools import BaseTool
from pydantic import root_validator
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
from core.agent.agent.openai_function_call_summarize_mixin import OpenAIFunctionCallSummarizeMixin
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError, CalcTokenMixin
from core.chain.llm_chain import LLMChain
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.third_party.langchain.llms.fake import FakeLLM
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctionCallSummarizeMixin):
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_model_instance: BaseLLM = None
model_instance: BaseLLM
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@root_validator
def validate_llm(cls, values: dict) -> dict:
return values
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
model_instance: BaseLLM,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
@ -28,12 +47,16 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
),
**kwargs: Any,
) -> BaseSingleActionAgent:
return super().from_llm_and_tools(
llm=llm,
prompt = cls.create_prompt(
extra_prompt_messages=extra_prompt_messages,
system_message=system_message,
)
return cls(
model_instance=model_instance,
llm=FakeLLM(response=''),
prompt=prompt,
tools=tools,
callback_manager=callback_manager,
extra_prompt_messages=extra_prompt_messages,
system_message=cls.get_system_message(),
**kwargs,
)
@ -44,23 +67,26 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
:param query:
:return:
"""
original_max_tokens = self.llm.max_tokens
self.llm.max_tokens = 40
original_max_tokens = self.model_instance.model_kwargs.max_tokens
self.model_instance.model_kwargs.max_tokens = 40
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
messages = prompt.to_messages()
try:
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=None
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
functions=self.functions,
callbacks=None
)
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
raise new_exception
function_call = predicted_message.additional_kwargs.get("function_call", {})
function_call = result.function_call
self.llm.max_tokens = original_max_tokens
self.model_instance.model_kwargs.max_tokens = original_max_tokens
return True if function_call else False
@ -93,10 +119,19 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
except ExceededLLMTokensLimitError as e:
return AgentFinish(return_values={"output": str(e)}, log=str(e))
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=callbacks
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
functions=self.functions,
)
agent_decision = _parse_ai_message(predicted_message)
ai_message = AIMessage(
content=result.content,
additional_kwargs={
'function_call': result.function_call
}
)
agent_decision = _parse_ai_message(ai_message)
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
tool_inputs = agent_decision.tool_input
@ -122,3 +157,142 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
return super().return_stopped_response(early_stopping_method, intermediate_steps, **kwargs)
except ValueError:
return AgentFinish({"output": "I'm sorry, I don't know how to respond to that."}, "")
def summarize_messages_if_needed(self, messages: List[BaseMessage], **kwargs) -> List[BaseMessage]:
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages, **kwargs)
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
if rest_tokens >= 0:
return messages
system_message = None
human_message = None
should_summary_messages = []
for message in messages:
if isinstance(message, SystemMessage):
system_message = message
elif isinstance(message, HumanMessage):
human_message = message
else:
should_summary_messages.append(message)
if len(should_summary_messages) > 2:
ai_message = should_summary_messages[-2]
function_message = should_summary_messages[-1]
should_summary_messages = should_summary_messages[self.moving_summary_index:-2]
self.moving_summary_index = len(should_summary_messages)
else:
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
new_messages = [system_message, human_message]
if self.moving_summary_index == 0:
should_summary_messages.insert(0, human_message)
self.moving_summary_buffer = self.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
new_messages.append(AIMessage(content=self.moving_summary_buffer))
new_messages.append(ai_message)
new_messages.append(function_message)
return new_messages
def predict_new_summary(
self, messages: List[BaseMessage], existing_summary: str
) -> str:
new_lines = get_buffer_string(
messages,
human_prefix="Human",
ai_prefix="AI",
)
chain = LLMChain(model_instance=self.summary_model_instance, prompt=SUMMARY_PROMPT)
return chain.predict(summary=existing_summary, new_lines=new_lines)
def get_num_tokens_from_messages(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
if model_instance.model_provider.provider_name == 'azure_openai':
model = model_instance.base_model_name
model = model.replace("gpt-35", "gpt-3.5")
else:
model = model_instance.base_model_name
tiktoken_ = _import_tiktoken()
try:
encoding = tiktoken_.encoding_for_model(model)
except KeyError:
model = "cl100k_base"
encoding = tiktoken_.get_encoding(model)
if model.startswith("gpt-3.5-turbo"):
# every message follows <im_start>{role/name}\n{content}<im_end>\n
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif model.startswith("gpt-4"):
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(
f"get_num_tokens_from_messages() is not presently implemented "
f"for model {model}."
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
"information on how messages are converted to tokens."
)
num_tokens = 0
for m in messages:
message = _convert_message_to_dict(m)
num_tokens += tokens_per_message
for key, value in message.items():
if key == "function_call":
for f_key, f_value in value.items():
num_tokens += len(encoding.encode(f_key))
num_tokens += len(encoding.encode(f_value))
else:
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
# every reply is primed with <im_start>assistant
num_tokens += 3
if kwargs.get('functions'):
for function in kwargs.get('functions'):
num_tokens += len(encoding.encode('name'))
num_tokens += len(encoding.encode(function.get("name")))
num_tokens += len(encoding.encode('description'))
num_tokens += len(encoding.encode(function.get("description")))
parameters = function.get("parameters")
num_tokens += len(encoding.encode('parameters'))
if 'title' in parameters:
num_tokens += len(encoding.encode('title'))
num_tokens += len(encoding.encode(parameters.get("title")))
num_tokens += len(encoding.encode('type'))
num_tokens += len(encoding.encode(parameters.get("type")))
if 'properties' in parameters:
num_tokens += len(encoding.encode('properties'))
for key, value in parameters.get('properties').items():
num_tokens += len(encoding.encode(key))
for field_key, field_value in value.items():
num_tokens += len(encoding.encode(field_key))
if field_key == 'enum':
for enum_field in field_value:
num_tokens += 3
num_tokens += len(encoding.encode(enum_field))
else:
num_tokens += len(encoding.encode(field_key))
num_tokens += len(encoding.encode(str(field_value)))
if 'required' in parameters:
num_tokens += len(encoding.encode('required'))
for required_field in parameters['required']:
num_tokens += 3
num_tokens += len(encoding.encode(required_field))
return num_tokens

View File

@ -1,140 +0,0 @@
from typing import cast, List
from langchain.chat_models import ChatOpenAI
from langchain.chat_models.openai import _convert_message_to_dict
from langchain.memory.summary import SummarizerMixin
from langchain.schema import SystemMessage, HumanMessage, BaseMessage, AIMessage
from langchain.schema.language_model import BaseLanguageModel
from pydantic import BaseModel
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError, CalcTokenMixin
from core.model_providers.models.llm.base import BaseLLM
class OpenAIFunctionCallSummarizeMixin(BaseModel, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_llm: BaseLanguageModel = None
model_instance: BaseLLM
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def summarize_messages_if_needed(self, messages: List[BaseMessage], **kwargs) -> List[BaseMessage]:
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages, **kwargs)
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
if rest_tokens >= 0:
return messages
system_message = None
human_message = None
should_summary_messages = []
for message in messages:
if isinstance(message, SystemMessage):
system_message = message
elif isinstance(message, HumanMessage):
human_message = message
else:
should_summary_messages.append(message)
if len(should_summary_messages) > 2:
ai_message = should_summary_messages[-2]
function_message = should_summary_messages[-1]
should_summary_messages = should_summary_messages[self.moving_summary_index:-2]
self.moving_summary_index = len(should_summary_messages)
else:
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
new_messages = [system_message, human_message]
if self.moving_summary_index == 0:
should_summary_messages.insert(0, human_message)
summary_handler = SummarizerMixin(llm=self.summary_llm)
self.moving_summary_buffer = summary_handler.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
new_messages.append(AIMessage(content=self.moving_summary_buffer))
new_messages.append(ai_message)
new_messages.append(function_message)
return new_messages
def get_num_tokens_from_messages(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
llm = cast(ChatOpenAI, model_instance.client)
model, encoding = llm._get_encoding_model()
if model.startswith("gpt-3.5-turbo"):
# every message follows <im_start>{role/name}\n{content}<im_end>\n
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif model.startswith("gpt-4"):
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(
f"get_num_tokens_from_messages() is not presently implemented "
f"for model {model}."
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
"information on how messages are converted to tokens."
)
num_tokens = 0
for m in messages:
message = _convert_message_to_dict(m)
num_tokens += tokens_per_message
for key, value in message.items():
if key == "function_call":
for f_key, f_value in value.items():
num_tokens += len(encoding.encode(f_key))
num_tokens += len(encoding.encode(f_value))
else:
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
# every reply is primed with <im_start>assistant
num_tokens += 3
if kwargs.get('functions'):
for function in kwargs.get('functions'):
num_tokens += len(encoding.encode('name'))
num_tokens += len(encoding.encode(function.get("name")))
num_tokens += len(encoding.encode('description'))
num_tokens += len(encoding.encode(function.get("description")))
parameters = function.get("parameters")
num_tokens += len(encoding.encode('parameters'))
if 'title' in parameters:
num_tokens += len(encoding.encode('title'))
num_tokens += len(encoding.encode(parameters.get("title")))
num_tokens += len(encoding.encode('type'))
num_tokens += len(encoding.encode(parameters.get("type")))
if 'properties' in parameters:
num_tokens += len(encoding.encode('properties'))
for key, value in parameters.get('properties').items():
num_tokens += len(encoding.encode(key))
for field_key, field_value in value.items():
num_tokens += len(encoding.encode(field_key))
if field_key == 'enum':
for enum_field in field_value:
num_tokens += 3
num_tokens += len(encoding.encode(enum_field))
else:
num_tokens += len(encoding.encode(field_key))
num_tokens += len(encoding.encode(str(field_value)))
if 'required' in parameters:
num_tokens += len(encoding.encode('required'))
for required_field in parameters['required']:
num_tokens += 3
num_tokens += len(encoding.encode(required_field))
return num_tokens

