Compare commits

...

53 Commits

Author SHA1 Message Date
5d48406d64 feat: bump version to 0.3.29 (#1462) 2023-11-06 06:55:17 -06:00
2b2dbabc11 fix: prompt variables validate when using external data tools (#1465) 2023-11-06 06:31:41 -06:00
13b64bc55a fix: refresh api-based-extension (#1464) 2023-11-06 20:29:41 +08:00
279f099ba0 fix: chat style (#1463) 2023-11-06 20:11:55 +08:00
32747641e4 feat: add api-based extension & external data tool & moderation (#1459) 2023-11-06 19:36:32 +08:00
db43ed6f41 feat: add api-based extension & external data tool & moderation backend (#1403)
Co-authored-by: takatost <takatost@gmail.com>
2023-11-06 19:36:16 +08:00
7699621983 fix: Use correct typehint for return values (#1454)
Co-authored-by: lethe <lethe>
2023-11-06 04:50:51 -06:00
4dfbcd0b4e feat: support chatglm_turbo model #1443 (#1460) 2023-11-06 04:33:05 -06:00
a9ee18300e fix: service suggested api (#1452) 2023-11-04 19:59:14 +08:00
b4861d2b5c chore(deps): bump word-wrap from 1.2.3 to 1.2.5 in /web (#1440)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-11-01 11:26:25 +08:00
913f2b84a6 chore(deps-dev): bump postcss from 8.4.24 to 8.4.31 in /web (#1439)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-11-01 11:24:43 +08:00
cc89933d8f chore(deps): bump crypto-js from 4.1.1 to 4.2.0 in /web (#1437)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-11-01 11:24:33 +08:00
a14ea6582d chore(deps): bump semver from 5.7.1 to 5.7.2 in /web (#1436)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-11-01 11:24:24 +08:00
076f3289d2 feat: add spark v3.0 llm support (#1434) 2023-10-31 03:13:11 -05:00
518083dfe0 fix: metadata not saved (#1429) 2023-10-30 14:39:15 +08:00
2b366bb321 fix: delete app and setting modal is not wokring in firefox (#1427) 2023-10-29 14:22:05 +08:00
292d4c077a fix: Add icons for apps in "Related apps list" (#1425) 2023-10-27 17:55:38 +08:00
fc4c03640d fix: provider delete api key modal z-index (#1416) 2023-10-26 10:35:03 +08:00
985253197f mermaid front-end rendering initialization exception handling logic o… (#1407) 2023-10-26 10:19:04 +08:00
48b4249790 fix: workspace app avatar is abnormal (#1411) 2023-10-26 10:18:38 +08:00
fb64fcb271 feat: upgrade xinference-client to 0.5.4 (#1402) 2023-10-23 05:49:32 -05:00
41e452dcc5 fix: hex problem (#1395) 2023-10-22 04:15:54 -05:00
d218c66e25 Added diagram picture file for docker-compose yaml file visualization. (#1374) 2023-10-22 09:55:31 +08:00
e173b1cb2a Update README_CN.md (#1390) 2023-10-21 20:41:26 -05:00
9b598db559 Update README.md (#1389) 2023-10-21 20:41:15 -05:00
e122d677ad fix: return wrong when init 0 quota in trial provider (#1394) 2023-10-21 14:02:38 -05:00
4c63cbf5b1 feat: adjust anthropic (#1387) 2023-10-20 02:27:46 -05:00
288705fefd Chrome Dify Chatbot Plug-in (#1378)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
2023-10-19 07:54:43 -05:00
8c4ae98f3d feat: add advanced prompt doc link (#1363) 2023-10-19 17:52:30 +08:00
08aa367892 feat: add context missing warning (#1384)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-10-19 17:52:14 +08:00
ff527a0190 fix: not load dataset config (#1381) 2023-10-19 13:55:25 +08:00
6e05f8ca93 fix: npm run start (#1380) 2023-10-19 11:38:03 +08:00
6309d070d1 feat: enchance prompt mode copywriting (#1379) 2023-10-19 11:19:34 +08:00
fe14130b3c refactor advanced prompt core. (#1350) 2023-10-18 20:02:52 +08:00
52ebffa857 fix: app config zhipu chatglm_std model, but it still use chatglm_lit… (#1377)
Co-authored-by: wayne.wang <wayne.wang@beibei.com>
2023-10-18 05:07:36 -05:00
d14f15863d fix: i18n runtime error (#1376) 2023-10-18 16:00:56 +08:00
7c9b585a47 feat: support weixin ernie-bot-4 and chat mode (#1375) 2023-10-18 02:35:24 -05:00
c039f4af83 fix: app model config detached in completion thread (#1366) 2023-10-17 08:18:08 -05:00
07285e5f8b feat: optimize completion model agent (#1364) 2023-10-17 06:54:59 -05:00
16d80ebab3 Fix milvus configuration error (#1362)
Signed-off-by: JackLCL <chenglong.li@zilliz.com>
2023-10-17 17:40:40 +08:00
61e816f24c feat: logo (#1356) 2023-10-16 15:26:25 +08:00
2feb16d957 feat: bump version to 0.3.28 (#1349) 2023-10-14 11:49:56 -05:00
3043fbe73b remove the suggested api for completion app (#1347) 2023-10-14 10:05:33 -05:00
9f99c3f55b fix: modal z-index (#1343) 2023-10-13 05:55:03 -05:00
a07a6d8c26 feat: switch to generation model set default stop word (#1341) 2023-10-13 16:47:22 +08:00
695841a3cf Feat/advanced prompt enhancement (#1340) 2023-10-13 16:47:01 +08:00
3efaa713da feat: use xinference client instead of xinference (#1339) 2023-10-13 02:46:09 -05:00
9822f687f7 fix: max tokens of OpenAI gpt-3.5-turbo-instruct to 4097 (#1338) 2023-10-13 02:07:07 -05:00
b9d83c04bc fix: modal z-index (#1337) 2023-10-13 14:58:53 +08:00
298ad6782d Add Message Suggested Api (#1326)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
2023-10-13 14:07:32 +08:00
f4be2b8bcd fix: raise error in minimax stream generate (#1336) 2023-10-12 23:48:28 -05:00
e83e239faf fix: value.join is not a function in log list (#1332) 2023-10-13 11:34:24 +08:00
62bf7f0fc2 fix: new app with template display (#1322) 2023-10-13 10:18:33 +08:00
255 changed files with 6819 additions and 1228 deletions

View File

@ -37,7 +37,6 @@ https://github.com/langgenius/dify/assets/100913391/f6e658d5-31b3-4c16-a0af-9e19
We provide the following free resources for registered Dify cloud users (sign up at [dify.ai](https://dify.ai)):
* 600,000 free Claude model tokens to build Claude-powered apps
* 200 free OpenAI queries to build OpenAI-based apps

View File

@ -36,7 +36,6 @@ https://github.com/langgenius/dify/assets/100913391/f6e658d5-31b3-4c16-a0af-9e19
我们为所有注册云端版的用户免费提供以下资源(登录 [dify.ai](https://cloud.dify.ai) 即可使用):
* 60 万 Tokens Claude 模型的消息调用额度,用于创建基于 Claude 模型的 AI 应用
* 200 次 OpenAI 模型的消息调用额度,用于创建基于 OpenAI 模型的 AI 应用
* 300 万 讯飞星火大模型 Token 的调用额度,用于创建基于讯飞星火大模型的 AI 应用
* 100 万 MiniMax Token 的调用额度,用于创建基于 MiniMax 模型的 AI 应用

View File

@ -10,7 +10,7 @@
"request": "launch",
"module": "flask",
"env": {
"FLASK_APP": "api/app.py",
"FLASK_APP": "app.py",
"FLASK_DEBUG": "1",
"GEVENT_SUPPORT": "True"
},

View File

@ -19,7 +19,7 @@ from flask_cors import CORS
from core.model_providers.providers import hosted
from extensions import ext_celery, ext_sentry, ext_redis, ext_login, ext_migrate, \
ext_database, ext_storage, ext_mail, ext_stripe
ext_database, ext_storage, ext_mail, ext_stripe, ext_code_based_extension
from extensions.ext_database import db
from extensions.ext_login import login_manager
@ -79,6 +79,7 @@ def create_app(test_config=None) -> Flask:
def initialize_extensions(app):
# Since the application instance is now created, pass it to each Flask
# extension instance to bind it to the Flask application instance (app)
ext_code_based_extension.init()
ext_database.init_app(app)
ext_migrate.init(app, db)
ext_redis.init_app(app)

View File

@ -57,6 +57,7 @@ DEFAULTS = {
'CLEAN_DAY_SETTING': 30,
'UPLOAD_FILE_SIZE_LIMIT': 15,
'UPLOAD_FILE_BATCH_LIMIT': 5,
'OUTPUT_MODERATION_BUFFER_SIZE': 300
}
@ -92,7 +93,7 @@ class Config:
self.CONSOLE_URL = get_env('CONSOLE_URL')
self.API_URL = get_env('API_URL')
self.APP_URL = get_env('APP_URL')
self.CURRENT_VERSION = "0.3.27"
self.CURRENT_VERSION = "0.3.29"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
@ -228,6 +229,9 @@ class Config:
self.UPLOAD_FILE_SIZE_LIMIT = int(get_env('UPLOAD_FILE_SIZE_LIMIT'))
self.UPLOAD_FILE_BATCH_LIMIT = int(get_env('UPLOAD_FILE_BATCH_LIMIT'))
# moderation settings
self.OUTPUT_MODERATION_BUFFER_SIZE = int(get_env('OUTPUT_MODERATION_BUFFER_SIZE'))
class CloudEditionConfig(Config):

View File

@ -6,7 +6,7 @@ bp = Blueprint('console', __name__, url_prefix='/console/api')
api = ExternalApi(bp)
# Import other controllers
from . import setup, version, apikey, admin
from . import extension, setup, version, apikey, admin
# Import app controllers
from .app import advanced_prompt_template, app, site, completion, model_config, statistic, conversation, message, generator, audio

View File

@ -20,7 +20,6 @@ class AdvancedPromptTemplateList(Resource):
parser.add_argument('model_name', type=str, required=True, location='args')
args = parser.parse_args()
service = AdvancedPromptTemplateService()
return service.get_prompt(args)
return AdvancedPromptTemplateService.get_prompt(args)
api.add_resource(AdvancedPromptTemplateList, '/app/prompt-templates')

View File

@ -295,8 +295,8 @@ class MessageSuggestedQuestionApi(Resource):
try:
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
user=current_user,
message_id=message_id,
user=current_user,
check_enabled=False
)
except MessageNotExistsError:

View File

@ -27,6 +27,7 @@ class AppParameterApi(InstalledAppResource):
'retriever_resource': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
'sensitive_word_avoidance': fields.Raw
}
@marshal_with(parameters_fields)
@ -42,7 +43,8 @@ class AppParameterApi(InstalledAppResource):
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict
}

View File

@ -0,0 +1,114 @@
from flask_restful import Resource, reqparse, marshal_with
from flask_login import current_user
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from libs.login import login_required
from models.api_based_extension import APIBasedExtension
from fields.api_based_extension_fields import api_based_extension_fields
from services.code_based_extension_service import CodeBasedExtensionService
from services.api_based_extension_service import APIBasedExtensionService
class CodeBasedExtensionAPI(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
parser = reqparse.RequestParser()
parser.add_argument('module', type=str, required=True, location='args')
args = parser.parse_args()
return {
'module': args['module'],
'data': CodeBasedExtensionService.get_code_based_extension(args['module'])
}
class APIBasedExtensionAPI(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_based_extension_fields)
def get(self):
tenant_id = current_user.current_tenant_id
return APIBasedExtensionService.get_all_by_tenant_id(tenant_id)
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_based_extension_fields)
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
parser.add_argument('api_endpoint', type=str, required=True, location='json')
parser.add_argument('api_key', type=str, required=True, location='json')
args = parser.parse_args()
extension_data = APIBasedExtension(
tenant_id=current_user.current_tenant_id,
name=args['name'],
api_endpoint=args['api_endpoint'],
api_key=args['api_key']
)
return APIBasedExtensionService.save(extension_data)
class APIBasedExtensionDetailAPI(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_based_extension_fields)
def get(self, id):
api_based_extension_id = str(id)
tenant_id = current_user.current_tenant_id
return APIBasedExtensionService.get_with_tenant_id(tenant_id, api_based_extension_id)
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_based_extension_fields)
def post(self, id):
api_based_extension_id = str(id)
tenant_id = current_user.current_tenant_id
extension_data_from_db = APIBasedExtensionService.get_with_tenant_id(tenant_id, api_based_extension_id)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
parser.add_argument('api_endpoint', type=str, required=True, location='json')
parser.add_argument('api_key', type=str, required=True, location='json')
args = parser.parse_args()
extension_data_from_db.name = args['name']
extension_data_from_db.api_endpoint = args['api_endpoint']
if args['api_key'] != '[__HIDDEN__]':
extension_data_from_db.api_key = args['api_key']
return APIBasedExtensionService.save(extension_data_from_db)
@setup_required
@login_required
@account_initialization_required
def delete(self, id):
api_based_extension_id = str(id)
tenant_id = current_user.current_tenant_id
extension_data_from_db = APIBasedExtensionService.get_with_tenant_id(tenant_id, api_based_extension_id)
APIBasedExtensionService.delete(extension_data_from_db)
return {'result': 'success'}
api.add_resource(CodeBasedExtensionAPI, '/code-based-extension')
api.add_resource(APIBasedExtensionAPI, '/api-based-extension')
api.add_resource(APIBasedExtensionDetailAPI, '/api-based-extension/<uuid:id>')

View File

@ -28,6 +28,7 @@ class AppParameterApi(AppApiResource):
'retriever_resource': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
'sensitive_word_avoidance': fields.Raw
}
@marshal_with(parameters_fields)
@ -42,7 +43,8 @@ class AppParameterApi(AppApiResource):
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict
}

View File

@ -183,4 +183,3 @@ api.add_resource(CompletionApi, '/completion-messages')
api.add_resource(CompletionStopApi, '/completion-messages/<string:task_id>/stop')
api.add_resource(ChatApi, '/chat-messages')
api.add_resource(ChatStopApi, '/chat-messages/<string:task_id>/stop')

View File

@ -54,6 +54,7 @@ class ConversationDetailApi(AppApiResource):
raise NotFound("Conversation Not Exists.")
return {"result": "success"}, 204
class ConversationRenameApi(AppApiResource):
@marshal_with(simple_conversation_fields)

View File

@ -10,6 +10,8 @@ from controllers.service_api.app.error import NotChatAppError
from controllers.service_api.wraps import AppApiResource
from libs.helper import TimestampField, uuid_value
from services.message_service import MessageService
from extensions.ext_database import db
from models.model import Message, EndUser
class MessageListApi(AppApiResource):
@ -96,5 +98,38 @@ class MessageFeedbackApi(AppApiResource):
return {'result': 'success'}
class MessageSuggestedApi(AppApiResource):
def get(self, app_model, end_user, message_id):
message_id = str(message_id)
if app_model.mode != 'chat':
raise NotChatAppError()
try:
message = db.session.query(Message).filter(
Message.id == message_id,
Message.app_id == app_model.id,
).first()
if end_user is None and message.from_end_user_id is not None:
user = db.session.query(EndUser) \
.filter(
EndUser.tenant_id == app_model.tenant_id,
EndUser.id == message.from_end_user_id,
EndUser.type == 'service_api'
).first()
else:
user = end_user
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
user=user,
message_id=message_id,
check_enabled=False
)
except services.errors.message.MessageNotExistsError:
raise NotFound("Message Not Exists.")
return {'result': 'success', 'data': questions}
api.add_resource(MessageListApi, '/messages')
api.add_resource(MessageFeedbackApi, '/messages/<uuid:message_id>/feedbacks')
api.add_resource(MessageSuggestedApi, '/messages/<uuid:message_id>/suggested')

View File

@ -27,6 +27,7 @@ class AppParameterApi(WebApiResource):
'retriever_resource': fields.Raw,
'more_like_this': fields.Raw,
'user_input_form': fields.Raw,
'sensitive_word_avoidance': fields.Raw
}
@marshal_with(parameters_fields)
@ -41,7 +42,8 @@ class AppParameterApi(WebApiResource):
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict
}

View File

@ -139,7 +139,7 @@ class ChatStopApi(WebApiResource):
return {'result': 'success'}, 200
def compact_response(response: Union[dict | Generator]) -> Response:
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:

View File

@ -0,0 +1 @@
import core.moderation.base

View File

@ -76,7 +76,7 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
agent_decision = self.real_plan(intermediate_steps, callbacks, **kwargs)
if isinstance(agent_decision, AgentAction):
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
if isinstance(tool_inputs, dict) and 'query' in tool_inputs and 'chat_history' not in kwargs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
else:

View File

@ -1,7 +1,7 @@
import re
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
from langchain import BasePromptTemplate
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.callbacks.base import BaseCallbackManager
@ -12,6 +12,7 @@ from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from core.chain.llm_chain import LLMChain
from core.model_providers.models.entity.model_params import ModelMode
from core.model_providers.models.llm.base import BaseLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
@ -92,6 +93,10 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
rst = tool.run(tool_input={'query': kwargs['input']})
return AgentFinish(return_values={"output": rst}, log=rst)
if intermediate_steps:
_, observation = intermediate_steps[-1]
return AgentFinish(return_values={"output": observation}, log=observation)
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
try:
@ -107,6 +112,8 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
elif isinstance(tool_inputs, str):
agent_decision.tool_input = kwargs['input']
else:
agent_decision.return_values['output'] = ''
return agent_decision
@ -143,6 +150,61 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
@classmethod
def create_completion_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
Question: {input}
Thought: {agent_scratchpad}
"""
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> str:
agent_scratchpad = ""
for action, observation in intermediate_steps:
agent_scratchpad += action.log
agent_scratchpad += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
if not isinstance(agent_scratchpad, str):
raise ValueError("agent_scratchpad should be of type string.")
if agent_scratchpad:
llm_chain = cast(LLMChain, self.llm_chain)
if llm_chain.model_instance.model_mode == ModelMode.CHAT:
return (
f"This was your previous work "
f"(but I haven't seen any of it! I only see what "
f"you return as final answer):\n{agent_scratchpad}"
)
else:
return agent_scratchpad
else:
return agent_scratchpad
@classmethod
def from_llm_and_tools(
cls,
@ -160,15 +222,23 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
if model_instance.model_mode == ModelMode.CHAT:
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
else:
prompt = cls.create_completion_prompt(
tools,
prefix=prefix,
format_instructions=format_instructions,
input_variables=input_variables
)
llm_chain = LLMChain(
model_instance=model_instance,
prompt=prompt,

