Compare commits

...

240 Commits
0.5.7 ... 0.6.0

Author SHA1 Message Date
7753ba2d37 FEAT: NEW WORKFLOW ENGINE (#3160)
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: Yeuoly <admin@srmxy.cn>
Co-authored-by: JzoNg <jzongcode@gmail.com>
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
Co-authored-by: jyong <jyong@dify.ai>
Co-authored-by: nite-knite <nkCoding@gmail.com>
Co-authored-by: jyong <718720800@qq.com>
2024-04-08 18:51:46 +08:00
2fb9850af5 fix: knowledge create display error (#3157) 2024-04-08 16:40:52 +08:00
9eba6ffdd4 Optimize csv and excel extract (#3155)
Co-authored-by: jyong <jyong@dify.ai>
2024-04-08 16:34:43 +08:00
762657eeef Fix: stop indexing status check when api of status checking failed (#3156) 2024-04-08 16:14:31 +08:00
16e3b0484d Update descriptions in StackExchange Tool (#3043) 2024-04-08 15:40:41 +08:00
974828222e fix: chat app sometimes may crash (#3151) 2024-04-08 14:37:39 +08:00
a9700e61db Feat/update issue template (#3147)
Co-authored-by: Chenhe Gu <guchenhe@gmail.com>
2024-04-08 02:46:28 +08:00
5a23d570b5 fix: Turn off SWR automatic revalidation when window is focused (#3129)
Co-authored-by: mazhanwen <mazhanwen@tal.com>
2024-04-07 22:43:44 +08:00
28b1c48235 improve qa generate prompt (#3132)
Co-authored-by: jyong <jyong@dify.ai>
2024-04-07 15:21:11 +08:00
ab9fcbdfb9 Duplicate embedding cache check (#3134)
Co-authored-by: jyong <jyong@dify.ai>
2024-04-07 15:20:58 +08:00
ef80b3711e chore: update link of feedback (#3130) 2024-04-07 13:37:32 +08:00
6672a03e7f feat: update link (#3121) 2024-04-06 14:57:07 +08:00
e7833a070e chore: replace outdated config in vscode debug settings (#3106) 2024-04-05 17:49:09 +08:00
25b9ac3df4 feat: claude3 tool call (#3111) 2024-04-05 16:35:59 +09:00
718ac3f83b Improve ModelTypeEnum type (#3051) 2024-04-04 15:54:59 +08:00
e4f686deb7 fix unstructured api,remove unused parameters (#3056) 2024-04-03 21:00:20 +08:00
Jat
d241d66a69 fix typo in readme (#3096)
Signed-off-by: Jat <jat@sinosky.org>
2024-04-03 20:29:02 +08:00
f92a1be0b6 fix typo (#3098) 2024-04-03 20:26:21 +08:00
7cc0d47322 fix: update show names for supported file types of xlsx and docx (#3091) 2024-04-03 20:26:12 +08:00
da998d09d7 new readme slogan (#3094) 2024-04-03 13:39:41 +08:00
5e66a60f1c add embedding cache and clean embedding cache job (#3087)
Co-authored-by: jyong <jyong@dify.ai>
2024-04-02 20:46:24 +08:00
7f55ea0c53 Chore/move chrome ext (#3085) 2024-04-02 19:51:02 +08:00
f7d1d9b8b1 fix(duckduckgo-search): invoke error (#3077) 2024-04-02 18:40:09 +08:00
6b4c8e76e6 feat (new llm): add support for openrouter (#3042) 2024-04-02 18:38:46 +08:00
e12a0c154c add segment function billing check for SAAS env (#3082)
Co-authored-by: jyong <jyong@dify.ai>
2024-04-02 17:55:49 +08:00
9c7e99e829 Update README.md (#3081) 2024-04-02 17:19:21 +08:00
d14ea2ecaa version to 0.5.11-fix1 (#3073) 2024-04-02 12:51:29 +08:00
a94d86da6d add keyword table s3 storage support (#3065)
Co-authored-by: jyong <jyong@dify.ai>
2024-04-01 20:19:30 +08:00
5e591fc1b7 feat: add Feishu(飞书) tool for sending message to chat group bot via webhook (#3059)
Co-authored-by: crazywoola <427733928@qq.com>
2024-04-01 18:03:45 +08:00
32e83e00e4 feat: use en-US as fallback recommend app if using unmaintained language (#3063) 2024-04-01 16:15:59 +08:00
132269618d FEAT: Add Brave Search and Trello(12 Tools) Included (#3040) 2024-04-01 14:53:56 +08:00
84d118de07 add redis lock on create collection in multiple thread mode (#3054)
Co-authored-by: jyong <jyong@dify.ai>
2024-04-01 02:10:41 +08:00
1716ac562c add clean_unused_datasets_task (#3057)
Co-authored-by: jyong <jyong@dify.ai>
2024-04-01 01:34:21 +08:00
e215aae39a feat:xinference audio model support (#3045) 2024-03-31 12:44:11 +08:00
12782cad4d Fix typo (#3041) 2024-03-31 12:41:16 +08:00
fc5ed17fe9 provide a bit more info in logs when parsing api schema error (#3026) 2024-03-30 14:44:50 +08:00
94d04934b3 fix: agent tool label (#3039) 2024-03-29 22:15:16 +08:00
1387f9b23e version to 0.5.11 (#3038) 2024-03-29 21:09:21 +08:00
6817eab5f1 fix: api / moderation extension import error (#3037) 2024-03-29 21:07:34 +08:00
218f591a5d fix: prompt editor linebreak (#3036) 2024-03-29 21:01:04 +08:00
17af0de7b6 Add New Tool: StackExchange (#3034)
Co-authored-by: crazywoola <427733928@qq.com>
2024-03-29 20:28:21 +08:00
9d962053a2 Fix claude request errors in bedrock (#3015)
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: crazywoola <427733928@qq.com>
2024-03-29 13:57:45 +08:00
59909b5ca7 update the discord Invalid invite (#3028) 2024-03-29 13:16:52 +08:00
a6cd0f0e73 fix add segment when dataset and document is empty (#3021)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-29 13:06:00 +08:00
2c43393bf1 Add New Tool: DevDocs (#2993) 2024-03-29 11:21:02 +08:00
669c8c3cca some optimization for admin api key, create tenant and reset-encrypt-key-pair command (#3013)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-28 17:02:52 +08:00
b0b0cc045f add mutil-thread document embedding (#3016)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-28 17:02:35 +08:00
20d16d7b31 doc: update helm charts (#3012) 2024-03-28 13:02:41 +08:00
714722bb2d fix: 'next' button unresponsive when uploading additional documents before previous batch completes (#2991) 2024-03-28 12:28:15 +08:00
830495a607 bump celery from 5.2 to 5.3 (#2478)
Co-authored-by: takatost <takatost@users.noreply.github.com>
2024-03-28 11:53:48 +08:00
41a4593b6d bump redis client to 5.0 and enable hiredis support (#2518) 2024-03-28 11:40:21 +08:00
08b727833e generalize helper for loading module from source (#2862) 2024-03-28 11:37:26 +08:00
c8b82b9d08 fix: missing comma in JSON for /completion-messages request (#2999) 2024-03-27 14:31:06 +08:00
5becb4c43a update wenxin llm (#2929) 2024-03-27 11:36:21 +08:00
13694293e3 fix: resolve header.uid' length must be less or equal than 32 on Spark V1.5 (#2983) 2024-03-27 09:58:41 +08:00
815beac356 Fix the time in the annotation from 12-hour clock to 24-hour clock. (#2990) 2024-03-27 09:08:38 +08:00
5e60204832 fix: progress bar issue (#2957) 2024-03-26 17:26:58 +08:00
d2624b13a0 fix: the issue of text overflow in the NavSelector component (#2976) 2024-03-26 17:22:01 +08:00
61f5de9662 fix: chat scroll (#2981) 2024-03-26 16:19:41 +08:00
40dbf30784 feat: support new reranker [jina-colbert-v1-en] (#2975) 2024-03-26 11:34:40 +08:00
afd77c4745 fix: the batch annotaion btn should also be loading when progress status is waiting (#2974) 2024-03-26 11:05:29 +08:00
d70bd4aaa4 fix tool_inputs parse error in message that in CoT(ReAct) agent mode (#2949) 2024-03-26 11:05:10 +08:00
8e05261588 Fix handling of missing required parameters in ApiTool (#2965) 2024-03-26 10:53:39 +08:00
a676d4387c fix: Correct image parameter passing in GLM-4v model API calls (#2948) 2024-03-26 10:43:20 +08:00
08a5afcf9f feat: update nginx and docker-compose files to support HTTPS. (#2940)
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-03-26 10:37:43 +08:00
eeaa3c1643 Fix/2969 add model provider ollama not work (#2973) 2024-03-26 10:26:34 +08:00
7c8c233cf4 Add S3_ADDRESS_STYLE configuration option (#2934) 2024-03-26 10:18:26 +08:00
129a9850eb fix: correct response hint for generated image to avoid illusion of regernerated image link (#2962) 2024-03-26 10:13:35 +08:00
1f98a4fff3 improve: cache tool icons by setting max-age HTTP header and enable gzip compression SVG icons from backend (#2971) 2024-03-26 10:11:43 +08:00
58e4702b14 fix: white screen when editing annotaion in log panel (#2968) 2024-03-26 10:10:14 +08:00
c60749678b When disabling the "Annotation Reply" button, the backend reports an error. #2904 (#2933)
Co-authored-by: colvin <colvin.zhang@boaocloud.com>
2024-03-25 22:20:40 +08:00
d5214e4644 reuse layout (#2956) 2024-03-25 15:13:50 +08:00
52804ca6d1 fix: adjust popup panel's z-index value (#2952) 2024-03-25 15:09:01 +08:00
4fb9606361 fix: max_token default help info improved (#2951) 2024-03-25 10:07:32 +08:00
c534d95972 fix: yi model price correction (#2946) 2024-03-24 12:10:57 +08:00
46ccfda493 fix: invalid i18 link in README (#2947) 2024-03-24 12:10:13 +08:00
6dc62334d6 doc: model schema document fix and wording about the model price parameter (#2944) 2024-03-24 12:06:20 +08:00
c7d003d551 fix: Upgrade duckduckgo-search to version 5.1.0 & update document segment api parameter error (#2938) 2024-03-22 19:18:01 +08:00
cc754122fc Authentication is only applied when both the username and password have values. (#2937) 2024-03-22 17:58:21 +08:00
240a94182e Feat/add triton inference server (#2928) 2024-03-22 15:15:48 +08:00
16af509c46 Update docker-compose files version (#2920) 2024-03-21 15:16:30 +08:00
86e474fff1 Add azure blob storage support (#2919)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-20 20:49:58 +08:00
9a3d5729bb fix: suggest service api missed user in query (#2918) 2024-03-20 20:08:26 +08:00
5a1c29fd8c chore: change Yi model SDK to OpenAI (#2910) 2024-03-20 16:02:13 +08:00
180775a0ec fix: init qdrant vector max recursion (#2909) 2024-03-20 14:57:13 +08:00
d018e279f8 fix: typo $ mark in logs of vdb migrate command (#2901) 2024-03-19 22:21:58 +08:00
11636bc7c7 bump version to 0.5.10 (#2902) 2024-03-19 21:35:58 +08:00
518c1ceb94 Feat/add-NVIDIA-as-a-new-model-provider (#2900) 2024-03-19 21:08:17 +08:00
696efe494e fix: Ignore some emtpy page_content when append to split_documents (#2898) 2024-03-19 20:55:15 +08:00
4419d357c4 chore: update Yi models params (#2895) 2024-03-19 20:54:31 +08:00
fbbba6db92 feat: optimize ollama model default parameters (#2894) 2024-03-19 18:34:23 +08:00
53d428907b fix incorrect exception raised by api tool which leads to incorrect L… (#2886)
Co-authored-by: OSS-MAOLONGDONG\kaihong <maolongdong@kaihong.com>
2024-03-19 18:17:12 +08:00
8133ba16b1 chore: update Qwen model params (#2892) 2024-03-19 18:13:32 +08:00
e9aa0e89d3 chore: update pr template (#2893) 2024-03-19 17:24:57 +08:00
7e3c59e53e chore: Update TongYi models prices (#2890) 2024-03-19 16:32:42 +08:00
f6314f8e73 feat:support azure openai llm 0125 version (#2889) 2024-03-19 16:32:26 +08:00
3bcfd84fba chore: use API Key instead of APIKey (#2888) 2024-03-19 16:32:06 +08:00
7c0ae76cd0 Bump tiktoken to 0.6.0 to support text-embedding-3-* in encoding_for_model (#2891) 2024-03-19 16:31:46 +08:00
2dee8a25d5 fix: anthropic system prompt not working (#2885) 2024-03-19 15:50:02 +08:00
507aa6d949 fix: Fix the problem of system not working (#2884) 2024-03-19 13:56:22 +08:00
59f173f2e6 feat: add icons for 01.ai (#2883) 2024-03-19 13:53:21 +08:00
c3790c239c i18n: update bedrock label (#2879) 2024-03-19 00:57:19 +08:00
45e51e7730 feat: AWS Bedrock Claude3 (#2864)
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: Chenhe Gu <guchenhe@gmail.com>
2024-03-18 18:16:36 +08:00
4834eae887 fix enable annotation reply when collection is None (#2877)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-18 17:18:52 +08:00
01108e6172 fix/Add isModel flag to AgentTools component (#2876) 2024-03-18 17:01:25 +08:00
95b74c211d Feat/support tool credentials bool schema (#2875) 2024-03-18 16:55:26 +08:00
cb79a90031 feat: Add tools for open weather search and image generation using the Spark API. (#2845) 2024-03-18 16:22:48 +08:00
4502436c47 feat:Embedding models Support for the Aliyun dashscope text-embedding-v1 and text-embedding-v2 (#2874) 2024-03-18 15:21:26 +08:00
c3d0cf940c add tenant id index for document and document_segment table (#2873)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-18 14:34:32 +08:00
e7343cc67c add max_tokens parameter rule for zhipuai glm4 and glm4v (#2861) 2024-03-18 13:19:36 +08:00
83145486b0 fix: fix unstable function call response arguments missing (#2872) 2024-03-18 13:17:16 +08:00
6fd1795d25 feat: Allow users to specify AWS Bedrock validation models (#2857) 2024-03-18 00:44:09 +08:00
f770232b63 feat: add model for 01.ai, yi-chat-34b series (#2865) 2024-03-17 21:24:01 +08:00
a8e694c235 fix: print exception logs for ValueError and InvokeError (#2823) 2024-03-17 14:34:32 +08:00
15a6d94953 Refactor: Streamline the build-push and deploy-dev workflow (#2852) 2024-03-17 14:20:34 +08:00
056331981e fix: api doc duplicate symbols (#2853) 2024-03-15 18:17:43 +08:00
cef16862da fix: charts encoding (#2848) 2024-03-15 14:02:52 +08:00
8a4015722d prevent auto scrolling down to bottom when user already scrolled up (#2813) 2024-03-15 13:19:06 +08:00
156345cb4b fix: use supported languages only for install form (#2844) 2024-03-15 12:05:35 +08:00
f29280ba5c Fix/compatible to old tool config (#2839) 2024-03-15 11:44:24 +08:00
742be06ea9 Fix/localai (#2840) 2024-03-15 11:41:51 +08:00
af98954fc1 Feat/add script to check i18n keys (#2835) 2024-03-14 18:03:59 +08:00
4d63770189 fix: The generate conversation name was not saved (#2836) 2024-03-14 17:53:55 +08:00
bbea3a6b84 fix: compatible to old tool config (#2837) 2024-03-14 17:51:11 +08:00
19d3a56194 feat: add weekday calculator in time tool (#2822) 2024-03-14 17:01:48 +08:00
5cab2b711f fix: doc for datasets (#2831) 2024-03-14 16:41:40 +08:00
Qun
1e5455e266 enhance: use override_settings for concurrent stable diffusion (#2818) 2024-03-14 15:26:07 +08:00
4fe585acc2 feat(llm/models): add claude-3-haiku-20240307 (#2825) 2024-03-14 10:08:24 +08:00
e52448b84b feat:add api-version selection for azure openai APIs (#2821) 2024-03-14 09:14:27 +08:00
1f92b55f58 fix: doc for completion-messages (#2820) 2024-03-13 22:25:18 +08:00
8b15b742ad generalize position helper for parsing _position.yaml and sorting objects by name (#2803) 2024-03-13 20:29:38 +08:00
849dc0560b feat: add French fr-FR (#2810)
Co-authored-by: Laurent Magnien <laurent.magnien@adsn.fr>
2024-03-13 18:20:55 +08:00
a026c5fd08 feat: add Vietnamese vi-VN (#2807) 2024-03-13 15:54:47 +08:00
fd7aade26b Fix tts api err (#2809)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-03-13 15:38:10 +08:00
510f8ede10 Improve automatic prompt generation (#2805) 2024-03-13 14:10:47 +08:00
8f9125b08a fix:typo (#2808) 2024-03-13 13:00:46 +08:00
e5e97c0a0a fix:change azure openai api_version default value to 2024-02-15-preview (#2797) 2024-03-12 22:07:06 +08:00
870ca713df Refactor Markdown component to include paragraph after image (#2798) 2024-03-12 22:06:54 +08:00
6854a3fd26 Update README.md (#2800) 2024-03-12 18:14:07 +08:00
620360d41a Update README.md (#2799) 2024-03-12 17:02:46 +08:00
20bd49285b excel: get keys from every sheet (#2796) 2024-03-12 16:59:25 +08:00
6bd2730317 Fix/2770 suggestions for next steps (#2788) 2024-03-12 16:27:55 +08:00
f734cca337 enhance: add stable diffusion user guide (#2795) 2024-03-12 14:45:48 +08:00
ce5b19d011 bump version to 0.5.9 (#2794) 2024-03-12 14:01:24 +08:00
f82a64d149 feat: add DingTalk(钉钉) tool for sending message to chat group bot via webhook (#2693) 2024-03-12 13:45:59 +08:00
f49b1afd6c feat:support azure tts (#2751) 2024-03-12 12:06:35 +08:00
796c5626a7 fix delete dataset when dataset has no document (#2789)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-11 23:57:38 +08:00
e54c9cd401 Feat/open ai compatible functioncall (#2783)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-11 19:48:21 +08:00
f8951d7f57 fix: api tool provider not found (#2782) 2024-03-11 18:21:41 +08:00
6454e1d644 chunk-overlap None check (#2781)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-11 15:36:56 +08:00
e184c8cb42 Update README.md (#2780) 2024-03-11 14:53:40 +08:00
fdd211e399 debug/chat: increase notify error duration to 3000 (#2778) 2024-03-11 14:16:31 +08:00
7001e21e7d overview: fix filter today calc start & end (#2777) 2024-03-11 14:11:51 +08:00
82d0732c12 fix: aippt default styles (#2779) 2024-03-11 14:04:09 +08:00
53cd125780 fix: deep copy of model-tool label (#2775) 2024-03-11 10:27:00 +08:00
3c91f9b5ab fix: dataset segements api (#2766) 2024-03-11 09:26:15 +08:00
f073dca22a feat: optimize db connection when llm invoking (#2774) 2024-03-10 15:48:31 +08:00
8b1e35d7dc doc: add suggested questions back (#2771) 2024-03-10 15:40:17 +08:00
b75d8ca621 fix: auto closing when close local image uploading (#2767) 2024-03-10 13:11:41 +08:00
9beefd7d5a fix: auto prompt (#2768) 2024-03-09 18:36:58 +08:00
88145efa97 fix: app name can be empty in settings modal (#2761) 2024-03-09 09:13:12 +08:00
bdc13f9238 SMTP authentication is optional (#2765)
Co-authored-by: Laurent Magnien <laurent.magnien@adsn.fr>
2024-03-09 09:11:03 +08:00
ce58f0607b Feat/tool secret parameter (#2760) 2024-03-08 20:31:13 +08:00
bbc0d330a9 chore: rename lastStep to previousStep (#2759) 2024-03-08 19:27:02 +08:00
60e7e17c86 feat: Add new Azure OpenAI Embedding models (#2758) 2024-03-08 19:04:20 +08:00
237bb8514e replace message content type list to string when file_objs is empty .. (#2745) 2024-03-08 18:46:31 +08:00
bd26c933d2 fix: valid password on reset-password page (#2753) 2024-03-08 18:44:49 +08:00
b6b58da2d2 enhance: custom tool timeout (#2754) 2024-03-08 15:26:08 +08:00
40c646cf7a Feat/model as tool (#2744) 2024-03-08 15:22:55 +08:00
3231a8c51c fix: image tokenizer (#2752) 2024-03-08 14:50:51 +08:00
4170d6a491 use SVG icons for built-in tools (#2748) 2024-03-08 10:21:26 +08:00
0b50c525cf feat: support error correction and border size in qrcode tool (#2731) 2024-03-07 20:54:14 +08:00
8ba38e8e74 fix overlap and splitter optimization (#2742)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-07 18:25:49 +08:00
b163545771 Use python-docx to extract docx files (#2654) 2024-03-07 18:24:55 +08:00
c0b82f8e58 UPDATE: Twilio tool crdential verification (#2741) 2024-03-07 18:08:52 +08:00
b75ff5fa03 fix:missing import (#2739) 2024-03-07 17:31:30 +08:00
9440d7fe88 fix: the behavior of save action in opening config panel (#2736) 2024-03-07 16:48:44 +08:00
24809fce07 fix: missing en_name of aippt (#2737) 2024-03-07 16:37:12 +08:00
9819ad347f feat:support azure whisper model and fix:rename text-embedidng-ada-002.yaml to text-embedding-ada-002.yaml (#2732) 2024-03-07 16:36:58 +08:00
8fe83750b7 Fix/jina tokenizer cache (#2735) 2024-03-07 16:32:37 +08:00
1809f05904 Feat/add groq (#2733) 2024-03-07 16:00:40 +08:00
0ac250a035 fix: check webhook key of Wecom tool in valid UUID form and fix typo (#2719) 2024-03-07 15:51:06 +08:00
405a00bb2c fix:delete the slash at the end of xinference provider server_url (#2730) 2024-03-07 15:37:05 +08:00
3a3ca8e6a9 fix: max tokens can only up to 2048 (#2734) 2024-03-07 15:35:56 +08:00
27e678480e Feat: AIPPT & DynamicToolParamter (#2725) 2024-03-07 15:04:42 +08:00
7052565380 fix typo: responsing -> responding (#2718)
Co-authored-by: OSS-MAOLONGDONG\kaihong <maolongdong@kaihong.com>
2024-03-07 10:20:35 +08:00
31070ffbca fix qa index processor tenant id is None error (#2713)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-06 16:46:08 +08:00
7f3dec7bee fix error msg format issue (#2715)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-06 16:45:40 +08:00
b1e0db4944 fix: chatbot service api auto generate name default value error (#2709) 2024-03-06 13:19:27 +08:00
c439952a41 fix(web): chat input auto resize by window (#2696) 2024-03-06 12:49:22 +08:00
2f28afebb6 FEAT: Add twilio tool for sending text and whatsapp messages (#2700)
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-03-06 11:35:08 +08:00
fa7ba30ba3 Fix rebuild index&csv parsing (#2705)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-03-06 11:33:32 +08:00
1cf5f510ed feat: add qrcode tool for QR code generation (#2699) 2024-03-06 11:26:16 +08:00
526c874caa fix mistralai icon (#2707) 2024-03-06 11:08:22 +08:00
f88f744097 make volume folders for milvus docker containers ignored by git (#2694) 2024-03-05 17:26:21 +08:00
95733796f0 fix: replace os.path.join with yarl (#2690) 2024-03-05 17:25:20 +08:00
552f319b9d feat: support HTTP response compression in api server (#2680) 2024-03-05 14:45:22 +08:00
38e5952417 Fix/agent react output parser (#2689) 2024-03-05 14:02:07 +08:00
7f891939f1 FEAT: add tavily tool for searching... A search engine for LLM (#2681) 2024-03-05 10:23:44 +08:00
69a5ce1e31 Fix tts play logic (#2683)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-03-05 09:22:36 +08:00
534802b761 bump version to 0.5.8 (#2685) 2024-03-05 01:37:53 +08:00
5c258e212c feat: add Anthropic claude-3 models support (#2684) 2024-03-05 01:37:42 +08:00
6a6133c102 Fix voice selection (#2664)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-03-04 17:50:06 +08:00
3c1825187a fix: auto generate prompt result not show (#2678) 2024-03-04 17:36:11 +08:00
8523b34be7 add jina-reranker-v1-base-en (#2676) 2024-03-04 17:31:01 +08:00
65cfd4360a fix: typo in wecom tool (#2674) 2024-03-04 17:25:42 +08:00
bbf5f42c87 fix: CE edition limits upload file nums (#2677) 2024-03-04 17:25:31 +08:00
3631e53ff0 Feat/add annotation migrate (#2675)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-04 17:22:06 +08:00
f322d9bddb Fix vdb merge error (#2650) 2024-03-04 16:35:50 +08:00
05ce7b9d5e fix: deep copy customColletion (#2673) 2024-03-04 15:20:20 +08:00
72ddedfc5c fix: setup default filters while add credentials (#2669) 2024-03-04 14:17:00 +08:00
36686d7425 fix: test custom tool already exists without decrypting credentials (#2668) 2024-03-04 14:16:47 +08:00
34387ec0f1 fix typo recale to recalc (#2670) 2024-03-04 14:15:53 +08:00
83a6b0c626 Doc/update license (#2666) 2024-03-04 14:10:39 +08:00
76da66fb7e fix: fix import from explore apps err when OpenAI not inited (#2671) 2024-03-04 14:06:54 +08:00
607f9eda35 Fix/app runner typo (#2661) 2024-03-04 13:32:17 +08:00
f25cec265d feat: add Wecom(企业微信) tool for sending message to chat group bot via webhook (#2638) 2024-03-04 10:27:20 +08:00
8e66b96221 Feat: Add documents limitation (#2662) 2024-03-03 12:45:06 +08:00
b5c1bb346c Add PubMed to tools (#2652) 2024-03-03 12:44:13 +08:00
e94b323e6c fix: use English as the default i18n language (#2663) 2024-03-03 12:35:28 +08:00
bc65ee10c0 bugfix: model str maybe empty (#2660) 2024-03-03 11:43:38 +08:00
2001483659 fix: default to allcategories when search params is not from recommended (#2653) 2024-03-02 17:11:25 +08:00
444aba55dd Feat/jpn support (#2651) 2024-03-02 13:47:51 +08:00
3f640b1037 fix: click tool item in app debug page would show detail (#2644) 2024-03-01 18:47:12 +08:00
b07084711c fix: missing description (#2643) 2024-03-01 18:19:04 +08:00
fa8ab2134f feat: displaying the tool description when clicking on a custom tool (#2642) 2024-03-01 17:58:38 +08:00
1a677da792 fix: custom tool max tool (#2641) 2024-03-01 16:43:47 +08:00
b6d61a818e fix: Replace path.join with urljoin. (#2631) 2024-03-01 13:07:15 +08:00
8495ffaa45 fix: typo in gaode tool (#2636) 2024-03-01 10:12:48 +08:00
dbd1d79770 FEAT: Add arxiv tool for searching scientific papers and articles fro… (#2632) 2024-02-29 19:46:10 +08:00
1910178199 fix: default mail type invalid in .env.example (#2628) 2024-02-29 17:29:48 +08:00
839a6a2c8a add logs for vdb-migrate command (#2626) 2024-02-29 16:24:51 +08:00
a769edbc89 Fix/custom tool any of (#2625) 2024-02-29 14:39:05 +08:00
57ffecd0e5 fix: remove unnecessary credentials of custom tool (#2621) 2024-02-29 12:58:12 +08:00
801d135390 generalize the generation of new collection name by dataset id (#2620) 2024-02-29 12:47:10 +08:00
0428f44113 chore: bump superlinter action from v5 to v6 (#2325) 2024-02-29 12:45:06 +08:00
7beff3fd5a fix: model parameter load presets config (#2622) 2024-02-29 12:43:46 +08:00
88a095e40e fix: wrong default model parameters when creating app (#2623) 2024-02-29 12:43:07 +08:00
dd961985f0 refactor: remove unused codes, move core/agent module into dataset retrieval feature (#2614) 2024-02-28 23:32:47 +08:00
d44b05a9e5 feat: support auth type like basic bearer and custom (#2613) 2024-02-28 23:19:08 +08:00
1703 changed files with 124973 additions and 190488 deletions

View File

@ -8,6 +8,8 @@ body:
label: Self Checks
description: "To make sure we get to you in time, please check the following :)"
options:
- label: This is only for bug report, if you would like to ask a quesion, please head to [Discussions](https://github.com/langgenius/dify/discussions/categories/general).
required: true
- label: I have searched for existing issues [search for existing issues](https://github.com/langgenius/dify/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit this report (我已阅读并同意 [Language Policy](https://github.com/langgenius/dify/issues/1542)).

View File

@ -1,8 +1,5 @@
blank_issues_enabled: false
contact_links:
- name: "\U0001F4DA Dify user documentation"
url: https://docs.dify.ai/getting-started/readme
about: Documentation for users of Dify
- name: "\U0001F4DA Dify dev documentation"
url: https://docs.dify.ai/getting-started/install-self-hosted
about: Documentation for people interested in developing and contributing for Dify
- name: "\U0001F4E7 Discussions"
url: https://github.com/langgenius/dify/discussions/categories/general
about: General discussions and request help from the community

View File

@ -1,22 +0,0 @@
name: "🤝 Help Wanted"
description: "Request help from the community [please use English :]"
labels:
- help-wanted
body:
- type: checkboxes
attributes:
label: Self Checks
description: "To make sure we get to you in time, please check the following :)"
options:
- label: I have searched for existing issues [search for existing issues](https://github.com/langgenius/dify/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit this report (我已阅读并同意 [Language Policy](https://github.com/langgenius/dify/issues/1542)).
required: true
- label: "Pleas do not modify this template :) and fill in all the required fields."
required: true
- type: textarea
attributes:
label: Provide a description of the help you need
placeholder: Briefly describe what you need help with.
validations:
required: true

View File

@ -12,6 +12,8 @@ Please delete options that are not relevant.
- [ ] New feature (non-breaking change which adds functionality)
- [ ] Breaking change (fix or feature that would cause existing functionality to not work as expected)
- [ ] This change requires a documentation update, included: [Dify Document](https://github.com/langgenius/dify-docs)
- [ ] Improvement, including but not limited to code refactoring, performance optimization, and UI/UX improvement
- [ ] Dependency upgrade
# How Has This Been Tested?

