Compare commits

...

115 Commits
0.5.0 ... 0.5.3

Author SHA1 Message Date
9f637ead38 bump version to 0.5.3 (#2306) 2024-02-01 18:11:57 +08:00
b521aafd26 chore(web): strong typing (#2339) 2024-02-01 18:07:26 +08:00
a84e15b8cc fix: ignore spark provider credential validate (#2344) 2024-02-01 18:04:05 +08:00
0c330fc020 feat: add xinference llm context size (#2336) 2024-02-01 17:10:45 +08:00
cfbb7bec58 Feat/current time tool zone (#2337) 2024-02-01 17:09:59 +08:00
3b357f51a6 fix: first agent latency (#2334) 2024-02-01 15:30:50 +08:00
09acf215f0 add option to prompt for a validation password when initializing admin user (#2302) 2024-02-01 15:03:56 +08:00
07dd8b94ed fix: check empty tool provider credentials (#2332) 2024-02-01 13:13:28 +08:00
ef308fd121 feat: add sd model parameter (#2331) 2024-02-01 13:12:57 +08:00
fce64d760b fix: empty model features (#2330) 2024-02-01 13:11:11 +08:00
f0c9bb7c91 fix: typo (#2318) 2024-02-01 13:08:31 +08:00
d8672796b0 revert: remove unused session store codes (#2329) 2024-02-01 12:10:05 +08:00
5929e84036 Optimization stable diffusion verify (#2322)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-02-01 12:05:09 +08:00
83063532a0 Fix/api tool (#2317) 2024-02-01 09:10:32 +08:00
07279558a5 Change ZHIPU_MAX_LIMITS to 5. Fix issue 2323 (#2324) 2024-02-01 09:06:32 +08:00
2166473852 Feat/add spark3.5 llm (#2314)
Co-authored-by: lux@njuelectronics.com <lux@njuelectronics.com>
Co-authored-by: crazywoola <427733928@qq.com>
2024-01-31 17:57:17 +08:00
44397e3062 remove unused session store codes (#2313) 2024-01-31 15:30:35 +08:00
883a0a0e6a chore: detect is function calling from model config (#2312) 2024-01-31 14:06:27 +08:00
b5ed81b349 fix: invalid server tool url caused crash (#2311) 2024-01-31 14:04:54 +08:00
625b0afa52 fix: next public edition default value (#2310) 2024-01-31 12:32:13 +08:00
2660fbaa20 Fix/typos (#2308) 2024-01-31 11:58:07 +08:00
9e37702d24 feat: ui improvements for Portuguese (#2304) 2024-01-31 11:25:33 +08:00
bc11c6a7f2 feat: recommended apps list support sort by position (#2303) 2024-01-31 11:00:44 +08:00
10e9766fd3 chore:azure dalle tool support pt-BR text (#2301)
Co-authored-by: lux@njuelectronics.com <lux@njuelectronics.com>
Co-authored-by: crazywoola <427733928@qq.com>
2024-01-30 23:49:19 +08:00
6d24a2cb87 fix: api tool encoding (#2296) 2024-01-30 22:22:58 +08:00
0a4dfaeaf9 Feat: Add Top bar while routing different different pages (#2298) 2024-01-30 20:22:17 +08:00
c0a4fd145c Add custom tools (#2299)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-01-30 19:59:22 +08:00
70f16e1a0b fix: keep original tool credentials (#2288) 2024-01-30 18:41:36 +08:00
cb27571e9f fix: missing prompt (#2294) 2024-01-30 17:00:50 +08:00
0518da5819 remove repositories tool (#2293) 2024-01-30 16:51:36 +08:00
d2797abdb4 Add custom tools (#2292)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-01-30 16:33:49 +08:00
bf3ee660e0 fix: missing files (#2291) 2024-01-30 16:21:40 +08:00
68406b9906 fix: multiple model configuration clear conversation by rerender (#2286) 2024-01-30 16:06:01 +08:00
6f7fd6613a feat: file icon support doc and docx (#2289) 2024-01-30 15:55:07 +08:00
6d5b386394 Feat/blocking function call (#2247) 2024-01-30 15:25:37 +08:00
1ea18a2922 feat: optimize tool name (#2284) 2024-01-30 14:58:59 +08:00
f8f4b961a1 chore: handle app name and options too long (#2283) 2024-01-30 14:53:10 +08:00
57565db531 feat: some unused command-line tasks were removed. (#2281) 2024-01-30 14:33:48 +08:00
d844420c07 bump flask from 2.3 to 3.0 (#2279) 2024-01-30 13:35:13 +08:00
34634bddf1 fix: setting default model to gpt-3.5-turbo-1106 and remove default m… (#2274) 2024-01-30 13:04:17 +08:00
c97b7f6748 Feat/add azure dalle tool (#2276)
Co-authored-by: lux@njuelectronics.com <lux@njuelectronics.com>
Co-authored-by: crazywoola <427733928@qq.com>
2024-01-30 11:38:58 +08:00
76cc19f525 Add custom tools (#2259)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-01-30 11:03:20 +08:00
5baaebb3fd fix: typo of builtin tools (#2275) 2024-01-30 08:09:31 +08:00
9d072920da fix: remove finish_reason condition logic when deltaContent is empty (#2270)
Co-authored-by: wanggang <wanggy01@servyou.com.cn>
2024-01-29 23:24:13 +08:00
965ca36525 use pm2 to guard and monitor the web service in docker file (#2238) 2024-01-29 18:21:15 +08:00
b4988ce20c fix: missing keys language in parser (#2271) 2024-01-29 17:59:59 +08:00
d3d617239f Feat/utm update (#2269)
Co-authored-by: Joel <iamjoel007@gmail.com>
2024-01-29 17:31:45 +08:00
6c3b34a61d chore: update price page (#2272) 2024-01-29 17:26:43 +08:00
d76d1adb59 feat: Nodejs sdk support auto rename conversation api (#2265) 2024-01-29 12:57:39 +08:00
cadc6b171e chore: change expert mode the same line height as automatic (#2263) 2024-01-29 11:10:19 +08:00
fdae2a20ae fix: stop generate api doc error (#2262) 2024-01-29 11:10:07 +08:00
45701a81e9 fix: initial paragraph can not input more than 48 chars (#2258) 2024-01-29 09:58:29 +08:00
409e0c8e1c update qdrant migrate command (#2260)
Co-authored-by: jyong <jyong@dify.ai>
2024-01-28 19:59:06 +08:00
7076d41b29 Bugfix/invitemailmultilangs (#2257)
Co-authored-by: crazywoola <427733928@qq.com>
2024-01-28 19:56:09 +08:00
5a6cb69951 fix: user handling in stop api (#2254) 2024-01-27 19:05:37 +08:00
11a75ee78a fix: remove invalid parameter return_type (#2253) 2024-01-27 14:29:25 +08:00
b9b692d71d fix typo (#2248) 2024-01-27 03:56:23 +08:00
d8f8afcbd0 fix: Resolved the issue of duplicate display of supported file types during text file upload (#2241)
Co-authored-by: hbc <hbc@hbc-iMac.local>
2024-01-26 19:44:49 +08:00
8cb62ef31a Maintenance notice href (#2234)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
2024-01-26 19:14:39 +08:00
bb5d5fc683 Feat/billing enhancement (#2239)
Co-authored-by: takatost <takatost@gmail.com>
2024-01-26 18:26:15 +08:00
2fc0dcc10a feat: team admin can pay billing (#2240) 2024-01-26 18:06:54 +08:00
9fd55157d6 fix: vision config (#2235) 2024-01-26 17:12:16 +08:00
6c384dba71 fix: register ga id error (#2237) 2024-01-26 17:11:52 +08:00
9730297381 chore: move register ga to signin page (#2233) 2024-01-26 15:50:14 +08:00
99e80a8ed0 fix:Bedrock llm issue #2214 (#2215)
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: Chenhe Gu <guchenhe@gmail.com>
2024-01-26 15:34:29 +08:00
26fef2d481 Maintenance notice href (#2228)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
2024-01-26 15:28:33 +08:00
c9e65f4221 Fix/update broken doc links (#2187)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
Co-authored-by: crazywoola <427733928@qq.com>
2024-01-26 15:20:03 +08:00
20bd33fada feat: prompt IDE support change height (#2232) 2024-01-26 15:13:06 +08:00
bd0af2e921 fix: occasional multiple responses displayed in frontend due to unexpected message_id from onData (#2231) 2024-01-26 15:08:37 +08:00
4ab66299d4 version to 0.5.2 (#2230) 2024-01-26 14:47:32 +08:00
42227f93c0 add openai gpt-4-0125-preview (#2226) 2024-01-26 13:36:24 +08:00
89fcf4ea7c Feat: chunk overlap supported (#2209)
Co-authored-by: jyong <jyong@dify.ai>
2024-01-26 13:24:40 +08:00
3322710dac Maintenance notice href (#2227)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-01-26 13:23:06 +08:00
404bf11d8c Update EditCustomCollectionModal button styling for Chinese (#2225) 2024-01-26 12:51:31 +08:00
60a2ecbd17 chore: no custom tool placeholder ui (#2222) 2024-01-26 12:48:26 +08:00
828822243a fix: multiple rows were found correctly (#2219) 2024-01-26 12:47:42 +08:00
2068ae215e fix: tts model tip (#2221) 2024-01-26 12:34:39 +08:00
d4262ecceb fix: remove and create app not reload plan (#2220) 2024-01-26 11:16:50 +08:00
8be7d8a635 Add new OpenAI embedding models (#2217) 2024-01-26 04:48:20 +08:00
c038040e1b Add gmpy2 dependencies packages (#2216) 2024-01-26 03:09:24 +08:00
21450b8a51 feat: openai_api_compatible support config stream_mode_delimiter (#2190)
Co-authored-by: wanggang <wanggy01@servyou.com.cn>
Co-authored-by: Chenhe Gu <guchenhe@gmail.com>
2024-01-26 00:31:59 +08:00
5fc1bd026a Update version to 0.5.1 (#2213) 2024-01-26 00:16:53 +08:00
d60f1a5601 fix:determine multiple result exceptions caused by admin (#2211)
Co-authored-by: chenxin <chenxin@limayao.com>
2024-01-26 00:06:23 +08:00
da83f8403e fix: sometimes app main content not fill the window (#2208) 2024-01-25 18:28:50 +08:00
4ff17af5de fix: model parameter modal input (#2206) 2024-01-25 18:04:22 +08:00
a9d1b4e6d7 feat: create app show agent type tip (#2207) 2024-01-25 18:04:04 +08:00
66612075d2 chore: enchance some use experience (#2204) 2024-01-25 17:05:20 +08:00
b921c55677 Feat/zhipuai function calling (#2199)
Co-authored-by: Joel <iamjoel007@gmail.com>
2024-01-25 16:29:35 +08:00
bdc5e9ceb0 chore: test register ga (#2202) 2024-01-25 15:52:45 +08:00
f2b2effc4b fix: typing delay (#2200) 2024-01-25 14:55:12 +08:00
301e0496ff fix: chatbot support agent (#2201) 2024-01-25 14:53:52 +08:00
98660e1f97 skip installing python3-dev package on base stage in api docker image (#2193) 2024-01-25 14:49:11 +08:00
6cf93379b3 fix: split chunks return empty strings (#2197) 2024-01-25 13:59:18 +08:00
8639abec97 improve api docker file and lock Debian version in base image tag (#2195) 2024-01-25 12:44:15 +08:00
d5361b8d09 feat: multiple model configuration (#2196)
Co-authored-by: Joel <iamjoel007@gmail.com>
2024-01-25 12:36:55 +08:00
6bfdfab6f3 Support JSONL output (#2171) 2024-01-25 12:32:04 +08:00
bec998ab94 chore: remove universal chat code (#2194) 2024-01-25 11:47:35 +08:00
77636945fb fix: utm (#2191) 2024-01-25 11:40:09 +08:00
fd5c45ae10 Add tts document&fix bug (#2156)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: Yeuoly <45712896+Yeuoly@users.noreply.github.com>
2024-01-24 23:04:14 +08:00
ad71386adf Doc/update readme (#2186) 2024-01-24 22:06:37 +08:00
043517717e fix: minimax request timeout (#2185) 2024-01-24 21:53:29 +08:00
76c52300a2 feat: abab6-chat supported (#2184) 2024-01-24 21:07:37 +08:00
dda32c6880 fix: credentials validation of ababa (#2183) 2024-01-24 21:07:26 +08:00
ac4bb5c35f Add tongyi tts&tts function optimization (#2177)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-01-24 20:32:04 +08:00
a96cae4f44 refine: faster rsa implement (#2182) 2024-01-24 20:22:01 +08:00
7cb75cb2e7 feat: add tool labels (#2178) 2024-01-24 20:14:45 +08:00
0940084fd2 chore: utm (#2180) 2024-01-24 20:14:21 +08:00
95ad06c8c3 feat: utm supports. (#2181) 2024-01-24 20:14:02 +08:00
3c13c4f3ee fix: filename cause windows import error (#2176) 2024-01-24 18:24:17 +08:00
2fe938b7da fix: knowledge api doc (#2174) 2024-01-24 17:51:21 +08:00
784da52ea6 fix: credentials validate compatible problem (#2170) 2024-01-24 17:19:25 +08:00
78524a56ed bump alpine from 3.18 to 3.19 in web image (#2126) 2024-01-24 16:24:50 +08:00
6c614f0c1f fix: empty usage (#2168) 2024-01-24 15:34:17 +08:00
d42df4ed04 let citation show on webapp (#2161) 2024-01-24 13:57:11 +08:00
6d94126368 fix: transcript asr params wrong (#2162) 2024-01-24 13:36:04 +08:00
507 changed files with 12076 additions and 5971 deletions

View File

@ -1,57 +1,155 @@
# 贡献
所以你想为 Dify 做贡献 - 这太棒了,我们迫不及待地想看到你的贡献。作为一家人员和资金有限的初创公司,我们有着雄心勃勃的目标,希望设计出最直观的工作流程来构建和管理 LLM 应用程序。社区的任何帮助都是宝贵的。
感谢您对 [Dify](https://dify.ai) 的兴趣,并希望您能够做出贡献!在开始之前,请先阅读[行为准则](https://github.com/langgenius/.github/blob/main/CODE_OF_CONDUCT.md)并查看[现有问题](https://github.com/langgenius/dify/issues)
本文档介绍了如何设置开发环境以构建和测试 [Dify](https://dify.ai)。
考虑到我们的现状,我们需要灵活快速地交付,但我们也希望确保像你这样的贡献者在贡献过程中获得尽可能顺畅的体验。我们为此编写了这份贡献指南,旨在让你熟悉代码库和我们与贡献者的合作方式,以便你能快速进入有趣的部分
### 安装依赖项
这份指南,就像 Dify 本身一样,是一个不断改进的工作。如果有时它落后于实际项目,我们非常感谢你的理解,并欢迎任何反馈以供我们改进。
您需要在计算机上安装和配置以下依赖项才能构建 [Dify](https://dify.ai)
在许可方面,请花一分钟阅读我们简短的[许可证和贡献者协议](./license)。社区还遵守[行为准则](https://github.com/langgenius/.github/blob/main/CODE_OF_CONDUCT.md)
- [Git](http://git-scm.com/)
- [Docker](https://www.docker.com/)
- [Docker Compose](https://docs.docker.com/compose/install/)
- [Node.js v18.x (LTS)](http://nodejs.org)
- [npm](https://www.npmjs.com/) 版本 8.x.x 或 [Yarn](https://yarnpkg.com/)
- [Python](https://www.python.org/) 版本 3.10.x
## 在开始之前
## 本地开发
[查找](https://github.com/langgenius/dify/issues?q=is:issue+is:closed)现有问题,或[创建](https://github.com/langgenius/dify/issues/new/choose)一个新问题。我们将问题分为两类:
要设置一个可工作的开发环境,只需 fork 项目的 git 存储库,并使用适当的软件包管理器安装后端和前端依赖项,然后创建并运行 docker-compose。
### 功能请求:
### Fork存储库
* 如果您要提出新的功能请求,请解释所提议的功能的目标,并尽可能提供详细的上下文。[@perzeusss](https://github.com/perzeuss)制作了一个很好的[功能请求助手](https://udify.app/chat/MK2kVSnw1gakVwMX),可以帮助您起草需求。随时尝试一下。
您需要 fork [Git 仓库](https://github.com/langgenius/dify)
* 如果您想从现有问题中选择一个,请在其下方留下评论表示您的意愿
### 克隆存储库
相关方向的团队成员将参与其中。如果一切顺利,他们将批准您开始编码。在此之前,请不要开始工作,以免我们提出更改导致您的工作付诸东流。
克隆您在 GitHub 上 fork 的仓库
根据所提议的功能所属的领域不同,您可能需要与不同的团队成员交流。以下是我们团队成员目前正在从事的各个领域的概述
| Member | Scope |
| ------------------------------------------------------------ | ---------------------------------------------------- |
| [@yeuoly](https://github.com/Yeuoly) | Architecting Agents |
| [@jyong](https://github.com/JohnJyong) | RAG pipeline design |
| [@GarfieldDai](https://github.com/GarfieldDai) | Building workflow orchestrations |
| [@iamjoel](https://github.com/iamjoel) & [@zxhlyh](https://github.com/zxhlyh) | Making our frontend a breeze to use |
| [@guchenhe](https://github.com/guchenhe) & [@crazywoola](https://github.com/crazywoola) | Developer experience, points of contact for anything |
| [@takatost](https://github.com/takatost) | Overall product direction and architecture |
How we prioritize:
| Feature Type | Priority |
| ------------------------------------------------------------ | --------------- |
| High-Priority Features as being labeled by a team member | High Priority |
| Popular feature requests from our [community feedback board](https://feedback.dify.ai/) | Medium Priority |
| Non-core features and minor enhancements | Low Priority |
| Valuable but not immediate | Future-Feature |
### 其他任何事情例如bug报告、性能优化、拼写错误更正
* 立即开始编码。
How we prioritize:
| Issue Type | Priority |
| ------------------------------------------------------------ | --------------- |
| Bugs in core functions (cannot login, applications not working, security loopholes) | Critical |
| Non-critical bugs, performance boosts | Medium Priority |
| Minor fixes (typos, confusing but working UI) | Low Priority |
## 安装
以下是设置Dify进行开发的步骤
### 1. Fork该仓库
### 2. 克隆仓库
从终端克隆fork的仓库
```
git clone git@github.com:<github_username>/dify.git
```
### 安装后端
### 3. 验证依赖项
要了解如何安装后端应用程序,请参阅[后端 README](api/README.md)。
Dify 依赖以下工具和库:
### 安装前端
- [Docker](https://www.docker.com/)
- [Docker Compose](https://docs.docker.com/compose/install/)
- [Node.js v18.x (LTS)](http://nodejs.org)
- [npm](https://www.npmjs.com/) version 8.x.x or [Yarn](https://yarnpkg.com/)
- [Python](https://www.python.org/) version 3.10.x
要了解如何安装前端应用程序,请参阅[前端 README](web/README.md)。
### 4. 安装
### 在浏览器中访问 Dify
Dify由后端和前端组成。通过`cd api/`导航到后端目录,然后按照[后端README](api/README.md)进行安装。在另一个终端中,通过`cd web/`导航到前端目录,然后按照[前端README](web/README.md)进行安装。
最后,您现在可以访问 [http://localhost:3000](http://localhost:3000) 在本地环境中查看 [Dify](https://dify.ai)
查看[安装常见问题解答](https://docs.dify.ai/getting-started/faq/install-faq)以获取常见问题列表和故障排除步骤
## 创建拉取请求
### 5. 在浏览器中访问Dify
在进行更改后打开一个拉取请求PR。提交拉取请求后Dify 团队/社区的其他人将与您一起审查它
为了验证您的设置,打开浏览器并访问[http://localhost:3000](http://localhost:3000)默认或您自定义的URL和端口。现在您应该看到Dify正在运行
如果遇到问题,比如合并冲突或不知道如何打开拉取请求,请查看 GitHub 的[拉取请求教程](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests),了解如何解决合并冲突和其他问题。一旦您的 PR 被合并,您将自豪地被列为[贡献者表](https://github.com/langgenius/dify/graphs/contributors)中的一员。
## 开发
## 社区渠道
如果您要添加模型提供程序,请参考[此指南](https://github.com/langgenius/dify/blob/main/api/core/model_runtime/README.md)。
遇到困难了吗?有任何问题吗? 加入 [Discord Community Server](https://discord.gg/AhzKf7dNgk),我们将为您提供帮助
如果您要向Agent或Workflow添加工具提供程序请参考[此指南](./api/core/tools/README.md)
### 多语言支持
为了帮助您快速了解您的贡献在哪个部分以下是Dify后端和前端的简要注释大纲
需要参与贡献翻译内容,请参阅[前端多语言翻译 README](web/i18n/README_CN.md)。
### 后端
Dify的后端使用Python编写使用[Flask](https://flask.palletsprojects.com/en/3.0.x/)框架。它使用[SQLAlchemy](https://www.sqlalchemy.org/)作为ORM使用[Celery](https://docs.celeryq.dev/en/stable/getting-started/introduction.html)作为任务队列。授权逻辑通过Flask-login进行处理。
```
[api/]
├── constants // Constant settings used throughout code base.
├── controllers // API route definitions and request handling logic.
├── core // Core application orchestration, model integrations, and tools.
├── docker // Docker & containerization related configurations.
├── events // Event handling and processing
├── extensions // Extensions with 3rd party frameworks/platforms.
├── fields // field definitions for serialization/marshalling.
├── libs // Reusable libraries and helpers.
├── migrations // Scripts for database migration.
├── models // Database models & schema definitions.
├── services // Specifies business logic.
├── storage // Private key storage.
├── tasks // Handling of async tasks and background jobs.
└── tests
```
### 前端
该网站使用基于Typescript的[Next.js](https://nextjs.org/)模板进行引导,并使用[Tailwind CSS](https://tailwindcss.com/)进行样式设计。[React-i18next](https://react.i18next.com/)用于国际化。
```
[web/]
├── app // layouts, pages, and components
│ ├── (commonLayout) // common layout used throughout the app
│ ├── (shareLayout) // layouts specifically shared across token-specific sessions
│ ├── activate // activate page
│ ├── components // shared by pages and layouts
│ ├── install // install page
│ ├── signin // signin page
│ └── styles // globally shared styles
├── assets // Static assets
├── bin // scripts ran at build step
├── config // adjustable settings and options
├── context // shared contexts used by different portions of the app
├── dictionaries // Language-specific translate files
├── docker // container configurations
├── hooks // Reusable hooks
├── i18n // Internationalization configuration
├── models // describes data models & shapes of API responses
├── public // meta assets like favicon
├── service // specifies shapes of API actions
├── test
├── types // descriptions of function params and return values
└── utils // Shared utility functions
```
## 提交你的 PR
最后是时候向我们的仓库提交一个拉取请求PR了。对于重要的功能我们首先将它们合并到 `deploy/dev` 分支进行测试,然后再合并到 `main` 分支。如果你遇到合并冲突或者不知道如何提交拉取请求的问题,请查看 [GitHub 的拉取请求教程](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests)。
就是这样!一旦你的 PR 被合并,你将成为我们 [README](https://github.com/langgenius/dify/blob/main/README.md) 中的贡献者。
## 获取帮助
如果你在贡献过程中遇到困难或者有任何问题,可以通过相关的 GitHub 问题提出你的疑问,或者加入我们的 [Discord](https://discord.gg/AhzKf7dNgk) 进行快速交流。