View File

@ -1,107 +0,0 @@
from typing import List, Tuple, Any, Union, Sequence, Optional
from langchain.agents import BaseMultiActionAgent
from langchain.agents.openai_functions_multi_agent.base import OpenAIMultiFunctionsAgent, _format_intermediate_steps, \
_parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools import BaseTool
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError
from core.agent.agent.openai_function_call_summarize_mixin import OpenAIFunctionCallSummarizeMixin
class AutoSummarizingOpenMultiAIFunctionCallAgent(OpenAIMultiFunctionsAgent, OpenAIFunctionCallSummarizeMixin):
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
system_message: Optional[SystemMessage] = SystemMessage(
content="You are a helpful AI assistant."
),
**kwargs: Any,
) -> BaseMultiActionAgent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
callback_manager=callback_manager,
extra_prompt_messages=extra_prompt_messages,
system_message=cls.get_system_message(),
**kwargs,
)
def should_use_agent(self, query: str):
"""
return should use agent
:param query:
:return:
"""
original_max_tokens = self.llm.max_tokens
self.llm.max_tokens = 15
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
messages = prompt.to_messages()
try:
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=None
)
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
raise new_exception
function_call = predicted_message.additional_kwargs.get("function_call", {})
self.llm.max_tokens = original_max_tokens
return True if function_call else False
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
# summarize messages if rest_tokens < 0
try:
messages = self.summarize_messages_if_needed(messages, functions=self.functions)
except ExceededLLMTokensLimitError as e:
return AgentFinish(return_values={"output": str(e)}, log=str(e))
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=callbacks
)
agent_decision = _parse_ai_message(predicted_message)
return agent_decision
@classmethod
def get_system_message(cls):
# get current time
return SystemMessage(content="You are a helpful AI assistant.\n"
"The current date or current time you know is wrong.\n"
"Respond directly if appropriate.")

View File

@ -1,10 +1,9 @@
import re
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
from langchain import BasePromptTemplate
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
@ -12,6 +11,8 @@ from langchain.schema import AgentAction, AgentFinish, OutputParserException
from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from core.chain.llm_chain import LLMChain
from core.model_providers.models.entity.model_params import ModelMode
from core.model_providers.models.llm.base import BaseLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
@ -49,7 +50,6 @@ Action:
class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
model_instance: BaseLLM
dataset_tools: Sequence[BaseTool]
class Config:
@ -93,12 +93,16 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
rst = tool.run(tool_input={'query': kwargs['input']})
return AgentFinish(return_values={"output": rst}, log=rst)
if intermediate_steps:
_, observation = intermediate_steps[-1]
return AgentFinish(return_values={"output": observation}, log=observation)
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
try:
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
new_exception = self.llm_chain.model_instance.handle_exceptions(e)
raise new_exception
try:
@ -108,6 +112,10 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
elif isinstance(tool_inputs, str):
agent_decision.tool_input = kwargs['input']
else:
agent_decision.return_values['output'] = ''
return agent_decision
except OutputParserException:
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
@ -142,10 +150,65 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
@classmethod
def create_completion_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
Question: {input}
Thought: {agent_scratchpad}
"""
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> str:
agent_scratchpad = ""
for action, observation in intermediate_steps:
agent_scratchpad += action.log
agent_scratchpad += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
if not isinstance(agent_scratchpad, str):
raise ValueError("agent_scratchpad should be of type string.")
if agent_scratchpad:
llm_chain = cast(LLMChain, self.llm_chain)
if llm_chain.model_instance.model_mode == ModelMode.CHAT:
return (
f"This was your previous work "
f"(but I haven't seen any of it! I only see what "
f"you return as final answer):\n{agent_scratchpad}"
)
else:
return agent_scratchpad
else:
return agent_scratchpad
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
model_instance: BaseLLM,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
@ -157,17 +220,36 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
memory_prompts: Optional[List[BasePromptTemplate]] = None,
**kwargs: Any,
) -> Agent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
if model_instance.model_mode == ModelMode.CHAT:
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
else:
prompt = cls.create_completion_prompt(
tools,
prefix=prefix,
format_instructions=format_instructions,
input_variables=input_variables
)
llm_chain = LLMChain(
model_instance=model_instance,
prompt=prompt,
callback_manager=callback_manager,
output_parser=output_parser,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
tool_names = [tool.name for tool in tools]
_output_parser = output_parser
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
dataset_tools=tools,
**kwargs,
)

View File

@ -1,19 +1,21 @@
import re
from typing import List, Tuple, Any, Union, Sequence, Optional
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
from langchain import BasePromptTemplate
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.memory.summary import SummarizerMixin
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.schema import AgentAction, AgentFinish, AIMessage, HumanMessage, OutputParserException
from langchain.schema import AgentAction, AgentFinish, AIMessage, HumanMessage, OutputParserException, BaseMessage, \
get_buffer_string
from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
from core.chain.llm_chain import LLMChain
from core.model_providers.models.entity.model_params import ModelMode
from core.model_providers.models.llm.base import BaseLLM
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
@ -52,8 +54,7 @@ Action:
class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_llm: BaseLanguageModel = None
model_instance: BaseLLM
summary_model_instance: BaseLLM = None
class Config:
"""Configuration for this pydantic object."""
@ -95,14 +96,14 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
if prompts:
messages = prompts[0].to_messages()
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages)
rest_tokens = self.get_message_rest_tokens(self.llm_chain.model_instance, messages)
if rest_tokens < 0:
full_inputs = self.summarize_messages(intermediate_steps, **kwargs)
try:
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
new_exception = self.llm_chain.model_instance.handle_exceptions(e)
raise new_exception
try:
@ -118,7 +119,7 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
"I don't know how to respond to that."}, "")
def summarize_messages(self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs):
if len(intermediate_steps) >= 2 and self.summary_llm:
if len(intermediate_steps) >= 2 and self.summary_model_instance:
should_summary_intermediate_steps = intermediate_steps[self.moving_summary_index:-1]
should_summary_messages = [AIMessage(content=observation)
for _, observation in should_summary_intermediate_steps]
@ -130,11 +131,10 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
summary_handler = SummarizerMixin(llm=self.summary_llm)
if self.moving_summary_buffer and 'chat_history' in kwargs:
kwargs["chat_history"].pop()
self.moving_summary_buffer = summary_handler.predict_new_summary(
self.moving_summary_buffer = self.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
@ -144,6 +144,18 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
return self.get_full_inputs([intermediate_steps[-1]], **kwargs)
def predict_new_summary(
self, messages: List[BaseMessage], existing_summary: str
) -> str:
new_lines = get_buffer_string(
messages,
human_prefix="Human",
ai_prefix="AI",
)
chain = LLMChain(model_instance=self.summary_model_instance, prompt=SUMMARY_PROMPT)
return chain.predict(summary=existing_summary, new_lines=new_lines)
@classmethod
def create_prompt(
cls,
@ -173,10 +185,65 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
@classmethod
def create_completion_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
Question: {input}
Thought: {agent_scratchpad}
"""
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> str:
agent_scratchpad = ""
for action, observation in intermediate_steps:
agent_scratchpad += action.log
agent_scratchpad += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
if not isinstance(agent_scratchpad, str):
raise ValueError("agent_scratchpad should be of type string.")
if agent_scratchpad:
llm_chain = cast(LLMChain, self.llm_chain)
if llm_chain.model_instance.model_mode == ModelMode.CHAT:
return (
f"This was your previous work "
f"(but I haven't seen any of it! I only see what "
f"you return as final answer):\n{agent_scratchpad}"
)
else:
return agent_scratchpad
else:
return agent_scratchpad
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
model_instance: BaseLLM,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
@ -188,16 +255,35 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
memory_prompts: Optional[List[BasePromptTemplate]] = None,
**kwargs: Any,
) -> Agent:
return super().from_llm_and_tools(
llm=llm,
tools=tools,
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
if model_instance.model_mode == ModelMode.CHAT:
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
else:
prompt = cls.create_completion_prompt(
tools,
prefix=prefix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
model_instance=model_instance,
prompt=prompt,
callback_manager=callback_manager,
output_parser=output_parser,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
tool_names = [tool.name for tool in tools]
_output_parser = output_parser
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
**kwargs,
)

View File

@ -10,7 +10,6 @@ from pydantic import BaseModel, Extra
from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionCallAgent
from core.agent.agent.openai_multi_function_call import AutoSummarizingOpenMultiAIFunctionCallAgent
from core.agent.agent.output_parser.structured_chat import StructuredChatOutputParser
from core.agent.agent.structed_multi_dataset_router_agent import StructuredMultiDatasetRouterAgent
from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
@ -27,7 +26,6 @@ class PlanningStrategy(str, enum.Enum):
REACT_ROUTER = 'react_router'
REACT = 'react'
FUNCTION_CALL = 'function_call'
MULTI_FUNCTION_CALL = 'multi_function_call'
class AgentConfiguration(BaseModel):
@ -64,30 +62,18 @@ class AgentExecutor:
if self.configuration.strategy == PlanningStrategy.REACT:
agent = AutoSummarizingStructuredChatAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
output_parser=StructuredChatOutputParser(),
summary_llm=self.configuration.summary_model_instance.client
summary_model_instance=self.configuration.summary_model_instance
if self.configuration.summary_model_instance else None,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.FUNCTION_CALL:
agent = AutoSummarizingOpenAIFunctionCallAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
summary_llm=self.configuration.summary_model_instance.client
if self.configuration.summary_model_instance else None,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.MULTI_FUNCTION_CALL:
agent = AutoSummarizingOpenMultiAIFunctionCallAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
summary_llm=self.configuration.summary_model_instance.client
summary_model_instance=self.configuration.summary_model_instance
if self.configuration.summary_model_instance else None,
verbose=True
)
@ -95,7 +81,6 @@ class AgentExecutor:
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
agent = MultiDatasetRouterAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None,
verbose=True
@ -104,7 +89,6 @@ class AgentExecutor:
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
agent = StructuredMultiDatasetRouterAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
llm=self.configuration.model_instance.client,
tools=self.configuration.tools,
output_parser=StructuredChatOutputParser(),
verbose=True