View File

@ -26,6 +26,7 @@ jobs:
HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL: b
HUGGINGFACE_EMBEDDINGS_ENDPOINT_URL: c
MOCK_SWITCH: true
CODE_MAX_STRING_LENGTH: 80000
steps:
- name: Checkout code
@ -41,5 +42,11 @@ jobs:
- name: Install dependencies
run: pip install -r ./api/requirements.txt
- name: Run pytest
- name: Run ModelRuntime
run: pytest api/tests/integration_tests/model_runtime/anthropic api/tests/integration_tests/model_runtime/azure_openai api/tests/integration_tests/model_runtime/openai api/tests/integration_tests/model_runtime/chatglm api/tests/integration_tests/model_runtime/google api/tests/integration_tests/model_runtime/xinference api/tests/integration_tests/model_runtime/huggingface_hub/test_llm.py
- name: Run Tool
run: pytest api/tests/integration_tests/tools/test_all_provider.py
- name: Run Workflow
run: pytest api/tests/integration_tests/workflow

View File

@ -1,17 +1,32 @@
name: Build and Push API Image
name: Build and Push API & Web
on:
push:
branches:
- 'main'
- 'deploy/dev'
- "main"
- "deploy/dev"
release:
types: [ published ]
types: [published]
env:
DOCKERHUB_USER: ${{ secrets.DOCKERHUB_USER }}
DOCKERHUB_TOKEN: ${{ secrets.DOCKERHUB_TOKEN }}
DIFY_WEB_IMAGE_NAME: ${{ vars.DIFY_WEB_IMAGE_NAME || 'langgenius/dify-web' }}
DIFY_API_IMAGE_NAME: ${{ vars.DIFY_API_IMAGE_NAME || 'langgenius/dify-api' }}
jobs:
build-and-push:
runs-on: ubuntu-latest
if: github.event.pull_request.draft == false
strategy:
matrix:
include:
- service_name: "web"
image_name_env: "DIFY_WEB_IMAGE_NAME"
context: "web"
- service_name: "api"
image_name_env: "DIFY_API_IMAGE_NAME"
context: "api"
steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
@ -22,16 +37,16 @@ jobs:
- name: Login to Docker Hub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USER }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
username: ${{ env.DOCKERHUB_USER }}
password: ${{ env.DOCKERHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v5
with:
images: langgenius/dify-api
images: ${{ env[matrix.image_name_env] }}
tags: |
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
type=raw,value=latest,enable=${{ github.ref == 'refs/heads/main' && startsWith(github.ref, 'refs/tags/') }}
type=ref,event=branch
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
type=raw,value=${{ github.ref_name }},enable=${{ startsWith(github.ref, 'refs/tags/') }}
@ -39,22 +54,11 @@ jobs:
- name: Build and push
uses: docker/build-push-action@v5
with:
context: "{{defaultContext}}:api"
context: "{{defaultContext}}:${{ matrix.context }}"
platforms: ${{ startsWith(github.ref, 'refs/tags/') && 'linux/amd64,linux/arm64' || 'linux/amd64' }}
build-args: |
COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
build-args: COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Deploy to server
if: github.ref == 'refs/heads/deploy/dev'
uses: appleboy/ssh-action@v0.1.8
with:
host: ${{ secrets.SSH_HOST }}
username: ${{ secrets.SSH_USER }}
key: ${{ secrets.SSH_PRIVATE_KEY }}
script: |
${{ secrets.SSH_SCRIPT }}

View File

@ -1,60 +0,0 @@
name: Build and Push WEB Image
on:
push:
branches:
- 'main'
- 'deploy/dev'
release:
types: [ published ]
jobs:
build-and-push:
runs-on: ubuntu-latest
if: github.event.pull_request.draft == false
steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USER }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v5
with:
images: langgenius/dify-web
tags: |
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
type=ref,event=branch
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
type=raw,value=${{ github.ref_name }},enable=${{ startsWith(github.ref, 'refs/tags/') }}
- name: Build and push
uses: docker/build-push-action@v5
with:
context: "{{defaultContext}}:web"
platforms: ${{ startsWith(github.ref, 'refs/tags/') && 'linux/amd64,linux/arm64' || 'linux/amd64' }}
build-args: |
COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Deploy to server
if: github.ref == 'refs/heads/deploy/dev'
uses: appleboy/ssh-action@v0.1.8
with:
host: ${{ secrets.SSH_HOST }}
username: ${{ secrets.SSH_USER }}
key: ${{ secrets.SSH_PRIVATE_KEY }}
script: |
${{ secrets.SSH_SCRIPT }}

24
.github/workflows/deploy-dev.yml vendored Normal file
View File

@ -0,0 +1,24 @@
name: Deploy Dev
on:
workflow_run:
workflows: ["Build and Push API & Web"]
branches:
- "deploy/dev"
types:
- completed
jobs:
deploy:
runs-on: ubuntu-latest
if: |
github.event.workflow_run.conclusion == 'success'
steps:
- name: Deploy to server
uses: appleboy/ssh-action@v0.1.8
with:
host: ${{ secrets.SSH_HOST }}
username: ${{ secrets.SSH_USER }}
key: ${{ secrets.SSH_PRIVATE_KEY }}
script: |
${{ vars.SSH_SCRIPT || secrets.SSH_SCRIPT }}

View File

@ -41,6 +41,8 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup NodeJS
uses: actions/setup-node@v4
@ -60,11 +62,10 @@ jobs:
yarn run lint
- name: Super-linter
uses: super-linter/super-linter/slim@v5
uses: super-linter/super-linter/slim@v6
env:
BASH_SEVERITY: warning
DEFAULT_BRANCH: main
ERROR_ON_MISSING_EXEC_BIT: true
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
IGNORE_GENERATED_FILES: true
IGNORE_GITIGNORED_FILES: true

View File

@ -1,26 +0,0 @@
name: Run Tool Pytest
on:
pull_request:
branches:
- main
jobs:
test:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: 'pip'
cache-dependency-path: ./api/requirements.txt
- name: Install dependencies
run: pip install -r ./api/requirements.txt
- name: Run pytest
run: pytest ./api/tests/integration_tests/tools/test_all_provider.py

6
.gitignore vendored
View File

@ -145,10 +145,14 @@ docker/volumes/db/data/*
docker/volumes/redis/data/*
docker/volumes/weaviate/*
docker/volumes/qdrant/*
docker/volumes/etcd/*
docker/volumes/minio/*
docker/volumes/milvus/*
sdks/python-client/build
sdks/python-client/dist
sdks/python-client/dify_client.egg-info
.vscode/*
!.vscode/launch.json
!.vscode/launch.json
pyrightconfig.json

View File

@ -155,4 +155,4 @@ And that's it! Once your PR is merged, you will be featured as a contributor in
## Getting Help
If you ever get stuck or got a burning question while contributing, simply shoot your queries our way via the related GitHub issue, or hop onto our [Discord](https://discord.gg/AhzKf7dNgk) for a quick chat.
If you ever get stuck or got a burning question while contributing, simply shoot your queries our way via the related GitHub issue, or hop onto our [Discord](https://discord.gg/8Tpq4AcN9c) for a quick chat.

View File

@ -152,4 +152,4 @@ Dify的后端使用Python编写使用[Flask](https://flask.palletsprojects.co
## 获取帮助
如果你在贡献过程中遇到困难或者有任何问题,可以通过相关的 GitHub 问题提出你的疑问,或者加入我们的 [Discord](https://discord.gg/AhzKf7dNgk) 进行快速交流。
如果你在贡献过程中遇到困难或者有任何问题,可以通过相关的 GitHub 问题提出你的疑问,或者加入我们的 [Discord](https://discord.gg/8Tpq4AcN9c) 进行快速交流。

22
LICENSE
View File

@ -1,24 +1,26 @@
# Dify Open Source License
# Open Source License
The Dify project is licensed under the Apache License 2.0, with the following additional conditions:
Dify is licensed under the Apache License 2.0, with the following additional conditions:
1. Dify is permitted to be used for commercialization, such as using Dify as a "backend-as-a-service" for your other applications, or delivering it to enterprises as an application development platform. However, when the following conditions are met, you must contact the producer to obtain a commercial license:
1. Dify may be utilized commercially, including as a backend service for other applications or as an application development platform for enterprises. Should the conditions below be met, a commercial license must be obtained from the producer:
a. Multi-tenant SaaS service: Unless explicitly authorized by Dify in writing, you may not use the Dify.AI source code to operate a multi-tenant SaaS service that is similar to the Dify.AI service edition.
b. LOGO and copyright information: In the process of using Dify, you may not remove or modify the LOGO or copyright information in the Dify console.
a. Multi-tenant SaaS service: Unless explicitly authorized by Dify in writing, you may not use the Dify source code to operate a multi-tenant environment.
- Tenant Definition: Within the context of Dify, one tenant corresponds to one workspace. The workspace provides a separated area for each tenant's data and configurations.
b. LOGO and copyright information: In the process of using Dify's frontend components, you may not remove or modify the LOGO or copyright information in the Dify console or applications. This restriction is inapplicable to uses of Dify that do not involve its frontend components.
Please contact business@dify.ai by email to inquire about licensing matters.
2. As a contributor, you should agree that your contributed code:
2. As a contributor, you should agree that:
a. The producer can adjust the open-source agreement to be more strict or relaxed.
b. Can be used for commercial purposes, such as Dify's cloud business.
a. The producer can adjust the open-source agreement to be more strict or relaxed as deemed necessary.
b. Your contributed code may be used for commercial purposes, including but not limited to its cloud business operations.
Apart from this, all other rights and restrictions follow the Apache License 2.0. If you need more detailed information, you can refer to the full version of Apache License 2.0.
Apart from the specific conditions mentioned above, all other rights and restrictions follow the Apache License 2.0. Detailed information about the Apache License 2.0 can be found at http://www.apache.org/licenses/LICENSE-2.0.
The interactive design of this product is protected by appearance patent.
© 2023 LangGenius, Inc.
© 2024 LangGenius, Inc.
----------

43
Makefile Normal file
View File

@ -0,0 +1,43 @@
# Variables
DOCKER_REGISTRY=langgenius
WEB_IMAGE=$(DOCKER_REGISTRY)/dify-web
API_IMAGE=$(DOCKER_REGISTRY)/dify-api
VERSION=latest
# Build Docker images
build-web:
@echo "Building web Docker image: $(WEB_IMAGE):$(VERSION)..."
docker build -t $(WEB_IMAGE):$(VERSION) ./web
@echo "Web Docker image built successfully: $(WEB_IMAGE):$(VERSION)"
build-api:
@echo "Building API Docker image: $(API_IMAGE):$(VERSION)..."
docker build -t $(API_IMAGE):$(VERSION) ./api
@echo "API Docker image built successfully: $(API_IMAGE):$(VERSION)"
# Push Docker images
push-web:
@echo "Pushing web Docker image: $(WEB_IMAGE):$(VERSION)..."
docker push $(WEB_IMAGE):$(VERSION)
@echo "Web Docker image pushed successfully: $(WEB_IMAGE):$(VERSION)"
push-api:
@echo "Pushing API Docker image: $(API_IMAGE):$(VERSION)..."
docker push $(API_IMAGE):$(VERSION)
@echo "API Docker image pushed successfully: $(API_IMAGE):$(VERSION)"
# Build all images
build-all: build-web build-api
# Push all images
push-all: push-web push-api
build-push-api: build-api push-api
build-push-web: build-web push-web
# Build and push all images
build-push-all: build-all push-all
@echo "All Docker images have been built and pushed."
# Phony targets
.PHONY: build-web build-api push-web push-api build-all push-all build-push-all

View File

@ -1,4 +1,4 @@
[![](./images/describe.png)](https://dify.ai)
[![](./images/GitHub_README_cover.png)](https://dify.ai)
<p align="center">
<a href="./README.md">English</a> |
<a href="./README_CN.md">简体中文</a> |
@ -22,23 +22,12 @@
</p>
<p align="center">
<a href="https://discord.com/events/1082486657678311454/1211724120996188220" target="_blank">
Dify.AI Upcoming Meetup Event [👉 Click to Join the Event Here 👈]
</a>
<ul align="center" style="text-decoration: none; list-style: none;">
<li> US EST: 09:00 (9:00 AM)</li>
<li> CET: 15:00 (3:00 PM)</li>
<li> CST: 22:00 (10:00 PM)</li>
</ul>
</p>
<p align="center">
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
<a href="https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6" target="_blank">
📌 Check out Dify Premium on AWS and deploy it to your own AWS VPC with one-click.
</a>
</p>
**Dify** is an LLM application development platform that has helped built over **100,000** applications. It integrates BaaS and LLMOps, covering the essential tech stack for building generative AI-native applications, including a built-in RAG engine. Dify allows you to **deploy your own version of Assistants API and GPTs, based on any LLMs.**
**Dify** is an open-source LLM app development platform. Dify's intuitive interface combines a RAG pipeline, AI workflow orchestration, agent capabilities, model management, observability features and more, letting you quickly go from prototype to production.
![](./images/demo.png)
@ -48,6 +37,9 @@
You can try out [Dify.AI Cloud](https://dify.ai) now. It provides all the capabilities of the self-deployed version, and includes 200 free requests to OpenAI GPT-3.5.
### Looking to purchase via AWS?
Check out [Dify Premium on AWS](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6) and deploy it to your own AWS VPC with one-click.
## Dify vs. LangChain vs. Assistants API
| Feature | Dify.AI | Assistants API | LangChain |
@ -108,10 +100,12 @@ docker compose up -d
After running, you can access the Dify dashboard in your browser at [http://localhost/install](http://localhost/install) and start the initialization installation process.
### Helm Chart
#### Deploy with Helm Chart
Big thanks to @BorisPolonsky for providing us with a [Helm Chart](https://helm.sh/) version, which allows Dify to be deployed on Kubernetes.
You can go to https://github.com/BorisPolonsky/dify-helm for deployment information.
[Helm Chart](https://helm.sh/) version, which allows Dify to be deployed on Kubernetes.
- [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
### Configuration
@ -128,6 +122,10 @@ For those who'd like to contribute code, see our [Contribution Guide](https://gi
At the same time, please consider supporting Dify by sharing it on social media and at events and conferences.
### Projects made by community
- [Chatbot Chrome Extension by @charli117](https://github.com/langgenius/chatbot-chrome-extension)
### Contributors
<a href="https://github.com/langgenius/dify/graphs/contributors">
@ -136,11 +134,11 @@ At the same time, please consider supporting Dify by sharing it on social media
### Translations
We are looking for contributors to help with translating Dify to languages other than Mandarin or English. If you are interested in helping, please see the [i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README_EN.md) for more information, and leave us a comment in the `global-users` channel of our [Discord Community Server](https://discord.gg/AhzKf7dNgk).
We are looking for contributors to help with translating Dify to languages other than Mandarin or English. If you are interested in helping, please see the [i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README.md) for more information, and leave us a comment in the `global-users` channel of our [Discord Community Server](https://discord.gg/8Tpq4AcN9c).
## Community & Support
* [Canny](https://feedback.dify.ai/). Best for: sharing feedback and checking out our feature roadmap.
* [Github Discussion](https://github.com/langgenius/dify/discussions). Best for: sharing feedback and checking out our feature roadmap.
* [GitHub Issues](https://github.com/langgenius/dify/issues). Best for: bugs you encounter using Dify.AI, and feature proposals. See our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Email Support](mailto:hello@dify.ai?subject=[GitHub]Questions%20About%20Dify). Best for: questions you have about using Dify.AI.
* [Discord](https://discord.gg/FngNHpbcY7). Best for: sharing your applications and hanging out with the community.

View File

@ -94,10 +94,12 @@ docker compose up -d
运行后,可以在浏览器上访问 [http://localhost/install](http://localhost/install) 进入 Dify 控制台并开始初始化安装操作。
### Helm Chart
#### 使用 Helm Chart 部署
非常感谢 @BorisPolonsky 为我们提供了一个 [Helm Chart](https://helm.sh/) 版本,可以在 Kubernetes 上部署 Dify。
您可以前往 https://github.com/BorisPolonsky/dify-helm 来获取部署信息。
使用 [Helm Chart](https://helm.sh/) 版本,可以在 Kubernetes 上部署 Dify。
- [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
### 配置
@ -112,6 +114,7 @@ docker compose up -d
我们欢迎您为 Dify 做出贡献,以帮助改善 Dify。包括提交代码、问题、新想法或分享您基于 Dify 创建的有趣且有用的 AI 应用程序。同时,我们也欢迎您在不同的活动、会议和社交媒体上分享 Dify。
- [Github Discussion](https://github.com/langgenius/dify/discussions). 👉:分享您的应用程序并与社区交流。
- [GitHub Issues](https://github.com/langgenius/dify/issues)。👉:使用 Dify.AI 时遇到的错误和问题,请参阅[贡献指南](CONTRIBUTING.md)。
- [电子邮件支持](mailto:hello@dify.ai?subject=[GitHub]Questions%20About%20Dify)。👉:关于使用 Dify.AI 的问题。
- [Discord](https://discord.gg/FngNHpbcY7)。👉:分享您的应用程序并与社区交流。

View File

@ -39,7 +39,7 @@ DB_DATABASE=dify
# Storage configuration
# use for store upload files, private keys...
# storage type: local, s3
# storage type: local, s3, azure-blob
STORAGE_TYPE=local
STORAGE_LOCAL_PATH=storage
S3_ENDPOINT=https://your-bucket-name.storage.s3.clooudflare.com
@ -47,6 +47,11 @@ S3_BUCKET_NAME=your-bucket-name
S3_ACCESS_KEY=your-access-key
S3_SECRET_KEY=your-secret-key
S3_REGION=your-region
# Azure Blob Storage configuration
AZURE_BLOB_ACCOUNT_NAME=your-account-name
AZURE_BLOB_ACCOUNT_KEY=your-account-key
AZURE_BLOB_CONTAINER_NAME=yout-container-name
AZURE_BLOB_ACCOUNT_URL=https://<your_account_name>.blob.core.windows.net
# CORS configuration
WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
@ -82,7 +87,7 @@ UPLOAD_IMAGE_FILE_SIZE_LIMIT=10
MULTIMODAL_SEND_IMAGE_FORMAT=base64
# Mail configuration, support: resend, smtp
MAIL_TYPE=resend
MAIL_TYPE=
MAIL_DEFAULT_SEND_FROM=no-reply <no-reply@dify.ai>
RESEND_API_KEY=
RESEND_API_URL=https://api.resend.com
@ -131,4 +136,16 @@ UNSTRUCTURED_API_URL=
SSRF_PROXY_HTTP_URL=
SSRF_PROXY_HTTPS_URL=
BATCH_UPLOAD_LIMIT=10
BATCH_UPLOAD_LIMIT=10
KEYWORD_DATA_SOURCE_TYPE=database
# CODE EXECUTION CONFIGURATION
CODE_EXECUTION_ENDPOINT=http://127.0.0.1:8194
CODE_EXECUTION_API_KEY=dify-sandbox
CODE_MAX_NUMBER=9223372036854775807
CODE_MIN_NUMBER=-9223372036854775808
CODE_MAX_STRING_LENGTH=80000
TEMPLATE_TRANSFORM_MAX_LENGTH=80000
CODE_MAX_STRING_ARRAY_LENGTH=30
CODE_MAX_OBJECT_ARRAY_LENGTH=30
CODE_MAX_NUMBER_ARRAY_LENGTH=1000

View File

@ -6,7 +6,7 @@
"configurations": [
{
"name": "Python: Celery",
"type": "python",
"type": "debugpy",
"request": "launch",
"module": "celery",
"justMyCode": true,
@ -21,7 +21,7 @@
},
{
"name": "Python: Flask",
"type": "python",
"type": "debugpy",
"request": "launch",
"module": "flask",
"env": {