View File

@ -1,55 +0,0 @@
# コントリビュート
[Dify](https://dify.ai) に興味を持ち、貢献したいと思うようになったことに感謝します!始める前に、
[行動規範](https://github.com/langgenius/.github/blob/main/CODE_OF_CONDUCT.md)を読み、
[既存の問題](https://github.com/langgenius/langgenius-gateway/issues)をチェックしてください。
本ドキュメントは、[Dify](https://dify.ai) をビルドしてテストするための開発環境の構築方法を説明するものです。
### 依存関係のインストール
[Dify](https://dify.ai)をビルドするには、お使いのマシンに以下の依存関係をインストールし、設定する必要があります:
- [Git](http://git-scm.com/)
- [Docker](https://www.docker.com/)
- [Docker Compose](https://docs.docker.com/compose/install/)
- [Node.js v18.x (LTS)](http://nodejs.org)
- [npm](https://www.npmjs.com/) バージョン 8.x.x もしくは [Yarn](https://yarnpkg.com/)
- [Python](https://www.python.org/) バージョン 3.10.x
## ローカル開発
開発環境を構築するには、プロジェクトの git リポジトリをフォークし、適切なパッケージマネージャを使用してバックエンドとフロントエンドの依存関係をインストールし、docker-compose スタックを実行するように作成します。
### リポジトリのフォーク
[リポジトリ](https://github.com/langgenius/dify) をフォークする必要があります。
### リポジトリのクローン
GitHub でフォークしたリポジトリのクローンを作成する:
```
git clone git@github.com:<github_username>/dify.git
```
### バックエンドのインストール
バックエンドアプリケーションのインストール方法については、[Backend README](api/README.md) を参照してください。
### フロントエンドのインストール
フロントエンドアプリケーションのインストール方法については、[Frontend README](web/README.md) を参照してください。
### ブラウザで dify にアクセス
[Dify](https://dify.ai) をローカル環境で見ることができるようになりました [http://localhost:3000](http://localhost:3000)。
## プルリクエストの作成
変更後、プルリクエスト (PR) をオープンしてください。プルリクエストを提出すると、Dify チーム/コミュニティの他の人があなたと一緒にそれをレビューします。
マージコンフリクトなどの問題が発生したり、プルリクエストの開き方がわからなくなったりしませんでしたか? [GitHub's pull request tutorial](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests) で、マージコンフリクトやその他の問題を解決する方法をチェックしてみてください。あなたの PR がマージされると、[コントリビュータチャート](https://github.com/langgenius/langgenius-gateway/graphs/contributors)にコントリビュータとして誇らしげに掲載されます。
## コミュニティチャンネル
お困りですか?何か質問がありますか? [Discord Community サーバ](https://discord.gg/j3XRWSPBf7) に参加してください。私たちがお手伝いします!

View File

@ -21,6 +21,11 @@
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
</a>
</p>
**Dify** is an LLM application development platform that has helped built over **100,000** applications. It integrates BaaS and LLMOps, covering the essential tech stack for building generative AI-native applications, including a built-in RAG engine. Dify allows you to **deploy your own version of Assistants API and GPTs, based on any LLMs.**
@ -55,7 +60,8 @@ You can try out [Dify.AI Cloud](https://dify.ai) now. It provides all the capabi
**3. RAG Engine**: Includes various RAG capabilities based on full-text indexing or vector database embeddings, allowing direct upload of PDFs, TXTs, and other text formats.
**4. Agents**: A Function Calling based Agent framework that allows users to configure what they see is what they get. Dify includes basic plugin capabilities like Google Search.
**4. AI Agent**: Based on Function Calling and ReAct, the Agent inference framework allows users to customize tools, what you see is what you get. Dify provides more than a dozen built-in tool calling capabilities, such as Google Search, DELL·E, Stable Diffusion, WolframAlpha, etc.
**5. Continuous Operations**: Monitor and analyze application logs and performance, continuously improving Prompts, datasets, or models using production data.

View File

@ -21,6 +21,12 @@
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="https://mp.weixin.qq.com/s/TnyfIuH-tPi9o1KNjwVArw" target="_blank">
Dify 发布 AI Agent 能力:基于不同的大型语言模型构建 GPTs 和 Assistants
</a>
</p>
Dify 是一个 LLM 应用开发平台,已经有超过 10 万个应用基于 Dify.AI 构建。它融合了 Backend as Service 和 LLMOps 的理念,涵盖了构建生成式 AI 原生应用所需的核心技术栈,包括一个内置 RAG 引擎。使用 Dify你可以基于任何模型自部署类似 Assistants API 和 GPTs 的能力。
![](./images/demo.png)
@ -53,7 +59,7 @@ Dify 具有模型中立性,相较 LangChain 等硬编码开发库 Dify 是一
**3. RAG引擎**:包括各种基于全文索引或向量数据库嵌入的 RAG 能力,允许直接上传 PDF、TXT 等各种文本格式。
**4. Agent**:基于函数调用的 Agent框架允许用户自定义配置所见即所得。Dify 提供了基本的插件能力,如谷歌搜索
**4. AI Agent**:基于 Function Calling 和 ReAct 的 Agent 推理框架,允许用户自定义工具所见即所得。Dify 提供了十多种内置工具调用能力如谷歌搜索、DELL·E、Stable Diffusion、WolframAlpha 等
**5. 持续运营**:监控和分析应用日志和性能,使用生产数据持续改进 Prompt、数据集或模型。

View File

@ -21,6 +21,12 @@
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
</a>
</p>
**Dify** es una plataforma de desarrollo de aplicaciones para modelos de lenguaje de gran tamaño (LLM) que ya ha visto la creación de más de **100,000** aplicaciones basadas en Dify.AI. Integra los conceptos de Backend como Servicio y LLMOps, cubriendo el conjunto de tecnologías esenciales requerido para construir aplicaciones nativas de inteligencia artificial generativa, incluyendo un motor RAG incorporado. Con Dify, **puedes auto-desplegar capacidades similares a las de Assistants API y GPTs basadas en cualquier LLM.**
![](./images/demo.png)
@ -52,7 +58,7 @@ Dify se caracteriza por su neutralidad de modelo y es un conjunto tecnológico c
**3. Motor RAG**: Incluye varias capacidades RAG basadas en indexación de texto completo o incrustaciones de base de datos vectoriales, permitiendo la carga directa de PDFs, TXTs y otros formatos de texto.
**4. Agentes**: Un marco de Agentes basado en Llamadas de Función que permite a los usuarios configurar lo que ven es lo que obtienen. Dify incluye capacidades básicas de plugins como la Búsqueda de Google.
**4. Agente de IA**: Basado en la llamada de funciones y ReAct, el marco de inferencia del Agente permite a los usuarios personalizar las herramientas, lo que ves es lo que obtienes. Dify proporciona más de una docena de capacidades de llamada de herramientas incorporadas, como Búsqueda de Google, DELL·E, Difusión Estable, WolframAlpha, etc.
**5. Operaciones Continuas**: Monitorear y analizar registros de aplicaciones y rendimiento, mejorando continuamente Prompts, conjuntos de datos o modelos usando datos de producción.

View File

@ -21,6 +21,13 @@
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
</a>
</p>
**Dify** est une plateforme de développement d'applications LLM qui a déjà vu plus de **100,000** applications construites sur Dify.AI. Elle intègre les concepts de Backend as a Service et LLMOps, couvrant la pile technologique de base requise pour construire des applications natives d'IA générative, y compris un moteur RAG intégré. Avec Dify, **vous pouvez auto-déployer des capacités similaires aux API Assistants et GPT basées sur n'importe quels LLM.**
![](./images/demo.png)
@ -52,7 +59,7 @@ Dify présente une neutralité de modèle et est une pile technologique complèt
**3\. Moteur RAG**: Comprend diverses capacités RAG basées sur l'indexation de texte intégral ou les embeddings de base de données vectorielles, permettant le chargement direct de PDF, TXT et autres formats de texte.
**4\. Agents**: Un framework d'agents basé sur l'appel de fonctions qui permet aux utilisateurs de configurer ce qu'ils voient est ce qu'ils obtiennent. Dify comprend des capacités de plug-in de base comme Google Search.
**4\. AI Agent**: Basé sur l'appel de fonction et ReAct, le framework d'inférence de l'Agent permet aux utilisateurs de personnaliser les outils, ce que vous voyez est ce que vous obtenez. Dify propose plus d'une douzaine de capacités d'appel d'outils intégrées, telles que la recherche Google, DELL·E, Diffusion Stable, WolframAlpha, etc.
**5\. Opérations continues**: Surveillez et analysez les journaux et les performances des applications, améliorez en continu les invites, les datasets ou les modèles à l'aide de données de production.

View File

@ -21,6 +21,13 @@
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web"></a>
</p>
<p align="center">
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
</a>
</p>
"Difyは、既にDify.AI上で10万以上のアプリケーションが構築されているLLMアプリケーション開発プラットフォームです。バックエンド・アズ・ア・サービスとLLMOpsの概念を統合し、組み込みのRAGエンジンを含む、生成AIネイティブアプリケーションを構築するためのコアテックスタックをカバーしています。Difyを使用すると、どのLLMに基づいても、Assistants APIやGPTのような機能を自己デプロイすることができます。"
Please note that translating complex technical terms can sometimes result in slight variations in meaning due to differences in language nuances.
@ -54,7 +61,7 @@ Difyはモデルニュートラルであり、LangChainのようなハードコ
**3\. RAGエンジン**: フルテキストインデックスまたはベクトルデータベース埋め込みに基づくさまざまなRAG機能を含み、PDF、TXT、その他のテキストフォーマットの直接アップロードを可能にします。
**4\. エージェント**: ユーザーが sees what they get を設定できる関数呼び出しベースのエージェントフレームワーク。 Difyは、Google検索などの基本的なプラグイン機能が含まれています。
**4. AIエージェント**: 関数呼び出しとReActに基づくAgent推論フレームワークにより、ユーザーはツールをカスタマイズすることができます。Difyは、Google検索、DELL·E、Stable Diffusion、WolframAlphaなど、十数種類の組み込みツール呼び出し機能を提供しています。
**5\. 継続的運用**: アプリケーションログとパフォーマンスを監視および分析し、運用データを使用してプロンプト、データセット、またはモデルを継続的に改善します。

View File

@ -52,7 +52,7 @@ Dify Daq rIn neutrality 'ej Hoch, LangChain tInHar HubwI'. maH Daqbe'law' Qawqar
**3. RAG Engine**: RAG vaD tIqpu' lo'taH indexing qor neH vector database wa' embeddings wIj, PDFs, TXTs, 'ej ghojmoHmoH HIq qorlIj je upload.
**4. jenSuvpu'**: jenbe' SuDqang naQ moDwu' jenSuvpu' porgh cha'logh choHvam. Dify Google Search Hur vItlhutlh plugin choH.
**4. AI Agent**: Function Calling 'ej ReAct Daq Hurmey, Agent inference framework Hoch users customize tools, vaj 'oH QaQ. Dify Hoch loS ghaH 'ej wa'vatlh built-in tool calling capabilities, Google Search, DELL·E, Stable Diffusion, WolframAlpha, 'ej.
**5. QaS muDHa'wI': cha'logh wa' pIq mI' logs 'ej quv yIn, vItlhutlh tIq 'e'wIj lo'taHmoHmoH Prompts, vItlhutlh, Hurmey ghaH production data jatlh.

View File

@ -1,18 +1,20 @@
# packages install stage
FROM python:3.10-slim AS base
# base image
FROM python:3.10-slim-bookworm AS base
LABEL maintainer="takatost@gmail.com"
# install packages
FROM base as packages
RUN apt-get update \
&& apt-get install -y --no-install-recommends gcc g++ python3-dev libc-dev libffi-dev
&& apt-get install -y --no-install-recommends gcc g++ libc-dev libffi-dev libgmp-dev libmpfr-dev libmpc-dev
COPY requirements.txt /requirements.txt
RUN pip install --prefix=/pkg -r requirements.txt
# build stage
FROM python:3.10-slim AS builder
# production stage
FROM base AS production
ENV FLASK_APP app.py
ENV EDITION SELF_HOSTED
@ -30,11 +32,11 @@ ENV TZ UTC
WORKDIR /app/api
RUN apt-get update \
&& apt-get install -y --no-install-recommends bash curl wget vim nodejs ffmpeg \
&& apt-get install -y --no-install-recommends curl wget vim nodejs ffmpeg libgmp-dev libmpfr-dev libmpc-dev \
&& apt-get autoremove \
&& rm -rf /var/lib/apt/lists/*
COPY --from=base /pkg /usr/local
COPY --from=packages /pkg /usr/local
COPY . /app/api/
COPY docker/entrypoint.sh /entrypoint.sh

View File

@ -30,7 +30,7 @@ from flask import Flask, Response, request
from flask_cors import CORS
from libs.passport import PassportService
# DO NOT REMOVE BELOW
from models import account, dataset, model, source, task, tool, web, tools
from models import account, dataset, model, source, task, tool, tools, web
from services.account_service import AccountService
# DO NOT REMOVE ABOVE

