Compare commits

...

95 Commits
0.4.8 ... 0.5.2

Author SHA1 Message Date
4ab66299d4 version to 0.5.2 (#2230) 2024-01-26 14:47:32 +08:00
42227f93c0 add openai gpt-4-0125-preview (#2226) 2024-01-26 13:36:24 +08:00
89fcf4ea7c Feat: chunk overlap supported (#2209)
Co-authored-by: jyong <jyong@dify.ai>
2024-01-26 13:24:40 +08:00
3322710dac Maintenance notice href (#2227)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-01-26 13:23:06 +08:00
404bf11d8c Update EditCustomCollectionModal button styling for Chinese (#2225) 2024-01-26 12:51:31 +08:00
60a2ecbd17 chore: no custom tool placeholder ui (#2222) 2024-01-26 12:48:26 +08:00
828822243a fix: multiple rows were found correctly (#2219) 2024-01-26 12:47:42 +08:00
2068ae215e fix: tts model tip (#2221) 2024-01-26 12:34:39 +08:00
d4262ecceb fix: remove and create app not reload plan (#2220) 2024-01-26 11:16:50 +08:00
8be7d8a635 Add new OpenAI embedding models (#2217) 2024-01-26 04:48:20 +08:00
c038040e1b Add gmpy2 dependencies packages (#2216) 2024-01-26 03:09:24 +08:00
21450b8a51 feat: openai_api_compatible support config stream_mode_delimiter (#2190)
Co-authored-by: wanggang <wanggy01@servyou.com.cn>
Co-authored-by: Chenhe Gu <guchenhe@gmail.com>
2024-01-26 00:31:59 +08:00
5fc1bd026a Update version to 0.5.1 (#2213) 2024-01-26 00:16:53 +08:00
d60f1a5601 fix:determine multiple result exceptions caused by admin (#2211)
Co-authored-by: chenxin <chenxin@limayao.com>
2024-01-26 00:06:23 +08:00
da83f8403e fix: sometimes app main content not fill the window (#2208) 2024-01-25 18:28:50 +08:00
4ff17af5de fix: model parameter modal input (#2206) 2024-01-25 18:04:22 +08:00
a9d1b4e6d7 feat: create app show agent type tip (#2207) 2024-01-25 18:04:04 +08:00
66612075d2 chore: enchance some use experience (#2204) 2024-01-25 17:05:20 +08:00
b921c55677 Feat/zhipuai function calling (#2199)
Co-authored-by: Joel <iamjoel007@gmail.com>
2024-01-25 16:29:35 +08:00
bdc5e9ceb0 chore: test register ga (#2202) 2024-01-25 15:52:45 +08:00
f2b2effc4b fix: typing delay (#2200) 2024-01-25 14:55:12 +08:00
301e0496ff fix: chatbot support agent (#2201) 2024-01-25 14:53:52 +08:00
98660e1f97 skip installing python3-dev package on base stage in api docker image (#2193) 2024-01-25 14:49:11 +08:00
6cf93379b3 fix: split chunks return empty strings (#2197) 2024-01-25 13:59:18 +08:00
8639abec97 improve api docker file and lock Debian version in base image tag (#2195) 2024-01-25 12:44:15 +08:00
d5361b8d09 feat: multiple model configuration (#2196)
Co-authored-by: Joel <iamjoel007@gmail.com>
2024-01-25 12:36:55 +08:00
6bfdfab6f3 Support JSONL output (#2171) 2024-01-25 12:32:04 +08:00
bec998ab94 chore: remove universal chat code (#2194) 2024-01-25 11:47:35 +08:00
77636945fb fix: utm (#2191) 2024-01-25 11:40:09 +08:00
fd5c45ae10 Add tts document&fix bug (#2156)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: Yeuoly <45712896+Yeuoly@users.noreply.github.com>
2024-01-24 23:04:14 +08:00
ad71386adf Doc/update readme (#2186) 2024-01-24 22:06:37 +08:00
043517717e fix: minimax request timeout (#2185) 2024-01-24 21:53:29 +08:00
76c52300a2 feat: abab6-chat supported (#2184) 2024-01-24 21:07:37 +08:00
dda32c6880 fix: credentials validation of ababa (#2183) 2024-01-24 21:07:26 +08:00
ac4bb5c35f Add tongyi tts&tts function optimization (#2177)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-01-24 20:32:04 +08:00
a96cae4f44 refine: faster rsa implement (#2182) 2024-01-24 20:22:01 +08:00
7cb75cb2e7 feat: add tool labels (#2178) 2024-01-24 20:14:45 +08:00
0940084fd2 chore: utm (#2180) 2024-01-24 20:14:21 +08:00
95ad06c8c3 feat: utm supports. (#2181) 2024-01-24 20:14:02 +08:00
3c13c4f3ee fix: filename cause windows import error (#2176) 2024-01-24 18:24:17 +08:00
2fe938b7da fix: knowledge api doc (#2174) 2024-01-24 17:51:21 +08:00
784da52ea6 fix: credentials validate compatible problem (#2170) 2024-01-24 17:19:25 +08:00
78524a56ed bump alpine from 3.18 to 3.19 in web image (#2126) 2024-01-24 16:24:50 +08:00
6c614f0c1f fix: empty usage (#2168) 2024-01-24 15:34:17 +08:00
d42df4ed04 let citation show on webapp (#2161) 2024-01-24 13:57:11 +08:00
6d94126368 fix: transcript asr params wrong (#2162) 2024-01-24 13:36:04 +08:00
e0f72d2791 version to 0.5.0. (#2147) 2024-01-24 12:57:05 +08:00
3e51710fe6 fix: explore app add to workspace (#2160) 2024-01-24 12:37:42 +08:00
7bfdca7a53 fix: embeded chat app input (#2159) 2024-01-24 12:37:12 +08:00
48d5628fd4 Refactor: CoT runner (#2157) 2024-01-24 12:09:30 +08:00
c8fb619d37 fix: add tool index (#2152) 2024-01-24 12:01:14 +08:00
57024614bd fix: Fix typo in credentials field name (#2155) 2024-01-24 12:00:34 +08:00
a31b502668 refractor: assistant runner rename (#2150) 2024-01-24 11:38:15 +08:00
e58c3ac374 Fix/language support (#2154) 2024-01-24 11:08:11 +08:00
00f4e6ec44 feat: add ffmpeg faq link in missing ffmpeg error (#2146) 2024-01-24 01:45:35 +08:00
6355e61eb8 tts models support (#2033)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: Yeuoly <45712896+Yeuoly@users.noreply.github.com>
2024-01-24 01:05:37 +08:00
27828f44b9 Fix/assistant none type (#2145) 2024-01-24 00:13:04 +08:00
9525ca08b9 Fix/assistant none type (#2143) 2024-01-23 22:16:31 +08:00
501caf0a69 fix: None type in cot assistant app (#2142) 2024-01-23 21:59:09 +08:00
c17baef172 Feat/portuguese support (#2075) 2024-01-23 21:14:53 +08:00
21ade71bad fix: agent strategy (#2141) 2024-01-23 21:04:46 +08:00
23e02d8eb0 feat: remove universal chat app (#2140) 2024-01-23 20:31:28 +08:00
86286e1ac8 Feat/assistant app (#2086)
Co-authored-by: chenhe <guchenhe@gmail.com>
Co-authored-by: Pascal M <11357019+perzeuss@users.noreply.github.com>
2024-01-23 19:58:23 +08:00
7bbe12b2bd feat: support assistant frontend (#2139)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2024-01-23 19:31:56 +08:00
e65a2a400d fix: model-parameter-modal slider (#2135) 2024-01-23 14:25:22 +08:00
741079f317 fix annotation reply (#2127)
Co-authored-by: jyong <jyong@dify.ai>
2024-01-22 17:39:19 +08:00
0f5d4fd11b fix: bump lamejs from 1.2.0 to 1.2.1 (#2122) 2024-01-22 14:52:39 +08:00
8eae206715 fix: recipt info (#2123) 2024-01-22 13:28:05 +08:00
7434d44412 feat: bedrock reorder in provider list (#2121) 2024-01-22 12:06:10 +08:00
8394bbd47f feat: support GLM-4V (#2124) 2024-01-22 11:56:37 +08:00
14a2eeba0c Add bedrock (#2119)
Co-authored-by: takatost <takatost@users.noreply.github.com>
Co-authored-by: Garfield Dai <dai.hai@foxmail.com>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: Charlie.Wei <luowei@cvte.com>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: Benjamin <benjaminx@gmail.com>
2024-01-22 11:00:19 +08:00
a18dde9b0d feat: add cohere llm and embedding (#2115) 2024-01-21 20:52:56 +08:00
8438d820ad Feat/2070 glm 4 and glm 3 turbo (#2114) 2024-01-21 16:58:06 +08:00
e19ad023d2 Fix/2102 long dify app description throws backend exception (#2112) 2024-01-21 12:30:16 +08:00
0695f08f05 fix: invite email template languages constant var (#2111) 2024-01-21 12:22:59 +08:00
22ab4721e2 Init azure openai show quota (#2096)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-01-21 12:07:27 +08:00
51f23c5dc2 feat: support re-invite email. (#2107) 2024-01-20 22:28:41 +08:00
1f48e3d44a feat: support legacy doc (#2100) 2024-01-20 22:21:51 +08:00
0113627d7b chore: enchance view billing text (#2109) 2024-01-20 22:15:13 +08:00
0a5de0ff0b fix: empty keywords moderation. (#2108) 2024-01-20 20:02:51 +08:00
9c4bad8f1e fix: arg missing when call method on_message_replace_func in output… (#2106) 2024-01-20 17:53:38 +08:00
c7783dbd6c bump version to 0.4.9 (#2103) 2024-01-19 22:25:23 +08:00
ee9c7e204f delete document cache embedding (#2101)
Co-authored-by: jyong <jyong@dify.ai>
2024-01-19 21:37:54 +08:00
483dcb6340 fix: skip linking /etc/localtime file first in api docker image (#2099) 2024-01-19 21:06:26 +08:00
9ad7b65996 support setting timezone in docker images (#2091) 2024-01-19 20:30:36 +08:00
ec1659cba0 fix: saving error in empty dataset (#2098) 2024-01-19 20:12:04 +08:00
09a8db10d4 Add jina-embeddings-v2-base-de model configuration (#2094) 2024-01-19 18:11:55 +08:00
f3323beaca fix: yarn install command in web Dockerfile (#2084) 2024-01-19 18:11:47 +08:00
275973da8c add feature request copilot (#2095) 2024-01-19 17:55:39 +08:00
e2c89a9487 fix: bypass admin users to use dataset api with API key (#2072) 2024-01-19 17:23:05 +08:00
869690c485 fix notion estimate (#2090)
Co-authored-by: jyong <jyong@dify.ai>
2024-01-19 13:27:12 +08:00
a3c7c07ecc use redis to cache embeddings (#2085)
Co-authored-by: jyong <jyong@dify.ai>
2024-01-18 21:39:12 +08:00
dc8a8af117 bump default NodeJS version to 20 LTS (#2061) 2024-01-18 19:12:40 +08:00
6c28e1e69a fix: version (#2083) 2024-01-18 16:44:09 +08:00
0e1163f698 feat: remove deprecated envs (#2078) 2024-01-18 14:44:37 +08:00
755 changed files with 35455 additions and 6177 deletions

View File

@ -21,7 +21,7 @@ jobs:
- name: Setup NodeJS
uses: actions/setup-node@v4
with:
node-version: 18
node-version: 20
cache: yarn
cache-dependency-path: ./web/package.json

26
.github/workflows/tool-tests.yaml vendored Normal file
View File

@ -0,0 +1,26 @@
name: Run Tool Pytest
on:
pull_request:
branches:
- main
jobs:
test:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: 'pip'
cache-dependency-path: ./api/requirements.txt
- name: Install dependencies
run: pip install -r ./api/requirements.txt
- name: Run pytest
run: pytest ./api/tests/integration_tests/tools/test_all_provider.py

View File

@ -12,7 +12,7 @@ In terms of licensing, please take a minute to read our short [License and Contr
### Feature requests:
* If you're opening a new feature request, we'd like you to explain what the proposed feature achieves, and include as much context as possible.
* If you're opening a new feature request, we'd like you to explain what the proposed feature achieves, and include as much context as possible. [@perzeusss](https://github.com/perzeuss) has made a solid [Feature Request Copilot](https://udify.app/chat/MK2kVSnw1gakVwMX) that helps you draft out your needs. Feel free to give it a try.
* If you want to pick one up from the existing issues, simply drop a comment below it saying so.
@ -91,6 +91,8 @@ To validate your set up, head over to [http://localhost:3000](http://localhost:3
If you are adding a model provider, [this guide](https://github.com/langgenius/dify/blob/main/api/core/model_runtime/README.md) is for you.
If you are adding a tool provider to Agent or Workflow, [this guide](./api/core/tools/README.md) is for you.
To help you quickly navigate where your contribution fits, a brief, annotated outline of Dify's backend & frontend is as follows:
### Backend

View File

@ -1,57 +1,155 @@
# 贡献
所以你想为 Dify 做贡献 - 这太棒了,我们迫不及待地想看到你的贡献。作为一家人员和资金有限的初创公司,我们有着雄心勃勃的目标,希望设计出最直观的工作流程来构建和管理 LLM 应用程序。社区的任何帮助都是宝贵的。
感谢您对 [Dify](https://dify.ai) 的兴趣,并希望您能够做出贡献!在开始之前,请先阅读[行为准则](https://github.com/langgenius/.github/blob/main/CODE_OF_CONDUCT.md)并查看[现有问题](https://github.com/langgenius/dify/issues)
本文档介绍了如何设置开发环境以构建和测试 [Dify](https://dify.ai)。
考虑到我们的现状,我们需要灵活快速地交付,但我们也希望确保像你这样的贡献者在贡献过程中获得尽可能顺畅的体验。我们为此编写了这份贡献指南,旨在让你熟悉代码库和我们与贡献者的合作方式,以便你能快速进入有趣的部分
### 安装依赖项
这份指南,就像 Dify 本身一样,是一个不断改进的工作。如果有时它落后于实际项目,我们非常感谢你的理解,并欢迎任何反馈以供我们改进。
您需要在计算机上安装和配置以下依赖项才能构建 [Dify](https://dify.ai)
在许可方面,请花一分钟阅读我们简短的[许可证和贡献者协议](./license)。社区还遵守[行为准则](https://github.com/langgenius/.github/blob/main/CODE_OF_CONDUCT.md)
- [Git](http://git-scm.com/)
- [Docker](https://www.docker.com/)
- [Docker Compose](https://docs.docker.com/compose/install/)
- [Node.js v18.x (LTS)](http://nodejs.org)
- [npm](https://www.npmjs.com/) 版本 8.x.x 或 [Yarn](https://yarnpkg.com/)
- [Python](https://www.python.org/) 版本 3.10.x
## 在开始之前
## 本地开发
[查找](https://github.com/langgenius/dify/issues?q=is:issue+is:closed)现有问题,或[创建](https://github.com/langgenius/dify/issues/new/choose)一个新问题。我们将问题分为两类:
要设置一个可工作的开发环境,只需 fork 项目的 git 存储库,并使用适当的软件包管理器安装后端和前端依赖项,然后创建并运行 docker-compose。
### 功能请求:
### Fork存储库
* 如果您要提出新的功能请求,请解释所提议的功能的目标,并尽可能提供详细的上下文。[@perzeusss](https://github.com/perzeuss)制作了一个很好的[功能请求助手](https://udify.app/chat/MK2kVSnw1gakVwMX),可以帮助您起草需求。随时尝试一下。
您需要 fork [Git 仓库](https://github.com/langgenius/dify)
* 如果您想从现有问题中选择一个,请在其下方留下评论表示您的意愿
### 克隆存储库
相关方向的团队成员将参与其中。如果一切顺利,他们将批准您开始编码。在此之前,请不要开始工作,以免我们提出更改导致您的工作付诸东流。
克隆您在 GitHub 上 fork 的仓库
根据所提议的功能所属的领域不同,您可能需要与不同的团队成员交流。以下是我们团队成员目前正在从事的各个领域的概述
| Member | Scope |
| ------------------------------------------------------------ | ---------------------------------------------------- |
| [@yeuoly](https://github.com/Yeuoly) | Architecting Agents |
| [@jyong](https://github.com/JohnJyong) | RAG pipeline design |
| [@GarfieldDai](https://github.com/GarfieldDai) | Building workflow orchestrations |
| [@iamjoel](https://github.com/iamjoel) & [@zxhlyh](https://github.com/zxhlyh) | Making our frontend a breeze to use |
| [@guchenhe](https://github.com/guchenhe) & [@crazywoola](https://github.com/crazywoola) | Developer experience, points of contact for anything |
| [@takatost](https://github.com/takatost) | Overall product direction and architecture |
How we prioritize:
| Feature Type | Priority |
| ------------------------------------------------------------ | --------------- |
| High-Priority Features as being labeled by a team member | High Priority |
| Popular feature requests from our [community feedback board](https://feedback.dify.ai/) | Medium Priority |
| Non-core features and minor enhancements | Low Priority |
| Valuable but not immediate | Future-Feature |
### 其他任何事情例如bug报告、性能优化、拼写错误更正
* 立即开始编码。
How we prioritize:
| Issue Type | Priority |
| ------------------------------------------------------------ | --------------- |
| Bugs in core functions (cannot login, applications not working, security loopholes) | Critical |
| Non-critical bugs, performance boosts | Medium Priority |
| Minor fixes (typos, confusing but working UI) | Low Priority |
## 安装
以下是设置Dify进行开发的步骤
### 1. Fork该仓库
### 2. 克隆仓库
从终端克隆fork的仓库
```
git clone git@github.com:<github_username>/dify.git
```
### 安装后端
### 3. 验证依赖项
要了解如何安装后端应用程序,请参阅[后端 README](api/README.md)。
Dify 依赖以下工具和库:
### 安装前端
- [Docker](https://www.docker.com/)
- [Docker Compose](https://docs.docker.com/compose/install/)
- [Node.js v18.x (LTS)](http://nodejs.org)
- [npm](https://www.npmjs.com/) version 8.x.x or [Yarn](https://yarnpkg.com/)
- [Python](https://www.python.org/) version 3.10.x
要了解如何安装前端应用程序,请参阅[前端 README](web/README.md)。
### 4. 安装
### 在浏览器中访问 Dify
Dify由后端和前端组成。通过`cd api/`导航到后端目录,然后按照[后端README](api/README.md)进行安装。在另一个终端中,通过`cd web/`导航到前端目录,然后按照[前端README](web/README.md)进行安装。
最后,您现在可以访问 [http://localhost:3000](http://localhost:3000) 在本地环境中查看 [Dify](https://dify.ai)
查看[安装常见问题解答](https://docs.dify.ai/getting-started/faq/install-faq)以获取常见问题列表和故障排除步骤
## 创建拉取请求
### 5. 在浏览器中访问Dify
在进行更改后打开一个拉取请求PR。提交拉取请求后Dify 团队/社区的其他人将与您一起审查它
为了验证您的设置,打开浏览器并访问[http://localhost:3000](http://localhost:3000)默认或您自定义的URL和端口。现在您应该看到Dify正在运行
如果遇到问题,比如合并冲突或不知道如何打开拉取请求,请查看 GitHub 的[拉取请求教程](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests),了解如何解决合并冲突和其他问题。一旦您的 PR 被合并,您将自豪地被列为[贡献者表](https://github.com/langgenius/dify/graphs/contributors)中的一员。
## 开发
## 社区渠道
如果您要添加模型提供程序,请参考[此指南](https://github.com/langgenius/dify/blob/main/api/core/model_runtime/README.md)。
遇到困难了吗?有任何问题吗? 加入 [Discord Community Server](https://discord.gg/AhzKf7dNgk),我们将为您提供帮助
如果您要向Agent或Workflow添加工具提供程序请参考[此指南](./api/core/tools/README.md)
### 多语言支持
为了帮助您快速了解您的贡献在哪个部分以下是Dify后端和前端的简要注释大纲
需要参与贡献翻译内容,请参阅[前端多语言翻译 README](web/i18n/README_CN.md)。
### 后端
Dify的后端使用Python编写使用[Flask](https://flask.palletsprojects.com/en/3.0.x/)框架。它使用[SQLAlchemy](https://www.sqlalchemy.org/)作为ORM使用[Celery](https://docs.celeryq.dev/en/stable/getting-started/introduction.html)作为任务队列。授权逻辑通过Flask-login进行处理。
```
[api/]
├── constants // Constant settings used throughout code base.
├── controllers // API route definitions and request handling logic.
├── core // Core application orchestration, model integrations, and tools.
├── docker // Docker & containerization related configurations.
├── events // Event handling and processing
├── extensions // Extensions with 3rd party frameworks/platforms.
├── fields // field definitions for serialization/marshalling.
├── libs // Reusable libraries and helpers.
├── migrations // Scripts for database migration.
├── models // Database models & schema definitions.
├── services // Specifies business logic.
├── storage // Private key storage.
├── tasks // Handling of async tasks and background jobs.
└── tests
```
### 前端
该网站使用基于Typescript的[Next.js](https://nextjs.org/)模板进行引导,并使用[Tailwind CSS](https://tailwindcss.com/)进行样式设计。[React-i18next](https://react.i18next.com/)用于国际化。
```
[web/]
├── app // layouts, pages, and components
│ ├── (commonLayout) // common layout used throughout the app
│ ├── (shareLayout) // layouts specifically shared across token-specific sessions
│ ├── activate // activate page
│ ├── components // shared by pages and layouts
│ ├── install // install page
│ ├── signin // signin page
│ └── styles // globally shared styles
├── assets // Static assets
├── bin // scripts ran at build step
├── config // adjustable settings and options
├── context // shared contexts used by different portions of the app
├── dictionaries // Language-specific translate files
├── docker // container configurations
├── hooks // Reusable hooks
├── i18n // Internationalization configuration
├── models // describes data models & shapes of API responses
├── public // meta assets like favicon
├── service // specifies shapes of API actions
├── test
├── types // descriptions of function params and return values
└── utils // Shared utility functions
```
## 提交你的 PR
最后是时候向我们的仓库提交一个拉取请求PR了。对于重要的功能我们首先将它们合并到 `deploy/dev` 分支进行测试,然后再合并到 `main` 分支。如果你遇到合并冲突或者不知道如何提交拉取请求的问题,请查看 [GitHub 的拉取请求教程](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests)。
就是这样!一旦你的 PR 被合并,你将成为我们 [README](https://github.com/langgenius/dify/blob/main/README.md) 中的贡献者。
## 获取帮助
如果你在贡献过程中遇到困难或者有任何问题,可以通过相关的 GitHub 问题提出你的疑问,或者加入我们的 [Discord](https://discord.gg/AhzKf7dNgk) 进行快速交流。

View File

@ -1,55 +0,0 @@
# コントリビュート
[Dify](https://dify.ai) に興味を持ち、貢献したいと思うようになったことに感謝します!始める前に、
[行動規範](https://github.com/langgenius/.github/blob/main/CODE_OF_CONDUCT.md)を読み、
[既存の問題](https://github.com/langgenius/langgenius-gateway/issues)をチェックしてください。
本ドキュメントは、[Dify](https://dify.ai) をビルドしてテストするための開発環境の構築方法を説明するものです。
### 依存関係のインストール
[Dify](https://dify.ai)をビルドするには、お使いのマシンに以下の依存関係をインストールし、設定する必要があります:
- [Git](http://git-scm.com/)
- [Docker](https://www.docker.com/)
- [Docker Compose](https://docs.docker.com/compose/install/)
- [Node.js v18.x (LTS)](http://nodejs.org)
- [npm](https://www.npmjs.com/) バージョン 8.x.x もしくは [Yarn](https://yarnpkg.com/)
- [Python](https://www.python.org/) バージョン 3.10.x
## ローカル開発
開発環境を構築するには、プロジェクトの git リポジトリをフォークし、適切なパッケージマネージャを使用してバックエンドとフロントエンドの依存関係をインストールし、docker-compose スタックを実行するように作成します。
### リポジトリのフォーク
[リポジトリ](https://github.com/langgenius/dify) をフォークする必要があります。
### リポジトリのクローン
GitHub でフォークしたリポジトリのクローンを作成する:
```
git clone git@github.com:<github_username>/dify.git
```
### バックエンドのインストール
バックエンドアプリケーションのインストール方法については、[Backend README](api/README.md) を参照してください。
### フロントエンドのインストール
フロントエンドアプリケーションのインストール方法については、[Frontend README](web/README.md) を参照してください。
### ブラウザで dify にアクセス
[Dify](https://dify.ai) をローカル環境で見ることができるようになりました [http://localhost:3000](http://localhost:3000)。
## プルリクエストの作成
変更後、プルリクエスト (PR) をオープンしてください。プルリクエストを提出すると、Dify チーム/コミュニティの他の人があなたと一緒にそれをレビューします。
マージコンフリクトなどの問題が発生したり、プルリクエストの開き方がわからなくなったりしませんでしたか? [GitHub's pull request tutorial](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests) で、マージコンフリクトやその他の問題を解決する方法をチェックしてみてください。あなたの PR がマージされると、[コントリビュータチャート](https://github.com/langgenius/langgenius-gateway/graphs/contributors)にコントリビュータとして誇らしげに掲載されます。
## コミュニティチャンネル
お困りですか?何か質問がありますか? [Discord Community サーバ](https://discord.gg/j3XRWSPBf7) に参加してください。私たちがお手伝いします!

View File

@ -21,6 +21,11 @@
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
</a>
</p>
**Dify** is an LLM application development platform that has helped built over **100,000** applications. It integrates BaaS and LLMOps, covering the essential tech stack for building generative AI-native applications, including a built-in RAG engine. Dify allows you to **deploy your own version of Assistants API and GPTs, based on any LLMs.**
@ -55,7 +60,8 @@ You can try out [Dify.AI Cloud](https://dify.ai) now. It provides all the capabi
**3. RAG Engine**: Includes various RAG capabilities based on full-text indexing or vector database embeddings, allowing direct upload of PDFs, TXTs, and other text formats.
**4. Agents**: A Function Calling based Agent framework that allows users to configure what they see is what they get. Dify includes basic plugin capabilities like Google Search.
**4. AI Agent**: Based on Function Calling and ReAct, the Agent inference framework allows users to customize tools, what you see is what you get. Dify provides more than a dozen built-in tool calling capabilities, such as Google Search, DELL·E, Stable Diffusion, WolframAlpha, etc.
**5. Continuous Operations**: Monitor and analyze application logs and performance, continuously improving Prompts, datasets, or models using production data.