View File

@ -5,7 +5,7 @@
1. Start the docker-compose stack
The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using `docker-compose`.
```bash
cd ../docker
docker-compose -f docker-compose.middleware.yaml -p dify up -d
@ -15,9 +15,9 @@
3. Generate a `SECRET_KEY` in the `.env` file.
```bash
openssl rand -base64 42
sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
```
3.5 If you use annaconda, create a new environment and activate it
3.5 If you use Anaconda, create a new environment and activate it
```bash
conda create --name dify python=3.10
conda activate dify
@ -46,7 +46,7 @@
```
pip install -r requirements.txt --upgrade --force-reinstall
```
6. Start backend:
```bash
flask run --host 0.0.0.0 --port=5001 --debug

View File

@ -26,6 +26,7 @@ from config import CloudEditionConfig, Config
from extensions import (
ext_celery,
ext_code_based_extension,
ext_compress,
ext_database,
ext_hosting_provider,
ext_login,
@ -96,6 +97,7 @@ def create_app(test_config=None) -> Flask:
def initialize_extensions(app):
# Since the application instance is now created, pass it to each Flask
# extension instance to bind it to the Flask application instance (app)
ext_compress.init_app(app)
ext_code_based_extension.init()
ext_database.init_app(app)
ext_migrate.init(app, db)

View File

@ -15,7 +15,7 @@ from libs.rsa import generate_key_pair
from models.account import Tenant
from models.dataset import Dataset, DatasetCollectionBinding, DocumentSegment
from models.dataset import Document as DatasetDocument
from models.model import Account
from models.model import Account, App, AppAnnotationSetting, AppMode, Conversation, MessageAnnotation
from models.provider import Provider, ProviderModel
@ -109,28 +109,138 @@ def reset_encrypt_key_pair():
click.echo(click.style('Sorry, only support SELF_HOSTED mode.', fg='red'))
return
tenant = db.session.query(Tenant).first()
if not tenant:
click.echo(click.style('Sorry, no workspace found. Please enter /install to initialize.', fg='red'))
return
tenants = db.session.query(Tenant).all()
for tenant in tenants:
if not tenant:
click.echo(click.style('Sorry, no workspace found. Please enter /install to initialize.', fg='red'))
return
tenant.encrypt_public_key = generate_key_pair(tenant.id)
tenant.encrypt_public_key = generate_key_pair(tenant.id)
db.session.query(Provider).filter(Provider.provider_type == 'custom').delete()
db.session.query(ProviderModel).delete()
db.session.commit()
db.session.query(Provider).filter(Provider.provider_type == 'custom', Provider.tenant_id == tenant.id).delete()
db.session.query(ProviderModel).filter(ProviderModel.tenant_id == tenant.id).delete()
db.session.commit()
click.echo(click.style('Congratulations! '
'the asymmetric key pair of workspace {} has been reset.'.format(tenant.id), fg='green'))
click.echo(click.style('Congratulations! '
'the asymmetric key pair of workspace {} has been reset.'.format(tenant.id), fg='green'))
@click.command('vdb-migrate', help='migrate vector db.')
def vdb_migrate():
@click.option('--scope', default='all', prompt=False, help='The scope of vector database to migrate, Default is All.')
def vdb_migrate(scope: str):
if scope in ['knowledge', 'all']:
migrate_knowledge_vector_database()
if scope in ['annotation', 'all']:
migrate_annotation_vector_database()
def migrate_annotation_vector_database():
"""
Migrate annotation datas to target vector database .
"""
click.echo(click.style('Start migrate annotation data.', fg='green'))
create_count = 0
skipped_count = 0
total_count = 0
page = 1
while True:
try:
# get apps info
apps = db.session.query(App).filter(
App.status == 'normal'
).order_by(App.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for app in apps:
total_count = total_count + 1
click.echo(f'Processing the {total_count} app {app.id}. '
+ f'{create_count} created, {skipped_count} skipped.')
try:
click.echo('Create app annotation index: {}'.format(app.id))
app_annotation_setting = db.session.query(AppAnnotationSetting).filter(
AppAnnotationSetting.app_id == app.id
).first()
if not app_annotation_setting:
skipped_count = skipped_count + 1
click.echo('App annotation setting is disabled: {}'.format(app.id))
continue
# get dataset_collection_binding info
dataset_collection_binding = db.session.query(DatasetCollectionBinding).filter(
DatasetCollectionBinding.id == app_annotation_setting.collection_binding_id
).first()
if not dataset_collection_binding:
click.echo('App annotation collection binding is not exist: {}'.format(app.id))
continue
annotations = db.session.query(MessageAnnotation).filter(MessageAnnotation.app_id == app.id).all()
dataset = Dataset(
id=app.id,
tenant_id=app.tenant_id,
indexing_technique='high_quality',
embedding_model_provider=dataset_collection_binding.provider_name,
embedding_model=dataset_collection_binding.model_name,
collection_binding_id=dataset_collection_binding.id
)
documents = []
if annotations:
for annotation in annotations:
document = Document(
page_content=annotation.question,
metadata={
"annotation_id": annotation.id,
"app_id": app.id,
"doc_id": annotation.id
}
)
documents.append(document)
vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
click.echo(f"Start to migrate annotation, app_id: {app.id}.")
try:
vector.delete()
click.echo(
click.style(f'Successfully delete vector index for app: {app.id}.',
fg='green'))
except Exception as e:
click.echo(
click.style(f'Failed to delete vector index for app {app.id}.',
fg='red'))
raise e
if documents:
try:
click.echo(click.style(
f'Start to created vector index with {len(documents)} annotations for app {app.id}.',
fg='green'))
vector.create(documents)
click.echo(
click.style(f'Successfully created vector index for app {app.id}.', fg='green'))
except Exception as e:
click.echo(click.style(f'Failed to created vector index for app {app.id}.', fg='red'))
raise e
click.echo(f'Successfully migrated app annotation {app.id}.')
create_count += 1
except Exception as e:
click.echo(
click.style('Create app annotation index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
continue
click.echo(
click.style(f'Congratulations! Create {create_count} app annotation indexes, and skipped {skipped_count} apps.',
fg='green'))
def migrate_knowledge_vector_database():
"""
Migrate vector database datas to target vector database .
"""
click.echo(click.style('Start migrate vector db.', fg='green'))
create_count = 0
skipped_count = 0
total_count = 0
config = current_app.config
vector_type = config.get('VECTOR_STORE')
page = 1
@ -143,14 +253,19 @@ def vdb_migrate():
page += 1
for dataset in datasets:
total_count = total_count + 1
click.echo(f'Processing the {total_count} dataset {dataset.id}. '
+ f'{create_count} created, {skipped_count} skipped.')
try:
click.echo('Create dataset vdb index: {}'.format(dataset.id))
if dataset.index_struct_dict:
if dataset.index_struct_dict['type'] == vector_type:
skipped_count = skipped_count + 1
continue
collection_name = ''
if vector_type == "weaviate":
dataset_id = dataset.id
collection_name = "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": 'weaviate',
"vector_store": {"class_prefix": collection_name}
@ -167,7 +282,7 @@ def vdb_migrate():
raise ValueError('Dataset Collection Bindings is not exist!')
else:
dataset_id = dataset.id
collection_name = "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": 'qdrant',
"vector_store": {"class_prefix": collection_name}
@ -176,7 +291,7 @@ def vdb_migrate():
elif vector_type == "milvus":
dataset_id = dataset.id
collection_name = "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": 'milvus',
"vector_store": {"class_prefix": collection_name}
@ -186,11 +301,17 @@ def vdb_migrate():
raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.")
vector = Vector(dataset)
click.echo(f"vdb_migrate {dataset.id}")
click.echo(f"Start to migrate dataset {dataset.id}.")
try:
vector.delete()
click.echo(
click.style(f'Successfully delete vector index {collection_name} for dataset {dataset.id}.',
fg='green'))
except Exception as e:
click.echo(
click.style(f'Failed to delete vector index {collection_name} for dataset {dataset.id}.',
fg='red'))
raise e
dataset_documents = db.session.query(DatasetDocument).filter(
@ -201,6 +322,7 @@ def vdb_migrate():
).all()
documents = []
segments_count = 0
for dataset_document in dataset_documents:
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
@ -220,15 +342,22 @@ def vdb_migrate():
)
documents.append(document)
segments_count = segments_count + 1
if documents:
try:
click.echo(click.style(
f'Start to created vector index with {len(documents)} documents of {segments_count} segments for dataset {dataset.id}.',
fg='green'))
vector.create(documents)
click.echo(
click.style(f'Successfully created vector index for dataset {dataset.id}.', fg='green'))
except Exception as e:
click.echo(click.style(f'Failed to created vector index for dataset {dataset.id}.', fg='red'))
raise e
click.echo(f"Dataset {dataset.id} create successfully.")
db.session.add(dataset)
db.session.commit()
click.echo(f'Successfully migrated dataset {dataset.id}.')
create_count += 1
except Exception as e:
db.session.rollback()
@ -237,7 +366,70 @@ def vdb_migrate():
fg='red'))
continue
click.echo(click.style('Congratulations! Create {} dataset indexes.'.format(create_count), fg='green'))
click.echo(
click.style(f'Congratulations! Create {create_count} dataset indexes, and skipped {skipped_count} datasets.',
fg='green'))
@click.command('convert-to-agent-apps', help='Convert Agent Assistant to Agent App.')
def convert_to_agent_apps():
"""
Convert Agent Assistant to Agent App.
"""
click.echo(click.style('Start convert to agent apps.', fg='green'))
proceeded_app_ids = []
while True:
# fetch first 1000 apps
sql_query = """SELECT a.id AS id FROM apps a
INNER JOIN app_model_configs am ON a.app_model_config_id=am.id
WHERE a.mode = 'chat'
AND am.agent_mode is not null
AND (
am.agent_mode like '%"strategy": "function_call"%'
OR am.agent_mode like '%"strategy": "react"%'
)
AND (
am.agent_mode like '{"enabled": true%'
OR am.agent_mode like '{"max_iteration": %'
) ORDER BY a.created_at DESC LIMIT 1000
"""
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query))
apps = []
for i in rs:
app_id = str(i.id)
if app_id not in proceeded_app_ids:
proceeded_app_ids.append(app_id)
app = db.session.query(App).filter(App.id == app_id).first()
apps.append(app)
if len(apps) == 0:
break
for app in apps:
click.echo('Converting app: {}'.format(app.id))
try:
app.mode = AppMode.AGENT_CHAT.value
db.session.commit()
# update conversation mode to agent
db.session.query(Conversation).filter(Conversation.app_id == app.id).update(
{Conversation.mode: AppMode.AGENT_CHAT.value}
)
db.session.commit()
click.echo(click.style('Converted app: {}'.format(app.id), fg='green'))
except Exception as e:
click.echo(
click.style('Convert app error: {} {}'.format(e.__class__.__name__,
str(e)), fg='red'))
click.echo(click.style('Congratulations! Converted {} agent apps.'.format(len(proceeded_app_ids)), fg='green'))
def register_commands(app):
@ -245,3 +437,4 @@ def register_commands(app):
app.cli.add_command(reset_email)
app.cli.add_command(reset_encrypt_key_pair)
app.cli.add_command(vdb_migrate)
app.cli.add_command(convert_to_agent_apps)

View File

@ -22,11 +22,13 @@ DEFAULTS = {
'SERVICE_API_URL': 'https://api.dify.ai',
'APP_WEB_URL': 'https://udify.app',
'FILES_URL': '',
'S3_ADDRESS_STYLE': 'auto',
'STORAGE_TYPE': 'local',
'STORAGE_LOCAL_PATH': 'storage',
'CHECK_UPDATE_URL': 'https://updates.dify.ai',
'DEPLOY_ENV': 'PRODUCTION',
'SQLALCHEMY_POOL_SIZE': 30,
'SQLALCHEMY_MAX_OVERFLOW': 10,
'SQLALCHEMY_POOL_RECYCLE': 3600,
'SQLALCHEMY_ECHO': 'False',
'SENTRY_TRACES_SAMPLE_RATE': 1.0,
@ -48,6 +50,8 @@ DEFAULTS = {
'HOSTED_ANTHROPIC_PAID_ENABLED': 'False',
'HOSTED_MODERATION_ENABLED': 'False',
'HOSTED_MODERATION_PROVIDERS': '',
'HOSTED_FETCH_APP_TEMPLATES_MODE': 'remote',
'HOSTED_FETCH_APP_TEMPLATES_REMOTE_DOMAIN': 'https://tmpl.dify.ai',
'CLEAN_DAY_SETTING': 30,
'UPLOAD_FILE_SIZE_LIMIT': 15,
'UPLOAD_FILE_BATCH_LIMIT': 5,
@ -59,7 +63,11 @@ DEFAULTS = {
'CAN_REPLACE_LOGO': 'False',
'ETL_TYPE': 'dify',
'KEYWORD_STORE': 'jieba',
'BATCH_UPLOAD_LIMIT': 20
'BATCH_UPLOAD_LIMIT': 20,
'CODE_EXECUTION_ENDPOINT': '',
'CODE_EXECUTION_API_KEY': '',
'TOOL_ICON_CACHE_MAX_AGE': 3600,
'KEYWORD_DATA_SOURCE_TYPE': 'database',
}
@ -90,7 +98,7 @@ class Config:
# ------------------------
# General Configurations.
# ------------------------
self.CURRENT_VERSION = "0.5.7"
self.CURRENT_VERSION = "0.6.0"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
@ -146,6 +154,7 @@ class Config:
self.SQLALCHEMY_DATABASE_URI = f"postgresql://{db_credentials['DB_USERNAME']}:{db_credentials['DB_PASSWORD']}@{db_credentials['DB_HOST']}:{db_credentials['DB_PORT']}/{db_credentials['DB_DATABASE']}{db_extras}"
self.SQLALCHEMY_ENGINE_OPTIONS = {
'pool_size': int(get_env('SQLALCHEMY_POOL_SIZE')),
'max_overflow': int(get_env('SQLALCHEMY_MAX_OVERFLOW')),
'pool_recycle': int(get_env('SQLALCHEMY_POOL_RECYCLE'))
}
@ -180,6 +189,11 @@ class Config:
self.S3_ACCESS_KEY = get_env('S3_ACCESS_KEY')
self.S3_SECRET_KEY = get_env('S3_SECRET_KEY')
self.S3_REGION = get_env('S3_REGION')
self.S3_ADDRESS_STYLE = get_env('S3_ADDRESS_STYLE')
self.AZURE_BLOB_ACCOUNT_NAME = get_env('AZURE_BLOB_ACCOUNT_NAME')
self.AZURE_BLOB_ACCOUNT_KEY = get_env('AZURE_BLOB_ACCOUNT_KEY')
self.AZURE_BLOB_CONTAINER_NAME = get_env('AZURE_BLOB_CONTAINER_NAME')
self.AZURE_BLOB_ACCOUNT_URL = get_env('AZURE_BLOB_ACCOUNT_URL')
# ------------------------
# Vector Store Configurations.
@ -286,6 +300,10 @@ class Config:
self.HOSTED_MODERATION_ENABLED = get_bool_env('HOSTED_MODERATION_ENABLED')
self.HOSTED_MODERATION_PROVIDERS = get_env('HOSTED_MODERATION_PROVIDERS')
# fetch app templates mode, remote, builtin, db(only for dify SaaS), default: remote
self.HOSTED_FETCH_APP_TEMPLATES_MODE = get_env('HOSTED_FETCH_APP_TEMPLATES_MODE')
self.HOSTED_FETCH_APP_TEMPLATES_REMOTE_DOMAIN = get_env('HOSTED_FETCH_APP_TEMPLATES_REMOTE_DOMAIN')
self.ETL_TYPE = get_env('ETL_TYPE')
self.UNSTRUCTURED_API_URL = get_env('UNSTRUCTURED_API_URL')
self.BILLING_ENABLED = get_bool_env('BILLING_ENABLED')
@ -293,6 +311,13 @@ class Config:
self.BATCH_UPLOAD_LIMIT = get_env('BATCH_UPLOAD_LIMIT')
self.CODE_EXECUTION_ENDPOINT = get_env('CODE_EXECUTION_ENDPOINT')
self.CODE_EXECUTION_API_KEY = get_env('CODE_EXECUTION_API_KEY')
self.API_COMPRESSION_ENABLED = get_bool_env('API_COMPRESSION_ENABLED')
self.TOOL_ICON_CACHE_MAX_AGE = get_env('TOOL_ICON_CACHE_MAX_AGE')
self.KEYWORD_DATA_SOURCE_TYPE = get_env('KEYWORD_DATA_SOURCE_TYPE')
class CloudEditionConfig(Config):

View File

@ -1,8 +1,6 @@
import json
from models.model import AppModelConfig
languages = ['en-US', 'zh-Hans', 'pt-BR', 'es-ES', 'fr-FR', 'de-DE', 'ja-JP', 'ko-KR', 'ru-RU', 'it-IT', 'uk-UA']
languages = ['en-US', 'zh-Hans', 'pt-BR', 'es-ES', 'fr-FR', 'de-DE', 'ja-JP', 'ko-KR', 'ru-RU', 'it-IT', 'uk-UA', 'vi-VN']
language_timezone_mapping = {
'en-US': 'America/New_York',
@ -16,6 +14,7 @@ language_timezone_mapping = {
'ru-RU': 'Europe/Moscow',
'it-IT': 'Europe/Rome',
'uk-UA': 'Europe/Kyiv',
'vi-VN': 'Asia/Ho_Chi_Minh',
}
@ -26,439 +25,3 @@ def supported_language(lang):
error = ('{lang} is not a valid language.'
.format(lang=lang))
raise ValueError(error)
user_input_form_template = {
"en-US": [
{
"paragraph": {
"label": "Query",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
"zh-Hans": [
{
"paragraph": {
"label": "查询内容",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
"pt-BR": [
{
"paragraph": {
"label": "Consulta",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
"es-ES": [
{
"paragraph": {
"label": "Consulta",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
"ua-UK": [
{
"paragraph": {
"label": "Запит",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
}
demo_model_templates = {
'en-US': [
{
'name': 'Translation Assistant',
'icon': '',
'icon_background': '',
'description': 'A multilingual translator that provides translation capabilities in multiple languages, translating user input into the language they need.',
'mode': 'completion',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo-instruct',
configs={
'prompt_template': "Please translate the following text into {{target_language}}:\n",
'prompt_variables': [
{
"key": "target_language",
"name": "Target Language",
"description": "The language you want to translate into.",
"type": "select",
"default": "Chinese",
'options': [
'Chinese',
'English',
'Japanese',
'French',
'Russian',
'German',
'Spanish',
'Korean',
'Italian',
]
}
],
'completion_params': {
'max_token': 1000,
'temperature': 0,
'top_p': 0,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='',
suggested_questions=None,
pre_prompt="Please translate the following text into {{target_language}}:\n{{query}}\ntranslate:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=json.dumps([
{
"select": {
"label": "Target Language",
"variable": "target_language",
"description": "The language you want to translate into.",
"default": "Chinese",
"required": True,
'options': [
'Chinese',
'English',
'Japanese',
'French',
'Russian',
'German',
'Spanish',
'Korean',
'Italian',
]
}
}, {
"paragraph": {
"label": "Query",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
},
{
'name': 'AI Front-end Interviewer',
'icon': '',
'icon_background': '',
'description': 'A simulated front-end interviewer that tests the skill level of front-end development through questioning.',
'mode': 'chat',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo',
configs={
'introduction': 'Hi, welcome to our interview. I am the interviewer for this technology company, and I will test your web front-end development skills. Next, I will ask you some technical questions. Please answer them as thoroughly as possible. ',
'prompt_template': "You will play the role of an interviewer for a technology company, examining the user's web front-end development skills and posing 5-10 sharp technical questions.\n\nPlease note:\n- Only ask one question at a time.\n- After the user answers a question, ask the next question directly, without trying to correct any mistakes made by the candidate.\n- If you think the user has not answered correctly for several consecutive questions, ask fewer questions.\n- After asking the last question, you can ask this question: Why did you leave your last job? After the user answers this question, please express your understanding and support.\n",
'prompt_variables': [],
'completion_params': {
'max_token': 300,
'temperature': 0.8,
'top_p': 0.9,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='Hi, welcome to our interview. I am the interviewer for this technology company, and I will test your web front-end development skills. Next, I will ask you some technical questions. Please answer them as thoroughly as possible. ',
suggested_questions=None,
pre_prompt="You will play the role of an interviewer for a technology company, examining the user's web front-end development skills and posing 5-10 sharp technical questions.\n\nPlease note:\n- Only ask one question at a time.\n- After the user answers a question, ask the next question directly, without trying to correct any mistakes made by the candidate.\n- If you think the user has not answered correctly for several consecutive questions, ask fewer questions.\n- After asking the last question, you can ask this question: Why did you leave your last job? After the user answers this question, please express your understanding and support.\n",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,
"top_p": 0.9,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=None
)
}
],
'zh-Hans': [
{
'name': '翻译助手',
'icon': '',
'icon_background': '',
'description': '一个多语言翻译器,提供多种语言翻译能力,将用户输入的文本翻译成他们需要的语言。',
'mode': 'completion',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo-instruct',
configs={
'prompt_template': "请将以下文本翻译为{{target_language}}:\n",
'prompt_variables': [
{
"key": "target_language",
"name": "目标语言",
"description": "翻译的目标语言",
"type": "select",
"default": "中文",
"options": [
"中文",
"英文",
"日语",
"法语",
"俄语",
"德语",
"西班牙语",
"韩语",
"意大利语",
]
}
],
'completion_params': {
'max_token': 1000,
'temperature': 0,
'top_p': 0,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='',
suggested_questions=None,
pre_prompt="请将以下文本翻译为{{target_language}}:\n{{query}}\n翻译:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=json.dumps([
{
"select": {
"label": "目标语言",
"variable": "target_language",
"description": "翻译的目标语言",
"default": "中文",
"required": True,
'options': [
"中文",
"英文",
"日语",
"法语",
"俄语",
"德语",
"西班牙语",
"韩语",
"意大利语",
]
}
}, {
"paragraph": {
"label": "文本内容",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
},
{
'name': 'AI 前端面试官',
'icon': '',
'icon_background': '',
'description': '一个模拟的前端面试官,通过提问的方式对前端开发的技能水平进行检验。',
'mode': 'chat',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo',
configs={
'introduction': '你好,欢迎来参加我们的面试,我是这家科技公司的面试官,我将考察你的 Web 前端开发技能。接下来我会向您提出一些技术问题,请您尽可能详尽地回答。',
'prompt_template': "你将扮演一个科技公司的面试官,考察用户作为候选人的 Web 前端开发水平,提出 5-10 个犀利的技术问题。\n\n请注意:\n- 每次只问一个问题\n- 用户回答问题后请直接问下一个问题,而不要试图纠正候选人的错误;\n- 如果你认为用户连续几次回答的都不对,就少问一点;\n- 问完最后一个问题后,你可以问这样一个问题:上一份工作为什么离职?用户回答该问题后,请表示理解与支持。\n",
'prompt_variables': [],
'completion_params': {
'max_token': 300,
'temperature': 0.8,
'top_p': 0.9,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='你好,欢迎来参加我们的面试,我是这家科技公司的面试官,我将考察你的 Web 前端开发技能。接下来我会向您提出一些技术问题,请您尽可能详尽地回答。',
suggested_questions=None,
pre_prompt="你将扮演一个科技公司的面试官,考察用户作为候选人的 Web 前端开发水平,提出 5-10 个犀利的技术问题。\n\n请注意:\n- 每次只问一个问题\n- 用户回答问题后请直接问下一个问题,而不要试图纠正候选人的错误;\n- 如果你认为用户连续几次回答的都不对,就少问一点;\n- 问完最后一个问题后,你可以问这样一个问题:上一份工作为什么离职?用户回答该问题后,请表示理解与支持。\n",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,
"top_p": 0.9,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=None
)
}
],
'uk-UA': [{
"name": "Помічник перекладу",
"icon": "",
"icon_background": "",
"description": "Багатомовний перекладач, який надає можливості перекладу різними мовами, перекладаючи введені користувачем дані на потрібну мову.",
"mode": "completion",
"model_config": AppModelConfig(
provider="openai",
model_id="gpt-3.5-turbo-instruct",
configs={
"prompt_template": "Будь ласка, перекладіть наступний текст на {{target_language}}:\n",
"prompt_variables": [
{
"key": "target_language",
"name": "Цільова мова",
"description": "Мова, на яку ви хочете перекласти.",
"type": "select",
"default": "Ukrainian",
"options": [
"Chinese",
"English",
"Japanese",
"French",
"Russian",
"German",
"Spanish",
"Korean",
"Italian",
],
},
],
"completion_params": {
"max_token": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1,
},
},
opening_statement="",
suggested_questions=None,
pre_prompt="Будь ласка, перекладіть наступний текст на {{target_language}}:\n{{query}}\ntranslate:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1,
},
}),
user_input_form=json.dumps([
{
"select": {
"label": "Цільова мова",
"variable": "target_language",
"description": "Мова, на яку ви хочете перекласти.",
"default": "Chinese",
"required": True,
'options': [
'Chinese',
'English',
'Japanese',
'French',
'Russian',
'German',
'Spanish',
'Korean',
'Italian',
]
}
}, {
"paragraph": {
"label": "Запит",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
},
{
"name": "AI інтерв’юер фронтенду",
"icon": "",
"icon_background": "",
"description": "Симульований інтерв’юер фронтенду, який перевіряє рівень кваліфікації у розробці фронтенду через опитування.",
"mode": "chat",
"model_config": AppModelConfig(
provider="openai",
model_id="gpt-3.5-turbo",
configs={
"introduction": "Привіт, ласкаво просимо на наше співбесіду. Я інтерв'юер цієї технологічної компанії, і я перевірю ваші навички веб-розробки фронтенду. Далі я поставлю вам декілька технічних запитань. Будь ласка, відповідайте якомога ретельніше. ",
"prompt_template": "Ви будете грати роль інтерв'юера технологічної компанії, перевіряючи навички розробки фронтенду користувача та ставлячи 5-10 чітких технічних питань.\n\nЗверніть увагу:\n- Ставте лише одне запитання за раз.\n- Після того, як користувач відповість на запитання, ставте наступне запитання безпосередньо, не намагаючись виправити будь-які помилки, допущені кандидатом.\n- Якщо ви вважаєте, що користувач не відповів правильно на кілька питань поспіль, задайте менше запитань.\n- Після того, як ви задали останнє запитання, ви можете поставити таке запитання: Чому ви залишили свою попередню роботу? Після того, як користувач відповість на це питання, висловіть своє розуміння та підтримку.\n",
"prompt_variables": [],
"completion_params": {
"max_token": 300,
"temperature": 0.8,
"top_p": 0.9,
"presence_penalty": 0.1,
"frequency_penalty": 0.1,
},
},
opening_statement="Привіт, ласкаво просимо на наше співбесіду. Я інтерв'юер цієї технологічної компанії, і я перевірю ваші навички веб-розробки фронтенду. Далі я поставлю вам декілька технічних запитань. Будь ласка, відповідайте якомога ретельніше. ",
suggested_questions=None,
pre_prompt="Ви будете грати роль інтерв'юера технологічної компанії, перевіряючи навички розробки фронтенду користувача та ставлячи 5-10 чітких технічних питань.\n\nЗверніть увагу:\n- Ставте лише одне запитання за раз.\n- Після того, як користувач відповість на запитання, ставте наступне запитання безпосередньо, не намагаючись виправити будь-які помилки, допущені кандидатом.\n- Якщо ви вважаєте, що користувач не відповів правильно на кілька питань поспіль, задайте менше запитань.\n- Після того, як ви задали останнє запитання, ви можете поставити таке запитання: Чому ви залишили свою попередню роботу? Після того, як користувач відповість на це питання, висловіть своє розуміння та підтримку.\n",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,
"top_p": 0.9,
"presence_penalty": 0.1,
"frequency_penalty": 0.1,
},
}),
user_input_form=None
),
}
],
}

View File

@ -1,43 +1,31 @@
import json
model_templates = {
# completion default mode
'completion_default': {
from models.model import AppMode
default_app_templates = {
# workflow default mode
AppMode.WORKFLOW: {
'app': {
'mode': 'completion',
'mode': AppMode.WORKFLOW.value,
'enable_site': True,
'enable_api': True,
'is_demo': False,
'api_rpm': 0,
'api_rph': 0,
'status': 'normal'
'enable_api': True
}
},
# completion default mode
AppMode.COMPLETION: {
'app': {
'mode': AppMode.COMPLETION.value,
'enable_site': True,
'enable_api': True
},
'model_config': {
'provider': 'openai',
'model_id': 'gpt-3.5-turbo-instruct',
'configs': {
'prompt_template': '',
'prompt_variables': [],
'completion_params': {
'max_token': 512,
'temperature': 1,
'top_p': 1,
'presence_penalty': 0,
'frequency_penalty': 0,
}
},
'model': json.dumps({
'model': {
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 512,
"temperature": 1,
"top_p": 1,
"presence_penalty": 0,
"frequency_penalty": 0
}
}),
"name": "gpt-4",
"mode": "chat",
"completion_params": {}
},
'user_input_form': json.dumps([
{
"paragraph": {
@ -49,48 +37,50 @@ model_templates = {
}
]),
'pre_prompt': '{{query}}'
}
},
},
# chat default mode
'chat_default': {
AppMode.CHAT: {
'app': {
'mode': 'chat',
'mode': AppMode.CHAT.value,
'enable_site': True,
'enable_api': True,
'is_demo': False,
'api_rpm': 0,
'api_rph': 0,
'status': 'normal'
'enable_api': True
},
'model_config': {
'provider': 'openai',
'model_id': 'gpt-3.5-turbo',
'configs': {
'prompt_template': '',
'prompt_variables': [],
'completion_params': {
'max_token': 512,
'temperature': 1,
'top_p': 1,
'presence_penalty': 0,
'frequency_penalty': 0,
}
},
'model': json.dumps({
'model': {
"provider": "openai",
"name": "gpt-3.5-turbo",
"name": "gpt-4",
"mode": "chat",
"completion_params": {
"max_tokens": 512,
"temperature": 1,
"top_p": 1,
"presence_penalty": 0,
"frequency_penalty": 0
}
})
"completion_params": {}
}
}
},
# advanced-chat default mode
AppMode.ADVANCED_CHAT: {
'app': {
'mode': AppMode.ADVANCED_CHAT.value,
'enable_site': True,
'enable_api': True
}
},
# agent-chat default mode
AppMode.AGENT_CHAT: {
'app': {
'mode': AppMode.AGENT_CHAT.value,
'enable_site': True,
'enable_api': True
},
'model_config': {
'model': {
"provider": "openai",
"name": "gpt-4",
"mode": "chat",
"completion_params": {}
}
}
}
}

File diff suppressed because one or more lines are too long

View File

@ -5,10 +5,10 @@ bp = Blueprint('console', __name__, url_prefix='/console/api')
api = ExternalApi(bp)
# Import other controllers
from . import admin, apikey, extension, feature, setup, version
from . import admin, apikey, extension, feature, setup, version, ping
# Import app controllers
from .app import (advanced_prompt_template, annotation, app, audio, completion, conversation, generator, message,
model_config, site, statistic)
model_config, site, statistic, workflow, workflow_run, workflow_app_log, workflow_statistic, agent)
# Import auth controllers
from .auth import activate, data_source_oauth, login, oauth
# Import billing controllers
@ -16,6 +16,7 @@ from .billing import billing
# Import datasets controllers
from .datasets import data_source, datasets, datasets_document, datasets_segments, file, hit_testing
# Import explore controllers
from .explore import audio, completion, conversation, installed_app, message, parameter, recommended_app, saved_message
from .explore import (audio, completion, conversation, installed_app, message, parameter, recommended_app,
saved_message, workflow)
# Import workspace controllers
from .workspace import account, members, model_providers, models, tool_providers, workspace
from .workspace import account, members, model_providers, models, tool_providers, workspace

View File

@ -1,21 +0,0 @@
from controllers.console.app.error import AppUnavailableError
from extensions.ext_database import db
from flask_login import current_user
from models.model import App
from werkzeug.exceptions import NotFound
def _get_app(app_id, mode=None):
app = db.session.query(App).filter(
App.id == app_id,
App.tenant_id == current_user.current_tenant_id,
App.status == 'normal'
).first()
if not app:
raise NotFound("App not found")
if mode and app.mode != mode:
raise NotFound("The {} app not found".format(mode))
return app

View File

@ -0,0 +1,32 @@
from flask_restful import Resource, reqparse
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from libs.helper import uuid_value
from libs.login import login_required
from models.model import AppMode
from services.agent_service import AgentService
class AgentLogApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.AGENT_CHAT])
def get(self, app_model):
"""Get agent logs"""
parser = reqparse.RequestParser()
parser.add_argument('message_id', type=uuid_value, required=True, location='args')
parser.add_argument('conversation_id', type=uuid_value, required=True, location='args')
args = parser.parse_args()
return AgentService.get_agent_logs(
app_model,
args['conversation_id'],
args['message_id']
)
api.add_resource(AgentLogApi, '/apps/<uuid:app_id>/agent/logs')

View File

@ -1,39 +1,28 @@
import json
import logging
from datetime import datetime
from flask_login import current_user
from flask_restful import Resource, abort, inputs, marshal_with, reqparse
from werkzeug.exceptions import Forbidden
from flask_restful import Resource, inputs, marshal_with, reqparse
from werkzeug.exceptions import Forbidden, BadRequest
from constants.languages import demo_model_templates, languages
from constants.model_template import model_templates
from controllers.console import api
from controllers.console.app.error import AppNotFoundError, ProviderNotInitializeError
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.provider_manager import ProviderManager
from events.app_event import app_was_created, app_was_deleted
from core.agent.entities import AgentToolEntity
from extensions.ext_database import db
from fields.app_fields import (
app_detail_fields,
app_detail_fields_with_site,
app_pagination_fields,
template_list_fields,
)
from libs.login import login_required
from models.model import App, AppModelConfig, Site
from services.app_model_config_service import AppModelConfigService
from services.app_service import AppService
from models.model import App, AppModelConfig, AppMode
from core.tools.utils.configuration import ToolParameterConfigurationManager
from core.tools.tool_manager import ToolManager
def _get_app(app_id, tenant_id):
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id).first()
if not app:
raise AppNotFoundError
return app
ALLOW_CREATE_APP_MODES = ['chat', 'agent-chat', 'advanced-chat', 'workflow', 'completion']
class AppListApi(Resource):
@ -47,33 +36,15 @@ class AppListApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('page', type=inputs.int_range(1, 99999), required=False, default=1, location='args')
parser.add_argument('limit', type=inputs.int_range(1, 100), required=False, default=20, location='args')
parser.add_argument('mode', type=str, choices=['chat', 'completion', 'all'], default='all', location='args', required=False)
parser.add_argument('mode', type=str, choices=['chat', 'workflow', 'agent-chat', 'channel', 'all'], default='all', location='args', required=False)
parser.add_argument('name', type=str, location='args', required=False)
args = parser.parse_args()
filters = [
App.tenant_id == current_user.current_tenant_id,
App.is_universal == False
]
# get app list
app_service = AppService()
app_pagination = app_service.get_paginate_apps(current_user.current_tenant_id, args)
if args['mode'] == 'completion':
filters.append(App.mode == 'completion')
elif args['mode'] == 'chat':
filters.append(App.mode == 'chat')
else:
pass
if 'name' in args and args['name']:
filters.append(App.name.ilike(f'%{args["name"]}%'))
app_models = db.paginate(
db.select(App).where(*filters).order_by(App.created_at.desc()),
page=args['page'],
per_page=args['limit'],
error_out=False
)
return app_models
return app_pagination
@setup_required
@login_required
@ -84,147 +55,49 @@ class AppListApi(Resource):
"""Create app"""
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
parser.add_argument('mode', type=str, choices=['completion', 'chat', 'assistant'], location='json')
parser.add_argument('description', type=str, location='json')
parser.add_argument('mode', type=str, choices=ALLOW_CREATE_APP_MODES, location='json')
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
parser.add_argument('model_config', type=dict, location='json')
args = parser.parse_args()
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()
try:
provider_manager = ProviderManager()
default_model_entity = provider_manager.get_default_model(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.LLM
)
except (ProviderTokenNotInitError, LLMBadRequestError):
default_model_entity = None
except Exception as e:
logging.exception(e)
default_model_entity = None
if 'mode' not in args or args['mode'] is None:
raise BadRequest("mode is required")
if args['model_config'] is not None:
# validate config
model_config_dict = args['model_config']
# Get provider configurations
provider_manager = ProviderManager()
provider_configurations = provider_manager.get_configurations(current_user.current_tenant_id)
# get available models from provider_configurations
available_models = provider_configurations.get_models(
model_type=ModelType.LLM,
only_active=True
)
# check if model is available
available_models_names = [f'{model.provider.provider}.{model.model}' for model in available_models]
provider_model = f"{model_config_dict['model']['provider']}.{model_config_dict['model']['name']}"
if provider_model not in available_models_names:
if not default_model_entity:
raise ProviderNotInitializeError(
"No Default System Reasoning Model available. Please configure "
"in the Settings -> Model Provider.")
else:
model_config_dict["model"]["provider"] = default_model_entity.provider
model_config_dict["model"]["name"] = default_model_entity.model
model_configuration = AppModelConfigService.validate_configuration(
tenant_id=current_user.current_tenant_id,
account=current_user,
config=model_config_dict,
app_mode=args['mode']
)
app = App(
enable_site=True,
enable_api=True,
is_demo=False,
api_rpm=0,
api_rph=0,
status='normal'
)
app_model_config = AppModelConfig()
app_model_config = app_model_config.from_model_config_dict(model_configuration)
else:
if 'mode' not in args or args['mode'] is None:
abort(400, message="mode is required")
model_config_template = model_templates[args['mode'] + '_default']
app = App(**model_config_template['app'])
app_model_config = AppModelConfig(**model_config_template['model_config'])
# get model provider
model_manager = ModelManager()
try:
model_instance = model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.LLM
)
except ProviderTokenNotInitError:
model_instance = None
if model_instance:
model_dict = app_model_config.model_dict
model_dict['provider'] = model_instance.provider
model_dict['name'] = model_instance.model
app_model_config.model = json.dumps(model_dict)
app.name = args['name']
app.mode = args['mode']
app.icon = args['icon']
app.icon_background = args['icon_background']
app.tenant_id = current_user.current_tenant_id
db.session.add(app)
db.session.flush()
app_model_config.app_id = app.id
db.session.add(app_model_config)