View File

@ -1,32 +1,20 @@
import base64
import datetime
import json
import math
import random
import secrets
import string
import threading
import time
import uuid
import click
import qdrant_client
from constants.languages import user_input_form_template
from core.embedding.cached_embedding import CacheEmbedding
from core.index.index import IndexBuilder
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from extensions.ext_database import db
from flask import Flask, current_app
from flask import current_app
from libs.helper import email as email_validate
from libs.password import hash_password, password_pattern, valid_password
from libs.rsa import generate_key_pair
from models.account import InvitationCode, Tenant, TenantAccountJoin
from models.dataset import Dataset, DatasetCollectionBinding, DatasetQuery, Document
from models.model import Account, App, AppModelConfig, Message, MessageAnnotation, InstalledApp
from models.provider import Provider, ProviderModel, ProviderQuotaType, ProviderType
from qdrant_client.http.models import TextIndexParams, TextIndexType, TokenizerType
from tqdm import tqdm
from models.account import Tenant
from models.dataset import Dataset
from models.model import Account
from models.provider import Provider, ProviderModel
from werkzeug.exceptions import NotFound
@ -35,15 +23,22 @@ from werkzeug.exceptions import NotFound
@click.option('--new-password', prompt=True, help='the new password.')
@click.option('--password-confirm', prompt=True, help='the new password confirm.')
def reset_password(email, new_password, password_confirm):
"""
Reset password of owner account
Only available in SELF_HOSTED mode
"""
if str(new_password).strip() != str(password_confirm).strip():
click.echo(click.style('sorry. The two passwords do not match.', fg='red'))
return
account = db.session.query(Account). \
filter(Account.email == email). \
one_or_none()
if not account:
click.echo(click.style('sorry. the account: [{}] not exist .'.format(email), fg='red'))
return
try:
valid_password(new_password)
except:
@ -69,15 +64,22 @@ def reset_password(email, new_password, password_confirm):
@click.option('--new-email', prompt=True, help='the new email.')
@click.option('--email-confirm', prompt=True, help='the new email confirm.')
def reset_email(email, new_email, email_confirm):
"""
Replace account email
:return:
"""
if str(new_email).strip() != str(email_confirm).strip():
click.echo(click.style('Sorry, new email and confirm email do not match.', fg='red'))
return
account = db.session.query(Account). \
filter(Account.email == email). \
one_or_none()
if not account:
click.echo(click.style('sorry. the account: [{}] not exist .'.format(email), fg='red'))
return
try:
email_validate(new_email)
except:
@ -97,6 +99,11 @@ def reset_email(email, new_email, email_confirm):
@click.confirmation_option(prompt=click.style('Are you sure you want to reset encrypt key pair?'
' this operation cannot be rolled back!', fg='red'))
def reset_encrypt_key_pair():
"""
Reset the encrypted key pair of workspace for encrypt LLM credentials.
After the reset, all LLM credentials will become invalid, requiring re-entry.
Only support SELF_HOSTED mode.
"""
if current_app.config['EDITION'] != 'SELF_HOSTED':
click.echo(click.style('Sorry, only support SELF_HOSTED mode.', fg='red'))
return
@ -116,201 +123,11 @@ def reset_encrypt_key_pair():
'the asymmetric key pair of workspace {} has been reset.'.format(tenant.id), fg='green'))
@click.command('generate-invitation-codes', help='Generate invitation codes.')
@click.option('--batch', help='The batch of invitation codes.')
@click.option('--count', prompt=True, help='Invitation codes count.')
def generate_invitation_codes(batch, count):
if not batch:
now = datetime.datetime.now()
batch = now.strftime('%Y%m%d%H%M%S')
if not count or int(count) <= 0:
click.echo(click.style('sorry. the count must be greater than 0.', fg='red'))
return
count = int(count)
click.echo('Start generate {} invitation codes for batch {}.'.format(count, batch))
codes = ''
for i in range(count):
code = generate_invitation_code()
invitation_code = InvitationCode(
code=code,
batch=batch
)
db.session.add(invitation_code)
click.echo(code)
codes += code + "\n"
db.session.commit()
filename = 'storage/invitation-codes-{}.txt'.format(batch)
with open(filename, 'w') as f:
f.write(codes)
click.echo(click.style(
'Congratulations! Generated {} invitation codes for batch {} and saved to the file \'{}\''.format(count, batch,
filename),
fg='green'))
def generate_invitation_code():
code = generate_upper_string()
while db.session.query(InvitationCode).filter(InvitationCode.code == code).count() > 0:
code = generate_upper_string()
return code
def generate_upper_string():
letters_digits = string.ascii_uppercase + string.digits
result = ""
for i in range(8):
result += random.choice(letters_digits)
return result
@click.command('recreate-all-dataset-indexes', help='Recreate all dataset indexes.')
def recreate_all_dataset_indexes():
click.echo(click.style('Start recreate all dataset indexes.', fg='green'))
recreate_count = 0
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for dataset in datasets:
try:
click.echo('Recreating dataset index: {}'.format(dataset.id))
index = IndexBuilder.get_index(dataset, 'high_quality')
if index and index._is_origin():
index.recreate_dataset(dataset)
recreate_count += 1
else:
click.echo('passed.')
except Exception as e:
click.echo(
click.style('Recreate dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
continue
click.echo(click.style('Congratulations! Recreate {} dataset indexes.'.format(recreate_count), fg='green'))
@click.command('clean-unused-dataset-indexes', help='Clean unused dataset indexes.')
def clean_unused_dataset_indexes():
click.echo(click.style('Start clean unused dataset indexes.', fg='green'))
clean_days = int(current_app.config.get('CLEAN_DAY_SETTING'))
start_at = time.perf_counter()
thirty_days_ago = datetime.datetime.now() - datetime.timedelta(days=clean_days)
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.created_at < thirty_days_ago) \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for dataset in datasets:
dataset_query = db.session.query(DatasetQuery).filter(
DatasetQuery.created_at > thirty_days_ago,
DatasetQuery.dataset_id == dataset.id
).all()
if not dataset_query or len(dataset_query) == 0:
documents = db.session.query(Document).filter(
Document.dataset_id == dataset.id,
Document.indexing_status == 'completed',
Document.enabled == True,
Document.archived == False,
Document.updated_at > thirty_days_ago
).all()
if not documents or len(documents) == 0:
try:
# remove index
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
kw_index = IndexBuilder.get_index(dataset, 'economy')
# delete from vector index
if vector_index:
if dataset.collection_binding_id:
vector_index.delete_by_group_id(dataset.id)
else:
if dataset.collection_binding_id:
vector_index.delete_by_group_id(dataset.id)
else:
vector_index.delete()
kw_index.delete()
# update document
update_params = {
Document.enabled: False
}
Document.query.filter_by(dataset_id=dataset.id).update(update_params)
db.session.commit()
click.echo(click.style('Cleaned unused dataset {} from db success!'.format(dataset.id),
fg='green'))
except Exception as e:
click.echo(
click.style('clean dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
end_at = time.perf_counter()
click.echo(click.style('Cleaned unused dataset from db success latency: {}'.format(end_at - start_at), fg='green'))
@click.command('sync-anthropic-hosted-providers', help='Sync anthropic hosted providers.')
def sync_anthropic_hosted_providers():
if not hosted_model_providers.anthropic:
click.echo(click.style('Anthropic hosted provider is not configured.', fg='red'))
return
click.echo(click.style('Start sync anthropic hosted providers.', fg='green'))
count = 0
new_quota_limit = hosted_model_providers.anthropic.quota_limit
page = 1
while True:
try:
providers = db.session.query(Provider).filter(
Provider.provider_name == 'anthropic',
Provider.provider_type == ProviderType.SYSTEM.value,
Provider.quota_type == ProviderQuotaType.TRIAL.value,
Provider.quota_limit != new_quota_limit
).order_by(Provider.created_at.desc()).paginate(page=page, per_page=100)
except NotFound:
break
page += 1
for provider in providers:
try:
click.echo('Syncing tenant anthropic hosted provider: {}, origin: limit {}, used {}'
.format(provider.tenant_id, provider.quota_limit, provider.quota_used))
original_quota_limit = provider.quota_limit
division = math.ceil(new_quota_limit / 1000)
provider.quota_limit = new_quota_limit if original_quota_limit == 1000 \
else original_quota_limit * division
provider.quota_used = division * provider.quota_used
db.session.commit()
count += 1
except Exception as e:
click.echo(click.style(
'Sync tenant anthropic hosted provider error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
continue
click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))
@click.command('create-qdrant-indexes', help='Create qdrant indexes.')
def create_qdrant_indexes():
"""
Migrate other vector database datas to Qdrant.
"""
click.echo(click.style('Start create qdrant indexes.', fg='green'))
create_count = 0
@ -339,26 +156,7 @@ def create_qdrant_indexes():
)
except Exception:
try:
embedding_model = model_manager.get_default_model_instance(
tenant_id=dataset.tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
dataset.embedding_model = embedding_model.model
dataset.embedding_model_provider = embedding_model.provider
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.SYSTEM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
model_provider=model_provider)
continue
embeddings = CacheEmbedding(embedding_model)
from core.index.vector_index.qdrant_vector_index import QdrantConfig, QdrantVectorIndex
@ -393,380 +191,8 @@ def create_qdrant_indexes():
click.echo(click.style('Congratulations! Create {} dataset indexes.'.format(create_count), fg='green'))
@click.command('update-qdrant-indexes', help='Update qdrant indexes.')
def update_qdrant_indexes():
click.echo(click.style('Start Update qdrant indexes.', fg='green'))
create_count = 0
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for dataset in datasets:
if dataset.index_struct_dict:
if dataset.index_struct_dict['type'] != 'qdrant':
try:
click.echo('Update dataset qdrant index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
model_provider=model_provider)
embeddings = CacheEmbedding(embedding_model)
from core.index.vector_index.qdrant_vector_index import QdrantConfig, QdrantVectorIndex
index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if index:
index.update_qdrant_dataset(dataset)
create_count += 1
else:
click.echo('passed.')
except Exception as e:
click.echo(
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
continue
click.echo(click.style('Congratulations! Update {} dataset indexes.'.format(create_count), fg='green'))
@click.command('normalization-collections', help='restore all collections in one')
def normalization_collections():
click.echo(click.style('Start normalization collections.', fg='green'))
normalization_count = []
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=100)
except NotFound:
break
datasets_result = datasets.items
page += 1
for i in range(0, len(datasets_result), 5):
threads = []
sub_datasets = datasets_result[i:i + 5]
for dataset in sub_datasets:
document_format_thread = threading.Thread(target=deal_dataset_vector, kwargs={
'flask_app': current_app._get_current_object(),
'dataset': dataset,
'normalization_count': normalization_count
})
threads.append(document_format_thread)
document_format_thread.start()
for thread in threads:
thread.join()
click.echo(click.style('Congratulations! restore {} dataset indexes.'.format(len(normalization_count)), fg='green'))
@click.command('add-qdrant-full-text-index', help='add qdrant full text index')
def add_qdrant_full_text_index():
click.echo(click.style('Start add full text index.', fg='green'))
binds = db.session.query(DatasetCollectionBinding).all()
if binds and current_app.config['VECTOR_STORE'] == 'qdrant':
qdrant_url = current_app.config['QDRANT_URL']
qdrant_api_key = current_app.config['QDRANT_API_KEY']
client = qdrant_client.QdrantClient(
qdrant_url,
api_key=qdrant_api_key, # For Qdrant Cloud, None for local instance
)
for bind in binds:
try:
text_index_params = TextIndexParams(
type=TextIndexType.TEXT,
tokenizer=TokenizerType.MULTILINGUAL,
min_token_len=2,
max_token_len=20,
lowercase=True
)
client.create_payload_index(bind.collection_name, 'page_content',
field_schema=text_index_params)
except Exception as e:
click.echo(
click.style('Create full text index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
click.echo(
click.style(
'Congratulations! add collection {} full text index successful.'.format(bind.collection_name),
fg='green'))
def deal_dataset_vector(flask_app: Flask, dataset: Dataset, normalization_count: list):
with flask_app.app_context():
try:
click.echo('restore dataset index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
model_provider=model_provider)
embeddings = CacheEmbedding(embedding_model)
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.provider_name == embedding_model.model_provider.provider_name,
DatasetCollectionBinding.model_name == embedding_model.name). \
order_by(DatasetCollectionBinding.created_at). \
first()
if not dataset_collection_binding:
dataset_collection_binding = DatasetCollectionBinding(
provider_name=embedding_model.model_provider.provider_name,
model_name=embedding_model.name,
collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node'
)
db.session.add(dataset_collection_binding)
db.session.commit()
from core.index.vector_index.qdrant_vector_index import QdrantConfig, QdrantVectorIndex
index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if index:
# index.delete_by_group_id(dataset.id)
index.restore_dataset_in_one(dataset, dataset_collection_binding)
else:
click.echo('passed.')
normalization_count.append(1)
except Exception as e:
click.echo(
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
@click.command('update_app_model_configs', help='Migrate data to support paragraph variable.')
@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
def update_app_model_configs(batch_size):
pre_prompt_template = '{{default_input}}'
click.secho("Start migrate old data that the text generator can support paragraph variable.", fg='green')
total_records = db.session.query(AppModelConfig) \
.join(App, App.app_model_config_id == AppModelConfig.id) \
.filter(App.mode == 'completion') \
.count()
if total_records == 0:
click.secho("No data to migrate.", fg='green')
return
num_batches = (total_records + batch_size - 1) // batch_size
with tqdm(total=total_records, desc="Migrating Data") as pbar:
for i in range(num_batches):
offset = i * batch_size
limit = min(batch_size, total_records - offset)
click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')
data_batch = db.session.query(AppModelConfig) \
.join(App, App.app_model_config_id == AppModelConfig.id) \
.filter(App.mode == 'completion') \
.order_by(App.created_at) \
.offset(offset).limit(limit).all()
if not data_batch:
click.secho("No more data to migrate.", fg='green')
break
try:
click.secho(f"Migrating {len(data_batch)} records...", fg='green')
for data in data_batch:
# click.secho(f"Migrating data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
if data.pre_prompt is None:
data.pre_prompt = pre_prompt_template
else:
if pre_prompt_template in data.pre_prompt:
continue
data.pre_prompt += pre_prompt_template
app_data = db.session.query(App) \
.filter(App.id == data.app_id) \
.one()
account_data = db.session.query(Account) \
.join(TenantAccountJoin, Account.id == TenantAccountJoin.account_id) \
.filter(TenantAccountJoin.role == 'owner') \
.filter(TenantAccountJoin.tenant_id == app_data.tenant_id) \
.one_or_none()
if not account_data:
continue
if data.user_input_form is None or data.user_input_form == 'null':
data.user_input_form = json.dumps(user_input_form_template[account_data.interface_language])
else:
raw_json_data = json.loads(data.user_input_form)
raw_json_data.append(user_input_form_template[account_data.interface_language][0])
data.user_input_form = json.dumps(raw_json_data)
# click.secho(f"Updated data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
db.session.commit()
except Exception as e:
click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",
fg='red')
continue
click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')
pbar.update(len(data_batch))
@click.command('migrate_default_input_to_dataset_query_variable')
@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
def migrate_default_input_to_dataset_query_variable(batch_size):
click.secho("Starting...", fg='green')
total_records = db.session.query(AppModelConfig) \
.join(App, App.app_model_config_id == AppModelConfig.id) \
.filter(App.mode == 'completion') \
.filter(AppModelConfig.dataset_query_variable == None) \
.count()
if total_records == 0:
click.secho("No data to migrate.", fg='green')
return
num_batches = (total_records + batch_size - 1) // batch_size
with tqdm(total=total_records, desc="Migrating Data") as pbar:
for i in range(num_batches):
offset = i * batch_size
limit = min(batch_size, total_records - offset)
click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')
data_batch = db.session.query(AppModelConfig) \
.join(App, App.app_model_config_id == AppModelConfig.id) \
.filter(App.mode == 'completion') \
.filter(AppModelConfig.dataset_query_variable == None) \
.order_by(App.created_at) \
.offset(offset).limit(limit).all()
if not data_batch:
click.secho("No more data to migrate.", fg='green')
break
try:
click.secho(f"Migrating {len(data_batch)} records...", fg='green')
for data in data_batch:
config = AppModelConfig.to_dict(data)
tools = config["agent_mode"]["tools"]
dataset_exists = "dataset" in str(tools)
if not dataset_exists:
continue
user_input_form = config.get("user_input_form", [])
for form in user_input_form:
paragraph = form.get('paragraph')
if paragraph \
and paragraph.get('variable') == 'query':
data.dataset_query_variable = 'query'
break
if paragraph \
and paragraph.get('variable') == 'default_input':
data.dataset_query_variable = 'default_input'
break
db.session.commit()
except Exception as e:
click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",
fg='red')
continue
click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')
pbar.update(len(data_batch))
@click.command('add-annotation-question-field-value', help='add annotation question value')
def add_annotation_question_field_value():
click.echo(click.style('Start add annotation question value.', fg='green'))
message_annotations = db.session.query(MessageAnnotation).all()
message_annotation_deal_count = 0
if message_annotations:
for message_annotation in message_annotations:
try:
if message_annotation.message_id and not message_annotation.question:
message = db.session.query(Message).filter(
Message.id == message_annotation.message_id
).first()
message_annotation.question = message.query
db.session.add(message_annotation)
db.session.commit()
message_annotation_deal_count += 1
except Exception as e:
click.echo(
click.style('Add annotation question value error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
click.echo(
click.style(f'Congratulations! add annotation question value successful. Deal count {message_annotation_deal_count}', fg='green'))
def register_commands(app):
app.cli.add_command(reset_password)
app.cli.add_command(reset_email)
app.cli.add_command(generate_invitation_codes)
app.cli.add_command(reset_encrypt_key_pair)
app.cli.add_command(recreate_all_dataset_indexes)
app.cli.add_command(sync_anthropic_hosted_providers)
app.cli.add_command(clean_unused_dataset_indexes)
app.cli.add_command(create_qdrant_indexes)
app.cli.add_command(update_qdrant_indexes)
app.cli.add_command(update_app_model_configs)
app.cli.add_command(normalization_collections)
app.cli.add_command(migrate_default_input_to_dataset_query_variable)
app.cli.add_command(add_qdrant_full_text_index)
app.cli.add_command(add_annotation_question_field_value)

View File

@ -40,17 +40,11 @@ DEFAULTS = {
'HOSTED_OPENAI_QUOTA_LIMIT': 200,
'HOSTED_OPENAI_TRIAL_ENABLED': 'False',
'HOSTED_OPENAI_PAID_ENABLED': 'False',
'HOSTED_OPENAI_PAID_INCREASE_QUOTA': 1,
'HOSTED_OPENAI_PAID_MIN_QUANTITY': 1,
'HOSTED_OPENAI_PAID_MAX_QUANTITY': 1,
'HOSTED_AZURE_OPENAI_ENABLED': 'False',
'HOSTED_AZURE_OPENAI_QUOTA_LIMIT': 200,
'HOSTED_ANTHROPIC_QUOTA_LIMIT': 600000,
'HOSTED_ANTHROPIC_TRIAL_ENABLED': 'False',
'HOSTED_ANTHROPIC_PAID_ENABLED': 'False',
'HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA': 1,
'HOSTED_ANTHROPIC_PAID_MIN_QUANTITY': 1,
'HOSTED_ANTHROPIC_PAID_MAX_QUANTITY': 1,
'HOSTED_MODERATION_ENABLED': 'False',
'HOSTED_MODERATION_PROVIDERS': '',
'CLEAN_DAY_SETTING': 30,
@ -93,7 +87,7 @@ class Config:
# ------------------------
# General Configurations.
# ------------------------
self.CURRENT_VERSION = "0.5.0"
self.CURRENT_VERSION = "0.5.3"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
@ -262,10 +256,6 @@ class Config:
self.HOSTED_OPENAI_TRIAL_ENABLED = get_bool_env('HOSTED_OPENAI_TRIAL_ENABLED')
self.HOSTED_OPENAI_QUOTA_LIMIT = int(get_env('HOSTED_OPENAI_QUOTA_LIMIT'))
self.HOSTED_OPENAI_PAID_ENABLED = get_bool_env('HOSTED_OPENAI_PAID_ENABLED')
self.HOSTED_OPENAI_PAID_STRIPE_PRICE_ID = get_env('HOSTED_OPENAI_PAID_STRIPE_PRICE_ID')
self.HOSTED_OPENAI_PAID_INCREASE_QUOTA = int(get_env('HOSTED_OPENAI_PAID_INCREASE_QUOTA'))
self.HOSTED_OPENAI_PAID_MIN_QUANTITY = int(get_env('HOSTED_OPENAI_PAID_MIN_QUANTITY'))
self.HOSTED_OPENAI_PAID_MAX_QUANTITY = int(get_env('HOSTED_OPENAI_PAID_MAX_QUANTITY'))
self.HOSTED_AZURE_OPENAI_ENABLED = get_bool_env('HOSTED_AZURE_OPENAI_ENABLED')
self.HOSTED_AZURE_OPENAI_API_KEY = get_env('HOSTED_AZURE_OPENAI_API_KEY')
@ -277,10 +267,6 @@ class Config:
self.HOSTED_ANTHROPIC_TRIAL_ENABLED = get_bool_env('HOSTED_ANTHROPIC_TRIAL_ENABLED')
self.HOSTED_ANTHROPIC_QUOTA_LIMIT = int(get_env('HOSTED_ANTHROPIC_QUOTA_LIMIT'))
self.HOSTED_ANTHROPIC_PAID_ENABLED = get_bool_env('HOSTED_ANTHROPIC_PAID_ENABLED')
self.HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID = get_env('HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID')
self.HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA = int(get_env('HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA'))
self.HOSTED_ANTHROPIC_PAID_MIN_QUANTITY = int(get_env('HOSTED_ANTHROPIC_PAID_MIN_QUANTITY'))
self.HOSTED_ANTHROPIC_PAID_MAX_QUANTITY = int(get_env('HOSTED_ANTHROPIC_PAID_MAX_QUANTITY'))
self.HOSTED_MINIMAX_ENABLED = get_bool_env('HOSTED_MINIMAX_ENABLED')
self.HOSTED_SPARK_ENABLED = get_bool_env('HOSTED_SPARK_ENABLED')