View File

@ -1,7 +1,7 @@
import re
from typing import List, Tuple, Any, Union, Sequence, Optional
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
from langchain import BasePromptTemplate
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.callbacks.base import BaseCallbackManager
@ -15,6 +15,7 @@ from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
from core.chain.llm_chain import LLMChain
from core.model_providers.models.entity.model_params import ModelMode
from core.model_providers.models.llm.base import BaseLLM
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
@ -184,6 +185,61 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
@classmethod
def create_completion_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
Question: {input}
Thought: {agent_scratchpad}
"""
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> str:
agent_scratchpad = ""
for action, observation in intermediate_steps:
agent_scratchpad += action.log
agent_scratchpad += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
if not isinstance(agent_scratchpad, str):
raise ValueError("agent_scratchpad should be of type string.")
if agent_scratchpad:
llm_chain = cast(LLMChain, self.llm_chain)
if llm_chain.model_instance.model_mode == ModelMode.CHAT:
return (
f"This was your previous work "
f"(but I haven't seen any of it! I only see what "
f"you return as final answer):\n{agent_scratchpad}"
)
else:
return agent_scratchpad
else:
return agent_scratchpad
@classmethod
def from_llm_and_tools(
cls,
@ -201,15 +257,23 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
if model_instance.model_mode == ModelMode.CHAT:
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
else:
prompt = cls.create_completion_prompt(
tools,
prefix=prefix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
model_instance=model_instance,
prompt=prompt,

View File

@ -1,13 +1,25 @@
import logging
from typing import Any, Dict, List, Union
import threading
import time
from typing import Any, Dict, List, Union, Optional
from flask import Flask, current_app
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import LLMResult, BaseMessage
from pydantic import BaseModel
from core.callback_handler.entity.llm_message import LLMMessage
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException, \
ConversationTaskInterruptException
from core.model_providers.models.entity.message import to_prompt_messages, PromptMessage
from core.model_providers.models.llm.base import BaseLLM
from core.moderation.base import ModerationOutputsResult, ModerationAction
from core.moderation.factory import ModerationFactory
class ModerationRule(BaseModel):
type: str
config: Dict[str, Any]
class LLMCallbackHandler(BaseCallbackHandler):
@ -20,6 +32,24 @@ class LLMCallbackHandler(BaseCallbackHandler):
self.start_at = None
self.conversation_message_task = conversation_message_task
self.output_moderation_handler = None
self.init_output_moderation()
def init_output_moderation(self):
app_model_config = self.conversation_message_task.app_model_config
sensitive_word_avoidance_dict = app_model_config.sensitive_word_avoidance_dict
if sensitive_word_avoidance_dict and sensitive_word_avoidance_dict.get("enabled"):
self.output_moderation_handler = OutputModerationHandler(
tenant_id=self.conversation_message_task.tenant_id,
app_id=self.conversation_message_task.app.id,
rule=ModerationRule(
type=sensitive_word_avoidance_dict.get("type"),
config=sensitive_word_avoidance_dict.get("config")
),
on_message_replace_func=self.conversation_message_task.on_message_replace
)
@property
def always_verbose(self) -> bool:
"""Whether to call verbose callbacks even if verbose is False."""
@ -59,10 +89,19 @@ class LLMCallbackHandler(BaseCallbackHandler):
self.llm_message.prompt_tokens = self.model_instance.get_num_tokens([PromptMessage(content=prompts[0])])
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
if not self.conversation_message_task.streaming:
self.conversation_message_task.append_message_text(response.generations[0][0].text)
if self.output_moderation_handler:
self.output_moderation_handler.stop_thread()
self.llm_message.completion = self.output_moderation_handler.moderation_completion(
completion=response.generations[0][0].text,
public_event=True if self.conversation_message_task.streaming else False
)
else:
self.llm_message.completion = response.generations[0][0].text
if not self.conversation_message_task.streaming:
self.conversation_message_task.append_message_text(self.llm_message.completion)
if response.llm_output and 'token_usage' in response.llm_output:
if 'prompt_tokens' in response.llm_output['token_usage']:
self.llm_message.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
@ -79,23 +118,161 @@ class LLMCallbackHandler(BaseCallbackHandler):
self.conversation_message_task.save_message(self.llm_message)
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
try:
self.conversation_message_task.append_message_text(token)
except ConversationTaskStoppedException as ex:
if self.output_moderation_handler and self.output_moderation_handler.should_direct_output():
# stop subscribe new token when output moderation should direct output
ex = ConversationTaskInterruptException()
self.on_llm_error(error=ex)
raise ex
self.llm_message.completion += token
try:
self.conversation_message_task.append_message_text(token)
self.llm_message.completion += token
if self.output_moderation_handler:
self.output_moderation_handler.append_new_token(token)
except ConversationTaskStoppedException as ex:
self.on_llm_error(error=ex)
raise ex
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
if self.output_moderation_handler:
self.output_moderation_handler.stop_thread()
if isinstance(error, ConversationTaskStoppedException):
if self.conversation_message_task.streaming:
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)]
)
self.conversation_message_task.save_message(llm_message=self.llm_message, by_stopped=True)
if isinstance(error, ConversationTaskInterruptException):
self.llm_message.completion = self.output_moderation_handler.get_final_output()
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)]
)
self.conversation_message_task.save_message(llm_message=self.llm_message)
else:
logging.debug("on_llm_error: %s", error)
class OutputModerationHandler(BaseModel):
DEFAULT_BUFFER_SIZE: int = 300
tenant_id: str
app_id: str
rule: ModerationRule
on_message_replace_func: Any
thread: Optional[threading.Thread] = None
thread_running: bool = True
buffer: str = ''
is_final_chunk: bool = False
final_output: Optional[str] = None
class Config:
arbitrary_types_allowed = True
def should_direct_output(self):
return self.final_output is not None
def get_final_output(self):
return self.final_output
def append_new_token(self, token: str):
self.buffer += token
if not self.thread:
self.thread = self.start_thread()
def moderation_completion(self, completion: str, public_event: bool = False) -> str:
self.buffer = completion
self.is_final_chunk = True
result = self.moderation(
tenant_id=self.tenant_id,
app_id=self.app_id,
moderation_buffer=completion
)
if not result or not result.flagged:
return completion
if result.action == ModerationAction.DIRECT_OUTPUT:
final_output = result.preset_response
else:
final_output = result.text
if public_event:
self.on_message_replace_func(final_output)
return final_output
def start_thread(self) -> threading.Thread:
buffer_size = int(current_app.config.get('MODERATION_BUFFER_SIZE', self.DEFAULT_BUFFER_SIZE))
thread = threading.Thread(target=self.worker, kwargs={
'flask_app': current_app._get_current_object(),
'buffer_size': buffer_size if buffer_size > 0 else self.DEFAULT_BUFFER_SIZE
})
thread.start()
return thread
def stop_thread(self):
if self.thread and self.thread.is_alive():
self.thread_running = False
def worker(self, flask_app: Flask, buffer_size: int):
with flask_app.app_context():
current_length = 0
while self.thread_running:
moderation_buffer = self.buffer
buffer_length = len(moderation_buffer)
if not self.is_final_chunk:
chunk_length = buffer_length - current_length
if 0 <= chunk_length < buffer_size:
time.sleep(1)
continue
current_length = buffer_length
result = self.moderation(
tenant_id=self.tenant_id,
app_id=self.app_id,
moderation_buffer=moderation_buffer
)
if not result or not result.flagged:
continue
if result.action == ModerationAction.DIRECT_OUTPUT:
final_output = result.preset_response
self.final_output = final_output
else:
final_output = result.text + self.buffer[len(moderation_buffer):]
# trigger replace event
if self.thread_running:
self.on_message_replace_func(final_output)
if result.action == ModerationAction.DIRECT_OUTPUT:
break
def moderation(self, tenant_id: str, app_id: str, moderation_buffer: str) -> Optional[ModerationOutputsResult]:
try:
moderation_factory = ModerationFactory(
name=self.rule.type,
app_id=app_id,
tenant_id=tenant_id,
config=self.rule.config
)
result: ModerationOutputsResult = moderation_factory.moderation_for_outputs(moderation_buffer)
return result
except Exception as e:
logging.error("Moderation Output error: %s", e)
return None

View File

@ -1,92 +0,0 @@
import enum
import logging
from typing import List, Dict, Optional, Any
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from pydantic import BaseModel
from core.model_providers.error import LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.moderation import openai_moderation
class SensitiveWordAvoidanceRule(BaseModel):
class Type(enum.Enum):
MODERATION = "moderation"
KEYWORDS = "keywords"
type: Type
canned_response: str = 'Your content violates our usage policy. Please revise and try again.'
extra_params: dict = {}
class SensitiveWordAvoidanceChain(Chain):
input_key: str = "input" #: :meta private:
output_key: str = "output" #: :meta private:
model_instance: BaseLLM
sensitive_word_avoidance_rule: SensitiveWordAvoidanceRule
@property
def _chain_type(self) -> str:
return "sensitive_word_avoidance_chain"
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
def _check_sensitive_word(self, text: str) -> bool:
for word in self.sensitive_word_avoidance_rule.extra_params.get('sensitive_words', []):
if word in text:
return False
return True
def _check_moderation(self, text: str) -> bool:
moderation_model_instance = ModelFactory.get_moderation_model(
tenant_id=self.model_instance.model_provider.provider.tenant_id,
model_provider_name='openai',
model_name=openai_moderation.DEFAULT_MODEL
)
try:
return moderation_model_instance.run(text=text)
except Exception as ex:
logging.exception(ex)
raise LLMBadRequestError('Rate limit exceeded, please try again later.')
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
text = inputs[self.input_key]
if self.sensitive_word_avoidance_rule.type == SensitiveWordAvoidanceRule.Type.KEYWORDS:
result = self._check_sensitive_word(text)
else:
result = self._check_moderation(text)
if not result:
raise SensitiveWordAvoidanceError(self.sensitive_word_avoidance_rule.canned_response)
return {self.output_key: text}
class SensitiveWordAvoidanceError(Exception):
def __init__(self, message):
super().__init__(message)
self.message = message

View File

@ -1,13 +1,18 @@
import concurrent
import json
import logging
from typing import Optional, List, Union
from concurrent.futures import ThreadPoolExecutor
from typing import Optional, List, Union, Tuple
from flask import current_app, Flask
from requests.exceptions import ChunkedEncodingError
from core.agent.agent_executor import AgentExecuteResult, PlanningStrategy
from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
from core.callback_handler.llm_callback_handler import LLMCallbackHandler
from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceError
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException, \
ConversationTaskInterruptException
from core.external_data_tool.factory import ExternalDataToolFactory
from core.model_providers.error import LLMBadRequestError
from core.memory.read_only_conversation_token_db_buffer_shared_memory import \
ReadOnlyConversationTokenDBBufferSharedMemory
@ -16,7 +21,10 @@ from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.llm.base import BaseLLM
from core.orchestrator_rule_parser import OrchestratorRuleParser
from core.prompt.prompt_template import PromptTemplateParser
from core.prompt.prompt_transform import PromptTransform
from models.model import App, AppModelConfig, Account, Conversation, EndUser
from core.moderation.base import ModerationException, ModerationAction
from core.moderation.factory import ModerationFactory
class Completion:
@ -75,26 +83,35 @@ class Completion:
)
try:
# parse sensitive_word_avoidance_chain
chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
sensitive_word_avoidance_chain = orchestrator_rule_parser.to_sensitive_word_avoidance_chain(
final_model_instance, [chain_callback])
if sensitive_word_avoidance_chain:
try:
query = sensitive_word_avoidance_chain.run(query)
except SensitiveWordAvoidanceError as ex:
cls.run_final_llm(
model_instance=final_model_instance,
mode=app.mode,
app_model_config=app_model_config,
query=query,
inputs=inputs,
agent_execute_result=None,
conversation_message_task=conversation_message_task,
memory=memory,
fake_response=ex.message
)
return
try:
# process sensitive_word_avoidance
inputs, query = cls.moderation_for_inputs(app.id, app.tenant_id, app_model_config, inputs, query)
except ModerationException as e:
cls.run_final_llm(
model_instance=final_model_instance,
mode=app.mode,
app_model_config=app_model_config,
query=query,
inputs=inputs,
agent_execute_result=None,
conversation_message_task=conversation_message_task,
memory=memory,
fake_response=str(e)
)
return
# fill in variable inputs from external data tools if exists
external_data_tools = app_model_config.external_data_tools_list
if external_data_tools:
inputs = cls.fill_in_inputs_from_external_data_tools(
tenant_id=app.tenant_id,
app_id=app.id,
external_data_tools=external_data_tools,
inputs=inputs,
query=query
)
# get agent executor
agent_executor = orchestrator_rule_parser.to_agent_executor(
@ -134,19 +151,110 @@ class Completion:
memory=memory,
fake_response=fake_response
)
except ConversationTaskStoppedException:
except (ConversationTaskInterruptException, ConversationTaskStoppedException):
return
except ChunkedEncodingError as e:
# Interrupt by LLM (like OpenAI), handle it.
logging.warning(f'ChunkedEncodingError: {e}')
conversation_message_task.end()
return
@classmethod
def moderation_for_inputs(cls, app_id: str, tenant_id: str, app_model_config: AppModelConfig, inputs: dict, query: str):
if not app_model_config.sensitive_word_avoidance_dict['enabled']:
return inputs, query
type = app_model_config.sensitive_word_avoidance_dict['type']
moderation = ModerationFactory(type, app_id, tenant_id, app_model_config.sensitive_word_avoidance_dict['config'])
moderation_result = moderation.moderation_for_inputs(inputs, query)
if not moderation_result.flagged:
return inputs, query
if moderation_result.action == ModerationAction.DIRECT_OUTPUT:
raise ModerationException(moderation_result.preset_response)
elif moderation_result.action == ModerationAction.OVERRIDED:
inputs = moderation_result.inputs
query = moderation_result.query
return inputs, query
@classmethod
def fill_in_inputs_from_external_data_tools(cls, tenant_id: str, app_id: str, external_data_tools: list[dict],
inputs: dict, query: str) -> dict:
"""
Fill in variable inputs from external data tools if exists.
:param tenant_id: workspace id
:param app_id: app id
:param external_data_tools: external data tools configs
:param inputs: the inputs
:param query: the query
:return: the filled inputs
"""
# Group tools by type and config
grouped_tools = {}
for tool in external_data_tools:
if not tool.get("enabled"):
continue
tool_key = (tool.get("type"), json.dumps(tool.get("config"), sort_keys=True))
grouped_tools.setdefault(tool_key, []).append(tool)
results = {}
with ThreadPoolExecutor() as executor:
futures = {}
for tools in grouped_tools.values():
# Only query the first tool in each group
first_tool = tools[0]
future = executor.submit(
cls.query_external_data_tool, current_app._get_current_object(), tenant_id, app_id, first_tool,
inputs, query
)
for tool in tools:
futures[future] = tool
for future in concurrent.futures.as_completed(futures):
tool_key, result = future.result()
if tool_key in grouped_tools:
for tool in grouped_tools[tool_key]:
results[tool['variable']] = result
inputs.update(results)
return inputs
@classmethod
def query_external_data_tool(cls, flask_app: Flask, tenant_id: str, app_id: str, external_data_tool: dict,
inputs: dict, query: str) -> Tuple[Optional[str], Optional[str]]:
with flask_app.app_context():
tool_variable = external_data_tool.get("variable")
tool_type = external_data_tool.get("type")
tool_config = external_data_tool.get("config")
external_data_tool_factory = ExternalDataToolFactory(
name=tool_type,
tenant_id=tenant_id,
app_id=app_id,
variable=tool_variable,
config=tool_config
)
# query external data tool
result = external_data_tool_factory.query(
inputs=inputs,
query=query
)
tool_key = (external_data_tool.get("type"), json.dumps(external_data_tool.get("config"), sort_keys=True))
return tool_key, result
@classmethod
def get_query_for_agent(cls, app: App, app_model_config: AppModelConfig, query: str, inputs: dict) -> str:
if app.mode != 'completion':
return query
return inputs.get(app_model_config.dataset_query_variable, "")
@classmethod
@ -156,24 +264,28 @@ class Completion:
conversation_message_task: ConversationMessageTask,
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory],
fake_response: Optional[str]):
prompt_transform = PromptTransform()
# get llm prompt
if app_model_config.prompt_type == 'simple':
prompt_messages, stop_words = model_instance.get_prompt(
prompt_messages, stop_words = prompt_transform.get_prompt(
mode=mode,
pre_prompt=app_model_config.pre_prompt,
inputs=inputs,
query=query,
context=agent_execute_result.output if agent_execute_result else None,
memory=memory
memory=memory,
model_instance=model_instance
)
else:
prompt_messages = model_instance.get_advanced_prompt(
prompt_messages = prompt_transform.get_advanced_prompt(
app_mode=mode,
app_model_config=app_model_config,
inputs=inputs,
query=query,
context=agent_execute_result.output if agent_execute_result else None,
memory=memory
memory=memory,
model_instance=model_instance
)
model_config = app_model_config.model_dict
@ -238,15 +350,30 @@ class Completion:
if max_tokens is None:
max_tokens = 0
prompt_transform = PromptTransform()
prompt_messages = []
# get prompt without memory and context
prompt_messages, _ = model_instance.get_prompt(
mode=mode,
pre_prompt=app_model_config.pre_prompt,
inputs=inputs,
query=query,
context=None,
memory=None
)
if app_model_config.prompt_type == 'simple':
prompt_messages, _ = prompt_transform.get_prompt(
mode=mode,
pre_prompt=app_model_config.pre_prompt,
inputs=inputs,
query=query,
context=None,
memory=None,
model_instance=model_instance
)
else:
prompt_messages = prompt_transform.get_advanced_prompt(
app_mode=mode,
app_model_config=app_model_config,
inputs=inputs,
query=query,
context=None,
memory=None,
model_instance=model_instance
)
prompt_tokens = model_instance.get_num_tokens(prompt_messages)
rest_tokens = model_limited_tokens - max_tokens - prompt_tokens

View File

@ -290,6 +290,10 @@ class ConversationMessageTask:
db.session.commit()
self.retriever_resource = resource
def on_message_replace(self, text: str):
if text is not None:
self._pub_handler.pub_message_replace(text)
def message_end(self):
self._pub_handler.pub_message_end(self.retriever_resource)
@ -342,6 +346,24 @@ class PubHandler:
self.pub_end()
raise ConversationTaskStoppedException()
def pub_message_replace(self, text: str):
content = {
'event': 'message_replace',
'data': {
'task_id': self._task_id,
'message_id': str(self._message.id),
'text': text,
'mode': self._conversation.mode,
'conversation_id': str(self._conversation.id)
}
}
redis_client.publish(self._channel, json.dumps(content))
if self._is_stopped():
self.pub_end()
raise ConversationTaskStoppedException()
def pub_chain(self, message_chain: MessageChain):
if self._chain_pub:
content = {
@ -443,3 +465,7 @@ class PubHandler:
class ConversationTaskStoppedException(Exception):
pass
class ConversationTaskInterruptException(Exception):
pass