db.session.flush()
app.app_model_config_id = app_model_config.id
account = current_user
site = Site(
app_id=app.id,
title=app.name,
default_language=account.interface_language,
customize_token_strategy='not_allow',
code=Site.generate_code(16)
)
db.session.add(site)
db.session.commit()
app_was_created.send(app)
app_service = AppService()
app = app_service.create_app(current_user.current_tenant_id, args, current_user)
return app, 201
class AppTemplateApi(Resource):
class AppImportApi(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(template_list_fields)
def get(self):
"""Get app demo templates"""
account = current_user
interface_language = account.interface_language
@marshal_with(app_detail_fields_with_site)
@cloud_edition_billing_resource_check('apps')
def post(self):
"""Import app"""
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()
templates = demo_model_templates.get(interface_language)
if not templates:
templates = demo_model_templates.get(languages[0])
parser = reqparse.RequestParser()
parser.add_argument('data', type=str, required=True, nullable=False, location='json')
parser.add_argument('name', type=str, location='json')
parser.add_argument('description', type=str, location='json')
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
args = parser.parse_args()
return {'data': templates}
app_service = AppService()
app = app_service.import_app(current_user.current_tenant_id, args['data'], args, current_user)
return app, 201
class AppApi(Resource):
@ -232,176 +105,198 @@ class AppApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_fields_with_site)
def get(self, app_id):
def get(self, app_model):
"""Get app detail"""
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
# get original app model config
if app_model.mode == AppMode.AGENT_CHAT.value or app_model.is_agent:
model_config: AppModelConfig = app_model.app_model_config
agent_mode = model_config.agent_mode_dict
# decrypt agent tool parameters if it's secret-input
for tool in agent_mode.get('tools') or []:
if not isinstance(tool, dict) or len(tool.keys()) <= 3:
continue
agent_tool_entity = AgentToolEntity(**tool)
# get tool
try:
tool_runtime = ToolManager.get_agent_tool_runtime(
tenant_id=current_user.current_tenant_id,
agent_tool=agent_tool_entity,
)
manager = ToolParameterConfigurationManager(
tenant_id=current_user.current_tenant_id,
tool_runtime=tool_runtime,
provider_name=agent_tool_entity.provider_id,
provider_type=agent_tool_entity.provider_type,
)
return app
# get decrypted parameters
if agent_tool_entity.tool_parameters:
parameters = manager.decrypt_tool_parameters(agent_tool_entity.tool_parameters or {})
masked_parameter = manager.mask_tool_parameters(parameters or {})
else:
masked_parameter = {}
# override tool parameters
tool['tool_parameters'] = masked_parameter
except Exception as e:
pass
# override agent mode
model_config.agent_mode = json.dumps(agent_mode)
db.session.commit()
return app_model
@setup_required
@login_required
@account_initialization_required
def delete(self, app_id):
"""Delete app"""
app_id = str(app_id)
@get_app_model
@marshal_with(app_detail_fields_with_site)
def put(self, app_model):
"""Update app"""
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, nullable=False, location='json')
parser.add_argument('description', type=str, location='json')
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
args = parser.parse_args()
app_service = AppService()
app_model = app_service.update_app(app_model, args)
return app_model
@setup_required
@login_required
@account_initialization_required
@get_app_model
def delete(self, app_model):
"""Delete app"""
if not current_user.is_admin_or_owner:
raise Forbidden()
app = _get_app(app_id, current_user.current_tenant_id)
db.session.delete(app)
db.session.commit()
# todo delete related data??
# model_config, site, api_token, conversation, message, message_feedback, message_annotation
app_was_deleted.send(app)
app_service = AppService()
app_service.delete_app(app_model)
return {'result': 'success'}, 204
class AppCopyApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_fields_with_site)
def post(self, app_model):
"""Copy app"""
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, location='json')
parser.add_argument('description', type=str, location='json')
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
args = parser.parse_args()
app_service = AppService()
data = app_service.export_app(app_model)
app = app_service.import_app(current_user.current_tenant_id, data, args, current_user)
return app, 201
class AppExportApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
"""Export app"""
app_service = AppService()
return {
"data": app_service.export_app(app_model)
}
class AppNameApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_fields)
def post(self, app_id):
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
def post(self, app_model):
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, location='json')
args = parser.parse_args()
app.name = args.get('name')
app.updated_at = datetime.utcnow()
db.session.commit()
return app
app_service = AppService()
app_model = app_service.update_app_name(app_model, args.get('name'))
return app_model
class AppIconApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_fields)
def post(self, app_id):
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
def post(self, app_model):
parser = reqparse.RequestParser()
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
args = parser.parse_args()
app.icon = args.get('icon')
app.icon_background = args.get('icon_background')
app.updated_at = datetime.utcnow()
db.session.commit()
app_service = AppService()
app_model = app_service.update_app_icon(app_model, args.get('icon'), args.get('icon_background'))
return app
return app_model
class AppSiteStatus(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_fields)
def post(self, app_id):
def post(self, app_model):
parser = reqparse.RequestParser()
parser.add_argument('enable_site', type=bool, required=True, location='json')
args = parser.parse_args()
app_id = str(app_id)
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == current_user.current_tenant_id).first()
if not app:
raise AppNotFoundError
if args.get('enable_site') == app.enable_site:
return app
app_service = AppService()
app_model = app_service.update_app_site_status(app_model, args.get('enable_site'))
app.enable_site = args.get('enable_site')
app.updated_at = datetime.utcnow()
db.session.commit()
return app
return app_model
class AppApiStatus(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_detail_fields)
def post(self, app_id):
def post(self, app_model):
parser = reqparse.RequestParser()
parser.add_argument('enable_api', type=bool, required=True, location='json')
args = parser.parse_args()
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
app_service = AppService()
app_model = app_service.update_app_api_status(app_model, args.get('enable_api'))
if args.get('enable_api') == app.enable_api:
return app
app.enable_api = args.get('enable_api')
app.updated_at = datetime.utcnow()
db.session.commit()
return app
class AppCopy(Resource):
@staticmethod
def create_app_copy(app):
copy_app = App(
name=app.name + ' copy',
icon=app.icon,
icon_background=app.icon_background,
tenant_id=app.tenant_id,
mode=app.mode,
app_model_config_id=app.app_model_config_id,
enable_site=app.enable_site,
enable_api=app.enable_api,
api_rpm=app.api_rpm,
api_rph=app.api_rph
)
return copy_app
@staticmethod
def create_app_model_config_copy(app_config, copy_app_id):
copy_app_model_config = app_config.copy()
copy_app_model_config.app_id = copy_app_id
return copy_app_model_config
@setup_required
@login_required
@account_initialization_required
@marshal_with(app_detail_fields)
def post(self, app_id):
app_id = str(app_id)
app = _get_app(app_id, current_user.current_tenant_id)
copy_app = self.create_app_copy(app)
db.session.add(copy_app)
app_config = db.session.query(AppModelConfig). \
filter(AppModelConfig.app_id == app_id). \
one_or_none()
if app_config:
copy_app_model_config = self.create_app_model_config_copy(app_config, copy_app.id)
db.session.add(copy_app_model_config)
db.session.commit()
copy_app.app_model_config_id = copy_app_model_config.id
db.session.commit()
return copy_app, 201
return app_model
api.add_resource(AppListApi, '/apps')
api.add_resource(AppTemplateApi, '/app-templates')
api.add_resource(AppImportApi, '/apps/import')
api.add_resource(AppApi, '/apps/<uuid:app_id>')
api.add_resource(AppCopy, '/apps/<uuid:app_id>/copy')
api.add_resource(AppCopyApi, '/apps/<uuid:app_id>/copy')
api.add_resource(AppExportApi, '/apps/<uuid:app_id>/export')
api.add_resource(AppNameApi, '/apps/<uuid:app_id>/name')
api.add_resource(AppIconApi, '/apps/<uuid:app_id>/icon')
api.add_resource(AppSiteStatus, '/apps/<uuid:app_id>/site-enable')

View File

@ -6,7 +6,6 @@ from werkzeug.exceptions import InternalServerError
import services
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.app.error import (
AppUnavailableError,
AudioTooLargeError,
@ -18,11 +17,13 @@ from controllers.console.app.error import (
ProviderQuotaExceededError,
UnsupportedAudioTypeError,
)
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs.login import login_required
from models.model import AppMode
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -36,15 +37,13 @@ class ChatMessageAudioApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, app_id):
app_id = str(app_id)
app_model = _get_app(app_id, 'chat')
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
def post(self, app_model):
file = request.files['file']
try:
response = AudioService.transcript_asr(
tenant_id=app_model.tenant_id,
app_model=app_model,
file=file,
end_user=None,
)
@ -80,15 +79,13 @@ class ChatMessageTextApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, app_id):
app_id = str(app_id)
app_model = _get_app(app_id, None)
@get_app_model
def post(self, app_model):
try:
response = AudioService.transcript_tts(
tenant_id=app_model.tenant_id,
app_model=app_model,
text=request.form['text'],
voice=app_model.app_model_config.text_to_speech_dict.get('voice'),
voice=request.form.get('voice'),
streaming=False
)
@ -120,9 +117,11 @@ class ChatMessageTextApi(Resource):
class TextModesApi(Resource):
def get(self, app_id: str):
app_model = _get_app(str(app_id))
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
try:
parser = reqparse.RequestParser()
parser.add_argument('language', type=str, required=True, location='args')

View File

@ -1,16 +1,11 @@
import json
import logging
from collections.abc import Generator
from typing import Union
import flask_login
from flask import Response, stream_with_context
from flask_restful import Resource, reqparse
from werkzeug.exceptions import InternalServerError, NotFound
import services
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.app.error import (
AppUnavailableError,
CompletionRequestError,
@ -19,15 +14,18 @@ from controllers.console.app.error import (
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from libs.helper import uuid_value
from libs.login import login_required
from services.completion_service import CompletionService
from models.model import AppMode
from services.app_generate_service import AppGenerateService
# define completion message api for user
@ -36,12 +34,8 @@ class CompletionMessageApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, app_id):
app_id = str(app_id)
# get app info
app_model = _get_app(app_id, 'completion')
@get_app_model(mode=AppMode.COMPLETION)
def post(self, app_model):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, location='json', default='')
@ -57,16 +51,15 @@ class CompletionMessageApi(Resource):
account = flask_login.current_user
try:
response = CompletionService.completion(
response = AppGenerateService.generate(
app_model=app_model,
user=account,
args=args,
invoke_from=InvokeFrom.DEBUGGER,
streaming=streaming,
is_model_config_override=True
streaming=streaming
)
return compact_response(response)
return helper.compact_generate_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -93,15 +86,11 @@ class CompletionMessageStopApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, app_id, task_id):
app_id = str(app_id)
# get app info
_get_app(app_id, 'completion')
@get_app_model(mode=AppMode.COMPLETION)
def post(self, app_model, task_id):
account = flask_login.current_user
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.DEBUGGER, account.id)
AppQueueManager.set_stop_flag(task_id, InvokeFrom.DEBUGGER, account.id)
return {'result': 'success'}, 200
@ -110,12 +99,8 @@ class ChatMessageApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, app_id):
app_id = str(app_id)
# get app info
app_model = _get_app(app_id, 'chat')
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT])
def post(self, app_model):
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, required=True, location='json')
@ -132,16 +117,15 @@ class ChatMessageApi(Resource):
account = flask_login.current_user
try:
response = CompletionService.completion(
response = AppGenerateService.generate(
app_model=app_model,
user=account,
args=args,
invoke_from=InvokeFrom.DEBUGGER,
streaming=streaming,
is_model_config_override=True
streaming=streaming
)
return compact_response(response)
return helper.compact_generate_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -164,30 +148,15 @@ class ChatMessageApi(Resource):
raise InternalServerError()
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
yield from response
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
class ChatMessageStopApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, app_id, task_id):
app_id = str(app_id)
# get app info
_get_app(app_id, 'chat')
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
def post(self, app_model, task_id):
account = flask_login.current_user
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.DEBUGGER, account.id)
AppQueueManager.set_stop_flag(task_id, InvokeFrom.DEBUGGER, account.id)
return {'result': 'success'}, 200

View File

@ -9,9 +9,10 @@ from sqlalchemy.orm import joinedload
from werkzeug.exceptions import NotFound
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.app.entities.app_invoke_entities import InvokeFrom
from extensions.ext_database import db
from fields.conversation_fields import (
conversation_detail_fields,
@ -21,7 +22,7 @@ from fields.conversation_fields import (
)
from libs.helper import datetime_string
from libs.login import login_required
from models.model import Conversation, Message, MessageAnnotation
from models.model import AppMode, Conversation, Message, MessageAnnotation
class CompletionConversationApi(Resource):
@ -29,10 +30,9 @@ class CompletionConversationApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=AppMode.COMPLETION)
@marshal_with(conversation_pagination_fields)
def get(self, app_id):
app_id = str(app_id)
def get(self, app_model):
parser = reqparse.RequestParser()
parser.add_argument('keyword', type=str, location='args')
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -43,10 +43,7 @@ class CompletionConversationApi(Resource):
parser.add_argument('limit', type=int_range(1, 100), default=20, location='args')
args = parser.parse_args()
# get app info
app = _get_app(app_id, 'completion')
query = db.select(Conversation).where(Conversation.app_id == app.id, Conversation.mode == 'completion')
query = db.select(Conversation).where(Conversation.app_id == app_model.id, Conversation.mode == 'completion')
if args['keyword']:
query = query.join(
@ -106,24 +103,22 @@ class CompletionConversationDetailApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=AppMode.COMPLETION)
@marshal_with(conversation_message_detail_fields)
def get(self, app_id, conversation_id):
app_id = str(app_id)
def get(self, app_model, conversation_id):
conversation_id = str(conversation_id)
return _get_conversation(app_id, conversation_id, 'completion')
return _get_conversation(app_model, conversation_id)
@setup_required
@login_required
@account_initialization_required
def delete(self, app_id, conversation_id):
app_id = str(app_id)
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
def delete(self, app_model, conversation_id):
conversation_id = str(conversation_id)
app = _get_app(app_id, 'chat')
conversation = db.session.query(Conversation) \
.filter(Conversation.id == conversation_id, Conversation.app_id == app.id).first()
.filter(Conversation.id == conversation_id, Conversation.app_id == app_model.id).first()
if not conversation:
raise NotFound("Conversation Not Exists.")
@ -139,10 +134,9 @@ class ChatConversationApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
@marshal_with(conversation_with_summary_pagination_fields)
def get(self, app_id):
app_id = str(app_id)
def get(self, app_model):
parser = reqparse.RequestParser()
parser.add_argument('keyword', type=str, location='args')
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -154,10 +148,7 @@ class ChatConversationApi(Resource):
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
args = parser.parse_args()
# get app info
app = _get_app(app_id, 'chat')
query = db.select(Conversation).where(Conversation.app_id == app.id, Conversation.mode == 'chat')
query = db.select(Conversation).where(Conversation.app_id == app_model.id)
if args['keyword']:
query = query.join(
@ -211,6 +202,9 @@ class ChatConversationApi(Resource):
.having(func.count(Message.id) >= args['message_count_gte'])
)
if app_model.mode == AppMode.ADVANCED_CHAT.value:
query = query.where(Conversation.invoke_from != InvokeFrom.DEBUGGER.value)
query = query.order_by(Conversation.created_at.desc())
conversations = db.paginate(
@ -228,25 +222,22 @@ class ChatConversationDetailApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
@marshal_with(conversation_detail_fields)
def get(self, app_id, conversation_id):
app_id = str(app_id)
def get(self, app_model, conversation_id):
conversation_id = str(conversation_id)
return _get_conversation(app_id, conversation_id, 'chat')
return _get_conversation(app_model, conversation_id)
@setup_required
@login_required
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
@account_initialization_required
def delete(self, app_id, conversation_id):
app_id = str(app_id)
def delete(self, app_model, conversation_id):
conversation_id = str(conversation_id)
# get app info
app = _get_app(app_id, 'chat')
conversation = db.session.query(Conversation) \
.filter(Conversation.id == conversation_id, Conversation.app_id == app.id).first()
.filter(Conversation.id == conversation_id, Conversation.app_id == app_model.id).first()
if not conversation:
raise NotFound("Conversation Not Exists.")
@ -263,12 +254,9 @@ api.add_resource(ChatConversationApi, '/apps/<uuid:app_id>/chat-conversations')
api.add_resource(ChatConversationDetailApi, '/apps/<uuid:app_id>/chat-conversations/<uuid:conversation_id>')
def _get_conversation(app_id, conversation_id, mode):
# get app info
app = _get_app(app_id, mode)
def _get_conversation(app_model, conversation_id):
conversation = db.session.query(Conversation) \
.filter(Conversation.id == conversation_id, Conversation.app_id == app.id).first()
.filter(Conversation.id == conversation_id, Conversation.app_id == app_model.id).first()
if not conversation:
raise NotFound("Conversation Not Exists.")

View File

@ -85,3 +85,9 @@ class TooManyFilesError(BaseHTTPException):
error_code = 'too_many_files'
description = "Only one file is allowed."
code = 400
class DraftWorkflowNotExist(BaseHTTPException):
error_code = 'draft_workflow_not_exist'
description = "Draft workflow need to be initialized."
code = 400

View File

@ -11,7 +11,7 @@ from controllers.console.app.error import (
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.generator.llm_generator import LLMGenerator
from core.llm_generator.llm_generator import LLMGenerator
from core.model_runtime.errors.invoke import InvokeError
from libs.login import login_required

View File

@ -1,26 +1,22 @@
import json
import logging
from collections.abc import Generator
from typing import Union
from flask import Response, stream_with_context
from flask_login import current_user
from flask_restful import Resource, fields, marshal_with, reqparse
from flask_restful.inputs import int_range
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.app.error import (
AppMoreLikeThisDisabledError,
CompletionRequestError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.app.wraps import get_app_model
from controllers.console.explore.error import AppSuggestedQuestionsAfterAnswerDisabledError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from core.entities.application_entities import InvokeFrom
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from extensions.ext_database import db
@ -28,12 +24,10 @@ from fields.conversation_fields import annotation_fields, message_detail_fields
from libs.helper import uuid_value
from libs.infinite_scroll_pagination import InfiniteScrollPagination
from libs.login import login_required
from models.model import Conversation, Message, MessageAnnotation, MessageFeedback
from models.model import AppMode, Conversation, Message, MessageAnnotation, MessageFeedback
from services.annotation_service import AppAnnotationService
from services.completion_service import CompletionService
from services.errors.app import MoreLikeThisDisabledError
from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError
from services.errors.message import MessageNotExistsError, SuggestedQuestionsAfterAnswerDisabledError
from services.message_service import MessageService
@ -46,14 +40,10 @@ class ChatMessageListApi(Resource):
@setup_required
@login_required
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
@account_initialization_required
@marshal_with(message_infinite_scroll_pagination_fields)
def get(self, app_id):
app_id = str(app_id)
# get app info
app = _get_app(app_id, 'chat')
def get(self, app_model):
parser = reqparse.RequestParser()
parser.add_argument('conversation_id', required=True, type=uuid_value, location='args')
parser.add_argument('first_id', type=uuid_value, location='args')
@ -62,7 +52,7 @@ class ChatMessageListApi(Resource):
conversation = db.session.query(Conversation).filter(
Conversation.id == args['conversation_id'],
Conversation.app_id == app.id
Conversation.app_id == app_model.id
).first()
if not conversation:
@ -110,12 +100,8 @@ class MessageFeedbackApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, app_id):
app_id = str(app_id)
# get app info
app = _get_app(app_id)
@get_app_model
def post(self, app_model):
parser = reqparse.RequestParser()
parser.add_argument('message_id', required=True, type=uuid_value, location='json')
parser.add_argument('rating', type=str, choices=['like', 'dislike', None], location='json')
@ -125,7 +111,7 @@ class MessageFeedbackApi(Resource):
message = db.session.query(Message).filter(
Message.id == message_id,
Message.app_id == app.id
Message.app_id == app_model.id
).first()
if not message:
@ -141,7 +127,7 @@ class MessageFeedbackApi(Resource):
raise ValueError('rating cannot be None when feedback not exists')
else:
feedback = MessageFeedback(
app_id=app.id,
app_id=app_model.id,
conversation_id=message.conversation_id,
message_id=message.id,
rating=args['rating'],
@ -160,21 +146,20 @@ class MessageAnnotationApi(Resource):
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check('annotation')
@get_app_model
@marshal_with(annotation_fields)
def post(self, app_id):
def post(self, app_model):
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()
app_id = str(app_id)
parser = reqparse.RequestParser()
parser.add_argument('message_id', required=False, type=uuid_value, location='json')
parser.add_argument('question', required=True, type=str, location='json')
parser.add_argument('answer', required=True, type=str, location='json')
parser.add_argument('annotation_reply', required=False, type=dict, location='json')
args = parser.parse_args()
annotation = AppAnnotationService.up_insert_app_annotation_from_message(args, app_id)
annotation = AppAnnotationService.up_insert_app_annotation_from_message(args, app_model.id)
return annotation
@ -183,93 +168,29 @@ class MessageAnnotationCountApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, app_id):
app_id = str(app_id)
# get app info
app = _get_app(app_id)
@get_app_model
def get(self, app_model):
count = db.session.query(MessageAnnotation).filter(
MessageAnnotation.app_id == app.id
MessageAnnotation.app_id == app_model.id
).count()
return {'count': count}
class MessageMoreLikeThisApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, app_id, message_id):
app_id = str(app_id)
message_id = str(message_id)
parser = reqparse.RequestParser()
parser.add_argument('response_mode', type=str, required=True, choices=['blocking', 'streaming'],
location='args')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
# get app info
app_model = _get_app(app_id, 'completion')
try:
response = CompletionService.generate_more_like_this(
app_model=app_model,
user=current_user,
message_id=message_id,
invoke_from=InvokeFrom.DEBUGGER,
streaming=streaming
)
return compact_response(response)
except MessageNotExistsError:
raise NotFound("Message Not Exists.")
except MoreLikeThisDisabledError:
raise AppMoreLikeThisDisabledError()
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
yield from response
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
class MessageSuggestedQuestionApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, app_id, message_id):
app_id = str(app_id)
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
def get(self, app_model, message_id):
message_id = str(message_id)
# get app info
app_model = _get_app(app_id, 'chat')
try:
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
message_id=message_id,
user=current_user,
check_enabled=False
invoke_from=InvokeFrom.DEBUGGER
)
except MessageNotExistsError:
raise NotFound("Message not found")
@ -283,6 +204,8 @@ class MessageSuggestedQuestionApi(Resource):
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except SuggestedQuestionsAfterAnswerDisabledError:
raise AppSuggestedQuestionsAfterAnswerDisabledError()
except Exception:
logging.exception("internal server error.")
raise InternalServerError()
@ -294,14 +217,11 @@ class MessageApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(message_detail_fields)
def get(self, app_id, message_id):
app_id = str(app_id)
def get(self, app_model, message_id):
message_id = str(message_id)
# get app info
app_model = _get_app(app_id)
message = db.session.query(Message).filter(
Message.id == message_id,
Message.app_id == app_model.id
@ -313,7 +233,6 @@ class MessageApi(Resource):
return message
api.add_resource(MessageMoreLikeThisApi, '/apps/<uuid:app_id>/completion-messages/<uuid:message_id>/more-like-this')
api.add_resource(MessageSuggestedQuestionApi, '/apps/<uuid:app_id>/chat-messages/<uuid:message_id>/suggested-questions')
api.add_resource(ChatMessageListApi, '/apps/<uuid:app_id>/chat-messages', endpoint='console_chat_messages')
api.add_resource(MessageFeedbackApi, '/apps/<uuid:app_id>/feedbacks')

View File

@ -1,16 +1,20 @@
import json
from flask import request
from flask_login import current_user
from flask_restful import Resource
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.agent.entities import AgentToolEntity
from core.tools.tool_manager import ToolManager
from core.tools.utils.configuration import ToolParameterConfigurationManager
from events.app_event import app_model_config_was_updated
from extensions.ext_database import db
from libs.login import login_required
from models.model import AppModelConfig
from models.model import AppMode, AppModelConfig
from services.app_model_config_service import AppModelConfigService
@ -19,33 +23,113 @@ class ModelConfigResource(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, app_id):
@get_app_model(mode=[AppMode.AGENT_CHAT, AppMode.CHAT, AppMode.COMPLETION])
def post(self, app_model):
"""Modify app model config"""
app_id = str(app_id)
app = _get_app(app_id)
# validate config
model_configuration = AppModelConfigService.validate_configuration(
tenant_id=current_user.current_tenant_id,
account=current_user,
config=request.json,
app_mode=app.mode
app_mode=AppMode.value_of(app_model.mode)
)
new_app_model_config = AppModelConfig(
app_id=app.id,
app_id=app_model.id,
)
new_app_model_config = new_app_model_config.from_model_config_dict(model_configuration)
if app_model.mode == AppMode.AGENT_CHAT.value or app_model.is_agent:
# get original app model config
original_app_model_config: AppModelConfig = db.session.query(AppModelConfig).filter(
AppModelConfig.id == app_model.app_model_config_id
).first()
agent_mode = original_app_model_config.agent_mode_dict
# decrypt agent tool parameters if it's secret-input
parameter_map = {}
masked_parameter_map = {}
tool_map = {}
for tool in agent_mode.get('tools') or []:
if not isinstance(tool, dict) or len(tool.keys()) <= 3:
continue
agent_tool_entity = AgentToolEntity(**tool)
# get tool
try:
tool_runtime = ToolManager.get_agent_tool_runtime(
tenant_id=current_user.current_tenant_id,
agent_tool=agent_tool_entity,
)
manager = ToolParameterConfigurationManager(
tenant_id=current_user.current_tenant_id,
tool_runtime=tool_runtime,
provider_name=agent_tool_entity.provider_id,
provider_type=agent_tool_entity.provider_type,
)
except Exception as e:
continue
# get decrypted parameters
if agent_tool_entity.tool_parameters:
parameters = manager.decrypt_tool_parameters(agent_tool_entity.tool_parameters or {})
masked_parameter = manager.mask_tool_parameters(parameters or {})
else:
parameters = {}
masked_parameter = {}
key = f'{agent_tool_entity.provider_id}.{agent_tool_entity.provider_type}.{agent_tool_entity.tool_name}'
masked_parameter_map[key] = masked_parameter
parameter_map[key] = parameters
tool_map[key] = tool_runtime
# encrypt agent tool parameters if it's secret-input
agent_mode = new_app_model_config.agent_mode_dict
for tool in agent_mode.get('tools') or []:
agent_tool_entity = AgentToolEntity(**tool)
# get tool
key = f'{agent_tool_entity.provider_id}.{agent_tool_entity.provider_type}.{agent_tool_entity.tool_name}'
if key in tool_map:
tool_runtime = tool_map[key]
else:
try:
tool_runtime = ToolManager.get_agent_tool_runtime(
tenant_id=current_user.current_tenant_id,
agent_tool=agent_tool_entity,
)
except Exception as e:
continue
manager = ToolParameterConfigurationManager(
tenant_id=current_user.current_tenant_id,
tool_runtime=tool_runtime,
provider_name=agent_tool_entity.provider_id,
provider_type=agent_tool_entity.provider_type,
)
manager.delete_tool_parameters_cache()
# override parameters if it equals to masked parameters
if agent_tool_entity.tool_parameters:
if key not in masked_parameter_map:
continue
if agent_tool_entity.tool_parameters == masked_parameter_map[key]:
agent_tool_entity.tool_parameters = parameter_map[key]
# encrypt parameters
if agent_tool_entity.tool_parameters:
tool['tool_parameters'] = manager.encrypt_tool_parameters(agent_tool_entity.tool_parameters or {})
# update app model config
new_app_model_config.agent_mode = json.dumps(agent_mode)
db.session.add(new_app_model_config)
db.session.flush()
app.app_model_config_id = new_app_model_config.id
app_model.app_model_config_id = new_app_model_config.id
db.session.commit()
app_model_config_was_updated.send(
app,
app_model,
app_model_config=new_app_model_config
)

View File

@ -4,7 +4,7 @@ from werkzeug.exceptions import Forbidden, NotFound
from constants.languages import supported_language
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
@ -34,13 +34,11 @@ class AppSite(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_site_fields)
def post(self, app_id):
def post(self, app_model):
args = parse_app_site_args()
app_id = str(app_id)
app_model = _get_app(app_id)
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()
@ -82,11 +80,9 @@ class AppSiteAccessTokenReset(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
@marshal_with(app_site_fields)
def post(self, app_id):
app_id = str(app_id)
app_model = _get_app(app_id)
def post(self, app_model):
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()

View File

@ -7,12 +7,13 @@ from flask_login import current_user
from flask_restful import Resource, reqparse
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
from libs.helper import datetime_string
from libs.login import login_required
from models.model import AppMode
class DailyConversationStatistic(Resource):
@ -20,10 +21,9 @@ class DailyConversationStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, app_id):
@get_app_model
def get(self, app_model):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id)
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -81,10 +81,9 @@ class DailyTerminalsStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, app_id):
@get_app_model
def get(self, app_model):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id)
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -141,10 +140,9 @@ class DailyTokenCostStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, app_id):
@get_app_model
def get(self, app_model):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id)
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -205,10 +203,9 @@ class AverageSessionInteractionStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, app_id):
@get_app_model(mode=[AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT])
def get(self, app_model):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id, 'chat')
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -271,10 +268,9 @@ class UserSatisfactionRateStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, app_id):
@get_app_model
def get(self, app_model):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id)
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -334,10 +330,9 @@ class AverageResponseTimeStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, app_id):
@get_app_model(mode=AppMode.COMPLETION)
def get(self, app_model):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id, 'completion')
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
@ -396,10 +391,9 @@ class TokensPerSecondStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, app_id):
@get_app_model
def get(self, app_model):
account = current_user
app_id = str(app_id)
app_model = _get_app(app_id)
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')

View File

@ -0,0 +1,324 @@
import json
import logging
from flask import abort, request
from flask_restful import Resource, marshal_with, reqparse
from werkzeug.exceptions import InternalServerError, NotFound
import services
from controllers.console import api
from controllers.console.app.error import ConversationCompletedError, DraftWorkflowNotExist
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from fields.workflow_fields import workflow_fields
from fields.workflow_run_fields import workflow_run_node_execution_fields
from libs import helper
from libs.helper import TimestampField, uuid_value
from libs.login import current_user, login_required
from models.model import App, AppMode
from services.app_generate_service import AppGenerateService
from services.workflow_service import WorkflowService
logger = logging.getLogger(__name__)
class DraftWorkflowApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@marshal_with(workflow_fields)
def get(self, app_model: App):
"""
Get draft workflow
"""
# fetch draft workflow by app_model
workflow_service = WorkflowService()
workflow = workflow_service.get_draft_workflow(app_model=app_model)
if not workflow:
raise DraftWorkflowNotExist()
# return workflow, if not found, return None (initiate graph by frontend)
return workflow
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
"""
Sync draft workflow
"""
content_type = request.headers.get('Content-Type')
if 'application/json' in content_type:
parser = reqparse.RequestParser()
parser.add_argument('graph', type=dict, required=True, nullable=False, location='json')
parser.add_argument('features', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
elif 'text/plain' in content_type:
try:
data = json.loads(request.data.decode('utf-8'))
if 'graph' not in data or 'features' not in data:
raise ValueError('graph or features not found in data')
if not isinstance(data.get('graph'), dict) or not isinstance(data.get('features'), dict):
raise ValueError('graph or features is not a dict')
args = {
'graph': data.get('graph'),
'features': data.get('features')
}
except json.JSONDecodeError:
return {'message': 'Invalid JSON data'}, 400
else:
abort(415)
workflow_service = WorkflowService()
workflow = workflow_service.sync_draft_workflow(
app_model=app_model,
graph=args.get('graph'),
features=args.get('features'),
account=current_user
)
return {
"result": "success",
"updated_at": TimestampField().format(workflow.updated_at or workflow.created_at)
}
class AdvancedChatDraftWorkflowRunApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT])
def post(self, app_model: App):
"""
Run draft workflow