View File

@ -1,5 +1,6 @@
import json
from models.model import AppModelConfig
languages = ['en-US', 'zh-Hans', 'pt-BR', 'es-ES', 'fr-FR', 'de-DE', 'ja-JP', 'ko-KR', 'ru-RU', 'it-IT']

View File

@ -11,6 +11,7 @@ from .app import (advanced_prompt_template, annotation, app, audio, completion,
model_config, site, statistic)
# Import auth controllers
from .auth import activate, data_source_oauth, login, oauth
# Import billing controllers
from .billing import billing
# Import datasets controllers
from .datasets import data_source, datasets, datasets_document, datasets_segments, file, hit_testing

View File

@ -1,12 +1,12 @@
import os
from functools import wraps
from constants.languages import supported_language
from controllers.console import api
from controllers.console.wraps import only_edition_cloud
from extensions.ext_database import db
from flask import request
from flask_restful import Resource, reqparse
from constants.languages import supported_language
from models.model import App, InstalledApp, RecommendedApp
from werkzeug.exceptions import NotFound, Unauthorized

View File

@ -61,9 +61,7 @@ class BaseApiKeyListResource(Resource):
resource_id = str(resource_id)
_get_resource(resource_id, current_user.current_tenant_id,
self.resource_model)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
current_key_count = db.session.query(ApiToken). \
@ -102,7 +100,7 @@ class BaseApiKeyResource(Resource):
self.resource_model)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
key = db.session.query(ApiToken). \

View File

@ -21,7 +21,7 @@ class AnnotationReplyActionApi(Resource):
@cloud_edition_billing_resource_check('annotation')
def post(self, app_id, action):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -45,7 +45,7 @@ class AppAnnotationSettingDetailApi(Resource):
@account_initialization_required
def get(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -59,7 +59,7 @@ class AppAnnotationSettingUpdateApi(Resource):
@account_initialization_required
def post(self, app_id, annotation_setting_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -80,7 +80,7 @@ class AnnotationReplyActionStatusApi(Resource):
@cloud_edition_billing_resource_check('annotation')
def get(self, app_id, job_id, action):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
job_id = str(job_id)
@ -108,7 +108,7 @@ class AnnotationListApi(Resource):
@account_initialization_required
def get(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
page = request.args.get('page', default=1, type=int)
@ -133,7 +133,7 @@ class AnnotationExportApi(Resource):
@account_initialization_required
def get(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -152,7 +152,7 @@ class AnnotationCreateApi(Resource):
@marshal_with(annotation_fields)
def post(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -172,7 +172,7 @@ class AnnotationUpdateDeleteApi(Resource):
@marshal_with(annotation_fields)
def post(self, app_id, annotation_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -189,7 +189,7 @@ class AnnotationUpdateDeleteApi(Resource):
@account_initialization_required
def delete(self, app_id, annotation_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -205,7 +205,7 @@ class AnnotationBatchImportApi(Resource):
@cloud_edition_billing_resource_check('annotation')
def post(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
@ -230,7 +230,7 @@ class AnnotationBatchImportStatusApi(Resource):
@cloud_edition_billing_resource_check('annotation')
def get(self, app_id, job_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
job_id = str(job_id)
@ -257,7 +257,7 @@ class AnnotationHitHistoryListApi(Resource):
@account_initialization_required
def get(self, app_id, annotation_id):
# The role of the current user in the table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
page = request.args.get('page', default=1, type=int)

View File

@ -3,8 +3,8 @@ import json
import logging
from datetime import datetime
from constants.model_template import model_templates
from constants.languages import demo_model_templates, languages
from constants.model_template import model_templates
from controllers.console import api
from controllers.console.app.error import AppNotFoundError, ProviderNotInitializeError
from controllers.console.setup import setup_required
@ -26,6 +26,7 @@ from models.tools import ApiToolProvider
from services.app_model_config_service import AppModelConfigService
from werkzeug.exceptions import Forbidden
def _get_app(app_id, tenant_id):
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id).first()
if not app:
@ -88,7 +89,7 @@ class AppListApi(Resource):
args = parser.parse_args()
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
try:
@ -107,20 +108,33 @@ class AppListApi(Resource):
# validate config
model_config_dict = args['model_config']
# get model provider
model_manager = ModelManager()
model_instance = model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.LLM
# Get provider configurations
provider_manager = ProviderManager()
provider_configurations = provider_manager.get_configurations(current_user.current_tenant_id)
# get available models from provider_configurations
available_models = provider_configurations.get_models(
model_type=ModelType.LLM,
only_active=True
)
if not model_instance:
raise ProviderNotInitializeError(
f"No Default System Reasoning Model available. Please configure "
f"in the Settings -> Model Provider.")
else:
model_config_dict["model"]["provider"] = model_instance.provider
model_config_dict["model"]["name"] = model_instance.model
# check if model is available
available_models_names = [f'{model.provider.provider}.{model.model}' for model in available_models]
provider_model = f"{model_config_dict['model']['provider']}.{model_config_dict['model']['name']}"
if provider_model not in available_models_names:
model_manager = ModelManager()
model_instance = model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.LLM
)
if not model_instance:
raise ProviderNotInitializeError(
f"No Default System Reasoning Model available. Please configure "
f"in the Settings -> Model Provider.")
else:
model_config_dict["model"]["provider"] = model_instance.provider
model_config_dict["model"]["name"] = model_instance.model
model_configuration = AppModelConfigService.validate_configuration(
tenant_id=current_user.current_tenant_id,
@ -237,7 +251,7 @@ class AppApi(Resource):
"""Delete app"""
app_id = str(app_id)
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app = _get_app(app_id, current_user.current_tenant_id)

View File

@ -34,8 +34,7 @@ class ChatMessageAudioApi(Resource):
try:
response = AudioService.transcript_asr(
tenant_id=app_model.tenant_id,
file=file,
promot=app_model.app_model_config.pre_prompt
file=file
)
return response

View File

@ -157,7 +157,7 @@ class MessageAnnotationApi(Resource):
@marshal_with(annotation_fields)
def post(self, app_id):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)

View File

@ -1,4 +1,5 @@
# -*- coding:utf-8 -*-
from constants.languages import supported_language
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.setup import setup_required
@ -7,7 +8,6 @@ from extensions.ext_database import db
from fields.app_fields import app_site_fields
from flask_login import current_user
from flask_restful import Resource, marshal_with, reqparse
from constants.languages import supported_language
from libs.login import login_required
from models.model import Site
from werkzeug.exceptions import Forbidden, NotFound
@ -42,7 +42,7 @@ class AppSite(Resource):
app_model = _get_app(app_id)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
site = db.session.query(Site). \
@ -88,7 +88,7 @@ class AppSiteAccessTokenReset(Resource):
app_model = _get_app(app_id)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
site = db.session.query(Site).filter(Site.app_id == app_model.id).first()

View File

@ -2,12 +2,12 @@ import base64
import secrets
from datetime import datetime
from constants.languages import supported_language
from controllers.console import api
from controllers.console.error import AlreadyActivateError
from extensions.ext_database import db
from flask_restful import Resource, reqparse
from libs.helper import email, str_len, timezone
from constants.languages import supported_language
from libs.password import hash_password, valid_password
from models.account import AccountStatus, Tenant
from services.account_service import RegisterService

View File

@ -30,7 +30,7 @@ def get_oauth_providers():
class OAuthDataSource(Resource):
def get(self, provider: str):
# The role of the current user in the table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
OAUTH_DATASOURCE_PROVIDERS = get_oauth_providers()
with current_app.app_context():

View File

@ -20,7 +20,7 @@ class Subscription(Resource):
parser.add_argument('interval', type=str, required=True, location='args', choices=['month', 'year'])
args = parser.parse_args()
BillingService.is_tenant_owner(current_user)
BillingService.is_tenant_owner_or_admin(current_user)
return BillingService.get_subscription(args['plan'],
args['interval'],
@ -35,8 +35,8 @@ class Invoices(Resource):
@account_initialization_required
@only_edition_cloud
def get(self):
BillingService.is_tenant_owner(current_user)
return BillingService.get_invoices(current_user.email)
BillingService.is_tenant_owner_or_admin(current_user)
return BillingService.get_invoices(current_user.email, current_user.current_tenant_id)
api.add_resource(Subscription, '/billing/subscription')

View File

@ -103,7 +103,7 @@ class DatasetListApi(Resource):
args = parser.parse_args()
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
try:
@ -187,7 +187,7 @@ class DatasetApi(Resource):
args = parser.parse_args()
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
dataset = DatasetService.update_dataset(
@ -205,7 +205,7 @@ class DatasetApi(Resource):
dataset_id_str = str(dataset_id)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
if DatasetService.delete_dataset(dataset_id_str, current_user):
@ -391,7 +391,7 @@ class DatasetApiKeyApi(Resource):
@marshal_with(api_key_fields)
def post(self):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
current_key_count = db.session.query(ApiToken). \
@ -425,7 +425,7 @@ class DatasetApiDeleteApi(Resource):
api_key_id = str(api_key_id)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
key = db.session.query(ApiToken). \

View File

@ -204,7 +204,7 @@ class DatasetDocumentListApi(Resource):
raise NotFound('Dataset not found.')
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
try:
@ -256,7 +256,7 @@ class DatasetInitApi(Resource):
@cloud_edition_billing_resource_check('vector_space')
def post(self):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
parser = reqparse.RequestParser()
@ -599,7 +599,7 @@ class DocumentProcessingApi(DocumentResource):
document = self.get_document(dataset_id, document_id)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
if action == "pause":
@ -663,7 +663,7 @@ class DocumentMetadataApi(DocumentResource):
doc_metadata = req_data.get('doc_metadata')
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
if doc_type is None or doc_metadata is None:
@ -710,7 +710,7 @@ class DocumentStatusApi(DocumentResource):
document = self.get_document(dataset_id, document_id)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
indexing_cache_key = 'document_{}_indexing'.format(document.id)

View File

@ -123,7 +123,7 @@ class DatasetDocumentSegmentApi(Resource):
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
try:
@ -219,7 +219,7 @@ class DatasetDocumentSegmentAddApi(Resource):
if not document:
raise NotFound('Document not found.')
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
# check embedding model setting
if dataset.indexing_technique == 'high_quality':
@ -298,7 +298,7 @@ class DatasetDocumentSegmentUpdateApi(Resource):
if not segment:
raise NotFound('Segment not found.')
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
try:
DatasetService.check_dataset_permission(dataset, current_user)
@ -342,7 +342,7 @@ class DatasetDocumentSegmentUpdateApi(Resource):
if not segment:
raise NotFound('Segment not found.')
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
try:
DatasetService.check_dataset_permission(dataset, current_user)

View File

@ -9,7 +9,7 @@ from flask import current_app, request
from flask_login import current_user
from flask_restful import Resource, marshal_with
from libs.login import login_required
from services.file_service import FileService, ALLOWED_EXTENSIONS, UNSTRUSTURED_ALLOWED_EXTENSIONS
from services.file_service import ALLOWED_EXTENSIONS, UNSTRUSTURED_ALLOWED_EXTENSIONS, FileService
PREVIEW_WORDS_LIMIT = 3000

View File

@ -13,6 +13,16 @@ class NotSetupError(BaseHTTPException):
"Please proceed with the initialization and installation process first."
code = 401
class NotInitValidateError(BaseHTTPException):
error_code = 'not_init_validated'
description = "Init validation has not been completed yet. " \
"Please proceed with the init validation process first."
code = 401
class InitValidateFailedError(BaseHTTPException):
error_code = 'init_validate_failed'
description = "Init validation failed. Please check the password and try again."
code = 401
class AccountNotLinkTenantError(BaseHTTPException):
error_code = 'account_not_link_tenant'

View File

@ -32,6 +32,7 @@ class ChatAudioApi(InstalledAppResource):
response = AudioService.transcript_asr(
tenant_id=app_model.tenant_id,
file=file,
end_user=None
)
return response

View File

@ -17,9 +17,9 @@ from core.model_runtime.errors.invoke import InvokeError
from fields.message_fields import message_infinite_scroll_pagination_fields
from flask import Response, stream_with_context
from flask_login import current_user
from flask_restful import marshal_with, reqparse, fields
from flask_restful import fields, marshal_with, reqparse
from flask_restful.inputs import int_range
from libs.helper import uuid_value, TimestampField
from libs.helper import TimestampField, uuid_value
from services.completion_service import CompletionService
from services.errors.app import MoreLikeThisDisabledError
from services.errors.conversation import ConversationNotExistsError

View File

@ -3,12 +3,12 @@ import json
from controllers.console import api
from controllers.console.explore.wraps import InstalledAppResource
from extensions.ext_database import db
from flask import current_app
from flask_restful import fields, marshal_with
from models.model import InstalledApp, AppModelConfig
from models.model import AppModelConfig, InstalledApp
from models.tools import ApiToolProvider
from extensions.ext_database import db
class AppParameterApi(InstalledAppResource):
"""Resource for app variables."""

View File

@ -1,4 +1,5 @@
# -*- coding:utf-8 -*-
from constants.languages import languages
from controllers.console import api
from controllers.console.app.error import AppNotFoundError
from controllers.console.wraps import account_initialization_required
@ -9,7 +10,6 @@ from libs.login import login_required
from models.model import App, InstalledApp, RecommendedApp
from services.account_service import TenantService
from sqlalchemy import and_
from constants.languages import languages
app_fields = {
'id': fields.String,

View File

@ -3,10 +3,12 @@ from flask_restful import Resource
from services.feature_service import FeatureService
from . import api
from .wraps import cloud_utm_record
class FeatureApi(Resource):
@cloud_utm_record
def get(self):
return FeatureService.get_features(current_user.current_tenant_id).dict()

View File

@ -0,0 +1,48 @@
import os
from flask import current_app, session
from flask_restful import Resource, reqparse
from libs.helper import str_len
from models.model import DifySetup
from services.account_service import TenantService
from . import api
from .error import AlreadySetupError, InitValidateFailedError
from .wraps import only_edition_self_hosted
class InitValidateAPI(Resource):
def get(self):
init_status = get_init_validate_status()
if init_status:
return { 'status': 'finished' }
return {'status': 'not_started' }
@only_edition_self_hosted
def post(self):
# is tenant created
tenant_count = TenantService.get_tenant_count()
if tenant_count > 0:
raise AlreadySetupError()
parser = reqparse.RequestParser()
parser.add_argument('password', type=str_len(30),
required=True, location='json')
input_password = parser.parse_args()['password']
if input_password != os.environ.get('INIT_PASSWORD'):
session['is_init_validated'] = False
raise InitValidateFailedError()
session['is_init_validated'] = True
return {'result': 'success'}, 201
def get_init_validate_status():
if current_app.config['EDITION'] == 'SELF_HOSTED':
if os.environ.get('INIT_PASSWORD'):
return session.get('is_init_validated') or DifySetup.query.first()
return True
api.add_resource(InitValidateAPI, '/init')

View File

@ -10,7 +10,8 @@ from models.model import DifySetup
from services.account_service import AccountService, RegisterService, TenantService
from . import api
from .error import AlreadySetupError, NotSetupError
from .error import AlreadySetupError, NotInitValidateError, NotSetupError
from .init_validate import get_init_validate_status
from .wraps import only_edition_self_hosted
@ -24,7 +25,7 @@ class SetupApi(Resource):
'step': 'finished',
'setup_at': setup_status.setup_at.isoformat()
}
return {'step': 'not_start'}
return {'step': 'not_started'}
return {'step': 'finished'}
@only_edition_self_hosted
@ -37,6 +38,9 @@ class SetupApi(Resource):
tenant_count = TenantService.get_tenant_count()
if tenant_count > 0:
raise AlreadySetupError()
if not get_init_validate_status():
raise NotInitValidateError()
parser = reqparse.RequestParser()
parser.add_argument('email', type=email,
@ -71,7 +75,10 @@ def setup_required(view):
@wraps(view)
def decorated(*args, **kwargs):
# check setup
if not get_setup_status():
if not get_init_validate_status():
raise NotInitValidateError()
elif not get_setup_status():
raise NotSetupError()
return view(*args, **kwargs)

View File

@ -2,6 +2,7 @@
from datetime import datetime
import pytz
from constants.languages import supported_language
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.workspace.error import (AccountAlreadyInitedError, CurrentPasswordIncorrectError,
@ -12,7 +13,6 @@ from flask import current_app, request
from flask_login import current_user
from flask_restful import Resource, fields, marshal_with, reqparse
from libs.helper import TimestampField, timezone
from constants.languages import supported_language
from libs.login import login_required
from models.account import AccountIntegrate, InvitationCode
from services.account_service import AccountService

View File

@ -1,13 +1,12 @@
# -*- coding:utf-8 -*-
from flask import current_app
from flask_login import current_user
from flask_restful import Resource, abort, fields, marshal_with, reqparse
import services
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from extensions.ext_database import db
from flask import current_app
from flask_login import current_user
from flask_restful import Resource, abort, fields, marshal_with, reqparse
from libs.helper import TimestampField
from libs.login import login_required
from models.account import Account
@ -52,10 +51,12 @@ class MemberInviteEmailApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('emails', type=str, required=True, location='json', action='append')
parser.add_argument('role', type=str, required=True, default='admin', location='json')
parser.add_argument('language', type=str, required=False, location='json')
args = parser.parse_args()
invitee_emails = args['emails']
invitee_role = args['role']
interface_language = args['language']
if invitee_role not in ['admin', 'normal']:
return {'code': 'invalid-role', 'message': 'Invalid role'}, 400
@ -64,8 +65,7 @@ class MemberInviteEmailApi(Resource):
console_web_url = current_app.config.get("CONSOLE_WEB_URL")
for invitee_email in invitee_emails:
try:
token = RegisterService.invite_new_member(inviter.current_tenant, invitee_email, role=invitee_role,
inviter=inviter)
token = RegisterService.invite_new_member(inviter.current_tenant, invitee_email, interface_language, role=invitee_role, inviter=inviter)
invitation_results.append({
'status': 'success',
'email': invitee_email,

