Compare commits

...

106 Commits

Author SHA1 Message Date
1387f9b23e version to 0.5.11 (#3038) 2024-03-29 21:09:21 +08:00
6817eab5f1 fix: api / moderation extension import error (#3037) 2024-03-29 21:07:34 +08:00
218f591a5d fix: prompt editor linebreak (#3036) 2024-03-29 21:01:04 +08:00
17af0de7b6 Add New Tool: StackExchange (#3034)
Co-authored-by: crazywoola <427733928@qq.com>
2024-03-29 20:28:21 +08:00
9d962053a2 Fix claude request errors in bedrock (#3015)
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: crazywoola <427733928@qq.com>
2024-03-29 13:57:45 +08:00
59909b5ca7 update the discord Invalid invite (#3028) 2024-03-29 13:16:52 +08:00
a6cd0f0e73 fix add segment when dataset and document is empty (#3021)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-29 13:06:00 +08:00
2c43393bf1 Add New Tool: DevDocs (#2993) 2024-03-29 11:21:02 +08:00
669c8c3cca some optimization for admin api key, create tenant and reset-encrypt-key-pair command (#3013)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-28 17:02:52 +08:00
b0b0cc045f add mutil-thread document embedding (#3016)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-28 17:02:35 +08:00
20d16d7b31 doc: update helm charts (#3012) 2024-03-28 13:02:41 +08:00
714722bb2d fix: 'next' button unresponsive when uploading additional documents before previous batch completes (#2991) 2024-03-28 12:28:15 +08:00
830495a607 bump celery from 5.2 to 5.3 (#2478)
Co-authored-by: takatost <takatost@users.noreply.github.com>
2024-03-28 11:53:48 +08:00
41a4593b6d bump redis client to 5.0 and enable hiredis support (#2518) 2024-03-28 11:40:21 +08:00
08b727833e generalize helper for loading module from source (#2862) 2024-03-28 11:37:26 +08:00
c8b82b9d08 fix: missing comma in JSON for /completion-messages request (#2999) 2024-03-27 14:31:06 +08:00
5becb4c43a update wenxin llm (#2929) 2024-03-27 11:36:21 +08:00
13694293e3 fix: resolve header.uid' length must be less or equal than 32 on Spark V1.5 (#2983) 2024-03-27 09:58:41 +08:00
815beac356 Fix the time in the annotation from 12-hour clock to 24-hour clock. (#2990) 2024-03-27 09:08:38 +08:00
5e60204832 fix: progress bar issue (#2957) 2024-03-26 17:26:58 +08:00
d2624b13a0 fix: the issue of text overflow in the NavSelector component (#2976) 2024-03-26 17:22:01 +08:00
61f5de9662 fix: chat scroll (#2981) 2024-03-26 16:19:41 +08:00
40dbf30784 feat: support new reranker [jina-colbert-v1-en] (#2975) 2024-03-26 11:34:40 +08:00
afd77c4745 fix: the batch annotaion btn should also be loading when progress status is waiting (#2974) 2024-03-26 11:05:29 +08:00
d70bd4aaa4 fix tool_inputs parse error in message that in CoT(ReAct) agent mode (#2949) 2024-03-26 11:05:10 +08:00
8e05261588 Fix handling of missing required parameters in ApiTool (#2965) 2024-03-26 10:53:39 +08:00
a676d4387c fix: Correct image parameter passing in GLM-4v model API calls (#2948) 2024-03-26 10:43:20 +08:00
08a5afcf9f feat: update nginx and docker-compose files to support HTTPS. (#2940)
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-03-26 10:37:43 +08:00
eeaa3c1643 Fix/2969 add model provider ollama not work (#2973) 2024-03-26 10:26:34 +08:00
7c8c233cf4 Add S3_ADDRESS_STYLE configuration option (#2934) 2024-03-26 10:18:26 +08:00
129a9850eb fix: correct response hint for generated image to avoid illusion of regernerated image link (#2962) 2024-03-26 10:13:35 +08:00
1f98a4fff3 improve: cache tool icons by setting max-age HTTP header and enable gzip compression SVG icons from backend (#2971) 2024-03-26 10:11:43 +08:00
58e4702b14 fix: white screen when editing annotaion in log panel (#2968) 2024-03-26 10:10:14 +08:00
c60749678b When disabling the "Annotation Reply" button, the backend reports an error. #2904 (#2933)
Co-authored-by: colvin <colvin.zhang@boaocloud.com>
2024-03-25 22:20:40 +08:00
d5214e4644 reuse layout (#2956) 2024-03-25 15:13:50 +08:00
52804ca6d1 fix: adjust popup panel's z-index value (#2952) 2024-03-25 15:09:01 +08:00
4fb9606361 fix: max_token default help info improved (#2951) 2024-03-25 10:07:32 +08:00
c534d95972 fix: yi model price correction (#2946) 2024-03-24 12:10:57 +08:00
46ccfda493 fix: invalid i18 link in README (#2947) 2024-03-24 12:10:13 +08:00
6dc62334d6 doc: model schema document fix and wording about the model price parameter (#2944) 2024-03-24 12:06:20 +08:00
c7d003d551 fix: Upgrade duckduckgo-search to version 5.1.0 & update document segment api parameter error (#2938) 2024-03-22 19:18:01 +08:00
cc754122fc Authentication is only applied when both the username and password have values. (#2937) 2024-03-22 17:58:21 +08:00
240a94182e Feat/add triton inference server (#2928) 2024-03-22 15:15:48 +08:00
16af509c46 Update docker-compose files version (#2920) 2024-03-21 15:16:30 +08:00
86e474fff1 Add azure blob storage support (#2919)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-20 20:49:58 +08:00
9a3d5729bb fix: suggest service api missed user in query (#2918) 2024-03-20 20:08:26 +08:00
5a1c29fd8c chore: change Yi model SDK to OpenAI (#2910) 2024-03-20 16:02:13 +08:00
180775a0ec fix: init qdrant vector max recursion (#2909) 2024-03-20 14:57:13 +08:00
d018e279f8 fix: typo $ mark in logs of vdb migrate command (#2901) 2024-03-19 22:21:58 +08:00
11636bc7c7 bump version to 0.5.10 (#2902) 2024-03-19 21:35:58 +08:00
518c1ceb94 Feat/add-NVIDIA-as-a-new-model-provider (#2900) 2024-03-19 21:08:17 +08:00
696efe494e fix: Ignore some emtpy page_content when append to split_documents (#2898) 2024-03-19 20:55:15 +08:00
4419d357c4 chore: update Yi models params (#2895) 2024-03-19 20:54:31 +08:00
fbbba6db92 feat: optimize ollama model default parameters (#2894) 2024-03-19 18:34:23 +08:00
53d428907b fix incorrect exception raised by api tool which leads to incorrect L… (#2886)
Co-authored-by: OSS-MAOLONGDONG\kaihong <maolongdong@kaihong.com>
2024-03-19 18:17:12 +08:00
8133ba16b1 chore: update Qwen model params (#2892) 2024-03-19 18:13:32 +08:00
e9aa0e89d3 chore: update pr template (#2893) 2024-03-19 17:24:57 +08:00
7e3c59e53e chore: Update TongYi models prices (#2890) 2024-03-19 16:32:42 +08:00
f6314f8e73 feat:support azure openai llm 0125 version (#2889) 2024-03-19 16:32:26 +08:00
3bcfd84fba chore: use API Key instead of APIKey (#2888) 2024-03-19 16:32:06 +08:00
7c0ae76cd0 Bump tiktoken to 0.6.0 to support text-embedding-3-* in encoding_for_model (#2891) 2024-03-19 16:31:46 +08:00
2dee8a25d5 fix: anthropic system prompt not working (#2885) 2024-03-19 15:50:02 +08:00
507aa6d949 fix: Fix the problem of system not working (#2884) 2024-03-19 13:56:22 +08:00
59f173f2e6 feat: add icons for 01.ai (#2883) 2024-03-19 13:53:21 +08:00
c3790c239c i18n: update bedrock label (#2879) 2024-03-19 00:57:19 +08:00
45e51e7730 feat: AWS Bedrock Claude3 (#2864)
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: Chenhe Gu <guchenhe@gmail.com>
2024-03-18 18:16:36 +08:00
4834eae887 fix enable annotation reply when collection is None (#2877)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-18 17:18:52 +08:00
01108e6172 fix/Add isModel flag to AgentTools component (#2876) 2024-03-18 17:01:25 +08:00
95b74c211d Feat/support tool credentials bool schema (#2875) 2024-03-18 16:55:26 +08:00
cb79a90031 feat: Add tools for open weather search and image generation using the Spark API. (#2845) 2024-03-18 16:22:48 +08:00
4502436c47 feat:Embedding models Support for the Aliyun dashscope text-embedding-v1 and text-embedding-v2 (#2874) 2024-03-18 15:21:26 +08:00
c3d0cf940c add tenant id index for document and document_segment table (#2873)
Co-authored-by: jyong <jyong@dify.ai>
2024-03-18 14:34:32 +08:00
e7343cc67c add max_tokens parameter rule for zhipuai glm4 and glm4v (#2861) 2024-03-18 13:19:36 +08:00
83145486b0 fix: fix unstable function call response arguments missing (#2872) 2024-03-18 13:17:16 +08:00
6fd1795d25 feat: Allow users to specify AWS Bedrock validation models (#2857) 2024-03-18 00:44:09 +08:00
f770232b63 feat: add model for 01.ai, yi-chat-34b series (#2865) 2024-03-17 21:24:01 +08:00
a8e694c235 fix: print exception logs for ValueError and InvokeError (#2823) 2024-03-17 14:34:32 +08:00
15a6d94953 Refactor: Streamline the build-push and deploy-dev workflow (#2852) 2024-03-17 14:20:34 +08:00
056331981e fix: api doc duplicate symbols (#2853) 2024-03-15 18:17:43 +08:00
cef16862da fix: charts encoding (#2848) 2024-03-15 14:02:52 +08:00
8a4015722d prevent auto scrolling down to bottom when user already scrolled up (#2813) 2024-03-15 13:19:06 +08:00
156345cb4b fix: use supported languages only for install form (#2844) 2024-03-15 12:05:35 +08:00
f29280ba5c Fix/compatible to old tool config (#2839) 2024-03-15 11:44:24 +08:00
742be06ea9 Fix/localai (#2840) 2024-03-15 11:41:51 +08:00
af98954fc1 Feat/add script to check i18n keys (#2835) 2024-03-14 18:03:59 +08:00
4d63770189 fix: The generate conversation name was not saved (#2836) 2024-03-14 17:53:55 +08:00
bbea3a6b84 fix: compatible to old tool config (#2837) 2024-03-14 17:51:11 +08:00
19d3a56194 feat: add weekday calculator in time tool (#2822) 2024-03-14 17:01:48 +08:00
5cab2b711f fix: doc for datasets (#2831) 2024-03-14 16:41:40 +08:00
Qun
1e5455e266 enhance: use override_settings for concurrent stable diffusion (#2818) 2024-03-14 15:26:07 +08:00
4fe585acc2 feat(llm/models): add claude-3-haiku-20240307 (#2825) 2024-03-14 10:08:24 +08:00
e52448b84b feat:add api-version selection for azure openai APIs (#2821) 2024-03-14 09:14:27 +08:00
1f92b55f58 fix: doc for completion-messages (#2820) 2024-03-13 22:25:18 +08:00
8b15b742ad generalize position helper for parsing _position.yaml and sorting objects by name (#2803) 2024-03-13 20:29:38 +08:00
849dc0560b feat: add French fr-FR (#2810)
Co-authored-by: Laurent Magnien <laurent.magnien@adsn.fr>
2024-03-13 18:20:55 +08:00
a026c5fd08 feat: add Vietnamese vi-VN (#2807) 2024-03-13 15:54:47 +08:00
fd7aade26b Fix tts api err (#2809)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-03-13 15:38:10 +08:00
510f8ede10 Improve automatic prompt generation (#2805) 2024-03-13 14:10:47 +08:00
8f9125b08a fix:typo (#2808) 2024-03-13 13:00:46 +08:00
e5e97c0a0a fix:change azure openai api_version default value to 2024-02-15-preview (#2797) 2024-03-12 22:07:06 +08:00
870ca713df Refactor Markdown component to include paragraph after image (#2798) 2024-03-12 22:06:54 +08:00
6854a3fd26 Update README.md (#2800) 2024-03-12 18:14:07 +08:00
620360d41a Update README.md (#2799) 2024-03-12 17:02:46 +08:00
20bd49285b excel: get keys from every sheet (#2796) 2024-03-12 16:59:25 +08:00
6bd2730317 Fix/2770 suggestions for next steps (#2788) 2024-03-12 16:27:55 +08:00
f734cca337 enhance: add stable diffusion user guide (#2795) 2024-03-12 14:45:48 +08:00
273 changed files with 10665 additions and 955 deletions