"""
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, location='json')
parser.add_argument('query', type=str, required=True, location='json', default='')
parser.add_argument('files', type=list, location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
args = parser.parse_args()
try:
response = AppGenerateService.generate(
app_model=app_model,
user=current_user,
args=args,
invoke_from=InvokeFrom.DEBUGGER,
streaming=True
)
return helper.compact_generate_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
raise ConversationCompletedError()
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
class DraftWorkflowRunApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.WORKFLOW])
def post(self, app_model: App):
"""
Run draft workflow
"""
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, nullable=False, location='json')
parser.add_argument('files', type=list, required=False, location='json')
args = parser.parse_args()
try:
response = AppGenerateService.generate(
app_model=app_model,
user=current_user,
args=args,
invoke_from=InvokeFrom.DEBUGGER,
streaming=True
)
return helper.compact_generate_response(response)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
class WorkflowTaskStopApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App, task_id: str):
"""
Stop workflow task
"""
AppQueueManager.set_stop_flag(task_id, InvokeFrom.DEBUGGER, current_user.id)
return {
"result": "success"
}
class DraftWorkflowNodeRunApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@marshal_with(workflow_run_node_execution_fields)
def post(self, app_model: App, node_id: str):
"""
Run draft workflow node
"""
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
workflow_service = WorkflowService()
workflow_node_execution = workflow_service.run_draft_workflow_node(
app_model=app_model,
node_id=node_id,
user_inputs=args.get('inputs'),
account=current_user
)
return workflow_node_execution
class PublishedWorkflowApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@marshal_with(workflow_fields)
def get(self, app_model: App):
"""
Get published workflow
"""
# fetch published workflow by app_model
workflow_service = WorkflowService()
workflow = workflow_service.get_published_workflow(app_model=app_model)
# return workflow, if not found, return None
return workflow
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
"""
Publish workflow
"""
workflow_service = WorkflowService()
workflow = workflow_service.publish_workflow(app_model=app_model, account=current_user)
return {
"result": "success",
"created_at": TimestampField().format(workflow.created_at)
}
class DefaultBlockConfigsApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App):
"""
Get default block config
"""
# Get default block configs
workflow_service = WorkflowService()
return workflow_service.get_default_block_configs()
class DefaultBlockConfigApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App, block_type: str):
"""
Get default block config
"""
parser = reqparse.RequestParser()
parser.add_argument('q', type=str, location='args')
args = parser.parse_args()
filters = None
if args.get('q'):
try:
filters = json.loads(args.get('q'))
except json.JSONDecodeError:
raise ValueError('Invalid filters')
# Get default block configs
workflow_service = WorkflowService()
return workflow_service.get_default_block_config(
node_type=block_type,
filters=filters
)
class ConvertToWorkflowApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.CHAT, AppMode.COMPLETION])
def post(self, app_model: App):
"""
Convert basic mode of chatbot app to workflow mode
Convert expert mode of chatbot app to workflow mode
Convert Completion App to Workflow App
"""
if request.data:
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=False, nullable=True, location='json')
parser.add_argument('icon', type=str, required=False, nullable=True, location='json')
parser.add_argument('icon_background', type=str, required=False, nullable=True, location='json')
args = parser.parse_args()
else:
args = {}
# convert to workflow mode
workflow_service = WorkflowService()
new_app_model = workflow_service.convert_to_workflow(
app_model=app_model,
account=current_user,
args=args
)
# return app id
return {
'new_app_id': new_app_model.id,
}
api.add_resource(DraftWorkflowApi, '/apps/<uuid:app_id>/workflows/draft')
api.add_resource(AdvancedChatDraftWorkflowRunApi, '/apps/<uuid:app_id>/advanced-chat/workflows/draft/run')
api.add_resource(DraftWorkflowRunApi, '/apps/<uuid:app_id>/workflows/draft/run')
api.add_resource(WorkflowTaskStopApi, '/apps/<uuid:app_id>/workflow-runs/tasks/<string:task_id>/stop')
api.add_resource(DraftWorkflowNodeRunApi, '/apps/<uuid:app_id>/workflows/draft/nodes/<string:node_id>/run')
api.add_resource(PublishedWorkflowApi, '/apps/<uuid:app_id>/workflows/publish')
api.add_resource(DefaultBlockConfigsApi, '/apps/<uuid:app_id>/workflows/default-workflow-block-configs')
api.add_resource(DefaultBlockConfigApi, '/apps/<uuid:app_id>/workflows/default-workflow-block-configs'
'/<string:block_type>')
api.add_resource(ConvertToWorkflowApi, '/apps/<uuid:app_id>/convert-to-workflow')

View File

@ -0,0 +1,41 @@
from flask_restful import Resource, marshal_with, reqparse
from flask_restful.inputs import int_range
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from fields.workflow_app_log_fields import workflow_app_log_pagination_fields
from libs.login import login_required
from models.model import App, AppMode
from services.workflow_app_service import WorkflowAppService
class WorkflowAppLogApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.WORKFLOW])
@marshal_with(workflow_app_log_pagination_fields)
def get(self, app_model: App):
"""
Get workflow app logs
"""
parser = reqparse.RequestParser()
parser.add_argument('keyword', type=str, location='args')
parser.add_argument('status', type=str, choices=['succeeded', 'failed', 'stopped'], location='args')
parser.add_argument('page', type=int_range(1, 99999), default=1, location='args')
parser.add_argument('limit', type=int_range(1, 100), default=20, location='args')
args = parser.parse_args()
# get paginate workflow app logs
workflow_app_service = WorkflowAppService()
workflow_app_log_pagination = workflow_app_service.get_paginate_workflow_app_logs(
app_model=app_model,
args=args
)
return workflow_app_log_pagination
api.add_resource(WorkflowAppLogApi, '/apps/<uuid:app_id>/workflow-app-logs')

View File

@ -0,0 +1,109 @@
from flask_restful import Resource, marshal_with, reqparse
from flask_restful.inputs import int_range
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from fields.workflow_run_fields import (
advanced_chat_workflow_run_pagination_fields,
workflow_run_detail_fields,
workflow_run_node_execution_list_fields,
workflow_run_pagination_fields,
)
from libs.helper import uuid_value
from libs.login import login_required
from models.model import App, AppMode
from services.workflow_run_service import WorkflowRunService
class AdvancedChatAppWorkflowRunListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT])
@marshal_with(advanced_chat_workflow_run_pagination_fields)
def get(self, app_model: App):
"""
Get advanced chat app workflow run list
"""
parser = reqparse.RequestParser()
parser.add_argument('last_id', type=uuid_value, location='args')
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
args = parser.parse_args()
workflow_run_service = WorkflowRunService()
result = workflow_run_service.get_paginate_advanced_chat_workflow_runs(
app_model=app_model,
args=args
)
return result
class WorkflowRunListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@marshal_with(workflow_run_pagination_fields)
def get(self, app_model: App):
"""
Get workflow run list
"""
parser = reqparse.RequestParser()
parser.add_argument('last_id', type=uuid_value, location='args')
parser.add_argument('limit', type=int_range(1, 100), required=False, default=20, location='args')
args = parser.parse_args()
workflow_run_service = WorkflowRunService()
result = workflow_run_service.get_paginate_workflow_runs(
app_model=app_model,
args=args
)
return result
class WorkflowRunDetailApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@marshal_with(workflow_run_detail_fields)
def get(self, app_model: App, run_id):
"""
Get workflow run detail
"""
run_id = str(run_id)
workflow_run_service = WorkflowRunService()
workflow_run = workflow_run_service.get_workflow_run(app_model=app_model, run_id=run_id)
return workflow_run
class WorkflowRunNodeExecutionListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@marshal_with(workflow_run_node_execution_list_fields)
def get(self, app_model: App, run_id):
"""
Get workflow run node execution list
"""
run_id = str(run_id)
workflow_run_service = WorkflowRunService()
node_executions = workflow_run_service.get_workflow_run_node_executions(app_model=app_model, run_id=run_id)
return {
'data': node_executions
}
api.add_resource(AdvancedChatAppWorkflowRunListApi, '/apps/<uuid:app_id>/advanced-chat/workflow-runs')
api.add_resource(WorkflowRunListApi, '/apps/<uuid:app_id>/workflow-runs')
api.add_resource(WorkflowRunDetailApi, '/apps/<uuid:app_id>/workflow-runs/<uuid:run_id>')
api.add_resource(WorkflowRunNodeExecutionListApi, '/apps/<uuid:app_id>/workflow-runs/<uuid:run_id>/node-executions')

View File

@ -0,0 +1,278 @@
from datetime import datetime
from decimal import Decimal
import pytz
from flask import jsonify
from flask_login import current_user
from flask_restful import Resource, reqparse
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
from libs.helper import datetime_string
from libs.login import login_required
from models.model import AppMode
from models.workflow import WorkflowRunTriggeredFrom
class WorkflowDailyRunsStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
account = current_user
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
parser.add_argument('end', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
args = parser.parse_args()
sql_query = '''
SELECT date(DATE_TRUNC('day', created_at AT TIME ZONE 'UTC' AT TIME ZONE :tz )) AS date, count(id) AS runs
FROM workflow_runs
WHERE app_id = :app_id
AND triggered_from = :triggered_from
'''
arg_dict = {'tz': account.timezone, 'app_id': app_model.id, 'triggered_from': WorkflowRunTriggeredFrom.APP_RUN.value}
timezone = pytz.timezone(account.timezone)
utc_timezone = pytz.utc
if args['start']:
start_datetime = datetime.strptime(args['start'], '%Y-%m-%d %H:%M')
start_datetime = start_datetime.replace(second=0)
start_datetime_timezone = timezone.localize(start_datetime)
start_datetime_utc = start_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at >= :start'
arg_dict['start'] = start_datetime_utc
if args['end']:
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
end_datetime = end_datetime.replace(second=0)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at < :end'
arg_dict['end'] = end_datetime_utc
sql_query += ' GROUP BY date order by date'
response_data = []
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({
'date': str(i.date),
'runs': i.runs
})
return jsonify({
'data': response_data
})
class WorkflowDailyTerminalsStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
account = current_user
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
parser.add_argument('end', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
args = parser.parse_args()
sql_query = '''
SELECT date(DATE_TRUNC('day', created_at AT TIME ZONE 'UTC' AT TIME ZONE :tz )) AS date, count(distinct workflow_runs.created_by) AS terminal_count
FROM workflow_runs
WHERE app_id = :app_id
AND triggered_from = :triggered_from
'''
arg_dict = {'tz': account.timezone, 'app_id': app_model.id, 'triggered_from': WorkflowRunTriggeredFrom.APP_RUN.value}
timezone = pytz.timezone(account.timezone)
utc_timezone = pytz.utc
if args['start']:
start_datetime = datetime.strptime(args['start'], '%Y-%m-%d %H:%M')
start_datetime = start_datetime.replace(second=0)
start_datetime_timezone = timezone.localize(start_datetime)
start_datetime_utc = start_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at >= :start'
arg_dict['start'] = start_datetime_utc
if args['end']:
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
end_datetime = end_datetime.replace(second=0)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at < :end'
arg_dict['end'] = end_datetime_utc
sql_query += ' GROUP BY date order by date'
response_data = []
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({
'date': str(i.date),
'terminal_count': i.terminal_count
})
return jsonify({
'data': response_data
})
class WorkflowDailyTokenCostStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model
def get(self, app_model):
account = current_user
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
parser.add_argument('end', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
args = parser.parse_args()
sql_query = '''
SELECT
date(DATE_TRUNC('day', created_at AT TIME ZONE 'UTC' AT TIME ZONE :tz )) AS date,
SUM(workflow_runs.total_tokens) as token_count
FROM workflow_runs
WHERE app_id = :app_id
AND triggered_from = :triggered_from
'''
arg_dict = {'tz': account.timezone, 'app_id': app_model.id, 'triggered_from': WorkflowRunTriggeredFrom.APP_RUN.value}
timezone = pytz.timezone(account.timezone)
utc_timezone = pytz.utc
if args['start']:
start_datetime = datetime.strptime(args['start'], '%Y-%m-%d %H:%M')
start_datetime = start_datetime.replace(second=0)
start_datetime_timezone = timezone.localize(start_datetime)
start_datetime_utc = start_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at >= :start'
arg_dict['start'] = start_datetime_utc
if args['end']:
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
end_datetime = end_datetime.replace(second=0)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
sql_query += ' and created_at < :end'
arg_dict['end'] = end_datetime_utc
sql_query += ' GROUP BY date order by date'
response_data = []
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({
'date': str(i.date),
'token_count': i.token_count,
})
return jsonify({
'data': response_data
})
class WorkflowAverageAppInteractionStatistic(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.WORKFLOW])
def get(self, app_model):
account = current_user
parser = reqparse.RequestParser()
parser.add_argument('start', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
parser.add_argument('end', type=datetime_string('%Y-%m-%d %H:%M'), location='args')
args = parser.parse_args()
sql_query = """
SELECT
AVG(sub.interactions) as interactions,
sub.date
FROM
(SELECT
date(DATE_TRUNC('day', c.created_at AT TIME ZONE 'UTC' AT TIME ZONE :tz )) AS date,
c.created_by,
COUNT(c.id) AS interactions
FROM workflow_runs c
WHERE c.app_id = :app_id
AND c.triggered_from = :triggered_from
{{start}}
{{end}}
GROUP BY date, c.created_by) sub
GROUP BY sub.created_by, sub.date
"""
arg_dict = {'tz': account.timezone, 'app_id': app_model.id, 'triggered_from': WorkflowRunTriggeredFrom.APP_RUN.value}
timezone = pytz.timezone(account.timezone)
utc_timezone = pytz.utc
if args['start']:
start_datetime = datetime.strptime(args['start'], '%Y-%m-%d %H:%M')
start_datetime = start_datetime.replace(second=0)
start_datetime_timezone = timezone.localize(start_datetime)
start_datetime_utc = start_datetime_timezone.astimezone(utc_timezone)
sql_query = sql_query.replace('{{start}}', ' AND c.created_at >= :start')
arg_dict['start'] = start_datetime_utc
else:
sql_query = sql_query.replace('{{start}}', '')
if args['end']:
end_datetime = datetime.strptime(args['end'], '%Y-%m-%d %H:%M')
end_datetime = end_datetime.replace(second=0)
end_datetime_timezone = timezone.localize(end_datetime)
end_datetime_utc = end_datetime_timezone.astimezone(utc_timezone)
sql_query = sql_query.replace('{{end}}', ' and c.created_at < :end')
arg_dict['end'] = end_datetime_utc
else:
sql_query = sql_query.replace('{{end}}', '')
response_data = []
with db.engine.begin() as conn:
rs = conn.execute(db.text(sql_query), arg_dict)
for i in rs:
response_data.append({
'date': str(i.date),
'interactions': float(i.interactions.quantize(Decimal('0.01')))
})
return jsonify({
'data': response_data
})
api.add_resource(WorkflowDailyRunsStatistic, '/apps/<uuid:app_id>/workflow/statistics/daily-conversations')
api.add_resource(WorkflowDailyTerminalsStatistic, '/apps/<uuid:app_id>/workflow/statistics/daily-terminals')
api.add_resource(WorkflowDailyTokenCostStatistic, '/apps/<uuid:app_id>/workflow/statistics/token-costs')
api.add_resource(WorkflowAverageAppInteractionStatistic, '/apps/<uuid:app_id>/workflow/statistics/average-app-interactions')

View File

@ -0,0 +1,55 @@
from collections.abc import Callable
from functools import wraps
from typing import Optional, Union
from controllers.console.app.error import AppNotFoundError
from extensions.ext_database import db
from libs.login import current_user
from models.model import App, AppMode
def get_app_model(view: Optional[Callable] = None, *,
mode: Union[AppMode, list[AppMode]] = None):
def decorator(view_func):
@wraps(view_func)
def decorated_view(*args, **kwargs):
if not kwargs.get('app_id'):
raise ValueError('missing app_id in path parameters')
app_id = kwargs.get('app_id')
app_id = str(app_id)
del kwargs['app_id']
app_model = db.session.query(App).filter(
App.id == app_id,
App.tenant_id == current_user.current_tenant_id,
App.status == 'normal'
).first()
if not app_model:
raise AppNotFoundError()
app_mode = AppMode.value_of(app_model.mode)
if app_mode == AppMode.CHANNEL:
raise AppNotFoundError()
if mode is not None:
if isinstance(mode, list):
modes = mode
else:
modes = [mode]
if app_mode not in modes:
mode_values = {m.value for m in modes}
raise AppNotFoundError(f"App mode is not in the supported list: {mode_values}")
kwargs['app_model'] = app_model
return view_func(*args, **kwargs)
return decorated_view
if view is None:
return decorator
else:
return decorator(view)

View File

@ -12,7 +12,11 @@ from controllers.console import api
from controllers.console.app.error import ProviderNotInitializeError
from controllers.console.datasets.error import InvalidActionError, NoFileUploadedError, TooManyFilesError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from controllers.console.wraps import (
account_initialization_required,
cloud_edition_billing_knowledge_limit_check,
cloud_edition_billing_resource_check,
)
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
@ -207,6 +211,7 @@ class DatasetDocumentSegmentAddApi(Resource):
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check('vector_space')
@cloud_edition_billing_knowledge_limit_check('add_segment')
def post(self, dataset_id, document_id):
# check dataset
dataset_id = str(dataset_id)
@ -357,6 +362,7 @@ class DatasetDocumentSegmentBatchImportApi(Resource):
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check('vector_space')
@cloud_edition_billing_knowledge_limit_check('add_segment')
def post(self, dataset_id, document_id):
# check dataset
dataset_id = str(dataset_id)

View File

@ -11,7 +11,7 @@ from controllers.console.datasets.error import (
UnsupportedFileTypeError,
)
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from fields.file_fields import file_fields, upload_config_fields
from libs.login import login_required
from services.file_service import ALLOWED_EXTENSIONS, UNSTRUSTURED_ALLOWED_EXTENSIONS, FileService
@ -39,6 +39,7 @@ class FileApi(Resource):
@login_required
@account_initialization_required
@marshal_with(file_fields)
@cloud_edition_billing_resource_check(resource='documents')
def post(self):
# get file from request

View File

@ -19,7 +19,6 @@ from controllers.console.app.error import (
from controllers.console.explore.wraps import InstalledAppResource
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from models.model import AppModelConfig
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -32,16 +31,12 @@ from services.errors.audio import (
class ChatAudioApi(InstalledAppResource):
def post(self, installed_app):
app_model = installed_app.app
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.speech_to_text_dict['enabled']:
raise AppUnavailableError()
file = request.files['file']
try:
response = AudioService.transcript_asr(
tenant_id=app_model.tenant_id,
app_model=app_model,
file=file,
end_user=None
)
@ -76,16 +71,12 @@ class ChatAudioApi(InstalledAppResource):
class ChatTextApi(InstalledAppResource):
def post(self, installed_app):
app_model = installed_app.app
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.text_to_speech_dict['enabled']:
raise AppUnavailableError()
try:
response = AudioService.transcript_tts(
tenant_id=app_model.tenant_id,
app_model=app_model,
text=request.form['text'],
voice=app_model.app_model_config.text_to_speech_dict.get('voice'),
voice=request.form.get('voice'),
streaming=False
)
return {'data': response.data.decode('latin1')}

View File

@ -1,10 +1,6 @@
import json
import logging
from collections.abc import Generator
from datetime import datetime
from typing import Union
from flask import Response, stream_with_context
from flask_login import current_user
from flask_restful import reqparse
from werkzeug.exceptions import InternalServerError, NotFound
@ -21,13 +17,15 @@ from controllers.console.app.error import (
)
from controllers.console.explore.error import NotChatAppError, NotCompletionAppError
from controllers.console.explore.wraps import InstalledAppResource
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from extensions.ext_database import db
from libs import helper
from libs.helper import uuid_value
from services.completion_service import CompletionService
from models.model import AppMode
from services.app_generate_service import AppGenerateService
# define completion api for user
@ -53,7 +51,7 @@ class CompletionApi(InstalledAppResource):
db.session.commit()
try:
response = CompletionService.completion(
response = AppGenerateService.generate(
app_model=app_model,
user=current_user,
args=args,
@ -61,7 +59,7 @@ class CompletionApi(InstalledAppResource):
streaming=streaming
)
return compact_response(response)
return helper.compact_generate_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -90,7 +88,7 @@ class CompletionStopApi(InstalledAppResource):
if app_model.mode != 'completion':
raise NotCompletionAppError()
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
AppQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
return {'result': 'success'}, 200
@ -98,34 +96,33 @@ class CompletionStopApi(InstalledAppResource):
class ChatApi(InstalledAppResource):
def post(self, installed_app):
app_model = installed_app.app
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, location='json')
parser.add_argument('query', type=str, required=True, location='json')
parser.add_argument('files', type=list, required=False, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
parser.add_argument('conversation_id', type=uuid_value, location='json')
parser.add_argument('retriever_from', type=str, required=False, default='explore_app', location='json')
args = parser.parse_args()
streaming = args['response_mode'] == 'streaming'
args['auto_generate_name'] = False
installed_app.last_used_at = datetime.utcnow()
db.session.commit()
try:
response = CompletionService.completion(
response = AppGenerateService.generate(
app_model=app_model,
user=current_user,
args=args,
invoke_from=InvokeFrom.EXPLORE,
streaming=streaming
streaming=True
)
return compact_response(response)
return helper.compact_generate_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -151,25 +148,15 @@ class ChatApi(InstalledAppResource):
class ChatStopApi(InstalledAppResource):
def post(self, installed_app, task_id):
app_model = installed_app.app
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
AppQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
return {'result': 'success'}, 200
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
yield from response
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
api.add_resource(CompletionApi, '/installed-apps/<uuid:installed_app_id>/completion-messages', endpoint='installed_app_completion')
api.add_resource(CompletionStopApi, '/installed-apps/<uuid:installed_app_id>/completion-messages/<string:task_id>/stop', endpoint='installed_app_stop_completion')
api.add_resource(ChatApi, '/installed-apps/<uuid:installed_app_id>/chat-messages', endpoint='installed_app_chat_completion')

View File

@ -8,6 +8,7 @@ from controllers.console.explore.error import NotChatAppError
from controllers.console.explore.wraps import InstalledAppResource
from fields.conversation_fields import conversation_infinite_scroll_pagination_fields, simple_conversation_fields
from libs.helper import uuid_value
from models.model import AppMode
from services.conversation_service import ConversationService
from services.errors.conversation import ConversationNotExistsError, LastConversationNotExistsError
from services.web_conversation_service import WebConversationService
@ -18,7 +19,8 @@ class ConversationListApi(InstalledAppResource):
@marshal_with(conversation_infinite_scroll_pagination_fields)
def get(self, installed_app):
app_model = installed_app.app
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -47,7 +49,8 @@ class ConversationListApi(InstalledAppResource):
class ConversationApi(InstalledAppResource):
def delete(self, installed_app, c_id):
app_model = installed_app.app
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
conversation_id = str(c_id)
@ -65,7 +68,8 @@ class ConversationRenameApi(InstalledAppResource):
@marshal_with(simple_conversation_fields)
def post(self, installed_app, c_id):
app_model = installed_app.app
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
conversation_id = str(c_id)
@ -91,7 +95,8 @@ class ConversationPinApi(InstalledAppResource):
def patch(self, installed_app, c_id):
app_model = installed_app.app
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
conversation_id = str(c_id)
@ -107,7 +112,8 @@ class ConversationPinApi(InstalledAppResource):
class ConversationUnPinApi(InstalledAppResource):
def patch(self, installed_app, c_id):
app_model = installed_app.app
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
conversation_id = str(c_id)

View File

@ -9,7 +9,13 @@ class NotCompletionAppError(BaseHTTPException):
class NotChatAppError(BaseHTTPException):
error_code = 'not_chat_app'
description = "Not Chat App"
description = "App mode is invalid."
code = 400
class NotWorkflowAppError(BaseHTTPException):
error_code = 'not_workflow_app'
description = "Only support workflow app."
code = 400

View File

@ -34,8 +34,7 @@ class InstalledAppsListApi(Resource):
'is_pinned': installed_app.is_pinned,
'last_used_at': installed_app.last_used_at,
'editable': current_user.role in ["owner", "admin"],
'uninstallable': current_tenant_id == installed_app.app_owner_tenant_id,
'is_agent': installed_app.is_agent
'uninstallable': current_tenant_id == installed_app.app_owner_tenant_id
}
for installed_app in installed_apps
]

View File

@ -1,9 +1,5 @@
import json
import logging
from collections.abc import Generator
from typing import Union
from flask import Response, stream_with_context
from flask_login import current_user
from flask_restful import marshal_with, reqparse
from flask_restful.inputs import int_range
@ -24,12 +20,14 @@ from controllers.console.explore.error import (
NotCompletionAppError,
)
from controllers.console.explore.wraps import InstalledAppResource
from core.entities.application_entities import InvokeFrom
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from fields.message_fields import message_infinite_scroll_pagination_fields
from libs import helper
from libs.helper import uuid_value
from services.completion_service import CompletionService
from models.model import AppMode
from services.app_generate_service import AppGenerateService
from services.errors.app import MoreLikeThisDisabledError
from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError, SuggestedQuestionsAfterAnswerDisabledError
@ -41,7 +39,8 @@ class MessageListApi(InstalledAppResource):
def get(self, installed_app):
app_model = installed_app.app
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -91,14 +90,14 @@ class MessageMoreLikeThisApi(InstalledAppResource):
streaming = args['response_mode'] == 'streaming'
try:
response = CompletionService.generate_more_like_this(
response = AppGenerateService.generate_more_like_this(
app_model=app_model,
user=current_user,
message_id=message_id,
invoke_from=InvokeFrom.EXPLORE,
streaming=streaming
)
return compact_response(response)
return helper.compact_generate_response(response)
except MessageNotExistsError:
raise NotFound("Message Not Exists.")
except MoreLikeThisDisabledError:
@ -118,22 +117,12 @@ class MessageMoreLikeThisApi(InstalledAppResource):
raise InternalServerError()
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
yield from response
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
class MessageSuggestedQuestionApi(InstalledAppResource):
def get(self, installed_app, message_id):
app_model = installed_app.app
if app_model.mode != 'chat':
raise NotCompletionAppError()
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
message_id = str(message_id)
@ -141,7 +130,8 @@ class MessageSuggestedQuestionApi(InstalledAppResource):
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
user=current_user,
message_id=message_id
message_id=message_id,
invoke_from=InvokeFrom.EXPLORE
)
except MessageNotExistsError:
raise NotFound("Message not found")

View File

@ -1,13 +1,12 @@
import json
from flask import current_app
from flask_restful import fields, marshal_with
from controllers.console import api
from controllers.console.app.error import AppUnavailableError
from controllers.console.explore.wraps import InstalledAppResource
from extensions.ext_database import db
from models.model import AppModelConfig, InstalledApp
from models.tools import ApiToolProvider
from models.model import AppMode, InstalledApp
from services.app_service import AppService
class AppParameterApi(InstalledAppResource):
@ -45,61 +44,52 @@ class AppParameterApi(InstalledAppResource):
def get(self, installed_app: InstalledApp):
"""Retrieve app parameters."""
app_model = installed_app.app
app_model_config = app_model.app_model_config
if app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]:
workflow = app_model.workflow
if workflow is None:
raise AppUnavailableError()
features_dict = workflow.features_dict
user_input_form = workflow.user_input_form(to_old_structure=True)
else:
app_model_config = app_model.app_model_config
features_dict = app_model_config.to_dict()
user_input_form = features_dict.get('user_input_form', [])
return {
'opening_statement': app_model_config.opening_statement,
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'text_to_speech': app_model_config.text_to_speech_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'annotation_reply': app_model_config.annotation_reply_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict,
'file_upload': app_model_config.file_upload_dict,
'opening_statement': features_dict.get('opening_statement'),
'suggested_questions': features_dict.get('suggested_questions', []),
'suggested_questions_after_answer': features_dict.get('suggested_questions_after_answer',
{"enabled": False}),
'speech_to_text': features_dict.get('speech_to_text', {"enabled": False}),
'text_to_speech': features_dict.get('text_to_speech', {"enabled": False}),
'retriever_resource': features_dict.get('retriever_resource', {"enabled": False}),
'annotation_reply': features_dict.get('annotation_reply', {"enabled": False}),
'more_like_this': features_dict.get('more_like_this', {"enabled": False}),
'user_input_form': user_input_form,
'sensitive_word_avoidance': features_dict.get('sensitive_word_avoidance',
{"enabled": False, "type": "", "configs": []}),
'file_upload': features_dict.get('file_upload', {"image": {
"enabled": False,
"number_limits": 3,
"detail": "high",
"transfer_methods": ["remote_url", "local_file"]
}}),
'system_parameters': {
'image_file_size_limit': current_app.config.get('UPLOAD_IMAGE_FILE_SIZE_LIMIT')
}
}
class ExploreAppMetaApi(InstalledAppResource):
def get(self, installed_app: InstalledApp):
"""Get app meta"""
app_model_config: AppModelConfig = installed_app.app.app_model_config
app_model = installed_app.app
return AppService().get_app_meta(app_model)
agent_config = app_model_config.agent_mode_dict or {}
meta = {
'tool_icons': {}
}
# get all tools
tools = agent_config.get('tools', [])
url_prefix = (current_app.config.get("CONSOLE_API_URL")
+ "/console/api/workspaces/current/tool-provider/builtin/")
for tool in tools:
keys = list(tool.keys())
if len(keys) >= 4:
# current tool standard
provider_type = tool.get('provider_type')
provider_id = tool.get('provider_id')
tool_name = tool.get('tool_name')
if provider_type == 'builtin':
meta['tool_icons'][tool_name] = url_prefix + provider_id + '/icon'
elif provider_type == 'api':
try:
provider: ApiToolProvider = db.session.query(ApiToolProvider).filter(
ApiToolProvider.id == provider_id
)
meta['tool_icons'][tool_name] = json.loads(provider.icon)
except:
meta['tool_icons'][tool_name] = {
"background": "#252525",
"content": "\ud83d\ude01"
}
return meta
api.add_resource(AppParameterApi, '/installed-apps/<uuid:installed_app_id>/parameters', endpoint='installed_app_parameters')
api.add_resource(AppParameterApi, '/installed-apps/<uuid:installed_app_id>/parameters',
endpoint='installed_app_parameters')
api.add_resource(ExploreAppMetaApi, '/installed-apps/<uuid:installed_app_id>/meta', endpoint='installed_app_meta')

View File

@ -1,15 +1,11 @@
from flask_login import current_user
from flask_restful import Resource, fields, marshal_with
from sqlalchemy import and_
from flask_restful import Resource, fields, marshal_with, reqparse
from constants.languages import languages
from controllers.console import api
from controllers.console.app.error import AppNotFoundError
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
from libs.login import login_required
from models.model import App, InstalledApp, RecommendedApp
from services.account_service import TenantService
from services.recommended_app_service import RecommendedAppService
app_fields = {
'id': fields.String,
@ -27,11 +23,7 @@ recommended_app_fields = {
'privacy_policy': fields.String,
'category': fields.String,
'position': fields.Integer,
'is_listed': fields.Boolean,
'install_count': fields.Integer,
'installed': fields.Boolean,
'editable': fields.Boolean,
'is_agent': fields.Boolean
'is_listed': fields.Boolean
}
recommended_app_list_fields = {
@ -45,96 +37,27 @@ class RecommendedAppListApi(Resource):
@account_initialization_required
@marshal_with(recommended_app_list_fields)
def get(self):
language_prefix = current_user.interface_language if current_user.interface_language else languages[0]
# language args
parser = reqparse.RequestParser()
parser.add_argument('language', type=str, location='args')
args = parser.parse_args()
recommended_apps = db.session.query(RecommendedApp).filter(
RecommendedApp.is_listed == True,
RecommendedApp.language == language_prefix
).all()
if args.get('language') and args.get('language') in languages:
language_prefix = args.get('language')
elif current_user and current_user.interface_language:
language_prefix = current_user.interface_language
else:
language_prefix = languages[0]
categories = set()
current_user.role = TenantService.get_user_role(current_user, current_user.current_tenant)
recommended_apps_result = []
for recommended_app in recommended_apps:
installed = db.session.query(InstalledApp).filter(
and_(
InstalledApp.app_id == recommended_app.app_id,
InstalledApp.tenant_id == current_user.current_tenant_id
)
).first() is not None
app = recommended_app.app
if not app or not app.is_public:
continue
site = app.site
if not site:
continue
recommended_app_result = {
'id': recommended_app.id,
'app': app,
'app_id': recommended_app.app_id,
'description': site.description,
'copyright': site.copyright,
'privacy_policy': site.privacy_policy,
'category': recommended_app.category,
'position': recommended_app.position,
'is_listed': recommended_app.is_listed,
'install_count': recommended_app.install_count,
'installed': installed,
'editable': current_user.role in ['owner', 'admin'],
"is_agent": app.is_agent
}
recommended_apps_result.append(recommended_app_result)
categories.add(recommended_app.category) # add category to categories
return {'recommended_apps': recommended_apps_result, 'categories': list(categories)}
return RecommendedAppService.get_recommended_apps_and_categories(language_prefix)
class RecommendedAppApi(Resource):
model_config_fields = {
'opening_statement': fields.String,
'suggested_questions': fields.Raw(attribute='suggested_questions_list'),
'suggested_questions_after_answer': fields.Raw(attribute='suggested_questions_after_answer_dict'),
'more_like_this': fields.Raw(attribute='more_like_this_dict'),
'model': fields.Raw(attribute='model_dict'),
'user_input_form': fields.Raw(attribute='user_input_form_list'),
'pre_prompt': fields.String,