View File

@ -21,6 +21,12 @@
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="https://mp.weixin.qq.com/s/TnyfIuH-tPi9o1KNjwVArw" target="_blank">
Dify 发布 AI Agent 能力:基于不同的大型语言模型构建 GPTs 和 Assistants
</a>
</p>
Dify 是一个 LLM 应用开发平台,已经有超过 10 万个应用基于 Dify.AI 构建。它融合了 Backend as Service 和 LLMOps 的理念,涵盖了构建生成式 AI 原生应用所需的核心技术栈,包括一个内置 RAG 引擎。使用 Dify你可以基于任何模型自部署类似 Assistants API 和 GPTs 的能力。
![](./images/demo.png)
@ -53,7 +59,7 @@ Dify 具有模型中立性,相较 LangChain 等硬编码开发库 Dify 是一
**3. RAG引擎**:包括各种基于全文索引或向量数据库嵌入的 RAG 能力,允许直接上传 PDF、TXT 等各种文本格式。
**4. Agent**:基于函数调用的 Agent框架允许用户自定义配置所见即所得。Dify 提供了基本的插件能力,如谷歌搜索
**4. AI Agent**:基于 Function Calling 和 ReAct 的 Agent 推理框架,允许用户自定义工具所见即所得。Dify 提供了十多种内置工具调用能力如谷歌搜索、DELL·E、Stable Diffusion、WolframAlpha 等
**5. 持续运营**:监控和分析应用日志和性能,使用生产数据持续改进 Prompt、数据集或模型。

View File

@ -21,6 +21,12 @@
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
</a>
</p>
**Dify** es una plataforma de desarrollo de aplicaciones para modelos de lenguaje de gran tamaño (LLM) que ya ha visto la creación de más de **100,000** aplicaciones basadas en Dify.AI. Integra los conceptos de Backend como Servicio y LLMOps, cubriendo el conjunto de tecnologías esenciales requerido para construir aplicaciones nativas de inteligencia artificial generativa, incluyendo un motor RAG incorporado. Con Dify, **puedes auto-desplegar capacidades similares a las de Assistants API y GPTs basadas en cualquier LLM.**
![](./images/demo.png)
@ -52,7 +58,7 @@ Dify se caracteriza por su neutralidad de modelo y es un conjunto tecnológico c
**3. Motor RAG**: Incluye varias capacidades RAG basadas en indexación de texto completo o incrustaciones de base de datos vectoriales, permitiendo la carga directa de PDFs, TXTs y otros formatos de texto.
**4. Agentes**: Un marco de Agentes basado en Llamadas de Función que permite a los usuarios configurar lo que ven es lo que obtienen. Dify incluye capacidades básicas de plugins como la Búsqueda de Google.
**4. Agente de IA**: Basado en la llamada de funciones y ReAct, el marco de inferencia del Agente permite a los usuarios personalizar las herramientas, lo que ves es lo que obtienes. Dify proporciona más de una docena de capacidades de llamada de herramientas incorporadas, como Búsqueda de Google, DELL·E, Difusión Estable, WolframAlpha, etc.
**5. Operaciones Continuas**: Monitorear y analizar registros de aplicaciones y rendimiento, mejorando continuamente Prompts, conjuntos de datos o modelos usando datos de producción.

View File

@ -21,6 +21,13 @@
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
</a>
</p>
**Dify** est une plateforme de développement d'applications LLM qui a déjà vu plus de **100,000** applications construites sur Dify.AI. Elle intègre les concepts de Backend as a Service et LLMOps, couvrant la pile technologique de base requise pour construire des applications natives d'IA générative, y compris un moteur RAG intégré. Avec Dify, **vous pouvez auto-déployer des capacités similaires aux API Assistants et GPT basées sur n'importe quels LLM.**
![](./images/demo.png)
@ -52,7 +59,7 @@ Dify présente une neutralité de modèle et est une pile technologique complèt
**3\. Moteur RAG**: Comprend diverses capacités RAG basées sur l'indexation de texte intégral ou les embeddings de base de données vectorielles, permettant le chargement direct de PDF, TXT et autres formats de texte.
**4\. Agents**: Un framework d'agents basé sur l'appel de fonctions qui permet aux utilisateurs de configurer ce qu'ils voient est ce qu'ils obtiennent. Dify comprend des capacités de plug-in de base comme Google Search.
**4\. AI Agent**: Basé sur l'appel de fonction et ReAct, le framework d'inférence de l'Agent permet aux utilisateurs de personnaliser les outils, ce que vous voyez est ce que vous obtenez. Dify propose plus d'une douzaine de capacités d'appel d'outils intégrées, telles que la recherche Google, DELL·E, Diffusion Stable, WolframAlpha, etc.
**5\. Opérations continues**: Surveillez et analysez les journaux et les performances des applications, améliorez en continu les invites, les datasets ou les modèles à l'aide de données de production.

View File

@ -21,6 +21,13 @@
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
</a>
</p>
"Difyは、既にDify.AI上で10万以上のアプリケーションが構築されているLLMアプリケーション開発プラットフォームです。バックエンド・アズ・ア・サービスとLLMOpsの概念を統合し、組み込みのRAGエンジンを含む、生成AIネイティブアプリケーションを構築するためのコアテックスタックをカバーしています。Difyを使用すると、どのLLMに基づいても、Assistants APIやGPTのような機能を自己デプロイすることができます。"
Please note that translating complex technical terms can sometimes result in slight variations in meaning due to differences in language nuances.
@ -54,7 +61,7 @@ Difyはモデルニュートラルであり、LangChainのようなハードコ
**3\. RAGエンジン**: フルテキストインデックスまたはベクトルデータベース埋め込みに基づくさまざまなRAG機能を含み、PDF、TXT、その他のテキストフォーマットの直接アップロードを可能にします。
**4\. エージェント**: ユーザーが sees what they get を設定できる関数呼び出しベースのエージェントフレームワーク。 Difyは、Google検索などの基本的なプラグイン機能が含まれています。
**4. AIエージェント**: 関数呼び出しとReActに基づくAgent推論フレームワークにより、ユーザーはツールをカスタマイズすることができます。Difyは、Google検索、DELL·E、Stable Diffusion、WolframAlphaなど、十数種類の組み込みツール呼び出し機能を提供しています。
**5\. 継続的運用**: アプリケーションログとパフォーマンスを監視および分析し、運用データを使用してプロンプト、データセット、またはモデルを継続的に改善します。

View File

@ -52,7 +52,7 @@ Dify Daq rIn neutrality 'ej Hoch, LangChain tInHar HubwI'. maH Daqbe'law' Qawqar
**3. RAG Engine**: RAG vaD tIqpu' lo'taH indexing qor neH vector database wa' embeddings wIj, PDFs, TXTs, 'ej ghojmoHmoH HIq qorlIj je upload.
**4. jenSuvpu'**: jenbe' SuDqang naQ moDwu' jenSuvpu' porgh cha'logh choHvam. Dify Google Search Hur vItlhutlh plugin choH.
**4. AI Agent**: Function Calling 'ej ReAct Daq Hurmey, Agent inference framework Hoch users customize tools, vaj 'oH QaQ. Dify Hoch loS ghaH 'ej wa'vatlh built-in tool calling capabilities, Google Search, DELL·E, Stable Diffusion, WolframAlpha, 'ej.
**5. QaS muDHa'wI': cha'logh wa' pIq mI' logs 'ej quv yIn, vItlhutlh tIq 'e'wIj lo'taHmoHmoH Prompts, vItlhutlh, Hurmey ghaH production data jatlh.

View File

@ -15,7 +15,6 @@ CONSOLE_WEB_URL=http://127.0.0.1:3000
SERVICE_API_URL=http://127.0.0.1:5001
# Web APP base URL
APP_API_URL=http://127.0.0.1:5001
APP_WEB_URL=http://127.0.0.1:3000
# Files URL

View File

@ -1,17 +1,20 @@
# packages install stage
FROM python:3.10-slim AS base
# base image
FROM python:3.10-slim-bookworm AS base
LABEL maintainer="takatost@gmail.com"
# install packages
FROM base as packages
RUN apt-get update \
&& apt-get install -y --no-install-recommends gcc g++ python3-dev libc-dev libffi-dev
&& apt-get install -y --no-install-recommends gcc g++ libc-dev libffi-dev libgmp-dev libmpfr-dev libmpc-dev
COPY requirements.txt /requirements.txt
RUN pip install --prefix=/pkg -r requirements.txt
# build stage
FROM python:3.10-slim AS builder
# production stage
FROM base AS production
ENV FLASK_APP app.py
ENV EDITION SELF_HOSTED
@ -19,19 +22,21 @@ ENV DEPLOY_ENV PRODUCTION
ENV CONSOLE_API_URL http://127.0.0.1:5001
ENV CONSOLE_WEB_URL http://127.0.0.1:3000
ENV SERVICE_API_URL http://127.0.0.1:5001
ENV APP_API_URL http://127.0.0.1:5001
ENV APP_WEB_URL http://127.0.0.1:3000
EXPOSE 5001
# set timezone
ENV TZ UTC
WORKDIR /app/api
RUN apt-get update \
&& apt-get install -y --no-install-recommends bash curl wget vim nodejs \
&& apt-get install -y --no-install-recommends curl wget vim nodejs ffmpeg libgmp-dev libmpfr-dev libmpc-dev \
&& apt-get autoremove \
&& rm -rf /var/lib/apt/lists/*
COPY --from=base /pkg /usr/local
COPY --from=packages /pkg /usr/local
COPY . /app/api/
COPY docker/entrypoint.sh /entrypoint.sh

View File

@ -30,7 +30,7 @@ from flask import Flask, Response, request
from flask_cors import CORS
from libs.passport import PassportService
# DO NOT REMOVE BELOW
from models import account, dataset, model, source, task, tool, web
from models import account, dataset, model, source, task, tool, web, tools
from services.account_service import AccountService
# DO NOT REMOVE ABOVE
@ -124,6 +124,7 @@ def load_user_from_request(request_from_flask_login):
else:
return None
@login_manager.unauthorized_handler
def unauthorized_handler():
"""Handle unauthorized requests."""

View File

@ -11,6 +11,7 @@ import uuid
import click
import qdrant_client
from constants.languages import user_input_form_template
from core.embedding.cached_embedding import CacheEmbedding
from core.index.index import IndexBuilder
from core.model_manager import ModelManager
@ -22,7 +23,7 @@ from libs.password import hash_password, password_pattern, valid_password
from libs.rsa import generate_key_pair
from models.account import InvitationCode, Tenant, TenantAccountJoin
from models.dataset import Dataset, DatasetCollectionBinding, DatasetQuery, Document
from models.model import Account, App, AppModelConfig, Message, MessageAnnotation
from models.model import Account, App, AppModelConfig, Message, MessageAnnotation, InstalledApp
from models.provider import Provider, ProviderModel, ProviderQuotaType, ProviderType
from qdrant_client.http.models import TextIndexParams, TextIndexType, TokenizerType
from tqdm import tqdm
@ -583,28 +584,6 @@ def deal_dataset_vector(flask_app: Flask, dataset: Dataset, normalization_count:
@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
def update_app_model_configs(batch_size):
pre_prompt_template = '{{default_input}}'
user_input_form_template = {
"en-US": [
{
"paragraph": {
"label": "Query",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
"zh-Hans": [
{
"paragraph": {
"label": "查询内容",
"variable": "default_input",
"required": False,
"default": ""
}
}
]
}
click.secho("Start migrate old data that the text generator can support paragraph variable.", fg='green')

View File

@ -22,7 +22,6 @@ DEFAULTS = {
'CONSOLE_API_URL': 'https://cloud.dify.ai',
'SERVICE_API_URL': 'https://api.dify.ai',
'APP_WEB_URL': 'https://udify.app',
'APP_API_URL': 'https://udify.app',
'FILES_URL': '',
'STORAGE_TYPE': 'local',
'STORAGE_LOCAL_PATH': 'storage',
@ -94,7 +93,7 @@ class Config:
# ------------------------
# General Configurations.
# ------------------------
self.CURRENT_VERSION = "0.4.8"
self.CURRENT_VERSION = "0.5.2"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
@ -103,35 +102,25 @@ class Config:
# The backend URL prefix of the console API.
# used to concatenate the login authorization callback or notion integration callback.
self.CONSOLE_API_URL = get_env('CONSOLE_URL') if get_env('CONSOLE_URL') else get_env('CONSOLE_API_URL')
self.CONSOLE_API_URL = get_env('CONSOLE_API_URL')
# The front-end URL prefix of the console web.
# used to concatenate some front-end addresses and for CORS configuration use.
self.CONSOLE_WEB_URL = get_env('CONSOLE_URL') if get_env('CONSOLE_URL') else get_env('CONSOLE_WEB_URL')
# WebApp API backend Url prefix.
# used to declare the back-end URL for the front-end API.
self.APP_API_URL = get_env('APP_URL') if get_env('APP_URL') else get_env('APP_API_URL')
self.CONSOLE_WEB_URL = get_env('CONSOLE_WEB_URL')
# WebApp Url prefix.
# used to display WebAPP API Base Url to the front-end.
self.APP_WEB_URL = get_env('APP_URL') if get_env('APP_URL') else get_env('APP_WEB_URL')
self.APP_WEB_URL = get_env('APP_WEB_URL')
# Service API Url prefix.
# used to display Service API Base Url to the front-end.
self.SERVICE_API_URL = get_env('API_URL') if get_env('API_URL') else get_env('SERVICE_API_URL')
self.SERVICE_API_URL = get_env('SERVICE_API_URL')
# File preview or download Url prefix.
# used to display File preview or download Url to the front-end or as Multi-model inputs;
# Url is signed and has expiration time.
self.FILES_URL = get_env('FILES_URL') if get_env('FILES_URL') else self.CONSOLE_API_URL
# Fallback Url prefix.
# Will be deprecated in the future.
self.CONSOLE_URL = get_env('CONSOLE_URL')
self.API_URL = get_env('API_URL')
self.APP_URL = get_env('APP_URL')
# Your App secret key will be used for securely signing the session cookie
# Make sure you are changing this key for your deployment with a strong key.
# You can generate a strong key using `openssl rand -base64 42`.

326
api/constants/languages.py Normal file
View File

@ -0,0 +1,326 @@
import json
from models.model import AppModelConfig
languages = ['en-US', 'zh-Hans', 'pt-BR', 'es-ES', 'fr-FR', 'de-DE', 'ja-JP', 'ko-KR', 'ru-RU', 'it-IT']
language_timezone_mapping = {
'en-US': 'America/New_York',
'zh-Hans': 'Asia/Shanghai',
'pt-BR': 'America/Sao_Paulo',
'es-ES': 'Europe/Madrid',
'fr-FR': 'Europe/Paris',
'de-DE': 'Europe/Berlin',
'ja-JP': 'Asia/Tokyo',
'ko-KR': 'Asia/Seoul',
'ru-RU': 'Europe/Moscow',
'it-IT': 'Europe/Rome',
}
def supported_language(lang):
if lang in languages:
return lang
error = ('{lang} is not a valid language.'
.format(lang=lang))
raise ValueError(error)
user_input_form_template = {
"en-US": [
{
"paragraph": {
"label": "Query",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
"zh-Hans": [
{
"paragraph": {
"label": "查询内容",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
"pt-BR": [
{
"paragraph": {
"label": "Consulta",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
"es-ES": [
{
"paragraph": {
"label": "Consulta",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
}
demo_model_templates = {
'en-US': [
{
'name': 'Translation Assistant',
'icon': '',
'icon_background': '',
'description': 'A multilingual translator that provides translation capabilities in multiple languages, translating user input into the language they need.',
'mode': 'completion',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo-instruct',
configs={
'prompt_template': "Please translate the following text into {{target_language}}:\n",
'prompt_variables': [
{
"key": "target_language",
"name": "Target Language",
"description": "The language you want to translate into.",
"type": "select",
"default": "Chinese",
'options': [
'Chinese',
'English',
'Japanese',
'French',
'Russian',
'German',
'Spanish',
'Korean',
'Italian',
]
}
],
'completion_params': {
'max_token': 1000,
'temperature': 0,
'top_p': 0,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='',
suggested_questions=None,
pre_prompt="Please translate the following text into {{target_language}}:\n{{query}}\ntranslate:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=json.dumps([
{
"select": {
"label": "Target Language",
"variable": "target_language",
"description": "The language you want to translate into.",
"default": "Chinese",
"required": True,
'options': [
'Chinese',
'English',
'Japanese',
'French',
'Russian',
'German',
'Spanish',
'Korean',
'Italian',
]
}
},{
"paragraph": {
"label": "Query",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
},
{
'name': 'AI Front-end Interviewer',
'icon': '',
'icon_background': '',
'description': 'A simulated front-end interviewer that tests the skill level of front-end development through questioning.',
'mode': 'chat',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo',
configs={
'introduction': 'Hi, welcome to our interview. I am the interviewer for this technology company, and I will test your web front-end development skills. Next, I will ask you some technical questions. Please answer them as thoroughly as possible. ',
'prompt_template': "You will play the role of an interviewer for a technology company, examining the user's web front-end development skills and posing 5-10 sharp technical questions.\n\nPlease note:\n- Only ask one question at a time.\n- After the user answers a question, ask the next question directly, without trying to correct any mistakes made by the candidate.\n- If you think the user has not answered correctly for several consecutive questions, ask fewer questions.\n- After asking the last question, you can ask this question: Why did you leave your last job? After the user answers this question, please express your understanding and support.\n",
'prompt_variables': [],
'completion_params': {
'max_token': 300,
'temperature': 0.8,
'top_p': 0.9,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='Hi, welcome to our interview. I am the interviewer for this technology company, and I will test your web front-end development skills. Next, I will ask you some technical questions. Please answer them as thoroughly as possible. ',
suggested_questions=None,
pre_prompt="You will play the role of an interviewer for a technology company, examining the user's web front-end development skills and posing 5-10 sharp technical questions.\n\nPlease note:\n- Only ask one question at a time.\n- After the user answers a question, ask the next question directly, without trying to correct any mistakes made by the candidate.\n- If you think the user has not answered correctly for several consecutive questions, ask fewer questions.\n- After asking the last question, you can ask this question: Why did you leave your last job? After the user answers this question, please express your understanding and support.\n",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,
"top_p": 0.9,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=None
)
}
],
'zh-Hans': [
{
'name': '翻译助手',
'icon': '',
'icon_background': '',
'description': '一个多语言翻译器,提供多种语言翻译能力,将用户输入的文本翻译成他们需要的语言。',
'mode': 'completion',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo-instruct',
configs={
'prompt_template': "请将以下文本翻译为{{target_language}}:\n",
'prompt_variables': [
{
"key": "target_language",
"name": "目标语言",
"description": "翻译的目标语言",
"type": "select",
"default": "中文",
"options": [
"中文",
"英文",
"日语",
"法语",
"俄语",
"德语",
"西班牙语",
"韩语",
"意大利语",
]
}
],
'completion_params': {
'max_token': 1000,
'temperature': 0,
'top_p': 0,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='',
suggested_questions=None,
pre_prompt="请将以下文本翻译为{{target_language}}:\n{{query}}\n翻译:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=json.dumps([
{
"select": {
"label": "目标语言",
"variable": "target_language",
"description": "翻译的目标语言",
"default": "中文",
"required": True,
'options': [
"中文",
"英文",
"日语",
"法语",
"俄语",
"德语",
"西班牙语",
"韩语",
"意大利语",
]
}
},{
"paragraph": {
"label": "文本内容",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
},
{
'name': 'AI 前端面试官',
'icon': '',
'icon_background': '',
'description': '一个模拟的前端面试官,通过提问的方式对前端开发的技能水平进行检验。',
'mode': 'chat',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo',
configs={
'introduction': '你好,欢迎来参加我们的面试,我是这家科技公司的面试官,我将考察你的 Web 前端开发技能。接下来我会向您提出一些技术问题,请您尽可能详尽地回答。',
'prompt_template': "你将扮演一个科技公司的面试官,考察用户作为候选人的 Web 前端开发水平,提出 5-10 个犀利的技术问题。\n\n请注意:\n- 每次只问一个问题\n- 用户回答问题后请直接问下一个问题,而不要试图纠正候选人的错误;\n- 如果你认为用户连续几次回答的都不对,就少问一点;\n- 问完最后一个问题后,你可以问这样一个问题:上一份工作为什么离职?用户回答该问题后,请表示理解与支持。\n",
'prompt_variables': [],
'completion_params': {
'max_token': 300,
'temperature': 0.8,
'top_p': 0.9,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='你好,欢迎来参加我们的面试,我是这家科技公司的面试官,我将考察你的 Web 前端开发技能。接下来我会向您提出一些技术问题,请您尽可能详尽地回答。',
suggested_questions=None,
pre_prompt="你将扮演一个科技公司的面试官,考察用户作为候选人的 Web 前端开发水平,提出 5-10 个犀利的技术问题。\n\n请注意:\n- 每次只问一个问题\n- 用户回答问题后请直接问下一个问题,而不要试图纠正候选人的错误;\n- 如果你认为用户连续几次回答的都不对,就少问一点;\n- 问完最后一个问题后,你可以问这样一个问题:上一份工作为什么离职?用户回答该问题后,请表示理解与支持。\n",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,
"top_p": 0.9,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=None
)
}
],
}

View File

@ -96,258 +96,3 @@ model_templates = {
}
demo_model_templates = {
'en-US': [
{
'name': 'Translation Assistant',
'icon': '',
'icon_background': '',
'description': 'A multilingual translator that provides translation capabilities in multiple languages, translating user input into the language they need.',
'mode': 'completion',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo-instruct',
configs={
'prompt_template': "Please translate the following text into {{target_language}}:\n",
'prompt_variables': [
{
"key": "target_language",
"name": "Target Language",
"description": "The language you want to translate into.",
"type": "select",
"default": "Chinese",
'options': [
'Chinese',
'English',
'Japanese',
'French',
'Russian',
'German',
'Spanish',
'Korean',
'Italian',
]
}
],
'completion_params': {
'max_token': 1000,
'temperature': 0,
'top_p': 0,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='',
suggested_questions=None,
pre_prompt="Please translate the following text into {{target_language}}:\n{{query}}\ntranslate:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=json.dumps([
{
"select": {
"label": "Target Language",
"variable": "target_language",
"description": "The language you want to translate into.",
"default": "Chinese",
"required": True,
'options': [
'Chinese',
'English',
'Japanese',
'French',
'Russian',
'German',
'Spanish',
'Korean',
'Italian',
]
}
},{
"paragraph": {
"label": "Query",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
},
{
'name': 'AI Front-end Interviewer',
'icon': '',
'icon_background': '',
'description': 'A simulated front-end interviewer that tests the skill level of front-end development through questioning.',
'mode': 'chat',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo',
configs={
'introduction': 'Hi, welcome to our interview. I am the interviewer for this technology company, and I will test your web front-end development skills. Next, I will ask you some technical questions. Please answer them as thoroughly as possible. ',
'prompt_template': "You will play the role of an interviewer for a technology company, examining the user's web front-end development skills and posing 5-10 sharp technical questions.\n\nPlease note:\n- Only ask one question at a time.\n- After the user answers a question, ask the next question directly, without trying to correct any mistakes made by the candidate.\n- If you think the user has not answered correctly for several consecutive questions, ask fewer questions.\n- After asking the last question, you can ask this question: Why did you leave your last job? After the user answers this question, please express your understanding and support.\n",
'prompt_variables': [],
'completion_params': {
'max_token': 300,
'temperature': 0.8,
'top_p': 0.9,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='Hi, welcome to our interview. I am the interviewer for this technology company, and I will test your web front-end development skills. Next, I will ask you some technical questions. Please answer them as thoroughly as possible. ',
suggested_questions=None,
pre_prompt="You will play the role of an interviewer for a technology company, examining the user's web front-end development skills and posing 5-10 sharp technical questions.\n\nPlease note:\n- Only ask one question at a time.\n- After the user answers a question, ask the next question directly, without trying to correct any mistakes made by the candidate.\n- If you think the user has not answered correctly for several consecutive questions, ask fewer questions.\n- After asking the last question, you can ask this question: Why did you leave your last job? After the user answers this question, please express your understanding and support.\n",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,
"top_p": 0.9,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=None
)
}
],
'zh-Hans': [
{
'name': '翻译助手',
'icon': '',
'icon_background': '',
'description': '一个多语言翻译器,提供多种语言翻译能力,将用户输入的文本翻译成他们需要的语言。',
'mode': 'completion',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo-instruct',
configs={
'prompt_template': "请将以下文本翻译为{{target_language}}:\n",
'prompt_variables': [
{
"key": "target_language",
"name": "目标语言",
"description": "翻译的目标语言",
"type": "select",
"default": "中文",
"options": [
"中文",
"英文",
"日语",
"法语",
"俄语",
"德语",
"西班牙语",
"韩语",
"意大利语",
]
}
],
'completion_params': {
'max_token': 1000,
'temperature': 0,
'top_p': 0,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='',
suggested_questions=None,
pre_prompt="请将以下文本翻译为{{target_language}}:\n{{query}}\n翻译:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=json.dumps([
{
"select": {
"label": "目标语言",
"variable": "target_language",
"description": "翻译的目标语言",
"default": "中文",
"required": True,
'options': [
"中文",
"英文",
"日语",
"法语",
"俄语",
"德语",
"西班牙语",
"韩语",
"意大利语",
]
}
},{
"paragraph": {
"label": "文本内容",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
},
{
'name': 'AI 前端面试官',
'icon': '',
'icon_background': '',
'description': '一个模拟的前端面试官,通过提问的方式对前端开发的技能水平进行检验。',
'mode': 'chat',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo',
configs={
'introduction': '你好,欢迎来参加我们的面试,我是这家科技公司的面试官,我将考察你的 Web 前端开发技能。接下来我会向您提出一些技术问题,请您尽可能详尽地回答。',
'prompt_template': "你将扮演一个科技公司的面试官,考察用户作为候选人的 Web 前端开发水平,提出 5-10 个犀利的技术问题。\n\n请注意:\n- 每次只问一个问题\n- 用户回答问题后请直接问下一个问题,而不要试图纠正候选人的错误;\n- 如果你认为用户连续几次回答的都不对,就少问一点;\n- 问完最后一个问题后,你可以问这样一个问题:上一份工作为什么离职?用户回答该问题后,请表示理解与支持。\n",
'prompt_variables': [],
'completion_params': {
'max_token': 300,
'temperature': 0.8,
'top_p': 0.9,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='你好,欢迎来参加我们的面试,我是这家科技公司的面试官,我将考察你的 Web 前端开发技能。接下来我会向您提出一些技术问题,请您尽可能详尽地回答。',
suggested_questions=None,
pre_prompt="你将扮演一个科技公司的面试官,考察用户作为候选人的 Web 前端开发水平,提出 5-10 个犀利的技术问题。\n\n请注意:\n- 每次只问一个问题\n- 用户回答问题后请直接问下一个问题,而不要试图纠正候选人的错误;\n- 如果你认为用户连续几次回答的都不对,就少问一点;\n- 问完最后一个问题后,你可以问这样一个问题:上一份工作为什么离职?用户回答该问题后,请表示理解与支持。\n",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,
"top_p": 0.9,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=None
)
}
],
}

View File

@ -11,12 +11,13 @@ from .app import (advanced_prompt_template, annotation, app, audio, completion,
model_config, site, statistic)
# Import auth controllers
from .auth import activate, data_source_oauth, login, oauth
from .billing import billing
# Import datasets controllers
from .datasets import data_source, datasets, datasets_document, datasets_segments, file, hit_testing
# Import explore controllers
from .explore import audio, completion, conversation, installed_app, message, parameter, recommended_app, saved_message
# Import universal chat controllers
from .universal_chat import audio, chat, conversation, message, parameter
# Import workspace controllers
from .workspace import account, members, model_providers, models, tool_providers, workspace
# Import billing controllers
from .billing import billing
# Import operation controllers
from .operation import operation

View File

@ -6,7 +6,7 @@ from controllers.console.wraps import only_edition_cloud
from extensions.ext_database import db
from flask import request
from flask_restful import Resource, reqparse
from libs.helper import supported_language
from constants.languages import supported_language
from models.model import App, InstalledApp, RecommendedApp
from werkzeug.exceptions import NotFound, Unauthorized

View File

@ -61,9 +61,7 @@ class BaseApiKeyListResource(Resource):
resource_id = str(resource_id)
_get_resource(resource_id, current_user.current_tenant_id,
self.resource_model)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
current_key_count = db.session.query(ApiToken). \
@ -102,7 +100,7 @@ class BaseApiKeyResource(Resource):
self.resource_model)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
key = db.session.query(ApiToken). \