View File

@ -1,13 +1,26 @@
import logging
from typing import Any, Dict, List, Union
import threading
import time
from typing import Any, Dict, List, Union, Optional
from flask import Flask, current_app
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import LLMResult, BaseMessage
from pydantic import BaseModel
from core.callback_handler.entity.llm_message import LLMMessage
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
from core.model_providers.models.entity.message import to_prompt_messages, PromptMessage
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException, \
ConversationTaskInterruptException
from core.model_providers.models.entity.message import to_prompt_messages, PromptMessage, LCHumanMessageWithFiles, \
ImagePromptMessageFile
from core.model_providers.models.llm.base import BaseLLM
from core.moderation.base import ModerationOutputsResult, ModerationAction
from core.moderation.factory import ModerationFactory
class ModerationRule(BaseModel):
type: str
config: Dict[str, Any]
class LLMCallbackHandler(BaseCallbackHandler):
@ -20,6 +33,24 @@ class LLMCallbackHandler(BaseCallbackHandler):
self.start_at = None
self.conversation_message_task = conversation_message_task
self.output_moderation_handler = None
self.init_output_moderation()
def init_output_moderation(self):
app_model_config = self.conversation_message_task.app_model_config
sensitive_word_avoidance_dict = app_model_config.sensitive_word_avoidance_dict
if sensitive_word_avoidance_dict and sensitive_word_avoidance_dict.get("enabled"):
self.output_moderation_handler = OutputModerationHandler(
tenant_id=self.conversation_message_task.tenant_id,
app_id=self.conversation_message_task.app.id,
rule=ModerationRule(
type=sensitive_word_avoidance_dict.get("type"),
config=sensitive_word_avoidance_dict.get("config")
),
on_message_replace_func=self.conversation_message_task.on_message_replace
)
@property
def always_verbose(self) -> bool:
"""Whether to call verbose callbacks even if verbose is False."""
@ -42,7 +73,12 @@ class LLMCallbackHandler(BaseCallbackHandler):
real_prompts.append({
"role": role,
"text": message.content
"text": message.content,
"files": [{
"type": file.type.value,
"data": file.data[:10] + '...[TRUNCATED]...' + file.data[-10:],
"detail": file.detail.value if isinstance(file, ImagePromptMessageFile) else None,
} for file in (message.files if isinstance(message, LCHumanMessageWithFiles) else [])]
})
self.llm_message.prompt = real_prompts
@ -59,10 +95,19 @@ class LLMCallbackHandler(BaseCallbackHandler):
self.llm_message.prompt_tokens = self.model_instance.get_num_tokens([PromptMessage(content=prompts[0])])
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
if not self.conversation_message_task.streaming:
self.conversation_message_task.append_message_text(response.generations[0][0].text)
if self.output_moderation_handler:
self.output_moderation_handler.stop_thread()
self.llm_message.completion = self.output_moderation_handler.moderation_completion(
completion=response.generations[0][0].text,
public_event=True if self.conversation_message_task.streaming else False
)
else:
self.llm_message.completion = response.generations[0][0].text
if not self.conversation_message_task.streaming:
self.conversation_message_task.append_message_text(self.llm_message.completion)
if response.llm_output and 'token_usage' in response.llm_output:
if 'prompt_tokens' in response.llm_output['token_usage']:
self.llm_message.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
@ -79,23 +124,161 @@ class LLMCallbackHandler(BaseCallbackHandler):
self.conversation_message_task.save_message(self.llm_message)
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
try:
self.conversation_message_task.append_message_text(token)
except ConversationTaskStoppedException as ex:
if self.output_moderation_handler and self.output_moderation_handler.should_direct_output():
# stop subscribe new token when output moderation should direct output
ex = ConversationTaskInterruptException()
self.on_llm_error(error=ex)
raise ex
self.llm_message.completion += token
try:
self.conversation_message_task.append_message_text(token)
self.llm_message.completion += token
if self.output_moderation_handler:
self.output_moderation_handler.append_new_token(token)
except ConversationTaskStoppedException as ex:
self.on_llm_error(error=ex)
raise ex
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
if self.output_moderation_handler:
self.output_moderation_handler.stop_thread()
if isinstance(error, ConversationTaskStoppedException):
if self.conversation_message_task.streaming:
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)]
)
self.conversation_message_task.save_message(llm_message=self.llm_message, by_stopped=True)
if isinstance(error, ConversationTaskInterruptException):
self.llm_message.completion = self.output_moderation_handler.get_final_output()
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)]
)
self.conversation_message_task.save_message(llm_message=self.llm_message)
else:
logging.debug("on_llm_error: %s", error)
class OutputModerationHandler(BaseModel):
DEFAULT_BUFFER_SIZE: int = 300
tenant_id: str
app_id: str
rule: ModerationRule
on_message_replace_func: Any
thread: Optional[threading.Thread] = None
thread_running: bool = True
buffer: str = ''
is_final_chunk: bool = False
final_output: Optional[str] = None
class Config:
arbitrary_types_allowed = True
def should_direct_output(self):
return self.final_output is not None
def get_final_output(self):
return self.final_output
def append_new_token(self, token: str):
self.buffer += token
if not self.thread:
self.thread = self.start_thread()
def moderation_completion(self, completion: str, public_event: bool = False) -> str:
self.buffer = completion
self.is_final_chunk = True
result = self.moderation(
tenant_id=self.tenant_id,
app_id=self.app_id,
moderation_buffer=completion
)
if not result or not result.flagged:
return completion
if result.action == ModerationAction.DIRECT_OUTPUT:
final_output = result.preset_response
else:
final_output = result.text
if public_event:
self.on_message_replace_func(final_output)
return final_output
def start_thread(self) -> threading.Thread:
buffer_size = int(current_app.config.get('MODERATION_BUFFER_SIZE', self.DEFAULT_BUFFER_SIZE))
thread = threading.Thread(target=self.worker, kwargs={
'flask_app': current_app._get_current_object(),
'buffer_size': buffer_size if buffer_size > 0 else self.DEFAULT_BUFFER_SIZE
})
thread.start()
return thread
def stop_thread(self):
if self.thread and self.thread.is_alive():
self.thread_running = False
def worker(self, flask_app: Flask, buffer_size: int):
with flask_app.app_context():
current_length = 0
while self.thread_running:
moderation_buffer = self.buffer
buffer_length = len(moderation_buffer)
if not self.is_final_chunk:
chunk_length = buffer_length - current_length
if 0 <= chunk_length < buffer_size:
time.sleep(1)
continue
current_length = buffer_length
result = self.moderation(
tenant_id=self.tenant_id,
app_id=self.app_id,
moderation_buffer=moderation_buffer
)
if not result or not result.flagged:
continue
if result.action == ModerationAction.DIRECT_OUTPUT:
final_output = result.preset_response
self.final_output = final_output
else:
final_output = result.text + self.buffer[len(moderation_buffer):]
# trigger replace event
if self.thread_running:
self.on_message_replace_func(final_output)
if result.action == ModerationAction.DIRECT_OUTPUT:
break
def moderation(self, tenant_id: str, app_id: str, moderation_buffer: str) -> Optional[ModerationOutputsResult]:
try:
moderation_factory = ModerationFactory(
name=self.rule.type,
app_id=app_id,
tenant_id=tenant_id,
config=self.rule.config
)
result: ModerationOutputsResult = moderation_factory.moderation_for_outputs(moderation_buffer)
return result
except Exception as e:
logging.error("Moderation Output error: %s", e)
return None

View File

@ -0,0 +1,36 @@
from typing import List, Dict, Any, Optional
from langchain import LLMChain as LCLLMChain
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.schema import LLMResult, Generation
from langchain.schema.language_model import BaseLanguageModel
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.third_party.langchain.llms.fake import FakeLLM
class LLMChain(LCLLMChain):
model_instance: BaseLLM
"""The language model instance to use."""
llm: BaseLanguageModel = FakeLLM(response="")
def generate(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = self.prep_prompts(input_list, run_manager=run_manager)
messages = prompts[0].to_messages()
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
stop=stop
)
generations = [
[Generation(text=result.content)]
]
return LLMResult(generations=generations)