View File

@ -12,6 +12,8 @@ Please delete options that are not relevant.
- [ ] New feature (non-breaking change which adds functionality)
- [ ] Breaking change (fix or feature that would cause existing functionality to not work as expected)
- [ ] This change requires a documentation update, included: [Dify Document](https://github.com/langgenius/dify-docs)
- [ ] Improvementincluding but not limited to code refactoring, performance optimization, and UI/UX improvement
- [ ] Dependency upgrade
# How Has This Been Tested?

View File

@ -1,17 +1,32 @@
name: Build and Push API Image
name: Build and Push API & Web
on:
push:
branches:
- 'main'
- 'deploy/dev'
- "main"
- "deploy/dev"
release:
types: [ published ]
types: [published]
env:
DOCKERHUB_USER: ${{ secrets.DOCKERHUB_USER }}
DOCKERHUB_TOKEN: ${{ secrets.DOCKERHUB_TOKEN }}
DIFY_WEB_IMAGE_NAME: ${{ vars.DIFY_WEB_IMAGE_NAME || 'langgenius/dify-web' }}
DIFY_API_IMAGE_NAME: ${{ vars.DIFY_API_IMAGE_NAME || 'langgenius/dify-api' }}
jobs:
build-and-push:
runs-on: ubuntu-latest
if: github.event.pull_request.draft == false
strategy:
matrix:
include:
- service_name: "web"
image_name_env: "DIFY_WEB_IMAGE_NAME"
context: "web"
- service_name: "api"
image_name_env: "DIFY_API_IMAGE_NAME"
context: "api"
steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
@ -22,14 +37,14 @@ jobs:
- name: Login to Docker Hub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USER }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
username: ${{ env.DOCKERHUB_USER }}
password: ${{ env.DOCKERHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v5
with:
images: langgenius/dify-api
images: ${{ env[matrix.image_name_env] }}
tags: |
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
type=ref,event=branch
@ -39,22 +54,11 @@ jobs:
- name: Build and push
uses: docker/build-push-action@v5
with:
context: "{{defaultContext}}:api"
context: "{{defaultContext}}:${{ matrix.context }}"
platforms: ${{ startsWith(github.ref, 'refs/tags/') && 'linux/amd64,linux/arm64' || 'linux/amd64' }}
build-args: |
COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
build-args: COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Deploy to server
if: github.ref == 'refs/heads/deploy/dev'
uses: appleboy/ssh-action@v0.1.8
with:
host: ${{ secrets.SSH_HOST }}
username: ${{ secrets.SSH_USER }}
key: ${{ secrets.SSH_PRIVATE_KEY }}
script: |
${{ secrets.SSH_SCRIPT }}