View File

@ -21,7 +21,7 @@ class AnnotationReplyActionApi(Resource):
@cloud_edition_billing_resource_check('annotation')
def post(self, app_id, action):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -45,7 +45,7 @@ class AppAnnotationSettingDetailApi(Resource):
@account_initialization_required
def get(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -59,7 +59,7 @@ class AppAnnotationSettingUpdateApi(Resource):
@account_initialization_required
def post(self, app_id, annotation_setting_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -80,7 +80,7 @@ class AnnotationReplyActionStatusApi(Resource):
@cloud_edition_billing_resource_check('annotation')
def get(self, app_id, job_id, action):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
job_id = str(job_id)
@ -108,7 +108,7 @@ class AnnotationListApi(Resource):
@account_initialization_required
def get(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
page = request.args.get('page', default=1, type=int)
@ -133,7 +133,7 @@ class AnnotationExportApi(Resource):
@account_initialization_required
def get(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -152,7 +152,7 @@ class AnnotationCreateApi(Resource):
@marshal_with(annotation_fields)
def post(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -172,7 +172,7 @@ class AnnotationUpdateDeleteApi(Resource):
@marshal_with(annotation_fields)
def post(self, app_id, annotation_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -189,7 +189,7 @@ class AnnotationUpdateDeleteApi(Resource):
@account_initialization_required
def delete(self, app_id, annotation_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -205,7 +205,7 @@ class AnnotationBatchImportApi(Resource):
@cloud_edition_billing_resource_check('annotation')
def post(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -230,7 +230,7 @@ class AnnotationBatchImportStatusApi(Resource):
@cloud_edition_billing_resource_check('annotation')
def get(self, app_id, job_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
job_id = str(job_id)
@ -257,7 +257,7 @@ class AnnotationHitHistoryListApi(Resource):
@account_initialization_required
def get(self, app_id, annotation_id):
# The role of the current user in the table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
page = request.args.get('page', default=1, type=int)

View File

@ -3,7 +3,8 @@ import json
import logging
from datetime import datetime
from constants.model_template import demo_model_templates, model_templates
from constants.model_template import model_templates
from constants.languages import demo_model_templates, languages
from controllers.console import api
from controllers.console.app.error import AppNotFoundError, ProviderNotInitializeError
from controllers.console.setup import setup_required
@ -16,14 +17,15 @@ from events.app_event import app_was_created, app_was_deleted
from extensions.ext_database import db
from fields.app_fields import (app_detail_fields, app_detail_fields_with_site, app_pagination_fields,
template_list_fields)
from flask import current_app
from flask_login import current_user
from flask_restful import Resource, abort, inputs, marshal_with, reqparse
from libs.login import login_required
from models.model import App, AppModelConfig, Site
from models.tools import ApiToolProvider
from services.app_model_config_service import AppModelConfigService
from werkzeug.exceptions import Forbidden
def _get_app(app_id, tenant_id):
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id).first()
if not app:
@ -42,14 +44,31 @@ class AppListApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('page', type=inputs.int_range(1, 99999), required=False, default=1, location='args')
parser.add_argument('limit', type=inputs.int_range(1, 100), required=False, default=20, location='args')
parser.add_argument('mode', type=str, choices=['chat', 'completion', 'all'], default='all', location='args', required=False)
parser.add_argument('name', type=str, location='args', required=False)
args = parser.parse_args()
filters = [
App.tenant_id == current_user.current_tenant_id,
App.is_universal == False
]
if args['mode'] == 'completion':
filters.append(App.mode == 'completion')
elif args['mode'] == 'chat':
filters.append(App.mode == 'chat')
else:
pass
if 'name' in args and args['name']:
filters.append(App.name.ilike(f'%{args["name"]}%'))
app_models = db.paginate(
db.select(App).where(App.tenant_id == current_user.current_tenant_id,
App.is_universal == False).order_by(App.created_at.desc()),
db.select(App).where(*filters).order_by(App.created_at.desc()),
page=args['page'],
per_page=args['limit'],
error_out=False)
error_out=False
)
return app_models
@ -62,14 +81,14 @@ class AppListApi(Resource):
"""Create app"""
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
parser.add_argument('mode', type=str, choices=['completion', 'chat'], location='json')
parser.add_argument('mode', type=str, choices=['completion', 'chat', 'assistant'], location='json')
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
parser.add_argument('model_config', type=dict, location='json')
args = parser.parse_args()
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
try:
@ -178,7 +197,7 @@ class AppListApi(Resource):
app_was_created.send(app)
return app, 201
class AppTemplateApi(Resource):
@ -193,7 +212,7 @@ class AppTemplateApi(Resource):
templates = demo_model_templates.get(interface_language)
if not templates:
templates = demo_model_templates.get('en-US')
templates = demo_model_templates.get(languages[0])
return {'data': templates}
@ -218,7 +237,7 @@ class AppApi(Resource):
"""Delete app"""
app_id = str(app_id)
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app = _get_app(app_id, current_user.current_tenant_id)

View File

@ -32,9 +32,9 @@ class ChatMessageAudioApi(Resource):
file = request.files['file']
try:
response = AudioService.transcript(
response = AudioService.transcript_asr(
tenant_id=app_model.tenant_id,
file=file,
file=file
)
return response
@ -62,6 +62,48 @@ class ChatMessageAudioApi(Resource):
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(ChatMessageAudioApi, '/apps/<uuid:app_id>/audio-to-text')
class ChatMessageTextApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, app_id):
app_id = str(app_id)
app_model = _get_app(app_id, None)
try:
response = AudioService.transcript_tts(
tenant_id=app_model.tenant_id,
text=request.form['text'],
streaming=False
)
return {'data': response.data.decode('latin1')}
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except NoAudioUploadedServiceError:
raise NoAudioUploadedError()
except AudioTooLargeServiceError as e:
raise AudioTooLargeError(str(e))
except UnsupportedAudioTypeServiceError:
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(ChatMessageAudioApi, '/apps/<uuid:app_id>/audio-to-text')
api.add_resource(ChatMessageTextApi, '/apps/<uuid:app_id>/text-to-audio')

View File

@ -157,7 +157,7 @@ class MessageAnnotationApi(Resource):
@marshal_with(annotation_fields)
def post(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)

View File

@ -7,7 +7,7 @@ from extensions.ext_database import db
from fields.app_fields import app_site_fields
from flask_login import current_user
from flask_restful import Resource, marshal_with, reqparse
from libs.helper import supported_language
from constants.languages import supported_language
from libs.login import login_required
from models.model import Site
from werkzeug.exceptions import Forbidden, NotFound
@ -42,7 +42,7 @@ class AppSite(Resource):
app_model = _get_app(app_id)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
site = db.session.query(Site). \
@ -88,7 +88,7 @@ class AppSiteAccessTokenReset(Resource):
app_model = _get_app(app_id)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
site = db.session.query(Site).filter(Site.app_id == app_model.id).first()

View File

@ -6,7 +6,8 @@ from controllers.console import api
from controllers.console.error import AlreadyActivateError
from extensions.ext_database import db
from flask_restful import Resource, reqparse
from libs.helper import email, str_len, supported_language, timezone
from libs.helper import email, str_len, timezone
from constants.languages import supported_language
from libs.password import hash_password, valid_password
from models.account import AccountStatus, Tenant
from services.account_service import RegisterService

View File

@ -30,7 +30,7 @@ def get_oauth_providers():
class OAuthDataSource(Resource):
def get(self, provider: str):
# The role of the current user in the table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
OAUTH_DATASOURCE_PROVIDERS = get_oauth_providers()
with current_app.app_context():

View File

@ -3,6 +3,7 @@ from datetime import datetime
from typing import Optional
import requests
from constants.languages import languages
from extensions.ext_database import db
from flask import current_app, redirect, request
from flask_restful import Resource
@ -106,11 +107,11 @@ def _generate_account(provider: str, user_info: OAuthUserInfo):
)
# Set interface language
preferred_lang = request.accept_languages.best_match(['zh', 'en'])
if preferred_lang == 'zh':
interface_language = 'zh-Hans'
preferred_lang = request.accept_languages.best_match(languages)
if preferred_lang and preferred_lang in languages:
interface_language = preferred_lang
else:
interface_language = 'en-US'
interface_language = languages[0]
account.interface_language = interface_language
db.session.commit()

View File

@ -19,7 +19,7 @@ from flask import current_app, request
from flask_login import current_user
from flask_restful import Resource, marshal, marshal_with, reqparse
from libs.login import login_required
from models.dataset import Document, DocumentSegment
from models.dataset import Dataset, Document, DocumentSegment
from models.model import ApiToken, UploadFile
from services.dataset_service import DatasetService, DocumentService
from werkzeug.exceptions import Forbidden, NotFound
@ -97,12 +97,13 @@ class DatasetListApi(Resource):
help='type is required. Name must be between 1 to 40 characters.',
type=_validate_name)
parser.add_argument('indexing_technique', type=str, location='json',
choices=('high_quality', 'economy'),
choices=Dataset.INDEXING_TECHNIQUE_LIST,
nullable=True,
help='Invalid indexing technique.')
args = parser.parse_args()
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
try:
@ -177,15 +178,16 @@ class DatasetApi(Resource):
location='json', store_missing=False,
type=_validate_description_length)
parser.add_argument('indexing_technique', type=str, location='json',
choices=('high_quality', 'economy'),
help='Invalid indexing technique.')
choices=Dataset.INDEXING_TECHNIQUE_LIST,
nullable=True,
help='Invalid indexing technique.')
parser.add_argument('permission', type=str, location='json', choices=(
'only_me', 'all_team_members'), help='Invalid permission.')
parser.add_argument('retrieval_model', type=dict, location='json', help='Invalid retrieval model.')
args = parser.parse_args()
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
dataset = DatasetService.update_dataset(
@ -203,7 +205,7 @@ class DatasetApi(Resource):
dataset_id_str = str(dataset_id)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
if DatasetService.delete_dataset(dataset_id_str, current_user):
@ -256,7 +258,9 @@ class DatasetIndexingEstimateApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
parser.add_argument('indexing_technique', type=str, required=True, nullable=True, location='json')
parser.add_argument('indexing_technique', type=str, required=True,
choices=Dataset.INDEXING_TECHNIQUE_LIST,
nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('dataset_id', type=str, required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
@ -387,7 +391,7 @@ class DatasetApiKeyApi(Resource):
@marshal_with(api_key_fields)
def post(self):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
current_key_count = db.session.query(ApiToken). \
@ -421,7 +425,7 @@ class DatasetApiDeleteApi(Resource):
api_key_id = str(api_key_id)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
key = db.session.query(ApiToken). \

View File

@ -204,7 +204,7 @@ class DatasetDocumentListApi(Resource):
raise NotFound('Dataset not found.')
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
try:
@ -256,7 +256,7 @@ class DatasetInitApi(Resource):
@cloud_edition_billing_resource_check('vector_space')
def post(self):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
parser = reqparse.RequestParser()
@ -599,7 +599,7 @@ class DocumentProcessingApi(DocumentResource):
document = self.get_document(dataset_id, document_id)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
if action == "pause":
@ -663,7 +663,7 @@ class DocumentMetadataApi(DocumentResource):
doc_metadata = req_data.get('doc_metadata')
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
if doc_type is None or doc_metadata is None:
@ -710,7 +710,7 @@ class DocumentStatusApi(DocumentResource):
document = self.get_document(dataset_id, document_id)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
indexing_cache_key = 'document_{}_indexing'.format(document.id)

View File

@ -123,7 +123,7 @@ class DatasetDocumentSegmentApi(Resource):
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
try:
@ -219,7 +219,7 @@ class DatasetDocumentSegmentAddApi(Resource):
if not document:
raise NotFound('Document not found.')
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
# check embedding model setting
if dataset.indexing_technique == 'high_quality':
@ -298,7 +298,7 @@ class DatasetDocumentSegmentUpdateApi(Resource):
if not segment:
raise NotFound('Segment not found.')
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
try:
DatasetService.check_dataset_permission(dataset, current_user)
@ -342,7 +342,7 @@ class DatasetDocumentSegmentUpdateApi(Resource):
if not segment:
raise NotFound('Segment not found.')
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
try:
DatasetService.check_dataset_permission(dataset, current_user)

View File

@ -9,7 +9,7 @@ from flask import current_app, request
from flask_login import current_user
from flask_restful import Resource, marshal_with
from libs.login import login_required
from services.file_service import FileService
from services.file_service import FileService, ALLOWED_EXTENSIONS, UNSTRUSTURED_ALLOWED_EXTENSIONS
PREVIEW_WORDS_LIMIT = 3000
@ -71,11 +71,7 @@ class FileSupportTypeApi(Resource):
@account_initialization_required
def get(self):
etl_type = current_app.config['ETL_TYPE']
if etl_type == 'Unstructured':
allowed_extensions = ['txt', 'markdown', 'md', 'pdf', 'html', 'htm', 'xlsx',
'docx', 'csv', 'eml', 'msg', 'pptx', 'ppt', 'xml']
else:
allowed_extensions = ['txt', 'markdown', 'md', 'pdf', 'html', 'htm', 'xlsx', 'docx', 'csv']
allowed_extensions = UNSTRUSTURED_ALLOWED_EXTENSIONS if etl_type == 'Unstructured' else ALLOWED_EXTENSIONS
return {'allowed_extensions': allowed_extensions}

View File

@ -29,9 +29,10 @@ class ChatAudioApi(InstalledAppResource):
file = request.files['file']
try:
response = AudioService.transcript(
response = AudioService.transcript_asr(
tenant_id=app_model.tenant_id,
file=file,
end_user=None
)
return response
@ -59,6 +60,48 @@ class ChatAudioApi(InstalledAppResource):
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(ChatAudioApi, '/installed-apps/<uuid:installed_app_id>/audio-to-text', endpoint='installed_app_audio')
class ChatTextApi(InstalledAppResource):
def post(self, installed_app):
app_model = installed_app.app
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.text_to_speech_dict['enabled']:
raise AppUnavailableError()
try:
response = AudioService.transcript_tts(
tenant_id=app_model.tenant_id,
text=request.form['text'],
streaming=False
)
return {'data': response.data.decode('latin1')}
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except NoAudioUploadedServiceError:
raise NoAudioUploadedError()
except AudioTooLargeServiceError as e:
raise AudioTooLargeError(str(e))
except UnsupportedAudioTypeServiceError:
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(ChatAudioApi, '/installed-apps/<uuid:installed_app_id>/audio-to-text', endpoint='installed_app_audio')
api.add_resource(ChatTextApi, '/installed-apps/<uuid:installed_app_id>/text-to-audio', endpoint='installed_app_text')

View File

@ -33,8 +33,9 @@ class InstalledAppsListApi(Resource):
'app_owner_tenant_id': installed_app.app_owner_tenant_id,
'is_pinned': installed_app.is_pinned,
'last_used_at': installed_app.last_used_at,
"editable": current_user.role in ["owner", "admin"],
"uninstallable": current_tenant_id == installed_app.app_owner_tenant_id
'editable': current_user.role in ["owner", "admin"],
'uninstallable': current_tenant_id == installed_app.app_owner_tenant_id,
'is_agent': installed_app.is_agent
}
for installed_app in installed_apps
]

View File

@ -17,9 +17,9 @@ from core.model_runtime.errors.invoke import InvokeError
from fields.message_fields import message_infinite_scroll_pagination_fields
from flask import Response, stream_with_context
from flask_login import current_user
from flask_restful import marshal_with, reqparse
from flask_restful import marshal_with, reqparse, fields
from flask_restful.inputs import int_range
from libs.helper import uuid_value
from libs.helper import uuid_value, TimestampField
from services.completion_service import CompletionService
from services.errors.app import MoreLikeThisDisabledError
from services.errors.conversation import ConversationNotExistsError
@ -29,7 +29,6 @@ from werkzeug.exceptions import InternalServerError, NotFound
class MessageListApi(InstalledAppResource):
@marshal_with(message_infinite_scroll_pagination_fields)
def get(self, installed_app):
app_model = installed_app.app
@ -51,7 +50,6 @@ class MessageListApi(InstalledAppResource):
except services.errors.message.FirstMessageNotExistsError:
raise NotFound("First Message Not Exists.")
class MessageFeedbackApi(InstalledAppResource):
def post(self, installed_app, message_id):
app_model = installed_app.app

View File

@ -1,10 +1,14 @@
# -*- coding:utf-8 -*-
import json
from controllers.console import api
from controllers.console.explore.wraps import InstalledAppResource
from flask import current_app
from flask_restful import fields, marshal_with
from models.model import InstalledApp
from models.model import InstalledApp, AppModelConfig
from models.tools import ApiToolProvider
from extensions.ext_database import db
class AppParameterApi(InstalledAppResource):
"""Resource for app variables."""
@ -27,6 +31,7 @@ class AppParameterApi(InstalledAppResource):
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'text_to_speech': fields.Raw,
'retriever_resource': fields.Raw,
'annotation_reply': fields.Raw,
'more_like_this': fields.Raw,
@ -47,6 +52,7 @@ class AppParameterApi(InstalledAppResource):
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'text_to_speech': app_model_config.text_to_speech_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'annotation_reply': app_model_config.annotation_reply_dict,
'more_like_this': app_model_config.more_like_this_dict,
@ -58,5 +64,42 @@ class AppParameterApi(InstalledAppResource):
}
}
class ExploreAppMetaApi(InstalledAppResource):
def get(self, installed_app: InstalledApp):
"""Get app meta"""
app_model_config: AppModelConfig = installed_app.app.app_model_config
agent_config = app_model_config.agent_mode_dict or {}
meta = {
'tool_icons': {}
}
# get all tools
tools = agent_config.get('tools', [])
url_prefix = (current_app.config.get("CONSOLE_API_URL")
+ f"/console/api/workspaces/current/tool-provider/builtin/")
for tool in tools:
keys = list(tool.keys())
if len(keys) >= 4:
# current tool standard
provider_type = tool.get('provider_type')
provider_id = tool.get('provider_id')
tool_name = tool.get('tool_name')
if provider_type == 'builtin':
meta['tool_icons'][tool_name] = url_prefix + provider_id + '/icon'
elif provider_type == 'api':
try:
provider: ApiToolProvider = db.session.query(ApiToolProvider).filter(
ApiToolProvider.id == provider_id
)
meta['tool_icons'][tool_name] = json.loads(provider.icon)
except:
meta['tool_icons'][tool_name] = {
"background": "#252525",
"content": "\ud83d\ude01"
}
return meta
api.add_resource(AppParameterApi, '/installed-apps/<uuid:installed_app_id>/parameters', endpoint='installed_app_parameters')
api.add_resource(ExploreAppMetaApi, '/installed-apps/<uuid:installed_app_id>/meta', endpoint='installed_app_meta')

View File

@ -9,6 +9,7 @@ from libs.login import login_required
from models.model import App, InstalledApp, RecommendedApp
from services.account_service import TenantService
from sqlalchemy import and_
from constants.languages import languages
app_fields = {
'id': fields.String,
@ -29,7 +30,8 @@ recommended_app_fields = {
'is_listed': fields.Boolean,
'install_count': fields.Integer,
'installed': fields.Boolean,
'editable': fields.Boolean
'editable': fields.Boolean,
'is_agent': fields.Boolean
}
recommended_app_list_fields = {
@ -43,7 +45,7 @@ class RecommendedAppListApi(Resource):
@account_initialization_required
@marshal_with(recommended_app_list_fields)
def get(self):
language_prefix = current_user.interface_language if current_user.interface_language else 'en-US'
language_prefix = current_user.interface_language if current_user.interface_language else languages[0]
recommended_apps = db.session.query(RecommendedApp).filter(
RecommendedApp.is_listed == True,
@ -82,6 +84,7 @@ class RecommendedAppListApi(Resource):
'install_count': recommended_app.install_count,
'installed': installed,
'editable': current_user.role in ['owner', 'admin'],
"is_agent": app.is_agent
}
recommended_apps_result.append(recommended_app_result)

View File

@ -0,0 +1,30 @@
from flask_login import current_user
from flask_restful import Resource, reqparse
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, only_edition_cloud
from libs.login import login_required
from services.operation_service import OperationService
class TenantUtm(Resource):
@setup_required
@login_required
@account_initialization_required
@only_edition_cloud
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('utm_source', type=str, required=True)
parser.add_argument('utm_medium', type=str, required=True)
parser.add_argument('utm_campaign', type=str, required=False, default='')
parser.add_argument('utm_content', type=str, required=False, default='')
parser.add_argument('utm_term', type=str, required=False, default='')
args = parser.parse_args()
return OperationService.record_utm(current_user.current_tenant_id, args)
api.add_resource(TenantUtm, '/operation/utm')

View File

@ -1,64 +0,0 @@
# -*- coding:utf-8 -*-
import logging
import services
from controllers.console import api
from controllers.console.app.error import (AppUnavailableError, AudioTooLargeError, CompletionRequestError,
NoAudioUploadedError, ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError, ProviderNotSupportSpeechToTextError,
ProviderQuotaExceededError, UnsupportedAudioTypeError)
from controllers.console.universal_chat.wraps import UniversalChatResource
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from flask import request
from models.model import AppModelConfig
from services.audio_service import AudioService
from services.errors.audio import (AudioTooLargeServiceError, NoAudioUploadedServiceError,
ProviderNotSupportSpeechToTextServiceError, UnsupportedAudioTypeServiceError)
from werkzeug.exceptions import InternalServerError
class UniversalChatAudioApi(UniversalChatResource):
def post(self, universal_app):
app_model = universal_app
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.speech_to_text_dict['enabled']:
raise AppUnavailableError()
file = request.files['file']
try:
response = AudioService.transcript(
tenant_id=app_model.tenant_id,
file=file,
)
return response
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except NoAudioUploadedServiceError:
raise NoAudioUploadedError()
except AudioTooLargeServiceError as e:
raise AudioTooLargeError(str(e))
except UnsupportedAudioTypeServiceError:
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(UniversalChatAudioApi, '/universal-chat/audio-to-text')

View File

@ -1,120 +0,0 @@
import json
import logging
from typing import Generator, Union
import services
from controllers.console import api
from controllers.console.app.error import (AppUnavailableError, CompletionRequestError, ConversationCompletedError,
ProviderModelCurrentlyNotSupportError, ProviderNotInitializeError,
ProviderQuotaExceededError)
from controllers.console.universal_chat.wraps import UniversalChatResource
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from flask import Response, stream_with_context
from flask_login import current_user
from flask_restful import reqparse
from libs.helper import uuid_value
from services.completion_service import CompletionService
from werkzeug.exceptions import InternalServerError, NotFound
class UniversalChatApi(UniversalChatResource):
def post(self, universal_app):
app_model = universal_app
parser = reqparse.RequestParser()
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('files', type=list, required=False, location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('provider', type=str, required=True, location='json')
parser.add_argument('model', type=str, required=True, location='json')
parser.add_argument('tools', type=list, required=True, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='universal_app', location='json')
args = parser.parse_args()
app_model_config = app_model.app_model_config
# update app model config
args['model_config'] = app_model_config.to_dict()
args['model_config']['model']['name'] = args['model']
args['model_config']['model']['provider'] = args['provider']
args['model_config']['agent_mode']['tools'] = args['tools']
if not args['model_config']['agent_mode']['tools']:
args['model_config']['agent_mode']['tools'] = [
{
"current_datetime": {
"enabled": True
}
}
]
else:
args['model_config']['agent_mode']['tools'].append({
"current_datetime": {
"enabled": True
}
})
args['inputs'] = {}
del args['model']
del args['tools']
args['auto_generate_name'] = False
try:
response = CompletionService.completion(
app_model=app_model,
user=current_user,
args=args,
invoke_from=InvokeFrom.EXPLORE,
streaming=True,
is_model_config_override=True,
)
return compact_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
raise ConversationCompletedError()
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
class UniversalChatStopApi(UniversalChatResource):
def post(self, universal_app, task_id):
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
return {'result': 'success'}, 200
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
for chunk in response:
yield chunk
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
api.add_resource(UniversalChatApi, '/universal-chat/messages')
api.add_resource(UniversalChatStopApi, '/universal-chat/messages/<string:task_id>/stop')

View File

@ -1,110 +0,0 @@
# -*- coding:utf-8 -*-
from controllers.console import api
from controllers.console.universal_chat.wraps import UniversalChatResource
from fields.conversation_fields import (conversation_with_model_config_fields,
conversation_with_model_config_infinite_scroll_pagination_fields)
from flask_login import current_user
from flask_restful import fields, marshal_with, reqparse
from flask_restful.inputs import int_range
from libs.helper import TimestampField, uuid_value
from services.conversation_service import ConversationService
from services.errors.conversation import ConversationNotExistsError, LastConversationNotExistsError
from services.web_conversation_service import WebConversationService
from werkzeug.exceptions import NotFound
class UniversalChatConversationListApi(UniversalChatResource):
@marshal_with(conversation_with_model_config_infinite_scroll_pagination_fields)
def get(self, universal_app):
app_model = universal_app
parser = reqparse.RequestParser()
parser.add_argument('last_id', type=uuid_value, location='args')
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
parser.add_argument('pinned', type=str, choices=['true', 'false', None], location='args')
args = parser.parse_args()
pinned = None
if 'pinned' in args and args['pinned'] is not None:
pinned = True if args['pinned'] == 'true' else False
try:
return WebConversationService.pagination_by_last_id(
app_model=app_model,
user=current_user,
last_id=args['last_id'],
limit=args['limit'],
pinned=pinned
)
except LastConversationNotExistsError:
raise NotFound("Last Conversation Not Exists.")
class UniversalChatConversationApi(UniversalChatResource):
def delete(self, universal_app, c_id):
app_model = universal_app
conversation_id = str(c_id)
try:
ConversationService.delete(app_model, conversation_id, current_user)
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
WebConversationService.unpin(app_model, conversation_id, current_user)
return {"result": "success"}, 204
class UniversalChatConversationRenameApi(UniversalChatResource):
@marshal_with(conversation_with_model_config_fields)
def post(self, universal_app, c_id):
app_model = universal_app
conversation_id = str(c_id)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=False, location='json')
parser.add_argument('auto_generate', type=bool, required=False, default=False, location='json')
args = parser.parse_args()
try:
return ConversationService.rename(
app_model,
conversation_id,
current_user,
args['name'],
args['auto_generate']
)
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
class UniversalChatConversationPinApi(UniversalChatResource):
def patch(self, universal_app, c_id):
app_model = universal_app
conversation_id = str(c_id)
try:
WebConversationService.pin(app_model, conversation_id, current_user)
except ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
return {"result": "success"}
class UniversalChatConversationUnPinApi(UniversalChatResource):
def patch(self, universal_app, c_id):
app_model = universal_app
conversation_id = str(c_id)
WebConversationService.unpin(app_model, conversation_id, current_user)
return {"result": "success"}
api.add_resource(UniversalChatConversationRenameApi, '/universal-chat/conversations/<uuid:c_id>/name')
api.add_resource(UniversalChatConversationListApi, '/universal-chat/conversations')
api.add_resource(UniversalChatConversationApi, '/universal-chat/conversations/<uuid:c_id>')
api.add_resource(UniversalChatConversationPinApi, '/universal-chat/conversations/<uuid:c_id>/pin')
api.add_resource(UniversalChatConversationUnPinApi, '/universal-chat/conversations/<uuid:c_id>/unpin')