View File

@ -1,92 +0,0 @@
import enum
import logging
from typing import List, Dict, Optional, Any
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from pydantic import BaseModel
from core.model_providers.error import LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.moderation import openai_moderation
class SensitiveWordAvoidanceRule(BaseModel):
class Type(enum.Enum):
MODERATION = "moderation"
KEYWORDS = "keywords"
type: Type
canned_response: str = 'Your content violates our usage policy. Please revise and try again.'
extra_params: dict = {}
class SensitiveWordAvoidanceChain(Chain):
input_key: str = "input" #: :meta private:
output_key: str = "output" #: :meta private:
model_instance: BaseLLM
sensitive_word_avoidance_rule: SensitiveWordAvoidanceRule
@property
def _chain_type(self) -> str:
return "sensitive_word_avoidance_chain"
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
def _check_sensitive_word(self, text: str) -> bool:
for word in self.sensitive_word_avoidance_rule.extra_params.get('sensitive_words', []):
if word in text:
return False
return True
def _check_moderation(self, text: str) -> bool:
moderation_model_instance = ModelFactory.get_moderation_model(
tenant_id=self.model_instance.model_provider.provider.tenant_id,
model_provider_name='openai',
model_name=openai_moderation.DEFAULT_MODEL
)
try:
return moderation_model_instance.run(text=text)
except Exception as ex:
logging.exception(ex)
raise LLMBadRequestError('Rate limit exceeded, please try again later.')
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
text = inputs[self.input_key]
if self.sensitive_word_avoidance_rule.type == SensitiveWordAvoidanceRule.Type.KEYWORDS:
result = self._check_sensitive_word(text)
else:
result = self._check_moderation(text)
if not result:
raise SensitiveWordAvoidanceError(self.sensitive_word_avoidance_rule.canned_response)
return {self.output_key: text}
class SensitiveWordAvoidanceError(Exception):
def __init__(self, message):
super().__init__(message)
self.message = message

View File

@ -1,36 +1,43 @@
import concurrent
import json
import logging
from typing import Optional, List, Union
from concurrent.futures import ThreadPoolExecutor
from typing import Optional, List, Union, Tuple
from flask import current_app, Flask
from requests.exceptions import ChunkedEncodingError
from core.agent.agent_executor import AgentExecuteResult, PlanningStrategy
from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
from core.callback_handler.llm_callback_handler import LLMCallbackHandler
from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceError
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException, \
ConversationTaskInterruptException
from core.external_data_tool.factory import ExternalDataToolFactory
from core.file.file_obj import FileObj
from core.model_providers.error import LLMBadRequestError
from core.memory.read_only_conversation_token_db_buffer_shared_memory import \
ReadOnlyConversationTokenDBBufferSharedMemory
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.message import PromptMessage, PromptMessageFile
from core.model_providers.models.llm.base import BaseLLM
from core.orchestrator_rule_parser import OrchestratorRuleParser
from core.prompt.prompt_builder import PromptBuilder
from core.prompt.prompts import MORE_LIKE_THIS_GENERATE_PROMPT
from models.dataset import DocumentSegment, Dataset, Document
from models.model import App, AppModelConfig, Account, Conversation, Message, EndUser
from core.prompt.prompt_template import PromptTemplateParser
from core.prompt.prompt_transform import PromptTransform
from models.model import App, AppModelConfig, Account, Conversation, EndUser
from core.moderation.base import ModerationException, ModerationAction
from core.moderation.factory import ModerationFactory
class Completion:
@classmethod
def generate(cls, task_id: str, app: App, app_model_config: AppModelConfig, query: str, inputs: dict,
user: Union[Account, EndUser], conversation: Optional[Conversation], streaming: bool,
is_override: bool = False, retriever_from: str = 'dev'):
files: List[FileObj], user: Union[Account, EndUser], conversation: Optional[Conversation],
streaming: bool, is_override: bool = False, retriever_from: str = 'dev',
auto_generate_name: bool = True):
"""
errors: ProviderTokenNotInitError
"""
query = PromptBuilder.process_template(query)
query = PromptTemplateParser.remove_template_variables(query)
memory = None
if conversation:
@ -59,16 +66,21 @@ class Completion:
is_override=is_override,
inputs=inputs,
query=query,
files=files,
streaming=streaming,
model_instance=final_model_instance
model_instance=final_model_instance,
auto_generate_name=auto_generate_name
)
prompt_message_files = [file.prompt_message_file for file in files]
rest_tokens_for_context_and_memory = cls.get_validate_rest_tokens(
mode=app.mode,
model_instance=final_model_instance,
app_model_config=app_model_config,
query=query,
inputs=inputs
inputs=inputs,
files=prompt_message_files
)
# init orchestrator rule parser
@ -78,26 +90,36 @@ class Completion:
)
try:
# parse sensitive_word_avoidance_chain
chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
sensitive_word_avoidance_chain = orchestrator_rule_parser.to_sensitive_word_avoidance_chain(
final_model_instance, [chain_callback])
if sensitive_word_avoidance_chain:
try:
query = sensitive_word_avoidance_chain.run(query)
except SensitiveWordAvoidanceError as ex:
cls.run_final_llm(
model_instance=final_model_instance,
mode=app.mode,
app_model_config=app_model_config,
query=query,
inputs=inputs,
agent_execute_result=None,
conversation_message_task=conversation_message_task,
memory=memory,
fake_response=ex.message
)
return
try:
# process sensitive_word_avoidance
inputs, query = cls.moderation_for_inputs(app.id, app.tenant_id, app_model_config, inputs, query)
except ModerationException as e:
cls.run_final_llm(
model_instance=final_model_instance,
mode=app.mode,
app_model_config=app_model_config,
query=query,
inputs=inputs,
files=prompt_message_files,
agent_execute_result=None,
conversation_message_task=conversation_message_task,
memory=memory,
fake_response=str(e)
)
return
# fill in variable inputs from external data tools if exists
external_data_tools = app_model_config.external_data_tools_list
if external_data_tools:
inputs = cls.fill_in_inputs_from_external_data_tools(
tenant_id=app.tenant_id,
app_id=app.id,
external_data_tools=external_data_tools,
inputs=inputs,
query=query
)
# get agent executor
agent_executor = orchestrator_rule_parser.to_agent_executor(
@ -132,42 +154,152 @@ class Completion:
app_model_config=app_model_config,
query=query,
inputs=inputs,
files=prompt_message_files,
agent_execute_result=agent_execute_result,
conversation_message_task=conversation_message_task,
memory=memory,
fake_response=fake_response
)
except ConversationTaskStoppedException:
except (ConversationTaskInterruptException, ConversationTaskStoppedException):
return
except ChunkedEncodingError as e:
# Interrupt by LLM (like OpenAI), handle it.
logging.warning(f'ChunkedEncodingError: {e}')
conversation_message_task.end()
return
@classmethod
def moderation_for_inputs(cls, app_id: str, tenant_id: str, app_model_config: AppModelConfig, inputs: dict, query: str):
if not app_model_config.sensitive_word_avoidance_dict['enabled']:
return inputs, query
type = app_model_config.sensitive_word_avoidance_dict['type']
moderation = ModerationFactory(type, app_id, tenant_id, app_model_config.sensitive_word_avoidance_dict['config'])
moderation_result = moderation.moderation_for_inputs(inputs, query)
if not moderation_result.flagged:
return inputs, query
if moderation_result.action == ModerationAction.DIRECT_OUTPUT:
raise ModerationException(moderation_result.preset_response)
elif moderation_result.action == ModerationAction.OVERRIDED:
inputs = moderation_result.inputs
query = moderation_result.query
return inputs, query
@classmethod
def fill_in_inputs_from_external_data_tools(cls, tenant_id: str, app_id: str, external_data_tools: list[dict],
inputs: dict, query: str) -> dict:
"""
Fill in variable inputs from external data tools if exists.
:param tenant_id: workspace id
:param app_id: app id
:param external_data_tools: external data tools configs
:param inputs: the inputs
:param query: the query
:return: the filled inputs
"""
# Group tools by type and config
grouped_tools = {}
for tool in external_data_tools:
if not tool.get("enabled"):
continue
tool_key = (tool.get("type"), json.dumps(tool.get("config"), sort_keys=True))
grouped_tools.setdefault(tool_key, []).append(tool)
results = {}
with ThreadPoolExecutor() as executor:
futures = {}
for tool in external_data_tools:
if not tool.get("enabled"):
continue
future = executor.submit(
cls.query_external_data_tool, current_app._get_current_object(), tenant_id, app_id, tool,
inputs, query
)
futures[future] = tool
for future in concurrent.futures.as_completed(futures):
tool_variable, result = future.result()
results[tool_variable] = result
inputs.update(results)
return inputs
@classmethod
def query_external_data_tool(cls, flask_app: Flask, tenant_id: str, app_id: str, external_data_tool: dict,
inputs: dict, query: str) -> Tuple[Optional[str], Optional[str]]:
with flask_app.app_context():
tool_variable = external_data_tool.get("variable")
tool_type = external_data_tool.get("type")
tool_config = external_data_tool.get("config")
external_data_tool_factory = ExternalDataToolFactory(
name=tool_type,
tenant_id=tenant_id,
app_id=app_id,
variable=tool_variable,
config=tool_config
)
# query external data tool
result = external_data_tool_factory.query(
inputs=inputs,
query=query
)
return tool_variable, result
@classmethod
def get_query_for_agent(cls, app: App, app_model_config: AppModelConfig, query: str, inputs: dict) -> str:
if app.mode != 'completion':
return query
return inputs.get(app_model_config.dataset_query_variable, "")
@classmethod
def run_final_llm(cls, model_instance: BaseLLM, mode: str, app_model_config: AppModelConfig, query: str,
inputs: dict,
files: List[PromptMessageFile],
agent_execute_result: Optional[AgentExecuteResult],
conversation_message_task: ConversationMessageTask,
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory],
fake_response: Optional[str]):
prompt_transform = PromptTransform()
# get llm prompt
prompt_messages, stop_words = model_instance.get_prompt(
mode=mode,
pre_prompt=app_model_config.pre_prompt,
inputs=inputs,
query=query,
context=agent_execute_result.output if agent_execute_result else None,
memory=memory
)
if app_model_config.prompt_type == 'simple':
prompt_messages, stop_words = prompt_transform.get_prompt(
app_mode=mode,
pre_prompt=app_model_config.pre_prompt,
inputs=inputs,
query=query,
files=files,
context=agent_execute_result.output if agent_execute_result else None,
memory=memory,
model_instance=model_instance
)
else:
prompt_messages = prompt_transform.get_advanced_prompt(
app_mode=mode,
app_model_config=app_model_config,
inputs=inputs,
query=query,
files=files,
context=agent_execute_result.output if agent_execute_result else None,
memory=memory,
model_instance=model_instance
)
model_config = app_model_config.model_dict
completion_params = model_config.get("completion_params", {})
stop_words = completion_params.get("stop", [])
cls.recale_llm_max_tokens(
model_instance=model_instance,
@ -176,7 +308,7 @@ class Completion:
response = model_instance.run(
messages=prompt_messages,
stop=stop_words,
stop=stop_words if stop_words else None,
callbacks=[LLMCallbackHandler(model_instance, conversation_message_task)],
fake_response=fake_response
)
@ -217,7 +349,7 @@ class Completion:
@classmethod
def get_validate_rest_tokens(cls, mode: str, model_instance: BaseLLM, app_model_config: AppModelConfig,
query: str, inputs: dict) -> int:
query: str, inputs: dict, files: List[PromptMessageFile]) -> int:
model_limited_tokens = model_instance.model_rules.max_tokens.max
max_tokens = model_instance.get_model_kwargs().max_tokens
@ -227,15 +359,31 @@ class Completion:
if max_tokens is None:
max_tokens = 0
prompt_transform = PromptTransform()
# get prompt without memory and context
prompt_messages, _ = model_instance.get_prompt(
mode=mode,
pre_prompt=app_model_config.pre_prompt,
inputs=inputs,
query=query,
context=None,
memory=None
)
if app_model_config.prompt_type == 'simple':
prompt_messages, _ = prompt_transform.get_prompt(
app_mode=mode,
pre_prompt=app_model_config.pre_prompt,
inputs=inputs,
query=query,
files=files,
context=None,
memory=None,
model_instance=model_instance
)
else:
prompt_messages = prompt_transform.get_advanced_prompt(
app_mode=mode,
app_model_config=app_model_config,
inputs=inputs,
query=query,
files=files,
context=None,
memory=None,
model_instance=model_instance
)
prompt_tokens = model_instance.get_num_tokens(prompt_messages)
rest_tokens = model_limited_tokens - max_tokens - prompt_tokens
@ -266,52 +414,3 @@ class Completion:
model_kwargs = model_instance.get_model_kwargs()
model_kwargs.max_tokens = max_tokens
model_instance.set_model_kwargs(model_kwargs)
@classmethod
def generate_more_like_this(cls, task_id: str, app: App, message: Message, pre_prompt: str,
app_model_config: AppModelConfig, user: Account, streaming: bool):
final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
tenant_id=app.tenant_id,
model_config=app_model_config.model_dict,
streaming=streaming
)
# get llm prompt
old_prompt_messages, _ = final_model_instance.get_prompt(
mode='completion',
pre_prompt=pre_prompt,
inputs=message.inputs,
query=message.query,
context=None,
memory=None
)
original_completion = message.answer.strip()
prompt = MORE_LIKE_THIS_GENERATE_PROMPT
prompt = prompt.format(prompt=old_prompt_messages[0].content, original_completion=original_completion)
prompt_messages = [PromptMessage(content=prompt)]
conversation_message_task = ConversationMessageTask(
task_id=task_id,
app=app,
app_model_config=app_model_config,
user=user,
inputs=message.inputs,
query=message.query,
is_override=True if message.override_model_configs else False,
streaming=streaming,
model_instance=final_model_instance
)
cls.recale_llm_max_tokens(
model_instance=final_model_instance,
prompt_messages=prompt_messages
)
final_model_instance.run(
messages=prompt_messages,
callbacks=[LLMCallbackHandler(final_model_instance, conversation_message_task)]
)

