Compare commits

...

21 Commits

Author SHA1 Message Date
a6af8e5d8f Fix/new conversation in mobile phone (#593) 2023-07-18 16:57:28 +08:00
3e1d5ac51b Feat/header ssr (#594) 2023-07-18 16:57:14 +08:00
b0091452ca feat: add bash before entrypoint.sh in Dockerfile (#592) 2023-07-18 16:22:34 +08:00
eff115267f fix: anthropic completion error in blocking mode (#591) 2023-07-18 15:12:52 +08:00
07cde4f8fe feat: bump 0.3.10 (#589) 2023-07-18 15:04:49 +08:00
9f28a48a92 index add to db when dataset updated (#588) 2023-07-18 15:02:33 +08:00
0d3cd3b16a fix: azure provider select error when use custom azure provider (#587) 2023-07-18 14:34:09 +08:00
3dc82fb044 feat: remove davinci required model from azure provider (#586) 2023-07-18 14:14:56 +08:00
cb6e73347e Feat/add ruby sdk (#583) 2023-07-18 10:18:58 +08:00
ecd6cbaee6 Fix/use embedded chatbot with no track mode (#582) 2023-07-18 09:45:17 +08:00
d54e942264 Feat: hide password setting and invitation link in cloud version (#581) 2023-07-18 08:54:14 +08:00
28ba721455 Update README_CN.md (#575) 2023-07-17 11:08:26 +08:00
784dd7848e Update README.md (#576) 2023-07-17 11:08:03 +08:00
e2a5f8ba1a feat: bump version to 0.3.9 (#574) 2023-07-17 09:47:23 +08:00
8e11200306 feat: frontend support claude (#573)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-07-17 00:14:32 +08:00
7599f79a17 feat: claude api support (#572) 2023-07-17 00:14:19 +08:00
510389909c fix: change chatbot avart to dify icon (#571) 2023-07-16 16:30:55 +08:00
2c6e00174b add document limit check (#570) 2023-07-16 13:21:56 +08:00
24f3456990 fix: account check in runtime (#569) 2023-07-15 23:58:15 +08:00
20514ff288 fix: table too wide fix text generation ui (#566) 2023-07-14 18:15:56 +08:00
381d255290 fix setting-modal provider encrypted tip style (#565) 2023-07-14 17:10:02 +08:00
156 changed files with 2669 additions and 718 deletions

View File

@ -17,9 +17,15 @@ A single API encompassing plugin capabilities, context enhancement, and more, sa
Visual data analysis, log review, and annotation for applications
Dify is compatible with Langchain, meaning we'll gradually support multiple LLMs, currently supported:
- GPT 3 (text-davinci-003)
- GPT 3.5 Turbo(ChatGPT)
- GPT-4
* **OpenAI** GPT4、GPT3.5-turbo、GPT3.5-turbo-16k、text-davinci-003
* **Azure OpenAI**
* **Antropic**Claude2、Claude-instant
> We've got 1000 free trial credits available for all cloud service users to try out the Claude model.Visit [Dify.ai](https://dify.ai) and
try it now.
* **hugging face Hub**Coming soon.
## Use Cloud Services

View File

@ -17,11 +17,16 @@
- 一套 API 即可包含插件、上下文增强等能力,替你省下了后端代码的编写工作
- 可视化的对应用进行数据分析,查阅日志或进行标注
Dify 兼容 Langchain这意味着我们将逐步支持多种 LLMs ,目前支持:
Dify 兼容 Langchain这意味着我们将逐步支持多种 LLMs ,目前支持的模型供应商
- GPT 3 (text-davinci-003)
- GPT 3.5 Turbo(ChatGPT)
- GPT-4
* **OpenAI**GPT4、GPT3.5-turbo、GPT3.5-turbo-16k、text-davinci-003
* **Azure OpenAI Service**
* **Anthropic**Claude2、Claude-instant
> 我们为所有注册云端版的用户免费提供了 1000 次 Claude 模型的消息调用额度,登录 [dify.ai](https://cloud.dify.ai) 即可使用。
* **Hugging Face Hub**(即将推出)
## 使用云服务

View File

@ -27,4 +27,4 @@ RUN chmod +x /entrypoint.sh
ARG COMMIT_SHA
ENV COMMIT_SHA ${COMMIT_SHA}
ENTRYPOINT ["/entrypoint.sh"]
ENTRYPOINT ["/bin/bash", "/entrypoint.sh"]

View File

@ -2,6 +2,8 @@
import os
from datetime import datetime
from werkzeug.exceptions import Forbidden
if not os.environ.get("DEBUG") or os.environ.get("DEBUG").lower() != 'true':
from gevent import monkey
monkey.patch_all()
@ -27,7 +29,7 @@ from events import event_handlers
import core
from config import Config, CloudEditionConfig
from commands import register_commands
from models.account import TenantAccountJoin
from models.account import TenantAccountJoin, AccountStatus
from models.model import Account, EndUser, App
import warnings
@ -101,6 +103,9 @@ def load_user(user_id):
account = db.session.query(Account).filter(Account.id == account_id).first()
if account:
if account.status == AccountStatus.BANNED.value or account.status == AccountStatus.CLOSED.value:
raise Forbidden('Account is banned or closed.')
workspace_id = session.get('workspace_id')
if workspace_id:
tenant_account_join = db.session.query(TenantAccountJoin).filter(

View File

@ -18,7 +18,8 @@ from models.model import Account
import secrets
import base64
from models.provider import Provider
from models.provider import Provider, ProviderName
from services.provider_service import ProviderService
@click.command('reset-password', help='Reset the account password.')
@ -193,9 +194,40 @@ def recreate_all_dataset_indexes():
click.echo(click.style('Congratulations! Recreate {} dataset indexes.'.format(recreate_count), fg='green'))
@click.command('sync-anthropic-hosted-providers', help='Sync anthropic hosted providers.')
def sync_anthropic_hosted_providers():
click.echo(click.style('Start sync anthropic hosted providers.', fg='green'))
count = 0
page = 1
while True:
try:
tenants = db.session.query(Tenant).order_by(Tenant.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for tenant in tenants:
try:
click.echo('Syncing tenant anthropic hosted provider: {}'.format(tenant.id))
ProviderService.create_system_provider(
tenant,
ProviderName.ANTHROPIC.value,
current_app.config['ANTHROPIC_HOSTED_QUOTA_LIMIT'],
True
)
count += 1
except Exception as e:
click.echo(click.style('Sync tenant anthropic hosted provider error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
continue
click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))
def register_commands(app):
app.cli.add_command(reset_password)
app.cli.add_command(reset_email)
app.cli.add_command(generate_invitation_codes)
app.cli.add_command(reset_encrypt_key_pair)
app.cli.add_command(recreate_all_dataset_indexes)
app.cli.add_command(sync_anthropic_hosted_providers)

View File

@ -50,7 +50,10 @@ DEFAULTS = {
'PDF_PREVIEW': 'True',
'LOG_LEVEL': 'INFO',
'DISABLE_PROVIDER_CONFIG_VALIDATION': 'False',
'DEFAULT_LLM_PROVIDER': 'openai'
'DEFAULT_LLM_PROVIDER': 'openai',
'OPENAI_HOSTED_QUOTA_LIMIT': 200,
'ANTHROPIC_HOSTED_QUOTA_LIMIT': 1000,
'TENANT_DOCUMENT_COUNT': 100
}
@ -86,7 +89,7 @@ class Config:
self.CONSOLE_URL = get_env('CONSOLE_URL')
self.API_URL = get_env('API_URL')
self.APP_URL = get_env('APP_URL')
self.CURRENT_VERSION = "0.3.8"
self.CURRENT_VERSION = "0.3.10"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
@ -191,6 +194,10 @@ class Config:
# hosted provider credentials
self.OPENAI_API_KEY = get_env('OPENAI_API_KEY')
self.ANTHROPIC_API_KEY = get_env('ANTHROPIC_API_KEY')
self.OPENAI_HOSTED_QUOTA_LIMIT = get_env('OPENAI_HOSTED_QUOTA_LIMIT')
self.ANTHROPIC_HOSTED_QUOTA_LIMIT = get_env('ANTHROPIC_HOSTED_QUOTA_LIMIT')
# By default it is False
# You could disable it for compatibility with certain OpenAPI providers
@ -207,6 +214,8 @@ class Config:
self.NOTION_INTERNAL_SECRET = get_env('NOTION_INTERNAL_SECRET')
self.NOTION_INTEGRATION_TOKEN = get_env('NOTION_INTEGRATION_TOKEN')
self.TENANT_DOCUMENT_COUNT = get_env('TENANT_DOCUMENT_COUNT')
class CloudEditionConfig(Config):

View File

@ -50,8 +50,8 @@ class ChatMessageAudioApi(Resource):
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:

View File

@ -63,8 +63,8 @@ class CompletionMessageApi(Resource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@ -133,8 +133,8 @@ class ChatMessageApi(Resource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@ -164,8 +164,8 @@ def compact_response(response: Union[dict | Generator]) -> Response:
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
yield "data: " + json.dumps(api.handle_error(AppUnavailableError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except ProviderTokenNotInitError as ex:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError(ex.description)).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:

View File

@ -16,7 +16,7 @@ class ProviderNotInitializeError(BaseHTTPException):
class ProviderQuotaExceededError(BaseHTTPException):
error_code = 'provider_quota_exceeded'
description = "Your quota for Dify Hosted OpenAI has been exhausted. " \
description = "Your quota for Dify Hosted Model Provider has been exhausted. " \
"Please go to Settings -> Model Provider to complete your own provider credentials."
code = 400

View File

@ -27,8 +27,8 @@ class IntroductionGenerateApi(Resource):
account.current_tenant_id,
args['prompt_template']
)
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@ -58,8 +58,8 @@ class RuleGenerateApi(Resource):
args['audiences'],
args['hoping_to_solve']
)
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:

View File

@ -269,8 +269,8 @@ class MessageMoreLikeThisApi(Resource):
raise NotFound("Message Not Exists.")
except MoreLikeThisDisabledError:
raise AppMoreLikeThisDisabledError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@ -297,8 +297,8 @@ def compact_response(response: Union[dict | Generator]) -> Response:
yield "data: " + json.dumps(api.handle_error(NotFound("Message Not Exists.")).get_json()) + "\n\n"
except MoreLikeThisDisabledError:
yield "data: " + json.dumps(api.handle_error(AppMoreLikeThisDisabledError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except ProviderTokenNotInitError as ex:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError(ex.description)).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
@ -339,8 +339,8 @@ class MessageSuggestedQuestionApi(Resource):
raise NotFound("Message not found")
except ConversationNotExistsError:
raise NotFound("Conversation not found")
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:

View File

@ -279,8 +279,8 @@ class DatasetDocumentListApi(Resource):
try:
documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user)
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@ -324,8 +324,8 @@ class DatasetInitApi(Resource):
document_data=args,
account=current_user
)
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:

View File

@ -95,8 +95,8 @@ class HitTestingApi(Resource):
return {"query": response['query'], 'records': marshal(response['records'], hit_testing_record_fields)}
except services.errors.index.IndexNotInitializedError:
raise DatasetNotInitializedError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:

View File

@ -47,8 +47,8 @@ class ChatAudioApi(InstalledAppResource):
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:

View File

@ -54,8 +54,8 @@ class CompletionApi(InstalledAppResource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@ -113,8 +113,8 @@ class ChatApi(InstalledAppResource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@ -155,8 +155,8 @@ def compact_response(response: Union[dict | Generator]) -> Response:
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
yield "data: " + json.dumps(api.handle_error(AppUnavailableError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except ProviderTokenNotInitError as ex:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError(ex.description)).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:

View File

@ -107,8 +107,8 @@ class MessageMoreLikeThisApi(InstalledAppResource):
raise NotFound("Message Not Exists.")
except MoreLikeThisDisabledError:
raise AppMoreLikeThisDisabledError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@ -135,8 +135,8 @@ def compact_response(response: Union[dict | Generator]) -> Response:
yield "data: " + json.dumps(api.handle_error(NotFound("Message Not Exists.")).get_json()) + "\n\n"
except MoreLikeThisDisabledError:
yield "data: " + json.dumps(api.handle_error(AppMoreLikeThisDisabledError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except ProviderTokenNotInitError as ex:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError(ex.description)).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
@ -174,8 +174,8 @@ class MessageSuggestedQuestionApi(InstalledAppResource):
raise NotFound("Conversation not found")
except SuggestedQuestionsAfterAnswerDisabledError:
raise AppSuggestedQuestionsAfterAnswerDisabledError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:

View File

@ -3,6 +3,7 @@ import base64
import json
import logging
from flask import current_app
from flask_login import login_required, current_user
from flask_restful import Resource, reqparse, abort
from werkzeug.exceptions import Forbidden
@ -34,7 +35,7 @@ class ProviderListApi(Resource):
plaintext, the rest is replaced by * and the last two bits are displayed in plaintext
"""
ProviderService.init_supported_provider(current_user.current_tenant, "cloud")
ProviderService.init_supported_provider(current_user.current_tenant)
providers = Provider.query.filter_by(tenant_id=tenant_id).all()
provider_list = [
@ -50,7 +51,8 @@ class ProviderListApi(Resource):
'quota_used': p.quota_used
} if p.provider_type == ProviderType.SYSTEM.value else {}),
'token': ProviderService.get_obfuscated_api_key(current_user.current_tenant,
ProviderName(p.provider_name))
ProviderName(p.provider_name), only_custom=True)
if p.provider_type == ProviderType.CUSTOM.value else None
}
for p in providers
]
@ -121,9 +123,10 @@ class ProviderTokenApi(Resource):
is_valid=token_is_valid)
db.session.add(provider_model)
if provider_model.is_valid:
if provider in [ProviderName.OPENAI.value, ProviderName.AZURE_OPENAI.value] and provider_model.is_valid:
other_providers = db.session.query(Provider).filter(
Provider.tenant_id == tenant.id,
Provider.provider_name.in_([ProviderName.OPENAI.value, ProviderName.AZURE_OPENAI.value]),
Provider.provider_name != provider,
Provider.provider_type == ProviderType.CUSTOM.value
).all()
@ -133,7 +136,7 @@ class ProviderTokenApi(Resource):
db.session.commit()
if provider in [ProviderName.ANTHROPIC.value, ProviderName.AZURE_OPENAI.value, ProviderName.COHERE.value,
if provider in [ProviderName.AZURE_OPENAI.value, ProviderName.COHERE.value,
ProviderName.HUGGINGFACEHUB.value]:
return {'result': 'success', 'warning': 'MOCK: This provider is not supported yet.'}, 201
@ -157,7 +160,7 @@ class ProviderTokenValidateApi(Resource):
args = parser.parse_args()
# todo: remove this when the provider is supported
if provider in [ProviderName.ANTHROPIC.value, ProviderName.COHERE.value,
if provider in [ProviderName.COHERE.value,
ProviderName.HUGGINGFACEHUB.value]:
return {'result': 'success', 'warning': 'MOCK: This provider is not supported yet.'}
@ -203,7 +206,19 @@ class ProviderSystemApi(Resource):
provider_model.is_valid = args['is_enabled']
db.session.commit()
elif not provider_model:
ProviderService.create_system_provider(tenant, provider, args['is_enabled'])
if provider == ProviderName.OPENAI.value:
quota_limit = current_app.config['OPENAI_HOSTED_QUOTA_LIMIT']
elif provider == ProviderName.ANTHROPIC.value:
quota_limit = current_app.config['ANTHROPIC_HOSTED_QUOTA_LIMIT']
else:
quota_limit = 0
ProviderService.create_system_provider(
tenant,
provider,
quota_limit,
args['is_enabled']
)
else:
abort(403)

View File

@ -43,8 +43,8 @@ class AudioApi(AppApiResource):
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:

View File

@ -54,8 +54,8 @@ class CompletionApi(AppApiResource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@ -115,8 +115,8 @@ class ChatApi(AppApiResource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@ -156,8 +156,8 @@ def compact_response(response: Union[dict | Generator]) -> Response:
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
yield "data: " + json.dumps(api.handle_error(AppUnavailableError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except ProviderTokenNotInitError as ex:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError(ex.description)).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:

View File

@ -85,8 +85,8 @@ class DocumentListApi(DatasetApiResource):
dataset_process_rule=dataset.latest_process_rule,
created_from='api'
)
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
document = documents[0]
if doc_type and doc_metadata:
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type]

View File

@ -45,8 +45,8 @@ class AudioApi(WebApiResource):
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:

View File

@ -52,8 +52,8 @@ class CompletionApi(WebApiResource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@ -109,8 +109,8 @@ class ChatApi(WebApiResource):
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@ -150,8 +150,8 @@ def compact_response(response: Union[dict | Generator]) -> Response:
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
yield "data: " + json.dumps(api.handle_error(AppUnavailableError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except ProviderTokenNotInitError as ex:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError(ex.description)).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:

View File

@ -101,8 +101,8 @@ class MessageMoreLikeThisApi(WebApiResource):
raise NotFound("Message Not Exists.")
except MoreLikeThisDisabledError:
raise AppMoreLikeThisDisabledError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
@ -129,8 +129,8 @@ def compact_response(response: Union[dict | Generator]) -> Response:
yield "data: " + json.dumps(api.handle_error(NotFound("Message Not Exists.")).get_json()) + "\n\n"
except MoreLikeThisDisabledError:
yield "data: " + json.dumps(api.handle_error(AppMoreLikeThisDisabledError()).get_json()) + "\n\n"
except ProviderTokenNotInitError:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError()).get_json()) + "\n\n"
except ProviderTokenNotInitError as ex:
yield "data: " + json.dumps(api.handle_error(ProviderNotInitializeError(ex.description)).get_json()) + "\n\n"
except QuotaExceededError:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
@ -167,8 +167,8 @@ class MessageSuggestedQuestionApi(WebApiResource):
raise NotFound("Conversation not found")
except SuggestedQuestionsAfterAnswerDisabledError:
raise AppSuggestedQuestionsAfterAnswerDisabledError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:

View File

@ -13,8 +13,13 @@ class HostedOpenAICredential(BaseModel):
api_key: str
class HostedAnthropicCredential(BaseModel):
api_key: str
class HostedLLMCredentials(BaseModel):
openai: Optional[HostedOpenAICredential] = None
anthropic: Optional[HostedAnthropicCredential] = None
hosted_llm_credentials = HostedLLMCredentials()
@ -26,3 +31,6 @@ def init_app(app: Flask):
if app.config.get("OPENAI_API_KEY"):
hosted_llm_credentials.openai = HostedOpenAICredential(api_key=app.config.get("OPENAI_API_KEY"))
if app.config.get("ANTHROPIC_API_KEY"):
hosted_llm_credentials.anthropic = HostedAnthropicCredential(api_key=app.config.get("ANTHROPIC_API_KEY"))

View File

@ -48,7 +48,7 @@ class LLMCallbackHandler(BaseCallbackHandler):
})
self.llm_message.prompt = real_prompts
self.llm_message.prompt_tokens = self.llm.get_messages_tokens(messages[0])
self.llm_message.prompt_tokens = self.llm.get_num_tokens_from_messages(messages[0])
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
@ -69,9 +69,8 @@ class LLMCallbackHandler(BaseCallbackHandler):
if not self.conversation_message_task.streaming:
self.conversation_message_task.append_message_text(response.generations[0][0].text)
self.llm_message.completion = response.generations[0][0].text
self.llm_message.completion_tokens = response.llm_output['token_usage']['completion_tokens']
else:
self.llm_message.completion_tokens = self.llm.get_num_tokens(self.llm_message.completion)
self.llm_message.completion_tokens = self.llm.get_num_tokens(self.llm_message.completion)
self.conversation_message_task.save_message(self.llm_message)

View File

@ -118,6 +118,7 @@ class Completion:
prompt, stop_words = cls.get_main_llm_prompt(
mode=mode,
llm=final_llm,
model=app_model_config.model_dict,
pre_prompt=app_model_config.pre_prompt,
query=query,
inputs=inputs,
@ -129,6 +130,7 @@ class Completion:
cls.recale_llm_max_tokens(
final_llm=final_llm,
model=app_model_config.model_dict,
prompt=prompt,
mode=mode
)
@ -138,7 +140,8 @@ class Completion:
return response
@classmethod
def get_main_llm_prompt(cls, mode: str, llm: BaseLanguageModel, pre_prompt: str, query: str, inputs: dict,
def get_main_llm_prompt(cls, mode: str, llm: BaseLanguageModel, model: dict,
pre_prompt: str, query: str, inputs: dict,
chain_output: Optional[str],
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory]) -> \
Tuple[Union[str | List[BaseMessage]], Optional[List[str]]]:
@ -151,10 +154,11 @@ class Completion:
if mode == 'completion':
prompt_template = JinjaPromptTemplate.from_template(
template=("""Use the following CONTEXT as your learned knowledge:
[CONTEXT]
template=("""Use the following context as your learned knowledge, inside <context></context> XML tags.
<context>
{{context}}
[END CONTEXT]
</context>
When answer to user:
- If you don't know, just say that you don't know.
@ -204,10 +208,11 @@ And answer according to the language of the user's question.
if chain_output:
human_inputs['context'] = chain_output
human_message_prompt += """Use the following CONTEXT as your learned knowledge.
[CONTEXT]
human_message_prompt += """Use the following context as your learned knowledge, inside <context></context> XML tags.
<context>
{{context}}
[END CONTEXT]
</context>
When answer to user:
- If you don't know, just say that you don't know.
@ -219,7 +224,7 @@ And answer according to the language of the user's question.
if pre_prompt:
human_message_prompt += pre_prompt
query_prompt = "\nHuman: {{query}}\nAI: "
query_prompt = "\n\nHuman: {{query}}\n\nAssistant: "
if memory:
# append chat histories
@ -228,9 +233,11 @@ And answer according to the language of the user's question.
inputs=human_inputs
)
curr_message_tokens = memory.llm.get_messages_tokens([tmp_human_message])
rest_tokens = llm_constant.max_context_token_length[memory.llm.model_name] \
- memory.llm.max_tokens - curr_message_tokens
curr_message_tokens = memory.llm.get_num_tokens_from_messages([tmp_human_message])
model_name = model['name']
max_tokens = model.get("completion_params").get('max_tokens')
rest_tokens = llm_constant.max_context_token_length[model_name] \
- max_tokens - curr_message_tokens
rest_tokens = max(rest_tokens, 0)
histories = cls.get_history_messages_from_memory(memory, rest_tokens)
@ -241,7 +248,10 @@ And answer according to the language of the user's question.
# if histories_param not in human_inputs:
# human_inputs[histories_param] = '{{' + histories_param + '}}'
human_message_prompt += "\n\n" + histories
human_message_prompt += "\n\n" if human_message_prompt else ""
human_message_prompt += "Here is the chat histories between human and assistant, " \
"inside <histories></histories> XML tags.\n\n<histories>"
human_message_prompt += histories + "</histories>"
human_message_prompt += query_prompt
@ -307,13 +317,15 @@ And answer according to the language of the user's question.
model=app_model_config.model_dict
)
model_limited_tokens = llm_constant.max_context_token_length[llm.model_name]
max_tokens = llm.max_tokens
model_name = app_model_config.model_dict.get("name")
model_limited_tokens = llm_constant.max_context_token_length[model_name]
max_tokens = app_model_config.model_dict.get("completion_params").get('max_tokens')
# get prompt without memory and context
prompt, _ = cls.get_main_llm_prompt(
mode=mode,
llm=llm,
model=app_model_config.model_dict,
pre_prompt=app_model_config.pre_prompt,
query=query,
inputs=inputs,
@ -332,16 +344,17 @@ And answer according to the language of the user's question.
return rest_tokens
@classmethod
def recale_llm_max_tokens(cls, final_llm: Union[StreamableOpenAI, StreamableChatOpenAI],
def recale_llm_max_tokens(cls, final_llm: BaseLanguageModel, model: dict,
prompt: Union[str, List[BaseMessage]], mode: str):
# recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
model_limited_tokens = llm_constant.max_context_token_length[final_llm.model_name]
max_tokens = final_llm.max_tokens
model_name = model.get("name")
model_limited_tokens = llm_constant.max_context_token_length[model_name]
max_tokens = model.get("completion_params").get('max_tokens')
if mode == 'completion' and isinstance(final_llm, BaseLLM):
prompt_tokens = final_llm.get_num_tokens(prompt)
else:
prompt_tokens = final_llm.get_messages_tokens(prompt)
prompt_tokens = final_llm.get_num_tokens_from_messages(prompt)
if prompt_tokens + max_tokens > model_limited_tokens:
max_tokens = max(model_limited_tokens - prompt_tokens, 16)
@ -350,9 +363,10 @@ And answer according to the language of the user's question.
@classmethod
def generate_more_like_this(cls, task_id: str, app: App, message: Message, pre_prompt: str,
app_model_config: AppModelConfig, user: Account, streaming: bool):
llm: StreamableOpenAI = LLMBuilder.to_llm(
llm = LLMBuilder.to_llm_from_model(
tenant_id=app.tenant_id,
model_name='gpt-3.5-turbo',
model=app_model_config.model_dict,
streaming=streaming
)
@ -360,6 +374,7 @@ And answer according to the language of the user's question.
original_prompt, _ = cls.get_main_llm_prompt(
mode="completion",
llm=llm,
model=app_model_config.model_dict,
pre_prompt=pre_prompt,
query=message.query,
inputs=message.inputs,
@ -390,6 +405,7 @@ And answer according to the language of the user's question.
cls.recale_llm_max_tokens(
final_llm=llm,
model=app_model_config.model_dict,
prompt=prompt,
mode='completion'
)

View File

@ -1,6 +1,8 @@
from _decimal import Decimal
models = {
'claude-instant-1': 'anthropic', # 100,000 tokens
'claude-2': 'anthropic', # 100,000 tokens
'gpt-4': 'openai', # 8,192 tokens
'gpt-4-32k': 'openai', # 32,768 tokens
'gpt-3.5-turbo': 'openai', # 4,096 tokens
@ -10,10 +12,13 @@ models = {
'text-curie-001': 'openai', # 2,049 tokens
'text-babbage-001': 'openai', # 2,049 tokens
'text-ada-001': 'openai', # 2,049 tokens
'text-embedding-ada-002': 'openai' # 8191 tokens, 1536 dimensions
'text-embedding-ada-002': 'openai', # 8191 tokens, 1536 dimensions
'whisper-1': 'openai'
}
max_context_token_length = {
'claude-instant-1': 100000,
'claude-2': 100000,
'gpt-4': 8192,
'gpt-4-32k': 32768,
'gpt-3.5-turbo': 4096,
@ -23,17 +28,21 @@ max_context_token_length = {
'text-curie-001': 2049,
'text-babbage-001': 2049,
'text-ada-001': 2049,
'text-embedding-ada-002': 8191
'text-embedding-ada-002': 8191,
}
models_by_mode = {
'chat': [
'claude-instant-1', # 100,000 tokens
'claude-2', # 100,000 tokens
'gpt-4', # 8,192 tokens
'gpt-4-32k', # 32,768 tokens
'gpt-3.5-turbo', # 4,096 tokens
'gpt-3.5-turbo-16k', # 16,384 tokens
],
'completion': [
'claude-instant-1', # 100,000 tokens
'claude-2', # 100,000 tokens
'gpt-4', # 8,192 tokens
'gpt-4-32k', # 32,768 tokens
'gpt-3.5-turbo', # 4,096 tokens
@ -52,6 +61,14 @@ models_by_mode = {
model_currency = 'USD'
model_prices = {
'claude-instant-1': {
'prompt': Decimal('0.00163'),
'completion': Decimal('0.00551'),
},
'claude-2': {
'prompt': Decimal('0.01102'),
'completion': Decimal('0.03268'),
},
'gpt-4': {
'prompt': Decimal('0.03'),
'completion': Decimal('0.06'),