View File

@ -1,145 +0,0 @@
# -*- coding:utf-8 -*-
import logging
import services
from controllers.console import api
from controllers.console.app.error import (CompletionRequestError, ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError, ProviderQuotaExceededError)
from controllers.console.explore.error import AppSuggestedQuestionsAfterAnswerDisabledError
from controllers.console.universal_chat.wraps import UniversalChatResource
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from flask_login import current_user
from flask_restful import fields, marshal_with, reqparse
from flask_restful.inputs import int_range
from libs.helper import TimestampField, uuid_value
from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError, SuggestedQuestionsAfterAnswerDisabledError
from services.message_service import MessageService
from werkzeug.exceptions import InternalServerError, NotFound
class UniversalChatMessageListApi(UniversalChatResource):
feedback_fields = {
'rating': fields.String
}
agent_thought_fields = {
'id': fields.String,
'chain_id': fields.String,
'message_id': fields.String,
'position': fields.Integer,
'thought': fields.String,
'tool': fields.String,
'tool_input': fields.String,
'created_at': TimestampField
}
retriever_resource_fields = {
'id': fields.String,
'message_id': fields.String,
'position': fields.Integer,
'dataset_id': fields.String,
'dataset_name': fields.String,
'document_id': fields.String,
'document_name': fields.String,
'data_source_type': fields.String,
'segment_id': fields.String,
'score': fields.Float,
'hit_count': fields.Integer,
'word_count': fields.Integer,
'segment_position': fields.Integer,
'index_node_hash': fields.String,
'content': fields.String,
'created_at': TimestampField
}
message_fields = {
'id': fields.String,
'conversation_id': fields.String,
'inputs': fields.Raw,
'query': fields.String,
'answer': fields.String,
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField,
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
}
message_infinite_scroll_pagination_fields = {
'limit': fields.Integer,
'has_more': fields.Boolean,
'data': fields.List(fields.Nested(message_fields))
}
@marshal_with(message_infinite_scroll_pagination_fields)
def get(self, universal_app):
app_model = universal_app
parser = reqparse.RequestParser()
parser.add_argument('conversation_id', required=True, type=uuid_value, location='args')
parser.add_argument('first_id', type=uuid_value, location='args')
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
args = parser.parse_args()
try:
return MessageService.pagination_by_first_id(app_model, current_user,
args['conversation_id'], args['first_id'], args['limit'])
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.message.FirstMessageNotExistsError:
raise NotFound("First Message Not Exists.")
class UniversalChatMessageFeedbackApi(UniversalChatResource):
def post(self, universal_app, message_id):
app_model = universal_app
message_id = str(message_id)
parser = reqparse.RequestParser()
parser.add_argument('rating', type=str, choices=['like', 'dislike', None], location='json')
args = parser.parse_args()
try:
MessageService.create_feedback(app_model, message_id, current_user, args['rating'])
except services.errors.message.MessageNotExistsError:
raise NotFound("Message Not Exists.")
return {'result': 'success'}
class UniversalChatMessageSuggestedQuestionApi(UniversalChatResource):
def get(self, universal_app, message_id):
app_model = universal_app
message_id = str(message_id)
try:
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
user=current_user,
message_id=message_id
)
except MessageNotExistsError:
raise NotFound("Message not found")
except ConversationNotExistsError:
raise NotFound("Conversation not found")
except SuggestedQuestionsAfterAnswerDisabledError:
raise AppSuggestedQuestionsAfterAnswerDisabledError()
except ProviderTokenNotInitError:
raise ProviderNotInitializeError()
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except Exception:
logging.exception("internal server error.")
raise InternalServerError()
return {'data': questions}
api.add_resource(UniversalChatMessageListApi, '/universal-chat/messages')
api.add_resource(UniversalChatMessageFeedbackApi, '/universal-chat/messages/<uuid:message_id>/feedbacks')
api.add_resource(UniversalChatMessageSuggestedQuestionApi, '/universal-chat/messages/<uuid:message_id>/suggested-questions')

View File

@ -1,38 +0,0 @@
# -*- coding:utf-8 -*-
import json
from controllers.console import api
from controllers.console.universal_chat.wraps import UniversalChatResource
from flask_restful import fields, marshal_with
from models.model import App
class UniversalChatParameterApi(UniversalChatResource):
"""Resource for app variables."""
parameters_fields = {
'opening_statement': fields.String,
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'retriever_resource': fields.Raw,
'annotation_reply': fields.Raw
}
@marshal_with(parameters_fields)
def get(self, universal_app: App):
"""Retrieve app parameters."""
app_model = universal_app
app_model_config = app_model.app_model_config
app_model_config.retriever_resource = json.dumps({'enabled': True})
return {
'opening_statement': app_model_config.opening_statement,
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'annotation_reply': app_model_config.annotation_reply_dict,
}
api.add_resource(UniversalChatParameterApi, '/universal-chat/parameters')

View File

@ -1,86 +0,0 @@
import json
from functools import wraps
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
from flask_login import current_user
from flask_restful import Resource
from libs.login import login_required
from models.model import App, AppModelConfig
def universal_chat_app_required(view=None):
def decorator(view):
@wraps(view)
def decorated(*args, **kwargs):
# get universal chat app
universal_app = db.session.query(App).filter(
App.tenant_id == current_user.current_tenant_id,
App.is_universal == True
).first()
if universal_app is None:
# create universal app if not exists
universal_app = App(
tenant_id=current_user.current_tenant_id,
name='Universal Chat',
mode='chat',
is_universal=True,
icon='',
icon_background='',
api_rpm=0,
api_rph=0,
enable_site=False,
enable_api=False,
status='normal'
)
db.session.add(universal_app)
db.session.flush()
app_model_config = AppModelConfig(
provider="",
model_id="",
configs={},
opening_statement='',
suggested_questions=json.dumps([]),
suggested_questions_after_answer=json.dumps({'enabled': True}),
speech_to_text=json.dumps({'enabled': True}),
retriever_resource=json.dumps({'enabled': True}),
more_like_this=None,
sensitive_word_avoidance=None,
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-16k",
"completion_params": {
"max_tokens": 800,
"temperature": 0.8,
"top_p": 1,
"presence_penalty": 0,
"frequency_penalty": 0
}
}),
user_input_form=json.dumps([]),
pre_prompt='',
agent_mode=json.dumps({"enabled": True, "strategy": "function_call", "tools": []}),
)
app_model_config.app_id = universal_app.id
db.session.add(app_model_config)
db.session.flush()
universal_app.app_model_config_id = app_model_config.id
db.session.commit()
return view(universal_app, *args, **kwargs)
return decorated
if view:
return decorator(view)
return decorator
class UniversalChatResource(Resource):
# must be reversed if there are multiple decorators
method_decorators = [universal_chat_app_required, account_initialization_required, login_required, setup_required]

View File

@ -11,7 +11,8 @@ from extensions.ext_database import db
from flask import current_app, request
from flask_login import current_user
from flask_restful import Resource, fields, marshal_with, reqparse
from libs.helper import TimestampField, supported_language, timezone
from libs.helper import TimestampField, timezone
from constants.languages import supported_language
from libs.login import login_required
from models.account import AccountIntegrate, InvitationCode
from services.account_service import AccountService

View File

@ -1,15 +1,16 @@
# -*- coding:utf-8 -*-
from flask import current_app
from flask_login import current_user
from flask_restful import Resource, abort, fields, marshal_with, reqparse
import services
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from extensions.ext_database import db
from flask import current_app
from flask_login import current_user
from flask_restful import Resource, abort, fields, marshal, marshal_with, reqparse
from libs.helper import TimestampField
from libs.login import login_required
from models.account import Account, TenantAccountJoin
from models.account import Account
from services.account_service import RegisterService, TenantService
account_fields = {
@ -64,18 +65,12 @@ class MemberInviteEmailApi(Resource):
for invitee_email in invitee_emails:
try:
token = RegisterService.invite_new_member(inviter.current_tenant, invitee_email, role=invitee_role,
inviter=inviter)
account = db.session.query(Account, TenantAccountJoin.role).join(
TenantAccountJoin, Account.id == TenantAccountJoin.account_id
).filter(Account.email == invitee_email).first()
account, role = account
inviter=inviter)
invitation_results.append({
'status': 'success',
'email': invitee_email,
'url': f'{console_web_url}/activate?email={invitee_email}&token={token}'
})
account = marshal(account, account_fields)
account['role'] = role
except Exception as e:
invitation_results.append({
'status': 'failed',

View File

@ -98,7 +98,7 @@ class ModelProviderApi(Resource):
@login_required
@account_initialization_required
def post(self, provider: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
parser = reqparse.RequestParser()
@ -122,7 +122,7 @@ class ModelProviderApi(Resource):
@login_required
@account_initialization_required
def delete(self, provider: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
model_provider_service = ModelProviderService()
@ -159,7 +159,7 @@ class PreferredProviderTypeUpdateApi(Resource):
@login_required
@account_initialization_required
def post(self, provider: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
tenant_id = current_user.current_tenant_id

View File

@ -1,136 +1,293 @@
import json
from libs.login import login_required
from flask_login import current_user
from flask_restful import Resource, reqparse
from flask import send_file
from werkzeug.exceptions import Forbidden
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.tool.provider.errors import ToolValidateFailedError
from core.tool.provider.tool_provider_service import ToolProviderService
from extensions.ext_database import db
from flask_login import current_user
from flask_restful import Resource, abort, reqparse
from libs.login import login_required
from models.tool import ToolProvider, ToolProviderName
from werkzeug.exceptions import Forbidden
from services.tools_manage_service import ToolManageService
import io
class ToolProviderListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
tool_credential_dict = {}
for tool_name in ToolProviderName:
tool_credential_dict[tool_name.value] = {
'tool_name': tool_name.value,
'is_enabled': False,
'credentials': None
}
return ToolManageService.list_tool_providers(user_id, tenant_id)
tool_providers = db.session.query(ToolProvider).filter(ToolProvider.tenant_id == tenant_id).all()
class ToolBuiltinProviderListToolsApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
for p in tool_providers:
if p.is_enabled:
tool_credential_dict[p.tool_name] = {
'tool_name': p.tool_name,
'is_enabled': p.is_enabled,
'credentials': ToolProviderService(tenant_id, p.tool_name).get_credentials(obfuscated=True)
}
return list(tool_credential_dict.values())
class ToolProviderCredentialsApi(Resource):
return ToolManageService.list_builtin_tool_provider_tools(
user_id,
tenant_id,
provider,
)
class ToolBuiltinProviderDeleteApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider):
if provider not in [p.value for p in ToolProviderName]:
abort(404)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden(f'User {current_user.id} is not authorized to update provider token, '
f'current_role is {current_user.current_tenant.current_role}')
parser = reqparse.RequestParser()
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
if not current_user.is_admin_or_owner:
raise Forbidden()
user_id = current_user.id
tenant_id = current_user.current_tenant_id
tool_provider_service = ToolProviderService(tenant_id, provider)
try:
tool_provider_service.credentials_validate(args['credentials'])
except ToolValidateFailedError as ex:
raise ValueError(str(ex))
encrypted_credentials = json.dumps(tool_provider_service.encrypt_credentials(args['credentials']))
tenant = current_user.current_tenant
tool_provider_model = db.session.query(ToolProvider).filter(
ToolProvider.tenant_id == tenant.id,
ToolProvider.tool_name == provider,
).first()
# Only allow updating token for CUSTOM provider type
if tool_provider_model:
tool_provider_model.encrypted_credentials = encrypted_credentials
tool_provider_model.is_enabled = True
else:
tool_provider_model = ToolProvider(
tenant_id=tenant.id,
tool_name=provider,
encrypted_credentials=encrypted_credentials,
is_enabled=True
)
db.session.add(tool_provider_model)
db.session.commit()
return {'result': 'success'}, 201
class ToolProviderCredentialsValidateApi(Resource):
return ToolManageService.delete_builtin_tool_provider(
user_id,
tenant_id,
provider,
)
class ToolBuiltinProviderUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider):
if provider not in [p.value for p in ToolProviderName]:
abort(404)
if not current_user.is_admin_or_owner:
raise Forbidden()
user_id = current_user.id
tenant_id = current_user.current_tenant_id
parser = reqparse.RequestParser()
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
result = True
error = None
return ToolManageService.update_builtin_tool_provider(
user_id,
tenant_id,
provider,
args['credentials'],
)
class ToolBuiltinProviderIconApi(Resource):
@setup_required
def get(self, provider):
icon_bytes, minetype = ToolManageService.get_builtin_tool_provider_icon(provider)
return send_file(io.BytesIO(icon_bytes), mimetype=minetype)
class ToolApiProviderAddApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
if not current_user.is_admin_or_owner:
raise Forbidden()
user_id = current_user.id
tenant_id = current_user.current_tenant_id
tool_provider_service = ToolProviderService(tenant_id, provider)
parser = reqparse.RequestParser()
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
parser.add_argument('schema_type', type=str, required=True, nullable=False, location='json')
parser.add_argument('schema', type=str, required=True, nullable=False, location='json')
parser.add_argument('provider', type=str, required=True, nullable=False, location='json')
parser.add_argument('icon', type=dict, required=True, nullable=False, location='json')
parser.add_argument('privacy_policy', type=str, required=False, nullable=True, location='json')
try:
tool_provider_service.credentials_validate(args['credentials'])
except ToolValidateFailedError as ex:
result = False
error = str(ex)
args = parser.parse_args()
response = {'result': 'success' if result else 'error'}
return ToolManageService.create_api_tool_provider(
user_id,
tenant_id,
args['provider'],
args['icon'],
args['credentials'],
args['schema_type'],
args['schema'],
args.get('privacy_policy', ''),
)
if not result:
response['error'] = error
class ToolApiProviderGetRemoteSchemaApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
parser = reqparse.RequestParser()
return response
parser.add_argument('url', type=str, required=True, nullable=False, location='args')
args = parser.parse_args()
return ToolManageService.get_api_tool_provider_remote_schema(
current_user.id,
current_user.current_tenant_id,
args['url'],
)
class ToolApiProviderListToolsApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
parser = reqparse.RequestParser()
parser.add_argument('provider', type=str, required=True, nullable=False, location='args')
args = parser.parse_args()
return ToolManageService.list_api_tool_provider_tools(
user_id,
tenant_id,
args['provider'],
)
class ToolApiProviderUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
if not current_user.is_admin_or_owner:
raise Forbidden()
user_id = current_user.id
tenant_id = current_user.current_tenant_id
parser = reqparse.RequestParser()
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
parser.add_argument('schema_type', type=str, required=True, nullable=False, location='json')
parser.add_argument('schema', type=str, required=True, nullable=False, location='json')
parser.add_argument('provider', type=str, required=True, nullable=False, location='json')
parser.add_argument('original_provider', type=str, required=True, nullable=False, location='json')
parser.add_argument('icon', type=str, required=True, nullable=False, location='json')
parser.add_argument('privacy_policy', type=str, required=True, nullable=False, location='json')
args = parser.parse_args()
return ToolManageService.update_api_tool_provider(
user_id,
tenant_id,
args['provider'],
args['original_provider'],
args['icon'],
args['credentials'],
args['schema_type'],
args['schema'],
args['privacy_policy'],
)
class ToolApiProviderDeleteApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
if not current_user.is_admin_or_owner:
raise Forbidden()
user_id = current_user.id
tenant_id = current_user.current_tenant_id
parser = reqparse.RequestParser()
parser.add_argument('provider', type=str, required=True, nullable=False, location='json')
args = parser.parse_args()
return ToolManageService.delete_api_tool_provider(
user_id,
tenant_id,
args['provider'],
)
class ToolApiProviderGetApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
parser = reqparse.RequestParser()
parser.add_argument('provider', type=str, required=True, nullable=False, location='args')
args = parser.parse_args()
return ToolManageService.get_api_tool_provider(
user_id,
tenant_id,
args['provider'],
)
class ToolBuiltinProviderCredentialsSchemaApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider):
return ToolManageService.list_builtin_provider_credentials_schema(provider)
class ToolApiProviderSchemaApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('schema', type=str, required=True, nullable=False, location='json')
args = parser.parse_args()
return ToolManageService.parser_api_schema(
schema=args['schema'],
)
class ToolApiProviderPreviousTestApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('tool_name', type=str, required=True, nullable=False, location='json')
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
parser.add_argument('parameters', type=dict, required=True, nullable=False, location='json')
parser.add_argument('schema_type', type=str, required=True, nullable=False, location='json')
parser.add_argument('schema', type=str, required=True, nullable=False, location='json')
args = parser.parse_args()
return ToolManageService.test_api_tool_preview(
current_user.current_tenant_id,
args['tool_name'],
args['credentials'],
args['parameters'],
args['schema_type'],
args['schema'],
)
api.add_resource(ToolProviderListApi, '/workspaces/current/tool-providers')
api.add_resource(ToolProviderCredentialsApi, '/workspaces/current/tool-providers/<provider>/credentials')
api.add_resource(ToolProviderCredentialsValidateApi,
'/workspaces/current/tool-providers/<provider>/credentials-validate')
api.add_resource(ToolBuiltinProviderListToolsApi, '/workspaces/current/tool-provider/builtin/<provider>/tools')
api.add_resource(ToolBuiltinProviderDeleteApi, '/workspaces/current/tool-provider/builtin/<provider>/delete')
api.add_resource(ToolBuiltinProviderUpdateApi, '/workspaces/current/tool-provider/builtin/<provider>/update')
api.add_resource(ToolBuiltinProviderCredentialsSchemaApi, '/workspaces/current/tool-provider/builtin/<provider>/credentials_schema')
api.add_resource(ToolBuiltinProviderIconApi, '/workspaces/current/tool-provider/builtin/<provider>/icon')
api.add_resource(ToolApiProviderAddApi, '/workspaces/current/tool-provider/api/add')
api.add_resource(ToolApiProviderGetRemoteSchemaApi, '/workspaces/current/tool-provider/api/remote')
api.add_resource(ToolApiProviderListToolsApi, '/workspaces/current/tool-provider/api/tools')
api.add_resource(ToolApiProviderUpdateApi, '/workspaces/current/tool-provider/api/update')
api.add_resource(ToolApiProviderDeleteApi, '/workspaces/current/tool-provider/api/delete')
api.add_resource(ToolApiProviderGetApi, '/workspaces/current/tool-provider/api/get')
api.add_resource(ToolApiProviderSchemaApi, '/workspaces/current/tool-provider/api/schema')
api.add_resource(ToolApiProviderPreviousTestApi, '/workspaces/current/tool-provider/api/test/pre')

View File

@ -7,3 +7,4 @@ api = ExternalApi(bp)
from . import image_preview
from . import tool_files

View File

@ -0,0 +1,47 @@
from controllers.files import api
from flask import Response
from flask_restful import Resource, reqparse
from libs.exception import BaseHTTPException
from werkzeug.exceptions import NotFound, Forbidden
from core.tools.tool_file_manager import ToolFileManager
class ToolFilePreviewApi(Resource):
def get(self, file_id, extension):
file_id = str(file_id)
parser = reqparse.RequestParser()
parser.add_argument('timestamp', type=str, required=True, location='args')
parser.add_argument('nonce', type=str, required=True, location='args')
parser.add_argument('sign', type=str, required=True, location='args')
args = parser.parse_args()
if not ToolFileManager.verify_file(file_id=file_id,
timestamp=args['timestamp'],
nonce=args['nonce'],
sign=args['sign'],
):
raise Forbidden('Invalid request.')
try:
result = ToolFileManager.get_file_generator_by_message_file_id(
file_id,
)
if not result:
raise NotFound(f'file is not found')
generator, mimetype = result
except Exception:
raise UnsupportedFileTypeError()
return Response(generator, mimetype=mimetype)
api.add_resource(ToolFilePreviewApi, '/files/tools/<uuid:file_id>.<string:extension>')
class UnsupportedFileTypeError(BaseHTTPException):
error_code = 'unsupported_file_type'
description = "File type not allowed."
code = 415

View File

@ -3,7 +3,12 @@ from controllers.service_api import api
from controllers.service_api.wraps import AppApiResource
from flask import current_app
from flask_restful import fields, marshal_with
from models.model import App
from models.model import App, AppModelConfig
from models.tools import ApiToolProvider
import json
from extensions.ext_database import db
class AppParameterApi(AppApiResource):
@ -28,6 +33,7 @@ class AppParameterApi(AppApiResource):
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'text_to_speech': fields.Raw,
'retriever_resource': fields.Raw,
'annotation_reply': fields.Raw,
'more_like_this': fields.Raw,
@ -47,6 +53,7 @@ class AppParameterApi(AppApiResource):
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'text_to_speech': app_model_config.text_to_speech_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'annotation_reply': app_model_config.annotation_reply_dict,
'more_like_this': app_model_config.more_like_this_dict,
@ -58,5 +65,42 @@ class AppParameterApi(AppApiResource):
}
}
class AppMetaApi(AppApiResource):
def get(self, app_model: App, end_user):
"""Get app meta"""
app_model_config: AppModelConfig = app_model.app_model_config
agent_config = app_model_config.agent_mode_dict or {}
meta = {
'tool_icons': {}
}
# get all tools
tools = agent_config.get('tools', [])
url_prefix = (current_app.config.get("CONSOLE_API_URL")
+ f"/console/api/workspaces/current/tool-provider/builtin/")
for tool in tools:
keys = list(tool.keys())
if len(keys) >= 4:
# current tool standard
provider_type = tool.get('provider_type')
provider_id = tool.get('provider_id')
tool_name = tool.get('tool_name')
if provider_type == 'builtin':
meta['tool_icons'][tool_name] = url_prefix + provider_id + '/icon'
elif provider_type == 'api':
try:
provider: ApiToolProvider = db.session.query(ApiToolProvider).filter(
ApiToolProvider.id == provider_id
)
meta['tool_icons'][tool_name] = json.loads(provider.icon)
except:
meta['tool_icons'][tool_name] = {
"background": "#252525",
"content": "\ud83d\ude01"
}
return meta
api.add_resource(AppParameterApi, '/parameters')
api.add_resource(AppMetaApi, '/meta')

View File

@ -10,6 +10,7 @@ from controllers.service_api.wraps import AppApiResource
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from flask import request
from flask_restful import reqparse
from models.model import App, AppModelConfig
from services.audio_service import AudioService
from services.errors.audio import (AudioTooLargeServiceError, NoAudioUploadedServiceError,
@ -22,14 +23,15 @@ class AudioApi(AppApiResource):
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.speech_to_text_dict['enabled']:
raise AppUnavailableError()
raise AppUnavailableError()
file = request.files['file']
try:
response = AudioService.transcript(
response = AudioService.transcript_asr(
tenant_id=app_model.tenant_id,
file=file,
end_user=end_user
)
return response
@ -57,5 +59,50 @@ class AudioApi(AppApiResource):
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(AudioApi, '/audio-to-text')
class TextApi(AppApiResource):
def post(self, app_model: App, end_user):
parser = reqparse.RequestParser()
parser.add_argument('text', type=str, required=True, nullable=False, location='json')
parser.add_argument('user', type=str, required=True, nullable=False, location='json')
parser.add_argument('streaming', type=bool, required=False, nullable=False, location='json')
args = parser.parse_args()
try:
response = AudioService.transcript_tts(
tenant_id=app_model.tenant_id,
text=args['text'],
end_user=args['user'],
streaming=args['streaming']
)
return response
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except NoAudioUploadedServiceError:
raise NoAudioUploadedError()
except AudioTooLargeServiceError as e:
raise AudioTooLargeError(str(e))
except UnsupportedAudioTypeServiceError:
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(AudioApi, '/audio-to-text')
api.add_resource(TextApi, '/text-to-audio')

View File

@ -37,6 +37,20 @@ class MessageListApi(AppApiResource):
'created_at': TimestampField
}
agent_thought_fields = {
'id': fields.String,
'chain_id': fields.String,
'message_id': fields.String,
'position': fields.Integer,
'thought': fields.String,
'tool': fields.String,
'tool_labels': fields.Raw,
'tool_input': fields.String,
'created_at': TimestampField,
'observation': fields.String,
'message_files': fields.List(fields.String, attribute='files')
}
message_fields = {
'id': fields.String,
'conversation_id': fields.String,
@ -46,7 +60,8 @@ class MessageListApi(AppApiResource):
'message_files': fields.List(fields.Nested(message_file_fields), attribute='files'),
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField
'created_at': TimestampField,
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
}
message_infinite_scroll_pagination_fields = {

View File

@ -1,3 +1,4 @@
from models.dataset import Dataset
import services.dataset_service
from controllers.service_api import api
from controllers.service_api.dataset.error import DatasetNameDuplicateError
@ -68,7 +69,7 @@ class DatasetApi(DatasetApiResource):
help='type is required. Name must be between 1 to 40 characters.',
type=_validate_name)
parser.add_argument('indexing_technique', type=str, location='json',
choices=('high_quality', 'economy'),
choices=Dataset.INDEXING_TECHNIQUE_LIST,
help='Invalid indexing technique.')
args = parser.parse_args()

View File

@ -75,8 +75,8 @@ def validate_dataset_token(view=None):
tenant_account_join = db.session.query(Tenant, TenantAccountJoin) \
.filter(Tenant.id == api_token.tenant_id) \
.filter(TenantAccountJoin.tenant_id == Tenant.id) \
.filter(TenantAccountJoin.role == 'owner') \
.one_or_none()
.filter(TenantAccountJoin.role.in_(['owner'])) \
.one_or_none() # TODO: only owner information is required, so only one is returned.
if tenant_account_join:
tenant, ta = tenant_account_join
account = Account.query.filter_by(id=ta.account_id).first()
@ -86,9 +86,9 @@ def validate_dataset_token(view=None):
current_app.login_manager._update_request_context_with_user(account)
user_logged_in.send(current_app._get_current_object(), user=_get_user())
else:
raise Unauthorized("Tenant owner account is not exist.")
raise Unauthorized("Tenant owner account does not exist.")
else:
raise Unauthorized("Tenant is not exist.")
raise Unauthorized("Tenant does not exist.")
return view(api_token.tenant_id, *args, **kwargs)
return decorated

View File

@ -3,7 +3,12 @@ from controllers.web import api
from controllers.web.wraps import WebApiResource
from flask import current_app
from flask_restful import fields, marshal_with
from models.model import App
from models.model import App, AppModelConfig
from models.tools import ApiToolProvider
from extensions.ext_database import db
import json
class AppParameterApi(WebApiResource):
@ -27,6 +32,7 @@ class AppParameterApi(WebApiResource):
'suggested_questions': fields.Raw,
'suggested_questions_after_answer': fields.Raw,
'speech_to_text': fields.Raw,
'text_to_speech': fields.Raw,
'retriever_resource': fields.Raw,
'annotation_reply': fields.Raw,
'more_like_this': fields.Raw,
@ -46,6 +52,7 @@ class AppParameterApi(WebApiResource):
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'text_to_speech': app_model_config.text_to_speech_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'annotation_reply': app_model_config.annotation_reply_dict,
'more_like_this': app_model_config.more_like_this_dict,
@ -57,5 +64,42 @@ class AppParameterApi(WebApiResource):
}
}
class AppMeta(WebApiResource):
def get(self, app_model: App, end_user):
"""Get app meta"""
app_model_config: AppModelConfig = app_model.app_model_config
agent_config = app_model_config.agent_mode_dict or {}
meta = {
'tool_icons': {}
}
# get all tools
tools = agent_config.get('tools', [])
url_prefix = (current_app.config.get("CONSOLE_API_URL")
+ f"/console/api/workspaces/current/tool-provider/builtin/")
for tool in tools:
keys = list(tool.keys())
if len(keys) >= 4:
# current tool standard
provider_type = tool.get('provider_type')
provider_id = tool.get('provider_id')
tool_name = tool.get('tool_name')
if provider_type == 'builtin':
meta['tool_icons'][tool_name] = url_prefix + provider_id + '/icon'
elif provider_type == 'api':
try:
provider: ApiToolProvider = db.session.query(ApiToolProvider).filter(
ApiToolProvider.id == provider_id
)
meta['tool_icons'][tool_name] = json.loads(provider.icon)
except:
meta['tool_icons'][tool_name] = {
"background": "#252525",
"content": "\ud83d\ude01"
}
return meta
api.add_resource(AppParameterApi, '/parameters')
api.add_resource(AppMeta, '/meta')

View File

@ -28,9 +28,10 @@ class AudioApi(WebApiResource):
file = request.files['file']
try:
response = AudioService.transcript(
response = AudioService.transcript_asr(
tenant_id=app_model.tenant_id,
file=file,
end_user=end_user
)
return response
@ -59,4 +60,43 @@ class AudioApi(WebApiResource):
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(AudioApi, '/audio-to-text')
class TextApi(WebApiResource):
def post(self, app_model: App, end_user):
try:
response = AudioService.transcript_tts(
tenant_id=app_model.tenant_id,
text=request.form['text'],
end_user=end_user.external_user_id,
streaming=False
)
return {'data': response.data.decode('latin1')}
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
except NoAudioUploadedServiceError:
raise NoAudioUploadedError()
except AudioTooLargeServiceError as e:
raise AudioTooLargeError(str(e))
except UnsupportedAudioTypeServiceError:
raise UnsupportedAudioTypeError()
except ProviderNotSupportSpeechToTextServiceError:
raise ProviderNotSupportSpeechToTextError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
api.add_resource(AudioApi, '/audio-to-text')
api.add_resource(TextApi, '/text-to-audio')