View File

@ -6,23 +6,25 @@ from core.callback_handler.entity.agent_loop import AgentLoop
from core.callback_handler.entity.dataset_query import DatasetQueryObj
from core.callback_handler.entity.llm_message import LLMMessage
from core.callback_handler.entity.chain_result import ChainResult
from core.file.file_obj import FileObj
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.message import to_prompt_messages, MessageType
from core.model_providers.models.entity.message import to_prompt_messages, MessageType, PromptMessageFile
from core.model_providers.models.llm.base import BaseLLM
from core.prompt.prompt_builder import PromptBuilder
from core.prompt.prompt_template import JinjaPromptTemplate
from core.prompt.prompt_template import PromptTemplateParser
from events.message_event import message_was_created
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import DatasetQuery
from models.model import AppModelConfig, Conversation, Account, Message, EndUser, App, MessageAgentThought, \
MessageChain, DatasetRetrieverResource
MessageChain, DatasetRetrieverResource, MessageFile
class ConversationMessageTask:
def __init__(self, task_id: str, app: App, app_model_config: AppModelConfig, user: Account,
inputs: dict, query: str, streaming: bool, model_instance: BaseLLM,
conversation: Optional[Conversation] = None, is_override: bool = False):
inputs: dict, query: str, files: List[FileObj], streaming: bool,
model_instance: BaseLLM, conversation: Optional[Conversation] = None, is_override: bool = False,
auto_generate_name: bool = True):
self.start_at = time.perf_counter()
self.task_id = task_id
@ -35,6 +37,7 @@ class ConversationMessageTask:
self.user = user
self.inputs = inputs
self.query = query
self.files = files
self.streaming = streaming
self.conversation = conversation
@ -45,6 +48,7 @@ class ConversationMessageTask:
self.message = None
self.retriever_resource = None
self.auto_generate_name = auto_generate_name
self.model_dict = self.app_model_config.model_dict
self.provider_name = self.model_dict.get('provider')
@ -74,10 +78,10 @@ class ConversationMessageTask:
if self.mode == 'chat':
introduction = self.app_model_config.opening_statement
if introduction:
prompt_template = JinjaPromptTemplate.from_template(template=introduction)
prompt_inputs = {k: self.inputs[k] for k in prompt_template.input_variables if k in self.inputs}
prompt_template = PromptTemplateParser(template=introduction)
prompt_inputs = {k: self.inputs[k] for k in prompt_template.variable_keys if k in self.inputs}
try:
introduction = prompt_template.format(**prompt_inputs)
introduction = prompt_template.format(prompt_inputs)
except KeyError:
pass
@ -94,13 +98,13 @@ class ConversationMessageTask:
if not self.conversation:
self.is_new_conversation = True
self.conversation = Conversation(
app_id=self.app_model_config.app_id,
app_id=self.app.id,
app_model_config_id=self.app_model_config.id,
model_provider=self.provider_name,
model_id=self.model_name,
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
mode=self.mode,
name='',
name='New conversation',
inputs=self.inputs,
introduction=introduction,
system_instruction=system_instruction,
@ -115,7 +119,7 @@ class ConversationMessageTask:
db.session.commit()
self.message = Message(
app_id=self.app_model_config.app_id,
app_id=self.app.id,
model_provider=self.provider_name,
model_id=self.model_name,
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
@ -142,6 +146,19 @@ class ConversationMessageTask:
db.session.add(self.message)
db.session.commit()
for file in self.files:
message_file = MessageFile(
message_id=self.message.id,
type=file.type.value,
transfer_method=file.transfer_method.value,
url=file.url,
upload_file_id=file.upload_file_id,
created_by_role=('account' if isinstance(self.user, Account) else 'end_user'),
created_by=self.user.id
)
db.session.add(message_file)
db.session.commit()
def append_message_text(self, text: str):
if text is not None:
self._pub_handler.pub_text(text)
@ -150,12 +167,12 @@ class ConversationMessageTask:
message_tokens = llm_message.prompt_tokens
answer_tokens = llm_message.completion_tokens
message_unit_price = self.model_instance.get_tokens_unit_price(MessageType.HUMAN)
message_price_unit = self.model_instance.get_price_unit(MessageType.HUMAN)
message_unit_price = self.model_instance.get_tokens_unit_price(MessageType.USER)
message_price_unit = self.model_instance.get_price_unit(MessageType.USER)
answer_unit_price = self.model_instance.get_tokens_unit_price(MessageType.ASSISTANT)
answer_price_unit = self.model_instance.get_price_unit(MessageType.ASSISTANT)
message_total_price = self.model_instance.calc_tokens_price(message_tokens, MessageType.HUMAN)
message_total_price = self.model_instance.calc_tokens_price(message_tokens, MessageType.USER)
answer_total_price = self.model_instance.calc_tokens_price(answer_tokens, MessageType.ASSISTANT)
total_price = message_total_price + answer_total_price
@ -163,7 +180,7 @@ class ConversationMessageTask:
self.message.message_tokens = message_tokens
self.message.message_unit_price = message_unit_price
self.message.message_price_unit = message_price_unit
self.message.answer = PromptBuilder.process_template(
self.message.answer = PromptTemplateParser.remove_template_variables(
llm_message.completion.strip()) if llm_message.completion else ''
self.message.answer_tokens = answer_tokens
self.message.answer_unit_price = answer_unit_price
@ -176,7 +193,8 @@ class ConversationMessageTask:
message_was_created.send(
self.message,
conversation=self.conversation,
is_first_message=self.is_new_conversation
is_first_message=self.is_new_conversation,
auto_generate_name=self.auto_generate_name
)
if not by_stopped:
@ -226,15 +244,15 @@ class ConversationMessageTask:
def on_agent_end(self, message_agent_thought: MessageAgentThought, agent_model_instance: BaseLLM,
agent_loop: AgentLoop):
agent_message_unit_price = agent_model_instance.get_tokens_unit_price(MessageType.HUMAN)
agent_message_price_unit = agent_model_instance.get_price_unit(MessageType.HUMAN)
agent_message_unit_price = agent_model_instance.get_tokens_unit_price(MessageType.USER)
agent_message_price_unit = agent_model_instance.get_price_unit(MessageType.USER)
agent_answer_unit_price = agent_model_instance.get_tokens_unit_price(MessageType.ASSISTANT)
agent_answer_price_unit = agent_model_instance.get_price_unit(MessageType.ASSISTANT)
loop_message_tokens = agent_loop.prompt_tokens
loop_answer_tokens = agent_loop.completion_tokens
loop_message_total_price = agent_model_instance.calc_tokens_price(loop_message_tokens, MessageType.HUMAN)
loop_message_total_price = agent_model_instance.calc_tokens_price(loop_message_tokens, MessageType.USER)
loop_answer_total_price = agent_model_instance.calc_tokens_price(loop_answer_tokens, MessageType.ASSISTANT)
loop_total_price = loop_message_total_price + loop_answer_total_price
@ -290,6 +308,10 @@ class ConversationMessageTask:
db.session.commit()
self.retriever_resource = resource
def on_message_replace(self, text: str):
if text is not None:
self._pub_handler.pub_message_replace(text)
def message_end(self):
self._pub_handler.pub_message_end(self.retriever_resource)
@ -342,6 +364,24 @@ class PubHandler:
self.pub_end()
raise ConversationTaskStoppedException()
def pub_message_replace(self, text: str):
content = {
'event': 'message_replace',
'data': {
'task_id': self._task_id,
'message_id': str(self._message.id),
'text': text,
'mode': self._conversation.mode,
'conversation_id': str(self._conversation.id)
}
}
redis_client.publish(self._channel, json.dumps(content))
if self._is_stopped():
self.pub_end()
raise ConversationTaskStoppedException()
def pub_chain(self, message_chain: MessageChain):
if self._chain_pub:
content = {
@ -443,3 +483,7 @@ class PubHandler:
class ConversationTaskStoppedException(Exception):
pass
class ConversationTaskInterruptException(Exception):
pass