View File

@ -1,60 +0,0 @@
name: Build and Push WEB Image
on:
push:
branches:
- 'main'
- 'deploy/dev'
release:
types: [ published ]
jobs:
build-and-push:
runs-on: ubuntu-latest
if: github.event.pull_request.draft == false
steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USER }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v5
with:
images: langgenius/dify-web
tags: |
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
type=ref,event=branch
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
type=raw,value=${{ github.ref_name }},enable=${{ startsWith(github.ref, 'refs/tags/') }}
- name: Build and push
uses: docker/build-push-action@v5
with:
context: "{{defaultContext}}:web"
platforms: ${{ startsWith(github.ref, 'refs/tags/') && 'linux/amd64,linux/arm64' || 'linux/amd64' }}
build-args: |
COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Deploy to server
if: github.ref == 'refs/heads/deploy/dev'
uses: appleboy/ssh-action@v0.1.8
with:
host: ${{ secrets.SSH_HOST }}
username: ${{ secrets.SSH_USER }}
key: ${{ secrets.SSH_PRIVATE_KEY }}
script: |
${{ secrets.SSH_SCRIPT }}

24
.github/workflows/deploy-dev.yml vendored Normal file
View File

@ -0,0 +1,24 @@
name: Deploy Dev
on:
workflow_run:
workflows: ["Build and Push API & Web"]
branches:
- "deploy/dev"
types:
- completed
jobs:
deploy:
runs-on: ubuntu-latest
if: |
github.event.workflow_run.conclusion == 'success'
steps:
- name: Deploy to server
uses: appleboy/ssh-action@v0.1.8
with:
host: ${{ secrets.SSH_HOST }}
username: ${{ secrets.SSH_USER }}
key: ${{ secrets.SSH_PRIVATE_KEY }}
script: |
${{ vars.SSH_SCRIPT || secrets.SSH_SCRIPT }}

3
.gitignore vendored
View File

@ -154,4 +154,5 @@ sdks/python-client/dist
sdks/python-client/dify_client.egg-info
.vscode/*
!.vscode/launch.json
!.vscode/launch.json
pyrightconfig.json

View File

@ -155,4 +155,4 @@ And that's it! Once your PR is merged, you will be featured as a contributor in
## Getting Help
If you ever get stuck or got a burning question while contributing, simply shoot your queries our way via the related GitHub issue, or hop onto our [Discord](https://discord.gg/AhzKf7dNgk) for a quick chat.
If you ever get stuck or got a burning question while contributing, simply shoot your queries our way via the related GitHub issue, or hop onto our [Discord](https://discord.gg/8Tpq4AcN9c) for a quick chat.

View File

@ -152,4 +152,4 @@ Dify的后端使用Python编写使用[Flask](https://flask.palletsprojects.co
## 获取帮助
如果你在贡献过程中遇到困难或者有任何问题,可以通过相关的 GitHub 问题提出你的疑问,或者加入我们的 [Discord](https://discord.gg/AhzKf7dNgk) 进行快速交流。
如果你在贡献过程中遇到困难或者有任何问题,可以通过相关的 GitHub 问题提出你的疑问,或者加入我们的 [Discord](https://discord.gg/8Tpq4AcN9c) 进行快速交流。

43
Makefile Normal file
View File

@ -0,0 +1,43 @@
# Variables
DOCKER_REGISTRY=langgenius
WEB_IMAGE=$(DOCKER_REGISTRY)/dify-web
API_IMAGE=$(DOCKER_REGISTRY)/dify-api
VERSION=latest
# Build Docker images
build-web:
@echo "Building web Docker image: $(WEB_IMAGE):$(VERSION)..."
docker build -t $(WEB_IMAGE):$(VERSION) ./web
@echo "Web Docker image built successfully: $(WEB_IMAGE):$(VERSION)"
build-api:
@echo "Building API Docker image: $(API_IMAGE):$(VERSION)..."
docker build -t $(API_IMAGE):$(VERSION) ./api
@echo "API Docker image built successfully: $(API_IMAGE):$(VERSION)"
# Push Docker images
push-web:
@echo "Pushing web Docker image: $(WEB_IMAGE):$(VERSION)..."
docker push $(WEB_IMAGE):$(VERSION)
@echo "Web Docker image pushed successfully: $(WEB_IMAGE):$(VERSION)"
push-api:
@echo "Pushing API Docker image: $(API_IMAGE):$(VERSION)..."
docker push $(API_IMAGE):$(VERSION)
@echo "API Docker image pushed successfully: $(API_IMAGE):$(VERSION)"
# Build all images
build-all: build-web build-api
# Push all images
push-all: push-web push-api
build-push-api: build-api push-api
build-push-web: build-web push-web
# Build and push all images
build-push-all: build-all push-all
@echo "All Docker images have been built and pushed."
# Phony targets
.PHONY: build-web build-api push-web push-api build-all push-all build-push-all

View File

@ -22,8 +22,8 @@
</p>
<p align="center">
<a href="https://dify.ai/blog/dify-ai-unveils-ai-agent-creating-gpts-and-assistants-with-various-llms" target="_blank">
Dify.AI Unveils AI Agent: Creating GPTs and Assistants with Various LLMs
<a href="https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6" target="_blank">
📌 Check out Dify Premium on AWS and deploy it to your own AWS VPC with one-click.
</a>
</p>
@ -37,6 +37,9 @@
You can try out [Dify.AI Cloud](https://dify.ai) now. It provides all the capabilities of the self-deployed version, and includes 200 free requests to OpenAI GPT-3.5.
### Looking to purchase via AWS?
Check out [Dify Premium on AWS](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6) and deploy it to your own AWS VPC with one-click.
## Dify vs. LangChain vs. Assistants API
| Feature | Dify.AI | Assistants API | LangChain |
@ -97,10 +100,12 @@ docker compose up -d
After running, you can access the Dify dashboard in your browser at [http://localhost/install](http://localhost/install) and start the initialization installation process.
### Helm Chart
#### Deploy with Helm Chart
Big thanks to @BorisPolonsky for providing us with a [Helm Chart](https://helm.sh/) version, which allows Dify to be deployed on Kubernetes.
You can go to https://github.com/BorisPolonsky/dify-helm for deployment information.
[Helm Chart](https://helm.sh/) version, which allows Dify to be deployed on Kubernetes.
- [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
### Configuration
@ -117,6 +122,7 @@ For those who'd like to contribute code, see our [Contribution Guide](https://gi
At the same time, please consider supporting Dify by sharing it on social media and at events and conferences.
### Contributors
<a href="https://github.com/langgenius/dify/graphs/contributors">
@ -125,7 +131,7 @@ At the same time, please consider supporting Dify by sharing it on social media
### Translations
We are looking for contributors to help with translating Dify to languages other than Mandarin or English. If you are interested in helping, please see the [i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README_EN.md) for more information, and leave us a comment in the `global-users` channel of our [Discord Community Server](https://discord.gg/AhzKf7dNgk).
We are looking for contributors to help with translating Dify to languages other than Mandarin or English. If you are interested in helping, please see the [i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README.md) for more information, and leave us a comment in the `global-users` channel of our [Discord Community Server](https://discord.gg/8Tpq4AcN9c).
## Community & Support

View File

@ -94,10 +94,12 @@ docker compose up -d
运行后,可以在浏览器上访问 [http://localhost/install](http://localhost/install) 进入 Dify 控制台并开始初始化安装操作。
### Helm Chart
#### 使用 Helm Chart 部署
非常感谢 @BorisPolonsky 为我们提供了一个 [Helm Chart](https://helm.sh/) 版本,可以在 Kubernetes 上部署 Dify。
您可以前往 https://github.com/BorisPolonsky/dify-helm 来获取部署信息。
使用 [Helm Chart](https://helm.sh/) 版本,可以在 Kubernetes 上部署 Dify。
- [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
### 配置