View File

@ -14,6 +14,7 @@ from core.entities.application_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from fields.conversation_fields import message_file_fields
from fields.message_fields import agent_thought_fields
from flask import Response, stream_with_context
from flask_restful import fields, marshal_with, reqparse
from flask_restful.inputs import int_range
@ -59,7 +60,8 @@ class MessageListApi(WebApiResource):
'message_files': fields.List(fields.Nested(message_file_fields), attribute='files'),
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField
'created_at': TimestampField,
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
}
message_infinite_scroll_pagination_fields = {

View File

@ -13,8 +13,8 @@ from core.entities.message_entities import prompt_messages_to_lc_messages
from core.helper import moderation
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.errors.invoke import InvokeError
from core.tool.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
from langchain.agents import AgentExecutor as LCAgentExecutor
from langchain.agents import BaseMultiActionAgent, BaseSingleActionAgent
from langchain.callbacks.manager import Callbacks

View File

@ -1,251 +0,0 @@
import json
import logging
from typing import cast
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.app_runner.app_runner import AppRunner
from core.application_queue_manager import ApplicationQueueManager
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
from core.entities.application_entities import ApplicationGenerateEntity, ModelConfigEntity, PromptTemplateEntity
from core.features.agent_runner import AgentRunnerFeature
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from extensions.ext_database import db
from models.model import App, Conversation, Message, MessageAgentThought, MessageChain
logger = logging.getLogger(__name__)
class AgentApplicationRunner(AppRunner):
"""
Agent Application Runner
"""
def run(self, application_generate_entity: ApplicationGenerateEntity,
queue_manager: ApplicationQueueManager,
conversation: Conversation,
message: Message) -> None:
"""
Run agent application
:param application_generate_entity: application generate entity
:param queue_manager: application queue manager
:param conversation: conversation
:param message: message
:return:
"""
app_record = db.session.query(App).filter(App.id == application_generate_entity.app_id).first()
if not app_record:
raise ValueError(f"App not found")
app_orchestration_config = application_generate_entity.app_orchestration_config_entity
inputs = application_generate_entity.inputs
query = application_generate_entity.query
files = application_generate_entity.files
# Pre-calculate the number of tokens of the prompt messages,
# and return the rest number of tokens by model context token size limit and max token size limit.
# If the rest number of tokens is not enough, raise exception.
# Include: prompt template, inputs, query(optional), files(optional)
# Not Include: memory, external data, dataset context
self.get_pre_calculate_rest_tokens(
app_record=app_record,
model_config=app_orchestration_config.model_config,
prompt_template_entity=app_orchestration_config.prompt_template,
inputs=inputs,
files=files,
query=query
)
memory = None
if application_generate_entity.conversation_id:
# get memory of conversation (read-only)
model_instance = ModelInstance(
provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
model=app_orchestration_config.model_config.model
)
memory = TokenBufferMemory(
conversation=conversation,
model_instance=model_instance
)
# reorganize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
# memory(optional)
prompt_messages, stop = self.organize_prompt_messages(
app_record=app_record,
model_config=app_orchestration_config.model_config,
prompt_template_entity=app_orchestration_config.prompt_template,
inputs=inputs,
files=files,
query=query,
context=None,
memory=memory
)
# Create MessageChain
message_chain = self._init_message_chain(
message=message,
query=query
)
# add agent callback to record agent thoughts
agent_callback = AgentLoopGatherCallbackHandler(
model_config=app_orchestration_config.model_config,
message=message,
queue_manager=queue_manager,
message_chain=message_chain
)
# init LLM Callback
agent_llm_callback = AgentLLMCallback(
agent_callback=agent_callback
)
agent_runner = AgentRunnerFeature(
tenant_id=application_generate_entity.tenant_id,
app_orchestration_config=app_orchestration_config,
model_config=app_orchestration_config.model_config,
config=app_orchestration_config.agent,
queue_manager=queue_manager,
message=message,
user_id=application_generate_entity.user_id,
agent_llm_callback=agent_llm_callback,
callback=agent_callback,
memory=memory
)
# agent run
result = agent_runner.run(
query=query,
invoke_from=application_generate_entity.invoke_from
)
if result:
self._save_message_chain(
message_chain=message_chain,
output_text=result
)
if (result
and app_orchestration_config.prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE
and app_orchestration_config.prompt_template.simple_prompt_template
):
# Direct output if agent result exists and has pre prompt
self.direct_output(
queue_manager=queue_manager,
app_orchestration_config=app_orchestration_config,
prompt_messages=prompt_messages,
stream=application_generate_entity.stream,
text=result,
usage=self._get_usage_of_all_agent_thoughts(
model_config=app_orchestration_config.model_config,
message=message
)
)
else:
# As normal LLM run, agent result as context
context = result
# reorganize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
# memory(optional), external data, dataset context(optional)
prompt_messages, stop = self.organize_prompt_messages(
app_record=app_record,
model_config=app_orchestration_config.model_config,
prompt_template_entity=app_orchestration_config.prompt_template,
inputs=inputs,
files=files,
query=query,
context=context,
memory=memory
)
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
self.recale_llm_max_tokens(
model_config=app_orchestration_config.model_config,
prompt_messages=prompt_messages
)
# Invoke model
model_instance = ModelInstance(
provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
model=app_orchestration_config.model_config.model
)
invoke_result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_orchestration_config.model_config.parameters,
stop=stop,
stream=application_generate_entity.stream,
user=application_generate_entity.user_id,
)
# handle invoke result
self._handle_invoke_result(
invoke_result=invoke_result,
queue_manager=queue_manager,
stream=application_generate_entity.stream
)
def _init_message_chain(self, message: Message, query: str) -> MessageChain:
"""
Init MessageChain
:param message: message
:param query: query
:return:
"""
message_chain = MessageChain(
message_id=message.id,
type="AgentExecutor",
input=json.dumps({
"input": query
})
)
db.session.add(message_chain)
db.session.commit()
return message_chain
def _save_message_chain(self, message_chain: MessageChain, output_text: str) -> None:
"""
Save MessageChain
:param message_chain: message chain
:param output_text: output text
:return:
"""
message_chain.output = json.dumps({
"output": output_text
})
db.session.commit()
def _get_usage_of_all_agent_thoughts(self, model_config: ModelConfigEntity,
message: Message) -> LLMUsage:
"""
Get usage of all agent thoughts
:param model_config: model config
:param message: message
:return:
"""
agent_thoughts = (db.session.query(MessageAgentThought)
.filter(MessageAgentThought.message_id == message.id).all())
all_message_tokens = 0
all_answer_tokens = 0
for agent_thought in agent_thoughts:
all_message_tokens += agent_thought.message_token
all_answer_tokens += agent_thought.answer_token
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
return model_type_instance._calc_response_usage(
model_config.model,
model_config.credentials,
all_message_tokens,
all_answer_tokens
)

View File

@ -2,7 +2,8 @@ import time
from typing import Generator, List, Optional, Tuple, Union, cast
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
from core.entities.application_entities import AppOrchestrationConfigEntity, ModelConfigEntity, PromptTemplateEntity
from core.entities.application_entities import AppOrchestrationConfigEntity, ModelConfigEntity, \
PromptTemplateEntity, ExternalDataVariableEntity, ApplicationGenerateEntity, InvokeFrom
from core.file.file_obj import FileObj
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
@ -10,9 +11,12 @@ from core.model_runtime.entities.message_entities import AssistantPromptMessage,
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.features.hosting_moderation import HostingModerationFeature
from core.features.moderation import ModerationFeature
from core.features.external_data_fetch import ExternalDataFetchFeature
from core.features.annotation_reply import AnnotationReplyFeature
from core.prompt.prompt_transform import PromptTransform
from models.model import App
from models.model import App, MessageAnnotation, Message
class AppRunner:
def get_pre_calculate_rest_tokens(self, app_record: App,
@ -199,7 +203,8 @@ class AppRunner:
def _handle_invoke_result(self, invoke_result: Union[LLMResult, Generator],
queue_manager: ApplicationQueueManager,
stream: bool) -> None:
stream: bool,
agent: bool = False) -> None:
"""
Handle invoke result
:param invoke_result: invoke result
@ -210,16 +215,19 @@ class AppRunner:
if not stream:
self._handle_invoke_result_direct(
invoke_result=invoke_result,
queue_manager=queue_manager
queue_manager=queue_manager,
agent=agent
)
else:
self._handle_invoke_result_stream(
invoke_result=invoke_result,
queue_manager=queue_manager
queue_manager=queue_manager,
agent=agent
)
def _handle_invoke_result_direct(self, invoke_result: LLMResult,
queue_manager: ApplicationQueueManager) -> None:
queue_manager: ApplicationQueueManager,
agent: bool) -> None:
"""
Handle invoke result direct
:param invoke_result: invoke result
@ -232,7 +240,8 @@ class AppRunner:
)
def _handle_invoke_result_stream(self, invoke_result: Generator,
queue_manager: ApplicationQueueManager) -> None:
queue_manager: ApplicationQueueManager,
agent: bool) -> None:
"""
Handle invoke result
:param invoke_result: invoke result
@ -244,7 +253,10 @@ class AppRunner:
text = ''
usage = None
for result in invoke_result:
queue_manager.publish_chunk_message(result, PublishFrom.APPLICATION_MANAGER)
if not agent:
queue_manager.publish_chunk_message(result, PublishFrom.APPLICATION_MANAGER)
else:
queue_manager.publish_agent_chunk_message(result, PublishFrom.APPLICATION_MANAGER)
text += result.delta.message.content
@ -271,3 +283,101 @@ class AppRunner:
llm_result=llm_result,
pub_from=PublishFrom.APPLICATION_MANAGER
)
def moderation_for_inputs(self, app_id: str,
tenant_id: str,
app_orchestration_config_entity: AppOrchestrationConfigEntity,
inputs: dict,
query: str) -> Tuple[bool, dict, str]:
"""
Process sensitive_word_avoidance.
:param app_id: app id
:param tenant_id: tenant id
:param app_orchestration_config_entity: app orchestration config entity
:param inputs: inputs
:param query: query
:return:
"""
moderation_feature = ModerationFeature()
return moderation_feature.check(
app_id=app_id,
tenant_id=tenant_id,
app_orchestration_config_entity=app_orchestration_config_entity,
inputs=inputs,
query=query,
)
def check_hosting_moderation(self, application_generate_entity: ApplicationGenerateEntity,
queue_manager: ApplicationQueueManager,
prompt_messages: list[PromptMessage]) -> bool:
"""
Check hosting moderation
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param prompt_messages: prompt messages
:return:
"""
hosting_moderation_feature = HostingModerationFeature()
moderation_result = hosting_moderation_feature.check(
application_generate_entity=application_generate_entity,
prompt_messages=prompt_messages
)
if moderation_result:
self.direct_output(
queue_manager=queue_manager,
app_orchestration_config=application_generate_entity.app_orchestration_config_entity,
prompt_messages=prompt_messages,
text="I apologize for any confusion, " \
"but I'm an AI assistant to be helpful, harmless, and honest.",
stream=application_generate_entity.stream
)
return moderation_result
def fill_in_inputs_from_external_data_tools(self, tenant_id: str,
app_id: str,
external_data_tools: list[ExternalDataVariableEntity],
inputs: dict,
query: str) -> dict:
"""
Fill in variable inputs from external data tools if exists.
:param tenant_id: workspace id
:param app_id: app id
:param external_data_tools: external data tools configs
:param inputs: the inputs
:param query: the query
:return: the filled inputs
"""
external_data_fetch_feature = ExternalDataFetchFeature()
return external_data_fetch_feature.fetch(
tenant_id=tenant_id,
app_id=app_id,
external_data_tools=external_data_tools,
inputs=inputs,
query=query
)
def query_app_annotations_to_reply(self, app_record: App,
message: Message,
query: str,
user_id: str,
invoke_from: InvokeFrom) -> Optional[MessageAnnotation]:
"""
Query app annotations to reply
:param app_record: app record
:param message: message
:param query: query
:param user_id: user id
:param invoke_from: invoke from
:return:
"""
annotation_reply_feature = AnnotationReplyFeature()
return annotation_reply_feature.query(
app_record=app_record,
message=message,
query=query,
user_id=user_id,
invoke_from=invoke_from
)

View File

@ -0,0 +1,342 @@
import json
import logging
from typing import cast
from core.app_runner.app_runner import AppRunner
from core.features.assistant_cot_runner import AssistantCotApplicationRunner
from core.features.assistant_fc_runner import AssistantFunctionCallApplicationRunner
from core.entities.application_entities import ApplicationGenerateEntity, ModelConfigEntity, \
AgentEntity
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.moderation.base import ModerationException
from core.tools.entities.tool_entities import ToolRuntimeVariablePool
from extensions.ext_database import db
from models.model import Conversation, Message, App, MessageChain, MessageAgentThought
from models.tools import ToolConversationVariables
logger = logging.getLogger(__name__)
class AssistantApplicationRunner(AppRunner):
"""
Assistant Application Runner
"""
def run(self, application_generate_entity: ApplicationGenerateEntity,
queue_manager: ApplicationQueueManager,
conversation: Conversation,
message: Message) -> None:
"""
Run assistant application
:param application_generate_entity: application generate entity
:param queue_manager: application queue manager
:param conversation: conversation
:param message: message
:return:
"""
app_record = db.session.query(App).filter(App.id == application_generate_entity.app_id).first()
if not app_record:
raise ValueError(f"App not found")
app_orchestration_config = application_generate_entity.app_orchestration_config_entity
inputs = application_generate_entity.inputs
query = application_generate_entity.query
files = application_generate_entity.files
# Pre-calculate the number of tokens of the prompt messages,
# and return the rest number of tokens by model context token size limit and max token size limit.
# If the rest number of tokens is not enough, raise exception.
# Include: prompt template, inputs, query(optional), files(optional)
# Not Include: memory, external data, dataset context
self.get_pre_calculate_rest_tokens(
app_record=app_record,
model_config=app_orchestration_config.model_config,
prompt_template_entity=app_orchestration_config.prompt_template,
inputs=inputs,
files=files,
query=query
)
memory = None
if application_generate_entity.conversation_id:
# get memory of conversation (read-only)
model_instance = ModelInstance(
provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
model=app_orchestration_config.model_config.model
)
memory = TokenBufferMemory(
conversation=conversation,
model_instance=model_instance
)
# organize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
# memory(optional)
prompt_messages, _ = self.organize_prompt_messages(
app_record=app_record,
model_config=app_orchestration_config.model_config,
prompt_template_entity=app_orchestration_config.prompt_template,
inputs=inputs,
files=files,
query=query,
memory=memory
)
# moderation
try:
# process sensitive_word_avoidance
_, inputs, query = self.moderation_for_inputs(
app_id=app_record.id,
tenant_id=application_generate_entity.tenant_id,
app_orchestration_config_entity=app_orchestration_config,
inputs=inputs,
query=query,
)
except ModerationException as e:
self.direct_output(
queue_manager=queue_manager,
app_orchestration_config=app_orchestration_config,
prompt_messages=prompt_messages,
text=str(e),
stream=application_generate_entity.stream
)
return
if query:
# annotation reply
annotation_reply = self.query_app_annotations_to_reply(
app_record=app_record,
message=message,
query=query,
user_id=application_generate_entity.user_id,
invoke_from=application_generate_entity.invoke_from
)
if annotation_reply:
queue_manager.publish_annotation_reply(
message_annotation_id=annotation_reply.id,
pub_from=PublishFrom.APPLICATION_MANAGER
)
self.direct_output(
queue_manager=queue_manager,
app_orchestration_config=app_orchestration_config,
prompt_messages=prompt_messages,
text=annotation_reply.content,
stream=application_generate_entity.stream
)
return
# fill in variable inputs from external data tools if exists
external_data_tools = app_orchestration_config.external_data_variables
if external_data_tools:
inputs = self.fill_in_inputs_from_external_data_tools(
tenant_id=app_record.tenant_id,
app_id=app_record.id,
external_data_tools=external_data_tools,
inputs=inputs,
query=query
)
# reorganize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
# memory(optional), external data, dataset context(optional)
prompt_messages, _ = self.organize_prompt_messages(
app_record=app_record,
model_config=app_orchestration_config.model_config,
prompt_template_entity=app_orchestration_config.prompt_template,
inputs=inputs,
files=files,
query=query,
memory=memory
)
# check hosting moderation
hosting_moderation_result = self.check_hosting_moderation(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
prompt_messages=prompt_messages
)
if hosting_moderation_result:
return
agent_entity = app_orchestration_config.agent
# load tool variables
tool_conversation_variables = self._load_tool_variables(conversation_id=conversation.id,
user_id=application_generate_entity.user_id,
tanent_id=application_generate_entity.tenant_id)
# convert db variables to tool variables
tool_variables = self._convert_db_variables_to_tool_variables(tool_conversation_variables)
message_chain = self._init_message_chain(
message=message,
query=query
)
# init model instance
model_instance = ModelInstance(
provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
model=app_orchestration_config.model_config.model
)
prompt_message, _ = self.organize_prompt_messages(
app_record=app_record,
model_config=app_orchestration_config.model_config,
prompt_template_entity=app_orchestration_config.prompt_template,
inputs=inputs,
files=files,
query=query,
memory=memory,
)
# start agent runner
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
assistant_cot_runner = AssistantCotApplicationRunner(
tenant_id=application_generate_entity.tenant_id,
application_generate_entity=application_generate_entity,
app_orchestration_config=app_orchestration_config,
model_config=app_orchestration_config.model_config,
config=agent_entity,
queue_manager=queue_manager,
message=message,
user_id=application_generate_entity.user_id,
memory=memory,
prompt_messages=prompt_message,
variables_pool=tool_variables,
db_variables=tool_conversation_variables,
)
invoke_result = assistant_cot_runner.run(
model_instance=model_instance,
conversation=conversation,
message=message,
query=query,
)
elif agent_entity.strategy == AgentEntity.Strategy.FUNCTION_CALLING:
assistant_fc_runner = AssistantFunctionCallApplicationRunner(
tenant_id=application_generate_entity.tenant_id,
application_generate_entity=application_generate_entity,
app_orchestration_config=app_orchestration_config,
model_config=app_orchestration_config.model_config,
config=agent_entity,
queue_manager=queue_manager,
message=message,
user_id=application_generate_entity.user_id,
memory=memory,
prompt_messages=prompt_message,
variables_pool=tool_variables,
db_variables=tool_conversation_variables
)
invoke_result = assistant_fc_runner.run(
model_instance=model_instance,
conversation=conversation,
message=message,
query=query,
)
# handle invoke result
self._handle_invoke_result(
invoke_result=invoke_result,
queue_manager=queue_manager,
stream=application_generate_entity.stream,
agent=True
)
def _load_tool_variables(self, conversation_id: str, user_id: str, tanent_id: str) -> ToolConversationVariables:
"""
load tool variables from database
"""
tool_variables: ToolConversationVariables = db.session.query(ToolConversationVariables).filter(
ToolConversationVariables.conversation_id == conversation_id,
ToolConversationVariables.tenant_id == tanent_id
).first()
if tool_variables:
# save tool variables to session, so that we can update it later
db.session.add(tool_variables)
else:
# create new tool variables
tool_variables = ToolConversationVariables(
conversation_id=conversation_id,
user_id=user_id,
tenant_id=tanent_id,
variables_str='[]',
)
db.session.add(tool_variables)
db.session.commit()
return tool_variables
def _convert_db_variables_to_tool_variables(self, db_variables: ToolConversationVariables) -> ToolRuntimeVariablePool:
"""
convert db variables to tool variables
"""
return ToolRuntimeVariablePool(**{
'conversation_id': db_variables.conversation_id,
'user_id': db_variables.user_id,
'tenant_id': db_variables.tenant_id,
'pool': db_variables.variables
})
def _init_message_chain(self, message: Message, query: str) -> MessageChain:
"""
Init MessageChain
:param message: message
:param query: query
:return:
"""
message_chain = MessageChain(
message_id=message.id,
type="AgentExecutor",
input=json.dumps({
"input": query
})
)
db.session.add(message_chain)
db.session.commit()
return message_chain
def _save_message_chain(self, message_chain: MessageChain, output_text: str) -> None:
"""
Save MessageChain
:param message_chain: message chain
:param output_text: output text
:return:
"""
message_chain.output = json.dumps({
"output": output_text
})
db.session.commit()
def _get_usage_of_all_agent_thoughts(self, model_config: ModelConfigEntity,
message: Message) -> LLMUsage:
"""
Get usage of all agent thoughts
:param model_config: model config
:param message: message
:return:
"""
agent_thoughts = (db.session.query(MessageAgentThought)
.filter(MessageAgentThought.message_id == message.id).all())
all_message_tokens = 0
all_answer_tokens = 0
for agent_thought in agent_thoughts:
all_message_tokens += agent_thought.message_tokens
all_answer_tokens += agent_thought.answer_tokens
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
return model_type_instance._calc_response_usage(
model_config.model,
model_config.credentials,
all_message_tokens,
all_answer_tokens
)

View File

@ -1,23 +1,18 @@
import logging
from typing import Optional, Tuple
from typing import Optional
from core.app_runner.app_runner import AppRunner
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.entities.application_entities import (ApplicationGenerateEntity, AppOrchestrationConfigEntity, DatasetEntity,
ExternalDataVariableEntity, InvokeFrom, ModelConfigEntity)
from core.features.annotation_reply import AnnotationReplyFeature
from core.entities.application_entities import (ApplicationGenerateEntity, DatasetEntity,
InvokeFrom, ModelConfigEntity)
from core.features.dataset_retrieval import DatasetRetrievalFeature
from core.features.external_data_fetch import ExternalDataFetchFeature
from core.features.hosting_moderation import HostingModerationFeature
from core.features.moderation import ModerationFeature
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import PromptMessage
from core.moderation.base import ModerationException
from core.prompt.prompt_transform import AppMode
from extensions.ext_database import db
from models.model import App, Conversation, Message, MessageAnnotation
from models.model import App, Conversation, Message
logger = logging.getLogger(__name__)
@ -213,76 +208,6 @@ class BasicApplicationRunner(AppRunner):
stream=application_generate_entity.stream
)
def moderation_for_inputs(self, app_id: str,
tenant_id: str,
app_orchestration_config_entity: AppOrchestrationConfigEntity,
inputs: dict,
query: str) -> Tuple[bool, dict, str]:
"""
Process sensitive_word_avoidance.
:param app_id: app id
:param tenant_id: tenant id
:param app_orchestration_config_entity: app orchestration config entity
:param inputs: inputs
:param query: query
:return:
"""
moderation_feature = ModerationFeature()
return moderation_feature.check(
app_id=app_id,
tenant_id=tenant_id,
app_orchestration_config_entity=app_orchestration_config_entity,
inputs=inputs,
query=query,
)
def query_app_annotations_to_reply(self, app_record: App,
message: Message,
query: str,
user_id: str,
invoke_from: InvokeFrom) -> Optional[MessageAnnotation]:
"""
Query app annotations to reply
:param app_record: app record
:param message: message
:param query: query
:param user_id: user id
:param invoke_from: invoke from
:return:
"""
annotation_reply_feature = AnnotationReplyFeature()
return annotation_reply_feature.query(
app_record=app_record,
message=message,
query=query,
user_id=user_id,
invoke_from=invoke_from
)
def fill_in_inputs_from_external_data_tools(self, tenant_id: str,
app_id: str,
external_data_tools: list[ExternalDataVariableEntity],
inputs: dict,
query: str) -> dict:
"""
Fill in variable inputs from external data tools if exists.
:param tenant_id: workspace id
:param app_id: app id
:param external_data_tools: external data tools configs
:param inputs: the inputs
:param query: the query
:return: the filled inputs
"""
external_data_fetch_feature = ExternalDataFetchFeature()
return external_data_fetch_feature.fetch(
tenant_id=tenant_id,
app_id=app_id,
external_data_tools=external_data_tools,
inputs=inputs,
query=query
)
def retrieve_dataset_context(self, tenant_id: str,
app_record: App,
queue_manager: ApplicationQueueManager,
@ -334,31 +259,4 @@ class BasicApplicationRunner(AppRunner):
hit_callback=hit_callback,
memory=memory
)
def check_hosting_moderation(self, application_generate_entity: ApplicationGenerateEntity,
queue_manager: ApplicationQueueManager,
prompt_messages: list[PromptMessage]) -> bool:
"""
Check hosting moderation
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param prompt_messages: prompt messages
:return:
"""
hosting_moderation_feature = HostingModerationFeature()
moderation_result = hosting_moderation_feature.check(
application_generate_entity=application_generate_entity,
prompt_messages=prompt_messages
)
if moderation_result:
self.direct_output(
queue_manager=queue_manager,
app_orchestration_config=application_generate_entity.app_orchestration_config_entity,
prompt_messages=prompt_messages,
text="I apologize for any confusion, " \
"but I'm an AI assistant to be helpful, harmless, and honest.",
stream=application_generate_entity.stream
)
return moderation_result

View File

@ -8,7 +8,8 @@ from core.application_queue_manager import ApplicationQueueManager, PublishFrom
from core.entities.application_entities import ApplicationGenerateEntity, InvokeFrom
from core.entities.queue_entities import (AnnotationReplyEvent, QueueAgentThoughtEvent, QueueErrorEvent,
QueueMessageEndEvent, QueueMessageEvent, QueueMessageReplaceEvent,
QueuePingEvent, QueueRetrieverResourcesEvent, QueueStopEvent)
QueuePingEvent, QueueRetrieverResourcesEvent, QueueStopEvent,
QueueMessageFileEvent, QueueAgentMessageEvent)
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, ImagePromptMessageContent,
@ -16,11 +17,13 @@ from core.model_runtime.entities.message_entities import (AssistantPromptMessage
TextPromptMessageContent)
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.tools.tool_file_manager import ToolFileManager
from core.tools.tool_manager import ToolManager
from core.model_runtime.utils.encoders import jsonable_encoder
from core.prompt.prompt_template import PromptTemplateParser
from events.message_event import message_was_created
from extensions.ext_database import db
from models.model import Conversation, Message, MessageAgentThought
from models.model import Conversation, Message, MessageAgentThought, MessageFile
from pydantic import BaseModel
from services.annotation_service import AppAnnotationService
@ -279,11 +282,12 @@ class GenerateTaskPipeline:
self._task_state.llm_result.message.content = annotation.content
elif isinstance(event, QueueAgentThoughtEvent):
agent_thought = (
agent_thought: MessageAgentThought = (
db.session.query(MessageAgentThought)
.filter(MessageAgentThought.id == event.agent_thought_id)
.first()
)
db.session.refresh(agent_thought)
if agent_thought:
response = {
@ -293,16 +297,49 @@ class GenerateTaskPipeline:
'message_id': self._message.id,
'position': agent_thought.position,
'thought': agent_thought.thought,
'observation': agent_thought.observation,
'tool': agent_thought.tool,
'tool_labels': agent_thought.tool_labels,
'tool_input': agent_thought.tool_input,
'created_at': int(self._message.created_at.timestamp())
'created_at': int(self._message.created_at.timestamp()),
'message_files': agent_thought.files
}
if self._conversation.mode == 'chat':
response['conversation_id'] = self._conversation.id
yield self._yield_response(response)
elif isinstance(event, QueueMessageEvent):
elif isinstance(event, QueueMessageFileEvent):
message_file: MessageFile = (
db.session.query(MessageFile)
.filter(MessageFile.id == event.message_file_id)
.first()
)
# get extension
if '.' in message_file.url:
extension = f'.{message_file.url.split(".")[-1]}'
if len(extension) > 10:
extension = '.bin'
else:
extension = '.bin'
# add sign url
url = ToolFileManager.sign_file(file_id=message_file.id, extension=extension)
if message_file:
response = {
'event': 'message_file',
'id': message_file.id,
'type': message_file.type,
'belongs_to': message_file.belongs_to or 'user',
'url': url
}
if self._conversation.mode == 'chat':
response['conversation_id'] = self._conversation.id
yield self._yield_response(response)
elif isinstance(event, (QueueMessageEvent, QueueAgentMessageEvent)):
chunk = event.chunk
delta_text = chunk.delta.message.content
if delta_text is None:
@ -332,7 +369,7 @@ class GenerateTaskPipeline:
self._output_moderation_handler.append_new_token(delta_text)
self._task_state.llm_result.message.content += delta_text
response = self._handle_chunk(delta_text)
response = self._handle_chunk(delta_text, agent=isinstance(event, QueueAgentMessageEvent))
yield self._yield_response(response)
elif isinstance(event, QueueMessageReplaceEvent):
response = {
@ -384,14 +421,14 @@ class GenerateTaskPipeline:
extras=self._application_generate_entity.extras
)
def _handle_chunk(self, text: str) -> dict:
def _handle_chunk(self, text: str, agent: bool = False) -> dict:
"""
Handle completed event.
:param text: text
:return:
"""
response = {
'event': 'message',
'event': 'message' if not agent else 'agent_message',
'id': self._message.id,
'task_id': self._application_generate_entity.task_id,
'message_id': self._message.id,
@ -493,6 +530,10 @@ class GenerateTaskPipeline:
'score': resource['score'],
'content': resource['content'],
})
# show annotation reply
if 'annotation_reply' in self._task_state.metadata:
if self._application_generate_entity.invoke_from in [InvokeFrom.DEBUGGER, InvokeFrom.SERVICE_API]:
metadata['annotation_reply'] = self._task_state.metadata['annotation_reply']
# show usage
if self._application_generate_entity.invoke_from in [InvokeFrom.DEBUGGER, InvokeFrom.SERVICE_API]:

View File

@ -116,7 +116,7 @@ class OutputModerationHandler(BaseModel):
# trigger replace event
if self.thread_running:
self.on_message_replace_func(final_output)
self.on_message_replace_func(final_output, PublishFrom.TASK_PIPELINE)
if result.action == ModerationAction.DIRECT_OUTPUT:
break

View File

@ -4,7 +4,7 @@ import threading
import uuid
from typing import Any, Generator, Optional, Tuple, Union, cast
from core.app_runner.agent_app_runner import AgentApplicationRunner
from core.app_runner.assistant_app_runner import AssistantApplicationRunner
from core.app_runner.basic_app_runner import BasicApplicationRunner
from core.app_runner.generate_task_pipeline import GenerateTaskPipeline
from core.application_queue_manager import ApplicationQueueManager, ConversationTaskStoppedException, PublishFrom
@ -13,7 +13,7 @@ from core.entities.application_entities import (AdvancedChatPromptTemplateEntity
ApplicationGenerateEntity, AppOrchestrationConfigEntity, DatasetEntity,
DatasetRetrieveConfigEntity, ExternalDataVariableEntity,
FileUploadEntity, InvokeFrom, ModelConfigEntity, PromptTemplateEntity,
SensitiveWordAvoidanceEntity)
SensitiveWordAvoidanceEntity, AgentPromptEntity)
from core.entities.model_entities import ModelStatus
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.file.file_obj import FileObj
@ -23,6 +23,7 @@ from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeErr
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.prompt.prompt_template import PromptTemplateParser
from core.provider_manager import ProviderManager
from core.tools.prompt.template import REACT_PROMPT_TEMPLATES
from extensions.ext_database import db
from flask import Flask, current_app
from models.account import Account
@ -93,6 +94,9 @@ class ApplicationManager:
extras=extras
)
if not stream and application_generate_entity.app_orchestration_config_entity.agent:
raise ValueError("Agent app is not supported in blocking mode.")
# init generate records
(
conversation,
@ -151,7 +155,7 @@ class ApplicationManager:
if application_generate_entity.app_orchestration_config_entity.agent:
# agent app
runner = AgentApplicationRunner()
runner = AssistantApplicationRunner()
runner.run(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
@ -354,6 +358,8 @@ class ApplicationManager:
# external data variables
properties['external_data_variables'] = []
# old external_data_tools
external_data_tools = copy_app_model_config_dict.get('external_data_tools', [])
for external_data_tool in external_data_tools:
if 'enabled' not in external_data_tool or not external_data_tool['enabled']:
@ -366,6 +372,19 @@ class ApplicationManager:
config=external_data_tool['config']
)
)
# current external_data_tools
for variable in copy_app_model_config_dict.get('user_input_form', []):
typ = list(variable.keys())[0]
if typ == 'external_data_tool':
val = variable[typ]
properties['external_data_variables'].append(
ExternalDataVariableEntity(
variable=val['variable'],
type=val['type'],
config=val['config']
)
)
# show retrieve source
show_retrieve_source = False
@ -375,15 +394,65 @@ class ApplicationManager:
show_retrieve_source = True
properties['show_retrieve_source'] = show_retrieve_source
dataset_ids = []
if 'datasets' in copy_app_model_config_dict.get('dataset_configs', {}):
datasets = copy_app_model_config_dict.get('dataset_configs', {}).get('datasets', {
'strategy': 'router',
'datasets': []
})
for dataset in datasets.get('datasets', []):
keys = list(dataset.keys())
if len(keys) == 0 or keys[0] != 'dataset':
continue
dataset = dataset['dataset']
if 'enabled' not in dataset or not dataset['enabled']:
continue
dataset_id = dataset.get('id', None)
if dataset_id:
dataset_ids.append(dataset_id)
else:
datasets = {'strategy': 'router', 'datasets': []}
if 'agent_mode' in copy_app_model_config_dict and copy_app_model_config_dict['agent_mode'] \
and 'enabled' in copy_app_model_config_dict['agent_mode'] and copy_app_model_config_dict['agent_mode'][
'enabled']:
agent_dict = copy_app_model_config_dict.get('agent_mode')
agent_strategy = agent_dict.get('strategy', 'router')
if agent_strategy in ['router', 'react_router']:
dataset_ids = []
for tool in agent_dict.get('tools', []):
and 'enabled' in copy_app_model_config_dict['agent_mode'] \
and copy_app_model_config_dict['agent_mode']['enabled']:
agent_dict = copy_app_model_config_dict.get('agent_mode', {})
agent_strategy = agent_dict.get('strategy', 'cot')
if agent_strategy == 'function_call':
strategy = AgentEntity.Strategy.FUNCTION_CALLING
elif agent_strategy == 'cot' or agent_strategy == 'react':
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
else:
# old configs, try to detect default strategy
if copy_app_model_config_dict['model']['provider'] == 'openai':
strategy = AgentEntity.Strategy.FUNCTION_CALLING
else:
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
agent_tools = []
for tool in agent_dict.get('tools', []):
keys = tool.keys()
if len(keys) >= 4:
if "enabled" not in tool or not tool["enabled"]:
continue
agent_tool_properties = {
'provider_type': tool['provider_type'],
'provider_id': tool['provider_id'],
'tool_name': tool['tool_name'],
'tool_parameters': tool['tool_parameters'] if 'tool_parameters' in tool else {}
}
agent_tools.append(AgentToolEntity(**agent_tool_properties))
elif len(keys) == 1:
# old standard
key = list(tool.keys())[0]
if key != 'dataset':
@ -396,59 +465,60 @@ class ApplicationManager:
dataset_id = tool_item['id']
dataset_ids.append(dataset_id)
dataset_configs = copy_app_model_config_dict.get('dataset_configs', {'retrieval_model': 'single'})
query_variable = copy_app_model_config_dict.get('dataset_query_variable')
if dataset_configs['retrieval_model'] == 'single':
properties['dataset'] = DatasetEntity(
dataset_ids=dataset_ids,
retrieve_config=DatasetRetrieveConfigEntity(
query_variable=query_variable,
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
dataset_configs['retrieval_model']
),
single_strategy=agent_strategy
)
if 'strategy' in copy_app_model_config_dict['agent_mode'] and \
copy_app_model_config_dict['agent_mode']['strategy'] not in ['react_router', 'router']:
agent_prompt = agent_dict.get('prompt', None) or {}
# check model mode
model_mode = copy_app_model_config_dict.get('model', {}).get('mode', 'completion')
if model_mode == 'completion':
agent_prompt_entity = AgentPromptEntity(
first_prompt=agent_prompt.get('first_prompt', REACT_PROMPT_TEMPLATES['english']['completion']['prompt']),
next_iteration=agent_prompt.get('next_iteration', REACT_PROMPT_TEMPLATES['english']['completion']['agent_scratchpad']),
)
else:
properties['dataset'] = DatasetEntity(
dataset_ids=dataset_ids,
retrieve_config=DatasetRetrieveConfigEntity(
query_variable=query_variable,
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
dataset_configs['retrieval_model']
),
top_k=dataset_configs.get('top_k'),
score_threshold=dataset_configs.get('score_threshold'),
reranking_model=dataset_configs.get('reranking_model')
)
agent_prompt_entity = AgentPromptEntity(
first_prompt=agent_prompt.get('first_prompt', REACT_PROMPT_TEMPLATES['english']['chat']['prompt']),
next_iteration=agent_prompt.get('next_iteration', REACT_PROMPT_TEMPLATES['english']['chat']['agent_scratchpad']),
)
else:
if agent_strategy == 'react':
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
else:
strategy = AgentEntity.Strategy.FUNCTION_CALLING
agent_tools = []
for tool in agent_dict.get('tools', []):
key = list(tool.keys())[0]
tool_item = tool[key]
agent_tool_properties = {
"tool_id": key
}
if "enabled" not in tool_item or not tool_item["enabled"]:
continue
agent_tool_properties["config"] = tool_item
agent_tools.append(AgentToolEntity(**agent_tool_properties))
properties['agent'] = AgentEntity(
provider=properties['model_config'].provider,
model=properties['model_config'].model,
strategy=strategy,
tools=agent_tools
prompt=agent_prompt_entity,
tools=agent_tools,
max_iteration=agent_dict.get('max_iteration', 5)
)
if len(dataset_ids) > 0:
# dataset configs
dataset_configs = copy_app_model_config_dict.get('dataset_configs', {'retrieval_model': 'single'})
query_variable = copy_app_model_config_dict.get('dataset_query_variable')
if dataset_configs['retrieval_model'] == 'single':
properties['dataset'] = DatasetEntity(
dataset_ids=dataset_ids,
retrieve_config=DatasetRetrieveConfigEntity(
query_variable=query_variable,
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
dataset_configs['retrieval_model']
),
single_strategy=datasets.get('strategy', 'router')
)
)
else:
properties['dataset'] = DatasetEntity(
dataset_ids=dataset_ids,
retrieve_config=DatasetRetrieveConfigEntity(
query_variable=query_variable,
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
dataset_configs['retrieval_model']
),
top_k=dataset_configs.get('top_k'),
score_threshold=dataset_configs.get('score_threshold'),
reranking_model=dataset_configs.get('reranking_model')
)
)
# file upload
@ -485,6 +555,12 @@ class ApplicationManager:
if 'enabled' in speech_to_text_dict and speech_to_text_dict['enabled']:
properties['speech_to_text'] = True
# text to speech
text_to_speech_dict = copy_app_model_config_dict.get('text_to_speech')
if text_to_speech_dict:
if 'enabled' in text_to_speech_dict and text_to_speech_dict['enabled']:
properties['text_to_speech'] = True
# sensitive word avoidance
sensitive_word_avoidance_dict = copy_app_model_config_dict.get('sensitive_word_avoidance')
if sensitive_word_avoidance_dict:
@ -601,6 +677,7 @@ class ApplicationManager:
message_id=message.id,
type=file.type.value,
transfer_method=file.transfer_method.value,
belongs_to='user',
url=file.url,
upload_file_id=file.upload_file_id,
created_by_role=('account' if account_id else 'end_user'),

View File

@ -7,10 +7,10 @@ from core.entities.application_entities import InvokeFrom
from core.entities.queue_entities import (AnnotationReplyEvent, AppQueueEvent, QueueAgentThoughtEvent, QueueErrorEvent,
QueueMessage, QueueMessageEndEvent, QueueMessageEvent,
QueueMessageReplaceEvent, QueuePingEvent, QueueRetrieverResourcesEvent,
QueueStopEvent)
QueueStopEvent, QueueMessageFileEvent, QueueAgentMessageEvent)
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
from extensions.ext_redis import redis_client
from models.model import MessageAgentThought
from models.model import MessageAgentThought, MessageFile
from sqlalchemy.orm import DeclarativeMeta
@ -96,6 +96,18 @@ class ApplicationQueueManager:
chunk=chunk
), pub_from)
def publish_agent_chunk_message(self, chunk: LLMResultChunk, pub_from: PublishFrom) -> None:
"""
Publish agent chunk message to channel
:param chunk: chunk
:param pub_from: publish from
:return:
"""
self.publish(QueueAgentMessageEvent(
chunk=chunk
), pub_from)
def publish_message_replace(self, text: str, pub_from: PublishFrom) -> None:
"""
Publish message replace
@ -144,6 +156,17 @@ class ApplicationQueueManager:
agent_thought_id=message_agent_thought.id
), pub_from)
def publish_message_file(self, message_file: MessageFile, pub_from: PublishFrom) -> None:
"""
Publish agent thought
:param message_file: message file
:param pub_from: publish from
:return:
"""
self.publish(QueueMessageFileEvent(
message_file_id=message_file.id
), pub_from)
def publish_error(self, e, pub_from: PublishFrom) -> None:
"""
Publish error

View File

@ -0,0 +1,74 @@
import os
from typing import Any, Dict, Optional, Union
from pydantic import BaseModel
from langchain.callbacks.base import BaseCallbackHandler
from langchain.input import print_text
class DifyAgentCallbackHandler(BaseCallbackHandler, BaseModel):
"""Callback Handler that prints to std out."""
color: Optional[str] = ''
current_loop = 1
def __init__(self, color: Optional[str] = None) -> None:
super().__init__()
"""Initialize callback handler."""
# use a specific color is not specified
self.color = color or 'green'
self.current_loop = 1
def on_tool_start(
self,
tool_name: str,
tool_inputs: Dict[str, Any],
) -> None:
"""Do nothing."""
print_text("\n[on_tool_start] ToolCall:" + tool_name + "\n" + str(tool_inputs) + "\n", color=self.color)
def on_tool_end(
self,
tool_name: str,
tool_inputs: Dict[str, Any],
tool_outputs: str,
) -> None:
"""If not the final action, print out observation."""
print_text("\n[on_tool_end]\n", color=self.color)
print_text("Tool: " + tool_name + "\n", color=self.color)
print_text("Inputs: " + str(tool_inputs) + "\n", color=self.color)
print_text("Outputs: " + str(tool_outputs) + "\n", color=self.color)
print_text("\n")
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
print_text("\n[on_tool_error] Error: " + str(error) + "\n", color='red')
def on_agent_start(
self, thought: str
) -> None:
"""Run on agent start."""
if thought:
print_text("\n[on_agent_start] \nCurrent Loop: " + \
str(self.current_loop) + \
"\nThought: " + thought + "\n", color=self.color)
else:
print_text("\n[on_agent_start] \nCurrent Loop: " + str(self.current_loop) + "\n", color=self.color)
def on_agent_finish(
self, color: Optional[str] = None, **kwargs: Any
) -> None:
"""Run on agent end."""
print_text("\n[on_agent_finish]\n Loop: " + str(self.current_loop) + "\n", color=self.color)
self.current_loop += 1
@property
def ignore_agent(self) -> bool:
"""Whether to ignore agent callbacks."""
return not os.environ.get("DEBUG") or os.environ.get("DEBUG").lower() != 'true'
@property
def ignore_chat_model(self) -> bool:
"""Whether to ignore chat model callbacks."""
return not os.environ.get("DEBUG") or os.environ.get("DEBUG").lower() != 'true'

View File

@ -27,7 +27,7 @@ USER_AGENT = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTM
class FileExtractor:
@classmethod
def load(cls, upload_file: UploadFile, return_text: bool = False, is_automatic: bool = False) -> Union[List[Document] | str]:
def load(cls, upload_file: UploadFile, return_text: bool = False, is_automatic: bool = False) -> Union[List[Document], str]:
with tempfile.TemporaryDirectory() as temp_dir:
suffix = Path(upload_file.key).suffix
file_path = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
@ -36,7 +36,7 @@ class FileExtractor:
return cls.load_from_file(file_path, return_text, upload_file, is_automatic)
@classmethod
def load_from_url(cls, url: str, return_text: bool = False) -> Union[List[Document] | str]:
def load_from_url(cls, url: str, return_text: bool = False) -> Union[List[Document], str]:
response = requests.get(url, headers={
"User-Agent": USER_AGENT
})
@ -52,7 +52,7 @@ class FileExtractor:
@classmethod
def load_from_file(cls, file_path: str, return_text: bool = False,
upload_file: Optional[UploadFile] = None,
is_automatic: bool = False) -> Union[List[Document] | str]:
is_automatic: bool = False) -> Union[List[Document], str]:
input_file = Path(file_path)
delimiter = '\n'
file_extension = input_file.suffix.lower()
@ -68,7 +68,7 @@ class FileExtractor:
else MarkdownLoader(file_path, autodetect_encoding=True)
elif file_extension in ['.htm', '.html']:
loader = HTMLLoader(file_path)
elif file_extension == '.docx':
elif file_extension in ['.docx', '.doc']:
loader = Docx2txtLoader(file_path)
elif file_extension == '.csv':
loader = CSVLoader(file_path, autodetect_encoding=True)
@ -95,7 +95,7 @@ class FileExtractor:
loader = MarkdownLoader(file_path, autodetect_encoding=True)
elif file_extension in ['.htm', '.html']:
loader = HTMLLoader(file_path)
elif file_extension == '.docx':
elif file_extension in ['.docx', '.doc']:
loader = Docx2txtLoader(file_path)
elif file_extension == '.csv':
loader = CSVLoader(file_path, autodetect_encoding=True)

View File

@ -1,9 +1,7 @@
import logging
import re
from typing import List, Optional, Tuple, cast
from typing import List
from langchain.document_loaders.base import BaseLoader
from langchain.document_loaders.helpers import detect_file_encodings
from langchain.schema import Document
logger = logging.getLogger(__name__)

View File

@ -1,14 +1,10 @@
import logging
import re
from typing import List, Optional, Tuple, cast
from typing import List
from langchain.document_loaders.base import BaseLoader
from langchain.document_loaders.helpers import detect_file_encodings
from langchain.schema import Document
logger = logging.getLogger(__name__)
class UnstructuredPPTLoader(BaseLoader):
"""Load msg files.

View File

@ -1,14 +1,10 @@
import logging
import re
from typing import List, Optional, Tuple, cast
from typing import List
from langchain.document_loaders.base import BaseLoader
from langchain.document_loaders.helpers import detect_file_encodings
from langchain.schema import Document
logger = logging.getLogger(__name__)
class UnstructuredPPTXLoader(BaseLoader):
"""Load msg files.

View File

@ -1,9 +1,7 @@
import logging
import re
from typing import List, Optional, Tuple, cast
from typing import List
from langchain.document_loaders.base import BaseLoader
from langchain.document_loaders.helpers import detect_file_encodings
from langchain.schema import Document
logger = logging.getLogger(__name__)

View File

@ -1,9 +1,7 @@
import logging
import re
from typing import List, Optional, Tuple, cast
from typing import List
from langchain.document_loaders.base import BaseLoader
from langchain.document_loaders.helpers import detect_file_encodings
from langchain.schema import Document
logger = logging.getLogger(__name__)

View File

@ -1,10 +1,16 @@
import base64
import json
import logging
from typing import List, Optional
from typing import List, Optional, cast
import numpy as np
from core.model_manager import ModelInstance
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from extensions.ext_database import db
from langchain.embeddings.base import Embeddings
from extensions.ext_redis import redis_client
from libs import helper
from models.dataset import Embedding
from sqlalchemy.exc import IntegrityError
@ -18,47 +24,33 @@ class CacheEmbedding(Embeddings):
self._user = user
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs."""
# use doc embedding cache or store if not exists
text_embeddings = [None for _ in range(len(texts))]
embedding_queue_indices = []
for i, text in enumerate(texts):
hash = helper.generate_text_hash(text)
embedding = db.session.query(Embedding).filter_by(model_name=self._model_instance.model, hash=hash).first()
if embedding:
text_embeddings[i] = embedding.get_embedding()
else:
embedding_queue_indices.append(i)
"""Embed search docs in batches of 10."""
text_embeddings = []
try:
model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
model_schema = model_type_instance.get_model_schema(self._model_instance.model, self._model_instance.credentials)
max_chunks = model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] \
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties else 1
for i in range(0, len(texts), max_chunks):
batch_texts = texts[i:i + max_chunks]
if embedding_queue_indices:
try:
embedding_result = self._model_instance.invoke_text_embedding(
texts=[texts[i] for i in embedding_queue_indices],
texts=batch_texts,
user=self._user
)
embedding_results = embedding_result.embeddings
except Exception as ex:
logger.error('Failed to embed documents: ', ex)
raise ex
for vector in embedding_result.embeddings:
try:
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
text_embeddings.append(normalized_embedding)
except IntegrityError:
db.session.rollback()
except Exception as e:
logging.exception('Failed to add embedding to redis')
for i, indice in enumerate(embedding_queue_indices):
hash = helper.generate_text_hash(texts[indice])
try:
embedding = Embedding(model_name=self._model_instance.model, hash=hash)
vector = embedding_results[i]
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
text_embeddings[indice] = normalized_embedding
embedding.set_embedding(normalized_embedding)
db.session.add(embedding)
db.session.commit()
except IntegrityError:
db.session.rollback()
continue
except:
logging.exception('Failed to add embedding to db')
continue
except Exception as ex:
logger.error('Failed to embed documents: ', ex)
raise ex
return text_embeddings
@ -66,9 +58,12 @@ class CacheEmbedding(Embeddings):
"""Embed query text."""
# use doc embedding cache or store if not exists
hash = helper.generate_text_hash(text)
embedding = db.session.query(Embedding).filter_by(model_name=self._model_instance.model, hash=hash).first()
embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
embedding = redis_client.get(embedding_cache_key)
if embedding:
return embedding.get_embedding()
redis_client.expire(embedding_cache_key, 600)
return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
try:
embedding_result = self._model_instance.invoke_text_embedding(
@ -82,13 +77,18 @@ class CacheEmbedding(Embeddings):
raise ex
try:
embedding = Embedding(model_name=self._model_instance.model, hash=hash)
embedding.set_embedding(embedding_results)
db.session.add(embedding)
db.session.commit()
# encode embedding to base64
embedding_vector = np.array(embedding_results)
vector_bytes = embedding_vector.tobytes()
# Transform to Base64
encoded_vector = base64.b64encode(vector_bytes)
# Transform to string
encoded_str = encoded_vector.decode("utf-8")
redis_client.setex(embedding_cache_key, 600, encoded_str)
except IntegrityError:
db.session.rollback()
except:
logging.exception('Failed to add embedding to db')
logging.exception('Failed to add embedding to redis')
return embedding_results

View File

@ -1,11 +1,12 @@
from enum import Enum
from typing import Any, Optional, cast
from typing import Optional, Any, cast, Literal, Union
from pydantic import BaseModel
from core.entities.provider_configuration import ProviderModelBundle
from core.file.file_obj import FileObj
from core.model_runtime.entities.message_entities import PromptMessageRole
from core.model_runtime.entities.model_entities import AIModelEntity
from pydantic import BaseModel
class ModelConfigEntity(BaseModel):
@ -153,9 +154,35 @@ class AgentToolEntity(BaseModel):
"""
Agent Tool Entity.
"""
tool_id: str
config: dict[str, Any] = {}
provider_type: Literal["builtin", "api"]
provider_id: str
tool_name: str
tool_parameters: dict[str, Any] = {}
class AgentPromptEntity(BaseModel):
"""
Agent Prompt Entity.
"""
first_prompt: str
next_iteration: str
class AgentScratchpadUnit(BaseModel):
"""
Agent First Prompt Entity.
"""
class Action(BaseModel):
"""
Action Entity.
"""
action_name: str
action_input: Union[dict, str]
agent_response: Optional[str] = None
thought: Optional[str] = None
action_str: Optional[str] = None
observation: Optional[str] = None
action: Optional[Action] = None
class AgentEntity(BaseModel):
"""
@ -171,8 +198,9 @@ class AgentEntity(BaseModel):
provider: str
model: str
strategy: Strategy
tools: list[AgentToolEntity] = []
prompt: Optional[AgentPromptEntity] = None
tools: list[AgentToolEntity] = None
max_iteration: int = 5
class AppOrchestrationConfigEntity(BaseModel):
"""
@ -191,6 +219,7 @@ class AppOrchestrationConfigEntity(BaseModel):
show_retrieve_source: bool = False
more_like_this: bool = False
speech_to_text: bool = False
text_to_speech: bool = False
sensitive_word_avoidance: Optional[SensitiveWordAvoidanceEntity] = None
@ -255,7 +284,6 @@ class ApplicationGenerateEntity(BaseModel):
query: Optional[str] = None
files: list[FileObj] = []
user_id: str
# extras
stream: bool
invoke_from: InvokeFrom

View File

@ -153,8 +153,16 @@ class ProviderConfiguration(BaseModel):
if provider_record:
try:
original_credentials = json.loads(
provider_record.encrypted_config) if provider_record.encrypted_config else {}
# fix origin data
if provider_record.encrypted_config:
if not provider_record.encrypted_config.startswith("{"):
original_credentials = {
"openai_api_key": provider_record.encrypted_config
}
else:
original_credentials = json.loads(provider_record.encrypted_config)
else:
original_credentials = {}
except JSONDecodeError:
original_credentials = {}

View File

@ -10,11 +10,13 @@ class QueueEvent(Enum):
QueueEvent enum
"""
MESSAGE = "message"
AGENT_MESSAGE = "agent_message"
MESSAGE_REPLACE = "message-replace"
MESSAGE_END = "message-end"
RETRIEVER_RESOURCES = "retriever-resources"
ANNOTATION_REPLY = "annotation-reply"
AGENT_THOUGHT = "agent-thought"
MESSAGE_FILE = "message-file"
ERROR = "error"
PING = "ping"
STOP = "stop"
@ -33,7 +35,14 @@ class QueueMessageEvent(AppQueueEvent):
"""
event = QueueEvent.MESSAGE
chunk: LLMResultChunk
class QueueAgentMessageEvent(AppQueueEvent):
"""
QueueMessageEvent entity
"""
event = QueueEvent.AGENT_MESSAGE
chunk: LLMResultChunk
class QueueMessageReplaceEvent(AppQueueEvent):
"""
@ -73,7 +82,13 @@ class QueueAgentThoughtEvent(AppQueueEvent):
"""
event = QueueEvent.AGENT_THOUGHT
agent_thought_id: str
class QueueMessageFileEvent(AppQueueEvent):
"""
QueueAgentThoughtEvent entity
"""
event = QueueEvent.MESSAGE_FILE
message_file_id: str
class QueueErrorEvent(AppQueueEvent):
"""