View File

View File

@ -0,0 +1,62 @@
import os
import requests
from models.api_based_extension import APIBasedExtensionPoint
class APIBasedExtensionRequestor:
timeout: (int, int) = (5, 60)
"""timeout for request connect and read"""
def __init__(self, api_endpoint: str, api_key: str) -> None:
self.api_endpoint = api_endpoint
self.api_key = api_key
def request(self, point: APIBasedExtensionPoint, params: dict) -> dict:
"""
Request the api.
:param point: the api point
:param params: the request params
:return: the response json
"""
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer {}".format(self.api_key)
}
url = self.api_endpoint
try:
# proxy support for security
proxies = None
if os.environ.get("API_BASED_EXTENSION_HTTP_PROXY") and os.environ.get("API_BASED_EXTENSION_HTTPS_PROXY"):
proxies = {
'http': os.environ.get("API_BASED_EXTENSION_HTTP_PROXY"),
'https': os.environ.get("API_BASED_EXTENSION_HTTPS_PROXY"),
}
response = requests.request(
method='POST',
url=url,
json={
'point': point.value,
'params': params
},
headers=headers,
timeout=self.timeout,
proxies=proxies
)
except requests.exceptions.Timeout:
raise ValueError("request timeout")
except requests.exceptions.ConnectionError:
raise ValueError("request connection error")
if response.status_code != 200:
raise ValueError("request error, status_code: {}, content: {}".format(
response.status_code,
response.text[:100]
))
return response.json()

View File

@ -0,0 +1,111 @@
import enum
import importlib.util
import json
import logging
import os
from collections import OrderedDict
from typing import Any, Optional
from pydantic import BaseModel
class ExtensionModule(enum.Enum):
MODERATION = 'moderation'
EXTERNAL_DATA_TOOL = 'external_data_tool'
class ModuleExtension(BaseModel):
extension_class: Any
name: str
label: Optional[dict] = None
form_schema: Optional[list] = None
builtin: bool = True
position: Optional[int] = None
class Extensible:
module: ExtensionModule
name: str
tenant_id: str
config: Optional[dict] = None
def __init__(self, tenant_id: str, config: Optional[dict] = None) -> None:
self.tenant_id = tenant_id
self.config = config
@classmethod
def scan_extensions(cls):
extensions = {}
# get the path of the current class
current_path = os.path.abspath(cls.__module__.replace(".", os.path.sep) + '.py')
current_dir_path = os.path.dirname(current_path)
# traverse subdirectories
for subdir_name in os.listdir(current_dir_path):
if subdir_name.startswith('__'):
continue
subdir_path = os.path.join(current_dir_path, subdir_name)
extension_name = subdir_name
if os.path.isdir(subdir_path):
file_names = os.listdir(subdir_path)
# is builtin extension, builtin extension
# in the front-end page and business logic, there are special treatments.
builtin = False
position = None
if '__builtin__' in file_names:
builtin = True
builtin_file_path = os.path.join(subdir_path, '__builtin__')
if os.path.exists(builtin_file_path):
with open(builtin_file_path, 'r') as f:
position = int(f.read().strip())
if (extension_name + '.py') not in file_names:
logging.warning(f"Missing {extension_name}.py file in {subdir_path}, Skip.")
continue
# Dynamic loading {subdir_name}.py file and find the subclass of Extensible
py_path = os.path.join(subdir_path, extension_name + '.py')
spec = importlib.util.spec_from_file_location(extension_name, py_path)
mod = importlib.util.module_from_spec(spec)
spec.loader.exec_module(mod)
extension_class = None
for name, obj in vars(mod).items():
if isinstance(obj, type) and issubclass(obj, cls) and obj != cls:
extension_class = obj
break
if not extension_class:
logging.warning(f"Missing subclass of {cls.__name__} in {py_path}, Skip.")
continue
json_data = {}
if not builtin:
if 'schema.json' not in file_names:
logging.warning(f"Missing schema.json file in {subdir_path}, Skip.")
continue
json_path = os.path.join(subdir_path, 'schema.json')
json_data = {}
if os.path.exists(json_path):
with open(json_path, 'r') as f:
json_data = json.load(f)
extensions[extension_name] = ModuleExtension(
extension_class=extension_class,
name=extension_name,
label=json_data.get('label'),
form_schema=json_data.get('form_schema'),
builtin=builtin,
position=position
)
sorted_items = sorted(extensions.items(), key=lambda x: (x[1].position is None, x[1].position))
sorted_extensions = OrderedDict(sorted_items)
return sorted_extensions

View File

@ -0,0 +1,47 @@
from core.extension.extensible import ModuleExtension, ExtensionModule
from core.external_data_tool.base import ExternalDataTool
from core.moderation.base import Moderation
class Extension:
__module_extensions: dict[str, dict[str, ModuleExtension]] = {}
module_classes = {
ExtensionModule.MODERATION: Moderation,
ExtensionModule.EXTERNAL_DATA_TOOL: ExternalDataTool
}
def init(self):
for module, module_class in self.module_classes.items():
self.__module_extensions[module.value] = module_class.scan_extensions()
def module_extensions(self, module: str) -> list[ModuleExtension]:
module_extensions = self.__module_extensions.get(module)
if not module_extensions:
raise ValueError(f"Extension Module {module} not found")
return list(module_extensions.values())
def module_extension(self, module: ExtensionModule, extension_name: str) -> ModuleExtension:
module_extensions = self.__module_extensions.get(module.value)
if not module_extensions:
raise ValueError(f"Extension Module {module} not found")
module_extension = module_extensions.get(extension_name)
if not module_extension:
raise ValueError(f"Extension {extension_name} not found")
return module_extension
def extension_class(self, module: ExtensionModule, extension_name: str) -> type:
module_extension = self.module_extension(module, extension_name)
return module_extension.extension_class
def validate_form_schema(self, module: ExtensionModule, extension_name: str, config: dict) -> None:
module_extension = self.module_extension(module, extension_name)
form_schema = module_extension.form_schema
# TODO validate form_schema

View File

View File

@ -0,0 +1 @@
1

View File

@ -0,0 +1,92 @@
from typing import Optional
from core.extension.api_based_extension_requestor import APIBasedExtensionRequestor
from core.external_data_tool.base import ExternalDataTool
from core.helper import encrypter
from extensions.ext_database import db
from models.api_based_extension import APIBasedExtension, APIBasedExtensionPoint
class ApiExternalDataTool(ExternalDataTool):
"""
The api external data tool.
"""
name: str = "api"
"""the unique name of external data tool"""
@classmethod
def validate_config(cls, tenant_id: str, config: dict) -> None:
"""
Validate the incoming form config data.
:param tenant_id: the id of workspace
:param config: the form config data
:return:
"""
# own validation logic
api_based_extension_id = config.get("api_based_extension_id")
if not api_based_extension_id:
raise ValueError("api_based_extension_id is required")
# get api_based_extension
api_based_extension = db.session.query(APIBasedExtension).filter(
APIBasedExtension.tenant_id == tenant_id,
APIBasedExtension.id == api_based_extension_id
).first()
if not api_based_extension:
raise ValueError("api_based_extension_id is invalid")
def query(self, inputs: dict, query: Optional[str] = None) -> str:
"""
Query the external data tool.
:param inputs: user inputs
:param query: the query of chat app
:return: the tool query result
"""
# get params from config
api_based_extension_id = self.config.get("api_based_extension_id")
# get api_based_extension
api_based_extension = db.session.query(APIBasedExtension).filter(
APIBasedExtension.tenant_id == self.tenant_id,
APIBasedExtension.id == api_based_extension_id
).first()
if not api_based_extension:
raise ValueError("[External data tool] API query failed, variable: {}, "
"error: api_based_extension_id is invalid"
.format(self.config.get('variable')))
# decrypt api_key
api_key = encrypter.decrypt_token(
tenant_id=self.tenant_id,
token=api_based_extension.api_key
)
try:
# request api
requestor = APIBasedExtensionRequestor(
api_endpoint=api_based_extension.api_endpoint,
api_key=api_key
)
except Exception as e:
raise ValueError("[External data tool] API query failed, variable: {}, error: {}".format(
self.config.get('variable'),
e
))
response_json = requestor.request(point=APIBasedExtensionPoint.APP_EXTERNAL_DATA_TOOL_QUERY, params={
'app_id': self.app_id,
'tool_variable': self.variable,
'inputs': inputs,
'query': query
})
if 'result' not in response_json:
raise ValueError("[External data tool] API query failed, variable: {}, error: result not found in response"
.format(self.config.get('variable')))
return response_json['result']