View File

@ -56,7 +56,7 @@ class ConversationMessageTask:
)
def init(self):
provider_name = LLMBuilder.get_default_provider(self.app.tenant_id)
provider_name = LLMBuilder.get_default_provider(self.app.tenant_id, self.model_name)
self.model_dict['provider'] = provider_name
override_model_configs = None
@ -89,7 +89,7 @@ class ConversationMessageTask:
system_message = PromptBuilder.to_system_message(self.app_model_config.pre_prompt, self.inputs)
system_instruction = system_message.content
llm = LLMBuilder.to_llm(self.tenant_id, self.model_name)
system_instruction_tokens = llm.get_messages_tokens([system_message])
system_instruction_tokens = llm.get_num_tokens_from_messages([system_message])
if not self.conversation:
self.is_new_conversation = True
@ -185,6 +185,7 @@ class ConversationMessageTask:
if provider and provider.provider_type == ProviderType.SYSTEM.value:
db.session.query(Provider).filter(
Provider.tenant_id == self.app.tenant_id,
Provider.provider_name == provider.provider_name,
Provider.quota_limit > Provider.quota_used
).update({'quota_used': Provider.quota_used + 1})

View File

@ -4,6 +4,7 @@ from typing import List
from langchain.embeddings.base import Embeddings
from sqlalchemy.exc import IntegrityError
from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
from extensions.ext_database import db
from libs import helper
from models.dataset import Embedding
@ -49,6 +50,7 @@ class CacheEmbedding(Embeddings):
text_embeddings.extend(embedding_results)
return text_embeddings
@handle_openai_exceptions
def embed_query(self, text: str) -> List[float]:
"""Embed query text."""
# use doc embedding cache or store if not exists

View File

@ -23,6 +23,10 @@ class LLMGenerator:
@classmethod
def generate_conversation_name(cls, tenant_id: str, query, answer):
prompt = CONVERSATION_TITLE_PROMPT
if len(query) > 2000:
query = query[:300] + "...[TRUNCATED]..." + query[-300:]
prompt = prompt.format(query=query)
llm: StreamableOpenAI = LLMBuilder.to_llm(
tenant_id=tenant_id,
@ -52,7 +56,17 @@ class LLMGenerator:
if not message.answer:
continue
message_qa_text = "Human:" + message.query + "\nAI:" + message.answer + "\n"
if len(message.query) > 2000:
query = message.query[:300] + "...[TRUNCATED]..." + message.query[-300:]
else:
query = message.query
if len(message.answer) > 2000:
answer = message.answer[:300] + "...[TRUNCATED]..." + message.answer[-300:]
else:
answer = message.answer
message_qa_text = "\n\nHuman:" + query + "\n\nAssistant:" + answer
if rest_tokens - TokenCalculator.get_num_tokens(model, context + message_qa_text) > 0:
context += message_qa_text

View File

@ -17,7 +17,7 @@ class IndexBuilder:
model_credentials = LLMBuilder.get_model_credentials(
tenant_id=dataset.tenant_id,
model_provider=LLMBuilder.get_default_provider(dataset.tenant_id),
model_provider=LLMBuilder.get_default_provider(dataset.tenant_id, 'text-embedding-ada-002'),
model_name='text-embedding-ada-002'
)

View File

@ -40,6 +40,9 @@ class ProviderTokenNotInitError(Exception):
"""
description = "Provider Token Not Init"
def __init__(self, *args, **kwargs):
self.description = args[0] if args else self.description
class QuotaExceededError(Exception):
"""

View File

@ -8,9 +8,10 @@ from core.llm.provider.base import BaseProvider
from core.llm.provider.llm_provider_service import LLMProviderService
from core.llm.streamable_azure_chat_open_ai import StreamableAzureChatOpenAI
from core.llm.streamable_azure_open_ai import StreamableAzureOpenAI
from core.llm.streamable_chat_anthropic import StreamableChatAnthropic
from core.llm.streamable_chat_open_ai import StreamableChatOpenAI
from core.llm.streamable_open_ai import StreamableOpenAI
from models.provider import ProviderType
from models.provider import ProviderType, ProviderName
class LLMBuilder:
@ -32,43 +33,43 @@ class LLMBuilder:
@classmethod
def to_llm(cls, tenant_id: str, model_name: str, **kwargs) -> Union[StreamableOpenAI, StreamableChatOpenAI]:
provider = cls.get_default_provider(tenant_id)
provider = cls.get_default_provider(tenant_id, model_name)
model_credentials = cls.get_model_credentials(tenant_id, provider, model_name)
llm_cls = None
mode = cls.get_mode_by_model(model_name)
if mode == 'chat':
if provider == 'openai':
if provider == ProviderName.OPENAI.value:
llm_cls = StreamableChatOpenAI
else:
elif provider == ProviderName.AZURE_OPENAI.value:
llm_cls = StreamableAzureChatOpenAI
elif provider == ProviderName.ANTHROPIC.value:
llm_cls = StreamableChatAnthropic
elif mode == 'completion':
if provider == 'openai':
if provider == ProviderName.OPENAI.value:
llm_cls = StreamableOpenAI
else:
elif provider == ProviderName.AZURE_OPENAI.value:
llm_cls = StreamableAzureOpenAI
else:
if not llm_cls:
raise ValueError(f"model name {model_name} is not supported.")
model_kwargs = {
'model_name': model_name,
'temperature': kwargs.get('temperature', 0),
'max_tokens': kwargs.get('max_tokens', 256),
'top_p': kwargs.get('top_p', 1),
'frequency_penalty': kwargs.get('frequency_penalty', 0),
'presence_penalty': kwargs.get('presence_penalty', 0),
'callbacks': kwargs.get('callbacks', None),
'streaming': kwargs.get('streaming', False),
}
model_extras_kwargs = model_kwargs if mode == 'completion' else {'model_kwargs': model_kwargs}
model_kwargs.update(model_credentials)
model_kwargs = llm_cls.get_kwargs_from_model_params(model_kwargs)
return llm_cls(
model_name=model_name,
temperature=kwargs.get('temperature', 0),
max_tokens=kwargs.get('max_tokens', 256),
**model_extras_kwargs,
callbacks=kwargs.get('callbacks', None),
streaming=kwargs.get('streaming', False),
# request_timeout=None
**model_credentials
)
return llm_cls(**model_kwargs)
@classmethod
def to_llm_from_model(cls, tenant_id: str, model: dict, streaming: bool = False,
@ -118,14 +119,30 @@ class LLMBuilder:
return provider_service.get_credentials(model_name)
@classmethod
def get_default_provider(cls, tenant_id: str) -> str:
provider = BaseProvider.get_valid_provider(tenant_id)
if not provider:
raise ProviderTokenNotInitError()
def get_default_provider(cls, tenant_id: str, model_name: str) -> str:
provider_name = llm_constant.models[model_name]
if provider_name == 'openai':
# get the default provider (openai / azure_openai) for the tenant
openai_provider = BaseProvider.get_valid_provider(tenant_id, ProviderName.OPENAI.value)
azure_openai_provider = BaseProvider.get_valid_provider(tenant_id, ProviderName.AZURE_OPENAI.value)
provider = None
if openai_provider and openai_provider.provider_type == ProviderType.CUSTOM.value:
provider = openai_provider
elif azure_openai_provider and azure_openai_provider.provider_type == ProviderType.CUSTOM.value:
provider = azure_openai_provider
elif openai_provider and openai_provider.provider_type == ProviderType.SYSTEM.value:
provider = openai_provider
elif azure_openai_provider and azure_openai_provider.provider_type == ProviderType.SYSTEM.value:
provider = azure_openai_provider
if not provider:
raise ProviderTokenNotInitError(
f"No valid {provider_name} model provider credentials found. "
f"Please go to Settings -> Model Provider to complete your provider credentials."
)
if provider.provider_type == ProviderType.SYSTEM.value:
provider_name = 'openai'
else:
provider_name = provider.provider_name
return provider_name

View File

@ -1,23 +1,138 @@
from typing import Optional
import json
import logging
from typing import Optional, Union
import anthropic
from langchain.chat_models import ChatAnthropic
from langchain.schema import HumanMessage
from core import hosted_llm_credentials
from core.llm.error import ProviderTokenNotInitError
from core.llm.provider.base import BaseProvider
from models.provider import ProviderName
from core.llm.provider.errors import ValidateFailedError
from models.provider import ProviderName, ProviderType
class AnthropicProvider(BaseProvider):
def get_models(self, model_id: Optional[str] = None) -> list[dict]:
credentials = self.get_credentials(model_id)
# todo
return []
return [
{
'id': 'claude-instant-1',
'name': 'claude-instant-1',
},
{
'id': 'claude-2',
'name': 'claude-2',
},
]
def get_credentials(self, model_id: Optional[str] = None) -> dict:
"""
Returns the API credentials for Azure OpenAI as a dictionary, for the given tenant_id.
The dictionary contains keys: azure_api_type, azure_api_version, azure_api_base, and azure_api_key.
"""
return {
'anthropic_api_key': self.get_provider_api_key(model_id=model_id)
}
return self.get_provider_api_key(model_id=model_id)
def get_provider_name(self):
return ProviderName.ANTHROPIC
return ProviderName.ANTHROPIC
def get_provider_configs(self, obfuscated: bool = False, only_custom: bool = False) -> Union[str | dict]:
"""
Returns the provider configs.
"""
try:
config = self.get_provider_api_key(only_custom=only_custom)
except:
config = {
'anthropic_api_key': ''
}
if obfuscated:
if not config.get('anthropic_api_key'):
config = {
'anthropic_api_key': ''
}
config['anthropic_api_key'] = self.obfuscated_token(config.get('anthropic_api_key'))
return config
return config
def get_encrypted_token(self, config: Union[dict | str]):
"""
Returns the encrypted token.
"""
return json.dumps({
'anthropic_api_key': self.encrypt_token(config['anthropic_api_key'])
})
def get_decrypted_token(self, token: str):
"""
Returns the decrypted token.
"""
config = json.loads(token)
config['anthropic_api_key'] = self.decrypt_token(config['anthropic_api_key'])
return config
def get_token_type(self):
return dict
def config_validate(self, config: Union[dict | str]):
"""
Validates the given config.
"""
# check OpenAI / Azure OpenAI credential is valid
openai_provider = BaseProvider.get_valid_provider(self.tenant_id, ProviderName.OPENAI.value)
azure_openai_provider = BaseProvider.get_valid_provider(self.tenant_id, ProviderName.AZURE_OPENAI.value)
provider = None
if openai_provider:
provider = openai_provider
elif azure_openai_provider:
provider = azure_openai_provider
if not provider:
raise ValidateFailedError(f"OpenAI or Azure OpenAI provider must be configured first.")
if provider.provider_type == ProviderType.SYSTEM.value:
quota_used = provider.quota_used if provider.quota_used is not None else 0
quota_limit = provider.quota_limit if provider.quota_limit is not None else 0
if quota_used >= quota_limit:
raise ValidateFailedError(f"Your quota for Dify Hosted OpenAI has been exhausted, "
f"please configure OpenAI or Azure OpenAI provider first.")
try:
if not isinstance(config, dict):
raise ValueError('Config must be a object.')
if 'anthropic_api_key' not in config:
raise ValueError('anthropic_api_key must be provided.')
chat_llm = ChatAnthropic(
model='claude-instant-1',
anthropic_api_key=config['anthropic_api_key'],
max_tokens_to_sample=10,
temperature=0,
default_request_timeout=60
)
messages = [
HumanMessage(
content="ping"
)
]
chat_llm(messages)
except anthropic.APIConnectionError as ex:
raise ValidateFailedError(f"Anthropic: Connection error, cause: {ex.__cause__}")
except (anthropic.APIStatusError, anthropic.RateLimitError) as ex:
raise ValidateFailedError(f"Anthropic: Error code: {ex.status_code} - "
f"{ex.body['error']['type']}: {ex.body['error']['message']}")
except Exception as ex:
logging.exception('Anthropic config validation failed')
raise ex
def get_hosted_credentials(self) -> Union[str | dict]:
if not hosted_llm_credentials.anthropic or not hosted_llm_credentials.anthropic.api_key:
raise ProviderTokenNotInitError(
f"No valid {self.get_provider_name().value} model provider credentials found. "
f"Please go to Settings -> Model Provider to complete your provider credentials."
)
return {'anthropic_api_key': hosted_llm_credentials.anthropic.api_key}

View File

@ -52,12 +52,12 @@ class AzureProvider(BaseProvider):
def get_provider_name(self):
return ProviderName.AZURE_OPENAI
def get_provider_configs(self, obfuscated: bool = False) -> Union[str | dict]:
def get_provider_configs(self, obfuscated: bool = False, only_custom: bool = False) -> Union[str | dict]:
"""
Returns the provider configs.
"""
try:
config = self.get_provider_api_key()
config = self.get_provider_api_key(only_custom=only_custom)
except:
config = {
'openai_api_type': 'azure',
@ -81,7 +81,6 @@ class AzureProvider(BaseProvider):
return config
def get_token_type(self):
# TODO: change to dict when implemented
return dict
def config_validate(self, config: Union[dict | str]):
@ -98,12 +97,11 @@ class AzureProvider(BaseProvider):
models = self.get_models(credentials=config)
if not models:
raise ValidateFailedError("Please add deployments for 'text-davinci-003', "
raise ValidateFailedError("Please add deployments for "
"'gpt-3.5-turbo', 'text-embedding-ada-002' (required) "
"and 'gpt-4', 'gpt-35-turbo-16k' (optional).")
"and 'gpt-4', 'gpt-35-turbo-16k', 'text-davinci-003' (optional).")
fixed_model_ids = [
'text-davinci-003',
'gpt-35-turbo',
'text-embedding-ada-002'
]