View File

@ -98,7 +98,7 @@ class ModelProviderApi(Resource):
@login_required
@account_initialization_required
def post(self, provider: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
parser = reqparse.RequestParser()
@ -122,7 +122,7 @@ class ModelProviderApi(Resource):
@login_required
@account_initialization_required
def delete(self, provider: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
model_provider_service = ModelProviderService()
@ -159,7 +159,7 @@ class PreferredProviderTypeUpdateApi(Resource):
@login_required
@account_initialization_required
def post(self, provider: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
tenant_id = current_user.current_tenant_id
@ -186,10 +186,11 @@ class ModelProviderPaymentCheckoutUrlApi(Resource):
def get(self, provider: str):
if provider != 'anthropic':
raise ValueError(f'provider name {provider} is invalid')
BillingService.is_tenant_owner_or_admin(current_user)
data = BillingService.get_model_provider_payment_link(provider_name=provider,
tenant_id=current_user.current_tenant_id,
account_id=current_user.id)
account_id=current_user.id,
prefilled_email=current_user.email)
return data

View File

@ -1,18 +1,16 @@
import io
import json
from libs.login import login_required
from flask_login import current_user
from flask_restful import Resource, reqparse
from flask import send_file
from werkzeug.exceptions import Forbidden
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from flask import send_file
from flask_login import current_user
from flask_restful import Resource, reqparse
from libs.login import login_required
from services.tools_manage_service import ToolManageService
from werkzeug.exceptions import Forbidden
import io
class ToolProviderListApi(Resource):
@setup_required
@ -43,7 +41,7 @@ class ToolBuiltinProviderDeleteApi(Resource):
@login_required
@account_initialization_required
def post(self, provider):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
user_id = current_user.id
@ -60,7 +58,7 @@ class ToolBuiltinProviderUpdateApi(Resource):
@login_required
@account_initialization_required
def post(self, provider):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
user_id = current_user.id
@ -90,7 +88,7 @@ class ToolApiProviderAddApi(Resource):
@login_required
@account_initialization_required
def post(self):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
user_id = current_user.id
@ -159,7 +157,7 @@ class ToolApiProviderUpdateApi(Resource):
@login_required
@account_initialization_required
def post(self):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
user_id = current_user.id
@ -171,8 +169,8 @@ class ToolApiProviderUpdateApi(Resource):
parser.add_argument('schema', type=str, required=True, nullable=False, location='json')
parser.add_argument('provider', type=str, required=True, nullable=False, location='json')
parser.add_argument('original_provider', type=str, required=True, nullable=False, location='json')
parser.add_argument('icon', type=str, required=True, nullable=False, location='json')
parser.add_argument('privacy_policy', type=str, required=True, nullable=False, location='json')
parser.add_argument('icon', type=dict, required=True, nullable=False, location='json')
parser.add_argument('privacy_policy', type=str, required=True, nullable=True, location='json')
args = parser.parse_args()
@ -193,7 +191,7 @@ class ToolApiProviderDeleteApi(Resource):
@login_required
@account_initialization_required
def post(self):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
if not current_user.is_admin_or_owner:
raise Forbidden()
user_id = current_user.id

View File

@ -1,10 +1,12 @@
# -*- coding:utf-8 -*-
import json
from functools import wraps
from controllers.console.workspace.error import AccountNotInitializedError
from flask import abort, current_app
from flask import abort, current_app, request
from flask_login import current_user
from services.feature_service import FeatureService
from services.operation_service import OperationService
def account_initialization_required(view):
@ -73,3 +75,20 @@ def cloud_edition_billing_resource_check(resource: str,
return decorated
return interceptor
def cloud_utm_record(view):
@wraps(view)
def decorated(*args, **kwargs):
try:
features = FeatureService.get_features(current_user.current_tenant_id)
if features.billing.enabled:
utm_info = request.cookies.get('utm_info')
if utm_info:
utm_info = json.loads(utm_info)
OperationService.record_utm(current_user.current_tenant_id, utm_info)
except Exception as e:
pass
return view(*args, **kwargs)
return decorated

View File

@ -6,5 +6,4 @@ bp = Blueprint('files', __name__)
api = ExternalApi(bp)
from . import image_preview
from . import tool_files
from . import image_preview, tool_files

View File

@ -1,10 +1,10 @@
from controllers.files import api
from core.tools.tool_file_manager import ToolFileManager
from flask import Response
from flask_restful import Resource, reqparse
from libs.exception import BaseHTTPException
from werkzeug.exceptions import NotFound, Forbidden
from werkzeug.exceptions import Forbidden, NotFound
from core.tools.tool_file_manager import ToolFileManager
class ToolFilePreviewApi(Resource):
def get(self, file_id, extension):

View File

@ -1,15 +1,14 @@
# -*- coding:utf-8 -*-
import json
from controllers.service_api import api
from controllers.service_api.wraps import AppApiResource
from extensions.ext_database import db
from flask import current_app
from flask_restful import fields, marshal_with
from models.model import App, AppModelConfig
from models.tools import ApiToolProvider
import json
from extensions.ext_database import db
class AppParameterApi(AppApiResource):
"""Resource for app variables."""

View File

@ -66,6 +66,7 @@ class TextApi(AppApiResource):
parser = reqparse.RequestParser()
parser.add_argument('text', type=str, required=True, nullable=False, location='json')
parser.add_argument('user', type=str, required=True, nullable=False, location='json')
parser.add_argument('streaming', type=bool, required=False, nullable=False, location='json')
args = parser.parse_args()
try:
@ -73,7 +74,7 @@ class TextApi(AppApiResource):
tenant_id=app_model.tenant_id,
text=args['text'],
end_user=args['user'],
streaming=False
streaming=args['streaming']
)
return response

View File

@ -13,7 +13,7 @@ from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from flask import Response, stream_with_context, request
from flask import Response, stream_with_context
from flask_restful import reqparse
from libs.helper import uuid_value
from services.completion_service import CompletionService
@ -75,18 +75,22 @@ class CompletionApi(AppApiResource):
class CompletionStopApi(AppApiResource):
def post(self, app_model, _, task_id):
def post(self, app_model, end_user, task_id):
if app_model.mode != 'completion':
raise AppUnavailableError()
parser = reqparse.RequestParser()
parser.add_argument('user', required=True, nullable=False, type=str, location='json')
if end_user is None:
parser = reqparse.RequestParser()
parser.add_argument('user', required=True, nullable=False, type=str, location='json')
args = parser.parse_args()
args = parser.parse_args()
user = args.get('user')
if user is not None:
end_user = create_or_update_end_user_for_user_id(app_model, user)
else:
raise ValueError("arg user muse be input.")
end_user_id = args.get('user')
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user_id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
return {'result': 'success'}, 200
@ -146,13 +150,22 @@ class ChatApi(AppApiResource):
class ChatStopApi(AppApiResource):
def post(self, app_model, _, task_id):
def post(self, app_model, end_user, task_id):
if app_model.mode != 'chat':
raise NotChatAppError()
end_user_id = request.get_json().get('user')
if end_user is None:
parser = reqparse.RequestParser()
parser.add_argument('user', required=True, nullable=False, type=str, location='json')
args = parser.parse_args()
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user_id)
user = args.get('user')
if user is not None:
end_user = create_or_update_end_user_for_user_id(app_model, user)
else:
raise ValueError("arg user muse be input.")
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
return {'result': 'success'}, 200

View File

@ -44,6 +44,7 @@ class MessageListApi(AppApiResource):
'position': fields.Integer,
'thought': fields.String,
'tool': fields.String,
'tool_labels': fields.Raw,
'tool_input': fields.String,
'created_at': TimestampField,
'observation': fields.String,

View File

@ -1,4 +1,3 @@
from models.dataset import Dataset
import services.dataset_service
from controllers.service_api import api
from controllers.service_api.dataset.error import DatasetNameDuplicateError
@ -9,6 +8,7 @@ from fields.dataset_fields import dataset_detail_fields
from flask import request
from flask_restful import marshal, reqparse
from libs.login import current_user
from models.dataset import Dataset
from services.dataset_service import DatasetService

View File

@ -1,8 +1,7 @@
from controllers.service_api import api
from flask import current_app
from flask_restful import Resource
from controllers.service_api import api
class IndexApi(Resource):
def get(self):

View File

@ -75,8 +75,8 @@ def validate_dataset_token(view=None):
tenant_account_join = db.session.query(Tenant, TenantAccountJoin) \
.filter(Tenant.id == api_token.tenant_id) \
.filter(TenantAccountJoin.tenant_id == Tenant.id) \
.filter(TenantAccountJoin.role.in_(['owner', 'admin'])) \
.one_or_none()
.filter(TenantAccountJoin.role.in_(['owner'])) \
.one_or_none() # TODO: only owner information is required, so only one is returned.
if tenant_account_join:
tenant, ta = tenant_account_join
account = Account.query.filter_by(id=ta.account_id).first()
@ -86,9 +86,9 @@ def validate_dataset_token(view=None):
current_app.login_manager._update_request_context_with_user(account)
user_logged_in.send(current_app._get_current_object(), user=_get_user())
else:
raise Unauthorized("Tenant owner account is not exist.")
raise Unauthorized("Tenant owner account does not exist.")
else:
raise Unauthorized("Tenant is not exist.")
raise Unauthorized("Tenant does not exist.")
return view(api_token.tenant_id, *args, **kwargs)
return decorated

View File

@ -1,15 +1,14 @@
# -*- coding:utf-8 -*-
import json
from controllers.web import api
from controllers.web.wraps import WebApiResource
from extensions.ext_database import db
from flask import current_app
from flask_restful import fields, marshal_with
from models.model import App, AppModelConfig
from models.tools import ApiToolProvider
from extensions.ext_database import db
import json
class AppParameterApi(WebApiResource):
"""Resource for app variables."""

View File

@ -31,6 +31,7 @@ class AudioApi(WebApiResource):
response = AudioService.transcript_asr(
tenant_id=app_model.tenant_id,
file=file,
end_user=end_user
)
return response

View File

@ -2,8 +2,13 @@ import time
from typing import Generator, List, Optional, Tuple, Union, cast
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
from core.entities.application_entities import AppOrchestrationConfigEntity, ModelConfigEntity, \
PromptTemplateEntity, ExternalDataVariableEntity, ApplicationGenerateEntity, InvokeFrom
from core.entities.application_entities import (ApplicationGenerateEntity, AppOrchestrationConfigEntity,
ExternalDataVariableEntity, InvokeFrom, ModelConfigEntity,
PromptTemplateEntity)
from core.features.annotation_reply import AnnotationReplyFeature
from core.features.external_data_fetch import ExternalDataFetchFeature
from core.features.hosting_moderation import HostingModerationFeature
from core.features.moderation import ModerationFeature
from core.file.file_obj import FileObj
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
@ -11,12 +16,9 @@ from core.model_runtime.entities.message_entities import AssistantPromptMessage,
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.features.hosting_moderation import HostingModerationFeature
from core.features.moderation import ModerationFeature
from core.features.external_data_fetch import ExternalDataFetchFeature
from core.features.annotation_reply import AnnotationReplyFeature
from core.prompt.prompt_transform import PromptTransform
from models.model import App, MessageAnnotation, Message
from models.model import App, Message, MessageAnnotation
class AppRunner:
def get_pre_calculate_rest_tokens(self, app_record: App,

View File

@ -3,19 +3,19 @@ import logging
from typing import cast
from core.app_runner.app_runner import AppRunner
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
from core.entities.application_entities import AgentEntity, ApplicationGenerateEntity, ModelConfigEntity
from core.features.assistant_cot_runner import AssistantCotApplicationRunner
from core.features.assistant_fc_runner import AssistantFunctionCallApplicationRunner
from core.entities.application_entities import ApplicationGenerateEntity, ModelConfigEntity, \
AgentEntity
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.moderation.base import ModerationException
from core.tools.entities.tool_entities import ToolRuntimeVariablePool
from extensions.ext_database import db
from models.model import Conversation, Message, App, MessageChain, MessageAgentThought
from models.model import App, Conversation, Message, MessageAgentThought, MessageChain
from models.tools import ToolConversationVariables
logger = logging.getLogger(__name__)
@ -169,7 +169,7 @@ class AssistantApplicationRunner(AppRunner):
# load tool variables
tool_conversation_variables = self._load_tool_variables(conversation_id=conversation.id,
user_id=application_generate_entity.user_id,
tanent_id=application_generate_entity.tenant_id)
tenant_id=application_generate_entity.tenant_id)
# convert db variables to tool variables
tool_variables = self._convert_db_variables_to_tool_variables(tool_conversation_variables)
@ -194,6 +194,13 @@ class AssistantApplicationRunner(AppRunner):
memory=memory,
)
# change function call strategy based on LLM model
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
if set([ModelFeature.MULTI_TOOL_CALL, ModelFeature.TOOL_CALL]).intersection(model_schema.features or []):
agent_entity.strategy = AgentEntity.Strategy.FUNCTION_CALLING
# start agent runner
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
assistant_cot_runner = AssistantCotApplicationRunner(
@ -209,9 +216,9 @@ class AssistantApplicationRunner(AppRunner):
prompt_messages=prompt_message,
variables_pool=tool_variables,
db_variables=tool_conversation_variables,
model_instance=model_instance
)
invoke_result = assistant_cot_runner.run(
model_instance=model_instance,
conversation=conversation,
message=message,
query=query,
@ -229,10 +236,10 @@ class AssistantApplicationRunner(AppRunner):
memory=memory,
prompt_messages=prompt_message,
variables_pool=tool_variables,
db_variables=tool_conversation_variables
db_variables=tool_conversation_variables,
model_instance=model_instance
)
invoke_result = assistant_fc_runner.run(
model_instance=model_instance,
conversation=conversation,
message=message,
query=query,
@ -246,13 +253,13 @@ class AssistantApplicationRunner(AppRunner):
agent=True
)
def _load_tool_variables(self, conversation_id: str, user_id: str, tanent_id: str) -> ToolConversationVariables:
def _load_tool_variables(self, conversation_id: str, user_id: str, tenant_id: str) -> ToolConversationVariables:
"""
load tool variables from database
"""
tool_variables: ToolConversationVariables = db.session.query(ToolConversationVariables).filter(
ToolConversationVariables.conversation_id == conversation_id,
ToolConversationVariables.tenant_id == tanent_id
ToolConversationVariables.tenant_id == tenant_id
).first()
if tool_variables:
@ -263,7 +270,7 @@ class AssistantApplicationRunner(AppRunner):
tool_variables = ToolConversationVariables(
conversation_id=conversation_id,
user_id=user_id,
tenant_id=tanent_id,
tenant_id=tenant_id,
variables_str='[]',
)
db.session.add(tool_variables)

View File

@ -4,8 +4,7 @@ from typing import Optional
from core.app_runner.app_runner import AppRunner
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.entities.application_entities import (ApplicationGenerateEntity, DatasetEntity,
InvokeFrom, ModelConfigEntity)
from core.entities.application_entities import ApplicationGenerateEntity, DatasetEntity, InvokeFrom, ModelConfigEntity
from core.features.dataset_retrieval import DatasetRetrievalFeature
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance

View File

@ -6,20 +6,21 @@ from typing import Generator, Optional, Union, cast
from core.app_runner.moderation_handler import ModerationRule, OutputModerationHandler
from core.application_queue_manager import ApplicationQueueManager, PublishFrom
from core.entities.application_entities import ApplicationGenerateEntity, InvokeFrom
from core.entities.queue_entities import (AnnotationReplyEvent, QueueAgentThoughtEvent, QueueErrorEvent,
QueueMessageEndEvent, QueueMessageEvent, QueueMessageReplaceEvent,
QueuePingEvent, QueueRetrieverResourcesEvent, QueueStopEvent,
QueueMessageFileEvent, QueueAgentMessageEvent)
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.entities.queue_entities import (AnnotationReplyEvent, QueueAgentMessageEvent, QueueAgentThoughtEvent,
QueueErrorEvent, QueueMessageEndEvent, QueueMessageEvent,
QueueMessageFileEvent, QueueMessageReplaceEvent, QueuePingEvent,
QueueRetrieverResourcesEvent, QueueStopEvent)
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, ImagePromptMessageContent,
PromptMessage, PromptMessageContentType, PromptMessageRole,
TextPromptMessageContent)
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.tools.tool_file_manager import ToolFileManager
from core.model_runtime.utils.encoders import jsonable_encoder
from core.prompt.prompt_template import PromptTemplateParser
from core.tools.tool_file_manager import ToolFileManager
from core.tools.tool_manager import ToolManager
from events.message_event import message_was_created
from extensions.ext_database import db
from models.model import Conversation, Message, MessageAgentThought, MessageFile
@ -281,7 +282,7 @@ class GenerateTaskPipeline:
self._task_state.llm_result.message.content = annotation.content
elif isinstance(event, QueueAgentThoughtEvent):
agent_thought = (
agent_thought: MessageAgentThought = (
db.session.query(MessageAgentThought)
.filter(MessageAgentThought.id == event.agent_thought_id)
.first()
@ -298,6 +299,7 @@ class GenerateTaskPipeline:
'thought': agent_thought.thought,
'observation': agent_thought.observation,
'tool': agent_thought.tool,
'tool_labels': agent_thought.tool_labels,
'tool_input': agent_thought.tool_input,
'created_at': int(self._message.created_at.timestamp()),
'message_files': agent_thought.files

View File

@ -9,11 +9,12 @@ from core.app_runner.basic_app_runner import BasicApplicationRunner
from core.app_runner.generate_task_pipeline import GenerateTaskPipeline
from core.application_queue_manager import ApplicationQueueManager, ConversationTaskStoppedException, PublishFrom
from core.entities.application_entities import (AdvancedChatPromptTemplateEntity,
AdvancedCompletionPromptTemplateEntity, AgentEntity, AgentToolEntity,
ApplicationGenerateEntity, AppOrchestrationConfigEntity, DatasetEntity,
AdvancedCompletionPromptTemplateEntity, AgentEntity, AgentPromptEntity,
AgentToolEntity, ApplicationGenerateEntity,
AppOrchestrationConfigEntity, DatasetEntity,
DatasetRetrieveConfigEntity, ExternalDataVariableEntity,
FileUploadEntity, InvokeFrom, ModelConfigEntity, PromptTemplateEntity,
SensitiveWordAvoidanceEntity, AgentPromptEntity)
SensitiveWordAvoidanceEntity)
from core.entities.model_entities import ModelStatus
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.file.file_obj import FileObj

View File

@ -4,10 +4,10 @@ from enum import Enum
from typing import Any, Generator
from core.entities.application_entities import InvokeFrom
from core.entities.queue_entities import (AnnotationReplyEvent, AppQueueEvent, QueueAgentThoughtEvent, QueueErrorEvent,
QueueMessage, QueueMessageEndEvent, QueueMessageEvent,
QueueMessageReplaceEvent, QueuePingEvent, QueueRetrieverResourcesEvent,
QueueStopEvent, QueueMessageFileEvent, QueueAgentMessageEvent)
from core.entities.queue_entities import (AnnotationReplyEvent, AppQueueEvent, QueueAgentMessageEvent,
QueueAgentThoughtEvent, QueueErrorEvent, QueueMessage, QueueMessageEndEvent,
QueueMessageEvent, QueueMessageFileEvent, QueueMessageReplaceEvent,
QueuePingEvent, QueueRetrieverResourcesEvent, QueueStopEvent)
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
from extensions.ext_redis import redis_client
from models.model import MessageAgentThought, MessageFile

View File

@ -1,9 +1,10 @@
import os
from typing import Any, Dict, Optional, Union
from pydantic import BaseModel
from langchain.callbacks.base import BaseCallbackHandler
from langchain.input import print_text
from pydantic import BaseModel
class DifyAgentCallbackHandler(BaseCallbackHandler, BaseModel):
"""Callback Handler that prints to std out."""