View File

@ -0,0 +1,45 @@
from abc import abstractmethod, ABC
from typing import Optional
from core.extension.extensible import Extensible, ExtensionModule
class ExternalDataTool(Extensible, ABC):
"""
The base class of external data tool.
"""
module: ExtensionModule = ExtensionModule.EXTERNAL_DATA_TOOL
app_id: str
"""the id of app"""
variable: str
"""the tool variable name of app tool"""
def __init__(self, tenant_id: str, app_id: str, variable: str, config: Optional[dict] = None) -> None:
super().__init__(tenant_id, config)
self.app_id = app_id
self.variable = variable
@classmethod
@abstractmethod
def validate_config(cls, tenant_id: str, config: dict) -> None:
"""
Validate the incoming form config data.
:param tenant_id: the id of workspace
:param config: the form config data
:return:
"""
raise NotImplementedError
@abstractmethod
def query(self, inputs: dict, query: Optional[str] = None) -> str:
"""
Query the external data tool.
:param inputs: user inputs
:param query: the query of chat app
:return: the tool query result
"""
raise NotImplementedError

View File

@ -0,0 +1,40 @@
from typing import Optional
from core.extension.extensible import ExtensionModule
from extensions.ext_code_based_extension import code_based_extension
class ExternalDataToolFactory:
def __init__(self, name: str, tenant_id: str, app_id: str, variable: str, config: dict) -> None:
extension_class = code_based_extension.extension_class(ExtensionModule.EXTERNAL_DATA_TOOL, name)
self.__extension_instance = extension_class(
tenant_id=tenant_id,
app_id=app_id,
variable=variable,
config=config
)
@classmethod
def validate_config(cls, name: str, tenant_id: str, config: dict) -> None:
"""
Validate the incoming form config data.
:param name: the name of external data tool
:param tenant_id: the id of workspace
:param config: the form config data
:return:
"""
code_based_extension.validate_form_schema(ExtensionModule.EXTERNAL_DATA_TOOL, name, config)
extension_class = code_based_extension.extension_class(ExtensionModule.EXTERNAL_DATA_TOOL, name)
extension_class.validate_config(tenant_id, config)
def query(self, inputs: dict, query: Optional[str] = None) -> str:
"""
Query the external data tool.
:param inputs: user inputs
:param query: the query of chat app
:return: the tool query result
"""
return self.__extension_instance.query(inputs, query)

View File

79
api/core/file/file_obj.py Normal file
View File

@ -0,0 +1,79 @@
import enum
from typing import Optional
from pydantic import BaseModel
from core.file.upload_file_parser import UploadFileParser
from core.model_providers.models.entity.message import PromptMessageFile, ImagePromptMessageFile
from extensions.ext_database import db
from models.model import UploadFile
class FileType(enum.Enum):
IMAGE = 'image'
@staticmethod
def value_of(value):
for member in FileType:
if member.value == value:
return member
raise ValueError(f"No matching enum found for value '{value}'")
class FileTransferMethod(enum.Enum):
REMOTE_URL = 'remote_url'
LOCAL_FILE = 'local_file'
@staticmethod
def value_of(value):
for member in FileTransferMethod:
if member.value == value:
return member
raise ValueError(f"No matching enum found for value '{value}'")
class FileObj(BaseModel):
id: Optional[str]
tenant_id: str
type: FileType
transfer_method: FileTransferMethod
url: Optional[str]
upload_file_id: Optional[str]
file_config: dict
@property
def data(self) -> Optional[str]:
return self._get_data()
@property
def preview_url(self) -> Optional[str]:
return self._get_data(force_url=True)
@property
def prompt_message_file(self) -> PromptMessageFile:
if self.type == FileType.IMAGE:
image_config = self.file_config.get('image')
return ImagePromptMessageFile(
data=self.data,
detail=ImagePromptMessageFile.DETAIL.HIGH
if image_config.get("detail") == "high" else ImagePromptMessageFile.DETAIL.LOW
)
def _get_data(self, force_url: bool = False) -> Optional[str]:
if self.type == FileType.IMAGE:
if self.transfer_method == FileTransferMethod.REMOTE_URL:
return self.url
elif self.transfer_method == FileTransferMethod.LOCAL_FILE:
upload_file = (db.session.query(UploadFile)
.filter(
UploadFile.id == self.upload_file_id,
UploadFile.tenant_id == self.tenant_id
).first())
return UploadFileParser.get_image_data(
upload_file=upload_file,
force_url=force_url
)
return None

View File

@ -0,0 +1,180 @@
from typing import List, Union, Optional, Dict
import requests
from core.file.file_obj import FileObj, FileType, FileTransferMethod
from core.file.upload_file_parser import SUPPORT_EXTENSIONS
from extensions.ext_database import db
from models.account import Account
from models.model import MessageFile, EndUser, AppModelConfig, UploadFile
class MessageFileParser:
def __init__(self, tenant_id: str, app_id: str) -> None:
self.tenant_id = tenant_id
self.app_id = app_id
def validate_and_transform_files_arg(self, files: List[dict], app_model_config: AppModelConfig,
user: Union[Account, EndUser]) -> List[FileObj]:
"""
validate and transform files arg
:param files:
:param app_model_config:
:param user:
:return:
"""
file_upload_config = app_model_config.file_upload_dict
for file in files:
if not isinstance(file, dict):
raise ValueError('Invalid file format, must be dict')
if not file.get('type'):
raise ValueError('Missing file type')
FileType.value_of(file.get('type'))
if not file.get('transfer_method'):
raise ValueError('Missing file transfer method')
FileTransferMethod.value_of(file.get('transfer_method'))
if file.get('transfer_method') == FileTransferMethod.REMOTE_URL.value:
if not file.get('url'):
raise ValueError('Missing file url')
if not file.get('url').startswith('http'):
raise ValueError('Invalid file url')
if file.get('transfer_method') == FileTransferMethod.LOCAL_FILE.value and not file.get('upload_file_id'):
raise ValueError('Missing file upload_file_id')
# transform files to file objs
type_file_objs = self._to_file_objs(files, file_upload_config)
# validate files
new_files = []
for file_type, file_objs in type_file_objs.items():
if file_type == FileType.IMAGE:
# parse and validate files
image_config = file_upload_config.get('image')
# check if image file feature is enabled
if not image_config['enabled']:
continue
# Validate number of files
if len(files) > image_config['number_limits']:
raise ValueError(f"Number of image files exceeds the maximum limit {image_config['number_limits']}")
for file_obj in file_objs:
# Validate transfer method
if file_obj.transfer_method.value not in image_config['transfer_methods']:
raise ValueError(f'Invalid transfer method: {file_obj.transfer_method.value}')
# Validate file type
if file_obj.type != FileType.IMAGE:
raise ValueError(f'Invalid file type: {file_obj.type}')
if file_obj.transfer_method == FileTransferMethod.REMOTE_URL:
# check remote url valid and is image
result, error = self._check_image_remote_url(file_obj.url)
if result is False:
raise ValueError(error)
elif file_obj.transfer_method == FileTransferMethod.LOCAL_FILE:
# get upload file from upload_file_id
upload_file = (db.session.query(UploadFile)
.filter(
UploadFile.id == file_obj.upload_file_id,
UploadFile.tenant_id == self.tenant_id,
UploadFile.created_by == user.id,
UploadFile.created_by_role == ('account' if isinstance(user, Account) else 'end_user'),
UploadFile.extension.in_(SUPPORT_EXTENSIONS)
).first())
# check upload file is belong to tenant and user
if not upload_file:
raise ValueError('Invalid upload file')
new_files.append(file_obj)
# return all file objs
return new_files
def transform_message_files(self, files: List[MessageFile], app_model_config: Optional[AppModelConfig]) -> List[FileObj]:
"""
transform message files
:param files:
:param app_model_config:
:return:
"""
# transform files to file objs
type_file_objs = self._to_file_objs(files, app_model_config.file_upload_dict)
# return all file objs
return [file_obj for file_objs in type_file_objs.values() for file_obj in file_objs]
def _to_file_objs(self, files: List[Union[Dict, MessageFile]],
file_upload_config: dict) -> Dict[FileType, List[FileObj]]:
"""
transform files to file objs
:param files:
:param file_upload_config:
:return:
"""
type_file_objs: Dict[FileType, List[FileObj]] = {
# Currently only support image
FileType.IMAGE: []
}
if not files:
return type_file_objs
# group by file type and convert file args or message files to FileObj
for file in files:
file_obj = self._to_file_obj(file, file_upload_config)
if file_obj.type not in type_file_objs:
continue
type_file_objs[file_obj.type].append(file_obj)
return type_file_objs
def _to_file_obj(self, file: Union[dict, MessageFile], file_upload_config: dict) -> FileObj:
"""
transform file to file obj
:param file:
:return:
"""
if isinstance(file, dict):
transfer_method = FileTransferMethod.value_of(file.get('transfer_method'))
return FileObj(
tenant_id=self.tenant_id,
type=FileType.value_of(file.get('type')),
transfer_method=transfer_method,
url=file.get('url') if transfer_method == FileTransferMethod.REMOTE_URL else None,
upload_file_id=file.get('upload_file_id') if transfer_method == FileTransferMethod.LOCAL_FILE else None,
file_config=file_upload_config
)
else:
return FileObj(
id=file.id,
tenant_id=self.tenant_id,
type=FileType.value_of(file.type),
transfer_method=FileTransferMethod.value_of(file.transfer_method),
url=file.url,
upload_file_id=file.upload_file_id or None,
file_config=file_upload_config
)
def _check_image_remote_url(self, url):
try:
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
}
response = requests.head(url, headers=headers, allow_redirects=True)
if response.status_code == 200:
return True, ""
else:
return False, "URL does not exist."
except requests.RequestException as e:
return False, f"Error checking URL: {e}"