'agent_mode': fields.Raw(attribute='agent_mode_dict'),
}
app_simple_detail_fields = {
'id': fields.String,
'name': fields.String,
'icon': fields.String,
'icon_background': fields.String,
'mode': fields.String,
'app_model_config': fields.Nested(model_config_fields),
}
@login_required
@account_initialization_required
@marshal_with(app_simple_detail_fields)
def get(self, app_id):
app_id = str(app_id)
# is in public recommended list
recommended_app = db.session.query(RecommendedApp).filter(
RecommendedApp.is_listed == True,
RecommendedApp.app_id == app_id
).first()
if not recommended_app:
raise AppNotFoundError
# get app detail
app = db.session.query(App).filter(App.id == app_id).first()
if not app or not app.is_public:
raise AppNotFoundError
return app
return RecommendedAppService.get_recommend_app_detail(app_id)
api.add_resource(RecommendedAppListApi, '/explore/apps')

View File

@ -0,0 +1,85 @@
import logging
from flask_restful import reqparse
from werkzeug.exceptions import InternalServerError
from controllers.console import api
from controllers.console.app.error import (
CompletionRequestError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.explore.error import NotWorkflowAppError
from controllers.console.explore.wraps import InstalledAppResource
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from libs.login import current_user
from models.model import AppMode, InstalledApp
from services.app_generate_service import AppGenerateService
logger = logging.getLogger(__name__)
class InstalledAppWorkflowRunApi(InstalledAppResource):
def post(self, installed_app: InstalledApp):
"""
Run workflow
"""
app_model = installed_app.app
app_mode = AppMode.value_of(app_model.mode)
if app_mode != AppMode.WORKFLOW:
raise NotWorkflowAppError()
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, nullable=False, location='json')
parser.add_argument('files', type=list, required=False, location='json')
args = parser.parse_args()
try:
response = AppGenerateService.generate(
app_model=app_model,
user=current_user,
args=args,
invoke_from=InvokeFrom.EXPLORE,
streaming=True
)
return helper.compact_generate_response(response)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
class InstalledAppWorkflowTaskStopApi(InstalledAppResource):
def post(self, installed_app: InstalledApp, task_id: str):
"""
Stop workflow task
"""
app_model = installed_app.app
app_mode = AppMode.value_of(app_model.mode)
if app_mode != AppMode.WORKFLOW:
raise NotWorkflowAppError()
AppQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
return {
"result": "success"
}
api.add_resource(InstalledAppWorkflowRunApi, '/installed-apps/<uuid:installed_app_id>/workflows/run')
api.add_resource(InstalledAppWorkflowTaskStopApi, '/installed-apps/<uuid:installed_app_id>/workflows/tasks/<string:task_id>/stop')

View File

@ -0,0 +1,17 @@
from flask_restful import Resource
from controllers.console import api
class PingApi(Resource):
def get(self):
"""
For connection health check
"""
return {
"result": "pong"
}
api.add_resource(PingApi, '/ping')

View File

@ -16,26 +16,13 @@ from controllers.console.workspace.error import (
)
from controllers.console.wraps import account_initialization_required
from extensions.ext_database import db
from fields.member_fields import account_fields
from libs.helper import TimestampField, timezone
from libs.login import login_required
from models.account import AccountIntegrate, InvitationCode
from services.account_service import AccountService
from services.errors.account import CurrentPasswordIncorrectError as ServiceCurrentPasswordIncorrectError
account_fields = {
'id': fields.String,
'name': fields.String,
'avatar': fields.String,
'email': fields.String,
'is_password_set': fields.Boolean,
'interface_language': fields.String,
'interface_theme': fields.String,
'timezone': fields.String,
'last_login_at': TimestampField,
'last_login_ip': fields.String,
'created_at': TimestampField
}
class AccountInitApi(Resource):

View File

@ -1,33 +1,18 @@
from flask import current_app
from flask_login import current_user
from flask_restful import Resource, abort, fields, marshal_with, reqparse
from flask_restful import Resource, abort, marshal_with, reqparse
import services
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from extensions.ext_database import db
from libs.helper import TimestampField
from fields.member_fields import account_with_role_list_fields
from libs.login import login_required
from models.account import Account
from services.account_service import RegisterService, TenantService
from services.errors.account import AccountAlreadyInTenantError
account_fields = {
'id': fields.String,
'name': fields.String,
'avatar': fields.String,
'email': fields.String,
'last_login_at': TimestampField,
'created_at': TimestampField,
'role': fields.String,
'status': fields.String,
}
account_list_fields = {
'accounts': fields.List(fields.Nested(account_fields))
}
class MemberListApi(Resource):
"""List all members of current tenant."""
@ -35,7 +20,7 @@ class MemberListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(account_list_fields)
@marshal_with(account_with_role_list_fields)
def get(self):
members = TenantService.get_tenant_members(current_user.current_tenant)
return {'result': 'success', 'accounts': members}, 200

View File

@ -1,6 +1,6 @@
import io
from flask import send_file
from flask import current_app, send_file
from flask_login import current_user
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden
@ -8,6 +8,7 @@ from werkzeug.exceptions import Forbidden
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_runtime.utils.encoders import jsonable_encoder
from libs.login import login_required
from services.tools_manage_service import ToolManageService
@ -30,11 +31,11 @@ class ToolBuiltinProviderListToolsApi(Resource):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
return ToolManageService.list_builtin_tool_provider_tools(
return jsonable_encoder(ToolManageService.list_builtin_tool_provider_tools(
user_id,
tenant_id,
provider,
)
))
class ToolBuiltinProviderDeleteApi(Resource):
@setup_required
@ -75,13 +76,52 @@ class ToolBuiltinProviderUpdateApi(Resource):
provider,
args['credentials'],
)
class ToolBuiltinProviderGetCredentialsApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
return ToolManageService.get_builtin_tool_provider_credentials(
user_id,
tenant_id,
provider,
)
class ToolBuiltinProviderIconApi(Resource):
@setup_required
def get(self, provider):
icon_bytes, minetype = ToolManageService.get_builtin_tool_provider_icon(provider)
return send_file(io.BytesIO(icon_bytes), mimetype=minetype)
icon_bytes, mimetype = ToolManageService.get_builtin_tool_provider_icon(provider)
icon_cache_max_age = int(current_app.config.get('TOOL_ICON_CACHE_MAX_AGE'))
return send_file(io.BytesIO(icon_bytes), mimetype=mimetype, max_age=icon_cache_max_age)
class ToolModelProviderIconApi(Resource):
@setup_required
def get(self, provider):
icon_bytes, mimetype = ToolManageService.get_model_tool_provider_icon(provider)
return send_file(io.BytesIO(icon_bytes), mimetype=mimetype)
class ToolModelProviderListToolsApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
parser = reqparse.RequestParser()
parser.add_argument('provider', type=str, required=True, nullable=False, location='args')
args = parser.parse_args()
return jsonable_encoder(ToolManageService.list_model_tool_provider_tools(
user_id,
tenant_id,
args['provider'],
))
class ToolApiProviderAddApi(Resource):
@setup_required
@ -146,11 +186,11 @@ class ToolApiProviderListToolsApi(Resource):
args = parser.parse_args()
return ToolManageService.list_api_tool_provider_tools(
return jsonable_encoder(ToolManageService.list_api_tool_provider_tools(
user_id,
tenant_id,
args['provider'],
)
))
class ToolApiProviderUpdateApi(Resource):
@setup_required
@ -259,6 +299,7 @@ class ToolApiProviderPreviousTestApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('tool_name', type=str, required=True, nullable=False, location='json')
parser.add_argument('provider_name', type=str, required=False, nullable=False, location='json')
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
parser.add_argument('parameters', type=dict, required=True, nullable=False, location='json')
parser.add_argument('schema_type', type=str, required=True, nullable=False, location='json')
@ -268,6 +309,7 @@ class ToolApiProviderPreviousTestApi(Resource):
return ToolManageService.test_api_tool_preview(
current_user.current_tenant_id,
args['provider_name'] if args['provider_name'] else '',
args['tool_name'],
args['credentials'],
args['parameters'],
@ -275,17 +317,49 @@ class ToolApiProviderPreviousTestApi(Resource):
args['schema'],
)
class ToolBuiltinListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
return jsonable_encoder([provider.to_dict() for provider in ToolManageService.list_builtin_tools(
user_id,
tenant_id,
)])
class ToolApiListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
user_id = current_user.id
tenant_id = current_user.current_tenant_id
return jsonable_encoder([provider.to_dict() for provider in ToolManageService.list_api_tools(
user_id,
tenant_id,
)])
api.add_resource(ToolProviderListApi, '/workspaces/current/tool-providers')
api.add_resource(ToolBuiltinProviderListToolsApi, '/workspaces/current/tool-provider/builtin/<provider>/tools')
api.add_resource(ToolBuiltinProviderDeleteApi, '/workspaces/current/tool-provider/builtin/<provider>/delete')
api.add_resource(ToolBuiltinProviderUpdateApi, '/workspaces/current/tool-provider/builtin/<provider>/update')
api.add_resource(ToolBuiltinProviderGetCredentialsApi, '/workspaces/current/tool-provider/builtin/<provider>/credentials')
api.add_resource(ToolBuiltinProviderCredentialsSchemaApi, '/workspaces/current/tool-provider/builtin/<provider>/credentials_schema')
api.add_resource(ToolBuiltinProviderIconApi, '/workspaces/current/tool-provider/builtin/<provider>/icon')
api.add_resource(ToolModelProviderIconApi, '/workspaces/current/tool-provider/model/<provider>/icon')
api.add_resource(ToolModelProviderListToolsApi, '/workspaces/current/tool-provider/model/tools')
api.add_resource(ToolApiProviderAddApi, '/workspaces/current/tool-provider/api/add')
api.add_resource(ToolApiProviderGetRemoteSchemaApi, '/workspaces/current/tool-provider/api/remote')
api.add_resource(ToolApiProviderListToolsApi, '/workspaces/current/tool-provider/api/tools')
api.add_resource(ToolApiProviderUpdateApi, '/workspaces/current/tool-provider/api/update')
api.add_resource(ToolApiProviderUpdateApi, '/workspaces/current/tool-provider/api/update')
api.add_resource(ToolApiProviderDeleteApi, '/workspaces/current/tool-provider/api/delete')
api.add_resource(ToolApiProviderGetApi, '/workspaces/current/tool-provider/api/get')
api.add_resource(ToolApiProviderSchemaApi, '/workspaces/current/tool-provider/api/schema')
api.add_resource(ToolApiProviderPreviousTestApi, '/workspaces/current/tool-provider/api/test/pre')
api.add_resource(ToolBuiltinListApi, '/workspaces/current/tools/builtin')
api.add_resource(ToolApiListApi, '/workspaces/current/tools/api')

View File

@ -51,19 +51,25 @@ def cloud_edition_billing_resource_check(resource: str,
@wraps(view)
def decorated(*args, **kwargs):
features = FeatureService.get_features(current_user.current_tenant_id)
if features.billing.enabled:
members = features.members
apps = features.apps
vector_space = features.vector_space
documents_upload_quota = features.documents_upload_quota
annotation_quota_limit = features.annotation_quota_limit
if resource == 'members' and 0 < members.limit <= members.size:
abort(403, error_msg)
elif resource == 'apps' and 0 < apps.limit <= apps.size:
abort(403, error_msg)
elif resource == 'vector_space' and 0 < vector_space.limit <= vector_space.size:
abort(403, error_msg)
elif resource == 'documents' and 0 < documents_upload_quota.limit <= documents_upload_quota.size:
# The api of file upload is used in the multiple places, so we need to check the source of the request from datasets
source = request.args.get('source')
if source == 'datasets':
abort(403, error_msg)
else:
return view(*args, **kwargs)
elif resource == 'workspace_custom' and not features.can_replace_logo:
abort(403, error_msg)
elif resource == 'annotation' and 0 < annotation_quota_limit.limit < annotation_quota_limit.size:
@ -72,7 +78,29 @@ def cloud_edition_billing_resource_check(resource: str,
return view(*args, **kwargs)
return view(*args, **kwargs)
return decorated
return interceptor
def cloud_edition_billing_knowledge_limit_check(resource: str,
error_msg: str = "To unlock this feature and elevate your Dify experience, please upgrade to a paid plan."):
def interceptor(view):
@wraps(view)
def decorated(*args, **kwargs):
features = FeatureService.get_features(current_user.current_tenant_id)
if features.billing.enabled:
if resource == 'add_segment':
if features.billing.subscription.plan == 'sandbox':
abort(403, error_msg)
else:
return view(*args, **kwargs)
return view(*args, **kwargs)
return decorated
return interceptor
@ -91,4 +119,5 @@ def cloud_utm_record(view):
except Exception as e:
pass
return view(*args, **kwargs)
return decorated

View File

@ -27,7 +27,7 @@ class ToolFilePreviewApi(Resource):
raise Forbidden('Invalid request.')
try:
result = ToolFileManager.get_file_generator_by_message_file_id(
result = ToolFileManager.get_file_generator_by_tool_file_id(
file_id,
)

View File

@ -7,5 +7,5 @@ api = ExternalApi(bp)
from . import index
from .app import app, audio, completion, conversation, file, message
from .app import app, audio, completion, conversation, file, message, workflow
from .dataset import dataset, document, segment

View File

@ -4,10 +4,12 @@ from flask import current_app
from flask_restful import fields, marshal_with, Resource
from controllers.service_api import api
from controllers.service_api.app.error import AppUnavailableError
from controllers.service_api.wraps import validate_app_token
from extensions.ext_database import db
from models.model import App, AppModelConfig
from models.model import App, AppModelConfig, AppMode
from models.tools import ApiToolProvider
from services.app_service import AppService
class AppParameterApi(Resource):
@ -46,62 +48,50 @@ class AppParameterApi(Resource):
@marshal_with(parameters_fields)
def get(self, app_model: App):
"""Retrieve app parameters."""
app_model_config = app_model.app_model_config
if app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]:
workflow = app_model.workflow
if workflow is None:
raise AppUnavailableError()
features_dict = workflow.features_dict
user_input_form = workflow.user_input_form(to_old_structure=True)
else:
app_model_config = app_model.app_model_config
features_dict = app_model_config.to_dict()
user_input_form = features_dict.get('user_input_form', [])
return {
'opening_statement': app_model_config.opening_statement,
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'text_to_speech': app_model_config.text_to_speech_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'annotation_reply': app_model_config.annotation_reply_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict,
'file_upload': app_model_config.file_upload_dict,
'opening_statement': features_dict.get('opening_statement'),
'suggested_questions': features_dict.get('suggested_questions', []),
'suggested_questions_after_answer': features_dict.get('suggested_questions_after_answer',
{"enabled": False}),
'speech_to_text': features_dict.get('speech_to_text', {"enabled": False}),
'text_to_speech': features_dict.get('text_to_speech', {"enabled": False}),
'retriever_resource': features_dict.get('retriever_resource', {"enabled": False}),
'annotation_reply': features_dict.get('annotation_reply', {"enabled": False}),
'more_like_this': features_dict.get('more_like_this', {"enabled": False}),
'user_input_form': user_input_form,
'sensitive_word_avoidance': features_dict.get('sensitive_word_avoidance',
{"enabled": False, "type": "", "configs": []}),
'file_upload': features_dict.get('file_upload', {"image": {
"enabled": False,
"number_limits": 3,
"detail": "high",
"transfer_methods": ["remote_url", "local_file"]
}}),
'system_parameters': {
'image_file_size_limit': current_app.config.get('UPLOAD_IMAGE_FILE_SIZE_LIMIT')
}
}
class AppMetaApi(Resource):
@validate_app_token
def get(self, app_model: App):
"""Get app meta"""
app_model_config: AppModelConfig = app_model.app_model_config
return AppService().get_app_meta(app_model)
agent_config = app_model_config.agent_mode_dict or {}
meta = {
'tool_icons': {}
}
# get all tools
tools = agent_config.get('tools', [])
url_prefix = (current_app.config.get("CONSOLE_API_URL")
+ "/console/api/workspaces/current/tool-provider/builtin/")
for tool in tools:
keys = list(tool.keys())
if len(keys) >= 4:
# current tool standard
provider_type = tool.get('provider_type')
provider_id = tool.get('provider_id')
tool_name = tool.get('tool_name')
if provider_type == 'builtin':
meta['tool_icons'][tool_name] = url_prefix + provider_id + '/icon'
elif provider_type == 'api':
try:
provider: ApiToolProvider = db.session.query(ApiToolProvider).filter(
ApiToolProvider.id == provider_id
)
meta['tool_icons'][tool_name] = json.loads(provider.icon)
except:
meta['tool_icons'][tool_name] = {
"background": "#252525",
"content": "\ud83d\ude01"
}
return meta
api.add_resource(AppParameterApi, '/parameters')
api.add_resource(AppMetaApi, '/meta')

View File

@ -20,7 +20,7 @@ from controllers.service_api.app.error import (
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from models.model import App, AppModelConfig, EndUser
from models.model import App, EndUser
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -33,16 +33,11 @@ from services.errors.audio import (
class AudioApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.FORM))
def post(self, app_model: App, end_user: EndUser):
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.speech_to_text_dict['enabled']:
raise AppUnavailableError()
file = request.files['file']
try:
response = AudioService.transcript_asr(
tenant_id=app_model.tenant_id,
app_model=app_model,
file=file,
end_user=end_user
)
@ -75,19 +70,20 @@ class AudioApi(Resource):
class TextApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON, required=True))
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON))
def post(self, app_model: App, end_user: EndUser):
parser = reqparse.RequestParser()
parser.add_argument('text', type=str, required=True, nullable=False, location='json')
parser.add_argument('voice', type=str, location='json')
parser.add_argument('streaming', type=bool, required=False, nullable=False, location='json')
args = parser.parse_args()
try:
response = AudioService.transcript_tts(
tenant_id=app_model.tenant_id,
app_model=app_model,
text=args['text'],
end_user=end_user,
voice=app_model.app_model_config.text_to_speech_dict.get('voice'),
voice=args.get('voice'),
streaming=args['streaming']
)

View File

@ -1,9 +1,5 @@
import json
import logging
from collections.abc import Generator
from typing import Union
from flask import Response, stream_with_context
from flask_restful import Resource, reqparse
from werkzeug.exceptions import InternalServerError, NotFound
@ -19,13 +15,14 @@ from controllers.service_api.app.error import (
ProviderQuotaExceededError,
)
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from libs.helper import uuid_value
from models.model import App, EndUser
from services.completion_service import CompletionService
from models.model import App, AppMode, EndUser
from services.app_generate_service import AppGenerateService
class CompletionApi(Resource):
@ -48,7 +45,7 @@ class CompletionApi(Resource):
args['auto_generate_name'] = False
try:
response = CompletionService.completion(
response = AppGenerateService.generate(
app_model=app_model,
user=end_user,
args=args,
@ -56,7 +53,7 @@ class CompletionApi(Resource):
streaming=streaming,
)
return compact_response(response)
return helper.compact_generate_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -85,7 +82,7 @@ class CompletionStopApi(Resource):
if app_model.mode != 'completion':
raise AppUnavailableError()
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
AppQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
return {'result': 'success'}, 200
@ -93,7 +90,8 @@ class CompletionStopApi(Resource):
class ChatApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON, required=True))
def post(self, app_model: App, end_user: EndUser):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -110,7 +108,7 @@ class ChatApi(Resource):
streaming = args['response_mode'] == 'streaming'
try:
response = CompletionService.completion(
response = AppGenerateService.generate(
app_model=app_model,
user=end_user,
args=args,
@ -118,7 +116,7 @@ class ChatApi(Resource):
streaming=streaming
)
return compact_response(response)
return helper.compact_generate_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -144,25 +142,15 @@ class ChatApi(Resource):
class ChatStopApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON, required=True))
def post(self, app_model: App, end_user: EndUser, task_id):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
AppQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
return {'result': 'success'}, 200
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
yield from response
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
api.add_resource(CompletionApi, '/completion-messages')
api.add_resource(CompletionStopApi, '/completion-messages/<string:task_id>/stop')
api.add_resource(ChatApi, '/chat-messages')

View File

@ -8,7 +8,7 @@ from controllers.service_api.app.error import NotChatAppError
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from fields.conversation_fields import conversation_infinite_scroll_pagination_fields, simple_conversation_fields
from libs.helper import uuid_value
from models.model import App, EndUser
from models.model import App, AppMode, EndUser
from services.conversation_service import ConversationService
@ -17,7 +17,8 @@ class ConversationApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.QUERY))
@marshal_with(conversation_infinite_scroll_pagination_fields)
def get(self, app_model: App, end_user: EndUser):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -30,11 +31,13 @@ class ConversationApi(Resource):
except services.errors.conversation.LastConversationNotExistsError:
raise NotFound("Last Conversation Not Exists.")
class ConversationDetailApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON))
@marshal_with(simple_conversation_fields)
def delete(self, app_model: App, end_user: EndUser, c_id):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
conversation_id = str(c_id)
@ -51,7 +54,8 @@ class ConversationRenameApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON))
@marshal_with(simple_conversation_fields)
def post(self, app_model: App, end_user: EndUser, c_id):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
conversation_id = str(c_id)

View File

@ -15,7 +15,13 @@ class NotCompletionAppError(BaseHTTPException):
class NotChatAppError(BaseHTTPException):
error_code = 'not_chat_app'
description = "Please check if your Chat app mode matches the right API route."
description = "Please check if your app mode matches the right API route."
code = 400
class NotWorkflowAppError(BaseHTTPException):
error_code = 'not_workflow_app'
description = "Please check if your app mode matches the right API route."
code = 400

View File

@ -1,14 +1,18 @@
import logging
from flask_restful import Resource, fields, marshal_with, reqparse
from flask_restful.inputs import int_range
from werkzeug.exceptions import NotFound
from werkzeug.exceptions import BadRequest, InternalServerError, NotFound
import services
from controllers.service_api import api
from controllers.service_api.app.error import NotChatAppError
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from core.app.entities.app_invoke_entities import InvokeFrom
from fields.conversation_fields import message_file_fields
from libs.helper import TimestampField, uuid_value
from models.model import App, EndUser
from models.model import App, AppMode, EndUser
from services.errors.message import SuggestedQuestionsAfterAnswerDisabledError
from services.message_service import MessageService
@ -54,12 +58,14 @@ class MessageListApi(Resource):
'conversation_id': fields.String,
'inputs': fields.Raw,
'query': fields.String,
'answer': fields.String,
'answer': fields.String(attribute='re_sign_file_url_answer'),
'message_files': fields.List(fields.Nested(message_file_fields), attribute='files'),
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField,
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields)),
'status': fields.String,
'error': fields.String,
}
message_infinite_scroll_pagination_fields = {
@ -71,7 +77,8 @@ class MessageListApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.QUERY))
@marshal_with(message_infinite_scroll_pagination_fields)
def get(self, app_model: App, end_user: EndUser):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -110,7 +117,8 @@ class MessageSuggestedApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.QUERY))
def get(self, app_model: App, end_user: EndUser, message_id):
message_id = str(message_id)
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
try:
@ -118,10 +126,15 @@ class MessageSuggestedApi(Resource):
app_model=app_model,
user=end_user,
message_id=message_id,
check_enabled=False
invoke_from=InvokeFrom.SERVICE_API
)
except services.errors.message.MessageNotExistsError:
raise NotFound("Message Not Exists.")
except SuggestedQuestionsAfterAnswerDisabledError:
raise BadRequest("Message Not Exists.")
except Exception:
logging.exception("internal server error.")
raise InternalServerError()
return {'result': 'success', 'data': questions}

View File

@ -0,0 +1,87 @@
import logging
from flask_restful import Resource, reqparse
from werkzeug.exceptions import InternalServerError
from controllers.service_api import api
from controllers.service_api.app.error import (
CompletionRequestError,
NotWorkflowAppError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from models.model import App, AppMode, EndUser
from services.app_generate_service import AppGenerateService
logger = logging.getLogger(__name__)
class WorkflowRunApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON, required=True))
def post(self, app_model: App, end_user: EndUser):
"""
Run workflow
"""
app_mode = AppMode.value_of(app_model.mode)
if app_mode != AppMode.WORKFLOW:
raise NotWorkflowAppError()
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, nullable=False, location='json')
parser.add_argument('files', type=list, required=False, location='json')
parser.add_argument('response_mode', type=str, choices=['blocking', 'streaming'], location='json')
args = parser.parse_args()
streaming = args.get('response_mode') == 'streaming'
try:
response = AppGenerateService.generate(
app_model=app_model,
user=end_user,
args=args,
invoke_from=InvokeFrom.SERVICE_API,
streaming=streaming
)
return helper.compact_generate_response(response)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
class WorkflowTaskStopApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON, required=True))
def post(self, app_model: App, end_user: EndUser, task_id: str):
"""
Stop workflow task
"""
app_mode = AppMode.value_of(app_model.mode)
if app_mode != AppMode.WORKFLOW:
raise NotWorkflowAppError()
AppQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
return {
"result": "success"
}
api.add_resource(WorkflowRunApi, '/workflows/run')
api.add_resource(WorkflowTaskStopApi, '/workflows/tasks/<string:task_id>/stop')

View File

@ -28,6 +28,7 @@ class DocumentAddByTextApi(DatasetApiResource):
"""Resource for documents."""
@cloud_edition_billing_resource_check('vector_space', 'dataset')
@cloud_edition_billing_resource_check('documents', 'dataset')
def post(self, tenant_id, dataset_id):
"""Create document by text."""
parser = reqparse.RequestParser()
@ -153,6 +154,7 @@ class DocumentUpdateByTextApi(DatasetApiResource):
class DocumentAddByFileApi(DatasetApiResource):
"""Resource for documents."""
@cloud_edition_billing_resource_check('vector_space', 'dataset')
@cloud_edition_billing_resource_check('documents', 'dataset')
def post(self, tenant_id, dataset_id):
"""Create document by upload file."""
args = {}

View File

@ -4,7 +4,11 @@ from werkzeug.exceptions import NotFound
from controllers.service_api import api
from controllers.service_api.app.error import ProviderNotInitializeError
from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
from controllers.service_api.wraps import (
DatasetApiResource,
cloud_edition_billing_knowledge_limit_check,
cloud_edition_billing_resource_check,
)
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
@ -18,6 +22,7 @@ class SegmentApi(DatasetApiResource):
"""Resource for segments."""
@cloud_edition_billing_resource_check('vector_space', 'dataset')
@cloud_edition_billing_knowledge_limit_check('add_segment', 'dataset')
def post(self, tenant_id, dataset_id, document_id):
"""Create single segment."""
# check dataset
@ -197,11 +202,11 @@ class DatasetSegmentApi(DatasetApiResource):
# validate args
parser = reqparse.RequestParser()
parser.add_argument('segments', type=dict, required=False, nullable=True, location='json')
parser.add_argument('segment', type=dict, required=False, nullable=True, location='json')
args = parser.parse_args()
SegmentService.segment_create_args_validate(args['segments'], document)
segment = SegmentService.update_segment(args['segments'], segment, document, dataset)
SegmentService.segment_create_args_validate(args['segment'], document)
segment = SegmentService.update_segment(args['segment'], segment, document, dataset)
return {
'data': marshal(segment, segment_fields),
'doc_form': document.doc_form

View File

@ -8,7 +8,7 @@ from flask import current_app, request
from flask_login import user_logged_in
from flask_restful import Resource
from pydantic import BaseModel
from werkzeug.exceptions import NotFound, Unauthorized
from werkzeug.exceptions import Forbidden, NotFound, Unauthorized
from extensions.ext_database import db
from libs.login import _get_user
@ -89,13 +89,16 @@ def cloud_edition_billing_resource_check(resource: str,
members = features.members
apps = features.apps
vector_space = features.vector_space
documents_upload_quota = features.documents_upload_quota
if resource == 'members' and 0 < members.limit <= members.size:
raise Unauthorized(error_msg)
raise Forbidden(error_msg)
elif resource == 'apps' and 0 < apps.limit <= apps.size:
raise Unauthorized(error_msg)
raise Forbidden(error_msg)
elif resource == 'vector_space' and 0 < vector_space.limit <= vector_space.size:
raise Unauthorized(error_msg)
raise Forbidden(error_msg)
elif resource == 'documents' and 0 < documents_upload_quota.limit <= documents_upload_quota.size:
raise Forbidden(error_msg)
else:
return view(*args, **kwargs)
@ -104,6 +107,27 @@ def cloud_edition_billing_resource_check(resource: str,
return interceptor
def cloud_edition_billing_knowledge_limit_check(resource: str,
api_token_type: str,
error_msg: str = "To unlock this feature and elevate your Dify experience, please upgrade to a paid plan."):
def interceptor(view):
@wraps(view)
def decorated(*args, **kwargs):
api_token = validate_and_get_api_token(api_token_type)
features = FeatureService.get_features(api_token.tenant_id)
if features.billing.enabled:
if resource == 'add_segment':
if features.billing.subscription.plan == 'sandbox':
raise Forbidden(error_msg)
else:
return view(*args, **kwargs)
return view(*args, **kwargs)
return decorated
return interceptor
def validate_dataset_token(view=None):
def decorator(view):
@wraps(view)

View File

@ -6,4 +6,4 @@ bp = Blueprint('web', __name__, url_prefix='/api')
api = ExternalApi(bp)
from . import app, audio, completion, conversation, file, message, passport, saved_message, site
from . import app, audio, completion, conversation, file, message, passport, saved_message, site, workflow

View File

@ -4,10 +4,12 @@ from flask import current_app
from flask_restful import fields, marshal_with
from controllers.web import api
from controllers.web.error import AppUnavailableError
from controllers.web.wraps import WebApiResource
from extensions.ext_database import db
from models.model import App, AppModelConfig
from models.model import App, AppModelConfig, AppMode
from models.tools import ApiToolProvider
from services.app_service import AppService
class AppParameterApi(WebApiResource):
@ -44,61 +46,49 @@ class AppParameterApi(WebApiResource):
@marshal_with(parameters_fields)
def get(self, app_model: App, end_user):
"""Retrieve app parameters."""
app_model_config = app_model.app_model_config
if app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]:
workflow = app_model.workflow
if workflow is None:
raise AppUnavailableError()
features_dict = workflow.features_dict
user_input_form = workflow.user_input_form(to_old_structure=True)
else:
app_model_config = app_model.app_model_config
features_dict = app_model_config.to_dict()
user_input_form = features_dict.get('user_input_form', [])
return {
'opening_statement': app_model_config.opening_statement,
'suggested_questions': app_model_config.suggested_questions_list,
'suggested_questions_after_answer': app_model_config.suggested_questions_after_answer_dict,
'speech_to_text': app_model_config.speech_to_text_dict,
'text_to_speech': app_model_config.text_to_speech_dict,
'retriever_resource': app_model_config.retriever_resource_dict,
'annotation_reply': app_model_config.annotation_reply_dict,
'more_like_this': app_model_config.more_like_this_dict,
'user_input_form': app_model_config.user_input_form_list,
'sensitive_word_avoidance': app_model_config.sensitive_word_avoidance_dict,
'file_upload': app_model_config.file_upload_dict,
'opening_statement': features_dict.get('opening_statement'),
'suggested_questions': features_dict.get('suggested_questions', []),
'suggested_questions_after_answer': features_dict.get('suggested_questions_after_answer',
{"enabled": False}),
'speech_to_text': features_dict.get('speech_to_text', {"enabled": False}),
'text_to_speech': features_dict.get('text_to_speech', {"enabled": False}),
'retriever_resource': features_dict.get('retriever_resource', {"enabled": False}),
'annotation_reply': features_dict.get('annotation_reply', {"enabled": False}),
'more_like_this': features_dict.get('more_like_this', {"enabled": False}),
'user_input_form': user_input_form,
'sensitive_word_avoidance': features_dict.get('sensitive_word_avoidance',
{"enabled": False, "type": "", "configs": []}),
'file_upload': features_dict.get('file_upload', {"image": {
"enabled": False,
"number_limits": 3,
"detail": "high",
"transfer_methods": ["remote_url", "local_file"]
}}),
'system_parameters': {
'image_file_size_limit': current_app.config.get('UPLOAD_IMAGE_FILE_SIZE_LIMIT')
}
}
class AppMeta(WebApiResource):
def get(self, app_model: App, end_user):
"""Get app meta"""
app_model_config: AppModelConfig = app_model.app_model_config
return AppService().get_app_meta(app_model)
agent_config = app_model_config.agent_mode_dict or {}
meta = {
'tool_icons': {}
}
# get all tools
tools = agent_config.get('tools', [])
url_prefix = (current_app.config.get("CONSOLE_API_URL")
+ "/console/api/workspaces/current/tool-provider/builtin/")
for tool in tools:
keys = list(tool.keys())
if len(keys) >= 4:
# current tool standard
provider_type = tool.get('provider_type')
provider_id = tool.get('provider_id')
tool_name = tool.get('tool_name')
if provider_type == 'builtin':
meta['tool_icons'][tool_name] = url_prefix + provider_id + '/icon'
elif provider_type == 'api':
try:
provider: ApiToolProvider = db.session.query(ApiToolProvider).filter(
ApiToolProvider.id == provider_id
)
meta['tool_icons'][tool_name] = json.loads(provider.icon)
except:
meta['tool_icons'][tool_name] = {
"background": "#252525",
"content": "\ud83d\ude01"
}
return meta
api.add_resource(AppParameterApi, '/parameters')
api.add_resource(AppMeta, '/meta')

View File

@ -19,7 +19,7 @@ from controllers.web.error import (
from controllers.web.wraps import WebApiResource
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from models.model import App, AppModelConfig
from models.model import App
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -31,16 +31,11 @@ from services.errors.audio import (
class AudioApi(WebApiResource):
def post(self, app_model: App, end_user):
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.speech_to_text_dict['enabled']:
raise AppUnavailableError()
file = request.files['file']
try:
response = AudioService.transcript_asr(
tenant_id=app_model.tenant_id,
app_model=app_model,
file=file,
end_user=end_user
)
@ -74,17 +69,12 @@ class AudioApi(WebApiResource):
class TextApi(WebApiResource):
def post(self, app_model: App, end_user):
app_model_config: AppModelConfig = app_model.app_model_config
if not app_model_config.text_to_speech_dict['enabled']:
raise AppUnavailableError()
try:
response = AudioService.transcript_tts(
tenant_id=app_model.tenant_id,
app_model=app_model,
text=request.form['text'],
end_user=end_user.external_user_id,
voice=app_model.app_model_config.text_to_speech_dict.get('voice'),
voice=request.form.get('voice'),
streaming=False
)

View File

@ -1,9 +1,5 @@
import json
import logging
from collections.abc import Generator
from typing import Union
from flask import Response, stream_with_context
from flask_restful import reqparse
from werkzeug.exceptions import InternalServerError, NotFound
@ -20,12 +16,14 @@ from controllers.web.error import (
ProviderQuotaExceededError,
)
from controllers.web.wraps import WebApiResource
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from libs.helper import uuid_value
from services.completion_service import CompletionService
from models.model import AppMode
from services.app_generate_service import AppGenerateService
# define completion api for user
@ -48,7 +46,7 @@ class CompletionApi(WebApiResource):
args['auto_generate_name'] = False
try:
response = CompletionService.completion(
response = AppGenerateService.generate(
app_model=app_model,
user=end_user,
args=args,
@ -56,7 +54,7 @@ class CompletionApi(WebApiResource):
streaming=streaming
)
return compact_response(response)
return helper.compact_generate_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -84,14 +82,15 @@ class CompletionStopApi(WebApiResource):
if app_model.mode != 'completion':
raise NotCompletionAppError()
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.WEB_APP, end_user.id)
AppQueueManager.set_stop_flag(task_id, InvokeFrom.WEB_APP, end_user.id)
return {'result': 'success'}, 200
class ChatApi(WebApiResource):
def post(self, app_model, end_user):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -108,7 +107,7 @@ class ChatApi(WebApiResource):
args['auto_generate_name'] = False
try:
response = CompletionService.completion(
response = AppGenerateService.generate(
app_model=app_model,
user=end_user,
args=args,
@ -116,7 +115,7 @@ class ChatApi(WebApiResource):
streaming=streaming
)
return compact_response(response)
return helper.compact_generate_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
@ -141,25 +140,15 @@ class ChatApi(WebApiResource):
class ChatStopApi(WebApiResource):
def post(self, app_model, end_user, task_id):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.WEB_APP, end_user.id)
AppQueueManager.set_stop_flag(task_id, InvokeFrom.WEB_APP, end_user.id)
return {'result': 'success'}, 200
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
yield from response
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
api.add_resource(CompletionApi, '/completion-messages')
api.add_resource(CompletionStopApi, '/completion-messages/<string:task_id>/stop')
api.add_resource(ChatApi, '/chat-messages')

View File

@ -7,6 +7,7 @@ from controllers.web.error import NotChatAppError
from controllers.web.wraps import WebApiResource
from fields.conversation_fields import conversation_infinite_scroll_pagination_fields, simple_conversation_fields
from libs.helper import uuid_value
from models.model import AppMode
from services.conversation_service import ConversationService
from services.errors.conversation import ConversationNotExistsError, LastConversationNotExistsError
from services.web_conversation_service import WebConversationService
@ -16,7 +17,8 @@ class ConversationListApi(WebApiResource):
@marshal_with(conversation_infinite_scroll_pagination_fields)
def get(self, app_model, end_user):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -43,7 +45,8 @@ class ConversationListApi(WebApiResource):
class ConversationApi(WebApiResource):
def delete(self, app_model, end_user, c_id):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
conversation_id = str(c_id)
@ -60,7 +63,8 @@ class ConversationRenameApi(WebApiResource):
@marshal_with(simple_conversation_fields)
def post(self, app_model, end_user, c_id):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
conversation_id = str(c_id)
@ -85,7 +89,8 @@ class ConversationRenameApi(WebApiResource):
class ConversationPinApi(WebApiResource):
def patch(self, app_model, end_user, c_id):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
conversation_id = str(c_id)
@ -100,7 +105,8 @@ class ConversationPinApi(WebApiResource):
class ConversationUnPinApi(WebApiResource):
def patch(self, app_model, end_user, c_id):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
conversation_id = str(c_id)

View File

@ -15,7 +15,13 @@ class NotCompletionAppError(BaseHTTPException):
class NotChatAppError(BaseHTTPException):
error_code = 'not_chat_app'
description = "Please check if your Chat app mode matches the right API route."
description = "Please check if your app mode matches the right API route."
code = 400
class NotWorkflowAppError(BaseHTTPException):
error_code = 'not_workflow_app'
description = "Please check if your Workflow app mode matches the right API route."
code = 400

View File

@ -1,9 +1,5 @@
import json
import logging
from collections.abc import Generator
from typing import Union
from flask import Response, stream_with_context
from flask_restful import fields, marshal_with, reqparse
from flask_restful.inputs import int_range
from werkzeug.exceptions import InternalServerError, NotFound
@ -21,13 +17,15 @@ from controllers.web.error import (
ProviderQuotaExceededError,
)
from controllers.web.wraps import WebApiResource
from core.entities.application_entities import InvokeFrom
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from fields.conversation_fields import message_file_fields
from fields.message_fields import agent_thought_fields
from libs import helper
from libs.helper import TimestampField, uuid_value
from services.completion_service import CompletionService
from models.model import AppMode
from services.app_generate_service import AppGenerateService
from services.errors.app import MoreLikeThisDisabledError
from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError, SuggestedQuestionsAfterAnswerDisabledError
@ -63,12 +61,14 @@ class MessageListApi(WebApiResource):
'conversation_id': fields.String,
'inputs': fields.Raw,
'query': fields.String,
'answer': fields.String,
'answer': fields.String(attribute='re_sign_file_url_answer'),
'message_files': fields.List(fields.Nested(message_file_fields), attribute='files'),
'feedback': fields.Nested(feedback_fields, attribute='user_feedback', allow_null=True),
'retriever_resources': fields.List(fields.Nested(retriever_resource_fields)),
'created_at': TimestampField,
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields))
'agent_thoughts': fields.List(fields.Nested(agent_thought_fields)),
'status': fields.String,
'error': fields.String,
}
message_infinite_scroll_pagination_fields = {
@ -79,7 +79,8 @@ class MessageListApi(WebApiResource):
@marshal_with(message_infinite_scroll_pagination_fields)
def get(self, app_model, end_user):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotChatAppError()
parser = reqparse.RequestParser()
@ -127,7 +128,7 @@ class MessageMoreLikeThisApi(WebApiResource):
streaming = args['response_mode'] == 'streaming'
try:
response = CompletionService.generate_more_like_this(
response = AppGenerateService.generate_more_like_this(
app_model=app_model,
user=end_user,
message_id=message_id,
@ -135,7 +136,7 @@ class MessageMoreLikeThisApi(WebApiResource):
streaming=streaming
)
return compact_response(response)
return helper.compact_generate_response(response)
except MessageNotExistsError:
raise NotFound("Message Not Exists.")
except MoreLikeThisDisabledError:
@ -155,20 +156,10 @@ class MessageMoreLikeThisApi(WebApiResource):
raise InternalServerError()
def compact_response(response: Union[dict, Generator]) -> Response:
if isinstance(response, dict):
return Response(response=json.dumps(response), status=200, mimetype='application/json')
else:
def generate() -> Generator:
yield from response
return Response(stream_with_context(generate()), status=200,
mimetype='text/event-stream')
class MessageSuggestedQuestionApi(WebApiResource):
def get(self, app_model, end_user, message_id):
if app_model.mode != 'chat':
app_mode = AppMode.value_of(app_model.mode)
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
raise NotCompletionAppError()
message_id = str(message_id)
@ -177,7 +168,8 @@ class MessageSuggestedQuestionApi(WebApiResource):
questions = MessageService.get_suggested_questions_after_answer(
app_model=app_model,
user=end_user,
message_id=message_id
message_id=message_id,
invoke_from=InvokeFrom.WEB_APP
)
except MessageNotExistsError:
raise NotFound("Message not found")

View File

@ -83,7 +83,3 @@ class AppSiteInfo:
'remove_webapp_brand': remove_webapp_brand,
'replace_webapp_logo': replace_webapp_logo,
}
if app.enable_site and site.prompt_public:
app_model_config = app.app_model_config
self.model_config = app_model_config

View File

@ -0,0 +1,82 @@
import logging
from flask_restful import reqparse
from werkzeug.exceptions import InternalServerError
from controllers.web import api
from controllers.web.error import (
CompletionRequestError,
NotWorkflowAppError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.web.wraps import WebApiResource
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from models.model import App, AppMode, EndUser
from services.app_generate_service import AppGenerateService
logger = logging.getLogger(__name__)
class WorkflowRunApi(WebApiResource):
def post(self, app_model: App, end_user: EndUser):
"""
Run workflow
"""
app_mode = AppMode.value_of(app_model.mode)
if app_mode != AppMode.WORKFLOW:
raise NotWorkflowAppError()
parser = reqparse.RequestParser()
parser.add_argument('inputs', type=dict, required=True, nullable=False, location='json')
parser.add_argument('files', type=list, required=False, location='json')
args = parser.parse_args()
try:
response = AppGenerateService.generate(
app_model=app_model,
user=end_user,
args=args,
invoke_from=InvokeFrom.WEB_APP,
streaming=True
)
return helper.compact_generate_response(response)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
raise e
except Exception as e:
logging.exception("internal server error.")
raise InternalServerError()
class WorkflowTaskStopApi(WebApiResource):
def post(self, app_model: App, end_user: EndUser, task_id: str):
"""
Stop workflow task
"""
app_mode = AppMode.value_of(app_model.mode)
if app_mode != AppMode.WORKFLOW:
raise NotWorkflowAppError()
AppQueueManager.set_stop_flag(task_id, InvokeFrom.WEB_APP, end_user.id)
return {
"result": "success"
}
api.add_resource(WorkflowRunApi, '/workflows/run')
api.add_resource(WorkflowTaskStopApi, '/workflows/tasks/<string:task_id>/stop')

View File

@ -1,101 +0,0 @@
import logging
from typing import Optional
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
from core.model_runtime.callbacks.base_callback import Callback
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
from core.model_runtime.model_providers.__base.ai_model import AIModel
logger = logging.getLogger(__name__)
class AgentLLMCallback(Callback):
def __init__(self, agent_callback: AgentLoopGatherCallbackHandler) -> None:
self.agent_callback = agent_callback
def on_before_invoke(self, llm_instance: AIModel, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
stream: bool = True, user: Optional[str] = None) -> None:
"""
Before invoke callback
:param llm_instance: LLM instance
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
"""
self.agent_callback.on_llm_before_invoke(
prompt_messages=prompt_messages
)
def on_new_chunk(self, llm_instance: AIModel, chunk: LLMResultChunk, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
stream: bool = True, user: Optional[str] = None):
"""
On new chunk callback
:param llm_instance: LLM instance
:param chunk: chunk
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
"""
pass
def on_after_invoke(self, llm_instance: AIModel, result: LLMResult, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
stream: bool = True, user: Optional[str] = None) -> None:
"""
After invoke callback
:param llm_instance: LLM instance
:param result: result
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
"""
self.agent_callback.on_llm_after_invoke(
result=result
)
def on_invoke_error(self, llm_instance: AIModel, ex: Exception, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
stream: bool = True, user: Optional[str] = None) -> None:
"""
Invoke error callback
:param llm_instance: LLM instance
:param ex: exception
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
"""
self.agent_callback.on_llm_error(
error=ex
)

View File

@ -1,49 +0,0 @@
from typing import cast
from core.entities.application_entities import ModelConfigEntity
from core.model_runtime.entities.message_entities import PromptMessage
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
class CalcTokenMixin:
def get_message_rest_tokens(self, model_config: ModelConfigEntity, messages: list[PromptMessage], **kwargs) -> int:
"""
Got the rest tokens available for the model after excluding messages tokens and completion max tokens
:param model_config:
:param messages:
:return:
"""
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if (parameter_rule.name == 'max_tokens'
or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
max_tokens = (model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(parameter_rule.use_template)) or 0
if model_context_tokens is None:
return 0
if max_tokens is None:
max_tokens = 0
prompt_tokens = model_type_instance.get_num_tokens(
model_config.model,
model_config.credentials,
messages
)
rest_tokens = model_context_tokens - max_tokens - prompt_tokens
return rest_tokens
class ExceededLLMTokensLimitError(Exception):
pass

View File

@ -1,361 +0,0 @@
from collections.abc import Sequence
from typing import Any, Optional, Union
from langchain.agents import BaseSingleActionAgent, OpenAIFunctionsAgent
from langchain.agents.openai_functions_agent.base import _format_intermediate_steps, _parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.chat_models.openai import _convert_message_to_dict, _import_tiktoken
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import (
AgentAction,
AgentFinish,
AIMessage,
BaseMessage,
HumanMessage,
SystemMessage,
get_buffer_string,
)
from langchain.tools import BaseTool
from pydantic import root_validator
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
from core.chain.llm_chain import LLMChain
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import lc_messages_to_prompt_messages
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
from core.third_party.langchain.llms.fake import FakeLLM
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_model_config: ModelConfigEntity = None
model_config: ModelConfigEntity
agent_llm_callback: Optional[AgentLLMCallback] = None
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@root_validator
def validate_llm(cls, values: dict) -> dict:
return values
@classmethod
def from_llm_and_tools(
cls,
model_config: ModelConfigEntity,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[list[BaseMessagePromptTemplate]] = None,
system_message: Optional[SystemMessage] = SystemMessage(
content="You are a helpful AI assistant."
),
agent_llm_callback: Optional[AgentLLMCallback] = None,
**kwargs: Any,
) -> BaseSingleActionAgent:
prompt = cls.create_prompt(
extra_prompt_messages=extra_prompt_messages,
system_message=system_message,
)
return cls(
model_config=model_config,
llm=FakeLLM(response=''),
prompt=prompt,
tools=tools,
callback_manager=callback_manager,
agent_llm_callback=agent_llm_callback,
**kwargs,
)
def should_use_agent(self, query: str):
"""
return should use agent
:param query:
:return:
"""
original_max_tokens = 0
for parameter_rule in self.model_config.model_schema.parameter_rules:
if (parameter_rule.name == 'max_tokens'
or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
original_max_tokens = (self.model_config.parameters.get(parameter_rule.name)
or self.model_config.parameters.get(parameter_rule.use_template)) or 0
self.model_config.parameters['max_tokens'] = 40
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
messages = prompt.to_messages()
try:
prompt_messages = lc_messages_to_prompt_messages(messages)
model_instance = ModelInstance(
provider_model_bundle=self.model_config.provider_model_bundle,
model=self.model_config.model,
)
tools = []
for function in self.functions:
tool = PromptMessageTool(
**function
)
tools.append(tool)
result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
tools=tools,
stream=False,
model_parameters={
'temperature': 0.2,
'top_p': 0.3,
'max_tokens': 1500
}
)
except Exception as e:
raise e
self.model_config.parameters['max_tokens'] = original_max_tokens
return True if result.message.tool_calls else False
def plan(
self,
intermediate_steps: list[tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
prompt_messages = lc_messages_to_prompt_messages(messages)
# summarize messages if rest_tokens < 0
try:
prompt_messages = self.summarize_messages_if_needed(prompt_messages, functions=self.functions)
except ExceededLLMTokensLimitError as e:
return AgentFinish(return_values={"output": str(e)}, log=str(e))
model_instance = ModelInstance(
provider_model_bundle=self.model_config.provider_model_bundle,
model=self.model_config.model,
)
tools = []
for function in self.functions:
tool = PromptMessageTool(
**function
)
tools.append(tool)
result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
tools=tools,
stream=False,
callbacks=[self.agent_llm_callback] if self.agent_llm_callback else [],
model_parameters={
'temperature': 0.2,
'top_p': 0.3,
'max_tokens': 1500
}
)
ai_message = AIMessage(
content=result.message.content or "",
additional_kwargs={
'function_call': {
'id': result.message.tool_calls[0].id,
**result.message.tool_calls[0].function.dict()
} if result.message.tool_calls else None
}
)
agent_decision = _parse_ai_message(ai_message)
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
return agent_decision
@classmethod
def get_system_message(cls):
return SystemMessage(content="You are a helpful AI assistant.\n"
"The current date or current time you know is wrong.\n"
"Respond directly if appropriate.")
def return_stopped_response(
self,
early_stopping_method: str,
intermediate_steps: list[tuple[AgentAction, str]],
**kwargs: Any,
) -> AgentFinish:
try:
return super().return_stopped_response(early_stopping_method, intermediate_steps, **kwargs)
except ValueError:
return AgentFinish({"output": "I'm sorry, I don't know how to respond to that."}, "")
def summarize_messages_if_needed(self, messages: list[PromptMessage], **kwargs) -> list[PromptMessage]:
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
rest_tokens = self.get_message_rest_tokens(
self.model_config,
messages,
**kwargs
)
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
if rest_tokens >= 0:
return messages
system_message = None
human_message = None
should_summary_messages = []
for message in messages:
if isinstance(message, SystemMessage):
system_message = message
elif isinstance(message, HumanMessage):
human_message = message
else:
should_summary_messages.append(message)
if len(should_summary_messages) > 2:
ai_message = should_summary_messages[-2]
function_message = should_summary_messages[-1]
should_summary_messages = should_summary_messages[self.moving_summary_index:-2]
self.moving_summary_index = len(should_summary_messages)
else:
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
new_messages = [system_message, human_message]
if self.moving_summary_index == 0:
should_summary_messages.insert(0, human_message)
self.moving_summary_buffer = self.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
new_messages.append(AIMessage(content=self.moving_summary_buffer))
new_messages.append(ai_message)
new_messages.append(function_message)
return new_messages
def predict_new_summary(
self, messages: list[BaseMessage], existing_summary: str
) -> str:
new_lines = get_buffer_string(
messages,
human_prefix="Human",
ai_prefix="AI",
)
chain = LLMChain(model_config=self.summary_model_config, prompt=SUMMARY_PROMPT)
return chain.predict(summary=existing_summary, new_lines=new_lines)
def get_num_tokens_from_messages(self, model_config: ModelConfigEntity, messages: list[BaseMessage], **kwargs) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
if model_config.provider == 'azure_openai':
model = model_config.model
model = model.replace("gpt-35", "gpt-3.5")
else:
model = model_config.credentials.get("base_model_name")
tiktoken_ = _import_tiktoken()
try:
encoding = tiktoken_.encoding_for_model(model)
except KeyError:
model = "cl100k_base"
encoding = tiktoken_.get_encoding(model)
if model.startswith("gpt-3.5-turbo"):
# every message follows <im_start>{role/name}\n{content}<im_end>\n
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif model.startswith("gpt-4"):
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(
f"get_num_tokens_from_messages() is not presently implemented "
f"for model {model}."
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
"information on how messages are converted to tokens."
)
num_tokens = 0
for m in messages:
message = _convert_message_to_dict(m)
num_tokens += tokens_per_message
for key, value in message.items():
if key == "function_call":
for f_key, f_value in value.items():
num_tokens += len(encoding.encode(f_key))
num_tokens += len(encoding.encode(f_value))
else:
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
# every reply is primed with <im_start>assistant
num_tokens += 3
if kwargs.get('functions'):
for function in kwargs.get('functions'):
num_tokens += len(encoding.encode('name'))
num_tokens += len(encoding.encode(function.get("name")))
num_tokens += len(encoding.encode('description'))
num_tokens += len(encoding.encode(function.get("description")))
parameters = function.get("parameters")
num_tokens += len(encoding.encode('parameters'))
if 'title' in parameters:
num_tokens += len(encoding.encode('title'))
num_tokens += len(encoding.encode(parameters.get("title")))
num_tokens += len(encoding.encode('type'))
num_tokens += len(encoding.encode(parameters.get("type")))
if 'properties' in parameters:
num_tokens += len(encoding.encode('properties'))
for key, value in parameters.get('properties').items():
num_tokens += len(encoding.encode(key))
for field_key, field_value in value.items():
num_tokens += len(encoding.encode(field_key))
if field_key == 'enum':
for enum_field in field_value:
num_tokens += 3
num_tokens += len(encoding.encode(enum_field))
else:
num_tokens += len(encoding.encode(field_key))
num_tokens += len(encoding.encode(str(field_value)))
if 'required' in parameters:
num_tokens += len(encoding.encode('required'))
for required_field in parameters['required']:
num_tokens += 3
num_tokens += len(encoding.encode(required_field))
return num_tokens

View File

@ -1,306 +0,0 @@
import re
from collections.abc import Sequence
from typing import Any, Optional, Union, cast
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import Agent, AgentOutputParser, StructuredChatAgent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
from langchain.schema import (
AgentAction,
AgentFinish,
AIMessage,
BaseMessage,
HumanMessage,
OutputParserException,
get_buffer_string,
)
from langchain.tools import BaseTool
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
from core.chain.llm_chain import LLMChain
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import lc_messages_to_prompt_messages
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
Valid "action" values: "Final Answer" or {tool_names}
Provide only ONE action per $JSON_BLOB, as shown:
```
{{{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}}}
```
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
```
{{{{
"action": "Final Answer",
"action_input": "Final response to human"
}}}}
```"""
class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_model_config: ModelConfigEntity = None
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def should_use_agent(self, query: str):
"""
return should use agent
Using the ReACT mode to determine whether an agent is needed is costly,
so it's better to just use an Agent for reasoning, which is cheaper.
:param query:
:return:
"""
return True
def plan(
self,
intermediate_steps: list[tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observatons
callbacks: Callbacks to run.
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
prompts, _ = self.llm_chain.prep_prompts(input_list=[self.llm_chain.prep_inputs(full_inputs)])
messages = []
if prompts:
messages = prompts[0].to_messages()
prompt_messages = lc_messages_to_prompt_messages(messages)
rest_tokens = self.get_message_rest_tokens(self.llm_chain.model_config, prompt_messages)
if rest_tokens < 0:
full_inputs = self.summarize_messages(intermediate_steps, **kwargs)
try:
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
except Exception as e:
raise e
try:
agent_decision = self.output_parser.parse(full_output)
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
return agent_decision
except OutputParserException:
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
"I don't know how to respond to that."}, "")
def summarize_messages(self, intermediate_steps: list[tuple[AgentAction, str]], **kwargs):
if len(intermediate_steps) >= 2 and self.summary_model_config:
should_summary_intermediate_steps = intermediate_steps[self.moving_summary_index:-1]
should_summary_messages = [AIMessage(content=observation)
for _, observation in should_summary_intermediate_steps]
if self.moving_summary_index == 0:
should_summary_messages.insert(0, HumanMessage(content=kwargs.get("input")))
self.moving_summary_index = len(intermediate_steps)
else:
error_msg = "Exceeded LLM tokens limit, stopped."
raise ExceededLLMTokensLimitError(error_msg)
if self.moving_summary_buffer and 'chat_history' in kwargs:
kwargs["chat_history"].pop()
self.moving_summary_buffer = self.predict_new_summary(
messages=should_summary_messages,
existing_summary=self.moving_summary_buffer
)
if 'chat_history' in kwargs:
kwargs["chat_history"].append(AIMessage(content=self.moving_summary_buffer))
return self.get_full_inputs([intermediate_steps[-1]], **kwargs)
def predict_new_summary(
self, messages: list[BaseMessage], existing_summary: str
) -> str:
new_lines = get_buffer_string(
messages,
human_prefix="Human",
ai_prefix="AI",
)
chain = LLMChain(model_config=self.summary_model_config, prompt=SUMMARY_PROMPT)
return chain.predict(summary=existing_summary, new_lines=new_lines)
@classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[list[str]] = None,
memory_prompts: Optional[list[BasePromptTemplate]] = None,
) -> BasePromptTemplate:
tool_strings = []
for tool in tools:
args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args)))
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}")
formatted_tools = "\n".join(tool_strings)
tool_names = ", ".join([('"' + tool.name + '"') for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
_memory_prompts = memory_prompts or []
messages = [
SystemMessagePromptTemplate.from_template(template),
*_memory_prompts,
HumanMessagePromptTemplate.from_template(human_message_template),
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
@classmethod
def create_completion_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[list[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
Question: {input}
Thought: {agent_scratchpad}
"""
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)
def _construct_scratchpad(
self, intermediate_steps: list[tuple[AgentAction, str]]
) -> str:
agent_scratchpad = ""
for action, observation in intermediate_steps:
agent_scratchpad += action.log
agent_scratchpad += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
if not isinstance(agent_scratchpad, str):
raise ValueError("agent_scratchpad should be of type string.")
if agent_scratchpad:
llm_chain = cast(LLMChain, self.llm_chain)
if llm_chain.model_config.mode == "chat":
return (
f"This was your previous work "
f"(but I haven't seen any of it! I only see what "
f"you return as final answer):\n{agent_scratchpad}"
)
else:
return agent_scratchpad
else:
return agent_scratchpad
@classmethod
def from_llm_and_tools(
cls,
model_config: ModelConfigEntity,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[list[str]] = None,
memory_prompts: Optional[list[BasePromptTemplate]] = None,
agent_llm_callback: Optional[AgentLLMCallback] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
if model_config.mode == "chat":
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
else:
prompt = cls.create_completion_prompt(
tools,
prefix=prefix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
model_config=model_config,
prompt=prompt,
callback_manager=callback_manager,
agent_llm_callback=agent_llm_callback,
parameters={
'temperature': 0.2,
'top_p': 0.3,
'max_tokens': 1500
}
)
tool_names = [tool.name for tool in tools]
_output_parser = output_parser
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
**kwargs,
)

View File

@ -2,22 +2,18 @@ import json
import logging
import uuid
from datetime import datetime
from mimetypes import guess_extension
from typing import Optional, Union, cast
from core.app_runner.app_runner import AppRunner
from core.application_queue_manager import ApplicationQueueManager
from core.agent.entities import AgentEntity, AgentToolEntity
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.apps.base_app_runner import AppRunner
from core.app.entities.app_invoke_entities import (
AgentChatAppGenerateEntity,
ModelConfigWithCredentialsEntity,
)
from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.entities.application_entities import (
AgentEntity,
AgentToolEntity,
ApplicationGenerateEntity,
AppOrchestrationConfigEntity,
InvokeFrom,
ModelConfigEntity,
)
from core.file.message_file_parser import FileTransferMethod
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMUsage
@ -34,27 +30,25 @@ from core.model_runtime.model_providers.__base.large_language_model import Large
from core.model_runtime.utils.encoders import jsonable_encoder
from core.tools.entities.tool_entities import (
ToolInvokeMessage,
ToolInvokeMessageBinary,
ToolParameter,
ToolRuntimeVariablePool,
)
from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
from core.tools.tool.tool import Tool
from core.tools.tool_file_manager import ToolFileManager
from core.tools.tool_manager import ToolManager
from extensions.ext_database import db
from models.model import Message, MessageAgentThought, MessageFile
from models.model import Message, MessageAgentThought
from models.tools import ToolConversationVariables
logger = logging.getLogger(__name__)
class BaseAssistantApplicationRunner(AppRunner):
class BaseAgentRunner(AppRunner):
def __init__(self, tenant_id: str,
application_generate_entity: ApplicationGenerateEntity,
app_orchestration_config: AppOrchestrationConfigEntity,
model_config: ModelConfigEntity,
application_generate_entity: AgentChatAppGenerateEntity,
app_config: AgentChatAppConfig,
model_config: ModelConfigWithCredentialsEntity,
config: AgentEntity,
queue_manager: ApplicationQueueManager,
queue_manager: AppQueueManager,
message: Message,
user_id: str,
memory: Optional[TokenBufferMemory] = None,
@ -66,7 +60,7 @@ class BaseAssistantApplicationRunner(AppRunner):
"""
Agent runner
:param tenant_id: tenant id
:param app_orchestration_config: app orchestration config
:param app_config: app generate entity
:param model_config: model config
:param config: dataset config
:param queue_manager: queue manager
@ -78,7 +72,7 @@ class BaseAssistantApplicationRunner(AppRunner):
"""
self.tenant_id = tenant_id
self.application_generate_entity = application_generate_entity
self.app_orchestration_config = app_orchestration_config
self.app_config = app_config
self.model_config = model_config
self.config = config
self.queue_manager = queue_manager
@ -97,16 +91,16 @@ class BaseAssistantApplicationRunner(AppRunner):
# init dataset tools
hit_callback = DatasetIndexToolCallbackHandler(
queue_manager=queue_manager,
app_id=self.application_generate_entity.app_id,
app_id=self.app_config.app_id,
message_id=message.id,
user_id=user_id,
invoke_from=self.application_generate_entity.invoke_from,
)
self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
tenant_id=tenant_id,
dataset_ids=app_orchestration_config.dataset.dataset_ids if app_orchestration_config.dataset else [],
retrieve_config=app_orchestration_config.dataset.retrieve_config if app_orchestration_config.dataset else None,
return_resource=app_orchestration_config.show_retrieve_source,
dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
return_resource=app_config.additional_features.show_retrieve_source,
invoke_from=application_generate_entity.invoke_from,
hit_callback=hit_callback
)
@ -114,6 +108,7 @@ class BaseAssistantApplicationRunner(AppRunner):
self.agent_thought_count = db.session.query(MessageAgentThought).filter(
MessageAgentThought.message_id == self.message.id,
).count()
db.session.close()
# check if model supports stream tool call
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
@ -123,14 +118,15 @@ class BaseAssistantApplicationRunner(AppRunner):
else:
self.stream_tool_call = False
def _repack_app_orchestration_config(self, app_orchestration_config: AppOrchestrationConfigEntity) -> AppOrchestrationConfigEntity:
def _repack_app_generate_entity(self, app_generate_entity: AgentChatAppGenerateEntity) \
-> AgentChatAppGenerateEntity:
"""
Repack app orchestration config
Repack app generate entity
"""
if app_orchestration_config.prompt_template.simple_prompt_template is None:
app_orchestration_config.prompt_template.simple_prompt_template = ''
if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
app_generate_entity.app_config.prompt_template.simple_prompt_template = ''
return app_orchestration_config
return app_generate_entity
def _convert_tool_response_to_str(self, tool_response: list[ToolInvokeMessage]) -> str:
"""
@ -144,7 +140,7 @@ class BaseAssistantApplicationRunner(AppRunner):
result += f"result link: {response.message}. please tell user to check it."
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
response.type == ToolInvokeMessage.MessageType.IMAGE:
result += "image has been created and sent to user already, you should tell user to check it now."
result += "image has been created and sent to user already, you do not need to create it, just tell the user to check it now."
else:
result += f"tool response: {response.message}."
@ -154,10 +150,9 @@ class BaseAssistantApplicationRunner(AppRunner):
"""
convert tool to prompt message tool
"""
tool_entity = ToolManager.get_tool_runtime(
provider_type=tool.provider_type, provider_name=tool.provider_id, tool_name=tool.tool_name,
tenant_id=self.application_generate_entity.tenant_id,
agent_callback=self.agent_callback
tool_entity = ToolManager.get_agent_tool_runtime(
tenant_id=self.tenant_id,
agent_tool=tool,
)
tool_entity.load_variables(self.variables_pool)
@ -171,33 +166,11 @@ class BaseAssistantApplicationRunner(AppRunner):
}
)
runtime_parameters = {}
parameters = tool_entity.parameters or []
user_parameters = tool_entity.get_runtime_parameters() or []
# override parameters
for parameter in user_parameters:
# check if parameter in tool parameters
found = False
for tool_parameter in parameters:
if tool_parameter.name == parameter.name:
found = True
break
if found:
# override parameter
tool_parameter.type = parameter.type
tool_parameter.form = parameter.form
tool_parameter.required = parameter.required
tool_parameter.default = parameter.default
tool_parameter.options = parameter.options
tool_parameter.llm_description = parameter.llm_description
else:
# add new parameter
parameters.append(parameter)
parameters = tool_entity.get_all_runtime_parameters()
for parameter in parameters:
if parameter.form != ToolParameter.ToolParameterForm.LLM:
continue
parameter_type = 'string'
enum = []
if parameter.type == ToolParameter.ToolParameterType.STRING:
@ -213,59 +186,16 @@ class BaseAssistantApplicationRunner(AppRunner):
else:
raise ValueError(f"parameter type {parameter.type} is not supported")
if parameter.form == ToolParameter.ToolParameterForm.FORM:
# get tool parameter from form
tool_parameter_config = tool.tool_parameters.get(parameter.name)
if not tool_parameter_config:
# get default value
tool_parameter_config = parameter.default
if not tool_parameter_config and parameter.required:
raise ValueError(f"tool parameter {parameter.name} not found in tool config")
if parameter.type == ToolParameter.ToolParameterType.SELECT:
# check if tool_parameter_config in options
options = list(map(lambda x: x.value, parameter.options))
if tool_parameter_config not in options:
raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} not in options {options}")
# convert tool parameter config to correct type
try:
if parameter.type == ToolParameter.ToolParameterType.NUMBER:
# check if tool parameter is integer
if isinstance(tool_parameter_config, int):
tool_parameter_config = tool_parameter_config
elif isinstance(tool_parameter_config, float):