View File

@ -39,7 +39,7 @@ DB_DATABASE=dify
# Storage configuration
# use for store upload files, private keys...
# storage type: local, s3
# storage type: local, s3, azure-blob
STORAGE_TYPE=local
STORAGE_LOCAL_PATH=storage
S3_ENDPOINT=https://your-bucket-name.storage.s3.clooudflare.com
@ -47,6 +47,11 @@ S3_BUCKET_NAME=your-bucket-name
S3_ACCESS_KEY=your-access-key
S3_SECRET_KEY=your-secret-key
S3_REGION=your-region
# Azure Blob Storage configuration
AZURE_BLOB_ACCOUNT_NAME=your-account-name
AZURE_BLOB_ACCOUNT_KEY=your-account-key
AZURE_BLOB_CONTAINER_NAME=yout-container-name
AZURE_BLOB_ACCOUNT_URL=https://<your_account_name>.blob.core.windows.net
# CORS configuration
WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*

View File

@ -109,19 +109,20 @@ def reset_encrypt_key_pair():
click.echo(click.style('Sorry, only support SELF_HOSTED mode.', fg='red'))
return
tenant = db.session.query(Tenant).first()
if not tenant:
click.echo(click.style('Sorry, no workspace found. Please enter /install to initialize.', fg='red'))
return
tenants = db.session.query(Tenant).all()
for tenant in tenants:
if not tenant:
click.echo(click.style('Sorry, no workspace found. Please enter /install to initialize.', fg='red'))
return
tenant.encrypt_public_key = generate_key_pair(tenant.id)
tenant.encrypt_public_key = generate_key_pair(tenant.id)
db.session.query(Provider).filter(Provider.provider_type == 'custom').delete()
db.session.query(ProviderModel).delete()
db.session.commit()
db.session.query(Provider).filter(Provider.provider_type == 'custom', Provider.tenant_id == tenant.id).delete()
db.session.query(ProviderModel).filter(ProviderModel.tenant_id == tenant.id).delete()
db.session.commit()
click.echo(click.style('Congratulations! '
'the asymmetric key pair of workspace {} has been reset.'.format(tenant.id), fg='green'))
click.echo(click.style('Congratulations! '
'the asymmetric key pair of workspace {} has been reset.'.format(tenant.id), fg='green'))
@click.command('vdb-migrate', help='migrate vector db.')
@ -254,7 +255,7 @@ def migrate_knowledge_vector_database():
for dataset in datasets:
total_count = total_count + 1
click.echo(f'Processing the {total_count} dataset {dataset.id}. '
+ f'{create_count} created, ${skipped_count} skipped.')
+ f'{create_count} created, {skipped_count} skipped.')
try:
click.echo('Create dataset vdb index: {}'.format(dataset.id))
if dataset.index_struct_dict:

View File

@ -22,6 +22,7 @@ DEFAULTS = {
'SERVICE_API_URL': 'https://api.dify.ai',
'APP_WEB_URL': 'https://udify.app',
'FILES_URL': '',
'S3_ADDRESS_STYLE': 'auto',
'STORAGE_TYPE': 'local',
'STORAGE_LOCAL_PATH': 'storage',
'CHECK_UPDATE_URL': 'https://updates.dify.ai',
@ -59,7 +60,8 @@ DEFAULTS = {
'CAN_REPLACE_LOGO': 'False',
'ETL_TYPE': 'dify',
'KEYWORD_STORE': 'jieba',
'BATCH_UPLOAD_LIMIT': 20
'BATCH_UPLOAD_LIMIT': 20,
'TOOL_ICON_CACHE_MAX_AGE': 3600,
}
@ -90,7 +92,7 @@ class Config:
# ------------------------
# General Configurations.
# ------------------------
self.CURRENT_VERSION = "0.5.9"
self.CURRENT_VERSION = "0.5.11"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
@ -180,6 +182,11 @@ class Config:
self.S3_ACCESS_KEY = get_env('S3_ACCESS_KEY')
self.S3_SECRET_KEY = get_env('S3_SECRET_KEY')
self.S3_REGION = get_env('S3_REGION')
self.S3_ADDRESS_STYLE = get_env('S3_ADDRESS_STYLE')
self.AZURE_BLOB_ACCOUNT_NAME = get_env('AZURE_BLOB_ACCOUNT_NAME')
self.AZURE_BLOB_ACCOUNT_KEY = get_env('AZURE_BLOB_ACCOUNT_KEY')
self.AZURE_BLOB_CONTAINER_NAME = get_env('AZURE_BLOB_CONTAINER_NAME')
self.AZURE_BLOB_ACCOUNT_URL = get_env('AZURE_BLOB_ACCOUNT_URL')
# ------------------------
# Vector Store Configurations.
@ -294,6 +301,7 @@ class Config:
self.BATCH_UPLOAD_LIMIT = get_env('BATCH_UPLOAD_LIMIT')
self.API_COMPRESSION_ENABLED = get_bool_env('API_COMPRESSION_ENABLED')
self.TOOL_ICON_CACHE_MAX_AGE = get_env('TOOL_ICON_CACHE_MAX_AGE')
class CloudEditionConfig(Config):