View File

@ -2,7 +2,7 @@ import base64
from abc import ABC, abstractmethod
from typing import Optional, Union
from core import hosted_llm_credentials
from core.constant import llm_constant
from core.llm.error import QuotaExceededError, ModelCurrentlyNotSupportError, ProviderTokenNotInitError
from extensions.ext_database import db
from libs import rsa
@ -14,15 +14,18 @@ class BaseProvider(ABC):
def __init__(self, tenant_id: str):
self.tenant_id = tenant_id
def get_provider_api_key(self, model_id: Optional[str] = None, prefer_custom: bool = True) -> Union[str | dict]:
def get_provider_api_key(self, model_id: Optional[str] = None, only_custom: bool = False) -> Union[str | dict]:
"""
Returns the decrypted API key for the given tenant_id and provider_name.
If the provider is of type SYSTEM and the quota is exceeded, raises a QuotaExceededError.
If the provider is not found or not valid, raises a ProviderTokenNotInitError.
"""
provider = self.get_provider(prefer_custom)
provider = self.get_provider(only_custom)
if not provider:
raise ProviderTokenNotInitError()
raise ProviderTokenNotInitError(
f"No valid {llm_constant.models[model_id]} model provider credentials found. "
f"Please go to Settings -> Model Provider to complete your provider credentials."
)
if provider.provider_type == ProviderType.SYSTEM.value:
quota_used = provider.quota_used if provider.quota_used is not None else 0
@ -38,18 +41,19 @@ class BaseProvider(ABC):
else:
return self.get_decrypted_token(provider.encrypted_config)
def get_provider(self, prefer_custom: bool) -> Optional[Provider]:
def get_provider(self, only_custom: bool = False) -> Optional[Provider]:
"""
Returns the Provider instance for the given tenant_id and provider_name.
If both CUSTOM and System providers exist, the preferred provider will be returned based on the prefer_custom flag.
"""
return BaseProvider.get_valid_provider(self.tenant_id, self.get_provider_name().value, prefer_custom)
return BaseProvider.get_valid_provider(self.tenant_id, self.get_provider_name().value, only_custom)
@classmethod
def get_valid_provider(cls, tenant_id: str, provider_name: str = None, prefer_custom: bool = False) -> Optional[Provider]:
def get_valid_provider(cls, tenant_id: str, provider_name: str = None, only_custom: bool = False) -> Optional[
Provider]:
"""
Returns the Provider instance for the given tenant_id and provider_name.
If both CUSTOM and System providers exist, the preferred provider will be returned based on the prefer_custom flag.
If both CUSTOM and System providers exist.
"""
query = db.session.query(Provider).filter(
Provider.tenant_id == tenant_id
@ -58,39 +62,31 @@ class BaseProvider(ABC):
if provider_name:
query = query.filter(Provider.provider_name == provider_name)
providers = query.order_by(Provider.provider_type.desc() if prefer_custom else Provider.provider_type).all()
if only_custom:
query = query.filter(Provider.provider_type == ProviderType.CUSTOM.value)
custom_provider = None
system_provider = None
providers = query.order_by(Provider.provider_type.asc()).all()
for provider in providers:
if provider.provider_type == ProviderType.CUSTOM.value and provider.is_valid and provider.encrypted_config:
custom_provider = provider
return provider
elif provider.provider_type == ProviderType.SYSTEM.value and provider.is_valid:
system_provider = provider
return provider
if custom_provider:
return custom_provider
elif system_provider:
return system_provider
else:
return None
return None
def get_hosted_credentials(self) -> str:
if self.get_provider_name() != ProviderName.OPENAI:
raise ProviderTokenNotInitError()
def get_hosted_credentials(self) -> Union[str | dict]:
raise ProviderTokenNotInitError(
f"No valid {self.get_provider_name().value} model provider credentials found. "
f"Please go to Settings -> Model Provider to complete your provider credentials."
)
if not hosted_llm_credentials.openai or not hosted_llm_credentials.openai.api_key:
raise ProviderTokenNotInitError()
return hosted_llm_credentials.openai.api_key
def get_provider_configs(self, obfuscated: bool = False) -> Union[str | dict]:
def get_provider_configs(self, obfuscated: bool = False, only_custom: bool = False) -> Union[str | dict]:
"""
Returns the provider configs.
"""
try:
config = self.get_provider_api_key()
config = self.get_provider_api_key(only_custom=only_custom)
except:
config = ''

View File

@ -31,11 +31,11 @@ class LLMProviderService:
def get_credentials(self, model_id: Optional[str] = None) -> dict:
return self.provider.get_credentials(model_id)
def get_provider_configs(self, obfuscated: bool = False) -> Union[str | dict]:
return self.provider.get_provider_configs(obfuscated)
def get_provider_configs(self, obfuscated: bool = False, only_custom: bool = False) -> Union[str | dict]:
return self.provider.get_provider_configs(obfuscated=obfuscated, only_custom=only_custom)
def get_provider_db_record(self, prefer_custom: bool = False) -> Optional[Provider]:
return self.provider.get_provider(prefer_custom)
def get_provider_db_record(self) -> Optional[Provider]:
return self.provider.get_provider()
def config_validate(self, config: Union[dict | str]):
"""

View File

@ -4,6 +4,8 @@ from typing import Optional, Union
import openai
from openai.error import AuthenticationError, OpenAIError
from core import hosted_llm_credentials
from core.llm.error import ProviderTokenNotInitError
from core.llm.moderation import Moderation
from core.llm.provider.base import BaseProvider
from core.llm.provider.errors import ValidateFailedError
@ -42,3 +44,12 @@ class OpenAIProvider(BaseProvider):
except Exception as ex:
logging.exception('OpenAI config validation failed')
raise ex
def get_hosted_credentials(self) -> Union[str | dict]:
if not hosted_llm_credentials.openai or not hosted_llm_credentials.openai.api_key:
raise ProviderTokenNotInitError(
f"No valid {self.get_provider_name().value} model provider credentials found. "
f"Please go to Settings -> Model Provider to complete your provider credentials."
)
return hosted_llm_credentials.openai.api_key

View File

@ -1,11 +1,11 @@
from langchain.callbacks.manager import CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun, Callbacks
from langchain.schema import BaseMessage, ChatResult, LLMResult
from langchain.callbacks.manager import Callbacks
from langchain.schema import BaseMessage, LLMResult
from langchain.chat_models import AzureChatOpenAI
from typing import Optional, List, Dict, Any
from pydantic import root_validator
from core.llm.error_handle_wraps import handle_llm_exceptions, handle_llm_exceptions_async
from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
class StreamableAzureChatOpenAI(AzureChatOpenAI):
@ -46,30 +46,7 @@ class StreamableAzureChatOpenAI(AzureChatOpenAI):
"organization": self.openai_organization if self.openai_organization else None,
}
def get_messages_tokens(self, messages: List[BaseMessage]) -> int:
"""Get the number of tokens in a list of messages.
Args:
messages: The messages to count the tokens of.
Returns:
The number of tokens in the messages.
"""
tokens_per_message = 5
tokens_per_request = 3
message_tokens = tokens_per_request
message_strs = ''
for message in messages:
message_strs += message.content
message_tokens += tokens_per_message
# calc once
message_tokens += self.get_num_tokens(message_strs)
return message_tokens
@handle_llm_exceptions
@handle_openai_exceptions
def generate(
self,
messages: List[List[BaseMessage]],
@ -79,12 +56,18 @@ class StreamableAzureChatOpenAI(AzureChatOpenAI):
) -> LLMResult:
return super().generate(messages, stop, callbacks, **kwargs)
@handle_llm_exceptions_async
async def agenerate(
self,
messages: List[List[BaseMessage]],
stop: Optional[List[str]] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult:
return await super().agenerate(messages, stop, callbacks, **kwargs)
@classmethod
def get_kwargs_from_model_params(cls, params: dict):
model_kwargs = {
'top_p': params.get('top_p', 1),
'frequency_penalty': params.get('frequency_penalty', 0),
'presence_penalty': params.get('presence_penalty', 0),
}
del params['top_p']
del params['frequency_penalty']
del params['presence_penalty']
params['model_kwargs'] = model_kwargs
return params

View File

@ -5,7 +5,7 @@ from typing import Optional, List, Dict, Mapping, Any
from pydantic import root_validator
from core.llm.error_handle_wraps import handle_llm_exceptions, handle_llm_exceptions_async
from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
class StreamableAzureOpenAI(AzureOpenAI):
@ -50,7 +50,7 @@ class StreamableAzureOpenAI(AzureOpenAI):
"organization": self.openai_organization if self.openai_organization else None,
}}
@handle_llm_exceptions
@handle_openai_exceptions
def generate(
self,
prompts: List[str],
@ -60,12 +60,6 @@ class StreamableAzureOpenAI(AzureOpenAI):
) -> LLMResult:
return super().generate(prompts, stop, callbacks, **kwargs)
@handle_llm_exceptions_async
async def agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult:
return await super().agenerate(prompts, stop, callbacks, **kwargs)
@classmethod
def get_kwargs_from_model_params(cls, params: dict):
return params

View File

@ -0,0 +1,39 @@
from typing import List, Optional, Any, Dict
from langchain.callbacks.manager import Callbacks
from langchain.chat_models import ChatAnthropic
from langchain.schema import BaseMessage, LLMResult
from core.llm.wrappers.anthropic_wrapper import handle_anthropic_exceptions
class StreamableChatAnthropic(ChatAnthropic):
"""
Wrapper around Anthropic's large language model.
"""
@handle_anthropic_exceptions
def generate(
self,
messages: List[List[BaseMessage]],
stop: Optional[List[str]] = None,
callbacks: Callbacks = None,
*,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> LLMResult:
return super().generate(messages, stop, callbacks, tags=tags, metadata=metadata, **kwargs)
@classmethod
def get_kwargs_from_model_params(cls, params: dict):
params['model'] = params.get('model_name')
del params['model_name']
params['max_tokens_to_sample'] = params.get('max_tokens')
del params['max_tokens']
del params['frequency_penalty']
del params['presence_penalty']
return params

View File

@ -7,7 +7,7 @@ from typing import Optional, List, Dict, Any
from pydantic import root_validator
from core.llm.error_handle_wraps import handle_llm_exceptions, handle_llm_exceptions_async
from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
class StreamableChatOpenAI(ChatOpenAI):
@ -48,30 +48,7 @@ class StreamableChatOpenAI(ChatOpenAI):
"organization": self.openai_organization if self.openai_organization else None,
}
def get_messages_tokens(self, messages: List[BaseMessage]) -> int:
"""Get the number of tokens in a list of messages.
Args:
messages: The messages to count the tokens of.
Returns:
The number of tokens in the messages.
"""
tokens_per_message = 5
tokens_per_request = 3
message_tokens = tokens_per_request
message_strs = ''
for message in messages:
message_strs += message.content
message_tokens += tokens_per_message
# calc once
message_tokens += self.get_num_tokens(message_strs)
return message_tokens
@handle_llm_exceptions
@handle_openai_exceptions
def generate(
self,
messages: List[List[BaseMessage]],
@ -81,12 +58,18 @@ class StreamableChatOpenAI(ChatOpenAI):
) -> LLMResult:
return super().generate(messages, stop, callbacks, **kwargs)
@handle_llm_exceptions_async
async def agenerate(
self,
messages: List[List[BaseMessage]],
stop: Optional[List[str]] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult:
return await super().agenerate(messages, stop, callbacks, **kwargs)
@classmethod
def get_kwargs_from_model_params(cls, params: dict):
model_kwargs = {
'top_p': params.get('top_p', 1),
'frequency_penalty': params.get('frequency_penalty', 0),
'presence_penalty': params.get('presence_penalty', 0),
}
del params['top_p']
del params['frequency_penalty']
del params['presence_penalty']
params['model_kwargs'] = model_kwargs
return params

View File

@ -6,7 +6,7 @@ from typing import Optional, List, Dict, Any, Mapping
from langchain import OpenAI
from pydantic import root_validator
from core.llm.error_handle_wraps import handle_llm_exceptions, handle_llm_exceptions_async
from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
class StreamableOpenAI(OpenAI):
@ -49,7 +49,7 @@ class StreamableOpenAI(OpenAI):
"organization": self.openai_organization if self.openai_organization else None,
}}
@handle_llm_exceptions
@handle_openai_exceptions
def generate(
self,
prompts: List[str],
@ -59,12 +59,6 @@ class StreamableOpenAI(OpenAI):
) -> LLMResult:
return super().generate(prompts, stop, callbacks, **kwargs)
@handle_llm_exceptions_async
async def agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult:
return await super().agenerate(prompts, stop, callbacks, **kwargs)
@classmethod
def get_kwargs_from_model_params(cls, params: dict):
return params

View File

@ -1,6 +1,7 @@
import openai
from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
from models.provider import ProviderName
from core.llm.error_handle_wraps import handle_llm_exceptions
from core.llm.provider.base import BaseProvider
@ -13,7 +14,7 @@ class Whisper:
self.client = openai.Audio
self.credentials = provider.get_credentials()
@handle_llm_exceptions
@handle_openai_exceptions
def transcribe(self, file):
return self.client.transcribe(
model='whisper-1',

View File

@ -0,0 +1,27 @@
import logging
from functools import wraps
import anthropic
from core.llm.error import LLMAPIConnectionError, LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError, \
LLMBadRequestError
def handle_anthropic_exceptions(func):
@wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except anthropic.APIConnectionError as e:
logging.exception("Failed to connect to Anthropic API.")
raise LLMAPIConnectionError(f"Anthropic: The server could not be reached, cause: {e.__cause__}")
except anthropic.RateLimitError:
raise LLMRateLimitError("Anthropic: A 429 status code was received; we should back off a bit.")
except anthropic.AuthenticationError as e:
raise LLMAuthorizationError(f"Anthropic: {e.message}")
except anthropic.BadRequestError as e:
raise LLMBadRequestError(f"Anthropic: {e.message}")
except anthropic.APIStatusError as e:
raise LLMAPIUnavailableError(f"Anthropic: code: {e.status_code}, cause: {e.message}")
return wrapper