View File

View File

@ -0,0 +1,62 @@
import os
import requests
from models.api_based_extension import APIBasedExtensionPoint
class APIBasedExtensionRequestor:
timeout: (int, int) = (5, 60)
"""timeout for request connect and read"""
def __init__(self, api_endpoint: str, api_key: str) -> None:
self.api_endpoint = api_endpoint
self.api_key = api_key
def request(self, point: APIBasedExtensionPoint, params: dict) -> dict:
"""
Request the api.
:param point: the api point
:param params: the request params
:return: the response json
"""
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer {}".format(self.api_key)
}
url = self.api_endpoint
try:
# proxy support for security
proxies = None
if os.environ.get("API_BASED_EXTENSION_HTTP_PROXY") and os.environ.get("API_BASED_EXTENSION_HTTPS_PROXY"):
proxies = {
'http': os.environ.get("API_BASED_EXTENSION_HTTP_PROXY"),
'https': os.environ.get("API_BASED_EXTENSION_HTTPS_PROXY"),
}
response = requests.request(
method='POST',
url=url,
json={
'point': point.value,
'params': params
},
headers=headers,
timeout=self.timeout,
proxies=proxies
)
except requests.exceptions.Timeout:
raise ValueError("request timeout")
except requests.exceptions.ConnectionError:
raise ValueError("request connection error")
if response.status_code != 200:
raise ValueError("request error, status_code: {}, content: {}".format(
response.status_code,
response.text[:100]
))
return response.json()

View File

@ -0,0 +1,111 @@
import enum
import importlib.util
import json
import logging
import os
from collections import OrderedDict
from typing import Any, Optional
from pydantic import BaseModel
class ExtensionModule(enum.Enum):
MODERATION = 'moderation'
EXTERNAL_DATA_TOOL = 'external_data_tool'
class ModuleExtension(BaseModel):
extension_class: Any
name: str
label: Optional[dict] = None
form_schema: Optional[list] = None
builtin: bool = True
position: Optional[int] = None
class Extensible:
module: ExtensionModule
name: str
tenant_id: str
config: Optional[dict] = None
def __init__(self, tenant_id: str, config: Optional[dict] = None) -> None:
self.tenant_id = tenant_id
self.config = config
@classmethod
def scan_extensions(cls):
extensions = {}
# get the path of the current class
current_path = os.path.abspath(cls.__module__.replace(".", os.path.sep) + '.py')
current_dir_path = os.path.dirname(current_path)
# traverse subdirectories
for subdir_name in os.listdir(current_dir_path):
if subdir_name.startswith('__'):
continue
subdir_path = os.path.join(current_dir_path, subdir_name)
extension_name = subdir_name
if os.path.isdir(subdir_path):
file_names = os.listdir(subdir_path)
# is builtin extension, builtin extension
# in the front-end page and business logic, there are special treatments.
builtin = False
position = None
if '__builtin__' in file_names:
builtin = True
builtin_file_path = os.path.join(subdir_path, '__builtin__')
if os.path.exists(builtin_file_path):
with open(builtin_file_path, 'r') as f:
position = int(f.read().strip())
if (extension_name + '.py') not in file_names:
logging.warning(f"Missing {extension_name}.py file in {subdir_path}, Skip.")
continue
# Dynamic loading {subdir_name}.py file and find the subclass of Extensible
py_path = os.path.join(subdir_path, extension_name + '.py')
spec = importlib.util.spec_from_file_location(extension_name, py_path)
mod = importlib.util.module_from_spec(spec)
spec.loader.exec_module(mod)
extension_class = None
for name, obj in vars(mod).items():
if isinstance(obj, type) and issubclass(obj, cls) and obj != cls:
extension_class = obj
break
if not extension_class:
logging.warning(f"Missing subclass of {cls.__name__} in {py_path}, Skip.")
continue
json_data = {}
if not builtin:
if 'schema.json' not in file_names:
logging.warning(f"Missing schema.json file in {subdir_path}, Skip.")
continue
json_path = os.path.join(subdir_path, 'schema.json')
json_data = {}
if os.path.exists(json_path):
with open(json_path, 'r') as f:
json_data = json.load(f)
extensions[extension_name] = ModuleExtension(
extension_class=extension_class,
name=extension_name,
label=json_data.get('label'),
form_schema=json_data.get('form_schema'),
builtin=builtin,
position=position
)
sorted_items = sorted(extensions.items(), key=lambda x: (x[1].position is None, x[1].position))
sorted_extensions = OrderedDict(sorted_items)
return sorted_extensions

View File

@ -0,0 +1,47 @@
from core.extension.extensible import ModuleExtension, ExtensionModule
from core.external_data_tool.base import ExternalDataTool
from core.moderation.base import Moderation
class Extension:
__module_extensions: dict[str, dict[str, ModuleExtension]] = {}
module_classes = {
ExtensionModule.MODERATION: Moderation,
ExtensionModule.EXTERNAL_DATA_TOOL: ExternalDataTool
}
def init(self):
for module, module_class in self.module_classes.items():
self.__module_extensions[module.value] = module_class.scan_extensions()
def module_extensions(self, module: str) -> list[ModuleExtension]:
module_extensions = self.__module_extensions.get(module)
if not module_extensions:
raise ValueError(f"Extension Module {module} not found")
return list(module_extensions.values())
def module_extension(self, module: ExtensionModule, extension_name: str) -> ModuleExtension:
module_extensions = self.__module_extensions.get(module.value)
if not module_extensions:
raise ValueError(f"Extension Module {module} not found")
module_extension = module_extensions.get(extension_name)
if not module_extension:
raise ValueError(f"Extension {extension_name} not found")
return module_extension
def extension_class(self, module: ExtensionModule, extension_name: str) -> type:
module_extension = self.module_extension(module, extension_name)
return module_extension.extension_class
def validate_form_schema(self, module: ExtensionModule, extension_name: str, config: dict) -> None:
module_extension = self.module_extension(module, extension_name)
form_schema = module_extension.form_schema
# TODO validate form_schema

View File

View File

@ -0,0 +1 @@
1

View File

@ -0,0 +1,92 @@
from typing import Optional
from core.extension.api_based_extension_requestor import APIBasedExtensionRequestor
from core.external_data_tool.base import ExternalDataTool
from core.helper import encrypter
from extensions.ext_database import db
from models.api_based_extension import APIBasedExtension, APIBasedExtensionPoint
class ApiExternalDataTool(ExternalDataTool):
"""
The api external data tool.
"""
name: str = "api"
"""the unique name of external data tool"""
@classmethod
def validate_config(cls, tenant_id: str, config: dict) -> None:
"""
Validate the incoming form config data.
:param tenant_id: the id of workspace
:param config: the form config data
:return:
"""
# own validation logic
api_based_extension_id = config.get("api_based_extension_id")
if not api_based_extension_id:
raise ValueError("api_based_extension_id is required")
# get api_based_extension
api_based_extension = db.session.query(APIBasedExtension).filter(
APIBasedExtension.tenant_id == tenant_id,
APIBasedExtension.id == api_based_extension_id
).first()
if not api_based_extension:
raise ValueError("api_based_extension_id is invalid")
def query(self, inputs: dict, query: Optional[str] = None) -> str:
"""
Query the external data tool.
:param inputs: user inputs
:param query: the query of chat app
:return: the tool query result
"""
# get params from config
api_based_extension_id = self.config.get("api_based_extension_id")
# get api_based_extension
api_based_extension = db.session.query(APIBasedExtension).filter(
APIBasedExtension.tenant_id == self.tenant_id,
APIBasedExtension.id == api_based_extension_id
).first()
if not api_based_extension:
raise ValueError("[External data tool] API query failed, variable: {}, "
"error: api_based_extension_id is invalid"
.format(self.config.get('variable')))
# decrypt api_key
api_key = encrypter.decrypt_token(
tenant_id=self.tenant_id,
token=api_based_extension.api_key
)
try:
# request api
requestor = APIBasedExtensionRequestor(
api_endpoint=api_based_extension.api_endpoint,
api_key=api_key
)
except Exception as e:
raise ValueError("[External data tool] API query failed, variable: {}, error: {}".format(
self.config.get('variable'),
e
))
response_json = requestor.request(point=APIBasedExtensionPoint.APP_EXTERNAL_DATA_TOOL_QUERY, params={
'app_id': self.app_id,
'tool_variable': self.variable,
'inputs': inputs,
'query': query
})
if 'result' not in response_json:
raise ValueError("[External data tool] API query failed, variable: {}, error: result not found in response"
.format(self.config.get('variable')))
return response_json['result']

View File

@ -0,0 +1,45 @@
from abc import abstractmethod, ABC
from typing import Optional
from core.extension.extensible import Extensible, ExtensionModule
class ExternalDataTool(Extensible, ABC):
"""
The base class of external data tool.
"""
module: ExtensionModule = ExtensionModule.EXTERNAL_DATA_TOOL
app_id: str
"""the id of app"""
variable: str
"""the tool variable name of app tool"""
def __init__(self, tenant_id: str, app_id: str, variable: str, config: Optional[dict] = None) -> None:
super().__init__(tenant_id, config)
self.app_id = app_id
self.variable = variable
@classmethod
@abstractmethod
def validate_config(cls, tenant_id: str, config: dict) -> None:
"""
Validate the incoming form config data.
:param tenant_id: the id of workspace
:param config: the form config data
:return:
"""
raise NotImplementedError
@abstractmethod
def query(self, inputs: dict, query: Optional[str] = None) -> str:
"""
Query the external data tool.
:param inputs: user inputs
:param query: the query of chat app
:return: the tool query result
"""
raise NotImplementedError

View File

@ -0,0 +1,40 @@
from typing import Optional
from core.extension.extensible import ExtensionModule
from extensions.ext_code_based_extension import code_based_extension
class ExternalDataToolFactory:
def __init__(self, name: str, tenant_id: str, app_id: str, variable: str, config: dict) -> None:
extension_class = code_based_extension.extension_class(ExtensionModule.EXTERNAL_DATA_TOOL, name)
self.__extension_instance = extension_class(
tenant_id=tenant_id,
app_id=app_id,
variable=variable,
config=config
)
@classmethod
def validate_config(cls, name: str, tenant_id: str, config: dict) -> None:
"""
Validate the incoming form config data.
:param name: the name of external data tool
:param tenant_id: the id of workspace
:param config: the form config data
:return:
"""
code_based_extension.validate_form_schema(ExtensionModule.EXTERNAL_DATA_TOOL, name, config)
extension_class = code_based_extension.extension_class(ExtensionModule.EXTERNAL_DATA_TOOL, name)
extension_class.validate_config(tenant_id, config)
def query(self, inputs: dict, query: Optional[str] = None) -> str:
"""
Query the external data tool.
:param inputs: user inputs
:param query: the query of chat app
:return: the tool query result
"""
return self.__extension_instance.query(inputs, query)

View File

@ -211,6 +211,9 @@ class ModelProviderFactory:
Provider.quota_type == ProviderQuotaType.TRIAL.value
).first()
if provider.quota_limit == 0:
return None
return provider
no_system_provider = True

View File

@ -1,8 +1,7 @@
from core.third_party.langchain.embeddings.xinference_embedding import XinferenceEmbedding as XinferenceEmbeddings
from core.model_providers.error import LLMBadRequestError
from core.model_providers.providers.base import BaseModelProvider
from core.model_providers.models.embedding.base import BaseEmbedding
from core.third_party.langchain.embeddings.xinference_embedding import XinferenceEmbeddings
class XinferenceEmbedding(BaseEmbedding):

View File

@ -37,12 +37,6 @@ class BaichuanModel(BaseLLM):
prompts = self._get_prompt_from_messages(messages)
return self._client.generate([prompts], stop, callbacks)
def prompt_file_name(self, mode: str) -> str:
if mode == 'completion':
return 'baichuan_completion'
else:
return 'baichuan_chat'
def get_num_tokens(self, messages: List[PromptMessage]) -> int:
"""
get num tokens of prompt messages.

View File

@ -1,28 +1,18 @@
import json
import os
import re
import time
from abc import abstractmethod
from typing import List, Optional, Any, Union, Tuple
from typing import List, Optional, Any, Union
import decimal
import logging
from langchain.callbacks.manager import Callbacks
from langchain.memory.chat_memory import BaseChatMemory
from langchain.schema import LLMResult, SystemMessage, AIMessage, HumanMessage, BaseMessage, ChatGeneration
from langchain.schema import LLMResult, BaseMessage, ChatGeneration
from core.callback_handler.std_out_callback_handler import DifyStreamingStdOutCallbackHandler, DifyStdOutCallbackHandler
from core.helper import moderation
from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.entity.message import PromptMessage, MessageType, LLMRunResult, to_prompt_messages, \
to_lc_messages
from core.model_providers.models.entity.message import PromptMessage, MessageType, LLMRunResult, to_lc_messages
from core.model_providers.models.entity.model_params import ModelType, ModelKwargs, ModelMode, ModelKwargsRules
from core.model_providers.providers.base import BaseModelProvider
from core.prompt.prompt_builder import PromptBuilder
from core.prompt.prompt_template import PromptTemplateParser
from core.third_party.langchain.llms.fake import FakeLLM
import logging
from extensions.ext_database import db
logger = logging.getLogger(__name__)
@ -320,206 +310,8 @@ class BaseLLM(BaseProviderModel):
def support_streaming(self):
return False
def get_prompt(self, mode: str,
pre_prompt: str, inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory]) -> \
Tuple[List[PromptMessage], Optional[List[str]]]:
prompt_rules = self._read_prompt_rules_from_file(self.prompt_file_name(mode))
prompt, stops = self._get_prompt_and_stop(prompt_rules, pre_prompt, inputs, query, context, memory)
return [PromptMessage(content=prompt)], stops
def get_advanced_prompt(self, app_mode: str,
app_model_config: str, inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory]) -> List[PromptMessage]:
model_mode = app_model_config.model_dict['mode']
conversation_histories_role = {}
raw_prompt_list = []
prompt_messages = []
if app_mode == 'chat' and model_mode == ModelMode.COMPLETION.value:
prompt_text = app_model_config.completion_prompt_config_dict['prompt']['text']
raw_prompt_list = [{
'role': MessageType.USER.value,
'text': prompt_text
}]
conversation_histories_role = app_model_config.completion_prompt_config_dict['conversation_histories_role']
elif app_mode == 'chat' and model_mode == ModelMode.CHAT.value:
raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
elif app_mode == 'completion' and model_mode == ModelMode.CHAT.value:
raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
elif app_mode == 'completion' and model_mode == ModelMode.COMPLETION.value:
prompt_text = app_model_config.completion_prompt_config_dict['prompt']['text']
raw_prompt_list = [{
'role': MessageType.USER.value,
'text': prompt_text
}]
else:
raise Exception("app_mode or model_mode not support")
for prompt_item in raw_prompt_list:
prompt = prompt_item['text']
# set prompt template variables
prompt_template = PromptTemplateParser(template=prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
if '#context#' in prompt:
if context:
prompt_inputs['#context#'] = context
else:
prompt_inputs['#context#'] = ''
if '#query#' in prompt:
if query:
prompt_inputs['#query#'] = query
else:
prompt_inputs['#query#'] = ''
if '#histories#' in prompt:
if memory and app_mode == 'chat' and model_mode == ModelMode.COMPLETION.value:
memory.human_prefix = conversation_histories_role['user_prefix']
memory.ai_prefix = conversation_histories_role['assistant_prefix']
histories = self._get_history_messages_from_memory(memory, 2000)
prompt_inputs['#histories#'] = histories
else:
prompt_inputs['#histories#'] = ''
prompt = prompt_template.format(
prompt_inputs
)
prompt = re.sub(r'<\|.*?\|>', '', prompt)
prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
if memory and app_mode == 'chat' and model_mode == ModelMode.CHAT.value:
memory.human_prefix = MessageType.USER.value
memory.ai_prefix = MessageType.ASSISTANT.value
histories = self._get_history_messages_list_from_memory(memory, 2000)
prompt_messages.extend(histories)
if app_mode == 'chat' and model_mode == ModelMode.CHAT.value:
prompt_messages.append(PromptMessage(type = MessageType.USER ,content=query))
return prompt_messages
def prompt_file_name(self, mode: str) -> str:
if mode == 'completion':
return 'common_completion'
else:
return 'common_chat'
def _get_prompt_and_stop(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory]) -> Tuple[str, Optional[list]]:
context_prompt_content = ''
if context and 'context_prompt' in prompt_rules:
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
context_prompt_content = prompt_template.format(
{'context': context}
)
pre_prompt_content = ''
if pre_prompt:
prompt_template = PromptTemplateParser(template=pre_prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
pre_prompt_content = prompt_template.format(
prompt_inputs
)
prompt = ''
for order in prompt_rules['system_prompt_orders']:
if order == 'context_prompt':
prompt += context_prompt_content
elif order == 'pre_prompt':
prompt += pre_prompt_content
query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
if memory and 'histories_prompt' in prompt_rules:
# append chat histories
tmp_human_message = PromptBuilder.to_human_message(
prompt_content=prompt + query_prompt,
inputs={
'query': query
}
)
if self.model_rules.max_tokens.max:
curr_message_tokens = self.get_num_tokens(to_prompt_messages([tmp_human_message]))
max_tokens = self.model_kwargs.max_tokens
rest_tokens = self.model_rules.max_tokens.max - max_tokens - curr_message_tokens
rest_tokens = max(rest_tokens, 0)
else:
rest_tokens = 2000
memory.human_prefix = prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human'
memory.ai_prefix = prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
histories = self._get_history_messages_from_memory(memory, rest_tokens)
prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt'])
histories_prompt_content = prompt_template.format({'histories': histories})
prompt = ''
for order in prompt_rules['system_prompt_orders']:
if order == 'context_prompt':
prompt += context_prompt_content
elif order == 'pre_prompt':
prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
elif order == 'histories_prompt':
prompt += histories_prompt_content
prompt_template = PromptTemplateParser(template=query_prompt)
query_prompt_content = prompt_template.format({'query': query})
prompt += query_prompt_content
prompt = re.sub(r'<\|.*?\|>', '', prompt)
stops = prompt_rules.get('stops')
if stops is not None and len(stops) == 0:
stops = None
return prompt, stops
def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
# Get the absolute path of the subdirectory
prompt_path = os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))),
'prompt/generate_prompts')
json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
# Open the JSON file and read its content
with open(json_file_path, 'r') as json_file:
return json.load(json_file)
def _get_history_messages_from_memory(self, memory: BaseChatMemory,
max_token_limit: int) -> str:
"""Get memory messages."""
memory.max_token_limit = max_token_limit
memory_key = memory.memory_variables[0]
external_context = memory.load_memory_variables({})
return external_context[memory_key]
def _get_history_messages_list_from_memory(self, memory: BaseChatMemory,
max_token_limit: int) -> List[PromptMessage]:
"""Get memory messages."""
memory.max_token_limit = max_token_limit
memory.return_messages = True
memory_key = memory.memory_variables[0]
external_context = memory.load_memory_variables({})
memory.return_messages = False
return to_prompt_messages(external_context[memory_key])
def _get_prompt_from_messages(self, messages: List[PromptMessage],
model_mode: Optional[ModelMode] = None) -> Union[str | List[BaseMessage]]:
model_mode: Optional[ModelMode] = None) -> Union[str , List[BaseMessage]]:
if not model_mode:
model_mode = self.model_mode