View File

@ -1,30 +1,27 @@
import logging
from typing import List, Optional, cast
from typing import cast, Optional, List
from langchain import WikipediaAPIWrapper
from langchain.callbacks.base import BaseCallbackHandler
from langchain.tools import BaseTool, WikipediaQueryRun, Tool
from pydantic import BaseModel, Field
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent_executor import AgentConfiguration, AgentExecutor, PlanningStrategy
from core.agent.agent_executor import PlanningStrategy, AgentConfiguration, AgentExecutor
from core.application_queue_manager import ApplicationQueueManager
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
from core.entities.application_entities import (AgentEntity, AgentToolEntity, AppOrchestrationConfigEntity, InvokeFrom,
ModelConfigEntity)
from core.entities.application_entities import ModelConfigEntity, InvokeFrom, \
AgentEntity, AgentToolEntity, AppOrchestrationConfigEntity
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
from core.model_runtime.model_providers import model_provider_factory
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.tool.current_datetime_tool import DatetimeTool
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
from core.tool.provider.serpapi_provider import SerpAPIToolProvider
from core.tool.serpapi_wrapper import OptimizedSerpAPIInput, OptimizedSerpAPIWrapper
from core.tool.web_reader_tool import WebReaderTool
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
from extensions.ext_database import db
from langchain import WikipediaAPIWrapper
from langchain.callbacks.base import BaseCallbackHandler
from langchain.tools import BaseTool, Tool, WikipediaQueryRun
from models.dataset import Dataset
from models.model import Message
from pydantic import BaseModel, Field
logger = logging.getLogger(__name__)
@ -132,55 +129,6 @@ class AgentRunnerFeature:
logger.exception("agent_executor run failed")
return None
def to_tools(self, tool_configs: list[AgentToolEntity],
invoke_from: InvokeFrom,
callbacks: list[BaseCallbackHandler]) \
-> Optional[List[BaseTool]]:
"""
Convert tool configs to tools
:param tool_configs: tool configs
:param invoke_from: invoke from
:param callbacks: callbacks
"""
tools = []
for tool_config in tool_configs:
tool = None
if tool_config.tool_id == "dataset":
tool = self.to_dataset_retriever_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
elif tool_config.tool_id == "web_reader":
tool = self.to_web_reader_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
elif tool_config.tool_id == "google_search":
tool = self.to_google_search_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
elif tool_config.tool_id == "wikipedia":
tool = self.to_wikipedia_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
elif tool_config.tool_id == "current_datetime":
tool = self.to_current_datetime_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
if tool:
if tool.callbacks is not None:
tool.callbacks.extend(callbacks)
else:
tool.callbacks = callbacks
tools.append(tool)
return tools
def to_dataset_retriever_tool(self, tool_config: dict,
invoke_from: InvokeFrom) \
-> Optional[BaseTool]:
@ -247,78 +195,4 @@ class AgentRunnerFeature:
retriever_from=invoke_from.to_source()
)
return tool
def to_web_reader_tool(self, tool_config: dict,
invoke_from: InvokeFrom) -> Optional[BaseTool]:
"""
A tool for reading web pages
:param tool_config: tool config
:param invoke_from: invoke from
:return:
"""
model_parameters = {
"temperature": 0,
"max_tokens": 500
}
tool = WebReaderTool(
model_config=self.model_config,
model_parameters=model_parameters,
max_chunk_length=4000,
continue_reading=True
)
return tool
def to_google_search_tool(self, tool_config: dict,
invoke_from: InvokeFrom) -> Optional[BaseTool]:
"""
A tool for performing a Google search and extracting snippets and webpages
:param tool_config: tool config
:param invoke_from: invoke from
:return:
"""
tool_provider = SerpAPIToolProvider(tenant_id=self.tenant_id)
func_kwargs = tool_provider.credentials_to_func_kwargs()
if not func_kwargs:
return None
tool = Tool(
name="google_search",
description="A tool for performing a Google search and extracting snippets and webpages "
"when you need to search for something you don't know or when your information "
"is not up to date. "
"Input should be a search query.",
func=OptimizedSerpAPIWrapper(**func_kwargs).run,
args_schema=OptimizedSerpAPIInput
)
return tool
def to_current_datetime_tool(self, tool_config: dict,
invoke_from: InvokeFrom) -> Optional[BaseTool]:
"""
A tool for getting the current date and time
:param tool_config: tool config
:param invoke_from: invoke from
:return:
"""
return DatetimeTool()
def to_wikipedia_tool(self, tool_config: dict,
invoke_from: InvokeFrom) -> Optional[BaseTool]:
"""
A tool for searching Wikipedia
:param tool_config: tool config
:param invoke_from: invoke from
:return:
"""
class WikipediaInput(BaseModel):
query: str = Field(..., description="search query.")
return WikipediaQueryRun(
name="wikipedia",
api_wrapper=WikipediaAPIWrapper(doc_content_chars_max=4000),
args_schema=WikipediaInput
)
return tool

View File

@ -0,0 +1,574 @@
import logging
import json
from typing import Optional, List, Tuple, Union
from datetime import datetime
from mimetypes import guess_extension
from core.app_runner.app_runner import AppRunner
from extensions.ext_database import db
from models.model import MessageAgentThought, Message, MessageFile
from models.tools import ToolConversationVariables
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMessageBinary, \
ToolRuntimeVariablePool, ToolParamter
from core.tools.tool.tool import Tool
from core.tools.tool_manager import ToolManager
from core.tools.tool_file_manager import ToolFileManager
from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
from core.app_runner.app_runner import AppRunner
from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.entities.application_entities import ModelConfigEntity, AgentEntity, AgentToolEntity
from core.application_queue_manager import ApplicationQueueManager
from core.memory.token_buffer_memory import TokenBufferMemory
from core.entities.application_entities import ModelConfigEntity, \
AgentEntity, AppOrchestrationConfigEntity, ApplicationGenerateEntity, InvokeFrom
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.utils.encoders import jsonable_encoder
from core.file.message_file_parser import FileTransferMethod
logger = logging.getLogger(__name__)
class BaseAssistantApplicationRunner(AppRunner):
def __init__(self, tenant_id: str,
application_generate_entity: ApplicationGenerateEntity,
app_orchestration_config: AppOrchestrationConfigEntity,
model_config: ModelConfigEntity,
config: AgentEntity,
queue_manager: ApplicationQueueManager,
message: Message,
user_id: str,
memory: Optional[TokenBufferMemory] = None,
prompt_messages: Optional[List[PromptMessage]] = None,
variables_pool: Optional[ToolRuntimeVariablePool] = None,
db_variables: Optional[ToolConversationVariables] = None,
) -> None:
"""
Agent runner
:param tenant_id: tenant id
:param app_orchestration_config: app orchestration config
:param model_config: model config
:param config: dataset config
:param queue_manager: queue manager
:param message: message
:param user_id: user id
:param agent_llm_callback: agent llm callback
:param callback: callback
:param memory: memory
"""
self.tenant_id = tenant_id
self.application_generate_entity = application_generate_entity
self.app_orchestration_config = app_orchestration_config
self.model_config = model_config
self.config = config
self.queue_manager = queue_manager
self.message = message
self.user_id = user_id
self.memory = memory
self.history_prompt_messages = prompt_messages
self.variables_pool = variables_pool
self.db_variables_pool = db_variables
# init callback
self.agent_callback = DifyAgentCallbackHandler()
# init dataset tools
hit_callback = DatasetIndexToolCallbackHandler(
queue_manager=queue_manager,
app_id=self.application_generate_entity.app_id,
message_id=message.id,
user_id=user_id,
invoke_from=self.application_generate_entity.invoke_from,
)
self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
tenant_id=tenant_id,
dataset_ids=app_orchestration_config.dataset.dataset_ids if app_orchestration_config.dataset else [],
retrieve_config=app_orchestration_config.dataset.retrieve_config if app_orchestration_config.dataset else None,
return_resource=app_orchestration_config.show_retrieve_source,
invoke_from=application_generate_entity.invoke_from,
hit_callback=hit_callback
)
# get how many agent thoughts have been created
self.agent_thought_count = db.session.query(MessageAgentThought).filter(
MessageAgentThought.message_id == self.message.id,
).count()
def _repacket_app_orchestration_config(self, app_orchestration_config: AppOrchestrationConfigEntity) -> AppOrchestrationConfigEntity:
"""
Repacket app orchestration config
"""
if app_orchestration_config.prompt_template.simple_prompt_template is None:
app_orchestration_config.prompt_template.simple_prompt_template = ''
return app_orchestration_config
def _convert_tool_response_to_str(self, tool_response: List[ToolInvokeMessage]) -> str:
"""
Handle tool response
"""
result = ''
for response in tool_response:
if response.type == ToolInvokeMessage.MessageType.TEXT:
result += response.message
elif response.type == ToolInvokeMessage.MessageType.LINK:
result += f"result link: {response.message}. please dirct user to check it."
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
response.type == ToolInvokeMessage.MessageType.IMAGE:
result += f"image has been created and sent to user already, you should tell user to check it now."
else:
result += f"tool response: {response.message}."
return result
def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> Tuple[PromptMessageTool, Tool]:
"""
convert tool to prompt message tool
"""
tool_entity = ToolManager.get_tool_runtime(
provider_type=tool.provider_type, provider_name=tool.provider_id, tool_name=tool.tool_name,
tanent_id=self.application_generate_entity.tenant_id,
agent_callback=self.agent_callback
)
tool_entity.load_variables(self.variables_pool)
message_tool = PromptMessageTool(
name=tool.tool_name,
description=tool_entity.description.llm,
parameters={
"type": "object",
"properties": {},
"required": [],
}
)
runtime_parameters = {}
parameters = tool_entity.parameters or []
user_parameters = tool_entity.get_runtime_parameters() or []
# override parameters
for parameter in user_parameters:
# check if parameter in tool parameters
found = False
for tool_parameter in parameters:
if tool_parameter.name == parameter.name:
found = True
break
if found:
# override parameter
tool_parameter.type = parameter.type
tool_parameter.form = parameter.form
tool_parameter.required = parameter.required
tool_parameter.default = parameter.default
tool_parameter.options = parameter.options
tool_parameter.llm_description = parameter.llm_description
else:
# add new parameter
parameters.append(parameter)
for parameter in parameters:
parameter_type = 'string'
enum = []
if parameter.type == ToolParamter.ToolParameterType.STRING:
parameter_type = 'string'
elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
parameter_type = 'boolean'
elif parameter.type == ToolParamter.ToolParameterType.NUMBER:
parameter_type = 'number'
elif parameter.type == ToolParamter.ToolParameterType.SELECT:
for option in parameter.options:
enum.append(option.value)
parameter_type = 'string'
else:
raise ValueError(f"parameter type {parameter.type} is not supported")
if parameter.form == ToolParamter.ToolParameterForm.FORM:
# get tool parameter from form
tool_parameter_config = tool.tool_parameters.get(parameter.name)
if not tool_parameter_config:
# get default value
tool_parameter_config = parameter.default
if not tool_parameter_config and parameter.required:
raise ValueError(f"tool parameter {parameter.name} not found in tool config")
if parameter.type == ToolParamter.ToolParameterType.SELECT:
# check if tool_parameter_config in options
options = list(map(lambda x: x.value, parameter.options))
if tool_parameter_config not in options:
raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} not in options {options}")
# convert tool parameter config to correct type
try:
if parameter.type == ToolParamter.ToolParameterType.NUMBER:
# check if tool parameter is integer
if isinstance(tool_parameter_config, int):
tool_parameter_config = tool_parameter_config
elif isinstance(tool_parameter_config, float):
tool_parameter_config = tool_parameter_config
elif isinstance(tool_parameter_config, str):
if '.' in tool_parameter_config:
tool_parameter_config = float(tool_parameter_config)
else:
tool_parameter_config = int(tool_parameter_config)
elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
tool_parameter_config = bool(tool_parameter_config)
elif parameter.type not in [ToolParamter.ToolParameterType.SELECT, ToolParamter.ToolParameterType.STRING]:
tool_parameter_config = str(tool_parameter_config)
elif parameter.type == ToolParamter.ToolParameterType:
tool_parameter_config = str(tool_parameter_config)
except Exception as e:
raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} is not correct type")
# save tool parameter to tool entity memory
runtime_parameters[parameter.name] = tool_parameter_config
elif parameter.form == ToolParamter.ToolParameterForm.LLM:
message_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
}
if len(enum) > 0:
message_tool.parameters['properties'][parameter.name]['enum'] = enum
if parameter.required:
message_tool.parameters['required'].append(parameter.name)
tool_entity.runtime.runtime_parameters.update(runtime_parameters)
return message_tool, tool_entity
def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
"""
convert dataset retriever tool to prompt message tool
"""
prompt_tool = PromptMessageTool(
name=tool.identity.name,
description=tool.description.llm,
parameters={
"type": "object",
"properties": {},
"required": [],
}
)
for parameter in tool.get_runtime_parameters():
parameter_type = 'string'
prompt_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
}
if parameter.required:
if parameter.name not in prompt_tool.parameters['required']:
prompt_tool.parameters['required'].append(parameter.name)
return prompt_tool
def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
"""
update prompt message tool
"""
# try to get tool runtime parameters
tool_runtime_parameters = tool.get_runtime_parameters() or []
for parameter in tool_runtime_parameters:
parameter_type = 'string'
enum = []
if parameter.type == ToolParamter.ToolParameterType.STRING:
parameter_type = 'string'
elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
parameter_type = 'boolean'
elif parameter.type == ToolParamter.ToolParameterType.NUMBER:
parameter_type = 'number'
elif parameter.type == ToolParamter.ToolParameterType.SELECT:
for option in parameter.options:
enum.append(option.value)
parameter_type = 'string'
else:
raise ValueError(f"parameter type {parameter.type} is not supported")
if parameter.form == ToolParamter.ToolParameterForm.LLM:
prompt_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
}
if len(enum) > 0:
prompt_tool.parameters['properties'][parameter.name]['enum'] = enum
if parameter.required:
if parameter.name not in prompt_tool.parameters['required']:
prompt_tool.parameters['required'].append(parameter.name)
return prompt_tool
def extract_tool_response_binary(self, tool_response: List[ToolInvokeMessage]) -> List[ToolInvokeMessageBinary]:
"""
Extract tool response binary
"""
result = []
for response in tool_response:
if response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
response.type == ToolInvokeMessage.MessageType.IMAGE:
result.append(ToolInvokeMessageBinary(
mimetype=response.meta.get('mime_type', 'octet/stream'),
url=response.message,
save_as=response.save_as,
))
elif response.type == ToolInvokeMessage.MessageType.BLOB:
result.append(ToolInvokeMessageBinary(
mimetype=response.meta.get('mime_type', 'octet/stream'),
url=response.message,
save_as=response.save_as,
))
elif response.type == ToolInvokeMessage.MessageType.LINK:
# check if there is a mime type in meta
if response.meta and 'mime_type' in response.meta:
result.append(ToolInvokeMessageBinary(
mimetype=response.meta.get('mime_type', 'octet/stream') if response.meta else 'octet/stream',
url=response.message,
save_as=response.save_as,
))
return result
def create_message_files(self, messages: List[ToolInvokeMessageBinary]) -> List[Tuple[MessageFile, bool]]:
"""
Create message file
:param messages: messages
:return: message files, should save as variable
"""
result = []
for message in messages:
file_type = 'bin'
if 'image' in message.mimetype:
file_type = 'image'
elif 'video' in message.mimetype:
file_type = 'video'
elif 'audio' in message.mimetype:
file_type = 'audio'
elif 'text' in message.mimetype:
file_type = 'text'
elif 'pdf' in message.mimetype:
file_type = 'pdf'
elif 'zip' in message.mimetype:
file_type = 'archive'
# ...
invoke_from = self.application_generate_entity.invoke_from
message_file = MessageFile(
message_id=self.message.id,
type=file_type,
transfer_method=FileTransferMethod.TOOL_FILE.value,
belongs_to='assistant',
url=message.url,
upload_file_id=None,
created_by_role=('account'if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'),
created_by=self.user_id,
)
db.session.add(message_file)
result.append((
message_file,
message.save_as
))
db.session.commit()
return result
def create_agent_thought(self, message_id: str, message: str,
tool_name: str, tool_input: str, messages_ids: List[str]
) -> MessageAgentThought:
"""
Create agent thought
"""
thought = MessageAgentThought(
message_id=message_id,
message_chain_id=None,
thought='',
tool=tool_name,
tool_labels_str='{}',
tool_input=tool_input,
message=message,
message_token=0,
message_unit_price=0,
message_price_unit=0,
message_files=json.dumps(messages_ids) if messages_ids else '',
answer='',
observation='',
answer_token=0,
answer_unit_price=0,
answer_price_unit=0,
tokens=0,
total_price=0,
position=self.agent_thought_count + 1,
currency='USD',
latency=0,
created_by_role='account',
created_by=self.user_id,
)
db.session.add(thought)
db.session.commit()
self.agent_thought_count += 1
return thought
def save_agent_thought(self,
agent_thought: MessageAgentThought,
tool_name: str,
tool_input: Union[str, dict],
thought: str,
observation: str,
answer: str,
messages_ids: List[str],
llm_usage: LLMUsage = None) -> MessageAgentThought:
"""
Save agent thought
"""
if thought is not None:
agent_thought.thought = thought
if tool_name is not None:
agent_thought.tool = tool_name
if tool_input is not None:
if isinstance(tool_input, dict):
try:
tool_input = json.dumps(tool_input, ensure_ascii=False)
except Exception as e:
tool_input = json.dumps(tool_input)
agent_thought.tool_input = tool_input
if observation is not None:
agent_thought.observation = observation
if answer is not None:
agent_thought.answer = answer
if messages_ids is not None and len(messages_ids) > 0:
agent_thought.message_files = json.dumps(messages_ids)
if llm_usage:
agent_thought.message_token = llm_usage.prompt_tokens
agent_thought.message_price_unit = llm_usage.prompt_price_unit
agent_thought.message_unit_price = llm_usage.prompt_unit_price
agent_thought.answer_token = llm_usage.completion_tokens
agent_thought.answer_price_unit = llm_usage.completion_price_unit
agent_thought.answer_unit_price = llm_usage.completion_unit_price
agent_thought.tokens = llm_usage.total_tokens
agent_thought.total_price = llm_usage.total_price
# check if tool labels is not empty
labels = agent_thought.tool_labels or {}
tools = agent_thought.tool.split(';') if agent_thought.tool else []
for tool in tools:
if not tool:
continue
if tool not in labels:
tool_label = ToolManager.get_tool_label(tool)
if tool_label:
labels[tool] = tool_label.to_dict()
else:
labels[tool] = {'en_US': tool, 'zh_Hans': tool}
agent_thought.tool_labels_str = json.dumps(labels)
db.session.commit()
def get_history_prompt_messages(self) -> List[PromptMessage]:
"""
Get history prompt messages
"""
if self.history_prompt_messages is None:
self.history_prompt_messages = db.session.query(PromptMessage).filter(
PromptMessage.message_id == self.message.id,
).order_by(PromptMessage.position.asc()).all()
return self.history_prompt_messages
def transform_tool_invoke_messages(self, messages: List[ToolInvokeMessage]) -> List[ToolInvokeMessage]:
"""
Transform tool message into agent thought
"""
result = []
for message in messages:
if message.type == ToolInvokeMessage.MessageType.TEXT:
result.append(message)
elif message.type == ToolInvokeMessage.MessageType.LINK:
result.append(message)
elif message.type == ToolInvokeMessage.MessageType.IMAGE:
# try to download image
try:
file = ToolFileManager.create_file_by_url(user_id=self.user_id, tenant_id=self.tenant_id,
conversation_id=self.message.conversation_id,
file_url=message.message)
url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".png"}'
result.append(ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.IMAGE_LINK,
message=url,
save_as=message.save_as,
meta=message.meta.copy() if message.meta is not None else {},
))
except Exception as e:
logger.exception(e)
result.append(ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.TEXT,
message=f"Failed to download image: {message.message}, you can try to download it yourself.",
meta=message.meta.copy() if message.meta is not None else {},
save_as=message.save_as,
))
elif message.type == ToolInvokeMessage.MessageType.BLOB:
# get mime type and save blob to storage
mimetype = message.meta.get('mime_type', 'octet/stream')
# if message is str, encode it to bytes
if isinstance(message.message, str):
message.message = message.message.encode('utf-8')
file = ToolFileManager.create_file_by_raw(user_id=self.user_id, tenant_id=self.tenant_id,
conversation_id=self.message.conversation_id,
file_binary=message.message,
mimetype=mimetype)
url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".bin"}'
# check if file is image
if 'image' in mimetype:
result.append(ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.IMAGE_LINK,
message=url,
save_as=message.save_as,
meta=message.meta.copy() if message.meta is not None else {},
))
else:
result.append(ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.LINK,
message=url,
save_as=message.save_as,
meta=message.meta.copy() if message.meta is not None else {},
))
else:
result.append(message)
return result
def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
"""
convert tool variables to db variables
"""
db_variables.updated_at = datetime.utcnow()
db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
db.session.commit()

View File

@ -0,0 +1,581 @@
import json
import logging
import re
from typing import Literal, Union, Generator, Dict, List
from core.entities.application_entities import AgentPromptEntity, AgentScratchpadUnit
from core.application_queue_manager import PublishFrom
from core.model_runtime.utils.encoders import jsonable_encoder
from core.model_runtime.entities.message_entities import PromptMessageTool, PromptMessage, \
UserPromptMessage, SystemPromptMessage, AssistantPromptMessage
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage, LLMResultChunk, LLMResultChunkDelta
from core.model_manager import ModelInstance
from core.tools.errors import ToolInvokeError, ToolNotFoundError, \
ToolNotSupportedError, ToolProviderNotFoundError, ToolParamterValidationError, \
ToolProviderCredentialValidationError
from core.features.assistant_base_runner import BaseAssistantApplicationRunner
from models.model import Conversation, Message
class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
def run(self, model_instance: ModelInstance,
conversation: Conversation,
message: Message,
query: str,
) -> Union[Generator, LLMResult]:
"""
Run Cot agent application
"""
app_orchestration_config = self.app_orchestration_config
self._repacket_app_orchestration_config(app_orchestration_config)
agent_scratchpad: List[AgentScratchpadUnit] = []
# check model mode
if self.app_orchestration_config.model_config.mode == "completion":
# TODO: stop words
if 'Observation' not in app_orchestration_config.model_config.stop:
app_orchestration_config.model_config.stop.append('Observation')
iteration_step = 1
max_iteration_steps = min(self.app_orchestration_config.agent.max_iteration, 5) + 1
prompt_messages = self.history_prompt_messages
# convert tools into ModelRuntime Tool format
prompt_messages_tools: List[PromptMessageTool] = []
tool_instances = {}
for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []:
try:
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
except Exception:
# api tool may be deleted
continue
# save tool entity
tool_instances[tool.tool_name] = tool_entity
# save prompt tool
prompt_messages_tools.append(prompt_tool)
# convert dataset tools into ModelRuntime Tool format
for dataset_tool in self.dataset_tools:
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
# save prompt tool
prompt_messages_tools.append(prompt_tool)
# save tool entity
tool_instances[dataset_tool.identity.name] = dataset_tool
function_call_state = True
llm_usage = {
'usage': None
}
final_answer = ''
def increse_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage):
if not final_llm_usage_dict['usage']:
final_llm_usage_dict['usage'] = usage
else:
llm_usage = final_llm_usage_dict['usage']
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
while function_call_state and iteration_step <= max_iteration_steps:
# continue to run until there is not any tool call
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
prompt_messages_tools = []
message_file_ids = []
agent_thought = self.create_agent_thought(
message_id=message.id,
message='',
tool_name='',
tool_input='',
messages_ids=message_file_ids
)
if iteration_step > 1:
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
# update prompt messages
prompt_messages = self._originze_cot_prompt_messages(
mode=app_orchestration_config.model_config.mode,
prompt_messages=prompt_messages,
tools=prompt_messages_tools,
agent_scratchpad=agent_scratchpad,
agent_prompt_message=app_orchestration_config.agent.prompt,
instruction=app_orchestration_config.prompt_template.simple_prompt_template,
input=query
)
# recale llm max tokens
self.recale_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
llm_result: LLMResult = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_orchestration_config.model_config.parameters,
tools=[],
stop=app_orchestration_config.model_config.stop,
stream=False,
user=self.user_id,
callbacks=[],
)
# check llm result
if not llm_result:
raise ValueError("failed to invoke llm")
# get scratchpad
scratchpad = self._extract_response_scratchpad(llm_result.message.content)
agent_scratchpad.append(scratchpad)
# get llm usage
if llm_result.usage:
increse_usage(llm_usage, llm_result.usage)
# publish agent thought if it's first iteration
if iteration_step == 1:
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
self.save_agent_thought(agent_thought=agent_thought,
tool_name=scratchpad.action.action_name if scratchpad.action else '',
tool_input=scratchpad.action.action_input if scratchpad.action else '',
thought=scratchpad.thought,
observation='',
answer=llm_result.message.content,
messages_ids=[],
llm_usage=llm_result.usage)
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
# publish agent thought if it's not empty and there is a action
if scratchpad.thought and scratchpad.action:
# check if final answer
if not scratchpad.action.action_name.lower() == "final answer":
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(
content=scratchpad.thought
),
usage=llm_result.usage,
),
system_fingerprint=''
)
if not scratchpad.action:
# failed to extract action, return final answer directly
final_answer = scratchpad.agent_response or ''
else:
if scratchpad.action.action_name.lower() == "final answer":
# action is final answer, return final answer directly
try:
final_answer = scratchpad.action.action_input if \
isinstance(scratchpad.action.action_input, str) else \
json.dumps(scratchpad.action.action_input)
except json.JSONDecodeError:
final_answer = f'{scratchpad.action.action_input}'
else:
function_call_state = True
# action is tool call, invoke tool
tool_call_name = scratchpad.action.action_name
tool_call_args = scratchpad.action.action_input
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
answer = f"there is not a tool named {tool_call_name}"
self.save_agent_thought(agent_thought=agent_thought,
tool_name='',
tool_input='',
thought=None,
observation=answer,
answer=answer,
messages_ids=[])
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
else:
# invoke tool
error_response = None
try:
tool_response = tool_instance.invoke(
user_id=self.user_id,
tool_paramters=tool_call_args if isinstance(tool_call_args, dict) else json.loads(tool_call_args)
)
# transform tool response to llm friendly response
tool_response = self.transform_tool_invoke_messages(tool_response)
# extract binary data from tool invoke message
binary_files = self.extract_tool_response_binary(tool_response)
# create message file
message_files = self.create_message_files(binary_files)
# publish files
for message_file, save_as in message_files:
if save_as:
self.variables_pool.set_file(tool_name=tool_call_name,
value=message_file.id,
name=save_as)
self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER)
message_file_ids = [message_file.id for message_file, _ in message_files]
except ToolProviderCredentialValidationError as e:
error_response = f"Plese check your tool provider credentials"
except (
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
) as e:
error_response = f"there is not a tool named {tool_call_name}"
except (
ToolParamterValidationError
) as e:
error_response = f"tool paramters validation error: {e}, please check your tool paramters"
except ToolInvokeError as e:
error_response = f"tool invoke error: {e}"
except Exception as e:
error_response = f"unknown error: {e}"
if error_response:
observation = error_response
else:
observation = self._convert_tool_response_to_str(tool_response)
# save scratchpad
scratchpad.observation = observation
scratchpad.agent_response = llm_result.message.content
# save agent thought
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=tool_call_name,
tool_input=tool_call_args,
thought=None,
observation=observation,
answer=llm_result.message.content,
messages_ids=message_file_ids,
)
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
# update prompt tool message
for prompt_tool in prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(
content=final_answer
),
usage=llm_usage['usage']
),
system_fingerprint=''
)
# save agent thought
self.save_agent_thought(
agent_thought=agent_thought,
tool_name='',
tool_input='',
thought=final_answer,
observation='',
answer=final_answer,
messages_ids=[]
)
self.update_db_variables(self.variables_pool, self.db_variables_pool)
# publish end event
self.queue_manager.publish_message_end(LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(
content=final_answer
),
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
system_fingerprint=''
), PublishFrom.APPLICATION_MANAGER)
def _extract_response_scratchpad(self, content: str) -> AgentScratchpadUnit:
"""
extract response from llm response
"""
def extra_quotes() -> AgentScratchpadUnit:
agent_response = content
# try to extract all quotes
pattern = re.compile(r'```(.*?)```', re.DOTALL)
quotes = pattern.findall(content)
# try to extract action from end to start
for i in range(len(quotes) - 1, 0, -1):
"""
1. use json load to parse action
2. use plain text `Action: xxx` to parse action
"""
try:
action = json.loads(quotes[i].replace('```', ''))
action_name = action.get("action")
action_input = action.get("action_input")
agent_thought = agent_response.replace(quotes[i], '')
if action_name and action_input:
return AgentScratchpadUnit(
agent_response=content,
thought=agent_thought,
action_str=quotes[i],
action=AgentScratchpadUnit.Action(
action_name=action_name,
action_input=action_input,
)
)
except:
# try to parse action from plain text
action_name = re.findall(r'action: (.*)', quotes[i], re.IGNORECASE)
action_input = re.findall(r'action input: (.*)', quotes[i], re.IGNORECASE)
# delete action from agent response
agent_thought = agent_response.replace(quotes[i], '')
# remove extra quotes
agent_thought = re.sub(r'```(json)*\n*```', '', agent_thought, flags=re.DOTALL)
# remove Action: xxx from agent thought
agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
if action_name and action_input:
return AgentScratchpadUnit(
agent_response=content,
thought=agent_thought,
action_str=quotes[i],
action=AgentScratchpadUnit.Action(
action_name=action_name[0],
action_input=action_input[0],
)
)
def extra_json():
agent_response = content
# try to extract all json
structures, pair_match_stack = [], []
started_at, end_at = 0, 0
for i in range(len(content)):
if content[i] == '{':
pair_match_stack.append(i)
if len(pair_match_stack) == 1:
started_at = i
elif content[i] == '}':
begin = pair_match_stack.pop()
if not pair_match_stack:
end_at = i + 1
structures.append((content[begin:i+1], (started_at, end_at)))
# handle the last character
if pair_match_stack:
end_at = len(content)
structures.append((content[pair_match_stack[0]:], (started_at, end_at)))
for i in range(len(structures), 0, -1):
try:
json_content, (started_at, end_at) = structures[i - 1]
action = json.loads(json_content)
action_name = action.get("action")
action_input = action.get("action_input")
# delete json content from agent response
agent_thought = agent_response[:started_at] + agent_response[end_at:]
# remove extra quotes like ```(json)*\n\n```
agent_thought = re.sub(r'```(json)*\n*```', '', agent_thought, flags=re.DOTALL)
# remove Action: xxx from agent thought
agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
if action_name and action_input:
return AgentScratchpadUnit(
agent_response=content,
thought=agent_thought,
action_str=json_content,
action=AgentScratchpadUnit.Action(
action_name=action_name,
action_input=action_input,
)
)
except:
pass
agent_scratchpad = extra_quotes()
if agent_scratchpad:
return agent_scratchpad
agent_scratchpad = extra_json()
if agent_scratchpad:
return agent_scratchpad
return AgentScratchpadUnit(
agent_response=content,
thought=content,
action_str='',
action=None
)
def _check_cot_prompt_messages(self, mode: Literal["completion", "chat"],
agent_prompt_message: AgentPromptEntity,
):
"""
check chain of thought prompt messages, a standard prompt message is like:
Respond to the human as helpfully and accurately as possible.
{{instruction}}
You have access to the following tools:
{{tools}}
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid action values: "Final Answer" or {{tool_names}}
Provide only ONE action per $JSON_BLOB, as shown:
```
{
"action": $TOOL_NAME,
"action_input": $ACTION_INPUT
}
```
"""
# parse agent prompt message
first_prompt = agent_prompt_message.first_prompt
next_iteration = agent_prompt_message.next_iteration
if not isinstance(first_prompt, str) or not isinstance(next_iteration, str):
raise ValueError(f"first_prompt or next_iteration is required in CoT agent mode")
# check instruction, tools, and tool_names slots
if not first_prompt.find("{{instruction}}") >= 0:
raise ValueError("{{instruction}} is required in first_prompt")
if not first_prompt.find("{{tools}}") >= 0:
raise ValueError("{{tools}} is required in first_prompt")
if not first_prompt.find("{{tool_names}}") >= 0:
raise ValueError("{{tool_names}} is required in first_prompt")
if mode == "completion":
if not first_prompt.find("{{query}}") >= 0:
raise ValueError("{{query}} is required in first_prompt")
if not first_prompt.find("{{agent_scratchpad}}") >= 0:
raise ValueError("{{agent_scratchpad}} is required in first_prompt")
if mode == "completion":
if not next_iteration.find("{{observation}}") >= 0:
raise ValueError("{{observation}} is required in next_iteration")
def _convert_strachpad_list_to_str(self, agent_scratchpad: List[AgentScratchpadUnit]) -> str:
"""
convert agent scratchpad list to str
"""
next_iteration = self.app_orchestration_config.agent.prompt.next_iteration
result = ''
for scratchpad in agent_scratchpad:
result += scratchpad.thought + next_iteration.replace("{{observation}}", scratchpad.observation or '') + "\n"
return result
def _originze_cot_prompt_messages(self, mode: Literal["completion", "chat"],
prompt_messages: List[PromptMessage],
tools: List[PromptMessageTool],
agent_scratchpad: List[AgentScratchpadUnit],
agent_prompt_message: AgentPromptEntity,
instruction: str,
input: str,
) -> List[PromptMessage]:
"""
originze chain of thought prompt messages, a standard prompt message is like:
Respond to the human as helpfully and accurately as possible.
{{instruction}}
You have access to the following tools:
{{tools}}
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid action values: "Final Answer" or {{tool_names}}
Provide only ONE action per $JSON_BLOB, as shown:
```
{{{{
"action": $TOOL_NAME,
"action_input": $ACTION_INPUT
}}}}
```
"""
self._check_cot_prompt_messages(mode, agent_prompt_message)
# parse agent prompt message
first_prompt = agent_prompt_message.first_prompt
# parse tools
tools_str = self._jsonify_tool_prompt_messages(tools)
# parse tools name
tool_names = '"' + '","'.join([tool.name for tool in tools]) + '"'
# get system message
system_message = first_prompt.replace("{{instruction}}", instruction) \
.replace("{{tools}}", tools_str) \
.replace("{{tool_names}}", tool_names)
# originze prompt messages
if mode == "chat":
# override system message
overrided = False
prompt_messages = prompt_messages.copy()
for prompt_message in prompt_messages:
if isinstance(prompt_message, SystemPromptMessage):
prompt_message.content = system_message
overrided = True
break
if not overrided:
prompt_messages.insert(0, SystemPromptMessage(
content=system_message,
))
# add assistant message
if len(agent_scratchpad) > 0:
prompt_messages.append(AssistantPromptMessage(
content=(agent_scratchpad[-1].thought or '')
))
# add user message
if len(agent_scratchpad) > 0:
prompt_messages.append(UserPromptMessage(
content=(agent_scratchpad[-1].observation or ''),
))
return prompt_messages
elif mode == "completion":
# parse agent scratchpad
agent_scratchpad_str = self._convert_strachpad_list_to_str(agent_scratchpad)
# parse prompt messages
return [UserPromptMessage(
content=first_prompt.replace("{{instruction}}", instruction)
.replace("{{tools}}", tools_str)
.replace("{{tool_names}}", tool_names)
.replace("{{query}}", input)
.replace("{{agent_scratchpad}}", agent_scratchpad_str),
)]
else:
raise ValueError(f"mode {mode} is not supported")
def _jsonify_tool_prompt_messages(self, tools: list[PromptMessageTool]) -> str:
"""
jsonify tool prompt messages
"""
tools = jsonable_encoder(tools)
try:
return json.dumps(tools, ensure_ascii=False)
except json.JSONDecodeError:
return json.dumps(tools)