View File

@ -7,7 +7,7 @@ from core.llm.error import LLMAPIConnectionError, LLMAPIUnavailableError, LLMRat
LLMBadRequestError
def handle_llm_exceptions(func):
def handle_openai_exceptions(func):
@wraps(func)
def wrapper(*args, **kwargs):
try:
@ -29,27 +29,3 @@ def handle_llm_exceptions(func):
raise LLMBadRequestError(e.__class__.__name__ + ":" + str(e))
return wrapper
def handle_llm_exceptions_async(func):
@wraps(func)
async def wrapper(*args, **kwargs):
try:
return await func(*args, **kwargs)
except openai.error.InvalidRequestError as e:
logging.exception("Invalid request to OpenAI API.")
raise LLMBadRequestError(str(e))
except openai.error.APIConnectionError as e:
logging.exception("Failed to connect to OpenAI API.")
raise LLMAPIConnectionError(e.__class__.__name__ + ":" + str(e))
except (openai.error.APIError, openai.error.ServiceUnavailableError, openai.error.Timeout) as e:
logging.exception("OpenAI service unavailable.")
raise LLMAPIUnavailableError(e.__class__.__name__ + ":" + str(e))
except openai.error.RateLimitError as e:
raise LLMRateLimitError(str(e))
except openai.error.AuthenticationError as e:
raise LLMAuthorizationError(str(e))
except openai.error.OpenAIError as e:
raise LLMBadRequestError(e.__class__.__name__ + ":" + str(e))
return wrapper

View File

@ -1,7 +1,7 @@
from typing import Any, List, Dict, Union
from langchain.memory.chat_memory import BaseChatMemory
from langchain.schema import get_buffer_string, BaseMessage, HumanMessage, AIMessage
from langchain.schema import get_buffer_string, BaseMessage, HumanMessage, AIMessage, BaseLanguageModel
from core.llm.streamable_chat_open_ai import StreamableChatOpenAI
from core.llm.streamable_open_ai import StreamableOpenAI
@ -12,8 +12,8 @@ from models.model import Conversation, Message
class ReadOnlyConversationTokenDBBufferSharedMemory(BaseChatMemory):
conversation: Conversation
human_prefix: str = "Human"
ai_prefix: str = "AI"
llm: Union[StreamableChatOpenAI | StreamableOpenAI]
ai_prefix: str = "Assistant"
llm: BaseLanguageModel
memory_key: str = "chat_history"
max_token_limit: int = 2000
message_limit: int = 10
@ -38,12 +38,12 @@ class ReadOnlyConversationTokenDBBufferSharedMemory(BaseChatMemory):
return chat_messages
# prune the chat message if it exceeds the max token limit
curr_buffer_length = self.llm.get_messages_tokens(chat_messages)
curr_buffer_length = self.llm.get_num_tokens_from_messages(chat_messages)
if curr_buffer_length > self.max_token_limit:
pruned_memory = []
while curr_buffer_length > self.max_token_limit and chat_messages:
pruned_memory.append(chat_messages.pop(0))
curr_buffer_length = self.llm.get_messages_tokens(chat_messages)
curr_buffer_length = self.llm.get_num_tokens_from_messages(chat_messages)
return chat_messages

View File

@ -30,7 +30,7 @@ class DatasetTool(BaseTool):
else:
model_credentials = LLMBuilder.get_model_credentials(
tenant_id=self.dataset.tenant_id,
model_provider=LLMBuilder.get_default_provider(self.dataset.tenant_id),
model_provider=LLMBuilder.get_default_provider(self.dataset.tenant_id, 'text-embedding-ada-002'),
model_name='text-embedding-ada-002'
)
@ -60,7 +60,7 @@ class DatasetTool(BaseTool):
async def _arun(self, tool_input: str) -> str:
model_credentials = LLMBuilder.get_model_credentials(
tenant_id=self.dataset.tenant_id,
model_provider=LLMBuilder.get_default_provider(self.dataset.tenant_id),
model_provider=LLMBuilder.get_default_provider(self.dataset.tenant_id, 'text-embedding-ada-002'),
model_name='text-embedding-ada-002'
)

View File

@ -1,4 +1,7 @@
from flask import current_app
from events.tenant_event import tenant_was_updated
from models.provider import ProviderName
from services.provider_service import ProviderService
@ -6,4 +9,16 @@ from services.provider_service import ProviderService
def handle(sender, **kwargs):
tenant = sender
if tenant.status == 'normal':
ProviderService.create_system_provider(tenant)
ProviderService.create_system_provider(
tenant,
ProviderName.OPENAI.value,
current_app.config['OPENAI_HOSTED_QUOTA_LIMIT'],
True
)
ProviderService.create_system_provider(
tenant,
ProviderName.ANTHROPIC.value,
current_app.config['ANTHROPIC_HOSTED_QUOTA_LIMIT'],
True
)

View File

@ -1,4 +1,7 @@
from flask import current_app
from events.tenant_event import tenant_was_created
from models.provider import ProviderName
from services.provider_service import ProviderService
@ -6,4 +9,16 @@ from services.provider_service import ProviderService
def handle(sender, **kwargs):
tenant = sender
if tenant.status == 'normal':
ProviderService.create_system_provider(tenant)
ProviderService.create_system_provider(
tenant,
ProviderName.OPENAI.value,
current_app.config['OPENAI_HOSTED_QUOTA_LIMIT'],
True
)
ProviderService.create_system_provider(
tenant,
ProviderName.ANTHROPIC.value,
current_app.config['ANTHROPIC_HOSTED_QUOTA_LIMIT'],
True
)

View File

@ -10,7 +10,7 @@ flask-session2==1.3.1
flask-cors==3.0.10
gunicorn~=20.1.0
gevent~=22.10.2
langchain==0.0.209
langchain==0.0.230
openai~=0.27.5
psycopg2-binary~=2.9.6
pycryptodome==3.17
@ -35,3 +35,4 @@ docx2txt==0.8
pypdfium2==4.16.0
resend~=0.5.1
pyjwt~=2.6.0
anthropic~=0.3.4

View File

@ -6,6 +6,30 @@ from models.account import Account
from services.dataset_service import DatasetService
from core.llm.llm_builder import LLMBuilder
MODEL_PROVIDERS = [
'openai',
'anthropic',
]
MODELS_BY_APP_MODE = {
'chat': [
'claude-instant-1',
'claude-2',
'gpt-4',
'gpt-4-32k',
'gpt-3.5-turbo',
'gpt-3.5-turbo-16k',
],
'completion': [
'claude-instant-1',
'claude-2',
'gpt-4',
'gpt-4-32k',
'gpt-3.5-turbo',
'gpt-3.5-turbo-16k',
'text-davinci-003',
]
}
class AppModelConfigService:
@staticmethod
@ -125,7 +149,7 @@ class AppModelConfigService:
if not isinstance(config["speech_to_text"]["enabled"], bool):
raise ValueError("enabled in speech_to_text must be of boolean type")
provider_name = LLMBuilder.get_default_provider(account.current_tenant_id)
provider_name = LLMBuilder.get_default_provider(account.current_tenant_id, 'whisper-1')
if config["speech_to_text"]["enabled"] and provider_name != 'openai':
raise ValueError("provider not support speech to text")
@ -153,14 +177,14 @@ class AppModelConfigService:
raise ValueError("model must be of object type")
# model.provider
if 'provider' not in config["model"] or config["model"]["provider"] != "openai":
raise ValueError("model.provider must be 'openai'")
if 'provider' not in config["model"] or config["model"]["provider"] not in MODEL_PROVIDERS:
raise ValueError(f"model.provider is required and must be in {str(MODEL_PROVIDERS)}")
# model.name
if 'name' not in config["model"]:
raise ValueError("model.name is required")
if config["model"]["name"] not in llm_constant.models_by_mode[mode]:
if config["model"]["name"] not in MODELS_BY_APP_MODE[mode]:
raise ValueError("model.name must be in the specified model list")
# model.completion_params

View File

@ -27,7 +27,7 @@ class AudioService:
message = f"Audio size larger than {FILE_SIZE} mb"
raise AudioTooLargeServiceError(message)
provider_name = LLMBuilder.get_default_provider(tenant_id)
provider_name = LLMBuilder.get_default_provider(tenant_id, 'whisper-1')
if provider_name != ProviderName.OPENAI.value:
raise ProviderNotSupportSpeechToTextServiceError()
@ -37,8 +37,3 @@ class AudioService:
buffer.name = 'temp.mp3'
return Whisper(provider_service.provider).transcribe(buffer)

View File

@ -4,6 +4,9 @@ import datetime
import time
import random
from typing import Optional, List
from flask import current_app
from extensions.ext_redis import redis_client
from flask_login import current_user
@ -374,6 +377,12 @@ class DocumentService:
def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
created_from: str = 'web'):
# check document limit
if current_app.config['EDITION'] == 'CLOUD':
documents_count = DocumentService.get_tenant_documents_count()
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
if documents_count > tenant_document_count:
raise ValueError(f"over document limit {tenant_document_count}.")
# if dataset is empty, update dataset data_source_type
if not dataset.data_source_type:
dataset.data_source_type = document_data["data_source"]["type"]
@ -521,6 +530,14 @@ class DocumentService:
)
return document
@staticmethod
def get_tenant_documents_count():
documents_count = Document.query.filter(Document.completed_at.isnot(None),
Document.enabled == True,
Document.archived == False,
Document.tenant_id == current_user.current_tenant_id).count()
return documents_count
@staticmethod
def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
@ -616,6 +633,12 @@ class DocumentService:
@staticmethod
def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
# check document limit
if current_app.config['EDITION'] == 'CLOUD':
documents_count = DocumentService.get_tenant_documents_count()
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
if documents_count > tenant_document_count:
raise ValueError(f"over document limit {tenant_document_count}.")
# save dataset
dataset = Dataset(
tenant_id=tenant_id,

View File

@ -31,7 +31,7 @@ class HitTestingService:
model_credentials = LLMBuilder.get_model_credentials(
tenant_id=dataset.tenant_id,
model_provider=LLMBuilder.get_default_provider(dataset.tenant_id),
model_provider=LLMBuilder.get_default_provider(dataset.tenant_id, 'text-embedding-ada-002'),
model_name='text-embedding-ada-002'
)

View File

@ -10,50 +10,40 @@ from models.provider import *
class ProviderService:
@staticmethod
def init_supported_provider(tenant, edition):
def init_supported_provider(tenant):
"""Initialize the model provider, check whether the supported provider has a record"""
providers = Provider.query.filter_by(tenant_id=tenant.id).all()
need_init_provider_names = [ProviderName.OPENAI.value, ProviderName.AZURE_OPENAI.value, ProviderName.ANTHROPIC.value]
openai_provider_exists = False
azure_openai_provider_exists = False
# TODO: The cloud version needs to construct the data of the SYSTEM type
providers = db.session.query(Provider).filter(
Provider.tenant_id == tenant.id,
Provider.provider_type == ProviderType.CUSTOM.value,
Provider.provider_name.in_(need_init_provider_names)
).all()
exists_provider_names = []
for provider in providers:
if provider.provider_name == ProviderName.OPENAI.value and provider.provider_type == ProviderType.CUSTOM.value:
openai_provider_exists = True
if provider.provider_name == ProviderName.AZURE_OPENAI.value and provider.provider_type == ProviderType.CUSTOM.value:
azure_openai_provider_exists = True
exists_provider_names.append(provider.provider_name)
# Initialize the model provider, check whether the supported provider has a record
not_exists_provider_names = list(set(need_init_provider_names) - set(exists_provider_names))
# Create default providers if they don't exist
if not openai_provider_exists:
openai_provider = Provider(
tenant_id=tenant.id,
provider_name=ProviderName.OPENAI.value,
provider_type=ProviderType.CUSTOM.value,
is_valid=False
)
db.session.add(openai_provider)
if not_exists_provider_names:
# Initialize the model provider, check whether the supported provider has a record
for provider_name in not_exists_provider_names:
provider = Provider(
tenant_id=tenant.id,
provider_name=provider_name,
provider_type=ProviderType.CUSTOM.value,
is_valid=False
)
db.session.add(provider)
if not azure_openai_provider_exists:
azure_openai_provider = Provider(
tenant_id=tenant.id,
provider_name=ProviderName.AZURE_OPENAI.value,
provider_type=ProviderType.CUSTOM.value,
is_valid=False
)
db.session.add(azure_openai_provider)
if not openai_provider_exists or not azure_openai_provider_exists:
db.session.commit()
@staticmethod
def get_obfuscated_api_key(tenant, provider_name: ProviderName):
def get_obfuscated_api_key(tenant, provider_name: ProviderName, only_custom: bool = False):
llm_provider_service = LLMProviderService(tenant.id, provider_name.value)
return llm_provider_service.get_provider_configs(obfuscated=True)
return llm_provider_service.get_provider_configs(obfuscated=True, only_custom=only_custom)
@staticmethod
def get_token_type(tenant, provider_name: ProviderName):
@ -73,7 +63,7 @@ class ProviderService:
return llm_provider_service.get_encrypted_token(configs)
@staticmethod
def create_system_provider(tenant: Tenant, provider_name: str = ProviderName.OPENAI.value,
def create_system_provider(tenant: Tenant, provider_name: str = ProviderName.OPENAI.value, quota_limit: int = 200,
is_valid: bool = True):
if current_app.config['EDITION'] != 'CLOUD':
return
@ -90,7 +80,7 @@ class ProviderService:
provider_name=provider_name,
provider_type=ProviderType.SYSTEM.value,
quota_type=ProviderQuotaType.TRIAL.value,
quota_limit=200,
quota_limit=quota_limit,
encrypted_config='',
is_valid=is_valid,
)

View File

@ -1,6 +1,6 @@
from extensions.ext_database import db
from models.account import Tenant
from models.provider import Provider, ProviderType
from models.provider import Provider, ProviderType, ProviderName
class WorkspaceService:
@ -33,7 +33,7 @@ class WorkspaceService:
if provider.is_valid and provider.encrypted_config:
custom_provider = provider
elif provider.provider_type == ProviderType.SYSTEM.value:
if provider.is_valid:
if provider.provider_name == ProviderName.OPENAI.value and provider.is_valid:
system_provider = provider
if system_provider and not custom_provider:

View File

@ -44,14 +44,13 @@ def deal_dataset_vector_index_task(dataset_id: str, action: str):
if dataset_documents:
# save vector index
index = IndexBuilder.get_index(dataset, 'high_quality', ignore_high_quality_check=True)
documents = []
for dataset_document in dataset_documents:
# delete from vector index
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.enabled == True
) .order_by(DocumentSegment.position.asc()).all()
documents = []
for segment in segments:
document = Document(
page_content=segment.content,
@ -65,8 +64,8 @@ def deal_dataset_vector_index_task(dataset_id: str, action: str):
documents.append(document)
# save vector index
index.add_texts(documents)
# save vector index
index.add_texts(documents)
end_at = time.perf_counter()
logging.info(

View File

@ -2,7 +2,7 @@ version: '3.1'
services:
# API service
api:
image: langgenius/dify-api:0.3.8
image: langgenius/dify-api:0.3.10
restart: always
environment:
# Startup mode, 'api' starts the API server.
@ -124,7 +124,7 @@ services:
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.3.8
image: langgenius/dify-api:0.3.10
restart: always
environment:
# Startup mode, 'worker' starts the Celery worker for processing the queue.
@ -176,7 +176,7 @@ services:
# Frontend web application.
web:
image: langgenius/dify-web:0.3.8
image: langgenius/dify-web:0.3.10
restart: always
environment:
EDITION: SELF_HOSTED

View File

@ -20,16 +20,20 @@ export const routes = {
},
getConversationMessages: {
method: "GET",
url: () => "/messages",
url: () => `/messages`,
},
getConversations: {
method: "GET",
url: () => "/conversations",
url: () => `/conversations`,
},
renameConversation: {
method: "PATCH",
url: (conversation_id) => `/conversations/${conversation_id}`,
},
deleteConversation: {
method: "DELETE",
url: (conversation_id) => `/conversations/${conversation_id}`,
},
};
export class DifyClient {
@ -185,4 +189,13 @@ export class ChatClient extends DifyClient {
data
);
}
deleteConversation(conversation_id, user) {
const data = { user };
return this.sendRequest(
routes.deleteConversation.method,
routes.deleteConversation.url(conversation_id),
data
);
}
}

View File

@ -0,0 +1,18 @@
name: Ruby
on: [push,pull_request]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Ruby
uses: ruby/setup-ruby@v1
with:
ruby-version: 3.0.0
- name: Run the default task
run: |
gem install bundler -v 2.2.3
bundle install
bundle exec rake

8
sdks/ruby-client/.gitignore vendored Normal file
View File

@ -0,0 +1,8 @@
/.bundle/
/.yardoc
/_yardoc/
/coverage/
/doc/
/pkg/
/spec/reports/
/tmp/

View File

@ -0,0 +1,10 @@
Style/StringLiterals:
Enabled: true
EnforcedStyle: double_quotes
Style/StringLiteralsInInterpolation:
Enabled: true
EnforcedStyle: double_quotes
Layout/LineLength:
Max: 120

View File

@ -0,0 +1,84 @@
# Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience
* Focusing on what is best not just for us as individuals, but for the overall community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or
advances of any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email
address, without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.
Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at 427733928@qq.com. All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series of actions.
**Consequence**: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within the community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 2.0,
available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by [Mozilla's code of conduct enforcement ladder](https://github.com/mozilla/diversity).
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.

14
sdks/ruby-client/Gemfile Normal file
View File

@ -0,0 +1,14 @@
# frozen_string_literal: true
source "https://rubygems.org"
# Specify your gem's dependencies in dify_client.gemspec
gemspec
gem "rake", "~> 13.0"
gem "minitest", "~> 5.0"
gem "rubocop", "~> 0.80"
gem 'webmock'

View File

@ -0,0 +1,55 @@
PATH
remote: .
specs:
dify_client (0.1.0)
GEM
remote: https://rubygems.org/
specs:
addressable (2.8.4)
public_suffix (>= 2.0.2, < 6.0)
ast (2.4.2)
crack (0.4.5)
rexml
hashdiff (1.0.1)
minitest (5.18.1)
parallel (1.23.0)
parser (3.2.2.3)
ast (~> 2.4.1)
racc
public_suffix (5.0.3)
racc (1.7.1)
rainbow (3.1.1)
rake (13.0.6)
regexp_parser (2.8.1)
rexml (3.2.5)
rubocop (0.93.1)
parallel (~> 1.10)
parser (>= 2.7.1.5)
rainbow (>= 2.2.2, < 4.0)
regexp_parser (>= 1.8)
rexml
rubocop-ast (>= 0.6.0)
ruby-progressbar (~> 1.7)
unicode-display_width (>= 1.4.0, < 2.0)
rubocop-ast (1.29.0)
parser (>= 3.2.1.0)
ruby-progressbar (1.13.0)
unicode-display_width (1.8.0)
webmock (3.18.1)
addressable (>= 2.8.0)
crack (>= 0.3.2)
hashdiff (>= 0.4.0, < 2.0.0)
PLATFORMS
arm64-darwin-21
DEPENDENCIES
dify_client!
minitest (~> 5.0)
rake (~> 13.0)
rubocop (~> 0.80)
webmock
BUNDLED WITH
2.2.3

View File

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2023 crazywoola
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

111
sdks/ruby-client/README.md Normal file
View File

@ -0,0 +1,111 @@
# DifyClient
Welcome to the DifyClient gem! This gem provides a Ruby client for interacting with the Dify.ai API. It allows you to perform various actions such as sending requests, providing feedback, creating completion messages, managing conversations, and more.
## Installation
Add this line to your application's Gemfile:
```ruby
gem 'dify_client'
```
And then execute:
$ bundle install
Or install it yourself as:
$ gem install dify_client
## Usage
To use the DifyClient gem, follow these steps:
1 Require the gem:
```ruby
require 'dify_client'
```
2 Create a new client instance:
```ruby
api_key = 'YOUR_API_KEY'
client = DifyClient::Client.new(api_key)
```
3 Use the available methods to interact with the Dify.ai API. Here are the methods provided by the DifyClient::Client class:
### Update API Key
```ruby
client.update_api_key('NEW_API_KEY')
```
Updates the API key used by the client.
### Message Feedback
```ruby
client.message_feedback(message_id, rating, user)
```
Submits feedback for a specific message identified by `message_id`. The `rating` parameter should be the rating value, and `user` is the user identifier.
### Get Application Parameters
```ruby
client.get_application_parameters(user)
```
### Create Completion Message
```ruby
client.create_completion_message(inputs, query, user, stream = false)
```
Creates a completion message with the provided `inputs`, `query`, and `user`. The stream parameter is optional and set to `false` by default. Set it to `true` to enable streaming response mode.
### Create Chat Message
```ruby
client.create_chat_message(inputs, query, user, stream = false, conversation_id = nil)
```
Creates a chat message with the provided `inputs`, `query`, and `user`. The stream parameter is optional and set to `false` by default. Set it to `true` to enable streaming response mode. The `conversation_id` parameter is optional and can be used to specify the conversation ID.
### Get Conversations
```ruby
client.get_conversations(user, first_id = nil, limit = nil, pinned = nil)
```
Retrieves the conversations for a given `user`. You can provide `first_id`, `limit`, and `pinned` parameters to customize the retrieval.
### Rename Conversation
```ruby
client.rename_conversation(conversation_id, name, user)
```
Renames a conversation identified by conversatio`n_id with the provided `name` for the given `user`.
### Delete Conversation
```ruby
client.delete_conversation(conversation_id, user)
```
Deletes a conversation identified by `conversation_id` for the given `user`.
## Development
After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake test` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run` bundle exec rake release`, which will create a git tag for the version, push git commits and the created tag, and push the .gem file to rubygems.org.
## Contributing
Bug reports and pull requests are welcome on GitHub at [https://github.com/langgenius/dify/issues](https://github.com/langgenius/dify/issues).
## License
The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).

16
sdks/ruby-client/Rakefile Normal file
View File

@ -0,0 +1,16 @@
# frozen_string_literal: true
require "bundler/gem_tasks"
require "rake/testtask"
Rake::TestTask.new(:test) do |t|
t.libs << "test"
t.libs << "lib"
t.test_files = FileList["test/**/*_test.rb"]
end
require "rubocop/rake_task"
RuboCop::RakeTask.new
task default: %i[test rubocop]

15
sdks/ruby-client/bin/console Executable file
View File

@ -0,0 +1,15 @@
#!/usr/bin/env ruby
# frozen_string_literal: true
require "bundler/setup"
require "dify_client"
# You can add fixtures and/or initialization code here to make experimenting
# with your gem easier. You can also use a different console, if you like.
# (If you use this, don't forget to add pry to your Gemfile!)
# require "pry"
# Pry.start
require "irb"
IRB.start(__FILE__)

8
sdks/ruby-client/bin/setup Executable file
View File

@ -0,0 +1,8 @@
#!/usr/bin/env bash
set -euo pipefail
IFS=$'\n\t'
set -vx
bundle install
# Do any other automated setup that you need to do here

View File

@ -0,0 +1,37 @@
# frozen_string_literal: true
require_relative "lib/dify_client/version"
Gem::Specification.new do |spec|
spec.name = "dify_client"
spec.version = DifyClient::VERSION
spec.authors = ["crazywoola"]
spec.email = ["427733928@qq.com"]
spec.summary = "Ruby client for Dify"
spec.description = "Ruby client for Dify"
spec.homepage = "https://dify.ai"
spec.license = "MIT"
spec.required_ruby_version = Gem::Requirement.new(">= 2.3.0")
# spec.metadata["allowed_push_host"] = "TODO: Set to 'http://mygemserver.com'"
spec.metadata["homepage_uri"] = spec.homepage
spec.metadata["source_code_uri"] = "https://github.com/langgenius/dify/tree/main/sdks"
spec.metadata["changelog_uri"] = "https://github.com/langgenius/dify/tree/main/sdks"
# Specify which files should be added to the gem when it is released.
# The `git ls-files -z` loads the files in the RubyGem that have been added into git.
spec.files = Dir.chdir(File.expand_path(__dir__)) do
`git ls-files -z`.split("\x0").reject { |f| f.match(%r{\A(?:test|spec|features)/}) }
end
spec.bindir = "exe"
spec.executables = spec.files.grep(%r{\Aexe/}) { |f| File.basename(f) }
spec.require_paths = ["lib"]
# Uncomment to register a new dependency of your gem
# spec.add_dependency "example-gem", "~> 1.0"
# For more information and examples about making a new gem, checkout our
# guide at: https://bundler.io/guides/creating_gem.html
end

View File

@ -0,0 +1,42 @@
require 'test_helper'
require 'webmock/minitest'
require 'json'
require 'dify_client'
class DifyClientTest < Minitest::Test
def setup
@api_key = 'YOUR_API_KEY'
@client = DifyClient::Client.new(@api_key)
end
def test_update_api_key
new_api_key = 'NEW_API_KEY'
@client.update_api_key(new_api_key)
assert_equal new_api_key, @client.instance_variable_get(:@api_key)
end
def test_get_application_parameters
user = 'USER_ID'
expected_response = {}
stub_request(:get, "https://api.dify.ai/v1/parameters").
with(
body: {"user"=>"USER_ID"},
headers: {
'Accept'=>'*/*',
'Accept-Encoding'=>'gzip;q=1.0,deflate;q=0.6,identity;q=0.3',
'Authorization'=>'Bearer YOUR_API_KEY',
'Content-Type'=>'application/x-www-form-urlencoded',
'Responsetype'=>'json',
'User-Agent'=>'Ruby'
}).
to_return(status: 200, body: expected_response.to_json, headers: {})
response = @client.get_application_parameters(user)
assert_equal expected_response, response
end
end

View File

@ -0,0 +1,6 @@
# frozen_string_literal: true
$LOAD_PATH.unshift File.expand_path("../lib", __dir__)
require "dify_client"
require "minitest/autorun"

View File

@ -26,4 +26,4 @@ RUN chmod +x /entrypoint.sh
ARG COMMIT_SHA
ENV COMMIT_SHA ${COMMIT_SHA}
ENTRYPOINT ["/entrypoint.sh"]
ENTRYPOINT ["/bin/bash", "/entrypoint.sh"]

View File

@ -3,6 +3,7 @@ import type { ReactNode } from 'react'
import SwrInitor from '@/app/components/swr-initor'
import { AppContextProvider } from '@/context/app-context'
import GA, { GaType } from '@/app/components/base/ga'
import HeaderWrapper from '@/app/components/header/HeaderWrapper'
import Header from '@/app/components/header'
const Layout = ({ children }: { children: ReactNode }) => {
@ -11,7 +12,9 @@ const Layout = ({ children }: { children: ReactNode }) => {
<GA gaType={GaType.admin} />
<SwrInitor>
<AppContextProvider>
<Header />
<HeaderWrapper>
<Header />
</HeaderWrapper>
{children}
</AppContextProvider>
</SwrInitor>

View File

@ -65,6 +65,7 @@ export type IChatProps = {
isShowSuggestion?: boolean
suggestionList?: string[]
isShowSpeechToText?: boolean
answerIconClassName?: string
}
export type MessageMore = {
@ -174,10 +175,11 @@ type IAnswerProps = {
onSubmitAnnotation?: SubmitAnnotationFunc
displayScene: DisplayScene
isResponsing?: boolean
answerIconClassName?: string
}
// The component needs to maintain its own state to control whether to display input component
const Answer: FC<IAnswerProps> = ({ item, feedbackDisabled = false, isHideFeedbackEdit = false, onFeedback, onSubmitAnnotation, displayScene = 'web', isResponsing }) => {
const Answer: FC<IAnswerProps> = ({ item, feedbackDisabled = false, isHideFeedbackEdit = false, onFeedback, onSubmitAnnotation, displayScene = 'web', isResponsing, answerIconClassName }) => {
const { id, content, more, feedback, adminFeedback, annotation: initAnnotation } = item
const [showEdit, setShowEdit] = useState(false)
const [loading, setLoading] = useState(false)
@ -292,7 +294,7 @@ const Answer: FC<IAnswerProps> = ({ item, feedbackDisabled = false, isHideFeedba
return (
<div key={id}>
<div className='flex items-start'>
<div className={`${s.answerIcon} w-10 h-10 shrink-0`}>
<div className={`${s.answerIcon} ${answerIconClassName} w-10 h-10 shrink-0`}>
{isResponsing
&& <div className={s.typeingIcon}>
<LoadingAnim type='avatar' />
@ -428,6 +430,7 @@ const Chat: FC<IChatProps> = ({
isShowSuggestion,
suggestionList,
isShowSpeechToText,
answerIconClassName,
}) => {
const { t } = useTranslation()
const { notify } = useContext(ToastContext)
@ -520,6 +523,7 @@ const Chat: FC<IChatProps> = ({
onSubmitAnnotation={onSubmitAnnotation}
displayScene={displayScene ?? 'web'}
isResponsing={isResponsing && isLast}
answerIconClassName={answerIconClassName}
/>
}
return <Question key={item.id} id={item.id} content={item.content} more={item.more} useCurrentUserAvatar={useCurrentUserAvatar} />