View File

@ -1,5 +1,6 @@
import logging
from typing import List
from langchain.document_loaders.base import BaseLoader
from langchain.schema import Document

View File

@ -8,9 +8,8 @@ from core.model_manager import ModelInstance
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from extensions.ext_database import db
from langchain.embeddings.base import Embeddings
from extensions.ext_redis import redis_client
from langchain.embeddings.base import Embeddings
from libs import helper
from models.dataset import Embedding
from sqlalchemy.exc import IntegrityError

View File

@ -1,12 +1,11 @@
from enum import Enum
from typing import Optional, Any, cast, Literal, Union
from pydantic import BaseModel
from typing import Any, Literal, Optional, Union, cast
from core.entities.provider_configuration import ProviderModelBundle
from core.file.file_obj import FileObj
from core.model_runtime.entities.message_entities import PromptMessageRole
from core.model_runtime.entities.model_entities import AIModelEntity
from pydantic import BaseModel
class ModelConfigEntity(BaseModel):

View File

@ -153,8 +153,16 @@ class ProviderConfiguration(BaseModel):
if provider_record:
try:
original_credentials = json.loads(
provider_record.encrypted_config) if provider_record.encrypted_config else {}
# fix origin data
if provider_record.encrypted_config:
if not provider_record.encrypted_config.startswith("{"):
original_credentials = {
"openai_api_key": provider_record.encrypted_config
}
else:
original_credentials = json.loads(provider_record.encrypted_config)
else:
original_credentials = {}
except JSONDecodeError:
original_credentials = {}

View File

@ -9,6 +9,7 @@ from pydantic import BaseModel
class QuotaUnit(Enum):
TIMES = 'times'
TOKENS = 'tokens'
CREDITS = 'credits'
class SystemConfigurationStatus(Enum):

View File

@ -1,27 +1,26 @@
import logging
from typing import cast, Optional, List
from langchain import WikipediaAPIWrapper
from langchain.callbacks.base import BaseCallbackHandler
from langchain.tools import BaseTool, WikipediaQueryRun, Tool
from pydantic import BaseModel, Field
from typing import List, Optional, cast
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent_executor import PlanningStrategy, AgentConfiguration, AgentExecutor
from core.agent.agent_executor import AgentConfiguration, AgentExecutor, PlanningStrategy
from core.application_queue_manager import ApplicationQueueManager
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
from core.entities.application_entities import ModelConfigEntity, InvokeFrom, \
AgentEntity, AgentToolEntity, AppOrchestrationConfigEntity
from core.entities.application_entities import (AgentEntity, AgentToolEntity, AppOrchestrationConfigEntity, InvokeFrom,
ModelConfigEntity)
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
from core.model_runtime.model_providers import model_provider_factory
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
from extensions.ext_database import db
from langchain import WikipediaAPIWrapper
from langchain.callbacks.base import BaseCallbackHandler
from langchain.tools import BaseTool, Tool, WikipediaQueryRun
from models.dataset import Dataset
from models.model import Message
from pydantic import BaseModel, Field
logger = logging.getLogger(__name__)

View File

@ -1,34 +1,32 @@
import logging
import json
from typing import Optional, List, Tuple, Union
import logging
from datetime import datetime
from mimetypes import guess_extension
from typing import List, Optional, Tuple, Union, cast
from core.app_runner.app_runner import AppRunner
from extensions.ext_database import db
from models.model import MessageAgentThought, Message, MessageFile
from models.tools import ToolConversationVariables
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMessageBinary, \
ToolRuntimeVariablePool, ToolParamter
from core.tools.tool.tool import Tool
from core.tools.tool_manager import ToolManager
from core.tools.tool_file_manager import ToolFileManager
from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
from core.app_runner.app_runner import AppRunner
from core.application_queue_manager import ApplicationQueueManager
from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.entities.application_entities import ModelConfigEntity, AgentEntity, AgentToolEntity
from core.application_queue_manager import ApplicationQueueManager
from core.memory.token_buffer_memory import TokenBufferMemory
from core.entities.application_entities import ModelConfigEntity, \
AgentEntity, AppOrchestrationConfigEntity, ApplicationGenerateEntity, InvokeFrom
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.utils.encoders import jsonable_encoder
from core.entities.application_entities import (AgentEntity, AgentToolEntity, ApplicationGenerateEntity,
AppOrchestrationConfigEntity, InvokeFrom, ModelConfigEntity)
from core.file.message_file_parser import FileTransferMethod
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.utils.encoders import jsonable_encoder
from core.tools.entities.tool_entities import (ToolInvokeMessage, ToolInvokeMessageBinary, ToolParameter,
ToolRuntimeVariablePool)
from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
from core.tools.tool.tool import Tool
from core.tools.tool_file_manager import ToolFileManager
from core.tools.tool_manager import ToolManager
from extensions.ext_database import db
from models.model import Message, MessageAgentThought, MessageFile
from models.tools import ToolConversationVariables
logger = logging.getLogger(__name__)
@ -45,6 +43,7 @@ class BaseAssistantApplicationRunner(AppRunner):
prompt_messages: Optional[List[PromptMessage]] = None,
variables_pool: Optional[ToolRuntimeVariablePool] = None,
db_variables: Optional[ToolConversationVariables] = None,
model_instance: ModelInstance = None
) -> None:
"""
Agent runner
@ -71,6 +70,7 @@ class BaseAssistantApplicationRunner(AppRunner):
self.history_prompt_messages = prompt_messages
self.variables_pool = variables_pool
self.db_variables_pool = db_variables
self.model_instance = model_instance
# init callback
self.agent_callback = DifyAgentCallbackHandler()
@ -95,9 +95,17 @@ class BaseAssistantApplicationRunner(AppRunner):
MessageAgentThought.message_id == self.message.id,
).count()
def _repacket_app_orchestration_config(self, app_orchestration_config: AppOrchestrationConfigEntity) -> AppOrchestrationConfigEntity:
# check if model supports stream tool call
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
self.stream_tool_call = True
else:
self.stream_tool_call = False
def _repack_app_orchestration_config(self, app_orchestration_config: AppOrchestrationConfigEntity) -> AppOrchestrationConfigEntity:
"""
Repacket app orchestration config
Repack app orchestration config
"""
if app_orchestration_config.prompt_template.simple_prompt_template is None:
app_orchestration_config.prompt_template.simple_prompt_template = ''
@ -113,7 +121,7 @@ class BaseAssistantApplicationRunner(AppRunner):
if response.type == ToolInvokeMessage.MessageType.TEXT:
result += response.message
elif response.type == ToolInvokeMessage.MessageType.LINK:
result += f"result link: {response.message}. please dirct user to check it."
result += f"result link: {response.message}. please tell user to check it."
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
response.type == ToolInvokeMessage.MessageType.IMAGE:
result += f"image has been created and sent to user already, you should tell user to check it now."
@ -128,7 +136,7 @@ class BaseAssistantApplicationRunner(AppRunner):
"""
tool_entity = ToolManager.get_tool_runtime(
provider_type=tool.provider_type, provider_name=tool.provider_id, tool_name=tool.tool_name,
tanent_id=self.application_generate_entity.tenant_id,
tenant_id=self.application_generate_entity.tenant_id,
agent_callback=self.agent_callback
)
tool_entity.load_variables(self.variables_pool)
@ -172,20 +180,20 @@ class BaseAssistantApplicationRunner(AppRunner):
for parameter in parameters:
parameter_type = 'string'
enum = []
if parameter.type == ToolParamter.ToolParameterType.STRING:
if parameter.type == ToolParameter.ToolParameterType.STRING:
parameter_type = 'string'
elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
parameter_type = 'boolean'
elif parameter.type == ToolParamter.ToolParameterType.NUMBER:
elif parameter.type == ToolParameter.ToolParameterType.NUMBER:
parameter_type = 'number'
elif parameter.type == ToolParamter.ToolParameterType.SELECT:
elif parameter.type == ToolParameter.ToolParameterType.SELECT:
for option in parameter.options:
enum.append(option.value)
parameter_type = 'string'
else:
raise ValueError(f"parameter type {parameter.type} is not supported")
if parameter.form == ToolParamter.ToolParameterForm.FORM:
if parameter.form == ToolParameter.ToolParameterForm.FORM:
# get tool parameter from form
tool_parameter_config = tool.tool_parameters.get(parameter.name)
if not tool_parameter_config:
@ -194,7 +202,7 @@ class BaseAssistantApplicationRunner(AppRunner):
if not tool_parameter_config and parameter.required:
raise ValueError(f"tool parameter {parameter.name} not found in tool config")
if parameter.type == ToolParamter.ToolParameterType.SELECT:
if parameter.type == ToolParameter.ToolParameterType.SELECT:
# check if tool_parameter_config in options
options = list(map(lambda x: x.value, parameter.options))
if tool_parameter_config not in options:
@ -202,7 +210,7 @@ class BaseAssistantApplicationRunner(AppRunner):
# convert tool parameter config to correct type
try:
if parameter.type == ToolParamter.ToolParameterType.NUMBER:
if parameter.type == ToolParameter.ToolParameterType.NUMBER:
# check if tool parameter is integer
if isinstance(tool_parameter_config, int):
tool_parameter_config = tool_parameter_config
@ -213,11 +221,11 @@ class BaseAssistantApplicationRunner(AppRunner):
tool_parameter_config = float(tool_parameter_config)
else:
tool_parameter_config = int(tool_parameter_config)
elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
tool_parameter_config = bool(tool_parameter_config)
elif parameter.type not in [ToolParamter.ToolParameterType.SELECT, ToolParamter.ToolParameterType.STRING]:
elif parameter.type not in [ToolParameter.ToolParameterType.SELECT, ToolParameter.ToolParameterType.STRING]:
tool_parameter_config = str(tool_parameter_config)
elif parameter.type == ToolParamter.ToolParameterType:
elif parameter.type == ToolParameter.ToolParameterType:
tool_parameter_config = str(tool_parameter_config)
except Exception as e:
raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} is not correct type")
@ -225,7 +233,7 @@ class BaseAssistantApplicationRunner(AppRunner):
# save tool parameter to tool entity memory
runtime_parameters[parameter.name] = tool_parameter_config
elif parameter.form == ToolParamter.ToolParameterForm.LLM:
elif parameter.form == ToolParameter.ToolParameterForm.LLM:
message_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
@ -279,20 +287,20 @@ class BaseAssistantApplicationRunner(AppRunner):
for parameter in tool_runtime_parameters:
parameter_type = 'string'
enum = []
if parameter.type == ToolParamter.ToolParameterType.STRING:
if parameter.type == ToolParameter.ToolParameterType.STRING:
parameter_type = 'string'
elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
parameter_type = 'boolean'
elif parameter.type == ToolParamter.ToolParameterType.NUMBER:
elif parameter.type == ToolParameter.ToolParameterType.NUMBER:
parameter_type = 'number'
elif parameter.type == ToolParamter.ToolParameterType.SELECT:
elif parameter.type == ToolParameter.ToolParameterType.SELECT:
for option in parameter.options:
enum.append(option.value)
parameter_type = 'string'
else:
raise ValueError(f"parameter type {parameter.type} is not supported")
if parameter.form == ToolParamter.ToolParameterForm.LLM:
if parameter.form == ToolParameter.ToolParameterForm.LLM:
prompt_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
@ -396,6 +404,7 @@ class BaseAssistantApplicationRunner(AppRunner):
message_chain_id=None,
thought='',
tool=tool_name,
tool_labels_str='{}',
tool_input=tool_input,
message=message,
message_token=0,
@ -469,6 +478,21 @@ class BaseAssistantApplicationRunner(AppRunner):
agent_thought.tokens = llm_usage.total_tokens
agent_thought.total_price = llm_usage.total_price
# check if tool labels is not empty
labels = agent_thought.tool_labels or {}
tools = agent_thought.tool.split(';') if agent_thought.tool else []
for tool in tools:
if not tool:
continue
if tool not in labels:
tool_label = ToolManager.get_tool_label(tool)
if tool_label:
labels[tool] = tool_label.to_dict()
else:
labels[tool] = {'en_US': tool, 'zh_Hans': tool}
agent_thought.tool_labels_str = json.dumps(labels)
db.session.commit()
def get_history_prompt_messages(self) -> List[PromptMessage]:

View File

@ -1,27 +1,23 @@
import json
import logging
import re
from typing import Literal, Union, Generator, Dict, List
from typing import Dict, Generator, List, Literal, Union
from core.entities.application_entities import AgentPromptEntity, AgentScratchpadUnit
from core.application_queue_manager import PublishFrom
from core.model_runtime.utils.encoders import jsonable_encoder
from core.model_runtime.entities.message_entities import PromptMessageTool, PromptMessage, \
UserPromptMessage, SystemPromptMessage, AssistantPromptMessage
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage, LLMResultChunk, LLMResultChunkDelta
from core.model_manager import ModelInstance
from core.tools.errors import ToolInvokeError, ToolNotFoundError, \
ToolNotSupportedError, ToolProviderNotFoundError, ToolParamterValidationError, \
ToolProviderCredentialValidationError
from core.entities.application_entities import AgentPromptEntity, AgentScratchpadUnit
from core.features.assistant_base_runner import BaseAssistantApplicationRunner
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageTool,
SystemPromptMessage, UserPromptMessage)
from core.model_runtime.utils.encoders import jsonable_encoder
from core.tools.errors import (ToolInvokeError, ToolNotFoundError, ToolNotSupportedError, ToolParameterValidationError,
ToolProviderCredentialValidationError, ToolProviderNotFoundError)
from models.model import Conversation, Message
class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
def run(self, model_instance: ModelInstance,
conversation: Conversation,
def run(self, conversation: Conversation,
message: Message,
query: str,
) -> Union[Generator, LLMResult]:
@ -29,7 +25,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
Run Cot agent application
"""
app_orchestration_config = self.app_orchestration_config
self._repacket_app_orchestration_config(app_orchestration_config)
self._repack_app_orchestration_config(app_orchestration_config)
agent_scratchpad: List[AgentScratchpadUnit] = []
@ -72,7 +68,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
}
final_answer = ''
def increse_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage):
def increase_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage):
if not final_llm_usage_dict['usage']:
final_llm_usage_dict['usage'] = usage
else:
@ -82,6 +78,8 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
# continue to run until there is not any tool call
function_call_state = False
@ -104,7 +102,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
# update prompt messages
prompt_messages = self._originze_cot_prompt_messages(
prompt_messages = self._organize_cot_prompt_messages(
mode=app_orchestration_config.model_config.mode,
prompt_messages=prompt_messages,
tools=prompt_messages_tools,
@ -137,7 +135,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
# get llm usage
if llm_result.usage:
increse_usage(llm_usage, llm_result.usage)
increase_usage(llm_usage, llm_result.usage)
# publish agent thought if it's first iteration
if iteration_step == 1:
@ -207,7 +205,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
try:
tool_response = tool_instance.invoke(
user_id=self.user_id,
tool_paramters=tool_call_args if isinstance(tool_call_args, dict) else json.loads(tool_call_args)
tool_parameters=tool_call_args if isinstance(tool_call_args, dict) else json.loads(tool_call_args)
)
# transform tool response to llm friendly response
tool_response = self.transform_tool_invoke_messages(tool_response)
@ -225,15 +223,15 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
message_file_ids = [message_file.id for message_file, _ in message_files]
except ToolProviderCredentialValidationError as e:
error_response = f"Plese check your tool provider credentials"
error_response = f"Please check your tool provider credentials"
except (
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
) as e:
error_response = f"there is not a tool named {tool_call_name}"
except (
ToolParamterValidationError
ToolParameterValidationError
) as e:
error_response = f"tool paramters validation error: {e}, please check your tool paramters"
error_response = f"tool parameters validation error: {e}, please check your tool parameters"
except ToolInvokeError as e:
error_response = f"tool invoke error: {e}"
except Exception as e:
@ -298,7 +296,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
message=AssistantPromptMessage(
content=final_answer
),
usage=llm_usage['usage'],
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
system_fingerprint=''
), PublishFrom.APPLICATION_MANAGER)
@ -390,7 +388,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
# remove Action: xxx from agent thought
agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
if action_name and action_input:
if action_name and action_input is not None:
return AgentScratchpadUnit(
agent_response=content,
thought=agent_thought,
@ -468,7 +466,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
if not next_iteration.find("{{observation}}") >= 0:
raise ValueError("{{observation}} is required in next_iteration")
def _convert_strachpad_list_to_str(self, agent_scratchpad: List[AgentScratchpadUnit]) -> str:
def _convert_scratchpad_list_to_str(self, agent_scratchpad: List[AgentScratchpadUnit]) -> str:
"""
convert agent scratchpad list to str
"""
@ -480,7 +478,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
return result
def _originze_cot_prompt_messages(self, mode: Literal["completion", "chat"],
def _organize_cot_prompt_messages(self, mode: Literal["completion", "chat"],
prompt_messages: List[PromptMessage],
tools: List[PromptMessageTool],
agent_scratchpad: List[AgentScratchpadUnit],
@ -489,7 +487,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
input: str,
) -> List[PromptMessage]:
"""
originze chain of thought prompt messages, a standard prompt message is like:
organize chain of thought prompt messages, a standard prompt message is like:
Respond to the human as helpfully and accurately as possible.
{{instruction}}
@ -527,7 +525,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
.replace("{{tools}}", tools_str) \
.replace("{{tool_names}}", tool_names)
# originze prompt messages
# organize prompt messages
if mode == "chat":
# override system message
overrided = False
@ -558,7 +556,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
return prompt_messages
elif mode == "completion":
# parse agent scratchpad
agent_scratchpad_str = self._convert_strachpad_list_to_str(agent_scratchpad)
agent_scratchpad_str = self._convert_scratchpad_list_to_str(agent_scratchpad)
# parse prompt messages
return [UserPromptMessage(
content=first_prompt.replace("{{instruction}}", instruction)