View File

@ -2,7 +2,7 @@ import json
from models.model import AppModelConfig
languages = ['en-US', 'zh-Hans', 'pt-BR', 'es-ES', 'fr-FR', 'de-DE', 'ja-JP', 'ko-KR', 'ru-RU', 'it-IT', 'uk-UA']
languages = ['en-US', 'zh-Hans', 'pt-BR', 'es-ES', 'fr-FR', 'de-DE', 'ja-JP', 'ko-KR', 'ru-RU', 'it-IT', 'uk-UA', 'vi-VN']
language_timezone_mapping = {
'en-US': 'America/New_York',
@ -16,6 +16,7 @@ language_timezone_mapping = {
'ru-RU': 'Europe/Moscow',
'it-IT': 'Europe/Rome',
'uk-UA': 'Europe/Kyiv',
'vi-VN': 'Asia/Ho_Chi_Minh',
}
@ -79,6 +80,16 @@ user_input_form_template = {
}
}
],
"vi-VN": [
{
"paragraph": {
"label": "Nội dung truy vấn",
"variable": "default_input",
"required": False,
"default": ""
}
}
],
}
demo_model_templates = {
@ -208,7 +219,6 @@ demo_model_templates = {
)
}
],
'zh-Hans': [
{
'name': '翻译助手',
@ -335,91 +345,92 @@ demo_model_templates = {
)
}
],
'uk-UA': [{
"name": "Помічник перекладу",
"icon": "",
"icon_background": "",
"description": "Багатомовний перекладач, який надає можливості перекладу різними мовами, перекладаючи введені користувачем дані на потрібну мову.",
"mode": "completion",
"model_config": AppModelConfig(
provider="openai",
model_id="gpt-3.5-turbo-instruct",
configs={
"prompt_template": "Будь ласка, перекладіть наступний текст на {{target_language}}:\n",
"prompt_variables": [
{
"key": "target_language",
"name": "Цільова мова",
"description": "Мова, на яку ви хочете перекласти.",
"type": "select",
"default": "Ukrainian",
"options": [
"Chinese",
"English",
"Japanese",
"French",
"Russian",
"German",
"Spanish",
"Korean",
"Italian",
],
'uk-UA': [
{
"name": "Помічник перекладу",
"icon": "",
"icon_background": "",
"description": "Багатомовний перекладач, який надає можливості перекладу різними мовами, перекладаючи введені користувачем дані на потрібну мову.",
"mode": "completion",
"model_config": AppModelConfig(
provider="openai",
model_id="gpt-3.5-turbo-instruct",
configs={
"prompt_template": "Будь ласка, перекладіть наступний текст на {{target_language}}:\n",
"prompt_variables": [
{
"key": "target_language",
"name": "Цільова мова",
"description": "Мова, на яку ви хочете перекласти.",
"type": "select",
"default": "Ukrainian",
"options": [
"Chinese",
"English",
"Japanese",
"French",
"Russian",
"German",
"Spanish",
"Korean",
"Italian",
],
},
],
"completion_params": {
"max_token": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1,
},
],
"completion_params": {
"max_token": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1,
},
},
opening_statement="",
suggested_questions=None,
pre_prompt="Будь ласка, перекладіть наступний текст на {{target_language}}:\n{{query}}\ntranslate:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1,
},
}),
user_input_form=json.dumps([
{
"select": {
"label": "Цільова мова",
"variable": "target_language",
"description": "Мова, на яку ви хочете перекласти.",
"default": "Chinese",
"required": True,
'options': [
'Chinese',
'English',
'Japanese',
'French',
'Russian',
'German',
'Spanish',
'Korean',
'Italian',
]
opening_statement="",
suggested_questions=None,
pre_prompt="Будь ласка, перекладіть наступний текст на {{target_language}}:\n{{query}}\ntranslate:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1,
},
}),
user_input_form=json.dumps([
{
"select": {
"label": "Цільова мова",
"variable": "target_language",
"description": "Мова, на яку ви хочете перекласти.",
"default": "Chinese",
"required": True,
'options': [
'Chinese',
'English',
'Japanese',
'French',
'Russian',
'German',
'Spanish',
'Korean',
'Italian',
]
}
}, {
"paragraph": {
"label": "Запит",
"variable": "query",
"required": True,
"default": ""
}
}
}, {
"paragraph": {
"label": "Запит",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
},
])
)
},
{
"name": "AI інтерв’юер фронтенду",
"icon": "",
@ -460,5 +471,132 @@ demo_model_templates = {
),
}
],
'vi-VN': [
{
'name': 'Trợ lý dịch thuật',
'icon': '',
'icon_background': '',
'description': 'Trình dịch đa ngôn ngữ cung cấp khả năng dịch bằng nhiều ngôn ngữ, dịch thông tin đầu vào của người dùng sang ngôn ngữ họ cần.',
'mode': 'completion',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo-instruct',
configs={
'prompt_template': "Hãy dịch đoạn văn bản sau sang ngôn ngữ {{target_language}}:\n",
'prompt_variables': [
{
"key": "target_language",
"name": "Ngôn ngữ đích",
"description": "Ngôn ngữ bạn muốn dịch sang.",
"type": "select",
"default": "Vietnamese",
'options': [
'Chinese',
'English',
'Japanese',
'French',
'Russian',
'German',
'Spanish',
'Korean',
'Italian',
'Vietnamese',
]
}
],
'completion_params': {
'max_token': 1000,
'temperature': 0,
'top_p': 0,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='',
suggested_questions=None,
pre_prompt="Hãy dịch đoạn văn bản sau sang {{target_language}}:\n{{query}}\ndịch:",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo-instruct",
"mode": "completion",
"completion_params": {
"max_tokens": 1000,
"temperature": 0,
"top_p": 0,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=json.dumps([
{
"select": {
"label": "Ngôn ngữ đích",
"variable": "target_language",
"description": "Ngôn ngữ bạn muốn dịch sang.",
"default": "Vietnamese",
"required": True,
'options': [
'Chinese',
'English',
'Japanese',
'French',
'Russian',
'German',
'Spanish',
'Korean',
'Italian',
'Vietnamese',
]
}
}, {
"paragraph": {
"label": "Query",
"variable": "query",
"required": True,
"default": ""
}
}
])
)
},
{
'name': 'Phỏng vấn front-end AI',
'icon': '',
'icon_background': '',
'description': 'Một người phỏng vấn front-end mô phỏng để kiểm tra mức độ kỹ năng phát triển front-end thông qua việc đặt câu hỏi.',
'mode': 'chat',
'model_config': AppModelConfig(
provider='openai',
model_id='gpt-3.5-turbo',
configs={
'introduction': 'Xin chào, chào mừng đến với cuộc phỏng vấn của chúng tôi. Tôi là người phỏng vấn cho công ty công nghệ này và tôi sẽ kiểm tra kỹ năng phát triển web front-end của bạn. Tiếp theo, tôi sẽ hỏi bạn một số câu hỏi kỹ thuật. Hãy trả lời chúng càng kỹ lưỡng càng tốt. ',
'prompt_template': "Bạn sẽ đóng vai người phỏng vấn cho một công ty công nghệ, kiểm tra kỹ năng phát triển web front-end của người dùng và đặt ra 5-10 câu hỏi kỹ thuật sắc bén.\n\nXin lưu ý:\n- Mỗi lần chỉ hỏi một câu hỏi.\n - Sau khi người dùng trả lời một câu hỏi, hãy hỏi trực tiếp câu hỏi tiếp theo mà không cố gắng sửa bất kỳ lỗi nào mà thí sinh mắc phải.\n- Nếu bạn cho rằng người dùng đã không trả lời đúng cho một số câu hỏi liên tiếp, hãy hỏi ít câu hỏi hơn.\n- Sau đặt câu hỏi cuối cùng, bạn có thể hỏi câu hỏi này: Tại sao bạn lại rời bỏ công việc cuối cùng của mình? Sau khi người dùng trả lời câu hỏi này, vui lòng bày tỏ sự hiểu biết và ủng hộ của bạn.\n",
'prompt_variables': [],
'completion_params': {
'max_token': 300,
'temperature': 0.8,
'top_p': 0.9,
'presence_penalty': 0.1,
'frequency_penalty': 0.1,
}
},
opening_statement='Xin chào, chào mừng đến với cuộc phỏng vấn của chúng tôi. Tôi là người phỏng vấn cho công ty công nghệ này và tôi sẽ kiểm tra kỹ năng phát triển web front-end của bạn. Tiếp theo, tôi sẽ hỏi bạn một số câu hỏi kỹ thuật. Hãy trả lời chúng càng kỹ lưỡng càng tốt. ',
suggested_questions=None,
pre_prompt="Bạn sẽ đóng vai người phỏng vấn cho một công ty công nghệ, kiểm tra kỹ năng phát triển web front-end của người dùng và đặt ra 5-10 câu hỏi kỹ thuật sắc bén.\n\nXin lưu ý:\n- Mỗi lần chỉ hỏi một câu hỏi.\n - Sau khi người dùng trả lời một câu hỏi, hãy hỏi trực tiếp câu hỏi tiếp theo mà không cố gắng sửa bất kỳ lỗi nào mà thí sinh mắc phải.\n- Nếu bạn cho rằng người dùng đã không trả lời đúng cho một số câu hỏi liên tiếp, hãy hỏi ít câu hỏi hơn.\n- Sau đặt câu hỏi cuối cùng, bạn có thể hỏi câu hỏi này: Tại sao bạn lại rời bỏ công việc cuối cùng của mình? Sau khi người dùng trả lời câu hỏi này, vui lòng bày tỏ sự hiểu biết và ủng hộ của bạn.\n",
model=json.dumps({
"provider": "openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {
"max_tokens": 300,
"temperature": 0.8,
"top_p": 0.9,
"presence_penalty": 0.1,
"frequency_penalty": 0.1
}
}),
user_input_form=None
)
}
],
}

View File

@ -245,6 +245,8 @@ class AppApi(Resource):
agent_mode = model_config.agent_mode_dict
# decrypt agent tool parameters if it's secret-input
for tool in agent_mode.get('tools') or []:
if not isinstance(tool, dict) or len(tool.keys()) <= 3:
continue
agent_tool_entity = AgentToolEntity(**tool)
# get tool
try:

View File

@ -52,6 +52,9 @@ class ModelConfigResource(Resource):
masked_parameter_map = {}
tool_map = {}
for tool in agent_mode.get('tools') or []:
if not isinstance(tool, dict) or len(tool.keys()) <= 3:
continue
agent_tool_entity = AgentToolEntity(**tool)
# get tool
try:

View File

@ -1,6 +1,6 @@
import io
from flask import send_file
from flask import current_app, send_file
from flask_login import current_user
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden
@ -80,7 +80,8 @@ class ToolBuiltinProviderIconApi(Resource):
@setup_required
def get(self, provider):
icon_bytes, minetype = ToolManageService.get_builtin_tool_provider_icon(provider)
return send_file(io.BytesIO(icon_bytes), mimetype=minetype)
icon_cache_max_age = int(current_app.config.get('TOOL_ICON_CACHE_MAX_AGE'))
return send_file(io.BytesIO(icon_bytes), mimetype=minetype, max_age=icon_cache_max_age)
class ToolModelProviderIconApi(Resource):
@setup_required

View File

@ -44,7 +44,7 @@ class AudioApi(Resource):
response = AudioService.transcript_asr(
tenant_id=app_model.tenant_id,
file=file,
end_user=end_user
end_user=end_user.get_id()
)
return response
@ -75,7 +75,7 @@ class AudioApi(Resource):
class TextApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON, required=True))
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON))
def post(self, app_model: App, end_user: EndUser):
parser = reqparse.RequestParser()
parser.add_argument('text', type=str, required=True, nullable=False, location='json')
@ -86,8 +86,8 @@ class TextApi(Resource):
response = AudioService.transcript_tts(
tenant_id=app_model.tenant_id,
text=args['text'],
end_user=end_user,
voice=args['voice'] if args['voice'] else app_model.app_model_config.text_to_speech_dict.get('voice'),
end_user=end_user.get_id(),
voice=app_model.app_model_config.text_to_speech_dict.get('voice'),
streaming=args['streaming']
)

View File

@ -197,11 +197,11 @@ class DatasetSegmentApi(DatasetApiResource):
# validate args
parser = reqparse.RequestParser()
parser.add_argument('segments', type=dict, required=False, nullable=True, location='json')
parser.add_argument('segment', type=dict, required=False, nullable=True, location='json')
args = parser.parse_args()
SegmentService.segment_create_args_validate(args, document)
segment = SegmentService.update_segment(args, segment, document, dataset)
SegmentService.segment_create_args_validate(args['segment'], document)
segment = SegmentService.update_segment(args['segment'], segment, document, dataset)
return {
'data': marshal(segment, segment_fields),
'doc_form': document.doc_form

View File

@ -35,7 +35,7 @@ from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotIni
from core.file.file_obj import FileObj
from core.model_runtime.entities.message_entities import PromptMessageRole
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeError
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.prompt.prompt_template import PromptTemplateParser
from core.provider_manager import ProviderManager
@ -195,8 +195,6 @@ class ApplicationManager:
except ValidationError as e:
logger.exception("Validation Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except (ValueError, InvokeError) as e:
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except Exception as e:
logger.exception("Unknown Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)

View File

@ -1,13 +1,14 @@
import enum
import importlib.util
import importlib
import json
import logging
import os
from collections import OrderedDict
from typing import Any, Optional
from pydantic import BaseModel
from core.utils.position_helper import sort_to_dict_by_position_map
class ExtensionModule(enum.Enum):
MODERATION = 'moderation'
@ -36,7 +37,8 @@ class Extensible:
@classmethod
def scan_extensions(cls):
extensions = {}
extensions: list[ModuleExtension] = []
position_map = {}
# get the path of the current class
current_path = os.path.abspath(cls.__module__.replace(".", os.path.sep) + '.py')
@ -63,6 +65,7 @@ class Extensible:
if os.path.exists(builtin_file_path):
with open(builtin_file_path, encoding='utf-8') as f:
position = int(f.read().strip())
position_map[extension_name] = position
if (extension_name + '.py') not in file_names:
logging.warning(f"Missing {extension_name}.py file in {subdir_path}, Skip.")
@ -96,16 +99,15 @@ class Extensible:
with open(json_path, encoding='utf-8') as f:
json_data = json.load(f)
extensions[extension_name] = ModuleExtension(
extensions.append(ModuleExtension(
extension_class=extension_class,
name=extension_name,
label=json_data.get('label'),
form_schema=json_data.get('form_schema'),
builtin=builtin,
position=position
)
))
sorted_items = sorted(extensions.items(), key=lambda x: (x[1].position is None, x[1].position))
sorted_extensions = OrderedDict(sorted_items)
sorted_extensions = sort_to_dict_by_position_map(position_map, extensions, lambda x: x.name)
return sorted_extensions

View File

@ -145,7 +145,7 @@ class BaseAssistantApplicationRunner(AppRunner):
result += f"result link: {response.message}. please tell user to check it."
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
response.type == ToolInvokeMessage.MessageType.IMAGE:
result += "image has been created and sent to user already, you should tell user to check it now."
result += "image has been created and sent to user already, you do not need to create it, just tell the user to check it now."
else:
result += f"tool response: {response.message}."
@ -566,7 +566,11 @@ class BaseAssistantApplicationRunner(AppRunner):
tools = tools.split(';')
tool_calls: list[AssistantPromptMessage.ToolCall] = []
tool_call_response: list[ToolPromptMessage] = []
tool_inputs = json.loads(agent_thought.tool_input)
try:
tool_inputs = json.loads(agent_thought.tool_input)
except Exception as e:
logging.warning("tool execution error: {}, tool_input: {}.".format(str(e), agent_thought.tool_input))
tool_inputs = { agent_thought.tool: agent_thought.tool_input }
for tool in tools:
# generate a uuid for tool call
tool_call_id = str(uuid.uuid4())
@ -599,4 +603,4 @@ class BaseAssistantApplicationRunner(AppRunner):
db.session.close()
return result
return result

View File

@ -182,7 +182,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(
content=json.dumps(chunk)
content=json.dumps(chunk, ensure_ascii=False) # if ensure_ascii=True, the text in webui maybe garbled text
),
usage=None
)
@ -667,4 +667,4 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
try:
return json.dumps(tools, ensure_ascii=False)
except json.JSONDecodeError:
return json.dumps(tools)
return json.dumps(tools)

View File

@ -1,3 +1,4 @@
import concurrent.futures
import datetime
import json
import logging
@ -650,17 +651,44 @@ class IndexingRunner:
# chunk nodes by chunk size
indexing_start_at = time.perf_counter()
tokens = 0
chunk_size = 100
chunk_size = 10
embedding_model_type_instance = None
if embedding_model_instance:
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = []
for i in range(0, len(documents), chunk_size):
chunk_documents = documents[i:i + chunk_size]
futures.append(executor.submit(self._process_chunk, current_app._get_current_object(), index_processor,
chunk_documents, dataset,
dataset_document, embedding_model_instance,
embedding_model_type_instance))
for i in range(0, len(documents), chunk_size):
for future in futures:
tokens += future.result()
indexing_end_at = time.perf_counter()
# update document status to completed
self._update_document_index_status(
document_id=dataset_document.id,
after_indexing_status="completed",
extra_update_params={
DatasetDocument.tokens: tokens,
DatasetDocument.completed_at: datetime.datetime.utcnow(),
DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
}
)
def _process_chunk(self, flask_app, index_processor, chunk_documents, dataset, dataset_document,
embedding_model_instance, embedding_model_type_instance):
with flask_app.app_context():
# check document is paused
self._check_document_paused_status(dataset_document.id)
chunk_documents = documents[i:i + chunk_size]
tokens = 0
if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance:
tokens += sum(
embedding_model_type_instance.get_num_tokens(
@ -670,9 +698,9 @@ class IndexingRunner:
)
for document in chunk_documents
)
# load index
index_processor.load(dataset, chunk_documents)
db.session.add(dataset)
document_ids = [document.metadata['doc_id'] for document in chunk_documents]
db.session.query(DocumentSegment).filter(
@ -687,18 +715,7 @@ class IndexingRunner:
db.session.commit()
indexing_end_at = time.perf_counter()
# update document status to completed
self._update_document_index_status(
document_id=dataset_document.id,
after_indexing_status="completed",
extra_update_params={
DatasetDocument.tokens: tokens,
DatasetDocument.completed_at: datetime.datetime.utcnow(),
DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
}
)
return tokens
def _check_document_paused_status(self, document_id: str):
indexing_cache_key = 'document_{}_is_paused'.format(document_id)