File diff suppressed because one or more lines are too long

View File

@ -372,7 +372,7 @@ const Debug: FC<IDebug> = ({
{/* Chat */}
{mode === AppType.chat && (
<div className="mt-[34px] h-full flex flex-col">
<div className={cn(doShowSuggestion ? 'pb-[140px]' : (isResponsing ? 'pb-[113px]' : 'pb-[66px]'), 'relative mt-1.5 grow h-[200px] overflow-hidden')}>
<div className={cn(doShowSuggestion ? 'pb-[140px]' : (isResponsing ? 'pb-[113px]' : 'pb-[76px]'), 'relative mt-1.5 grow h-[200px] overflow-hidden')}>
<div className="h-full overflow-y-auto overflow-x-hidden" ref={chatListDomRef}>
<Chat
chatList={chatList}

View File

@ -16,6 +16,7 @@ import ConfigModel from '@/app/components/app/configuration/config-model'
import Config from '@/app/components/app/configuration/config'
import Debug from '@/app/components/app/configuration/debug'
import Confirm from '@/app/components/base/confirm'
import { ProviderType } from '@/types/app'
import type { AppDetailResponse } from '@/models/app'
import { ToastContext } from '@/app/components/base/toast'
import { fetchTenantInfo } from '@/service/common'
@ -67,7 +68,7 @@ const Configuration: FC = () => {
frequency_penalty: 1, // -2-2
})
const [modelConfig, doSetModelConfig] = useState<ModelConfig>({
provider: 'openai',
provider: ProviderType.openai,
model_id: 'gpt-3.5-turbo',
configs: {
prompt_template: '',
@ -84,8 +85,9 @@ const Configuration: FC = () => {
doSetModelConfig(newModelConfig)
}
const setModelId = (modelId: string) => {
const setModelId = (modelId: string, provider: ProviderType) => {
const newModelConfig = produce(modelConfig, (draft: any) => {
draft.provider = provider
draft.model_id = modelId
})
setModelConfig(newModelConfig)

View File

@ -184,7 +184,11 @@ const GenerationItem: FC<IGenerationItemProps> = ({
{taskId}
</div>)
}
<Markdown content={content} />
<div className='flex'>
<div className='grow w-0'>
<Markdown content={content} />
</div>
</div>
{messageId && (
<div className='flex items-center justify-between mt-3'>
<div className='flex items-center'>

View File

@ -19,6 +19,7 @@ const AutoHeightTextarea = forwardRef(
{ value, onChange, placeholder, className, minHeight = 36, maxHeight = 96, autoFocus, controlFocus, onKeyDown, onKeyUp }: IProps,
outerRef: any,
) => {
// eslint-disable-next-line react-hooks/rules-of-hooks
const ref = outerRef || useRef<HTMLTextAreaElement>(null)
const doFocus = () => {
@ -54,13 +55,20 @@ const AutoHeightTextarea = forwardRef(
return (
<div className='relative'>
<div className={cn(className, 'invisible whitespace-pre-wrap break-all overflow-y-auto')} style={{ minHeight, maxHeight }}>
<div className={cn(className, 'invisible whitespace-pre-wrap break-all overflow-y-auto')} style={{
minHeight,
maxHeight,
paddingRight: (value && value.trim().length > 10000) ? 140 : 130,
}}>
{!value ? placeholder : value.replace(/\n$/, '\n ')}
</div>
<textarea
ref={ref}
autoFocus={autoFocus}
className={cn(className, 'absolute inset-0 resize-none overflow-hidden')}
className={cn(className, 'absolute inset-0 resize-none overflow-auto')}
style={{
paddingRight: (value && value.trim().length > 10000) ? 140 : 130,
}}
placeholder={placeholder}
onChange={onChange}
onKeyDown={onKeyDown}

View File

@ -1,39 +1,41 @@
'use client'
import cn from 'classnames'
interface IAvatarProps {
type AvatarProps = {
name: string
avatar?: string
size?: number
className?: string
textClassName?: string
}
const Avatar = ({
name,
avatar,
size = 30,
className
}: IAvatarProps) => {
const avatarClassName = `shrink-0 flex items-center rounded-full bg-primary-600`
const style = { width: `${size}px`, height:`${size}px`, fontSize: `${size}px`, lineHeight: `${size}px` }
className,
textClassName,
}: AvatarProps) => {
const avatarClassName = 'shrink-0 flex items-center rounded-full bg-primary-600'
const style = { width: `${size}px`, height: `${size}px`, fontSize: `${size}px`, lineHeight: `${size}px` }
if (avatar) {
return (
<img
className={cn(avatarClassName, className)}
<img
className={cn(avatarClassName, className)}
style={style}
alt={name}
alt={name}
src={avatar}
/>
)
}
return (
<div
className={cn(avatarClassName, className)}
<div
className={cn(avatarClassName, className)}
style={style}
>
<div
className={`text-center text-white scale-[0.4]`}
<div
className={cn(textClassName, 'text-center text-white scale-[0.4]')}
style={style}
>
{name[0].toLocaleUpperCase()}
@ -42,4 +44,4 @@ const Avatar = ({
)
}
export default Avatar
export default Avatar

View File

@ -0,0 +1,8 @@
<svg width="50" height="26" viewBox="0 0 50 26" fill="none" xmlns="http://www.w3.org/2000/svg">
<g id="Dify">
<path d="M6.61784 2.064C8.37784 2.064 9.92184 2.408 11.2498 3.096C12.5938 3.784 13.6258 4.768 14.3458 6.048C15.0818 7.312 15.4498 8.784 15.4498 10.464C15.4498 12.144 15.0818 13.616 14.3458 14.88C13.6258 16.128 12.5938 17.096 11.2498 17.784C9.92184 18.472 8.37784 18.816 6.61784 18.816H0.761841V2.064H6.61784ZM6.49784 15.96C8.25784 15.96 9.61784 15.48 10.5778 14.52C11.5378 13.56 12.0178 12.208 12.0178 10.464C12.0178 8.72 11.5378 7.36 10.5778 6.384C9.61784 5.392 8.25784 4.896 6.49784 4.896H4.12184V15.96H6.49784Z" fill="#1D2939"/>
<path d="M20.869 3.936C20.277 3.936 19.781 3.752 19.381 3.384C18.997 3 18.805 2.528 18.805 1.968C18.805 1.408 18.997 0.944 19.381 0.576C19.781 0.192 20.277 0 20.869 0C21.461 0 21.949 0.192 22.333 0.576C22.733 0.944 22.933 1.408 22.933 1.968C22.933 2.528 22.733 3 22.333 3.384C21.949 3.752 21.461 3.936 20.869 3.936ZM22.525 5.52V18.816H19.165V5.52H22.525Z" fill="#1D2939"/>
<path d="M33.1407 8.28H30.8127V18.816H27.4047V8.28H25.8927V5.52H27.4047V4.848C27.4047 3.216 27.8687 2.016 28.7967 1.248C29.7247 0.48 31.1247 0.12 32.9967 0.168001V3C32.1807 2.984 31.6127 3.12 31.2927 3.408C30.9727 3.696 30.8127 4.216 30.8127 4.968V5.52H33.1407V8.28Z" fill="#1D2939"/>
<path d="M49.2381 5.52L41.0061 25.104H37.4301L40.3101 18.48L34.9821 5.52H38.7501L42.1821 14.808L45.6621 5.52H49.2381Z" fill="#1D2939"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 1.4 KiB

View File

@ -0,0 +1,5 @@
<svg width="18" height="18" viewBox="0 0 18 18" fill="none" xmlns="http://www.w3.org/2000/svg">
<g id="github">
<path id="Vector" d="M9 1.125C4.64906 1.125 1.125 4.64906 1.125 9C1.125 12.4847 3.37922 15.428 6.50953 16.4714C6.90328 16.5403 7.05094 16.3041 7.05094 16.0973C7.05094 15.9103 7.04109 15.2902 7.04109 14.6306C5.0625 14.9948 4.55062 14.1483 4.39312 13.7053C4.30453 13.4789 3.92063 12.78 3.58594 12.593C3.31031 12.4453 2.91656 12.0811 3.57609 12.0712C4.19625 12.0614 4.63922 12.6422 4.78688 12.8784C5.49563 14.0695 6.62766 13.7348 7.08047 13.5281C7.14938 13.0163 7.35609 12.6717 7.5825 12.4748C5.83031 12.278 3.99938 11.5987 3.99938 8.58656C3.99938 7.73016 4.30453 7.02141 4.80656 6.47016C4.72781 6.27328 4.45219 5.46609 4.88531 4.38328C4.88531 4.38328 5.54484 4.17656 7.05094 5.19047C7.68094 5.01328 8.35031 4.92469 9.01969 4.92469C9.68906 4.92469 10.3584 5.01328 10.9884 5.19047C12.4945 4.16672 13.1541 4.38328 13.1541 4.38328C13.5872 5.46609 13.3116 6.27328 13.2328 6.47016C13.7348 7.02141 14.04 7.72031 14.04 8.58656C14.04 11.6086 12.1992 12.278 10.447 12.4748C10.7325 12.7209 10.9786 13.1934 10.9786 13.9317C10.9786 14.985 10.9688 15.8316 10.9688 16.0973C10.9688 16.3041 11.1164 16.5502 11.5102 16.4714C13.0735 15.9436 14.432 14.9389 15.3943 13.5986C16.3567 12.2583 16.8746 10.65 16.875 9C16.875 4.64906 13.3509 1.125 9 1.125Z" fill="#24292F"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 1.3 KiB

View File

@ -0,0 +1,5 @@
<svg width="14" height="14" viewBox="0 0 14 14" fill="none" xmlns="http://www.w3.org/2000/svg">
<g id="arrow-up-right">
<path id="Icon" d="M4.08325 9.91665L9.91659 4.08331M9.91659 4.08331H4.08325M9.91659 4.08331V9.91665" stroke="#667085" stroke-width="1.25" stroke-linecap="round" stroke-linejoin="round"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 319 B

View File

@ -0,0 +1,5 @@
<svg width="12" height="12" viewBox="0 0 12 12" fill="none" xmlns="http://www.w3.org/2000/svg">
<g id="chevron-down">
<path id="Icon" d="M3 4.5L6 7.5L9 4.5" stroke="#344054" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 254 B

View File

@ -0,0 +1,5 @@
<svg width="14" height="14" viewBox="0 0 14 14" fill="none" xmlns="http://www.w3.org/2000/svg">
<g id="chevron-right">
<path id="Icon" d="M5.25 10.5L8.75 7L5.25 3.5" stroke="#667085" stroke-width="1.25" stroke-linecap="round" stroke-linejoin="round"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 264 B

View File

@ -0,0 +1,5 @@
<svg width="16" height="16" viewBox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg">
<g id="check">
<path id="Icon" d="M13.3334 4L6.00008 11.3333L2.66675 8" stroke="#155EEF" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 265 B

View File

@ -0,0 +1,5 @@
<svg width="14" height="14" viewBox="0 0 14 14" fill="none" xmlns="http://www.w3.org/2000/svg">
<g id="log-out-01">
<path id="Icon" d="M9.33333 9.91667L12.25 7M12.25 7L9.33333 4.08333M12.25 7H5.25M5.25 1.75H4.55C3.56991 1.75 3.07986 1.75 2.70552 1.94074C2.37623 2.10852 2.10852 2.37623 1.94074 2.70552C1.75 3.07986 1.75 3.56991 1.75 4.55V9.45C1.75 10.4301 1.75 10.9201 1.94074 11.2945C2.10852 11.6238 2.37623 11.8915 2.70552 12.0593C3.07986 12.25 3.56991 12.25 4.55 12.25H5.25" stroke="#667085" stroke-width="1.25" stroke-linecap="round" stroke-linejoin="round"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 576 B

View File

@ -0,0 +1,5 @@
<svg width="12" height="12" viewBox="0 0 12 12" fill="none" xmlns="http://www.w3.org/2000/svg">
<g id="terminal-square">
<path id="Solid" fill-rule="evenodd" clip-rule="evenodd" d="M8.91927 1H3.08073C2.81716 0.999992 2.58977 0.999984 2.40249 1.01529C2.20481 1.03144 2.00821 1.06709 1.81902 1.16349C1.53677 1.3073 1.3073 1.53677 1.16349 1.81902C1.06709 2.00821 1.03144 2.20481 1.01529 2.40249C0.999984 2.58977 0.999992 2.81714 1 3.08071V8.91927C0.999992 9.18284 0.999984 9.41023 1.01529 9.59752C1.03144 9.79519 1.06709 9.9918 1.16349 10.181C1.3073 10.4632 1.53677 10.6927 1.81902 10.8365C2.00821 10.9329 2.20481 10.9686 2.40249 10.9847C2.58977 11 2.81715 11 3.08072 11H8.91928C9.18285 11 9.41023 11 9.59752 10.9847C9.79519 10.9686 9.9918 10.9329 10.181 10.8365C10.4632 10.6927 10.6927 10.4632 10.8365 10.181C10.9329 9.9918 10.9686 9.79519 10.9847 9.59752C11 9.41023 11 9.18285 11 8.91928V3.08072C11 2.81715 11 2.58977 10.9847 2.40249C10.9686 2.20481 10.9329 2.00821 10.8365 1.81902C10.6927 1.53677 10.4632 1.3073 10.181 1.16349C9.9918 1.06709 9.79519 1.03144 9.59752 1.01529C9.41023 0.999984 9.18284 0.999992 8.91927 1ZM3.85355 4.14645C3.65829 3.95118 3.34171 3.95118 3.14645 4.14645C2.95118 4.34171 2.95118 4.65829 3.14645 4.85355L4.29289 6L3.14645 7.14645C2.95118 7.34171 2.95118 7.65829 3.14645 7.85355C3.34171 8.04882 3.65829 8.04882 3.85355 7.85355L5.35355 6.35355C5.54882 6.15829 5.54882 5.84171 5.35355 5.64645L3.85355 4.14645ZM6.5 7C6.22386 7 6 7.22386 6 7.5C6 7.77614 6.22386 8 6.5 8H8.5C8.77614 8 9 7.77614 9 7.5C9 7.22386 8.77614 7 8.5 7H6.5Z" fill="#B54708"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 1.5 KiB