View File

@ -1,27 +1,21 @@
import json
import logging
from typing import Any, Dict, Generator, List, Tuple, Union
from typing import Union, Generator, Dict, Any, Tuple, List
from core.model_runtime.entities.message_entities import PromptMessage, UserPromptMessage,\
SystemPromptMessage, AssistantPromptMessage, ToolPromptMessage, PromptMessageTool
from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult, LLMUsage
from core.model_manager import ModelInstance
from core.application_queue_manager import PublishFrom
from core.tools.errors import ToolInvokeError, ToolNotFoundError, \
ToolNotSupportedError, ToolProviderNotFoundError, ToolParamterValidationError, \
ToolProviderCredentialValidationError
from core.features.assistant_base_runner import BaseAssistantApplicationRunner
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageTool,
SystemPromptMessage, ToolPromptMessage, UserPromptMessage)
from core.tools.errors import (ToolInvokeError, ToolNotFoundError, ToolNotSupportedError, ToolParameterValidationError,
ToolProviderCredentialValidationError, ToolProviderNotFoundError)
from models.model import Conversation, Message, MessageAgentThought
logger = logging.getLogger(__name__)
class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
def run(self, model_instance: ModelInstance,
conversation: Conversation,
def run(self, conversation: Conversation,
message: Message,
query: str,
) -> Generator[LLMResultChunk, None, None]:
@ -81,6 +75,8 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
function_call_state = False
@ -96,17 +92,16 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
tool_input='',
messages_ids=message_file_ids
)
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
# recale llm max tokens
self.recale_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_orchestration_config.model_config.parameters,
tools=prompt_messages_tools,
stop=app_orchestration_config.model_config.stop,
stream=True,
stream=self.stream_tool_call,
user=self.user_id,
callbacks=[],
)
@ -122,11 +117,45 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
current_llm_usage = None
for chunk in chunks:
if self.stream_tool_call:
is_first_chunk = True
for chunk in chunks:
if is_first_chunk:
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
is_first_chunk = False
# check if there is any tool call
if self.check_tool_calls(chunk):
function_call_state = True
tool_calls.extend(self.extract_tool_calls(chunk))
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps({
tool_call[1]: tool_call[2] for tool_call in tool_calls
}, ensure_ascii=False)
except json.JSONDecodeError as e:
# ensure ascii to avoid encoding error
tool_call_inputs = json.dumps({
tool_call[1]: tool_call[2] for tool_call in tool_calls
})
if chunk.delta.message and chunk.delta.message.content:
if isinstance(chunk.delta.message.content, list):
for content in chunk.delta.message.content:
response += content.data
else:
response += chunk.delta.message.content
if chunk.delta.usage:
increase_usage(llm_usage, chunk.delta.usage)
current_llm_usage = chunk.delta.usage
yield chunk
else:
result: LLMResult = chunks
# check if there is any tool call
if self.check_tool_calls(chunk):
if self.check_blocking_tool_calls(result):
function_call_state = True
tool_calls.extend(self.extract_tool_calls(chunk))
tool_calls.extend(self.extract_blocking_tool_calls(result))
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps({
@ -138,18 +167,46 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
tool_call[1]: tool_call[2] for tool_call in tool_calls
})
if chunk.delta.message and chunk.delta.message.content:
if isinstance(chunk.delta.message.content, list):
for content in chunk.delta.message.content:
if result.usage:
increase_usage(llm_usage, result.usage)
current_llm_usage = result.usage
if result.message and result.message.content:
if isinstance(result.message.content, list):
for content in result.message.content:
response += content.data
else:
response += chunk.delta.message.content
response += result.message.content
if chunk.delta.usage:
increase_usage(llm_usage, chunk.delta.usage)
current_llm_usage = chunk.delta.usage
if not result.message.content:
result.message.content = ''
yield chunk
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=result.prompt_messages,
system_fingerprint=result.system_fingerprint,
delta=LLMResultChunkDelta(
index=0,
message=result.message,
usage=result.usage,
)
)
if tool_calls:
prompt_messages.append(AssistantPromptMessage(
content='',
name='',
tool_calls=[AssistantPromptMessage.ToolCall(
id=tool_call[0],
type='function',
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=tool_call[1],
arguments=json.dumps(tool_call[2], ensure_ascii=False)
)
) for tool_call in tool_calls]
))
# save thought
self.save_agent_thought(
@ -167,6 +224,12 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
final_answer += response + '\n'
# update prompt messages
if response.strip():
prompt_messages.append(AssistantPromptMessage(
content=response,
))
# call tools
tool_responses = []
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
@ -184,7 +247,7 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
try:
tool_invoke_message = tool_instance.invoke(
user_id=self.user_id,
tool_paramters=tool_call_args,
tool_parameters=tool_call_args,
)
# transform tool invoke message to get LLM friendly message
tool_invoke_message = self.transform_tool_invoke_messages(tool_invoke_message)
@ -203,15 +266,15 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
message_file_ids.append(message_file.id)
except ToolProviderCredentialValidationError as e:
error_response = f"Plese check your tool provider credentials"
error_response = f"Please check your tool provider credentials"
except (
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
) as e:
error_response = f"there is not a tool named {tool_call_name}"
except (
ToolParamterValidationError
ToolParameterValidationError
) as e:
error_response = f"tool paramters validation error: {e}, please check your tool paramters"
error_response = f"tool parameters validation error: {e}, please check your tool parameters"
except ToolInvokeError as e:
error_response = f"tool invoke error: {e}"
except Exception as e:
@ -256,12 +319,6 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
)
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
# update prompt messages
if response.strip():
prompt_messages.append(AssistantPromptMessage(
content=response,
))
# update prompt tool
for prompt_tool in prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
@ -276,7 +333,7 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
message=AssistantPromptMessage(
content=final_answer,
),
usage=llm_usage['usage'],
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
system_fingerprint=''
), PublishFrom.APPLICATION_MANAGER)
@ -287,6 +344,14 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
if llm_result_chunk.delta.message.tool_calls:
return True
return False
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
"""
Check if there is any blocking tool call in llm result
"""
if llm_result.message.tool_calls:
return True
return False
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
"""
@ -304,6 +369,23 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
))
return tool_calls
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
"""
Extract blocking tool calls from llm result
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result.message.tool_calls:
tool_calls.append((
prompt_message.id,
prompt_message.function.name,
json.loads(prompt_message.function.arguments),
))
return tool_calls
def organize_prompt_messages(self, prompt_template: str,
query: str = None,

View File

@ -1,11 +1,11 @@
from typing import Dict, List, Optional, Union
import requests
from core.file.file_obj import FileObj, FileTransferMethod, FileType, FileBelongsTo
from services.file_service import IMAGE_EXTENSIONS
from core.file.file_obj import FileBelongsTo, FileObj, FileTransferMethod, FileType
from extensions.ext_database import db
from models.account import Account
from models.model import AppModelConfig, EndUser, MessageFile, UploadFile
from services.file_service import IMAGE_EXTENSIONS
class MessageFileParser:

View File

@ -2,7 +2,7 @@ from typing import Optional
from core.entities.provider_entities import QuotaUnit, RestrictModel
from core.model_runtime.entities.model_entities import ModelType
from flask import Flask, Config
from flask import Config, Flask
from models.provider import ProviderQuotaType
from pydantic import BaseModel
@ -20,10 +20,6 @@ class TrialHostingQuota(HostingQuota):
class PaidHostingQuota(HostingQuota):
quota_type: ProviderQuotaType = ProviderQuotaType.PAID
stripe_price_id: str = None
increase_quota: int = 1
min_quantity: int = 20
max_quantity: int = 100
class FreeHostingQuota(HostingQuota):
@ -102,7 +98,7 @@ class HostingConfiguration:
)
def init_openai(self, app_config: Config) -> HostingProvider:
quota_unit = QuotaUnit.TIMES
quota_unit = QuotaUnit.CREDITS
quotas = []
if app_config.get("HOSTED_OPENAI_TRIAL_ENABLED"):
@ -114,6 +110,8 @@ class HostingConfiguration:
RestrictModel(model="gpt-3.5-turbo-1106", model_type=ModelType.LLM),
RestrictModel(model="gpt-3.5-turbo-instruct", model_type=ModelType.LLM),
RestrictModel(model="gpt-3.5-turbo-16k", model_type=ModelType.LLM),
RestrictModel(model="gpt-3.5-turbo-16k-0613", model_type=ModelType.LLM),
RestrictModel(model="gpt-3.5-turbo-0613", model_type=ModelType.LLM),
RestrictModel(model="text-davinci-003", model_type=ModelType.LLM),
RestrictModel(model="whisper-1", model_type=ModelType.SPEECH2TEXT),
]
@ -122,10 +120,20 @@ class HostingConfiguration:
if app_config.get("HOSTED_OPENAI_PAID_ENABLED"):
paid_quota = PaidHostingQuota(
stripe_price_id=app_config.get("HOSTED_OPENAI_PAID_STRIPE_PRICE_ID"),
increase_quota=int(app_config.get("HOSTED_OPENAI_PAID_INCREASE_QUOTA", "1")),
min_quantity=int(app_config.get("HOSTED_OPENAI_PAID_MIN_QUANTITY", "1")),
max_quantity=int(app_config.get("HOSTED_OPENAI_PAID_MAX_QUANTITY", "1"))
restrict_models=[
RestrictModel(model="gpt-4", model_type=ModelType.LLM),
RestrictModel(model="gpt-4-turbo-preview", model_type=ModelType.LLM),
RestrictModel(model="gpt-4-32k", model_type=ModelType.LLM),
RestrictModel(model="gpt-4-1106-preview", model_type=ModelType.LLM),
RestrictModel(model="gpt-3.5-turbo", model_type=ModelType.LLM),
RestrictModel(model="gpt-3.5-turbo-16k", model_type=ModelType.LLM),
RestrictModel(model="gpt-3.5-turbo-16k-0613", model_type=ModelType.LLM),
RestrictModel(model="gpt-3.5-turbo-1106", model_type=ModelType.LLM),
RestrictModel(model="gpt-4-0125-preview", model_type=ModelType.LLM),
RestrictModel(model="gpt-3.5-turbo-0613", model_type=ModelType.LLM),
RestrictModel(model="gpt-3.5-turbo-instruct", model_type=ModelType.LLM),
RestrictModel(model="text-davinci-003", model_type=ModelType.LLM),
]
)
quotas.append(paid_quota)
@ -164,12 +172,7 @@ class HostingConfiguration:
quotas.append(trial_quota)
if app_config.get("HOSTED_ANTHROPIC_PAID_ENABLED"):
paid_quota = PaidHostingQuota(
stripe_price_id=app_config.get("HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID"),
increase_quota=int(app_config.get("HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA", "1000000")),
min_quantity=int(app_config.get("HOSTED_ANTHROPIC_PAID_MIN_QUANTITY", "20")),
max_quantity=int(app_config.get("HOSTED_ANTHROPIC_PAID_MAX_QUANTITY", "100"))
)
paid_quota = PaidHostingQuota()
quotas.append(paid_quota)
if len(quotas) > 0:

View File

@ -13,7 +13,7 @@ from core.docstore.dataset_docstore import DatasetDocumentStore
from core.errors.error import ProviderTokenNotInitError
from core.generator.llm_generator import LLMGenerator
from core.index.index import IndexBuilder
from core.model_manager import ModelManager, ModelInstance
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.model_entities import ModelType, PriceType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
@ -562,7 +562,7 @@ class IndexingRunner:
character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
chunk_size=segmentation["max_tokens"],
chunk_overlap=0,
chunk_overlap=segmentation.get('chunk_overlap', 0),
fixed_separator=separator,
separators=["\n\n", "", ".", " ", ""],
embedding_model_instance=embedding_model_instance
@ -571,7 +571,7 @@ class IndexingRunner:
# Automatic segmentation
character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
chunk_overlap=0,
chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['chunk_overlap'],
separators=["\n\n", "", ".", " ", ""],
embedding_model_instance=embedding_model_instance
)
@ -655,7 +655,9 @@ class IndexingRunner:
else:
page_content = page_content
document_node.page_content = page_content
split_documents.append(document_node)
if document_node.page_content:
split_documents.append(document_node)
all_documents.extend(split_documents)
# processing qa document
if document_form == 'qa_model':

View File

@ -12,8 +12,8 @@ from core.model_runtime.model_providers.__base.large_language_model import Large
from core.model_runtime.model_providers.__base.moderation_model import ModerationModel
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.provider_manager import ProviderManager

View File

@ -13,6 +13,7 @@ This module provides the interface for invoking and authenticating various model
- `Text Embedding Model` - Text Embedding, pre-computed tokens capability
- `Rerank Model` - Segment Rerank capability
- `Speech-to-text Model` - Speech to text capability
- `Text-to-speech Model` - Text to speech capability
- `Moderation` - Moderation capability
- Model provider display

View File

@ -13,6 +13,7 @@
- `Text Embedidng Model` - 文本 Embedding ,预计算 tokens 能力
- `Rerank Model` - 分段 Rerank 能力
- `Speech-to-text Model` - 语音转文本能力
- `Text-to-speech Model` - 文本转语音能力
- `Moderation` - Moderation 能力
- 模型供应商展示