View File

@ -147,7 +147,7 @@
- `input` (float) Input price, i.e., Prompt price
- `output` (float) Output price, i.e., returned content price
- `unit` (float) Pricing unit, e.g., per 100K price is `0.000001`
- `unit` (float) Pricing unit, e.g., if the price is meausred in 1M tokens, the corresponding token amount for the unit price is `0.000001`.
- `currency` (string) Currency unit
### ProviderCredentialSchema

View File

@ -149,7 +149,7 @@
- `input` (float) 输入单价,即 Prompt 单价
- `output` (float) 输出单价,即返回内容单价
- `unit` (float) 价格单位,如:每 100K 的单价`0.000001`
- `unit` (float) 价格单位,如以 1M tokens 计价,则单价对应的单位 token 数`0.000001`
- `currency` (string) 货币单位
### ProviderCredentialSchema

View File

@ -73,8 +73,8 @@ PARAMETER_RULE_TEMPLATE: dict[DefaultParameterName, dict] = {
},
'type': 'int',
'help': {
'en_US': 'The maximum number of tokens to generate. Requests can use up to 2048 tokens shared between prompt and completion.',
'zh_Hans': '要生成的标记的最大数量。请求可以使用最多2048个标记这些标记在提示和完成之间共享',
'en_US': 'Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.',
'zh_Hans': '指定生成结果长度的上限。如果生成结果截断,可以调大该参数',
},
'required': False,
'default': 64,

View File

@ -133,7 +133,7 @@ class ModelPropertyKey(Enum):
DEFAULT_VOICE = "default_voice"
VOICES = "voices"
WORD_LIMIT = "word_limit"
AUDOI_TYPE = "audio_type"
AUDIO_TYPE = "audio_type"
MAX_WORKERS = "max_workers"

View File

@ -18,6 +18,7 @@ from core.model_runtime.entities.model_entities import (
)
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeError
from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
from core.utils.position_helper import get_position_map, sort_by_position_map
class AIModel(ABC):
@ -148,15 +149,7 @@ class AIModel(ABC):
]
# get _position.yaml file path
position_file_path = os.path.join(provider_model_type_path, '_position.yaml')
# read _position.yaml file
position_map = {}
if os.path.exists(position_file_path):
with open(position_file_path, encoding='utf-8') as f:
positions = yaml.safe_load(f)
# convert list to dict with key as model provider name, value as index
position_map = {position: index for index, position in enumerate(positions)}
position_map = get_position_map(provider_model_type_path)
# traverse all model_schema_yaml_paths
for model_schema_yaml_path in model_schema_yaml_paths:
@ -206,8 +199,7 @@ class AIModel(ABC):
model_schemas.append(model_schema)
# resort model schemas by position
if position_map:
model_schemas.sort(key=lambda x: position_map.get(x.model, 999))
model_schemas = sort_by_position_map(position_map, model_schemas, lambda x: x.model)
# cache model schemas
self.model_schemas = model_schemas

View File

@ -1,4 +1,3 @@
import importlib
import os
from abc import ABC, abstractmethod
@ -7,6 +6,7 @@ import yaml
from core.model_runtime.entities.model_entities import AIModelEntity, ModelType
from core.model_runtime.entities.provider_entities import ProviderEntity
from core.model_runtime.model_providers.__base.ai_model import AIModel
from core.utils.module_import_helper import get_subclasses_from_module, import_module_from_source
class ModelProvider(ABC):
@ -104,17 +104,10 @@ class ModelProvider(ABC):
# Dynamic loading {model_type_name}.py file and find the subclass of AIModel
parent_module = '.'.join(self.__class__.__module__.split('.')[:-1])
spec = importlib.util.spec_from_file_location(f"{parent_module}.{model_type_name}.{model_type_name}", model_type_py_path)
mod = importlib.util.module_from_spec(spec)
spec.loader.exec_module(mod)
model_class = None
for name, obj in vars(mod).items():
if (isinstance(obj, type) and issubclass(obj, AIModel) and not obj.__abstractmethods__
and obj != AIModel and obj.__module__ == mod.__name__):
model_class = obj
break
mod = import_module_from_source(
f'{parent_module}.{model_type_name}.{model_type_name}', model_type_py_path)
model_class = next(filter(lambda x: x.__module__ == mod.__name__ and not x.__abstractmethods__,
get_subclasses_from_module(mod, AIModel)), None)
if not model_class:
raise Exception(f'Missing AIModel Class for model type {model_type} in {model_type_py_path}')

View File

@ -94,8 +94,8 @@ class TTSModel(AIModel):
"""
model_schema = self.get_model_schema(model, credentials)
if model_schema and ModelPropertyKey.AUDOI_TYPE in model_schema.model_properties:
return model_schema.model_properties[ModelPropertyKey.AUDOI_TYPE]
if model_schema and ModelPropertyKey.AUDIO_TYPE in model_schema.model_properties:
return model_schema.model_properties[ModelPropertyKey.AUDIO_TYPE]
def _get_model_word_limit(self, model: str, credentials: dict) -> int:
"""

View File

@ -2,6 +2,7 @@
- anthropic
- azure_openai
- google
- nvidia
- cohere
- bedrock
- togetherai
@ -10,6 +11,8 @@
- groq
- replicate
- huggingface_hub
- xinference
- triton_inference_server
- zhipuai
- baichuan
- spark
@ -19,7 +22,7 @@
- moonshot
- jina
- chatglm
- xinference
- yi
- openllm
- localai
- openai_api_compatible

View File

@ -0,0 +1,37 @@
model: claude-3-haiku-20240307
label:
en_US: claude-3-haiku-20240307
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 200000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
required: true
default: 4096
min: 1
max: 4096
- name: response_format
use_template: response_format
pricing:
input: '0.25'
output: '1.25'
unit: '0.000001'
currency: USD

View File

@ -342,12 +342,20 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
Convert prompt messages to dict list and system
"""
system = ""
prompt_message_dicts = []
first_loop = True
for message in prompt_messages:
if isinstance(message, SystemPromptMessage):
system += message.content + ("\n" if not system else "")
else:
message.content=message.content.strip()
if first_loop:
system=message.content
first_loop=False
else:
system+="\n"
system+=message.content
prompt_message_dicts = []
for message in prompt_messages:
if not isinstance(message, SystemPromptMessage):
prompt_message_dicts.append(self._convert_prompt_message_to_dict(message))
return system, prompt_message_dicts

View File

@ -15,10 +15,11 @@ from core.model_runtime.model_providers.azure_openai._constant import AZURE_OPEN
class _CommonAzureOpenAI:
@staticmethod
def _to_credential_kwargs(credentials: dict) -> dict:
api_version = credentials.get('openai_api_version', AZURE_OPENAI_API_VERSION)
credentials_kwargs = {
"api_key": credentials['openai_api_key'],
"azure_endpoint": credentials['openai_api_base'],
"api_version": AZURE_OPENAI_API_VERSION,
"api_version": api_version,
"timeout": Timeout(315.0, read=300.0, write=10.0, connect=5.0),
"max_retries": 1,
}