View File

@ -0,0 +1,5 @@
<svg width="12" height="12" viewBox="0 0 12 12" fill="none" xmlns="http://www.w3.org/2000/svg">
<g id="beaker-02">
<path id="Solid" fill-rule="evenodd" clip-rule="evenodd" d="M4.13856 0.500003H7.8617C7.92126 0.49998 7.99238 0.499953 8.05504 0.505073C8.12765 0.511005 8.23165 0.526227 8.34062 0.581751C8.48174 0.653656 8.59648 0.768392 8.66838 0.909513C8.72391 1.01849 8.73913 1.12248 8.74506 1.19509C8.75018 1.25775 8.75015 1.32888 8.75013 1.38844V2.61157C8.75015 2.67113 8.75018 2.74226 8.74506 2.80492C8.73913 2.87753 8.72391 2.98153 8.66838 3.0905C8.59648 3.23162 8.48174 3.34636 8.34062 3.41826C8.23165 3.47379 8.12765 3.48901 8.05504 3.49494C8.03725 3.49639 8.01877 3.49743 8.00006 3.49817V5.2506C8.00006 5.55312 8.00408 5.61265 8.01723 5.66153C8.03245 5.71807 8.05747 5.7715 8.09117 5.81939C8.1203 5.86078 8.16346 5.90197 8.39586 6.09564L10.2807 7.66627C10.4566 7.81255 10.6116 7.94145 10.7267 8.10509C10.8278 8.24875 10.9029 8.40904 10.9486 8.57867C11.0005 8.7719 11.0003 8.97351 11.0001 9.2023C11.0001 9.39886 11.0002 9.59542 11.0002 9.79198C11.0003 9.98232 11.0005 10.1463 10.9713 10.2927C10.853 10.8877 10.3878 11.3529 9.7928 11.4712C9.64637 11.5003 9.48246 11.5002 9.29211 11.5001H2.70822C2.51787 11.5002 2.35396 11.5003 2.20753 11.4712C1.98473 11.4269 1.78014 11.334 1.60515 11.2038C1.42854 11.0725 1.28221 10.9034 1.17753 10.7077C1.10892 10.5796 1.05831 10.4401 1.02899 10.2927C0.999862 10.1463 0.999992 9.98233 1.00014 9.79199C1.00014 9.59542 1.00006 9.39886 1.00003 9.20229C0.999794 8.97351 0.999584 8.7719 1.05157 8.57867C1.09721 8.40904 1.17229 8.24875 1.27338 8.10509C1.38855 7.94145 1.54356 7.81255 1.71947 7.66627L3.60427 6.09564C3.83667 5.90197 3.87983 5.86078 3.90896 5.81939C3.94266 5.7715 3.96768 5.71807 3.9829 5.66153C3.99605 5.61265 4.00006 5.55312 4.00006 5.2506V3.49817C3.9814 3.49743 3.96297 3.49639 3.94521 3.49494C3.8726 3.48901 3.76861 3.47379 3.65964 3.41826C3.51851 3.34636 3.40378 3.23162 3.33187 3.0905C3.27635 2.98153 3.26113 2.87753 3.25519 2.80492C3.25008 2.74226 3.2501 2.67113 3.25013 2.61158V1.38844C3.2501 1.32888 3.25008 1.25775 3.25519 1.19509C3.26113 1.12248 3.27635 1.01849 3.33187 0.909513C3.40378 0.768392 3.51851 0.653656 3.65964 0.581751C3.76861 0.526227 3.8726 0.511005 3.94521 0.505073C4.00787 0.499953 4.079 0.49998 4.13856 0.500003ZM9.11909 8.00004H2.88104L4.28066 6.83373C4.45657 6.68745 4.61158 6.55855 4.72675 6.39491C4.82784 6.25125 4.90292 6.09096 4.94856 5.92133C5.00054 5.7281 5.00033 5.52649 5.0001 5.29771L5.00006 3.50001H7.00006L7.00003 5.29771C6.99979 5.52649 6.99958 5.7281 7.05157 5.92133C7.09721 6.09096 7.17229 6.25125 7.27338 6.39491C7.38855 6.55855 7.54356 6.68745 7.71947 6.83373L9.11909 8.00004Z" fill="#0E7090"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 2.6 KiB

View File

@ -0,0 +1,62 @@
{
"icon": {
"type": "element",
"isRootNode": true,
"name": "svg",
"attributes": {
"width": "50",
"height": "26",
"viewBox": "0 0 50 26",
"fill": "none",
"xmlns": "http://www.w3.org/2000/svg"
},
"children": [
{
"type": "element",
"name": "g",
"attributes": {
"id": "Dify"
},
"children": [
{
"type": "element",
"name": "path",
"attributes": {
"d": "M6.61784 2.064C8.37784 2.064 9.92184 2.408 11.2498 3.096C12.5938 3.784 13.6258 4.768 14.3458 6.048C15.0818 7.312 15.4498 8.784 15.4498 10.464C15.4498 12.144 15.0818 13.616 14.3458 14.88C13.6258 16.128 12.5938 17.096 11.2498 17.784C9.92184 18.472 8.37784 18.816 6.61784 18.816H0.761841V2.064H6.61784ZM6.49784 15.96C8.25784 15.96 9.61784 15.48 10.5778 14.52C11.5378 13.56 12.0178 12.208 12.0178 10.464C12.0178 8.72 11.5378 7.36 10.5778 6.384C9.61784 5.392 8.25784 4.896 6.49784 4.896H4.12184V15.96H6.49784Z",
"fill": "#1D2939"
},
"children": []
},
{
"type": "element",
"name": "path",
"attributes": {
"d": "M20.869 3.936C20.277 3.936 19.781 3.752 19.381 3.384C18.997 3 18.805 2.528 18.805 1.968C18.805 1.408 18.997 0.944 19.381 0.576C19.781 0.192 20.277 0 20.869 0C21.461 0 21.949 0.192 22.333 0.576C22.733 0.944 22.933 1.408 22.933 1.968C22.933 2.528 22.733 3 22.333 3.384C21.949 3.752 21.461 3.936 20.869 3.936ZM22.525 5.52V18.816H19.165V5.52H22.525Z",
"fill": "#1D2939"
},
"children": []
},
{
"type": "element",
"name": "path",
"attributes": {
"d": "M33.1407 8.28H30.8127V18.816H27.4047V8.28H25.8927V5.52H27.4047V4.848C27.4047 3.216 27.8687 2.016 28.7967 1.248C29.7247 0.48 31.1247 0.12 32.9967 0.168001V3C32.1807 2.984 31.6127 3.12 31.2927 3.408C30.9727 3.696 30.8127 4.216 30.8127 4.968V5.52H33.1407V8.28Z",
"fill": "#1D2939"
},
"children": []
},
{
"type": "element",
"name": "path",
"attributes": {
"d": "M49.2381 5.52L41.0061 25.104H37.4301L40.3101 18.48L34.9821 5.52H38.7501L42.1821 14.808L45.6621 5.52H49.2381Z",
"fill": "#1D2939"
},
"children": []
}
]
}
]
},
"name": "Dify"
}

View File

@ -0,0 +1,14 @@
// GENERATE BY script
// DON NOT EDIT IT MANUALLY
import * as React from 'react'
import data from './Dify.json'
import IconBase from '@/app/components/base/icons/IconBase'
import type { IconBaseProps, IconData } from '@/app/components/base/icons/IconBase'
const Icon = React.forwardRef<React.MutableRefObject<SVGElement>, Omit<IconBaseProps, 'data'>>((
props,
ref,
) => <IconBase {...props} ref={ref} data={data as IconData} />)
export default Icon

View File

@ -0,0 +1,36 @@
{
"icon": {
"type": "element",
"isRootNode": true,
"name": "svg",
"attributes": {
"width": "18",
"height": "18",
"viewBox": "0 0 18 18",
"fill": "none",
"xmlns": "http://www.w3.org/2000/svg"
},
"children": [
{
"type": "element",
"name": "g",
"attributes": {
"id": "github"
},
"children": [
{
"type": "element",
"name": "path",
"attributes": {
"id": "Vector",
"d": "M9 1.125C4.64906 1.125 1.125 4.64906 1.125 9C1.125 12.4847 3.37922 15.428 6.50953 16.4714C6.90328 16.5403 7.05094 16.3041 7.05094 16.0973C7.05094 15.9103 7.04109 15.2902 7.04109 14.6306C5.0625 14.9948 4.55062 14.1483 4.39312 13.7053C4.30453 13.4789 3.92063 12.78 3.58594 12.593C3.31031 12.4453 2.91656 12.0811 3.57609 12.0712C4.19625 12.0614 4.63922 12.6422 4.78688 12.8784C5.49563 14.0695 6.62766 13.7348 7.08047 13.5281C7.14938 13.0163 7.35609 12.6717 7.5825 12.4748C5.83031 12.278 3.99938 11.5987 3.99938 8.58656C3.99938 7.73016 4.30453 7.02141 4.80656 6.47016C4.72781 6.27328 4.45219 5.46609 4.88531 4.38328C4.88531 4.38328 5.54484 4.17656 7.05094 5.19047C7.68094 5.01328 8.35031 4.92469 9.01969 4.92469C9.68906 4.92469 10.3584 5.01328 10.9884 5.19047C12.4945 4.16672 13.1541 4.38328 13.1541 4.38328C13.5872 5.46609 13.3116 6.27328 13.2328 6.47016C13.7348 7.02141 14.04 7.72031 14.04 8.58656C14.04 11.6086 12.1992 12.278 10.447 12.4748C10.7325 12.7209 10.9786 13.1934 10.9786 13.9317C10.9786 14.985 10.9688 15.8316 10.9688 16.0973C10.9688 16.3041 11.1164 16.5502 11.5102 16.4714C13.0735 15.9436 14.432 14.9389 15.3943 13.5986C16.3567 12.2583 16.8746 10.65 16.875 9C16.875 4.64906 13.3509 1.125 9 1.125Z",
"fill": "#24292F"
},
"children": []
}
]
}
]
},
"name": "Github"
}

View File

@ -0,0 +1,14 @@
// GENERATE BY script
// DON NOT EDIT IT MANUALLY
import * as React from 'react'
import data from './Github.json'
import IconBase from '@/app/components/base/icons/IconBase'
import type { IconBaseProps, IconData } from '@/app/components/base/icons/IconBase'
const Icon = React.forwardRef<React.MutableRefObject<SVGElement>, Omit<IconBaseProps, 'data'>>((
props,
ref,
) => <IconBase {...props} ref={ref} data={data as IconData} />)
export default Icon

View File

@ -0,0 +1,2 @@
export { default as Dify } from './Dify'
export { default as Github } from './Github'

View File

@ -0,0 +1,39 @@
{
"icon": {
"type": "element",
"isRootNode": true,
"name": "svg",
"attributes": {
"width": "14",
"height": "14",
"viewBox": "0 0 14 14",
"fill": "none",
"xmlns": "http://www.w3.org/2000/svg"
},
"children": [
{
"type": "element",
"name": "g",
"attributes": {
"id": "arrow-up-right"
},
"children": [
{
"type": "element",
"name": "path",
"attributes": {
"id": "Icon",
"d": "M4.08325 9.91665L9.91659 4.08331M9.91659 4.08331H4.08325M9.91659 4.08331V9.91665",
"stroke": "currentColor",
"stroke-width": "1.25",
"stroke-linecap": "round",
"stroke-linejoin": "round"
},
"children": []
}
]
}
]
},
"name": "ArrowUpRight"
}

View File

@ -0,0 +1,14 @@
// GENERATE BY script
// DON NOT EDIT IT MANUALLY
import * as React from 'react'
import data from './ArrowUpRight.json'
import IconBase from '@/app/components/base/icons/IconBase'
import type { IconBaseProps, IconData } from '@/app/components/base/icons/IconBase'
const Icon = React.forwardRef<React.MutableRefObject<SVGElement>, Omit<IconBaseProps, 'data'>>((
props,
ref,
) => <IconBase {...props} ref={ref} data={data as IconData} />)
export default Icon

View File

@ -0,0 +1,39 @@
{
"icon": {
"type": "element",
"isRootNode": true,
"name": "svg",
"attributes": {
"width": "12",
"height": "12",
"viewBox": "0 0 12 12",
"fill": "none",
"xmlns": "http://www.w3.org/2000/svg"
},
"children": [
{
"type": "element",
"name": "g",
"attributes": {
"id": "chevron-down"
},
"children": [
{
"type": "element",
"name": "path",
"attributes": {
"id": "Icon",
"d": "M3 4.5L6 7.5L9 4.5",
"stroke": "currentColor",
"stroke-width": "1.5",
"stroke-linecap": "round",
"stroke-linejoin": "round"
},
"children": []
}
]
}
]
},
"name": "ChevronDown"
}

Some files were not shown because too many files have changed in this diff Show More