tool_parameter_config = tool_parameter_config
elif isinstance(tool_parameter_config, str):
if '.' in tool_parameter_config:
tool_parameter_config = float(tool_parameter_config)
else:
tool_parameter_config = int(tool_parameter_config)
elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
tool_parameter_config = bool(tool_parameter_config)
elif parameter.type not in [ToolParameter.ToolParameterType.SELECT, ToolParameter.ToolParameterType.STRING]:
tool_parameter_config = str(tool_parameter_config)
elif parameter.type == ToolParameter.ToolParameterType:
tool_parameter_config = str(tool_parameter_config)
except Exception as e:
raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} is not correct type")
# save tool parameter to tool entity memory
runtime_parameters[parameter.name] = tool_parameter_config
elif parameter.form == ToolParameter.ToolParameterForm.LLM:
message_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
}
message_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
}
if len(enum) > 0:
message_tool.parameters['properties'][parameter.name]['enum'] = enum
if len(enum) > 0:
message_tool.parameters['properties'][parameter.name]['enum'] = enum
if parameter.required:
message_tool.parameters['required'].append(parameter.name)
tool_entity.runtime.runtime_parameters.update(runtime_parameters)
if parameter.required:
message_tool.parameters['required'].append(parameter.name)
return message_tool, tool_entity
@ -305,6 +235,9 @@ class BaseAssistantApplicationRunner(AppRunner):
tool_runtime_parameters = tool.get_runtime_parameters() or []
for parameter in tool_runtime_parameters:
if parameter.form != ToolParameter.ToolParameterForm.LLM:
continue
parameter_type = 'string'
enum = []
if parameter.type == ToolParameter.ToolParameterType.STRING:
@ -320,98 +253,19 @@ class BaseAssistantApplicationRunner(AppRunner):
else:
raise ValueError(f"parameter type {parameter.type} is not supported")
if parameter.form == ToolParameter.ToolParameterForm.LLM:
prompt_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
}
prompt_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
}
if len(enum) > 0:
prompt_tool.parameters['properties'][parameter.name]['enum'] = enum
if len(enum) > 0:
prompt_tool.parameters['properties'][parameter.name]['enum'] = enum
if parameter.required:
if parameter.name not in prompt_tool.parameters['required']:
prompt_tool.parameters['required'].append(parameter.name)
if parameter.required:
if parameter.name not in prompt_tool.parameters['required']:
prompt_tool.parameters['required'].append(parameter.name)
return prompt_tool
def extract_tool_response_binary(self, tool_response: list[ToolInvokeMessage]) -> list[ToolInvokeMessageBinary]:
"""
Extract tool response binary
"""
result = []
for response in tool_response:
if response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
response.type == ToolInvokeMessage.MessageType.IMAGE:
result.append(ToolInvokeMessageBinary(
mimetype=response.meta.get('mime_type', 'octet/stream'),
url=response.message,
save_as=response.save_as,
))
elif response.type == ToolInvokeMessage.MessageType.BLOB:
result.append(ToolInvokeMessageBinary(
mimetype=response.meta.get('mime_type', 'octet/stream'),
url=response.message,
save_as=response.save_as,
))
elif response.type == ToolInvokeMessage.MessageType.LINK:
# check if there is a mime type in meta
if response.meta and 'mime_type' in response.meta:
result.append(ToolInvokeMessageBinary(
mimetype=response.meta.get('mime_type', 'octet/stream') if response.meta else 'octet/stream',
url=response.message,
save_as=response.save_as,
))
return result
def create_message_files(self, messages: list[ToolInvokeMessageBinary]) -> list[tuple[MessageFile, bool]]:
"""
Create message file
:param messages: messages
:return: message files, should save as variable
"""
result = []
for message in messages:
file_type = 'bin'
if 'image' in message.mimetype:
file_type = 'image'
elif 'video' in message.mimetype:
file_type = 'video'
elif 'audio' in message.mimetype:
file_type = 'audio'
elif 'text' in message.mimetype:
file_type = 'text'
elif 'pdf' in message.mimetype:
file_type = 'pdf'
elif 'zip' in message.mimetype:
file_type = 'archive'
# ...
invoke_from = self.application_generate_entity.invoke_from
message_file = MessageFile(
message_id=self.message.id,
type=file_type,
transfer_method=FileTransferMethod.TOOL_FILE.value,
belongs_to='assistant',
url=message.url,
upload_file_id=None,
created_by_role=('account'if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'),
created_by=self.user_id,
)
db.session.add(message_file)
result.append((
message_file,
message.save_as
))
db.session.commit()
return result
def create_agent_thought(self, message_id: str, message: str,
tool_name: str, tool_input: str, messages_ids: list[str]
@ -425,6 +279,7 @@ class BaseAssistantApplicationRunner(AppRunner):
thought='',
tool=tool_name,
tool_labels_str='{}',
tool_meta_str='{}',
tool_input=tool_input,
message=message,
message_token=0,
@ -447,6 +302,8 @@ class BaseAssistantApplicationRunner(AppRunner):
db.session.add(thought)
db.session.commit()
db.session.refresh(thought)
db.session.close()
self.agent_thought_count += 1
@ -457,13 +314,18 @@ class BaseAssistantApplicationRunner(AppRunner):
tool_name: str,
tool_input: Union[str, dict],
thought: str,
observation: str,
observation: Union[str, str],
tool_invoke_meta: Union[str, dict],
answer: str,
messages_ids: list[str],
llm_usage: LLMUsage = None) -> MessageAgentThought:
"""
Save agent thought
"""
agent_thought = db.session.query(MessageAgentThought).filter(
MessageAgentThought.id == agent_thought.id
).first()
if thought is not None:
agent_thought.thought = thought
@ -480,6 +342,12 @@ class BaseAssistantApplicationRunner(AppRunner):
agent_thought.tool_input = tool_input
if observation is not None:
if isinstance(observation, dict):
try:
observation = json.dumps(observation, ensure_ascii=False)
except Exception as e:
observation = json.dumps(observation)
agent_thought.observation = observation
if answer is not None:
@ -513,82 +381,30 @@ class BaseAssistantApplicationRunner(AppRunner):
agent_thought.tool_labels_str = json.dumps(labels)
db.session.commit()
def transform_tool_invoke_messages(self, messages: list[ToolInvokeMessage]) -> list[ToolInvokeMessage]:
"""
Transform tool message into agent thought
"""
result = []
for message in messages:
if message.type == ToolInvokeMessage.MessageType.TEXT:
result.append(message)
elif message.type == ToolInvokeMessage.MessageType.LINK:
result.append(message)
elif message.type == ToolInvokeMessage.MessageType.IMAGE:
# try to download image
if tool_invoke_meta is not None:
if isinstance(tool_invoke_meta, dict):
try:
file = ToolFileManager.create_file_by_url(user_id=self.user_id, tenant_id=self.tenant_id,
conversation_id=self.message.conversation_id,
file_url=message.message)
url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".png"}'
result.append(ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.IMAGE_LINK,
message=url,
save_as=message.save_as,
meta=message.meta.copy() if message.meta is not None else {},
))
tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
except Exception as e:
logger.exception(e)
result.append(ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.TEXT,
message=f"Failed to download image: {message.message}, you can try to download it yourself.",
meta=message.meta.copy() if message.meta is not None else {},
save_as=message.save_as,
))
elif message.type == ToolInvokeMessage.MessageType.BLOB:
# get mime type and save blob to storage
mimetype = message.meta.get('mime_type', 'octet/stream')
# if message is str, encode it to bytes
if isinstance(message.message, str):
message.message = message.message.encode('utf-8')
file = ToolFileManager.create_file_by_raw(user_id=self.user_id, tenant_id=self.tenant_id,
conversation_id=self.message.conversation_id,
file_binary=message.message,
mimetype=mimetype)
url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".bin"}'
tool_invoke_meta = json.dumps(tool_invoke_meta)
# check if file is image
if 'image' in mimetype:
result.append(ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.IMAGE_LINK,
message=url,
save_as=message.save_as,
meta=message.meta.copy() if message.meta is not None else {},
))
else:
result.append(ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.LINK,
message=url,
save_as=message.save_as,
meta=message.meta.copy() if message.meta is not None else {},
))
else:
result.append(message)
agent_thought.tool_meta_str = tool_invoke_meta
return result
db.session.commit()
db.session.close()
def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
"""
convert tool variables to db variables
"""
db_variables = db.session.query(ToolConversationVariables).filter(
ToolConversationVariables.conversation_id == self.message.conversation_id,
).first()
db_variables.updated_at = datetime.utcnow()
db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
db.session.commit()
db.session.close()
def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
@ -613,7 +429,15 @@ class BaseAssistantApplicationRunner(AppRunner):
tools = tools.split(';')
tool_calls: list[AssistantPromptMessage.ToolCall] = []
tool_call_response: list[ToolPromptMessage] = []
tool_inputs = json.loads(agent_thought.tool_input)
try:
tool_inputs = json.loads(agent_thought.tool_input)
except Exception as e:
tool_inputs = { tool: {} for tool in tools }
try:
tool_responses = json.loads(agent_thought.observation)
except Exception as e:
tool_responses = { tool: agent_thought.observation for tool in tools }
for tool in tools:
# generate a uuid for tool call
tool_call_id = str(uuid.uuid4())
@ -626,7 +450,7 @@ class BaseAssistantApplicationRunner(AppRunner):
)
))
tool_call_response.append(ToolPromptMessage(
content=agent_thought.observation,
content=tool_responses.get(tool, agent_thought.observation),
name=tool,
tool_call_id=tool_call_id,
))
@ -644,4 +468,6 @@ class BaseAssistantApplicationRunner(AppRunner):
if message.answer:
result.append(AssistantPromptMessage(content=message.answer))
return result
db.session.close()
return result

View File

@ -3,9 +3,10 @@ import re
from collections.abc import Generator
from typing import Literal, Union
from core.application_queue_manager import PublishFrom
from core.entities.application_entities import AgentPromptEntity, AgentScratchpadUnit
from core.features.assistant_base_runner import BaseAssistantApplicationRunner
from core.agent.base_agent_runner import BaseAgentRunner
from core.agent.entities import AgentPromptEntity, AgentScratchpadUnit
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
@ -16,18 +17,15 @@ from core.model_runtime.entities.message_entities import (
UserPromptMessage,
)
from core.model_runtime.utils.encoders import jsonable_encoder
from core.tools.errors import (
ToolInvokeError,
ToolNotFoundError,
ToolNotSupportedError,
ToolParameterValidationError,
ToolProviderCredentialValidationError,
ToolProviderNotFoundError,
)
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from models.model import Conversation, Message
class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
class CotAgentRunner(BaseAgentRunner):
_is_first_iteration = True
_ignore_observation_providers = ['wenxin']
def run(self, conversation: Conversation,
message: Message,
query: str,
@ -36,32 +34,33 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
"""
Run Cot agent application
"""
app_orchestration_config = self.app_orchestration_config
self._repack_app_orchestration_config(app_orchestration_config)
app_generate_entity = self.application_generate_entity
self._repack_app_generate_entity(app_generate_entity)
agent_scratchpad: list[AgentScratchpadUnit] = []
self._init_agent_scratchpad(agent_scratchpad, self.history_prompt_messages)
# check model mode
if self.app_orchestration_config.model_config.mode == "completion":
# TODO: stop words
if 'Observation' not in app_orchestration_config.model_config.stop:
app_orchestration_config.model_config.stop.append('Observation')
if 'Observation' not in app_generate_entity.model_config.stop:
if app_generate_entity.model_config.provider not in self._ignore_observation_providers:
app_generate_entity.model_config.stop.append('Observation')
app_config = self.app_config
# override inputs
inputs = inputs or {}
instruction = self.app_orchestration_config.prompt_template.simple_prompt_template
instruction = app_config.prompt_template.simple_prompt_template
instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
iteration_step = 1
max_iteration_steps = min(self.app_orchestration_config.agent.max_iteration, 5) + 1
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
prompt_messages = self.history_prompt_messages
# convert tools into ModelRuntime Tool format
prompt_messages_tools: list[PromptMessageTool] = []
tool_instances = {}
for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []:
for tool in app_config.agent.tools if app_config.agent else []:
try:
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
except Exception:
@ -117,27 +116,29 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
)
if iteration_step > 1:
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
# update prompt messages
prompt_messages = self._organize_cot_prompt_messages(
mode=app_orchestration_config.model_config.mode,
mode=app_generate_entity.model_config.mode,
prompt_messages=prompt_messages,
tools=prompt_messages_tools,
agent_scratchpad=agent_scratchpad,
agent_prompt_message=app_orchestration_config.agent.prompt,
agent_prompt_message=app_config.agent.prompt,
instruction=instruction,
input=query
)
# recale llm max tokens
self.recale_llm_max_tokens(self.model_config, prompt_messages)
# recalc llm max tokens
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_orchestration_config.model_config.parameters,
model_parameters=app_generate_entity.model_config.parameters,
tools=[],
stop=app_orchestration_config.model_config.stop,
stop=app_generate_entity.model_config.stop,
stream=True,
user=self.user_id,
callbacks=[],
@ -159,7 +160,9 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
# publish agent thought if it's first iteration
if iteration_step == 1:
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
for chunk in react_chunks:
if isinstance(chunk, dict):
@ -181,7 +184,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(
content=json.dumps(chunk)
content=json.dumps(chunk, ensure_ascii=False) # if ensure_ascii=True, the text in webui maybe garbled text
),
usage=None
)
@ -202,6 +205,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
)
)
scratchpad.thought = scratchpad.thought.strip() or 'I am thinking about how to help you'
agent_scratchpad.append(scratchpad)
# get llm usage
@ -212,7 +216,10 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
self.save_agent_thought(agent_thought=agent_thought,
tool_name=scratchpad.action.action_name if scratchpad.action else '',
tool_input=scratchpad.action.action_input if scratchpad.action else '',
tool_input={
scratchpad.action.action_name: scratchpad.action.action_input
} if scratchpad.action else '',
tool_invoke_meta={},
thought=scratchpad.thought,
observation='',
answer=scratchpad.agent_response,
@ -220,7 +227,9 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
llm_usage=usage_dict['usage'])
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
if not scratchpad.action:
# failed to extract action, return final answer directly
@ -243,56 +252,65 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
answer = f"there is not a tool named {tool_call_name}"
self.save_agent_thought(agent_thought=agent_thought,
tool_name='',
tool_input='',
thought=None,
observation=answer,
answer=answer,
messages_ids=[])
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
self.save_agent_thought(
agent_thought=agent_thought,
tool_name='',
tool_input='',
tool_invoke_meta=ToolInvokeMeta.error_instance(
f"there is not a tool named {tool_call_name}"
).to_dict(),
thought=None,
observation={
tool_call_name: answer
},
answer=answer,
messages_ids=[]
)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
else:
if isinstance(tool_call_args, str):
try:
tool_call_args = json.loads(tool_call_args)
except json.JSONDecodeError:
pass
# invoke tool
error_response = None
try:
tool_response = tool_instance.invoke(
user_id=self.user_id,
tool_parameters=tool_call_args if isinstance(tool_call_args, dict) else json.loads(tool_call_args)
)
# transform tool response to llm friendly response
tool_response = self.transform_tool_invoke_messages(tool_response)
# extract binary data from tool invoke message
binary_files = self.extract_tool_response_binary(tool_response)
# create message file
message_files = self.create_message_files(binary_files)
# publish files
for message_file, save_as in message_files:
if save_as:
self.variables_pool.set_file(tool_name=tool_call_name,
value=message_file.id,
name=save_as)
self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER)
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback
)
# publish files
for message_file, save_as in message_files:
if save_as:
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
message_file_ids = [message_file.id for message_file, _ in message_files]
except ToolProviderCredentialValidationError as e:
error_response = "Please check your tool provider credentials"
except (
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
) as e:
error_response = f"there is not a tool named {tool_call_name}"
except (
ToolParameterValidationError
) as e:
error_response = f"tool parameters validation error: {e}, please check your tool parameters"
except ToolInvokeError as e:
error_response = f"tool invoke error: {e}"
except Exception as e:
error_response = f"unknown error: {e}"
# publish message file
self.queue_manager.publish(QueueMessageFileEvent(
message_file_id=message_file.id
), PublishFrom.APPLICATION_MANAGER)
# add message file ids
message_file_ids.append(message_file.id)
if error_response:
observation = error_response
else:
observation = self._convert_tool_response_to_str(tool_response)
# publish files
for message_file, save_as in message_files:
if save_as:
self.variables_pool.set_file(tool_name=tool_call_name,
value=message_file.id,
name=save_as)
self.queue_manager.publish(QueueMessageFileEvent(
message_file_id=message_file.id
), PublishFrom.APPLICATION_MANAGER)
message_file_ids = [message_file.id for message_file, _ in message_files]
observation = tool_invoke_response
# save scratchpad
scratchpad.observation = observation
@ -301,13 +319,22 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=tool_call_name,
tool_input=tool_call_args,
tool_input={
tool_call_name: tool_call_args
},
tool_invoke_meta={
tool_call_name: tool_invoke_meta.to_dict()
},
thought=None,
observation=observation,
observation={
tool_call_name: observation
},
answer=scratchpad.agent_response,
messages_ids=message_file_ids,
)
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
# update prompt tool message
for prompt_tool in prompt_messages_tools:
@ -332,16 +359,17 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
self.save_agent_thought(
agent_thought=agent_thought,
tool_name='',
tool_input='',
tool_input={},
tool_invoke_meta={},
thought=final_answer,
observation='',
observation={},
answer=final_answer,
messages_ids=[]
)
self.update_db_variables(self.variables_pool, self.db_variables_pool)
# publish end event
self.queue_manager.publish_message_end(LLMResult(
self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(
@ -349,7 +377,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
),
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
system_fingerprint=''
), PublishFrom.APPLICATION_MANAGER)
)), PublishFrom.APPLICATION_MANAGER)
def _handle_stream_react(self, llm_response: Generator[LLMResultChunk, None, None], usage: dict) \
-> Generator[Union[str, dict], None, None]:
@ -466,7 +494,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
if isinstance(message, AssistantPromptMessage):
current_scratchpad = AgentScratchpadUnit(
agent_response=message.content,
thought=message.content,
thought=message.content or 'I am thinking about how to help you',
action_str='',
action=None,
observation=None,
@ -542,11 +570,12 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
"""
convert agent scratchpad list to str
"""
next_iteration = self.app_orchestration_config.agent.prompt.next_iteration
next_iteration = self.app_config.agent.prompt.next_iteration
result = ''
for scratchpad in agent_scratchpad:
result += scratchpad.thought + next_iteration.replace("{{observation}}", scratchpad.observation or '') + "\n"
result += (scratchpad.thought or '') + (scratchpad.action_str or '') + \
next_iteration.replace("{{observation}}", scratchpad.observation or 'It seems that no response is available')
return result
@ -621,21 +650,24 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
))
# add assistant message
if len(agent_scratchpad) > 0:
if len(agent_scratchpad) > 0 and not self._is_first_iteration:
prompt_messages.append(AssistantPromptMessage(
content=(agent_scratchpad[-1].thought or '')
content=(agent_scratchpad[-1].thought or '') + (agent_scratchpad[-1].action_str or ''),
))
# add user message
if len(agent_scratchpad) > 0:
if len(agent_scratchpad) > 0 and not self._is_first_iteration:
prompt_messages.append(UserPromptMessage(
content=(agent_scratchpad[-1].observation or ''),
content=(agent_scratchpad[-1].observation or 'It seems that no response is available'),
))
self._is_first_iteration = False
return prompt_messages
elif mode == "completion":
# parse agent scratchpad
agent_scratchpad_str = self._convert_scratchpad_list_to_str(agent_scratchpad)
self._is_first_iteration = False
# parse prompt messages
return [UserPromptMessage(
content=first_prompt.replace("{{instruction}}", instruction)
@ -655,4 +687,4 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
try:
return json.dumps(tools, ensure_ascii=False)
except json.JSONDecodeError:
return json.dumps(tools)
return json.dumps(tools)

View File

@ -0,0 +1,61 @@
from enum import Enum
from typing import Any, Literal, Optional, Union
from pydantic import BaseModel
class AgentToolEntity(BaseModel):
"""
Agent Tool Entity.
"""
provider_type: Literal["builtin", "api"]
provider_id: str
tool_name: str
tool_parameters: dict[str, Any] = {}
class AgentPromptEntity(BaseModel):
"""
Agent Prompt Entity.
"""
first_prompt: str
next_iteration: str
class AgentScratchpadUnit(BaseModel):
"""
Agent First Prompt Entity.
"""
class Action(BaseModel):
"""
Action Entity.
"""
action_name: str
action_input: Union[dict, str]
agent_response: Optional[str] = None
thought: Optional[str] = None
action_str: Optional[str] = None
observation: Optional[str] = None
action: Optional[Action] = None
class AgentEntity(BaseModel):
"""
Agent Entity.
"""
class Strategy(Enum):
"""
Agent Strategy.
"""
CHAIN_OF_THOUGHT = 'chain-of-thought'
FUNCTION_CALLING = 'function-calling'
provider: str
model: str
strategy: Strategy
prompt: Optional[AgentPromptEntity] = None
tools: list[AgentToolEntity] = None
max_iteration: int = 5

View File

@ -3,8 +3,9 @@ import logging
from collections.abc import Generator
from typing import Any, Union
from core.application_queue_manager import PublishFrom
from core.features.assistant_base_runner import BaseAssistantApplicationRunner
from core.agent.base_agent_runner import BaseAgentRunner
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
@ -14,19 +15,13 @@ from core.model_runtime.entities.message_entities import (
ToolPromptMessage,
UserPromptMessage,
)
from core.tools.errors import (
ToolInvokeError,
ToolNotFoundError,
ToolNotSupportedError,
ToolParameterValidationError,
ToolProviderCredentialValidationError,
ToolProviderNotFoundError,
)
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from models.model import Conversation, Message, MessageAgentThought
logger = logging.getLogger(__name__)
class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
class FunctionCallAgentRunner(BaseAgentRunner):
def run(self, conversation: Conversation,
message: Message,
query: str,
@ -34,9 +29,11 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
"""
Run FunctionCall agent application
"""
app_orchestration_config = self.app_orchestration_config
app_generate_entity = self.application_generate_entity
prompt_template = self.app_orchestration_config.prompt_template.simple_prompt_template or ''
app_config = self.app_config
prompt_template = app_config.prompt_template.simple_prompt_template or ''
prompt_messages = self.history_prompt_messages
prompt_messages = self.organize_prompt_messages(
prompt_template=prompt_template,
@ -47,7 +44,7 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
# convert tools into ModelRuntime Tool format
prompt_messages_tools: list[PromptMessageTool] = []
tool_instances = {}
for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []:
for tool in app_config.agent.tools if app_config.agent else []:
try:
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
except Exception:
@ -67,7 +64,7 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
tool_instances[dataset_tool.identity.name] = dataset_tool
iteration_step = 1
max_iteration_steps = min(app_orchestration_config.agent.max_iteration, 5) + 1
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
# continue to run until there is not any tool call
function_call_state = True
@ -105,14 +102,14 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
messages_ids=message_file_ids
)
# recale llm max tokens
self.recale_llm_max_tokens(self.model_config, prompt_messages)
# recalc llm max tokens
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_orchestration_config.model_config.parameters,
model_parameters=app_generate_entity.model_config.parameters,
tools=prompt_messages_tools,
stop=app_orchestration_config.model_config.stop,
stop=app_generate_entity.model_config.stop,
stream=self.stream_tool_call,
user=self.user_id,
callbacks=[],
@ -133,7 +130,9 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
is_first_chunk = True
for chunk in chunks:
if is_first_chunk:
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
is_first_chunk = False
# check if there is any tool call
if self.check_tool_calls(chunk):
@ -193,7 +192,9 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
if not result.message.content:
result.message.content = ''
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
yield LLMResultChunk(
model=model_instance.model,
@ -226,13 +227,15 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
tool_name=tool_call_names,
tool_input=tool_call_inputs,
thought=response,
tool_invoke_meta=None,
observation=None,
answer=response,
messages_ids=[],
llm_usage=current_llm_usage
)
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
final_answer += response + '\n'
@ -250,65 +253,40 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": f"there is not a tool named {tool_call_name}"
"tool_response": f"there is not a tool named {tool_call_name}",
"meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict()
}
tool_responses.append(tool_response)
else:
# invoke tool
error_response = None
try:
tool_invoke_message = tool_instance.invoke(
user_id=self.user_id,
tool_parameters=tool_call_args,
)
# transform tool invoke message to get LLM friendly message
tool_invoke_message = self.transform_tool_invoke_messages(tool_invoke_message)
# extract binary data from tool invoke message
binary_files = self.extract_tool_response_binary(tool_invoke_message)
# create message file
message_files = self.create_message_files(binary_files)
# publish files
for message_file, save_as in message_files:
if save_as:
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
# publish message file
self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER)
# add message file ids
message_file_ids.append(message_file.id)
except ToolProviderCredentialValidationError as e:
error_response = "Please check your tool provider credentials"
except (
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
) as e:
error_response = f"there is not a tool named {tool_call_name}"
except (
ToolParameterValidationError
) as e:
error_response = f"tool parameters validation error: {e}, please check your tool parameters"
except ToolInvokeError as e:
error_response = f"tool invoke error: {e}"
except Exception as e:
error_response = f"unknown error: {e}"
if error_response:
observation = error_response
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": error_response
}
tool_responses.append(tool_response)
else:
observation = self._convert_tool_response_to_str(tool_invoke_message)
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": observation
}
tool_responses.append(tool_response)
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
)
# publish files
for message_file, save_as in message_files:
if save_as:
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
# publish message file
self.queue_manager.publish(QueueMessageFileEvent(
message_file_id=message_file.id
), PublishFrom.APPLICATION_MANAGER)
# add message file ids
message_file_ids.append(message_file.id)
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": tool_invoke_response,
"meta": tool_invoke_meta.to_dict()
}
tool_responses.append(tool_response)
prompt_messages = self.organize_prompt_messages(
prompt_template=prompt_template,
query=None,
@ -325,11 +303,20 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
tool_name=None,
tool_input=None,
thought=None,
observation=tool_response['tool_response'],
tool_invoke_meta={
tool_response['tool_call_name']: tool_response['meta']
for tool_response in tool_responses
},
observation={
tool_response['tool_call_name']: tool_response['tool_response']
for tool_response in tool_responses
},
answer=None,
messages_ids=message_file_ids
)
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
# update prompt tool
for prompt_tool in prompt_messages_tools:
@ -339,15 +326,15 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
self.update_db_variables(self.variables_pool, self.db_variables_pool)
# publish end event
self.queue_manager.publish_message_end(LLMResult(
self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(
content=final_answer,
content=final_answer
),
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
system_fingerprint=''
), PublishFrom.APPLICATION_MANAGER)
)), PublishFrom.APPLICATION_MANAGER)
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
"""

View File

@ -0,0 +1,76 @@
from typing import Optional, Union
from core.app.app_config.entities import AppAdditionalFeatures, EasyUIBasedAppModelConfigFrom
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.app_config.features.more_like_this.manager import MoreLikeThisConfigManager
from core.app.app_config.features.opening_statement.manager import OpeningStatementConfigManager
from core.app.app_config.features.retrieval_resource.manager import RetrievalResourceConfigManager
from core.app.app_config.features.speech_to_text.manager import SpeechToTextConfigManager
from core.app.app_config.features.suggested_questions_after_answer.manager import (
SuggestedQuestionsAfterAnswerConfigManager,
)
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
from models.model import AppMode, AppModelConfig
class BaseAppConfigManager:
@classmethod
def convert_to_config_dict(cls, config_from: EasyUIBasedAppModelConfigFrom,
app_model_config: Union[AppModelConfig, dict],
config_dict: Optional[dict] = None) -> dict:
"""
Convert app model config to config dict
:param config_from: app model config from
:param app_model_config: app model config
:param config_dict: app model config dict
:return:
"""
if config_from != EasyUIBasedAppModelConfigFrom.ARGS:
app_model_config_dict = app_model_config.to_dict()
config_dict = app_model_config_dict.copy()
return config_dict
@classmethod
def convert_features(cls, config_dict: dict, app_mode: AppMode) -> AppAdditionalFeatures:
"""
Convert app config to app model config
:param config_dict: app config
:param app_mode: app mode
"""
config_dict = config_dict.copy()
additional_features = AppAdditionalFeatures()
additional_features.show_retrieve_source = RetrievalResourceConfigManager.convert(
config=config_dict
)
additional_features.file_upload = FileUploadConfigManager.convert(
config=config_dict,
is_vision=app_mode in [AppMode.CHAT, AppMode.COMPLETION, AppMode.AGENT_CHAT]
)
additional_features.opening_statement, additional_features.suggested_questions = \
OpeningStatementConfigManager.convert(
config=config_dict
)
additional_features.suggested_questions_after_answer = SuggestedQuestionsAfterAnswerConfigManager.convert(
config=config_dict
)
additional_features.more_like_this = MoreLikeThisConfigManager.convert(
config=config_dict
)
additional_features.speech_to_text = SpeechToTextConfigManager.convert(
config=config_dict
)
additional_features.text_to_speech = TextToSpeechConfigManager.convert(
config=config_dict
)
return additional_features

View File

@ -0,0 +1,50 @@
from typing import Optional
from core.app.app_config.entities import SensitiveWordAvoidanceEntity
from core.moderation.factory import ModerationFactory
class SensitiveWordAvoidanceConfigManager:
@classmethod
def convert(cls, config: dict) -> Optional[SensitiveWordAvoidanceEntity]:
sensitive_word_avoidance_dict = config.get('sensitive_word_avoidance')
if not sensitive_word_avoidance_dict:
return None
if 'enabled' in sensitive_word_avoidance_dict and sensitive_word_avoidance_dict['enabled']:
return SensitiveWordAvoidanceEntity(
type=sensitive_word_avoidance_dict.get('type'),
config=sensitive_word_avoidance_dict.get('config'),
)
else:
return None
@classmethod
def validate_and_set_defaults(cls, tenant_id, config: dict, only_structure_validate: bool = False) \
-> tuple[dict, list[str]]:
if not config.get("sensitive_word_avoidance"):
config["sensitive_word_avoidance"] = {
"enabled": False
}
if not isinstance(config["sensitive_word_avoidance"], dict):
raise ValueError("sensitive_word_avoidance must be of dict type")
if "enabled" not in config["sensitive_word_avoidance"] or not config["sensitive_word_avoidance"]["enabled"]:
config["sensitive_word_avoidance"]["enabled"] = False
if config["sensitive_word_avoidance"]["enabled"]:
if not config["sensitive_word_avoidance"].get("type"):
raise ValueError("sensitive_word_avoidance.type is required")
if not only_structure_validate:
typ = config["sensitive_word_avoidance"]["type"]
sensitive_word_avoidance_config = config["sensitive_word_avoidance"]["config"]
ModerationFactory.validate_config(
name=typ,
tenant_id=tenant_id,
config=sensitive_word_avoidance_config
)
return config, ["sensitive_word_avoidance"]

View File

@ -0,0 +1,78 @@
from typing import Optional
from core.agent.entities import AgentEntity, AgentPromptEntity, AgentToolEntity
from core.tools.prompt.template import REACT_PROMPT_TEMPLATES
class AgentConfigManager:
@classmethod
def convert(cls, config: dict) -> Optional[AgentEntity]:
"""
Convert model config to model config
:param config: model config args
"""
if 'agent_mode' in config and config['agent_mode'] \
and 'enabled' in config['agent_mode']:
agent_dict = config.get('agent_mode', {})
agent_strategy = agent_dict.get('strategy', 'cot')
if agent_strategy == 'function_call':
strategy = AgentEntity.Strategy.FUNCTION_CALLING
elif agent_strategy == 'cot' or agent_strategy == 'react':
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
else:
# old configs, try to detect default strategy
if config['model']['provider'] == 'openai':
strategy = AgentEntity.Strategy.FUNCTION_CALLING
else:
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
agent_tools = []
for tool in agent_dict.get('tools', []):
keys = tool.keys()
if len(keys) >= 4:
if "enabled" not in tool or not tool["enabled"]:
continue
agent_tool_properties = {
'provider_type': tool['provider_type'],
'provider_id': tool['provider_id'],
'tool_name': tool['tool_name'],
'tool_parameters': tool['tool_parameters'] if 'tool_parameters' in tool else {}
}
agent_tools.append(AgentToolEntity(**agent_tool_properties))
if 'strategy' in config['agent_mode'] and \
config['agent_mode']['strategy'] not in ['react_router', 'router']:
agent_prompt = agent_dict.get('prompt', None) or {}
# check model mode
model_mode = config.get('model', {}).get('mode', 'completion')
if model_mode == 'completion':
agent_prompt_entity = AgentPromptEntity(
first_prompt=agent_prompt.get('first_prompt',
REACT_PROMPT_TEMPLATES['english']['completion']['prompt']),
next_iteration=agent_prompt.get('next_iteration',
REACT_PROMPT_TEMPLATES['english']['completion'][
'agent_scratchpad']),
)
else:
agent_prompt_entity = AgentPromptEntity(
first_prompt=agent_prompt.get('first_prompt',
REACT_PROMPT_TEMPLATES['english']['chat']['prompt']),
next_iteration=agent_prompt.get('next_iteration',
REACT_PROMPT_TEMPLATES['english']['chat']['agent_scratchpad']),
)
return AgentEntity(
provider=config['model']['provider'],
model=config['model']['name'],
strategy=strategy,
prompt=agent_prompt_entity,
tools=agent_tools,
max_iteration=agent_dict.get('max_iteration', 5)
)
return None

Some files were not shown because too many files have changed in this diff Show More