View File

@ -66,15 +66,6 @@ class HuggingfaceHubModel(BaseLLM):
prompts = self._get_prompt_from_messages(messages)
return self._client.get_num_tokens(prompts)
def prompt_file_name(self, mode: str) -> str:
if 'baichuan' in self.name.lower():
if mode == 'completion':
return 'baichuan_completion'
else:
return 'baichuan_chat'
else:
return super().prompt_file_name(mode)
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
self.client.model_kwargs = provider_model_kwargs

View File

@ -33,7 +33,7 @@ MODEL_MAX_TOKENS = {
'gpt-4': 8192,
'gpt-4-32k': 32768,
'gpt-3.5-turbo': 4096,
'gpt-3.5-turbo-instruct': 8192,
'gpt-3.5-turbo-instruct': 4097,
'gpt-3.5-turbo-16k': 16384,
'text-davinci-003': 4097,
}

View File

@ -49,15 +49,6 @@ class OpenLLMModel(BaseLLM):
prompts = self._get_prompt_from_messages(messages)
return max(self._client.get_num_tokens(prompts), 0)
def prompt_file_name(self, mode: str) -> str:
if 'baichuan' in self.name.lower():
if mode == 'completion':
return 'baichuan_completion'
else:
return 'baichuan_chat'
else:
return super().prompt_file_name(mode)
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
pass

View File

@ -6,17 +6,16 @@ from langchain.schema import LLMResult
from core.model_providers.error import LLMBadRequestError
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage, MessageType
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
from core.third_party.langchain.llms.wenxin import Wenxin
class WenxinModel(BaseLLM):
model_mode: ModelMode = ModelMode.COMPLETION
model_mode: ModelMode = ModelMode.CHAT
def _init_client(self) -> Any:
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
# TODO load price_config from configs(db)
return Wenxin(
model=self.name,
streaming=self.streaming,
@ -38,7 +37,13 @@ class WenxinModel(BaseLLM):
:return:
"""
prompts = self._get_prompt_from_messages(messages)
return self._client.generate([prompts], stop, callbacks)
generate_kwargs = {'stop': stop, 'callbacks': callbacks, 'messages': [prompts]}
if 'functions' in kwargs:
generate_kwargs['functions'] = kwargs['functions']
return self._client.generate(**generate_kwargs)
def get_num_tokens(self, messages: List[PromptMessage]) -> int:
"""
@ -48,7 +53,7 @@ class WenxinModel(BaseLLM):
:return:
"""
prompts = self._get_prompt_from_messages(messages)
return max(self._client.get_num_tokens(prompts), 0)
return max(self._client.get_num_tokens_from_messages(prompts), 0)
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
@ -58,3 +63,7 @@ class WenxinModel(BaseLLM):
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"Wenxin: {str(ex)}")
@property
def support_streaming(self):
return True

View File

@ -59,15 +59,6 @@ class XinferenceModel(BaseLLM):
prompts = self._get_prompt_from_messages(messages)
return max(self._client.get_num_tokens(prompts), 0)
def prompt_file_name(self, mode: str) -> str:
if 'baichuan' in self.name.lower():
if mode == 'completion':
return 'baichuan_completion'
else:
return 'baichuan_chat'
else:
return super().prompt_file_name(mode)
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
pass

View File

@ -16,6 +16,7 @@ class ZhipuAIModel(BaseLLM):
def _init_client(self) -> Any:
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
return ZhipuAIChatLLM(
model=self.name,
streaming=self.streaming,
callbacks=self.callbacks,
**self.credentials,

View File

@ -172,7 +172,7 @@ class AnthropicProvider(BaseModelProvider):
def should_deduct_quota(self):
if hosted_model_providers.anthropic and \
hosted_model_providers.anthropic.quota_limit and hosted_model_providers.anthropic.quota_limit > 0:
hosted_model_providers.anthropic.quota_limit and hosted_model_providers.anthropic.quota_limit > -1:
return True
return False

View File

@ -329,7 +329,7 @@ class AzureOpenAIProvider(BaseModelProvider):
def should_deduct_quota(self):
if hosted_model_providers.azure_openai \
and hosted_model_providers.azure_openai.quota_limit and hosted_model_providers.azure_openai.quota_limit > 0:
and hosted_model_providers.azure_openai.quota_limit and hosted_model_providers.azure_openai.quota_limit > -1:
return True
return False

View File

@ -11,7 +11,7 @@ class HostedOpenAI(BaseModel):
api_organization: str = None
api_key: str
quota_limit: int = 0
"""Quota limit for the openai hosted model. 0 means unlimited."""
"""Quota limit for the openai hosted model. -1 means unlimited."""
paid_enabled: bool = False
paid_stripe_price_id: str = None
paid_increase_quota: int = 1
@ -21,14 +21,14 @@ class HostedAzureOpenAI(BaseModel):
api_base: str
api_key: str
quota_limit: int = 0
"""Quota limit for the azure openai hosted model. 0 means unlimited."""
"""Quota limit for the azure openai hosted model. -1 means unlimited."""
class HostedAnthropic(BaseModel):
api_base: str = None
api_key: str
quota_limit: int = 0
"""Quota limit for the anthropic hosted model. 0 means unlimited."""
"""Quota limit for the anthropic hosted model. -1 means unlimited."""
paid_enabled: bool = False
paid_stripe_price_id: str = None
paid_increase_quota: int = 1000000

View File

@ -144,7 +144,7 @@ class OpenAIProvider(BaseModelProvider):
'gpt-4': 8192,
'gpt-4-32k': 32768,
'gpt-3.5-turbo': 4096,
'gpt-3.5-turbo-instruct': 8192,
'gpt-3.5-turbo-instruct': 4097,
'gpt-3.5-turbo-16k': 16384,
'text-davinci-003': 4097,
}
@ -250,7 +250,7 @@ class OpenAIProvider(BaseModelProvider):
def should_deduct_quota(self):
if hosted_model_providers.openai \
and hosted_model_providers.openai.quota_limit and hosted_model_providers.openai.quota_limit > 0:
and hosted_model_providers.openai.quota_limit and hosted_model_providers.openai.quota_limit > -1:
return True
return False

View File

@ -28,14 +28,19 @@ class SparkProvider(BaseModelProvider):
if model_type == ModelType.TEXT_GENERATION:
return [
{
'id': 'spark',
'name': 'Spark V1.5',
'id': 'spark-v3',
'name': 'Spark V3.0',
'mode': ModelMode.CHAT.value,
},
{
'id': 'spark-v2',
'name': 'Spark V2.0',
'mode': ModelMode.CHAT.value,
},
{
'id': 'spark',
'name': 'Spark V1.5',
'mode': ModelMode.CHAT.value,
}
]
else:
@ -96,7 +101,7 @@ class SparkProvider(BaseModelProvider):
try:
chat_llm = ChatSpark(
model_name='spark-v2',
model_name='spark-v3',
max_tokens=10,
temperature=0.01,
**credential_kwargs
@ -110,10 +115,10 @@ class SparkProvider(BaseModelProvider):
chat_llm(messages)
except SparkError as ex:
# try spark v1.5 if v2.1 failed
# try spark v2.1 if v3.1 failed
try:
chat_llm = ChatSpark(
model_name='spark',
model_name='spark-v2',
max_tokens=10,
temperature=0.01,
**credential_kwargs
@ -127,10 +132,27 @@ class SparkProvider(BaseModelProvider):
chat_llm(messages)
except SparkError as ex:
raise CredentialsValidateFailedError(str(ex))
except Exception as ex:
logging.exception('Spark config validation failed')
raise ex
# try spark v1.5 if v2.1 failed
try:
chat_llm = ChatSpark(
model_name='spark',
max_tokens=10,
temperature=0.01,
**credential_kwargs
)
messages = [
HumanMessage(
content="ping"
)
]
chat_llm(messages)
except SparkError as ex:
raise CredentialsValidateFailedError(str(ex))
except Exception as ex:
logging.exception('Spark config validation failed')
raise ex
except Exception as ex:
logging.exception('Spark config validation failed')
raise ex

View File

@ -2,6 +2,8 @@ import json
from json import JSONDecodeError
from typing import Type
from langchain.schema import HumanMessage
from core.helper import encrypter
from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType, ModelMode
@ -23,20 +25,25 @@ class WenxinProvider(BaseModelProvider):
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
if model_type == ModelType.TEXT_GENERATION:
return [
{
'id': 'ernie-bot-4',
'name': 'ERNIE-Bot-4',
'mode': ModelMode.CHAT.value,
},
{
'id': 'ernie-bot',
'name': 'ERNIE-Bot',
'mode': ModelMode.COMPLETION.value,
'mode': ModelMode.CHAT.value,
},
{
'id': 'ernie-bot-turbo',
'name': 'ERNIE-Bot-turbo',
'mode': ModelMode.COMPLETION.value,
'mode': ModelMode.CHAT.value,
},
{
'id': 'bloomz-7b',
'name': 'BLOOMZ-7B',
'mode': ModelMode.COMPLETION.value,
'mode': ModelMode.CHAT.value,
}
]
else:
@ -68,11 +75,12 @@ class WenxinProvider(BaseModelProvider):
:return:
"""
model_max_tokens = {
'ernie-bot-4': 4800,
'ernie-bot': 4800,
'ernie-bot-turbo': 11200,
}
if model_name in ['ernie-bot', 'ernie-bot-turbo']:
if model_name in ['ernie-bot-4', 'ernie-bot', 'ernie-bot-turbo']:
return ModelKwargsRules(
temperature=KwargRule[float](min=0.01, max=1, default=0.95, precision=2),
top_p=KwargRule[float](min=0.01, max=1, default=0.8, precision=2),
@ -111,7 +119,7 @@ class WenxinProvider(BaseModelProvider):
**credential_kwargs
)
llm("ping")
llm([HumanMessage(content='ping')])
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))

View File

@ -2,7 +2,6 @@ import json
from typing import Type
import requests
from langchain.embeddings import XinferenceEmbeddings
from core.helper import encrypter
from core.model_providers.models.embedding.xinference_embedding import XinferenceEmbedding
@ -11,6 +10,7 @@ from core.model_providers.models.llm.xinference_model import XinferenceModel
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
from core.model_providers.models.base import BaseProviderModel
from core.third_party.langchain.embeddings.xinference_embedding import XinferenceEmbeddings
from core.third_party.langchain.llms.xinference_llm import XinferenceLLM
from models.provider import ProviderType

View File

@ -26,6 +26,11 @@ class ZhipuAIProvider(BaseModelProvider):
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
if model_type == ModelType.TEXT_GENERATION:
return [
{
'id': 'chatglm_turbo',
'name': 'chatglm_turbo',
'mode': ModelMode.CHAT.value,
},
{
'id': 'chatglm_pro',
'name': 'chatglm_pro',

View File

@ -9,7 +9,7 @@
"trial"
],
"quota_unit": "tokens",
"quota_limit": 600000
"quota_limit": 0
},
"model_flexibility": "fixed",
"price_config": {

View File

@ -22,6 +22,12 @@
"completion": "0.36",
"unit": "0.0001",
"currency": "RMB"
},
"spark-v3": {
"prompt": "0.36",
"completion": "0.36",
"unit": "0.0001",
"currency": "RMB"
}
}
}

View File

@ -5,6 +5,12 @@
"system_config": null,
"model_flexibility": "fixed",
"price_config": {
"ernie-bot-4": {
"prompt": "0",
"completion": "0",
"unit": "0.001",
"currency": "RMB"
},
"ernie-bot": {
"prompt": "0.012",
"completion": "0.012",

View File

@ -11,6 +11,12 @@
},
"model_flexibility": "fixed",
"price_config": {
"chatglm_turbo": {
"prompt": "0.005",
"completion": "0.005",
"unit": "0.001",
"currency": "RMB"
},
"chatglm_pro": {
"prompt": "0.01",
"completion": "0.01",

View File

View File

@ -0,0 +1 @@
3

View File

View File

@ -0,0 +1,88 @@
from pydantic import BaseModel
from core.moderation.base import Moderation, ModerationInputsResult, ModerationOutputsResult, ModerationAction
from core.extension.api_based_extension_requestor import APIBasedExtensionRequestor, APIBasedExtensionPoint
from core.helper.encrypter import decrypt_token
from extensions.ext_database import db
from models.api_based_extension import APIBasedExtension
class ModerationInputParams(BaseModel):
app_id: str = ""
inputs: dict = {}
query: str = ""
class ModerationOutputParams(BaseModel):
app_id: str = ""
text: str
class ApiModeration(Moderation):
name: str = "api"
@classmethod
def validate_config(cls, tenant_id: str, config: dict) -> None:
"""
Validate the incoming form config data.
:param tenant_id: the id of workspace
:param config: the form config data
:return:
"""
cls._validate_inputs_and_outputs_config(config, False)
api_based_extension_id = config.get("api_based_extension_id")
if not api_based_extension_id:
raise ValueError("api_based_extension_id is required")
extension = cls._get_api_based_extension(tenant_id, api_based_extension_id)
if not extension:
raise ValueError("API-based Extension not found. Please check it again.")
def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult:
flagged = False
preset_response = ""
if self.config['inputs_config']['enabled']:
params = ModerationInputParams(
app_id=self.app_id,
inputs=inputs,
query=query
)
result = self._get_config_by_requestor(APIBasedExtensionPoint.APP_MODERATION_INPUT, params.dict())
return ModerationInputsResult(**result)
return ModerationInputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
def moderation_for_outputs(self, text: str) -> ModerationOutputsResult:
flagged = False
preset_response = ""
if self.config['outputs_config']['enabled']:
params = ModerationOutputParams(
app_id=self.app_id,
text=text
)
result = self._get_config_by_requestor(APIBasedExtensionPoint.APP_MODERATION_OUTPUT, params.dict())
return ModerationOutputsResult(**result)
return ModerationOutputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
def _get_config_by_requestor(self, extension_point: APIBasedExtensionPoint, params: dict) -> dict:
extension = self._get_api_based_extension(self.tenant_id, self.config.get("api_based_extension_id"))
requestor = APIBasedExtensionRequestor(extension.api_endpoint, decrypt_token(self.tenant_id, extension.api_key))
result = requestor.request(extension_point, params)
return result
@staticmethod
def _get_api_based_extension(tenant_id: str, api_based_extension_id: str) -> APIBasedExtension:
extension = db.session.query(APIBasedExtension).filter(
APIBasedExtension.tenant_id == tenant_id,
APIBasedExtension.id == api_based_extension_id
).first()
return extension

113
api/core/moderation/base.py Normal file
View File

@ -0,0 +1,113 @@
from abc import ABC, abstractmethod
from typing import Optional
from pydantic import BaseModel
from enum import Enum
from core.extension.extensible import Extensible, ExtensionModule
class ModerationAction(Enum):
DIRECT_OUTPUT = 'direct_output'
OVERRIDED = 'overrided'
class ModerationInputsResult(BaseModel):
flagged: bool = False
action: ModerationAction
preset_response: str = ""
inputs: dict = {}
query: str = ""
class ModerationOutputsResult(BaseModel):
flagged: bool = False
action: ModerationAction
preset_response: str = ""
text: str = ""
class Moderation(Extensible, ABC):
"""
The base class of moderation.
"""
module: ExtensionModule = ExtensionModule.MODERATION
def __init__(self, app_id: str, tenant_id: str, config: Optional[dict] = None) -> None:
super().__init__(tenant_id, config)
self.app_id = app_id
@classmethod
@abstractmethod
def validate_config(cls, tenant_id: str, config: dict) -> None:
"""
Validate the incoming form config data.
:param tenant_id: the id of workspace
:param config: the form config data
:return:
"""
raise NotImplementedError
@abstractmethod
def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult:
"""
Moderation for inputs.
After the user inputs, this method will be called to perform sensitive content review
on the user inputs and return the processed results.
:param inputs: user inputs
:param query: query string (required in chat app)
:return:
"""
raise NotImplementedError
@abstractmethod
def moderation_for_outputs(self, text: str) -> ModerationOutputsResult:
"""
Moderation for outputs.
When LLM outputs content, the front end will pass the output content (may be segmented)
to this method for sensitive content review, and the output content will be shielded if the review fails.
:param text: LLM output content
:return:
"""
raise NotImplementedError
@classmethod
def _validate_inputs_and_outputs_config(self, config: dict, is_preset_response_required: bool) -> None:
# inputs_config
inputs_config = config.get("inputs_config")
if not isinstance(inputs_config, dict):
raise ValueError("inputs_config must be a dict")
# outputs_config
outputs_config = config.get("outputs_config")
if not isinstance(outputs_config, dict):
raise ValueError("outputs_config must be a dict")
inputs_config_enabled = inputs_config.get("enabled")
outputs_config_enabled = outputs_config.get("enabled")
if not inputs_config_enabled and not outputs_config_enabled:
raise ValueError("At least one of inputs_config or outputs_config must be enabled")
# preset_response
if not is_preset_response_required:
return
if inputs_config_enabled:
if not inputs_config.get("preset_response"):
raise ValueError("inputs_config.preset_response is required")
if len(inputs_config.get("preset_response")) > 100:
raise ValueError("inputs_config.preset_response must be less than 100 characters")
if outputs_config_enabled:
if not outputs_config.get("preset_response"):
raise ValueError("outputs_config.preset_response is required")
if len(outputs_config.get("preset_response")) > 100:
raise ValueError("outputs_config.preset_response must be less than 100 characters")
class ModerationException(Exception):
pass

View File

@ -0,0 +1,48 @@
from core.extension.extensible import ExtensionModule
from core.moderation.base import Moderation, ModerationInputsResult, ModerationOutputsResult
from extensions.ext_code_based_extension import code_based_extension
class ModerationFactory:
__extension_instance: Moderation
def __init__(self, name: str, app_id: str, tenant_id: str, config: dict) -> None:
extension_class = code_based_extension.extension_class(ExtensionModule.MODERATION, name)
self.__extension_instance = extension_class(app_id, tenant_id, config)
@classmethod
def validate_config(cls, name: str, tenant_id: str, config: dict) -> None:
"""
Validate the incoming form config data.
:param name: the name of extension
:param tenant_id: the id of workspace
:param config: the form config data
:return:
"""
code_based_extension.validate_form_schema(ExtensionModule.MODERATION, name, config)
extension_class = code_based_extension.extension_class(ExtensionModule.MODERATION, name)
extension_class.validate_config(tenant_id, config)
def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult:
"""
Moderation for inputs.
After the user inputs, this method will be called to perform sensitive content review
on the user inputs and return the processed results.
:param inputs: user inputs
:param query: query string (required in chat app)
:return:
"""
return self.__extension_instance.moderation_for_inputs(inputs, query)
def moderation_for_outputs(self, text: str) -> ModerationOutputsResult:
"""
Moderation for outputs.
When LLM outputs content, the front end will pass the output content (may be segmented)
to this method for sensitive content review, and the output content will be shielded if the review fails.
:param text: LLM output content
:return:
"""
return self.__extension_instance.moderation_for_outputs(text)