View File

@ -299,9 +299,7 @@ Inherit the `__base.speech2text_model.Speech2TextModel` base class and implement
- Invoke Invocation
```python
def _invoke(self, model: str, credentials: dict,
file: IO[bytes], user: Optional[str] = None) \
-> str:
def _invoke(self, model: str, credentials: dict, file: IO[bytes], user: Optional[str] = None) -> str:
"""
Invoke large language model
@ -331,6 +329,46 @@ Inherit the `__base.speech2text_model.Speech2TextModel` base class and implement
The string after speech-to-text conversion.
### Text2speech
Inherit the `__base.text2speech_model.Text2SpeechModel` base class and implement the following interfaces:
- Invoke Invocation
```python
def _invoke(elf, model: str, credentials: dict, content_text: str, streaming: bool, user: Optional[str] = None):
"""
Invoke large language model
:param model: model name
:param credentials: model credentials
:param content_text: text content to be translated
:param streaming: output is streaming
:param user: unique user id
:return: translated audio file
"""
```
- Parameters
- `model` (string) Model name
- `credentials` (object) Credential information
The parameters of credential information are defined by either the `provider_credential_schema` or `model_credential_schema` in the provider's YAML configuration file. Inputs such as `api_key` are included.
- `content_text` (string) The text content that needs to be converted
- `streaming` (bool) Whether to stream output
- `user` (string) [optional] Unique identifier of the user
This can help the provider monitor and detect abusive behavior.
- Returns
Text converted speech stream。
### Moderation
Inherit the `__base.moderation_model.ModerationModel` base class and implement the following interfaces:

View File

@ -94,6 +94,7 @@ The currently supported model types are as follows:
- `text_embedding` Text Embedding model
- `rerank` Rerank model
- `speech2text` Speech to text
- `tts` Text to speech
- `moderation` Moderation
Continuing with `Anthropic` as an example, since `Anthropic` only supports LLM, we create a `module` named `llm` in `model_providers.anthropic`.

View File

@ -47,6 +47,10 @@
- `max_chunks` (int) Maximum number of chunks (available for model types `text-embedding`, `moderation`)
- `file_upload_limit` (int) Maximum file upload limit, in MB (available for model type `speech2text`)
- `supported_file_extensions` (string) Supported file extension formats, e.g., mp3, mp4 (available for model type `speech2text`)
- `default_voice` (string) default voice, e.g.alloy,echo,fable,onyx,nova,shimmeravailable for model type `tts`
- `word_limit` (int) Single conversion word limit, paragraphwise by defaultavailable for model type `tts`
- `audio_type` (string) Support audio file extension format, e.g.mp3,wavavailable for model type `tts`
- `max_workers` (int) Number of concurrent workers supporting text and audio conversionavailable for model type`tts`
- `max_characters_per_chunk` (int) Maximum characters per chunk (available for model type `moderation`)
- `parameter_rules` (array[[ParameterRule](#ParameterRule)]) [optional] Model invocation parameter rules
- `pricing` ([PriceConfig](#PriceConfig)) [optional] Pricing information
@ -58,6 +62,7 @@
- `text-embedding` Text Embedding model
- `rerank` Rerank model
- `speech2text` Speech to text
- `tts` Text to speech
- `moderation` Moderation
### ConfigurateMethod

View File

@ -23,6 +23,7 @@
- `text_embedding` 文本 Embedding 模型
- `rerank` Rerank 模型
- `speech2text` 语音转文字
- `tts` 文字转语音
- `moderation` 审查
`Xinference`支持`LLM``Text Embedding`和Rerank那么我们开始编写`xinference.yaml`

View File

@ -369,6 +369,46 @@ class XinferenceProvider(Provider):
语音转换后的字符串。
### Text2speech
继承 `__base.text2speech_model.Text2SpeechModel` 基类,实现以下接口:
- Invoke 调用
```python
def _invoke(elf, model: str, credentials: dict, content_text: str, streaming: bool, user: Optional[str] = None):
"""
Invoke large language model
:param model: model name
:param credentials: model credentials
:param content_text: text content to be translated
:param streaming: output is streaming
:param user: unique user id
:return: translated audio file
"""
```
- 参数:
- `model` (string) 模型名称
- `credentials` (object) 凭据信息
凭据信息的参数由供应商 YAML 配置文件的 `provider_credential_schema` 或 `model_credential_schema` 定义,传入如:`api_key` 等。
- `content_text` (string) 需要转换的文本内容
- `streaming` (bool) 是否进行流式输出
- `user` (string) [optional] 用户的唯一标识符
可以帮助供应商监控和检测滥用行为。
- 返回:
文本转换后的语音流。
### Moderation
继承 `__base.moderation_model.ModerationModel` 基类,实现以下接口:

View File

@ -10,6 +10,7 @@
- `text_embedding` 文本 Embedding 模型
- `rerank` Rerank 模型
- `speech2text` 语音转文字
- `tts` 文字转语音
- `moderation` 审查
依旧以 `Anthropic` 为例,`Anthropic` 仅支持 LLM因此在 `model_providers.anthropic` 创建一个 `llm` 为名称的 `module`

View File

@ -48,6 +48,10 @@
- `max_chunks` (int) 最大分块数量 (模型类型 `text-embedding ` `moderation` 可用)
- `file_upload_limit` (int) 文件最大上传限制单位MB。模型类型 `speech2text` 可用)
- `supported_file_extensions` (string) 支持文件扩展格式mp3,mp4模型类型 `speech2text` 可用)
- `default_voice` (string) 缺省音色可选alloy,echo,fable,onyx,nova,shimmer模型类型 `tts` 可用)
- `word_limit` (int) 单次转换字数限制,默认按段落分段(模型类型 `tts` 可用)
- `audio_type` (string) 支持音频文件扩展格式mp3,wav模型类型 `tts` 可用)
- `max_workers` (int) 支持文字音频转换并发任务数(模型类型 `tts` 可用)
- `max_characters_per_chunk` (int) 每块最大字符数 (模型类型 `moderation` 可用)
- `parameter_rules` (array[[ParameterRule](#ParameterRule)]) [optional] 模型调用参数规则
- `pricing` ([PriceConfig](#PriceConfig)) [optional] 价格信息
@ -59,6 +63,7 @@
- `text-embedding` 文本 Embedding 模型
- `rerank` Rerank 模型
- `speech2text` 语音转文字
- `tts` 文字转语音
- `moderation` 审查
### ConfigurateMethod

View File

@ -78,6 +78,7 @@ class ModelFeature(Enum):
MULTI_TOOL_CALL = "multi-tool-call"
AGENT_THOUGHT = "agent-thought"
VISION = "vision"
STREAM_TOOL_CALL = "stream-tool-call"
class DefaultParameterName(Enum):

View File

@ -1,7 +1,11 @@
import hashlib
import subprocess
import uuid
from abc import abstractmethod
from typing import Optional
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.model_runtime.model_providers.__base.ai_model import AIModel
@ -40,3 +44,96 @@ class TTSModel(AIModel):
:return: translated audio file
"""
raise NotImplementedError
def _get_model_voice(self, model: str, credentials: dict) -> any:
"""
Get voice for given tts model
:param model: model name
:param credentials: model credentials
:return: voice
"""
model_schema = self.get_model_schema(model, credentials)
if model_schema and ModelPropertyKey.DEFAULT_VOICE in model_schema.model_properties:
return model_schema.model_properties[ModelPropertyKey.DEFAULT_VOICE]
def _get_model_audio_type(self, model: str, credentials: dict) -> str:
"""
Get audio type for given tts model
:param model: model name
:param credentials: model credentials
:return: voice
"""
model_schema = self.get_model_schema(model, credentials)
if model_schema and ModelPropertyKey.AUDOI_TYPE in model_schema.model_properties:
return model_schema.model_properties[ModelPropertyKey.AUDOI_TYPE]
def _get_model_word_limit(self, model: str, credentials: dict) -> int:
"""
Get audio type for given tts model
:return: audio type
"""
model_schema = self.get_model_schema(model, credentials)
if model_schema and ModelPropertyKey.WORD_LIMIT in model_schema.model_properties:
return model_schema.model_properties[ModelPropertyKey.WORD_LIMIT]
def _get_model_workers_limit(self, model: str, credentials: dict) -> int:
"""
Get audio max workers for given tts model
:return: audio type
"""
model_schema = self.get_model_schema(model, credentials)
if model_schema and ModelPropertyKey.MAX_WORKERS in model_schema.model_properties:
return model_schema.model_properties[ModelPropertyKey.MAX_WORKERS]
@staticmethod
def _split_text_into_sentences(text: str, limit: int, delimiters=None):
if delimiters is None:
delimiters = set('。!?;\n')
buf = []
word_count = 0
for char in text:
buf.append(char)
if char in delimiters:
if word_count >= limit:
yield ''.join(buf)
buf = []
word_count = 0
else:
word_count += 1
else:
word_count += 1
if buf:
yield ''.join(buf)
@staticmethod
def _is_ffmpeg_installed():
try:
output = subprocess.check_output("ffmpeg -version", shell=True)
if "ffmpeg version" in output.decode("utf-8"):
return True
else:
raise InvokeBadRequestError("ffmpeg is not installed, "
"details: https://docs.dify.ai/getting-started/install-self-hosted"
"/install-faq#id-14.-what-to-do-if-this-error-occurs-in-text-to-speech")
except Exception:
raise InvokeBadRequestError("ffmpeg is not installed, "
"details: https://docs.dify.ai/getting-started/install-self-hosted"
"/install-faq#id-14.-what-to-do-if-this-error-occurs-in-text-to-speech")
# Todo: To improve the streaming function
@staticmethod
def _get_file_name(file_content: str) -> str:
hash_object = hashlib.sha256(file_content.encode())
hex_digest = hash_object.hexdigest()
namespace_uuid = uuid.UUID('a5da6ef9-b303-596f-8e88-bf8fa40f4b31')
unique_uuid = uuid.uuid5(namespace_uuid, hex_digest)
return str(unique_uuid)

View File

@ -36,6 +36,7 @@ LLM_BASE_MODELS = [
features=[
ModelFeature.AGENT_THOUGHT,
ModelFeature.MULTI_TOOL_CALL,
ModelFeature.STREAM_TOOL_CALL,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
@ -80,6 +81,7 @@ LLM_BASE_MODELS = [
features=[
ModelFeature.AGENT_THOUGHT,
ModelFeature.MULTI_TOOL_CALL,
ModelFeature.STREAM_TOOL_CALL,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
@ -124,6 +126,7 @@ LLM_BASE_MODELS = [
features=[
ModelFeature.AGENT_THOUGHT,
ModelFeature.MULTI_TOOL_CALL,
ModelFeature.STREAM_TOOL_CALL,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
@ -198,6 +201,7 @@ LLM_BASE_MODELS = [
features=[
ModelFeature.AGENT_THOUGHT,
ModelFeature.MULTI_TOOL_CALL,
ModelFeature.STREAM_TOOL_CALL,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
@ -272,6 +276,7 @@ LLM_BASE_MODELS = [
features=[
ModelFeature.AGENT_THOUGHT,
ModelFeature.MULTI_TOOL_CALL,
ModelFeature.STREAM_TOOL_CALL,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={

View File

@ -324,6 +324,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
tools: Optional[list[PromptMessageTool]] = None) -> Generator:
index = 0
full_assistant_content = ''
delta_assistant_message_function_call_storage: ChoiceDeltaFunctionCall = None
real_model = model
system_fingerprint = None
completion = ''
@ -333,12 +334,32 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
delta = chunk.choices[0]
if delta.finish_reason is None and (delta.delta.content is None or delta.delta.content == ''):
if delta.finish_reason is None and (delta.delta.content is None or delta.delta.content == '') and \
delta.delta.function_call is None:
continue
# assistant_message_tool_calls = delta.delta.tool_calls
assistant_message_function_call = delta.delta.function_call
# extract tool calls from response
if delta_assistant_message_function_call_storage is not None:
# handle process of stream function call
if assistant_message_function_call:
# message has not ended ever
delta_assistant_message_function_call_storage.arguments += assistant_message_function_call.arguments
continue
else:
# message has ended
assistant_message_function_call = delta_assistant_message_function_call_storage
delta_assistant_message_function_call_storage = None
else:
if assistant_message_function_call:
# start of stream function call
delta_assistant_message_function_call_storage = assistant_message_function_call
if delta_assistant_message_function_call_storage.arguments is None:
delta_assistant_message_function_call_storage.arguments = ''
continue
# extract tool calls from response
# tool_calls = self._extract_response_tool_calls(assistant_message_tool_calls)
function_call = self._extract_response_function_call(assistant_message_function_call)
@ -489,7 +510,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
else:
raise ValueError(f"Got unknown type {message}")
if message.name is not None:
if message.name:
message_dict["name"] = message.name
return message_dict
@ -586,7 +607,6 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
num_tokens = 0
for tool in tools:
num_tokens += len(encoding.encode('type'))
num_tokens += len(encoding.encode(tool.get("type")))
num_tokens += len(encoding.encode('function'))
# calculate num tokens for function object

View File

@ -1,7 +1,7 @@
import base64
import copy
import time
from typing import Optional, Tuple
from typing import Optional, Tuple, Union
import numpy as np
import tiktoken
@ -76,7 +76,7 @@ class AzureOpenAITextEmbeddingModel(_CommonAzureOpenAI, TextEmbeddingModel):
embeddings_batch, embedding_used_tokens = self._embedding_invoke(
model=model,
client=client,
texts=[""],
texts="",
extra_model_kwargs=extra_model_kwargs
)
@ -147,7 +147,7 @@ class AzureOpenAITextEmbeddingModel(_CommonAzureOpenAI, TextEmbeddingModel):
return ai_model_entity.entity
@staticmethod
def _embedding_invoke(model: str, client: AzureOpenAI, texts: list[str],
def _embedding_invoke(model: str, client: AzureOpenAI, texts: Union[list[str], str],
extra_model_kwargs: dict) -> Tuple[list[list[float]], int]:
response = client.embeddings.create(
input=texts,

View File

@ -8,9 +8,9 @@ model_properties:
parameter_rules:
- name: temperature
use_template: temperature
- name: topP
- name: top_p
use_template: top_p
- name: topK
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top K

View File

@ -8,9 +8,9 @@ model_properties:
parameter_rules:
- name: temperature
use_template: temperature
- name: topP
- name: top_p
use_template: top_p
- name: topK
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top K

View File

@ -8,9 +8,9 @@ model_properties:
parameter_rules:
- name: temperature
use_template: temperature
- name: topP
- name: top_p
use_template: top_p
- name: topK
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top K

View File

@ -1,15 +1,14 @@
import json
import logging
from typing import Generator, List, Optional, Union
import boto3
from botocore.exceptions import ClientError, EndpointConnectionError, NoRegionError, ServiceNotInRegionError, UnknownServiceError
from botocore.config import Config
import json
from botocore.exceptions import (ClientError, EndpointConnectionError, NoRegionError, ServiceNotInRegionError,
UnknownServiceError)
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage,
PromptMessageTool, SystemPromptMessage, UserPromptMessage)
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageTool,
SystemPromptMessage, UserPromptMessage)
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
@ -250,9 +249,12 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
invoke = runtime_client.invoke_model
try:
body_jsonstr=json.dumps(payload)
response = invoke(
body=json.dumps(payload),
modelId=model,
contentType="application/json",
accept= "*/*",
body=body_jsonstr
)
except ClientError as ex:
error_code = ex.response['Error']['Code']
@ -385,7 +387,6 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
if not chunk:
exception_name = next(iter(event))
full_ex_msg = f"{exception_name}: {event[exception_name]['message']}"
raise self._map_client_to_invoke_error(exception_name, full_ex_msg)
payload = json.loads(chunk.get('bytes').decode())
@ -396,7 +397,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
finish_reason = payload.get("completion_reason")
elif model_prefix == "anthropic":
content_delta = payload
content_delta = payload.get("completion")
finish_reason = payload.get("stop_reason")
elif model_prefix == "cohere":
@ -410,12 +411,12 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
else:
raise ValueError(f"Got unknown model prefix {model_prefix} when handling stream response")
index += 1
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content = content_delta if content_delta else '',
)
index += 1
if not finish_reason:
yield LLMResultChunk(
model=model,

View File

@ -5,7 +5,8 @@ from typing import Generator, List, Optional, cast
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageFunction,
PromptMessageTool, SystemPromptMessage, UserPromptMessage)
PromptMessageTool, SystemPromptMessage, ToolPromptMessage,
UserPromptMessage)
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
@ -194,6 +195,10 @@ class ChatGLMLargeLanguageModel(LargeLanguageModel):
elif isinstance(message, SystemPromptMessage):
message = cast(SystemPromptMessage, message)
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, ToolPromptMessage):
# check if last message is user message
message = cast(ToolPromptMessage, message)
message_dict = {"role": "function", "content": message.content}
else:
raise ValueError(f"Unknown message type {type(message)}")

View File

@ -1,19 +1,18 @@
import logging
from typing import Generator, List, Optional, Union, cast, Tuple
from typing import Generator, List, Optional, Tuple, Union, cast
import cohere
from cohere.responses import Chat, Generations
from cohere.responses.chat import StreamingChat, StreamTextGeneration, StreamEnd
from cohere.responses.generation import StreamingText, StreamingGenerations
from cohere.responses.chat import StreamEnd, StreamingChat, StreamTextGeneration
from cohere.responses.generation import StreamingGenerations, StreamingText
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage,
PromptMessageContentType, SystemPromptMessage,
TextPromptMessageContent, UserPromptMessage,
PromptMessageTool)
PromptMessageContentType, PromptMessageTool,
SystemPromptMessage, TextPromptMessageContent,
UserPromptMessage)
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, I18nObject, ModelType
from core.model_runtime.errors.invoke import InvokeConnectionError, InvokeServerUnavailableError, InvokeError, \
InvokeRateLimitError, InvokeAuthorizationError, InvokeBadRequestError
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel

View File

@ -4,11 +4,10 @@ from typing import Optional, Tuple
import cohere
import numpy as np
from cohere.responses import Tokens
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import InvokeConnectionError, InvokeServerUnavailableError, InvokeRateLimitError, \
InvokeAuthorizationError, InvokeBadRequestError, InvokeError
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
@ -76,7 +75,7 @@ class CohereTextEmbeddingModel(TextEmbeddingModel):
embeddings_batch, embedding_used_tokens = self._embedding_invoke(
model=model,
credentials=credentials,
texts=[""]
texts=[" "]
)
used_tokens += embedding_used_tokens
@ -131,6 +130,9 @@ class CohereTextEmbeddingModel(TextEmbeddingModel):
:param text: text to tokenize
:return:
"""
if not text:
return Tokens([], [], {})
# initialize client
client = cohere.Client(credentials.get('api_key'))

View File

@ -23,7 +23,7 @@ parameter_rules:
- name: frequency_penalty
use_template: frequency_penalty
pricing:
input: '0.00'
input: '0.015'
output: '0.015'
unit: '0.001'
currency: RMB

View File

@ -4,6 +4,8 @@ label:
model_type: llm
features:
- agent-thought
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 16384
@ -36,7 +38,7 @@ parameter_rules:
en_US: Enable Web Search
zh_Hans: 开启网页搜索
pricing:
input: '0.00'
input: '0.015'
output: '0.015'
unit: '0.001'
currency: RMB

View File

@ -29,7 +29,7 @@ parameter_rules:
- name: frequency_penalty
use_template: frequency_penalty
pricing:
input: '0.00'
input: '0.005'
output: '0.005'
unit: '0.001'
currency: RMB

View File

@ -0,0 +1,37 @@
model: abab6-chat
label:
en_US: Abab6-Chat
model_type: llm
features:
- agent-thought
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
min: 0.01
max: 1
default: 0.1
- name: top_p
use_template: top_p
min: 0.01
max: 1
default: 0.9
- name: max_tokens
use_template: max_tokens
required: true
default: 2048
min: 1
max: 32768
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
pricing:
input: '0.1'
output: '0.1'
unit: '0.001'
currency: RMB

View File

@ -16,7 +16,7 @@ class MinimaxChatCompletion(object):
"""
def generate(self, model: str, api_key: str, group_id: str,
prompt_messages: List[MinimaxMessage], model_parameters: dict,
tools: Dict[str, Any], stop: List[str] | None, stream: bool, user: str) \
tools: List[Dict[str, Any]], stop: List[str] | None, stream: bool, user: str) \
-> Union[MinimaxMessage, Generator[MinimaxMessage, None, None]]:
"""
generate chat completion
@ -78,7 +78,7 @@ class MinimaxChatCompletion(object):
try:
response = post(
url=url, data=dumps(body), headers=headers, stream=stream, timeout=10)
url=url, data=dumps(body), headers=headers, stream=stream, timeout=(10, 300))
except Exception as e:
raise InternalServerError(e)
@ -162,7 +162,6 @@ class MinimaxChatCompletion(object):
continue
for choice in choices:
print(choice)
message = choice['delta']
yield MinimaxMessage(
content=message,

View File

@ -17,14 +17,11 @@ class MinimaxChatCompletionPro(object):
"""
def generate(self, model: str, api_key: str, group_id: str,
prompt_messages: List[MinimaxMessage], model_parameters: dict,
tools: Dict[str, Any], stop: List[str] | None, stream: bool, user: str) \
tools: List[Dict[str, Any]], stop: List[str] | None, stream: bool, user: str) \
-> Union[MinimaxMessage, Generator[MinimaxMessage, None, None]]:
"""
generate chat completion
"""
if model not in ['abab5.5-chat', 'abab5.5s-chat']:
raise BadRequestError(f'Invalid model: {model}')
if not api_key or not group_id:
raise InvalidAPIKeyError('Invalid API key or group ID')
@ -85,9 +82,13 @@ class MinimaxChatCompletionPro(object):
**extra_kwargs
}
if tools:
body['functions'] = tools
body['function_call'] = { 'type': 'auto' }
try:
response = post(
url=url, data=dumps(body), headers=headers, stream=stream, timeout=10)
url=url, data=dumps(body), headers=headers, stream=stream, timeout=(10, 300))
except Exception as e:
raise InternalServerError(e)
@ -138,6 +139,7 @@ class MinimaxChatCompletionPro(object):
"""
handle stream chat generate response
"""
function_call_storage = None
for line in response.iter_lines():
if not line:
continue
@ -151,7 +153,7 @@ class MinimaxChatCompletionPro(object):
msg = data['base_resp']['status_msg']
self._handle_error(code, msg)
if data['reply']:
if data['reply'] or 'usage' in data and data['usage']:
total_tokens = data['usage']['total_tokens']
message = MinimaxMessage(
role=MinimaxMessage.Role.ASSISTANT.value,
@ -163,6 +165,12 @@ class MinimaxChatCompletionPro(object):
'total_tokens': total_tokens
}
message.stop_reason = data['choices'][0]['finish_reason']
if function_call_storage:
function_call_message = MinimaxMessage(content='', role=MinimaxMessage.Role.ASSISTANT.value)
function_call_message.function_call = function_call_storage
yield function_call_message
yield message
return
@ -171,11 +179,28 @@ class MinimaxChatCompletionPro(object):
continue
for choice in choices:
message = choice['messages'][0]['text']
if not message:
continue
message = choice['messages'][0]
if 'function_call' in message:
if not function_call_storage:
function_call_storage = message['function_call']
if 'arguments' not in function_call_storage or not function_call_storage['arguments']:
function_call_storage['arguments'] = ''
continue
else:
function_call_storage['arguments'] += message['function_call']['arguments']
continue
else:
if function_call_storage:
message['function_call'] = function_call_storage
function_call_storage = None
yield MinimaxMessage(
content=message,
role=MinimaxMessage.Role.ASSISTANT.value
)
minimax_message = MinimaxMessage(content='', role=MinimaxMessage.Role.ASSISTANT.value)
if 'function_call' in message:
minimax_message.function_call = message['function_call']
if 'text' in message:
minimax_message.content = message['text']
yield minimax_message

View File

@ -1,9 +1,8 @@
from typing import Generator, List, Optional, Union
from typing import Generator, List
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageTool,
SystemPromptMessage, UserPromptMessage)
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType, ParameterRule, ParameterType
SystemPromptMessage, ToolPromptMessage, UserPromptMessage)
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
@ -18,6 +17,7 @@ from core.model_runtime.model_providers.minimax.llm.types import MinimaxMessage
class MinimaxLargeLanguageModel(LargeLanguageModel):
model_apis = {
'abab6-chat': MinimaxChatCompletionPro,
'abab5.5s-chat': MinimaxChatCompletionPro,
'abab5.5-chat': MinimaxChatCompletionPro,
'abab5-chat': MinimaxChatCompletion
@ -55,7 +55,7 @@ class MinimaxLargeLanguageModel(LargeLanguageModel):
stream=False,
user=''
)
except InvalidAuthenticationError as e:
except (InvalidAuthenticationError, InsufficientAccountBalanceError) as e:
raise CredentialsValidateFailedError(f"Invalid API key: {e}")
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
@ -84,6 +84,13 @@ class MinimaxLargeLanguageModel(LargeLanguageModel):
"""
client: MinimaxChatCompletionPro = self.model_apis[model]()
if tools:
tools = [{
"name": tool.name,
"description": tool.description,
"parameters": tool.parameters
} for tool in tools]
response = client.generate(
model=model,
api_key=credentials['minimax_api_key'],
@ -109,7 +116,19 @@ class MinimaxLargeLanguageModel(LargeLanguageModel):
elif isinstance(prompt_message, UserPromptMessage):
return MinimaxMessage(role=MinimaxMessage.Role.USER.value, content=prompt_message.content)
elif isinstance(prompt_message, AssistantPromptMessage):
if prompt_message.tool_calls:
message = MinimaxMessage(
role=MinimaxMessage.Role.ASSISTANT.value,
content=''
)
message.function_call={
'name': prompt_message.tool_calls[0].function.name,
'arguments': prompt_message.tool_calls[0].function.arguments
}
return message
return MinimaxMessage(role=MinimaxMessage.Role.ASSISTANT.value, content=prompt_message.content)
elif isinstance(prompt_message, ToolPromptMessage):
return MinimaxMessage(role=MinimaxMessage.Role.FUNCTION.value, content=prompt_message.content)
else:
raise NotImplementedError(f'Prompt message type {type(prompt_message)} is not supported')
@ -151,6 +170,28 @@ class MinimaxLargeLanguageModel(LargeLanguageModel):
finish_reason=message.stop_reason if message.stop_reason else None,
),
)
elif message.function_call:
if 'name' not in message.function_call or 'arguments' not in message.function_call:
continue
yield LLMResultChunk(
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(
content='',
tool_calls=[AssistantPromptMessage.ToolCall(
id='',
type='function',
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=message.function_call['name'],
arguments=message.function_call['arguments']
)
)]
),
),
)
else:
yield LLMResultChunk(
model=model,

Some files were not shown because too many files have changed in this diff Show More