View File

@ -0,0 +1,333 @@
import json
import logging
from typing import Union, Generator, Dict, Any, Tuple, List
from core.model_runtime.entities.message_entities import PromptMessage, UserPromptMessage,\
SystemPromptMessage, AssistantPromptMessage, ToolPromptMessage, PromptMessageTool
from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult, LLMUsage
from core.model_manager import ModelInstance
from core.application_queue_manager import PublishFrom
from core.tools.errors import ToolInvokeError, ToolNotFoundError, \
ToolNotSupportedError, ToolProviderNotFoundError, ToolParamterValidationError, \
ToolProviderCredentialValidationError
from core.features.assistant_base_runner import BaseAssistantApplicationRunner
from models.model import Conversation, Message, MessageAgentThought
logger = logging.getLogger(__name__)
class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
def run(self, model_instance: ModelInstance,
conversation: Conversation,
message: Message,
query: str,
) -> Generator[LLMResultChunk, None, None]:
"""
Run FunctionCall agent application
"""
app_orchestration_config = self.app_orchestration_config
prompt_template = self.app_orchestration_config.prompt_template.simple_prompt_template or ''
prompt_messages = self.history_prompt_messages
prompt_messages = self.organize_prompt_messages(
prompt_template=prompt_template,
query=query,
prompt_messages=prompt_messages
)
# convert tools into ModelRuntime Tool format
prompt_messages_tools: List[PromptMessageTool] = []
tool_instances = {}
for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []:
try:
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
except Exception:
# api tool may be deleted
continue
# save tool entity
tool_instances[tool.tool_name] = tool_entity
# save prompt tool
prompt_messages_tools.append(prompt_tool)
# convert dataset tools into ModelRuntime Tool format
for dataset_tool in self.dataset_tools:
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
# save prompt tool
prompt_messages_tools.append(prompt_tool)
# save tool entity
tool_instances[dataset_tool.identity.name] = dataset_tool
iteration_step = 1
max_iteration_steps = min(app_orchestration_config.agent.max_iteration, 5) + 1
# continue to run until there is not any tool call
function_call_state = True
agent_thoughts: List[MessageAgentThought] = []
llm_usage = {
'usage': None
}
final_answer = ''
def increase_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage):
if not final_llm_usage_dict['usage']:
final_llm_usage_dict['usage'] = usage
else:
llm_usage = final_llm_usage_dict['usage']
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
while function_call_state and iteration_step <= max_iteration_steps:
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
prompt_messages_tools = []
message_file_ids = []
agent_thought = self.create_agent_thought(
message_id=message.id,
message='',
tool_name='',
tool_input='',
messages_ids=message_file_ids
)
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
# recale llm max tokens
self.recale_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_orchestration_config.model_config.parameters,
tools=prompt_messages_tools,
stop=app_orchestration_config.model_config.stop,
stream=True,
user=self.user_id,
callbacks=[],
)
tool_calls: List[Tuple[str, str, Dict[str, Any]]] = []
# save full response
response = ''
# save tool call names and inputs
tool_call_names = ''
tool_call_inputs = ''
current_llm_usage = None
for chunk in chunks:
# check if there is any tool call
if self.check_tool_calls(chunk):
function_call_state = True
tool_calls.extend(self.extract_tool_calls(chunk))
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps({
tool_call[1]: tool_call[2] for tool_call in tool_calls
}, ensure_ascii=False)
except json.JSONDecodeError as e:
# ensure ascii to avoid encoding error
tool_call_inputs = json.dumps({
tool_call[1]: tool_call[2] for tool_call in tool_calls
})
if chunk.delta.message and chunk.delta.message.content:
if isinstance(chunk.delta.message.content, list):
for content in chunk.delta.message.content:
response += content.data
else:
response += chunk.delta.message.content
if chunk.delta.usage:
increase_usage(llm_usage, chunk.delta.usage)
current_llm_usage = chunk.delta.usage
yield chunk
# save thought
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=tool_call_names,
tool_input=tool_call_inputs,
thought=response,
observation=None,
answer=response,
messages_ids=[],
llm_usage=current_llm_usage
)
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
final_answer += response + '\n'
# call tools
tool_responses = []
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": f"there is not a tool named {tool_call_name}"
}
tool_responses.append(tool_response)
else:
# invoke tool
error_response = None
try:
tool_invoke_message = tool_instance.invoke(
user_id=self.user_id,
tool_paramters=tool_call_args,
)
# transform tool invoke message to get LLM friendly message
tool_invoke_message = self.transform_tool_invoke_messages(tool_invoke_message)
# extract binary data from tool invoke message
binary_files = self.extract_tool_response_binary(tool_invoke_message)
# create message file
message_files = self.create_message_files(binary_files)
# publish files
for message_file, save_as in message_files:
if save_as:
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
# publish message file
self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER)
# add message file ids
message_file_ids.append(message_file.id)
except ToolProviderCredentialValidationError as e:
error_response = f"Plese check your tool provider credentials"
except (
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
) as e:
error_response = f"there is not a tool named {tool_call_name}"
except (
ToolParamterValidationError
) as e:
error_response = f"tool paramters validation error: {e}, please check your tool paramters"
except ToolInvokeError as e:
error_response = f"tool invoke error: {e}"
except Exception as e:
error_response = f"unknown error: {e}"
if error_response:
observation = error_response
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": error_response
}
tool_responses.append(tool_response)
else:
observation = self._convert_tool_response_to_str(tool_invoke_message)
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": observation
}
tool_responses.append(tool_response)
prompt_messages = self.organize_prompt_messages(
prompt_template=prompt_template,
query=None,
tool_call_id=tool_call_id,
tool_call_name=tool_call_name,
tool_response=tool_response['tool_response'],
prompt_messages=prompt_messages,
)
if len(tool_responses) > 0:
# save agent thought
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=None,
tool_input=None,
thought=None,
observation=tool_response['tool_response'],
answer=None,
messages_ids=message_file_ids
)
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
# update prompt messages
if response.strip():
prompt_messages.append(AssistantPromptMessage(
content=response,
))
# update prompt tool
for prompt_tool in prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
self.update_db_variables(self.variables_pool, self.db_variables_pool)
# publish end event
self.queue_manager.publish_message_end(LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(
content=final_answer,
),
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
system_fingerprint=''
), PublishFrom.APPLICATION_MANAGER)
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
"""
Check if there is any tool call in llm result chunk
"""
if llm_result_chunk.delta.message.tool_calls:
return True
return False
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
"""
Extract tool calls from llm result chunk
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result_chunk.delta.message.tool_calls:
tool_calls.append((
prompt_message.id,
prompt_message.function.name,
json.loads(prompt_message.function.arguments),
))
return tool_calls
def organize_prompt_messages(self, prompt_template: str,
query: str = None,
tool_call_id: str = None, tool_call_name: str = None, tool_response: str = None,
prompt_messages: list[PromptMessage] = None
) -> list[PromptMessage]:
"""
Organize prompt messages
"""
if not prompt_messages:
prompt_messages = [
SystemPromptMessage(content=prompt_template),
UserPromptMessage(content=query),
]
else:
if tool_response:
prompt_messages = prompt_messages.copy()
prompt_messages.append(
ToolPromptMessage(
content=tool_response,
tool_call_id=tool_call_id,
name=tool_call_name,
)
)
return prompt_messages

View File

@ -6,8 +6,8 @@ from core.entities.application_entities import DatasetEntity, DatasetRetrieveCon
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.tool.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
from extensions.ext_database import db
from langchain.tools import BaseTool
from models.dataset import Dataset

View File

@ -22,6 +22,7 @@ class FileType(enum.Enum):
class FileTransferMethod(enum.Enum):
REMOTE_URL = 'remote_url'
LOCAL_FILE = 'local_file'
TOOL_FILE = 'tool_file'
@staticmethod
def value_of(value):
@ -30,6 +31,16 @@ class FileTransferMethod(enum.Enum):
return member
raise ValueError(f"No matching enum found for value '{value}'")
class FileBelongsTo(enum.Enum):
USER = 'user'
ASSISTANT = 'assistant'
@staticmethod
def value_of(value):
for member in FileBelongsTo:
if member.value == value:
return member
raise ValueError(f"No matching enum found for value '{value}'")
class FileObj(BaseModel):
id: Optional[str]

View File

@ -1,8 +1,8 @@
from typing import Dict, List, Optional, Union
import requests
from core.file.file_obj import FileObj, FileTransferMethod, FileType
from core.file.upload_file_parser import SUPPORT_EXTENSIONS
from core.file.file_obj import FileObj, FileTransferMethod, FileType, FileBelongsTo
from services.file_service import IMAGE_EXTENSIONS
from extensions.ext_database import db
from models.account import Account
from models.model import AppModelConfig, EndUser, MessageFile, UploadFile
@ -83,7 +83,7 @@ class MessageFileParser:
UploadFile.tenant_id == self.tenant_id,
UploadFile.created_by == user.id,
UploadFile.created_by_role == ('account' if isinstance(user, Account) else 'end_user'),
UploadFile.extension.in_(SUPPORT_EXTENSIONS)
UploadFile.extension.in_(IMAGE_EXTENSIONS)
).first())
# check upload file is belong to tenant and user
@ -128,6 +128,10 @@ class MessageFileParser:
# group by file type and convert file args or message files to FileObj
for file in files:
if isinstance(file, MessageFile):
if file.belongs_to == FileBelongsTo.ASSISTANT.value:
continue
file_obj = self._to_file_obj(file, file_upload_config)
if file_obj.type not in type_file_objs:
continue

View File

@ -0,0 +1,8 @@
tool_file_manager = {
'manager': None
}
class ToolFileParser:
@staticmethod
def get_tool_file_manager() -> 'ToolFileManager':
return tool_file_manager['manager']

View File

@ -9,8 +9,8 @@ from typing import Optional
from extensions.ext_storage import storage
from flask import current_app
SUPPORT_EXTENSIONS = ['jpg', 'jpeg', 'png', 'webp', 'gif', 'svg']
IMAGE_EXTENSIONS = ['jpg', 'jpeg', 'png', 'webp', 'gif', 'svg']
IMAGE_EXTENSIONS.extend([ext.upper() for ext in IMAGE_EXTENSIONS])
class UploadFileParser:
@classmethod
@ -18,7 +18,7 @@ class UploadFileParser:
if not upload_file:
return None
if upload_file.extension not in SUPPORT_EXTENSIONS:
if upload_file.extension not in IMAGE_EXTENSIONS:
return None
if current_app.config['MULTIMODAL_SEND_IMAGE_FORMAT'] == 'url' or force_url:

View File

@ -274,6 +274,8 @@ class IndexingRunner:
tokens = 0
preview_texts = []
total_segments = 0
total_price = 0
currency = 'USD'
for file_detail in file_details:
processing_rule = DatasetProcessRule(
@ -344,11 +346,13 @@ class IndexingRunner:
price_type=PriceType.INPUT,
tokens=tokens
)
total_price = '{:f}'.format(embedding_price_info.total_amount)
currency = embedding_price_info.currency
return {
"total_segments": total_segments,
"tokens": tokens,
"total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
"currency": embedding_price_info.currency if embedding_model_instance else 'USD',
"total_price": total_price,
"currency": currency,
"preview": preview_texts
}
@ -388,6 +392,8 @@ class IndexingRunner:
tokens = 0
preview_texts = []
total_segments = 0
total_price = 0
currency = 'USD'
for notion_info in notion_info_list:
workspace_id = notion_info['workspace_id']
data_source_binding = DataSourceBinding.query.filter(
@ -470,20 +476,22 @@ class IndexingRunner:
"qa_preview": document_qa_list,
"preview": preview_texts
}
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
embedding_price_info = embedding_model_type_instance.get_price(
model=embedding_model_instance.model,
credentials=embedding_model_instance.credentials,
price_type=PriceType.INPUT,
tokens=tokens
)
if embedding_model_instance:
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
embedding_price_info = embedding_model_type_instance.get_price(
model=embedding_model_instance.model,
credentials=embedding_model_instance.credentials,
price_type=PriceType.INPUT,
tokens=tokens
)
total_price = '{:f}'.format(embedding_price_info.total_amount)
currency = embedding_price_info.currency
return {
"total_segments": total_segments,
"tokens": tokens,
"total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
"currency": embedding_price_info.currency if embedding_model_instance else 'USD',
"total_price": total_price,
"currency": currency,
"preview": preview_texts
}
@ -554,7 +562,7 @@ class IndexingRunner:
character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
chunk_size=segmentation["max_tokens"],
chunk_overlap=0,
chunk_overlap=segmentation.get('chunk_overlap', 0),
fixed_separator=separator,
separators=["\n\n", "", ".", " ", ""],
embedding_model_instance=embedding_model_instance
@ -563,7 +571,7 @@ class IndexingRunner:
# Automatic segmentation
character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
chunk_overlap=0,
chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['chunk_overlap'],
separators=["\n\n", "", ".", " ", ""],
embedding_model_instance=embedding_model_instance
)
@ -647,7 +655,9 @@ class IndexingRunner:
else:
page_content = page_content
document_node.page_content = page_content
split_documents.append(document_node)
if document_node.page_content:
split_documents.append(document_node)
all_documents.extend(split_documents)
# processing qa document
if document_form == 'qa_model':

View File

@ -12,6 +12,7 @@ from core.model_runtime.model_providers.__base.large_language_model import Large
from core.model_runtime.model_providers.__base.moderation_model import ModerationModel
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.provider_manager import ProviderManager
@ -144,7 +145,7 @@ class ModelInstance:
user=user
)
def invoke_speech2text(self, file: IO[bytes], user: Optional[str] = None, **params) \
def invoke_speech2text(self, file: IO[bytes], user: Optional[str] = None) \
-> str:
"""
Invoke large language model
@ -161,8 +162,29 @@ class ModelInstance:
model=self.model,
credentials=self.credentials,
file=file,
user=user
)
def invoke_tts(self, content_text: str, streaming: bool, user: Optional[str] = None) \
-> str:
"""
Invoke large language model
:param content_text: text content to be translated
:param user: unique user id
:param streaming: output is streaming
:return: text for given audio file
"""
if not isinstance(self.model_type_instance, TTSModel):
raise Exception(f"Model type instance is not TTSModel")
self.model_type_instance = cast(TTSModel, self.model_type_instance)
return self.model_type_instance.invoke(
model=self.model,
credentials=self.credentials,
content_text=content_text,
user=user,
**params
streaming=streaming
)

View File

@ -13,6 +13,7 @@ This module provides the interface for invoking and authenticating various model
- `Text Embedding Model` - Text Embedding, pre-computed tokens capability
- `Rerank Model` - Segment Rerank capability
- `Speech-to-text Model` - Speech to text capability
- `Text-to-speech Model` - Text to speech capability
- `Moderation` - Moderation capability
- Model provider display

View File

@ -13,6 +13,7 @@
- `Text Embedidng Model` - 文本 Embedding ,预计算 tokens 能力
- `Rerank Model` - 分段 Rerank 能力
- `Speech-to-text Model` - 语音转文本能力
- `Text-to-speech Model` - 文本转语音能力
- `Moderation` - Moderation 能力
- 模型供应商展示

View File

@ -299,9 +299,7 @@ Inherit the `__base.speech2text_model.Speech2TextModel` base class and implement
- Invoke Invocation
```python
def _invoke(self, model: str, credentials: dict,
file: IO[bytes], user: Optional[str] = None) \
-> str:
def _invoke(self, model: str, credentials: dict, file: IO[bytes], user: Optional[str] = None) -> str:
"""
Invoke large language model
@ -331,6 +329,46 @@ Inherit the `__base.speech2text_model.Speech2TextModel` base class and implement
The string after speech-to-text conversion.
### Text2speech
Inherit the `__base.text2speech_model.Text2SpeechModel` base class and implement the following interfaces:
- Invoke Invocation
```python
def _invoke(elf, model: str, credentials: dict, content_text: str, streaming: bool, user: Optional[str] = None):
"""
Invoke large language model
:param model: model name
:param credentials: model credentials
:param content_text: text content to be translated
:param streaming: output is streaming
:param user: unique user id
:return: translated audio file
"""
```
- Parameters
- `model` (string) Model name
- `credentials` (object) Credential information
The parameters of credential information are defined by either the `provider_credential_schema` or `model_credential_schema` in the provider's YAML configuration file. Inputs such as `api_key` are included.
- `content_text` (string) The text content that needs to be converted
- `streaming` (bool) Whether to stream output
- `user` (string) [optional] Unique identifier of the user
This can help the provider monitor and detect abusive behavior.
- Returns
Text converted speech stream。
### Moderation
Inherit the `__base.moderation_model.ModerationModel` base class and implement the following interfaces:

View File

@ -94,6 +94,7 @@ The currently supported model types are as follows:
- `text_embedding` Text Embedding model
- `rerank` Rerank model
- `speech2text` Speech to text
- `tts` Text to speech
- `moderation` Moderation
Continuing with `Anthropic` as an example, since `Anthropic` only supports LLM, we create a `module` named `llm` in `model_providers.anthropic`.

View File

@ -47,6 +47,10 @@
- `max_chunks` (int) Maximum number of chunks (available for model types `text-embedding`, `moderation`)
- `file_upload_limit` (int) Maximum file upload limit, in MB (available for model type `speech2text`)
- `supported_file_extensions` (string) Supported file extension formats, e.g., mp3, mp4 (available for model type `speech2text`)
- `default_voice` (string) default voice, e.g.alloy,echo,fable,onyx,nova,shimmeravailable for model type `tts`
- `word_limit` (int) Single conversion word limit, paragraphwise by defaultavailable for model type `tts`
- `audio_type` (string) Support audio file extension format, e.g.mp3,wavavailable for model type `tts`
- `max_workers` (int) Number of concurrent workers supporting text and audio conversionavailable for model type`tts`
- `max_characters_per_chunk` (int) Maximum characters per chunk (available for model type `moderation`)
- `parameter_rules` (array[[ParameterRule](#ParameterRule)]) [optional] Model invocation parameter rules
- `pricing` ([PriceConfig](#PriceConfig)) [optional] Pricing information
@ -58,6 +62,7 @@
- `text-embedding` Text Embedding model
- `rerank` Rerank model
- `speech2text` Speech to text
- `tts` Text to speech
- `moderation` Moderation
### ConfigurateMethod

View File

@ -23,6 +23,7 @@
- `text_embedding` 文本 Embedding 模型
- `rerank` Rerank 模型
- `speech2text` 语音转文字
- `tts` 文字转语音
- `moderation` 审查
`Xinference`支持`LLM``Text Embedding`和Rerank那么我们开始编写`xinference.yaml`

View File

@ -369,6 +369,46 @@ class XinferenceProvider(Provider):
语音转换后的字符串。
### Text2speech
继承 `__base.text2speech_model.Text2SpeechModel` 基类,实现以下接口:
- Invoke 调用
```python
def _invoke(elf, model: str, credentials: dict, content_text: str, streaming: bool, user: Optional[str] = None):
"""
Invoke large language model
:param model: model name
:param credentials: model credentials
:param content_text: text content to be translated
:param streaming: output is streaming
:param user: unique user id
:return: translated audio file
"""
```
- 参数:
- `model` (string) 模型名称
- `credentials` (object) 凭据信息
凭据信息的参数由供应商 YAML 配置文件的 `provider_credential_schema` 或 `model_credential_schema` 定义,传入如:`api_key` 等。
- `content_text` (string) 需要转换的文本内容
- `streaming` (bool) 是否进行流式输出
- `user` (string) [optional] 用户的唯一标识符
可以帮助供应商监控和检测滥用行为。
- 返回:
文本转换后的语音流。
### Moderation
继承 `__base.moderation_model.ModerationModel` 基类,实现以下接口:

View File

@ -10,6 +10,7 @@
- `text_embedding` 文本 Embedding 模型
- `rerank` Rerank 模型
- `speech2text` 语音转文字
- `tts` 文字转语音
- `moderation` 审查
依旧以 `Anthropic` 为例,`Anthropic` 仅支持 LLM因此在 `model_providers.anthropic` 创建一个 `llm` 为名称的 `module`

View File

@ -48,6 +48,10 @@
- `max_chunks` (int) 最大分块数量 (模型类型 `text-embedding ` `moderation` 可用)
- `file_upload_limit` (int) 文件最大上传限制单位MB。模型类型 `speech2text` 可用)
- `supported_file_extensions` (string) 支持文件扩展格式mp3,mp4模型类型 `speech2text` 可用)
- `default_voice` (string) 缺省音色可选alloy,echo,fable,onyx,nova,shimmer模型类型 `tts` 可用)
- `word_limit` (int) 单次转换字数限制,默认按段落分段(模型类型 `tts` 可用)
- `audio_type` (string) 支持音频文件扩展格式mp3,wav模型类型 `tts` 可用)
- `max_workers` (int) 支持文字音频转换并发任务数(模型类型 `tts` 可用)
- `max_characters_per_chunk` (int) 每块最大字符数 (模型类型 `moderation` 可用)
- `parameter_rules` (array[[ParameterRule](#ParameterRule)]) [optional] 模型调用参数规则
- `pricing` ([PriceConfig](#PriceConfig)) [optional] 价格信息
@ -59,6 +63,7 @@
- `text-embedding` 文本 Embedding 模型
- `rerank` Rerank 模型
- `speech2text` 语音转文字
- `tts` 文字转语音
- `moderation` 审查
### ConfigurateMethod

Some files were not shown because too many files have changed in this diff Show More