View File

@ -0,0 +1 @@
2

View File

View File

@ -0,0 +1,60 @@
from core.moderation.base import Moderation, ModerationInputsResult, ModerationOutputsResult, ModerationAction
class KeywordsModeration(Moderation):
name: str = "keywords"
@classmethod
def validate_config(cls, tenant_id: str, config: dict) -> None:
"""
Validate the incoming form config data.
:param tenant_id: the id of workspace
:param config: the form config data
:return:
"""
cls._validate_inputs_and_outputs_config(config, True)
if not config.get("keywords"):
raise ValueError("keywords is required")
if len(config.get("keywords")) > 1000:
raise ValueError("keywords length must be less than 1000")
def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult:
flagged = False
preset_response = ""
if self.config['inputs_config']['enabled']:
preset_response = self.config['inputs_config']['preset_response']
if query:
inputs['query__'] = query
keywords_list = self.config['keywords'].split('\n')
flagged = self._is_violated(inputs, keywords_list)
return ModerationInputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
def moderation_for_outputs(self, text: str) -> ModerationOutputsResult:
flagged = False
preset_response = ""
if self.config['outputs_config']['enabled']:
keywords_list = self.config['keywords'].split('\n')
flagged = self._is_violated({'text': text}, keywords_list)
preset_response = self.config['outputs_config']['preset_response']
return ModerationOutputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
def _is_violated(self, inputs: dict, keywords_list: list) -> bool:
for value in inputs.values():
if self._check_keywords_in_value(keywords_list, value):
return True
return False
def _check_keywords_in_value(self, keywords_list, value):
for keyword in keywords_list:
if keyword.lower() in value.lower():
return True
return False

View File

@ -0,0 +1 @@
1

View File

@ -0,0 +1,46 @@
from core.moderation.base import Moderation, ModerationInputsResult, ModerationOutputsResult, ModerationAction
from core.model_providers.model_factory import ModelFactory
class OpenAIModeration(Moderation):
name: str = "openai_moderation"
@classmethod
def validate_config(cls, tenant_id: str, config: dict) -> None:
"""
Validate the incoming form config data.
:param tenant_id: the id of workspace
:param config: the form config data
:return:
"""
cls._validate_inputs_and_outputs_config(config, True)
def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult:
flagged = False
preset_response = ""
if self.config['inputs_config']['enabled']:
preset_response = self.config['inputs_config']['preset_response']
if query:
inputs['query__'] = query
flagged = self._is_violated(inputs)
return ModerationInputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
def moderation_for_outputs(self, text: str) -> ModerationOutputsResult:
flagged = False
preset_response = ""
if self.config['outputs_config']['enabled']:
flagged = self._is_violated({'text': text})
preset_response = self.config['outputs_config']['preset_response']
return ModerationOutputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
def _is_violated(self, inputs: dict):
text = '\n'.join(inputs.values())
openai_moderation = ModelFactory.get_moderation_model(self.tenant_id, "openai", "moderation")
is_not_invalid = openai_moderation.run(text)
return not is_not_invalid

View File

@ -11,7 +11,6 @@ from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGa
from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler
from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceChain, SensitiveWordAvoidanceRule
from core.conversation_message_task import ConversationMessageTask
from core.model_providers.error import ProviderTokenNotInitError
from core.model_providers.model_factory import ModelFactory
@ -125,52 +124,6 @@ class OrchestratorRuleParser:
return chain
def to_sensitive_word_avoidance_chain(self, model_instance: BaseLLM, callbacks: Callbacks = None, **kwargs) \
-> Optional[SensitiveWordAvoidanceChain]:
"""
Convert app sensitive word avoidance config to chain
:param model_instance: model instance
:param callbacks: callbacks for the chain
:param kwargs:
:return:
"""
sensitive_word_avoidance_rule = None
if self.app_model_config.sensitive_word_avoidance_dict:
sensitive_word_avoidance_config = self.app_model_config.sensitive_word_avoidance_dict
if sensitive_word_avoidance_config.get("enabled", False):
if sensitive_word_avoidance_config.get('type') == 'moderation':
sensitive_word_avoidance_rule = SensitiveWordAvoidanceRule(
type=SensitiveWordAvoidanceRule.Type.MODERATION,
canned_response=sensitive_word_avoidance_config.get("canned_response")
if sensitive_word_avoidance_config.get("canned_response")
else 'Your content violates our usage policy. Please revise and try again.',
)
else:
sensitive_words = sensitive_word_avoidance_config.get("words", "")
if sensitive_words:
sensitive_word_avoidance_rule = SensitiveWordAvoidanceRule(
type=SensitiveWordAvoidanceRule.Type.KEYWORDS,
canned_response=sensitive_word_avoidance_config.get("canned_response")
if sensitive_word_avoidance_config.get("canned_response")
else 'Your content violates our usage policy. Please revise and try again.',
extra_params={
'sensitive_words': sensitive_words.split(','),
}
)
if sensitive_word_avoidance_rule:
return SensitiveWordAvoidanceChain(
model_instance=model_instance,
sensitive_word_avoidance_rule=sensitive_word_avoidance_rule,
output_key="sensitive_word_avoidance_output",
callbacks=callbacks,
**kwargs
)
return None
def to_tools(self, tool_configs: list, callbacks: Callbacks = None, **kwargs) -> list[BaseTool]:
"""
Convert app agent tool configs to tools

View File

@ -11,7 +11,8 @@ CHAT_APP_COMPLETION_PROMPT_CONFIG = {
"user_prefix": "Human",
"assistant_prefix": "Assistant"
}
}
},
"stop": ["Human:"]
}
CHAT_APP_CHAT_PROMPT_CONFIG = {
@ -37,7 +38,8 @@ COMPLETION_APP_COMPLETION_PROMPT_CONFIG = {
"prompt": {
"text": "{{#pre_prompt#}}"
}
}
},
"stop": ["Human:"]
}
BAICHUAN_CHAT_APP_COMPLETION_PROMPT_CONFIG = {
@ -49,7 +51,8 @@ BAICHUAN_CHAT_APP_COMPLETION_PROMPT_CONFIG = {
"user_prefix": "用户",
"assistant_prefix": "助手"
}
}
},
"stop": ["用户:"]
}
BAICHUAN_CHAT_APP_CHAT_PROMPT_CONFIG = {
@ -75,5 +78,6 @@ BAICHUAN_COMPLETION_APP_COMPLETION_PROMPT_CONFIG = {
"prompt": {
"text": "{{#pre_prompt#}}"
}
}
},
"stop": ["用户:"]
}

View File

@ -0,0 +1,344 @@
import json
import os
import re
import enum
from typing import List, Optional, Tuple
from langchain.memory.chat_memory import BaseChatMemory
from langchain.schema import BaseMessage
from core.model_providers.models.entity.model_params import ModelMode
from core.model_providers.models.entity.message import PromptMessage, MessageType, to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.llm.baichuan_model import BaichuanModel
from core.model_providers.models.llm.huggingface_hub_model import HuggingfaceHubModel
from core.model_providers.models.llm.openllm_model import OpenLLMModel
from core.model_providers.models.llm.xinference_model import XinferenceModel
from core.prompt.prompt_builder import PromptBuilder
from core.prompt.prompt_template import PromptTemplateParser
class AppMode(enum.Enum):
COMPLETION = 'completion'
CHAT = 'chat'
class PromptTransform:
def get_prompt(self, mode: str,
pre_prompt: str, inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM) -> \
Tuple[List[PromptMessage], Optional[List[str]]]:
prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(mode, model_instance))
prompt, stops = self._get_prompt_and_stop(prompt_rules, pre_prompt, inputs, query, context, memory, model_instance)
return [PromptMessage(content=prompt)], stops
def get_advanced_prompt(self,
app_mode: str,
app_model_config: str,
inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM) -> List[PromptMessage]:
model_mode = app_model_config.model_dict['mode']
app_mode_enum = AppMode(app_mode)
model_mode_enum = ModelMode(model_mode)
prompt_messages = []
if app_mode_enum == AppMode.CHAT:
if model_mode_enum == ModelMode.COMPLETION:
prompt_messages = self._get_chat_app_completion_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance)
elif model_mode_enum == ModelMode.CHAT:
prompt_messages = self._get_chat_app_chat_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance)
elif app_mode_enum == AppMode.COMPLETION:
if model_mode_enum == ModelMode.CHAT:
prompt_messages = self._get_completion_app_chat_model_prompt_messages(app_model_config, inputs, context)
elif model_mode_enum == ModelMode.COMPLETION:
prompt_messages = self._get_completion_app_completion_model_prompt_messages(app_model_config, inputs, context)
return prompt_messages
def _get_history_messages_from_memory(self, memory: BaseChatMemory,
max_token_limit: int) -> str:
"""Get memory messages."""
memory.max_token_limit = max_token_limit
memory_key = memory.memory_variables[0]
external_context = memory.load_memory_variables({})
return external_context[memory_key]
def _get_history_messages_list_from_memory(self, memory: BaseChatMemory,
max_token_limit: int) -> List[PromptMessage]:
"""Get memory messages."""
memory.max_token_limit = max_token_limit
memory.return_messages = True
memory_key = memory.memory_variables[0]
external_context = memory.load_memory_variables({})
memory.return_messages = False
return to_prompt_messages(external_context[memory_key])
def _prompt_file_name(self, mode: str, model_instance: BaseLLM) -> str:
# baichuan
if isinstance(model_instance, BaichuanModel):
return self._prompt_file_name_for_baichuan(mode)
baichuan_model_hosted_platforms = (HuggingfaceHubModel, OpenLLMModel, XinferenceModel)
if isinstance(model_instance, baichuan_model_hosted_platforms) and 'baichuan' in model_instance.name.lower():
return self._prompt_file_name_for_baichuan(mode)
# common
if mode == 'completion':
return 'common_completion'
else:
return 'common_chat'
def _prompt_file_name_for_baichuan(self, mode: str) -> str:
if mode == 'completion':
return 'baichuan_completion'
else:
return 'baichuan_chat'
def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
# Get the absolute path of the subdirectory
prompt_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
'generate_prompts')
json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
# Open the JSON file and read its content
with open(json_file_path, 'r') as json_file:
return json.load(json_file)
def _get_prompt_and_stop(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM) -> Tuple[str, Optional[list]]:
context_prompt_content = ''
if context and 'context_prompt' in prompt_rules:
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
context_prompt_content = prompt_template.format(
{'context': context}
)
pre_prompt_content = ''
if pre_prompt:
prompt_template = PromptTemplateParser(template=pre_prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
pre_prompt_content = prompt_template.format(
prompt_inputs
)
prompt = ''
for order in prompt_rules['system_prompt_orders']:
if order == 'context_prompt':
prompt += context_prompt_content
elif order == 'pre_prompt':
prompt += pre_prompt_content
query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
if memory and 'histories_prompt' in prompt_rules:
# append chat histories
tmp_human_message = PromptBuilder.to_human_message(
prompt_content=prompt + query_prompt,
inputs={
'query': query
}
)
rest_tokens = self._calculate_rest_token(tmp_human_message, model_instance)
memory.human_prefix = prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human'
memory.ai_prefix = prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
histories = self._get_history_messages_from_memory(memory, rest_tokens)
prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt'])
histories_prompt_content = prompt_template.format({'histories': histories})
prompt = ''
for order in prompt_rules['system_prompt_orders']:
if order == 'context_prompt':
prompt += context_prompt_content
elif order == 'pre_prompt':
prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
elif order == 'histories_prompt':
prompt += histories_prompt_content
prompt_template = PromptTemplateParser(template=query_prompt)
query_prompt_content = prompt_template.format({'query': query})
prompt += query_prompt_content
prompt = re.sub(r'<\|.*?\|>', '', prompt)
stops = prompt_rules.get('stops')
if stops is not None and len(stops) == 0:
stops = None
return prompt, stops
def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
if '#context#' in prompt_template.variable_keys:
if context:
prompt_inputs['#context#'] = context
else:
prompt_inputs['#context#'] = ''
def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
if '#query#' in prompt_template.variable_keys:
if query:
prompt_inputs['#query#'] = query
else:
prompt_inputs['#query#'] = ''
def _set_histories_variable(self, memory: BaseChatMemory, raw_prompt: str, conversation_histories_role: dict,
prompt_template: PromptTemplateParser, prompt_inputs: dict, model_instance: BaseLLM) -> None:
if '#histories#' in prompt_template.variable_keys:
if memory:
tmp_human_message = PromptBuilder.to_human_message(
prompt_content=raw_prompt,
inputs={ '#histories#': '', **prompt_inputs }
)
rest_tokens = self._calculate_rest_token(tmp_human_message, model_instance)
memory.human_prefix = conversation_histories_role['user_prefix']
memory.ai_prefix = conversation_histories_role['assistant_prefix']
histories = self._get_history_messages_from_memory(memory, rest_tokens)
prompt_inputs['#histories#'] = histories
else:
prompt_inputs['#histories#'] = ''
def _append_chat_histories(self, memory: BaseChatMemory, prompt_messages: list[PromptMessage], model_instance: BaseLLM) -> None:
if memory:
rest_tokens = self._calculate_rest_token(prompt_messages, model_instance)
memory.human_prefix = MessageType.USER.value
memory.ai_prefix = MessageType.ASSISTANT.value
histories = self._get_history_messages_list_from_memory(memory, rest_tokens)
prompt_messages.extend(histories)
def _calculate_rest_token(self, prompt_messages: BaseMessage, model_instance: BaseLLM) -> int:
rest_tokens = 2000
if model_instance.model_rules.max_tokens.max:
curr_message_tokens = model_instance.get_num_tokens(to_prompt_messages(prompt_messages))
max_tokens = model_instance.model_kwargs.max_tokens
rest_tokens = model_instance.model_rules.max_tokens.max - max_tokens - curr_message_tokens
rest_tokens = max(rest_tokens, 0)
return rest_tokens
def _format_prompt(self, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> str:
prompt = prompt_template.format(
prompt_inputs
)
prompt = re.sub(r'<\|.*?\|>', '', prompt)
return prompt
def _get_chat_app_completion_model_prompt_messages(self,
app_model_config: str,
inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM) -> List[PromptMessage]:
raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text']
conversation_histories_role = app_model_config.completion_prompt_config_dict['conversation_histories_role']
prompt_messages = []
prompt = ''
prompt_template = PromptTemplateParser(template=raw_prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
self._set_context_variable(context, prompt_template, prompt_inputs)
self._set_query_variable(query, prompt_template, prompt_inputs)
self._set_histories_variable(memory, raw_prompt, conversation_histories_role, prompt_template, prompt_inputs, model_instance)
prompt = self._format_prompt(prompt_template, prompt_inputs)
prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt))
return prompt_messages
def _get_chat_app_chat_model_prompt_messages(self,
app_model_config: str,
inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM) -> List[PromptMessage]:
raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
prompt_messages = []
for prompt_item in raw_prompt_list:
raw_prompt = prompt_item['text']
prompt = ''
prompt_template = PromptTemplateParser(template=raw_prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
self._set_context_variable(context, prompt_template, prompt_inputs)
prompt = self._format_prompt(prompt_template, prompt_inputs)
prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
self._append_chat_histories(memory, prompt_messages, model_instance)
prompt_messages.append(PromptMessage(type = MessageType.USER ,content=query))
return prompt_messages
def _get_completion_app_completion_model_prompt_messages(self,
app_model_config: str,
inputs: dict,
context: Optional[str]) -> List[PromptMessage]:
raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text']
prompt_messages = []
prompt = ''
prompt_template = PromptTemplateParser(template=raw_prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
self._set_context_variable(context, prompt_template, prompt_inputs)
prompt = self._format_prompt(prompt_template, prompt_inputs)
prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt))
return prompt_messages
def _get_completion_app_chat_model_prompt_messages(self,
app_model_config: str,
inputs: dict,
context: Optional[str]) -> List[PromptMessage]:
raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
prompt_messages = []
for prompt_item in raw_prompt_list:
raw_prompt = prompt_item['text']
prompt = ''
prompt_template = PromptTemplateParser(template=raw_prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
self._set_context_variable(context, prompt_template, prompt_inputs)
prompt = self._format_prompt(prompt_template, prompt_inputs)
prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
return prompt_messages

View File

@ -1,21 +1,54 @@
from typing import List
from typing import List, Optional, Any
import numpy as np
from langchain.embeddings import XinferenceEmbeddings
from langchain.embeddings.base import Embeddings
from xinference_client.client.restful.restful_client import Client
class XinferenceEmbedding(XinferenceEmbeddings):
class XinferenceEmbeddings(Embeddings):
client: Any
server_url: Optional[str]
"""URL of the xinference server"""
model_uid: Optional[str]
"""UID of the launched model"""
def __init__(
self, server_url: Optional[str] = None, model_uid: Optional[str] = None
):
super().__init__()
if server_url is None:
raise ValueError("Please provide server URL")
if model_uid is None:
raise ValueError("Please provide the model UID")
self.server_url = server_url
self.model_uid = model_uid
self.client = Client(server_url)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
vectors = super().embed_documents(texts)
model = self.client.get_model(self.model_uid)
embeddings = [
model.create_embedding(text)["data"][0]["embedding"] for text in texts
]
vectors = [list(map(float, e)) for e in embeddings]
normalized_vectors = [(vector / np.linalg.norm(vector)).tolist() for vector in vectors]
return normalized_vectors
def embed_query(self, text: str) -> List[float]:
vector = super().embed_query(text)
model = self.client.get_model(self.model_uid)
embedding_res = model.create_embedding(text)
embedding = embedding_res["data"][0]["embedding"]
vector = list(map(float, embedding))
normalized_vector = (vector / np.linalg.norm(vector)).tolist()
return normalized_vector

View File

@ -211,6 +211,16 @@ class MinimaxChatLLM(BaseChatModel):
token = token.lstrip("data:").strip()
data = json.loads(token)
if "base_resp" in data and data["base_resp"]["status_code"] > 0:
raise ValueError(
f"API {data['base_resp']['status_code']}"
f" error: {data['base_resp']['status_msg']}"
)
if not data['choices']:
continue
content = data['choices'][0]['delta']
chunk_kwargs = {