View File

@ -0,0 +1,79 @@
import base64
import hashlib
import hmac
import logging
import os
import time
from typing import Optional
from flask import current_app
from extensions.ext_storage import storage
SUPPORT_EXTENSIONS = ['jpg', 'jpeg', 'png', 'webp', 'gif']
class UploadFileParser:
@classmethod
def get_image_data(cls, upload_file, force_url: bool = False) -> Optional[str]:
if not upload_file:
return None
if upload_file.extension not in SUPPORT_EXTENSIONS:
return None
if current_app.config['MULTIMODAL_SEND_IMAGE_FORMAT'] == 'url' or force_url:
return cls.get_signed_temp_image_url(upload_file)
else:
# get image file base64
try:
data = storage.load(upload_file.key)
except FileNotFoundError:
logging.error(f'File not found: {upload_file.key}')
return None
encoded_string = base64.b64encode(data).decode('utf-8')
return f'data:{upload_file.mime_type};base64,{encoded_string}'
@classmethod
def get_signed_temp_image_url(cls, upload_file) -> str:
"""
get signed url from upload file
:param upload_file: UploadFile object
:return:
"""
base_url = current_app.config.get('FILES_URL')
image_preview_url = f'{base_url}/files/{upload_file.id}/image-preview'
timestamp = str(int(time.time()))
nonce = os.urandom(16).hex()
data_to_sign = f"image-preview|{upload_file.id}|{timestamp}|{nonce}"
secret_key = current_app.config['SECRET_KEY'].encode()
sign = hmac.new(secret_key, data_to_sign.encode(), hashlib.sha256).digest()
encoded_sign = base64.urlsafe_b64encode(sign).decode()
return f"{image_preview_url}?timestamp={timestamp}&nonce={nonce}&sign={encoded_sign}"
@classmethod
def verify_image_file_signature(cls, upload_file_id: str, timestamp: str, nonce: str, sign: str) -> bool:
"""
verify signature
:param upload_file_id: file id
:param timestamp: timestamp
:param nonce: nonce
:param sign: signature
:return:
"""
data_to_sign = f"image-preview|{upload_file_id}|{timestamp}|{nonce}"
secret_key = current_app.config['SECRET_KEY'].encode()
recalculated_sign = hmac.new(secret_key, data_to_sign.encode(), hashlib.sha256).digest()
recalculated_encoded_sign = base64.urlsafe_b64encode(recalculated_sign).decode()
# verify signature
if sign != recalculated_encoded_sign:
return False
current_time = int(time.time())
return current_time - int(timestamp) <= 300 # expired after 5 minutes

View File

@ -10,14 +10,13 @@ from core.model_providers.models.entity.model_params import ModelKwargs
from core.prompt.output_parser.rule_config_generator import RuleConfigGeneratorOutputParser
from core.prompt.output_parser.suggested_questions_after_answer import SuggestedQuestionsAfterAnswerOutputParser
from core.prompt.prompt_template import JinjaPromptTemplate, OutLinePromptTemplate
from core.prompt.prompts import CONVERSATION_TITLE_PROMPT, CONVERSATION_SUMMARY_PROMPT, INTRODUCTION_GENERATE_PROMPT, \
GENERATOR_QA_PROMPT
from core.prompt.prompt_template import PromptTemplateParser
from core.prompt.prompts import CONVERSATION_TITLE_PROMPT, GENERATOR_QA_PROMPT
class LLMGenerator:
@classmethod
def generate_conversation_name(cls, tenant_id: str, query, answer):
def generate_conversation_name(cls, tenant_id: str, query):
prompt = CONVERSATION_TITLE_PROMPT
if len(query) > 2000:
@ -41,81 +40,26 @@ class LLMGenerator:
result_dict = json.loads(answer)
answer = result_dict['Your Output']
name = answer.strip()
return answer.strip()
if len(name) > 75:
name = name[:75] + '...'
@classmethod
def generate_conversation_summary(cls, tenant_id: str, messages):
max_tokens = 200
model_instance = ModelFactory.get_text_generation_model(
tenant_id=tenant_id,
model_kwargs=ModelKwargs(
max_tokens=max_tokens
)
)
prompt = CONVERSATION_SUMMARY_PROMPT
prompt_with_empty_context = prompt.format(context='')
prompt_tokens = model_instance.get_num_tokens([PromptMessage(content=prompt_with_empty_context)])
max_context_token_length = model_instance.model_rules.max_tokens.max
max_context_token_length = max_context_token_length if max_context_token_length else 1500
rest_tokens = max_context_token_length - prompt_tokens - max_tokens - 1
context = ''
for message in messages:
if not message.answer:
continue
if len(message.query) > 2000:
query = message.query[:300] + "...[TRUNCATED]..." + message.query[-300:]
else:
query = message.query
if len(message.answer) > 2000:
answer = message.answer[:300] + "...[TRUNCATED]..." + message.answer[-300:]
else:
answer = message.answer
message_qa_text = "\n\nHuman:" + query + "\n\nAssistant:" + answer
if rest_tokens - model_instance.get_num_tokens([PromptMessage(content=context + message_qa_text)]) > 0:
context += message_qa_text
if not context:
return '[message too long, no summary]'
prompt = prompt.format(context=context)
prompts = [PromptMessage(content=prompt)]
response = model_instance.run(prompts)
answer = response.content
return answer.strip()
@classmethod
def generate_introduction(cls, tenant_id: str, pre_prompt: str):
prompt = INTRODUCTION_GENERATE_PROMPT
prompt = prompt.format(prompt=pre_prompt)
model_instance = ModelFactory.get_text_generation_model(
tenant_id=tenant_id
)
prompts = [PromptMessage(content=prompt)]
response = model_instance.run(prompts)
answer = response.content
return answer.strip()
return name
@classmethod
def generate_suggested_questions_after_answer(cls, tenant_id: str, histories: str):
output_parser = SuggestedQuestionsAfterAnswerOutputParser()
format_instructions = output_parser.get_format_instructions()
prompt = JinjaPromptTemplate(
template="{{histories}}\n{{format_instructions}}\nquestions:\n",
input_variables=["histories"],
partial_variables={"format_instructions": format_instructions}
prompt_template = PromptTemplateParser(
template="{{histories}}\n{{format_instructions}}\nquestions:\n"
)
_input = prompt.format_prompt(histories=histories)
prompt = prompt_template.format({
"histories": histories,
"format_instructions": format_instructions
})
try:
model_instance = ModelFactory.get_text_generation_model(
@ -128,10 +72,10 @@ class LLMGenerator:
except ProviderTokenNotInitError:
return []
prompts = [PromptMessage(content=_input.to_string())]
prompt_messages = [PromptMessage(content=prompt)]
try:
output = model_instance.run(prompts)
output = model_instance.run(prompt_messages)
questions = output_parser.parse(output.content)
except LLMError:
questions = []
@ -145,19 +89,21 @@ class LLMGenerator:
def generate_rule_config(cls, tenant_id: str, audiences: str, hoping_to_solve: str) -> dict:
output_parser = RuleConfigGeneratorOutputParser()
prompt = OutLinePromptTemplate(
template=output_parser.get_format_instructions(),
input_variables=["audiences", "hoping_to_solve"],
partial_variables={
"variable": '{variable}',
"lanA": '{lanA}',
"lanB": '{lanB}',
"topic": '{topic}'
},
validate_template=False
prompt_template = PromptTemplateParser(
template=output_parser.get_format_instructions()
)
_input = prompt.format_prompt(audiences=audiences, hoping_to_solve=hoping_to_solve)
prompt = prompt_template.format(
inputs={
"audiences": audiences,
"hoping_to_solve": hoping_to_solve,
"variable": "{{variable}}",
"lanA": "{{lanA}}",
"lanB": "{{lanB}}",
"topic": "{{topic}}"
},
remove_template_variables=False
)
model_instance = ModelFactory.get_text_generation_model(
tenant_id=tenant_id,
@ -167,10 +113,10 @@ class LLMGenerator:
)
)
prompts = [PromptMessage(content=_input.to_string())]
prompt_messages = [PromptMessage(content=prompt)]
try:
output = model_instance.run(prompts)
output = model_instance.run(prompt_messages)
rule_config = output_parser.parse(output.content)
except LLMError as e:
raise e

Some files were not shown because too many files have changed in this diff Show More