View File

@ -8,12 +8,15 @@ from typing import (
Any,
Dict,
List,
Optional, Iterator,
Optional, Iterator, Tuple,
)
import requests
from langchain.chat_models.base import BaseChatModel
from langchain.llms.utils import enforce_stop_tokens
from langchain.schema.output import GenerationChunk
from langchain.schema import BaseMessage, ChatMessage, HumanMessage, AIMessage, SystemMessage
from langchain.schema.messages import AIMessageChunk
from langchain.schema.output import GenerationChunk, ChatResult, ChatGenerationChunk, ChatGeneration
from pydantic import BaseModel, Extra, Field, PrivateAttr, root_validator
from langchain.callbacks.manager import (
@ -61,6 +64,7 @@ class _WenxinEndpointClient(BaseModel):
raise ValueError(f"Wenxin Model name is required")
model_url_map = {
'ernie-bot-4': 'completions_pro',
'ernie-bot': 'completions',
'ernie-bot-turbo': 'eb-instant',
'bloomz-7b': 'bloomz_7b1',
@ -70,6 +74,7 @@ class _WenxinEndpointClient(BaseModel):
access_token = self.get_access_token()
api_url = f"{self.base_url}{model_url_map[request['model']]}?access_token={access_token}"
del request['model']
headers = {"Content-Type": "application/json"}
response = requests.post(api_url,
@ -86,22 +91,21 @@ class _WenxinEndpointClient(BaseModel):
f"Wenxin API {json_response['error_code']}"
f" error: {json_response['error_msg']}"
)
return json_response["result"]
return json_response
else:
return response
class Wenxin(LLM):
"""Wrapper around Wenxin large language models.
To use, you should have the environment variable
``WENXIN_API_KEY`` and ``WENXIN_SECRET_KEY`` set with your API key,
or pass them as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.llms.wenxin import Wenxin
wenxin = Wenxin(model="<model_name>", api_key="my-api-key",
secret_key="my-group-id")
"""
class Wenxin(BaseChatModel):
"""Wrapper around Wenxin large language models."""
@property
def lc_secrets(self) -> Dict[str, str]:
return {"api_key": "API_KEY", "secret_key": "SECRET_KEY"}
@property
def lc_serializable(self) -> bool:
return True
_client: _WenxinEndpointClient = PrivateAttr()
model: str = "ernie-bot"
@ -161,64 +165,89 @@ class Wenxin(LLM):
secret_key=self.secret_key,
)
def _call(
def _convert_message_to_dict(self, message: BaseMessage) -> dict:
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
else:
raise ValueError(f"Got unknown type {message}")
return message_dict
def _create_message_dicts(
self, messages: List[BaseMessage]
) -> Tuple[List[Dict[str, Any]], str]:
dict_messages = []
system = None
for m in messages:
message = self._convert_message_to_dict(m)
if message['role'] == 'system':
if not system:
system = message['content']
else:
system += f"\n{message['content']}"
continue
if dict_messages:
previous_message = dict_messages[-1]
if previous_message['role'] == message['role']:
dict_messages[-1]['content'] += f"\n{message['content']}"
else:
dict_messages.append(message)
else:
dict_messages.append(message)
return dict_messages, system
def _generate(
self,
prompt: str,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
r"""Call out to Wenxin's completion endpoint to chat
Args:
prompt: The prompt to pass into the model.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = wenxin("Tell me a joke.")
"""
) -> ChatResult:
if self.streaming:
completion = ""
generation: Optional[ChatGenerationChunk] = None
llm_output: Optional[Dict] = None
for chunk in self._stream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
messages=messages, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
if chunk.generation_info is not None \
and 'token_usage' in chunk.generation_info:
llm_output = {"token_usage": chunk.generation_info['token_usage'], "model_name": self.model}
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
return ChatResult(generations=[generation], llm_output=llm_output)
else:
message_dicts, system = self._create_message_dicts(messages)
request = self._default_params
request["messages"] = [{"role": "user", "content": prompt}]
request["messages"] = message_dicts
if system:
request["system"] = system
request.update(kwargs)
completion = self._client.post(request)
if stop is not None:
completion = enforce_stop_tokens(completion, stop)
return completion
response = self._client.post(request)
return self._create_chat_result(response)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
r"""Call wenxin completion_stream and return the resulting generator.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Wenxin.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = wenxin.stream(prompt)
for token in generator:
yield token
"""
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
message_dicts, system = self._create_message_dicts(messages)
request = self._default_params
request["messages"] = [{"role": "user", "content": prompt}]
request["messages"] = message_dicts
if system:
request["system"] = system
request.update(kwargs)
for token in self._client.post(request).iter_lines():
@ -228,12 +257,18 @@ class Wenxin(LLM):
if token.startswith('data:'):
completion = json.loads(token[5:])
yield GenerationChunk(text=completion['result'])
if run_manager:
run_manager.on_llm_new_token(completion['result'])
chunk_dict = {
'message': AIMessageChunk(content=completion['result']),
}
if completion['is_end']:
break
token_usage = completion['usage']
token_usage['completion_tokens'] = token_usage['total_tokens'] - token_usage['prompt_tokens']
chunk_dict['generation_info'] = dict({'token_usage': token_usage})
yield ChatGenerationChunk(**chunk_dict)
if run_manager:
run_manager.on_llm_new_token(completion['result'])
else:
try:
json_response = json.loads(token)
@ -245,3 +280,40 @@ class Wenxin(LLM):
f" error: {json_response['error_msg']}, "
f"please confirm if the model you have chosen is already paid for."
)
def _create_chat_result(self, response: Dict[str, Any]) -> ChatResult:
generations = [ChatGeneration(
message=AIMessage(content=response['result']),
)]
token_usage = response.get("usage")
token_usage['completion_tokens'] = token_usage['total_tokens'] - token_usage['prompt_tokens']
llm_output = {"token_usage": token_usage, "model_name": self.model}
return ChatResult(generations=generations, llm_output=llm_output)
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
"""Get the number of tokens in the messages.
Useful for checking if an input will fit in a model's context window.
Args:
messages: The message inputs to tokenize.
Returns:
The sum of the number of tokens across the messages.
"""
return sum([self.get_num_tokens(m.content) for m in messages])
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
overall_token_usage: dict = {}
for output in llm_outputs:
if output is None:
# Happens in streaming
continue
token_usage = output["token_usage"]
for k, v in token_usage.items():
if k in overall_token_usage:
overall_token_usage[k] += v
else:
overall_token_usage[k] = v
return {"token_usage": overall_token_usage, "model_name": self.model}

View File

@ -1,16 +1,53 @@
from typing import Optional, List, Any, Union, Generator
from typing import Optional, List, Any, Union, Generator, Mapping
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms import Xinference
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from xinference.client import (
from xinference_client.client.restful.restful_client import (
RESTfulChatglmCppChatModelHandle,
RESTfulChatModelHandle,
RESTfulGenerateModelHandle,
RESTfulGenerateModelHandle, Client,
)
class XinferenceLLM(Xinference):
class XinferenceLLM(LLM):
client: Any
server_url: Optional[str]
"""URL of the xinference server"""
model_uid: Optional[str]
"""UID of the launched model"""
def __init__(
self, server_url: Optional[str] = None, model_uid: Optional[str] = None
):
super().__init__(
**{
"server_url": server_url,
"model_uid": model_uid,
}
)
if self.server_url is None:
raise ValueError("Please provide server URL")
if self.model_uid is None:
raise ValueError("Please provide the model UID")
self.client = Client(server_url)
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "xinference"
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"server_url": self.server_url},
**{"model_uid": self.model_uid},
}
def _call(
self,
prompt: str,

View File

@ -96,7 +96,7 @@ class ZhipuAIChatLLM(BaseChatModel):
return True
client: Any = None #: :meta private:
model: str = "chatglm_lite"
model: str = "chatglm_turbo"
"""Model name to use."""
temperature: float = 0.95
"""A non-negative float that tunes the degree of randomness in generation."""

View File

@ -19,9 +19,25 @@ class SparkLLMClient:
def __init__(self, model_name: str, app_id: str, api_key: str, api_secret: str, api_domain: Optional[str] = None):
domain = 'spark-api.xf-yun.com' if not api_domain else api_domain
api_version = 'v2.1' if model_name == 'spark-v2' else 'v1.1'
self.chat_domain = 'generalv2' if model_name == 'spark-v2' else 'general'
model_api_configs = {
'spark': {
'version': 'v1.1',
'chat_domain': 'general'
},
'spark-v2': {
'version': 'v2.1',
'chat_domain': 'generalv2'
},
'spark-v3': {
'version': 'v3.1',
'chat_domain': 'generalv3'
}
}
api_version = model_api_configs[model_name]['version']
self.chat_domain = model_api_configs[model_name]['chat_domain']
self.api_base = f"wss://{domain}/{api_version}/chat"
self.app_id = app_id
self.ws_url = self.create_url(

View File

@ -0,0 +1,8 @@
from core.extension.extension import Extension
def init():
code_based_extension.init()
code_based_extension = Extension()

View File

@ -0,0 +1,17 @@
from flask_restful import fields
from libs.helper import TimestampField
class HiddenAPIKey(fields.Raw):
def output(self, key, obj):
return obj.api_key[:3] + '***' + obj.api_key[-3:]
api_based_extension_fields = {
'id': fields.String,
'name': fields.String,
'api_endpoint': fields.String,
'api_key': HiddenAPIKey,
'created_at': TimestampField
}

View File

@ -23,6 +23,7 @@ model_config_fields = {
'retriever_resource': fields.Raw(attribute='retriever_resource_dict'),
'more_like_this': fields.Raw(attribute='more_like_this_dict'),
'sensitive_word_avoidance': fields.Raw(attribute='sensitive_word_avoidance_dict'),
'external_data_tools': fields.Raw(attribute='external_data_tools_list'),
'model': fields.Raw(attribute='model_dict'),
'user_input_form': fields.Raw(attribute='user_input_form_list'),
'dataset_query_variable': fields.String,

View File

@ -0,0 +1,45 @@
"""add_api_based_extension
Revision ID: 968fff4c0ab9
Revises: b3a09c049e8e
Create Date: 2023-10-27 13:05:58.901858
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = '968fff4c0ab9'
down_revision = 'b3a09c049e8e'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('api_based_extensions',
sa.Column('id', postgresql.UUID(), server_default=sa.text('uuid_generate_v4()'), nullable=False),
sa.Column('tenant_id', postgresql.UUID(), nullable=False),
sa.Column('name', sa.String(length=255), nullable=False),
sa.Column('api_endpoint', sa.String(length=255), nullable=False),
sa.Column('api_key', sa.Text(), nullable=False),
sa.Column('created_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP(0)'), nullable=False),
sa.PrimaryKeyConstraint('id', name='api_based_extension_pkey')
)
with op.batch_alter_table('api_based_extensions', schema=None) as batch_op:
batch_op.create_index('api_based_extension_tenant_idx', ['tenant_id'], unique=False)
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('api_based_extensions', schema=None) as batch_op:
batch_op.drop_index('api_based_extension_tenant_idx')
op.drop_table('api_based_extensions')
# ### end Alembic commands ###

View File

@ -0,0 +1,32 @@
"""add external_data_tools in app model config
Revision ID: a9836e3baeee
Revises: 968fff4c0ab9
Create Date: 2023-11-02 04:04:57.609485
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = 'a9836e3baeee'
down_revision = '968fff4c0ab9'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('app_model_configs', schema=None) as batch_op:
batch_op.add_column(sa.Column('external_data_tools', sa.Text(), nullable=True))
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('app_model_configs', schema=None) as batch_op:
batch_op.drop_column('external_data_tools')
# ### end Alembic commands ###

View File

@ -0,0 +1,27 @@
import enum
from sqlalchemy.dialects.postgresql import UUID
from extensions.ext_database import db
class APIBasedExtensionPoint(enum.Enum):
APP_EXTERNAL_DATA_TOOL_QUERY = 'app.external_data_tool.query'
PING = 'ping'
APP_MODERATION_INPUT = 'app.moderation.input'
APP_MODERATION_OUTPUT = 'app.moderation.output'
class APIBasedExtension(db.Model):
__tablename__ = 'api_based_extensions'
__table_args__ = (
db.PrimaryKeyConstraint('id', name='api_based_extension_pkey'),
db.Index('api_based_extension_tenant_idx', 'tenant_id'),
)
id = db.Column(UUID, server_default=db.text('uuid_generate_v4()'))
tenant_id = db.Column(UUID, nullable=False)
name = db.Column(db.String(255), nullable=False)
api_endpoint = db.Column(db.String(255), nullable=False)
api_key = db.Column(db.Text, nullable=False)
created_at = db.Column(db.DateTime, nullable=False, server_default=db.text('CURRENT_TIMESTAMP(0)'))

View File

@ -97,6 +97,7 @@ class AppModelConfig(db.Model):
chat_prompt_config = db.Column(db.Text)
completion_prompt_config = db.Column(db.Text)
dataset_configs = db.Column(db.Text)
external_data_tools = db.Column(db.Text)
@property
def app(self):
@ -133,7 +134,12 @@ class AppModelConfig(db.Model):
@property
def sensitive_word_avoidance_dict(self) -> dict:
return json.loads(self.sensitive_word_avoidance) if self.sensitive_word_avoidance \
else {"enabled": False, "words": [], "canned_response": []}
else {"enabled": False, "type": "", "configs": []}
@property
def external_data_tools_list(self) -> list[dict]:
return json.loads(self.external_data_tools) if self.external_data_tools \
else []
@property
def user_input_form_list(self) -> dict:
@ -167,6 +173,7 @@ class AppModelConfig(db.Model):
"retriever_resource": self.retriever_resource_dict,
"more_like_this": self.more_like_this_dict,
"sensitive_word_avoidance": self.sensitive_word_avoidance_dict,
"external_data_tools": self.external_data_tools_list,
"model": self.model_dict,
"user_input_form": self.user_input_form_list,
"dataset_query_variable": self.dataset_query_variable,
@ -190,6 +197,7 @@ class AppModelConfig(db.Model):
self.more_like_this = json.dumps(model_config['more_like_this'])
self.sensitive_word_avoidance = json.dumps(model_config['sensitive_word_avoidance']) \
if model_config.get('sensitive_word_avoidance') else None
self.external_data_tools = json.dumps(model_config['external_data_tools'])
self.model = json.dumps(model_config['model'])
self.user_input_form = json.dumps(model_config['user_input_form'])
self.dataset_query_variable = model_config.get('dataset_query_variable')
@ -219,6 +227,7 @@ class AppModelConfig(db.Model):
speech_to_text=self.speech_to_text,
more_like_this=self.more_like_this,
sensitive_word_avoidance=self.sensitive_word_avoidance,
external_data_tools=self.external_data_tools,
model=self.model,
user_input_form=self.user_input_form,
dataset_query_variable=self.dataset_query_variable,
@ -332,41 +341,16 @@ class Conversation(db.Model):
override_model_configs = json.loads(self.override_model_configs)
if 'model' in override_model_configs:
model_config['model'] = override_model_configs['model']
model_config['pre_prompt'] = override_model_configs['pre_prompt']
model_config['agent_mode'] = override_model_configs['agent_mode']
model_config['opening_statement'] = override_model_configs['opening_statement']
model_config['suggested_questions'] = override_model_configs['suggested_questions']
model_config['suggested_questions_after_answer'] = override_model_configs[
'suggested_questions_after_answer'] \
if 'suggested_questions_after_answer' in override_model_configs else {"enabled": False}
model_config['speech_to_text'] = override_model_configs[
'speech_to_text'] \
if 'speech_to_text' in override_model_configs else {"enabled": False}
model_config['more_like_this'] = override_model_configs['more_like_this'] \
if 'more_like_this' in override_model_configs else {"enabled": False}
model_config['sensitive_word_avoidance'] = override_model_configs['sensitive_word_avoidance'] \
if 'sensitive_word_avoidance' in override_model_configs \
else {"enabled": False, "words": [], "canned_response": []}
model_config['user_input_form'] = override_model_configs['user_input_form']
app_model_config = AppModelConfig()
app_model_config = app_model_config.from_model_config_dict(override_model_configs)
model_config = app_model_config.to_dict()
else:
model_config['configs'] = override_model_configs
else:
app_model_config = db.session.query(AppModelConfig).filter(
AppModelConfig.id == self.app_model_config_id).first()
model_config['configs'] = app_model_config.configs
model_config['model'] = app_model_config.model_dict
model_config['pre_prompt'] = app_model_config.pre_prompt
model_config['agent_mode'] = app_model_config.agent_mode_dict
model_config['opening_statement'] = app_model_config.opening_statement
model_config['suggested_questions'] = app_model_config.suggested_questions_list
model_config['suggested_questions_after_answer'] = app_model_config.suggested_questions_after_answer_dict
model_config['speech_to_text'] = app_model_config.speech_to_text_dict
model_config['retriever_resource'] = app_model_config.retriever_resource_dict
model_config['more_like_this'] = app_model_config.more_like_this_dict
model_config['sensitive_word_avoidance'] = app_model_config.sensitive_word_avoidance_dict
model_config['user_input_form'] = app_model_config.user_input_form_list
model_config = app_model_config.to_dict()
model_config['model_id'] = self.model_id
model_config['provider'] = self.model_provider

View File

@ -49,7 +49,7 @@ huggingface_hub~=0.16.4
transformers~=4.31.0
stripe~=5.5.0
pandas==1.5.3
xinference==0.5.2
xinference-client~=0.5.4
safetensors==0.3.2
zhipuai==1.0.7
werkzeug==2.3.7

View File

@ -6,7 +6,7 @@ import secrets
import uuid
from datetime import datetime, timedelta
from hashlib import sha256
from typing import Optional
from typing import Optional, Dict, Any
from werkzeug.exceptions import Forbidden, Unauthorized
from flask import session, current_app
@ -24,7 +24,8 @@ from libs.passport import PassportService
from models.account import *
from tasks.mail_invite_member_task import send_invite_member_mail_task
def _create_tenant_for_account(account):
def _create_tenant_for_account(account) -> Tenant:
tenant = TenantService.create_tenant(f"{account.name}'s Workspace")
TenantService.create_tenant_member(tenant, account, role='owner')
@ -505,7 +506,7 @@ class RegisterService:
redis_client.delete(cls._get_invitation_token_key(token))
@classmethod
def get_invitation_if_token_valid(cls, workspace_id: str, email: str, token: str) -> Optional[Account]:
def get_invitation_if_token_valid(cls, workspace_id: str, email: str, token: str) -> Optional[Dict[str, Any]]:
invitation_data = cls._get_invitation_by_token(token, workspace_id, email)
if not invitation_data:
return None
@ -539,7 +540,7 @@ class RegisterService:
}
@classmethod
def _get_invitation_by_token(cls, token: str, workspace_id: str, email: str) -> Optional[str]:
def _get_invitation_by_token(cls, token: str, workspace_id: str, email: str) -> Optional[Dict[str, str]]:
if workspace_id is not None and email is not None:
email_hash = sha256(email.encode()).hexdigest()
cache_key = f'member_invite_token:{workspace_id}, {email_hash}:{token}'

View File

@ -1,56 +1,65 @@
import copy
from core.model_providers.models.entity.model_params import ModelMode
from core.prompt.prompt_transform import AppMode
from core.prompt.advanced_prompt_templates import CHAT_APP_COMPLETION_PROMPT_CONFIG, CHAT_APP_CHAT_PROMPT_CONFIG, COMPLETION_APP_CHAT_PROMPT_CONFIG, COMPLETION_APP_COMPLETION_PROMPT_CONFIG, \
BAICHUAN_CHAT_APP_COMPLETION_PROMPT_CONFIG, BAICHUAN_CHAT_APP_CHAT_PROMPT_CONFIG, BAICHUAN_COMPLETION_APP_COMPLETION_PROMPT_CONFIG, BAICHUAN_COMPLETION_APP_CHAT_PROMPT_CONFIG, CONTEXT, BAICHUAN_CONTEXT
class AdvancedPromptTemplateService:
def get_prompt(self, args: dict) -> dict:
@classmethod
def get_prompt(cls, args: dict) -> dict:
app_mode = args['app_mode']
model_mode = args['model_mode']
model_name = args['model_name']
has_context = args['has_context']
if 'baichuan' in model_name:
return self.get_baichuan_prompt(app_mode, model_mode, has_context)
if 'baichuan' in model_name.lower():
return cls.get_baichuan_prompt(app_mode, model_mode, has_context)
else:
return self.get_common_prompt(app_mode, model_mode, has_context)
return cls.get_common_prompt(app_mode, model_mode, has_context)
def get_common_prompt(self, app_mode: str, model_mode:str, has_context: bool) -> dict:
if app_mode == 'chat':
if model_mode == 'completion':
return self.get_completion_prompt(copy.deepcopy(CHAT_APP_COMPLETION_PROMPT_CONFIG), has_context, CONTEXT)
elif model_mode == 'chat':
return self.get_chat_prompt(copy.deepcopy(CHAT_APP_CHAT_PROMPT_CONFIG), has_context, CONTEXT)
elif app_mode == 'completion':
if model_mode == 'completion':
return self.get_completion_prompt(copy.deepcopy(COMPLETION_APP_COMPLETION_PROMPT_CONFIG), has_context, CONTEXT)
elif model_mode == 'chat':
return self.get_chat_prompt(copy.deepcopy(COMPLETION_APP_CHAT_PROMPT_CONFIG), has_context, CONTEXT)
@classmethod
def get_common_prompt(cls, app_mode: str, model_mode:str, has_context: str) -> dict:
context_prompt = copy.deepcopy(CONTEXT)
if app_mode == AppMode.CHAT.value:
if model_mode == ModelMode.COMPLETION.value:
return cls.get_completion_prompt(copy.deepcopy(CHAT_APP_COMPLETION_PROMPT_CONFIG), has_context, context_prompt)
elif model_mode == ModelMode.CHAT.value:
return cls.get_chat_prompt(copy.deepcopy(CHAT_APP_CHAT_PROMPT_CONFIG), has_context, context_prompt)
elif app_mode == AppMode.COMPLETION.value:
if model_mode == ModelMode.COMPLETION.value:
return cls.get_completion_prompt(copy.deepcopy(COMPLETION_APP_COMPLETION_PROMPT_CONFIG), has_context, context_prompt)
elif model_mode == ModelMode.CHAT.value:
return cls.get_chat_prompt(copy.deepcopy(COMPLETION_APP_CHAT_PROMPT_CONFIG), has_context, context_prompt)
def get_completion_prompt(self, prompt_template: str, has_context: bool, context: str) -> dict:
@classmethod
def get_completion_prompt(cls, prompt_template: dict, has_context: str, context: str) -> dict:
if has_context == 'true':
prompt_template['completion_prompt_config']['prompt']['text'] = context + prompt_template['completion_prompt_config']['prompt']['text']
return prompt_template
def get_chat_prompt(self, prompt_template: str, has_context: bool, context: str) -> dict:
@classmethod
def get_chat_prompt(cls, prompt_template: dict, has_context: str, context: str) -> dict:
if has_context == 'true':
prompt_template['chat_prompt_config']['prompt'][0]['text'] = context + prompt_template['chat_prompt_config']['prompt'][0]['text']
return prompt_template
@classmethod
def get_baichuan_prompt(cls, app_mode: str, model_mode:str, has_context: str) -> dict:
baichuan_context_prompt = copy.deepcopy(BAICHUAN_CONTEXT)
def get_baichuan_prompt(self, app_mode: str, model_mode:str, has_context: bool) -> dict:
if app_mode == 'chat':
if model_mode == 'completion':
return self.get_completion_prompt(copy.deepcopy(BAICHUAN_CHAT_APP_COMPLETION_PROMPT_CONFIG), has_context, BAICHUAN_CONTEXT)
elif model_mode == 'chat':
return self.get_chat_prompt(copy.deepcopy(BAICHUAN_CHAT_APP_CHAT_PROMPT_CONFIG), has_context, BAICHUAN_CONTEXT)
elif app_mode == 'completion':
if model_mode == 'completion':
return self.get_completion_prompt(copy.deepcopy(BAICHUAN_COMPLETION_APP_COMPLETION_PROMPT_CONFIG), has_context, BAICHUAN_CONTEXT)
elif model_mode == 'chat':
return self.get_chat_prompt(copy.deepcopy(BAICHUAN_COMPLETION_APP_CHAT_PROMPT_CONFIG), has_context, BAICHUAN_CONTEXT)
if app_mode == AppMode.CHAT.value:
if model_mode == ModelMode.COMPLETION.value:
return cls.get_completion_prompt(copy.deepcopy(BAICHUAN_CHAT_APP_COMPLETION_PROMPT_CONFIG), has_context, baichuan_context_prompt)
elif model_mode == ModelMode.CHAT.value:
return cls.get_chat_prompt(copy.deepcopy(BAICHUAN_CHAT_APP_CHAT_PROMPT_CONFIG), has_context, baichuan_context_prompt)
elif app_mode == AppMode.COMPLETION.value:
if model_mode == ModelMode.COMPLETION.value:
return cls.get_completion_prompt(copy.deepcopy(BAICHUAN_COMPLETION_APP_COMPLETION_PROMPT_CONFIG), has_context, baichuan_context_prompt)
elif model_mode == ModelMode.CHAT.value:
return cls.get_chat_prompt(copy.deepcopy(BAICHUAN_COMPLETION_APP_CHAT_PROMPT_CONFIG), has_context, baichuan_context_prompt)

View File

@ -0,0 +1,98 @@
from extensions.ext_database import db
from models.api_based_extension import APIBasedExtension, APIBasedExtensionPoint
from core.helper.encrypter import encrypt_token, decrypt_token
from core.extension.api_based_extension_requestor import APIBasedExtensionRequestor
class APIBasedExtensionService:
@staticmethod
def get_all_by_tenant_id(tenant_id: str) -> list[APIBasedExtension]:
extension_list = db.session.query(APIBasedExtension) \
.filter_by(tenant_id=tenant_id) \
.order_by(APIBasedExtension.created_at.desc()) \
.all()
for extension in extension_list:
extension.api_key = decrypt_token(extension.tenant_id, extension.api_key)
return extension_list
@classmethod
def save(cls, extension_data: APIBasedExtension) -> APIBasedExtension:
cls._validation(extension_data)
extension_data.api_key = encrypt_token(extension_data.tenant_id, extension_data.api_key)
db.session.add(extension_data)
db.session.commit()
return extension_data
@staticmethod
def delete(extension_data: APIBasedExtension) -> None:
db.session.delete(extension_data)
db.session.commit()
@staticmethod
def get_with_tenant_id(tenant_id: str, api_based_extension_id: str) -> APIBasedExtension:
extension = db.session.query(APIBasedExtension) \
.filter_by(tenant_id=tenant_id) \
.filter_by(id=api_based_extension_id) \
.first()
if not extension:
raise ValueError("API based extension is not found")
extension.api_key = decrypt_token(extension.tenant_id, extension.api_key)
return extension
@classmethod
def _validation(cls, extension_data: APIBasedExtension) -> None:
# name
if not extension_data.name:
raise ValueError("name must not be empty")
if not extension_data.id:
# case one: check new data, name must be unique
is_name_existed = db.session.query(APIBasedExtension) \
.filter_by(tenant_id=extension_data.tenant_id) \
.filter_by(name=extension_data.name) \
.first()
if is_name_existed:
raise ValueError("name must be unique, it is already existed")
else:
# case two: check existing data, name must be unique
is_name_existed = db.session.query(APIBasedExtension) \
.filter_by(tenant_id=extension_data.tenant_id) \
.filter_by(name=extension_data.name) \
.filter(APIBasedExtension.id != extension_data.id) \
.first()
if is_name_existed:
raise ValueError("name must be unique, it is already existed")
# api_endpoint
if not extension_data.api_endpoint:
raise ValueError("api_endpoint must not be empty")
# api_key
if not extension_data.api_key:
raise ValueError("api_key must not be empty")
if len(extension_data.api_key) < 5:
raise ValueError("api_key must be at least 5 characters")
# check endpoint
cls._ping_connection(extension_data)
@staticmethod
def _ping_connection(extension_data: APIBasedExtension) -> None:
try:
client = APIBasedExtensionRequestor(extension_data.api_endpoint, extension_data.api_key)
resp = client.request(point=APIBasedExtensionPoint.PING, params={})
if resp.get('result') != 'pong':
raise ValueError(resp)
except Exception as e:
raise ValueError("connection error: {}".format(e))

View File

@ -1,6 +1,9 @@
import re
import uuid
from core.external_data_tool.factory import ExternalDataToolFactory
from core.moderation.factory import ModerationFactory
from core.prompt.prompt_transform import AppMode
from core.agent.agent_executor import PlanningStrategy
from core.model_providers.model_provider_factory import ModelProviderFactory
from core.model_providers.models.entity.model_params import ModelType, ModelMode
@ -12,8 +15,8 @@ SUPPORT_TOOLS = ["dataset", "google_search", "web_reader", "wikipedia", "current
class AppModelConfigService:
@staticmethod
def is_dataset_exists(account: Account, dataset_id: str) -> bool:
@classmethod
def is_dataset_exists(cls, account: Account, dataset_id: str) -> bool:
# verify if the dataset ID exists
dataset = DatasetService.get_dataset(dataset_id)
@ -25,8 +28,8 @@ class AppModelConfigService:
return True
@staticmethod
def validate_model_completion_params(cp: dict, model_name: str) -> dict:
@classmethod
def validate_model_completion_params(cls, cp: dict, model_name: str) -> dict:
# 6. model.completion_params
if not isinstance(cp, dict):
raise ValueError("model.completion_params must be of object type")
@ -57,6 +60,9 @@ class AppModelConfigService:
elif not isinstance(cp["stop"], list):
raise ValueError("stop in model.completion_params must be of list type")
if len(cp["stop"]) > 4:
raise ValueError("stop sequences must be less than 4")
# Filter out extra parameters
filtered_cp = {
"max_tokens": cp["max_tokens"],
@ -69,8 +75,8 @@ class AppModelConfigService:
return filtered_cp
@staticmethod
def validate_configuration(tenant_id: str, account: Account, config: dict, mode: str) -> dict:
@classmethod
def validate_configuration(cls, tenant_id: str, account: Account, config: dict, mode: str) -> dict:
# opening_statement
if 'opening_statement' not in config or not config["opening_statement"]:
config["opening_statement"] = ""
@ -149,33 +155,6 @@ class AppModelConfigService:
if not isinstance(config["more_like_this"]["enabled"], bool):
raise ValueError("enabled in more_like_this must be of boolean type")
# sensitive_word_avoidance
if 'sensitive_word_avoidance' not in config or not config["sensitive_word_avoidance"]:
config["sensitive_word_avoidance"] = {
"enabled": False
}
if not isinstance(config["sensitive_word_avoidance"], dict):
raise ValueError("sensitive_word_avoidance must be of dict type")
if "enabled" not in config["sensitive_word_avoidance"] or not config["sensitive_word_avoidance"]["enabled"]:
config["sensitive_word_avoidance"]["enabled"] = False
if not isinstance(config["sensitive_word_avoidance"]["enabled"], bool):
raise ValueError("enabled in sensitive_word_avoidance must be of boolean type")
if "words" not in config["sensitive_word_avoidance"] or not config["sensitive_word_avoidance"]["words"]:
config["sensitive_word_avoidance"]["words"] = ""
if not isinstance(config["sensitive_word_avoidance"]["words"], str):
raise ValueError("words in sensitive_word_avoidance must be of string type")
if "canned_response" not in config["sensitive_word_avoidance"] or not config["sensitive_word_avoidance"]["canned_response"]:
config["sensitive_word_avoidance"]["canned_response"] = ""
if not isinstance(config["sensitive_word_avoidance"]["canned_response"], str):
raise ValueError("canned_response in sensitive_word_avoidance must be of string type")
# model
if 'model' not in config:
raise ValueError("model is required")
@ -200,7 +179,7 @@ class AppModelConfigService:
model_ids = [m['id'] for m in model_list]
if config["model"]["name"] not in model_ids:
raise ValueError("model.name must be in the specified model list")
# model.mode
if 'mode' not in config['model'] or not config['model']["mode"]:
config['model']["mode"] = ""
@ -209,7 +188,7 @@ class AppModelConfigService:
if 'completion_params' not in config["model"]:
raise ValueError("model.completion_params is required")
config["model"]["completion_params"] = AppModelConfigService.validate_model_completion_params(
config["model"]["completion_params"] = cls.validate_model_completion_params(
config["model"]["completion_params"],
config["model"]["name"]
)
@ -271,11 +250,6 @@ class AppModelConfigService:
if not isinstance(config["pre_prompt"], str):
raise ValueError("pre_prompt must be of string type")
template_vars = re.findall(r"\{\{(\w+)\}\}", config["pre_prompt"])
for var in template_vars:
if var not in variables:
raise ValueError("Template variables in pre_prompt must be defined in user_input_form")
# agent_mode
if "agent_mode" not in config or not config["agent_mode"]:
config["agent_mode"] = {
@ -326,14 +300,20 @@ class AppModelConfigService:
except ValueError:
raise ValueError("id in dataset must be of UUID type")
if not AppModelConfigService.is_dataset_exists(account, tool_item["id"]):
if not cls.is_dataset_exists(account, tool_item["id"]):
raise ValueError("Dataset ID does not exist, please check your permission.")
# dataset_query_variable
AppModelConfigService.is_dataset_query_variable_valid(config, mode)
cls.is_dataset_query_variable_valid(config, mode)
# advanced prompt validation
AppModelConfigService.is_advanced_prompt_valid(config, mode)
cls.is_advanced_prompt_valid(config, mode)
# external data tools validation
cls.is_external_data_tools_valid(tenant_id, config)
# moderation validation
cls.is_moderation_valid(tenant_id, config)
# Filter out extra parameters
filtered_config = {
@ -344,6 +324,7 @@ class AppModelConfigService:
"retriever_resource": config["retriever_resource"],
"more_like_this": config["more_like_this"],
"sensitive_word_avoidance": config["sensitive_word_avoidance"],
"external_data_tools": config["external_data_tools"],
"model": {
"provider": config["model"]["provider"],
"name": config["model"]["name"],
@ -361,32 +342,86 @@ class AppModelConfigService:
}
return filtered_config
@staticmethod
def is_dataset_query_variable_valid(config: dict, mode: str) -> None:
@classmethod
def is_moderation_valid(cls, tenant_id: str, config: dict):
if 'sensitive_word_avoidance' not in config or not config["sensitive_word_avoidance"]:
config["sensitive_word_avoidance"] = {
"enabled": False
}
if not isinstance(config["sensitive_word_avoidance"], dict):
raise ValueError("sensitive_word_avoidance must be of dict type")
if "enabled" not in config["sensitive_word_avoidance"] or not config["sensitive_word_avoidance"]["enabled"]:
config["sensitive_word_avoidance"]["enabled"] = False
if not config["sensitive_word_avoidance"]["enabled"]:
return
if "type" not in config["sensitive_word_avoidance"] or not config["sensitive_word_avoidance"]["type"]:
raise ValueError("sensitive_word_avoidance.type is required")
type = config["sensitive_word_avoidance"]["type"]
config = config["sensitive_word_avoidance"]["config"]
ModerationFactory.validate_config(
name=type,
tenant_id=tenant_id,
config=config
)
@classmethod
def is_external_data_tools_valid(cls, tenant_id: str, config: dict):
if 'external_data_tools' not in config or not config["external_data_tools"]:
config["external_data_tools"] = []
if not isinstance(config["external_data_tools"], list):
raise ValueError("external_data_tools must be of list type")
for tool in config["external_data_tools"]:
if "enabled" not in tool or not tool["enabled"]:
tool["enabled"] = False
if not tool["enabled"]:
continue
if "type" not in tool or not tool["type"]:
raise ValueError("external_data_tools[].type is required")
type = tool["type"]
config = tool["config"]
ExternalDataToolFactory.validate_config(
name=type,
tenant_id=tenant_id,
config=config
)
@classmethod
def is_dataset_query_variable_valid(cls, config: dict, mode: str) -> None:
# Only check when mode is completion
if mode != 'completion':
return
agent_mode = config.get("agent_mode", {})
tools = agent_mode.get("tools", [])
dataset_exists = "dataset" in str(tools)
dataset_query_variable = config.get("dataset_query_variable")
if dataset_exists and not dataset_query_variable:
raise ValueError("Dataset query variable is required when dataset is exist")
@staticmethod
def is_advanced_prompt_valid(config: dict, app_mode: str) -> None:
@classmethod
def is_advanced_prompt_valid(cls, config: dict, app_mode: str) -> None:
# prompt_type
if 'prompt_type' not in config or not config["prompt_type"]:
config["prompt_type"] = "simple"
if config['prompt_type'] not in ['simple', 'advanced']:
raise ValueError("prompt_type must be in ['simple', 'advanced']")
# chat_prompt_config
if 'chat_prompt_config' not in config or not config["chat_prompt_config"]:
config["chat_prompt_config"] = {}
@ -400,7 +435,7 @@ class AppModelConfigService:
if not isinstance(config["completion_prompt_config"], dict):
raise ValueError("completion_prompt_config must be of object type")
# dataset_configs
if 'dataset_configs' not in config or not config["dataset_configs"]:
config["dataset_configs"] = {"top_k": 2, "score_threshold": {"enable": False}}
@ -411,11 +446,11 @@ class AppModelConfigService:
if config['prompt_type'] == 'advanced':
if not config['chat_prompt_config'] and not config['completion_prompt_config']:
raise ValueError("chat_prompt_config or completion_prompt_config is required when prompt_type is advanced")
if config['model']["mode"] not in ['chat', 'completion']:
raise ValueError("model.mode must be in ['chat', 'completion'] when prompt_type is advanced")
if app_mode == 'chat' and config['model']["mode"] == ModelMode.COMPLETION.value:
if app_mode == AppMode.CHAT.value and config['model']["mode"] == ModelMode.COMPLETION.value:
user_prefix = config['completion_prompt_config']['conversation_histories_role']['user_prefix']
assistant_prefix = config['completion_prompt_config']['conversation_histories_role']['assistant_prefix']
@ -424,3 +459,9 @@ class AppModelConfigService:
if not assistant_prefix:
config['completion_prompt_config']['conversation_histories_role']['assistant_prefix'] = 'Assistant'
if config['model']["mode"] == ModelMode.CHAT.value:
prompt_list = config['chat_prompt_config']['prompt']
if len(prompt_list) > 10:
raise ValueError("prompt messages must be less than 10")

View File

@ -0,0 +1,13 @@
from extensions.ext_code_based_extension import code_based_extension
class CodeBasedExtensionService:
@staticmethod
def get_code_based_extension(module: str) -> list[dict]:
module_extensions = code_based_extension.module_extensions(module)
return [{
'name': module_extension.name,
'label': module_extension.label,
'form_schema': module_extension.form_schema
} for module_extension in module_extensions if not module_extension.builtin]

View File

@ -10,7 +10,8 @@ from redis.client import PubSub
from sqlalchemy import and_
from core.completion import Completion
from core.conversation_message_task import PubHandler, ConversationTaskStoppedException
from core.conversation_message_task import PubHandler, ConversationTaskStoppedException, \
ConversationTaskInterruptException
from core.model_providers.error import LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError, \
LLMRateLimitError, \
LLMAuthorizationError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
@ -28,9 +29,9 @@ from services.errors.message import MessageNotExistsError
class CompletionService:
@classmethod
def completion(cls, app_model: App, user: Union[Account | EndUser], args: Any,
def completion(cls, app_model: App, user: Union[Account, EndUser], args: Any,
from_source: str, streaming: bool = True,
is_model_config_override: bool = False) -> Union[dict | Generator]:
is_model_config_override: bool = False) -> Union[dict, Generator]:
# is streaming mode
inputs = args['inputs']
query = args['query']
@ -142,7 +143,7 @@ class CompletionService:
'flask_app': current_app._get_current_object(),
'generate_task_id': generate_task_id,
'detached_app_model': app_model,
'app_model_config': app_model_config,
'app_model_config': app_model_config.copy(),
'query': query,
'inputs': inputs,
'detached_user': user,
@ -199,9 +200,9 @@ class CompletionService:
is_override=is_model_config_override,
retriever_from=retriever_from
)
except ConversationTaskStoppedException:
except (ConversationTaskInterruptException, ConversationTaskStoppedException):
pass
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
except (ValueError, LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError,
ModelCurrentlyNotSupportError) as e:
PubHandler.pub_error(user, generate_task_id, e)
@ -234,7 +235,7 @@ class CompletionService:
PubHandler.stop(user, generate_task_id)
try:
pubsub.close()
except:
except Exception:
pass
countdown_thread = threading.Thread(target=close_pubsub)
@ -243,9 +244,9 @@ class CompletionService:
return countdown_thread
@classmethod
def generate_more_like_this(cls, app_model: App, user: Union[Account | EndUser],
def generate_more_like_this(cls, app_model: App, user: Union[Account, EndUser],
message_id: str, streaming: bool = True,
retriever_from: str = 'dev') -> Union[dict | Generator]:
retriever_from: str = 'dev') -> Union[dict, Generator]:
if not user:
raise ValueError('user cannot be None')
@ -284,7 +285,7 @@ class CompletionService:
'flask_app': current_app._get_current_object(),
'generate_task_id': generate_task_id,
'detached_app_model': app_model,
'app_model_config': app_model_config,
'app_model_config': app_model_config.copy(),
'query': message.query,
'inputs': message.inputs,
'detached_user': user,
@ -341,7 +342,7 @@ class CompletionService:
return filtered_inputs
@classmethod
def compact_response(cls, pubsub: PubSub, streaming: bool = False) -> Union[dict | Generator]:
def compact_response(cls, pubsub: PubSub, streaming: bool = False) -> Union[dict, Generator]:
generate_channel = list(pubsub.channels.keys())[0].decode('utf-8')
if not streaming:
try:
@ -386,6 +387,8 @@ class CompletionService:
break
if event == 'message':
yield "data: " + json.dumps(cls.get_message_response_data(result.get('data'))) + "\n\n"
elif event == 'message_replace':
yield "data: " + json.dumps(cls.get_message_replace_response_data(result.get('data'))) + "\n\n"
elif event == 'chain':
yield "data: " + json.dumps(cls.get_chain_response_data(result.get('data'))) + "\n\n"
elif event == 'agent_thought':
@ -427,6 +430,21 @@ class CompletionService:
return response_data
@classmethod
def get_message_replace_response_data(cls, data: dict):
response_data = {
'event': 'message_replace',
'task_id': data.get('task_id'),
'id': data.get('message_id'),
'answer': data.get('text'),
'created_at': int(time.time())
}
if data.get('mode') == 'chat':
response_data['conversation_id'] = data.get('conversation_id')
return response_data
@classmethod
def get_blocking_message_response_data(cls, data: dict):
message = data.get('message')
@ -508,6 +526,7 @@ class CompletionService:
# handle errors
llm_errors = {
'ValueError': LLMBadRequestError,
'LLMBadRequestError': LLMBadRequestError,
'LLMAPIConnectionError': LLMAPIConnectionError,
'LLMAPIUnavailableError': LLMAPIUnavailableError,

View File

@ -0,0 +1,20 @@
from models.model import AppModelConfig, App
from core.moderation.factory import ModerationFactory, ModerationOutputsResult
from extensions.ext_database import db
class ModerationService:
def moderation_for_outputs(self, app_id: str, app_model: App, text: str) -> ModerationOutputsResult:
app_model_config: AppModelConfig = None
app_model_config = db.session.query(AppModelConfig).filter(AppModelConfig.id == app_model.app_model_config_id).first()
if not app_model_config:
raise ValueError("app model config not found")
name = app_model_config.sensitive_word_avoidance_dict['type']
config = app_model_config.sensitive_word_avoidance_dict['config']
moderation = ModerationFactory(name, app_id, app_model.tenant_id, config)
return moderation.moderation_for_outputs(text)

View File

@ -56,9 +56,8 @@ def test_run(mock_decrypt, mocker):
mocker.patch('core.model_providers.providers.base.BaseModelProvider.update_last_used', return_value=None)
model = get_mock_model('ernie-bot')
messages = [PromptMessage(content='Human: 1 + 1=? \nAssistant: Integer answer is:')]
messages = [PromptMessage(type=MessageType.USER, content='Human: 1 + 1=? \nAssistant: Integer answer is:')]
rst = model.run(
messages,
stop=['\nHuman:'],
messages
)
assert len(rst.content) > 0

View File

@ -2,6 +2,8 @@ import pytest
from unittest.mock import patch
import json
from langchain.schema import AIMessage, ChatGeneration, ChatResult
from core.model_providers.providers.base import CredentialsValidateFailedError
from core.model_providers.providers.wenxin_provider import WenxinProvider
from models.provider import ProviderType, Provider
@ -24,7 +26,8 @@ def decrypt_side_effect(tenant_id, encrypted_key):
def test_is_provider_credentials_valid_or_raise_valid(mocker):
mocker.patch('core.third_party.langchain.llms.wenxin.Wenxin._call', return_value="abc")
mocker.patch('core.third_party.langchain.llms.wenxin.Wenxin._generate',
return_value=ChatResult(generations=[ChatGeneration(message=AIMessage(content='abc'))]))
MODEL_PROVIDER_CLASS.is_provider_credentials_valid_or_raise(VALIDATE_CREDENTIAL)

BIN
docker/docker-compose.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

View File

@ -2,7 +2,7 @@ version: '3.1'
services:
# API service
api:
image: langgenius/dify-api:0.3.27
image: langgenius/dify-api:0.3.29
restart: always
environment:
# Startup mode, 'api' starts the API server.
@ -19,7 +19,7 @@ services:
# different from api or web app domain.
# example: http://cloud.dify.ai
CONSOLE_API_URL: ''
# The URL for Service API endpointsrefers to the base URL of the current API service if api domain is
# The URL for Service API endpoints, refers to the base URL of the current API service if api domain is
# different from console domain.
# example: http://api.dify.ai
SERVICE_API_URL: ''
@ -98,7 +98,7 @@ services:
# The milvus password.
MILVUS_PASSWORD: Milvus
# The milvus tls switch.
MILVUS_SECURE: false
MILVUS_SECURE: 'false'
# Mail configuration, support: resend
MAIL_TYPE: ''
# default send from email address, if not specified
@ -124,7 +124,7 @@ services:
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.3.27
image: langgenius/dify-api:0.3.29
restart: always
environment:
# Startup mode, 'worker' starts the Celery worker for processing the queue.
@ -176,7 +176,7 @@ services:
# The milvus password.
MILVUS_PASSWORD: Milvus
# The milvus tls switch.
MILVUS_SECURE: false
MILVUS_SECURE: 'false'
# Mail configuration, support: resend
MAIL_TYPE: ''
# default send from email address, if not specified
@ -192,7 +192,7 @@ services:
# Frontend web application.
web:
image: langgenius/dify-web:0.3.27
image: langgenius/dify-web:0.3.29
restart: always
environment:
EDITION: SELF_HOSTED

35
third-party/chrome plug-in/README_CN.md vendored Normal file
View File

@ -0,0 +1,35 @@
## Chrome Dify ChatBot插件
### 方式1Chrome插件商店 * [点击访问](https://chrome.google.com/webstore/detail/dify-chatbot/ceehdapohffmjmkdcifjofadiaoeggaf/related?hl=zh-CN&authuser=0) *
### 方式2本地开发者模式加载
- 进入Chrome浏览器管理扩展程序可直接访问 [chrome://extensions/](chrome://extensions/)
- 选择开启 “开发者模式”,并点击 “加载已解压的扩展程序”
![img-1.png](images/img-1.png)
- 然后打开插件源文件所在根目录
- third-party
- chrome plug-in
- content.js 浮动按钮JS脚本
- favicon.png 插件图标
- manifest.json 插件描述文件
- options.css 插件配置页面样式文件
- options.html 插件配置静态HTML页面
- options.js 插件配置JS脚本
### 插件导入完成后,后续配置无差异
- 初始化设置Dify 应用配置分别输入Dify根域名和应用TokenToken可以在Dify应用嵌入中获取如图
![img-2.png](images/img-2.png)
![img-3.png](images/img-3.png)
- 点击保存,确认提示配置成功即可
![img-4.png](images/img-4.png)
- 保险起见重启浏览器确保所有分页刷新成功
- Chrome打开任意页面均可正常加载DIfy机器人浮动栏后续如需更换机器人只需要变更Token即可
![img-5.png](images/img-5.png)

170
third-party/chrome plug-in/content.js vendored Normal file
View File

@ -0,0 +1,170 @@
var storage = chrome.storage.sync;
chrome.storage.sync.get(['baseUrl', 'token'], function(result) {
window.difyChatbotConfig = {
baseUrl: result.baseUrl,
token: result.token
};
});
document.body.onload = embedChatbot;
async function embedChatbot() {
const difyChatbotConfig = window.difyChatbotConfig;
if (!difyChatbotConfig || !difyChatbotConfig.token) {
console.warn('difyChatbotConfig is empty or token is not provided');
return;
}
const baseUrl = difyChatbotConfig.baseUrl
const openIcon = `<svg
id="openIcon"
width="24"
height="24"
viewBox="0 0 24 24"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
fill-rule="evenodd"
clip-rule="evenodd"
d="M7.7586 2L16.2412 2C17.0462 1.99999 17.7105 1.99998 18.2517 2.04419C18.8138 2.09012 19.3305 2.18868 19.8159 2.43598C20.5685 2.81947 21.1804 3.43139 21.5639 4.18404C21.8112 4.66937 21.9098 5.18608 21.9557 5.74818C21.9999 6.28937 21.9999 6.95373 21.9999 7.7587L22 14.1376C22.0004 14.933 22.0007 15.5236 21.8636 16.0353C21.4937 17.4156 20.4155 18.4938 19.0352 18.8637C18.7277 18.9461 18.3917 18.9789 17.9999 18.9918L17.9999 20.371C18 20.6062 18 20.846 17.9822 21.0425C17.9651 21.2305 17.9199 21.5852 17.6722 21.8955C17.3872 22.2525 16.9551 22.4602 16.4983 22.4597C16.1013 22.4593 15.7961 22.273 15.6386 22.1689C15.474 22.06 15.2868 21.9102 15.1031 21.7632L12.69 19.8327C12.1714 19.4178 12.0174 19.3007 11.8575 19.219C11.697 19.137 11.5262 19.0771 11.3496 19.0408C11.1737 19.0047 10.9803 19 10.3162 19H7.75858C6.95362 19 6.28927 19 5.74808 18.9558C5.18598 18.9099 4.66928 18.8113 4.18394 18.564C3.43129 18.1805 2.81937 17.5686 2.43588 16.816C2.18859 16.3306 2.09002 15.8139 2.0441 15.2518C1.99988 14.7106 1.99989 14.0463 1.9999 13.2413V7.75868C1.99989 6.95372 1.99988 6.28936 2.0441 5.74818C2.09002 5.18608 2.18859 4.66937 2.43588 4.18404C2.81937 3.43139 3.43129 2.81947 4.18394 2.43598C4.66928 2.18868 5.18598 2.09012 5.74808 2.04419C6.28927 1.99998 6.95364 1.99999 7.7586 2ZM10.5073 7.5C10.5073 6.67157 9.83575 6 9.00732 6C8.1789 6 7.50732 6.67157 7.50732 7.5C7.50732 8.32843 8.1789 9 9.00732 9C9.83575 9 10.5073 8.32843 10.5073 7.5ZM16.6073 11.7001C16.1669 11.3697 15.5426 11.4577 15.2105 11.8959C15.1488 11.9746 15.081 12.0486 15.0119 12.1207C14.8646 12.2744 14.6432 12.4829 14.3566 12.6913C13.7796 13.111 12.9818 13.5001 12.0073 13.5001C11.0328 13.5001 10.235 13.111 9.65799 12.6913C9.37138 12.4829 9.15004 12.2744 9.00274 12.1207C8.93366 12.0486 8.86581 11.9745 8.80418 11.8959C8.472 11.4577 7.84775 11.3697 7.40732 11.7001C6.96549 12.0314 6.87595 12.6582 7.20732 13.1001C7.20479 13.0968 7.21072 13.1043 7.22094 13.1171C7.24532 13.1478 7.29407 13.2091 7.31068 13.2289C7.36932 13.2987 7.45232 13.3934 7.55877 13.5045C7.77084 13.7258 8.08075 14.0172 8.48165 14.3088C9.27958 14.8891 10.4818 15.5001 12.0073 15.5001C13.5328 15.5001 14.735 14.8891 15.533 14.3088C15.9339 14.0172 16.2438 13.7258 16.4559 13.5045C16.5623 13.3934 16.6453 13.2987 16.704 13.2289C16.7333 13.1939 16.7567 13.165 16.7739 13.1432C17.1193 12.6969 17.0729 12.0493 16.6073 11.7001ZM15.0073 6C15.8358 6 16.5073 6.67157 16.5073 7.5C16.5073 8.32843 15.8358 9 15.0073 9C14.1789 9 13.5073 8.32843 13.5073 7.5C13.5073 6.67157 14.1789 6 15.0073 6Z"
fill="white"
/>
</svg>`;
const closeIcon = `<svg
id="closeIcon"
width="24"
height="24"
viewBox="0 0 24 24"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
d="M18 18L6 6M6 18L18 6"
stroke="white"
stroke-width="2"
stroke-linecap="round"
stroke-linejoin="round"
/>
</svg>`;
// create iframe
function createIframe() {
const iframe = document.createElement('iframe');
iframe.allow = "fullscreen;microphone"
iframe.title = "dify chatbot bubble window"
iframe.id = 'dify-chatbot-bubble-window'
iframe.src = `${baseUrl}/chat/${difyChatbotConfig.token}`
iframe.style.cssText = 'border: none; position: fixed; flex-direction: column; justify-content: space-between; box-shadow: rgba(150, 150, 150, 0.2) 0px 10px 30px 0px, rgba(150, 150, 150, 0.2) 0px 0px 0px 1px; bottom: 6.7rem; right: 1rem; width: 30rem; height: 48rem; border-radius: 0.75rem; display: flex; z-index: 2147483647; overflow: hidden; left: unset; background-color: #F3F4F6;'
document.body.appendChild(iframe);
}
/**
* rem to px
* @param {*} rem 30rem
*/
function handleRemToPx(rem) {
if (!rem) return;
let pxValue = 0;
try {
const regex = /\d+/;
// extract the numeric part and convert it to a numeric type
const remValue = parseInt(regex.exec(rem)[0], 10);
const rootFontSize = parseFloat(
window.getComputedStyle(document.documentElement).fontSize
);
pxValue = remValue * rootFontSize;
} catch (error) {
console.error(error);
}
return pxValue;
}
/**
* support element drag
* @param {*} targetButton entry element
*/
function handleElementDrag(targetButton) {
// define a variable to hold the mouse position
let mouseX = 0,
mouseY = 0,
offsetX = 0,
offsetY = 0;
// Listen for mouse press events, get mouse position and element position
targetButton.addEventListener("mousedown", function (event) {
// calculate mouse position
mouseX = event.clientX;
mouseY = event.clientY;
// calculate element position
const rect = targetButton.getBoundingClientRect();
offsetX = mouseX - rect.left;
offsetY = mouseY - rect.top;
// listen for mouse movement events
document.addEventListener("mousemove", onMouseMove);
});
// listen for mouse lift events and stop listening for mouse move events
document.addEventListener("mouseup", function () {
document.removeEventListener("mousemove", onMouseMove);
});
// the mouse moves the event handler to update the element position
function onMouseMove(event) {
// calculate element position
let newX = event.clientX - offsetX,
newY = event.clientY - offsetY;
// 计算视线边界
const viewportWidth = window.innerWidth,
viewportHeight = window.innerHeight;
const maxX = viewportWidth - targetButton.offsetWidth,
maxY = viewportHeight - targetButton.offsetHeight;
// application limitation
newX = Math.max(12, Math.min(newX, maxX));
newY = Math.max(12, Math.min(newY, maxY));
// update element position
targetButton.style.left = newX + "px";
targetButton.style.top = newY + "px";
}
}
const targetButton = document.getElementById("dify-chatbot-bubble-button");
if (!targetButton) {
// create button
const containerDiv = document.createElement("div");
containerDiv.id = 'dify-chatbot-bubble-button';
containerDiv.style.cssText = `position: fixed; bottom: 3rem; right: 1rem; width: 50px; height: 50px; border-radius: 25px; background-color: #155EEF; box-shadow: rgba(0, 0, 0, 0.2) 0px 4px 8px 0px; cursor: move; z-index: 2147483647; transition: all 0.2s ease-in-out 0s; left: unset; transform: scale(1); :hover {transform: scale(1.1);}`;
const displayDiv = document.createElement('div');
displayDiv.style.cssText = "display: flex; align-items: center; justify-content: center; width: 100%; height: 100%; z-index: 2147483647;";
displayDiv.innerHTML = openIcon;
containerDiv.appendChild(displayDiv);
document.body.appendChild(containerDiv);
handleElementDrag(containerDiv);
// add click event to control iframe display
containerDiv.addEventListener('click', function () {
const targetIframe = document.getElementById('dify-chatbot-bubble-window');
if (!targetIframe) {
createIframe();
displayDiv.innerHTML = closeIcon;
return;
}
if (targetIframe.style.display === "none") {
targetIframe.style.display = "block";
displayDiv.innerHTML = closeIcon;
} else {
targetIframe.style.display = "none";
displayDiv.innerHTML = openIcon;
}
});
} else {
// add any drag and drop to the floating icon
handleElementDrag(targetButton);
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
third-party/chrome plug-in/images/16.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.0 KiB

Some files were not shown because too many files have changed in this diff Show More