View File

@ -14,8 +14,7 @@ from core.model_runtime.entities.model_entities import (
PriceConfig,
)
AZURE_OPENAI_API_VERSION = '2023-12-01-preview'
AZURE_OPENAI_API_VERSION = '2024-02-15-preview'
def _get_max_tokens(default: int, min_val: int, max_val: int) -> ParameterRule:
rule = ParameterRule(
@ -124,6 +123,65 @@ LLM_BASE_MODELS = [
)
)
),
AzureBaseModel(
base_model_name='gpt-35-turbo-0125',
entity=AIModelEntity(
model='fake-deployment-name',
label=I18nObject(
en_US='fake-deployment-name-label',
),
model_type=ModelType.LLM,
features=[
ModelFeature.AGENT_THOUGHT,
ModelFeature.MULTI_TOOL_CALL,
ModelFeature.STREAM_TOOL_CALL,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
ModelPropertyKey.MODE: LLMMode.CHAT.value,
ModelPropertyKey.CONTEXT_SIZE: 16385,
},
parameter_rules=[
ParameterRule(
name='temperature',
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TEMPERATURE],
),
ParameterRule(
name='top_p',
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TOP_P],
),
ParameterRule(
name='presence_penalty',
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.PRESENCE_PENALTY],
),
ParameterRule(
name='frequency_penalty',
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.FREQUENCY_PENALTY],
),
_get_max_tokens(default=512, min_val=1, max_val=4096),
ParameterRule(
name='response_format',
label=I18nObject(
zh_Hans='回复格式',
en_US='response_format'
),
type='string',
help=I18nObject(
zh_Hans='指定模型必须输出的格式',
en_US='specifying the format that the model must output'
),
required=False,
options=['text', 'json_object']
),
],
pricing=PriceConfig(
input=0.0005,
output=0.0015,
unit=0.001,
currency='USD',
)
)
),
AzureBaseModel(
base_model_name='gpt-4',
entity=AIModelEntity(
@ -274,6 +332,81 @@ LLM_BASE_MODELS = [
)
)
),
AzureBaseModel(
base_model_name='gpt-4-0125-preview',
entity=AIModelEntity(
model='fake-deployment-name',
label=I18nObject(
en_US='fake-deployment-name-label',
),
model_type=ModelType.LLM,
features=[
ModelFeature.AGENT_THOUGHT,
ModelFeature.MULTI_TOOL_CALL,
ModelFeature.STREAM_TOOL_CALL,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
ModelPropertyKey.MODE: LLMMode.CHAT.value,
ModelPropertyKey.CONTEXT_SIZE: 128000,
},
parameter_rules=[
ParameterRule(
name='temperature',
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TEMPERATURE],
),
ParameterRule(
name='top_p',
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.TOP_P],
),
ParameterRule(
name='presence_penalty',
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.PRESENCE_PENALTY],
),
ParameterRule(
name='frequency_penalty',
**PARAMETER_RULE_TEMPLATE[DefaultParameterName.FREQUENCY_PENALTY],
),
_get_max_tokens(default=512, min_val=1, max_val=4096),
ParameterRule(
name='seed',
label=I18nObject(
zh_Hans='种子',
en_US='Seed'
),
type='int',
help=I18nObject(
zh_Hans='如果指定,模型将尽最大努力进行确定性采样,使得重复的具有相同种子和参数的请求应该返回相同的结果。不能保证确定性,您应该参考 system_fingerprint 响应参数来监视变化。',
en_US='If specified, model will make a best effort to sample deterministically, such that repeated requests with the same seed and parameters should return the same result. Determinism is not guaranteed, and you should refer to the system_fingerprint response parameter to monitor changes in the backend.'
),
required=False,
precision=2,
min=0,
max=1,
),
ParameterRule(
name='response_format',
label=I18nObject(
zh_Hans='回复格式',
en_US='response_format'
),
type='string',
help=I18nObject(
zh_Hans='指定模型必须输出的格式',
en_US='specifying the format that the model must output'
),
required=False,
options=['text', 'json_object']
),
],
pricing=PriceConfig(
input=0.01,
output=0.03,
unit=0.001,
currency='USD',
)
)
),
AzureBaseModel(
base_model_name='gpt-4-1106-preview',
entity=AIModelEntity(
@ -628,7 +761,7 @@ TTS_BASE_MODELS = [
},
],
ModelPropertyKey.WORD_LIMIT: 120,
ModelPropertyKey.AUDOI_TYPE: 'mp3',
ModelPropertyKey.AUDIO_TYPE: 'mp3',
ModelPropertyKey.MAX_WORKERS: 5
},
pricing=PriceConfig(
@ -682,7 +815,7 @@ TTS_BASE_MODELS = [
},
],
ModelPropertyKey.WORD_LIMIT: 120,
ModelPropertyKey.AUDOI_TYPE: 'mp3',
ModelPropertyKey.AUDIO_TYPE: 'mp3',
ModelPropertyKey.MAX_WORKERS: 5
},
pricing=PriceConfig(

View File

@ -46,6 +46,22 @@ model_credential_schema:
placeholder:
zh_Hans: 在此输入您的 API Key
en_US: Enter your API key here
- variable: openai_api_version
label:
zh_Hans: API 版本
en_US: API Version
type: select
required: true
options:
- label:
en_US: 2024-02-15-preview
value: 2024-02-15-preview
- label:
en_US: 2023-12-01-preview
value: 2023-12-01-preview
placeholder:
zh_Hans: 在此选择您的 API 版本
en_US: Select your API Version here
- variable: base_model_name
label:
en_US: Base Model
@ -59,6 +75,12 @@ model_credential_schema:
show_on:
- variable: __model_type
value: llm
- label:
en_US: gpt-35-turbo-0125
value: gpt-35-turbo-0125
show_on:
- variable: __model_type
value: llm
- label:
en_US: gpt-35-turbo-16k
value: gpt-35-turbo-16k
@ -77,6 +99,12 @@ model_credential_schema:
show_on:
- variable: __model_type
value: llm
- label:
en_US: gpt-4-0125-preview
value: gpt-4-0125-preview
show_on:
- variable: __model_type
value: llm
- label:
en_US: gpt-4-1106-preview
value: gpt-4-1106-preview

View File

@ -124,7 +124,7 @@ class BaichuanTextEmbeddingModel(TextEmbeddingModel):
elif err == 'insufficient_quota':
raise InsufficientAccountBalance(msg)
elif err == 'invalid_authentication':
raise InvalidAuthenticationError(msg)
raise InvalidAuthenticationError(msg)
elif err and 'rate' in err:
raise RateLimitReachedError(msg)
elif err and 'internal' in err:

View File

@ -18,9 +18,10 @@ class BedrockProvider(ModelProvider):
try:
model_instance = self.get_model_instance(ModelType.LLM)
# Use `gemini-pro` model for validate,
# Use `amazon.titan-text-lite-v1` model by default for validating credentials
model_for_validation = credentials.get('model_for_validation', 'amazon.titan-text-lite-v1')
model_instance.validate_credentials(
model='amazon.titan-text-lite-v1',
model=model_for_validation,
credentials=credentials
)
except CredentialsValidateFailedError as ex:

View File

@ -48,24 +48,33 @@ provider_credential_schema:
- value: us-east-1
label:
en_US: US East (N. Virginia)
zh_Hans: US East (N. Virginia)
zh_Hans: 美国东部 (弗吉尼亚北部)
- value: us-west-2
label:
en_US: US West (Oregon)
zh_Hans: US West (Oregon)
zh_Hans: 美国西部 (俄勒冈州)
- value: ap-southeast-1
label:
en_US: Asia Pacific (Singapore)
zh_Hans: Asia Pacific (Singapore)
zh_Hans: 亚太地区 (新加坡)
- value: ap-northeast-1
label:
en_US: Asia Pacific (Tokyo)
zh_Hans: Asia Pacific (Tokyo)
zh_Hans: 亚太地区 (东京)
- value: eu-central-1
label:
en_US: Europe (Frankfurt)
zh_Hans: Europe (Frankfurt)
zh_Hans: 欧洲 (法兰克福)
- value: us-gov-west-1
label:
en_US: AWS GovCloud (US-West)
zh_Hans: AWS GovCloud (US-West)
- variable: model_for_validation
required: false
label:
en_US: Available Model Name
zh_Hans: 可用模型名称
type: secret-input
placeholder:
en_US: A model you have access to (e.g. amazon.titan-text-lite-v1) for validation.
zh_Hans: 为了进行验证,请输入一个您可用的模型名称 (例如amazon.titan-text-lite-v1)

View File

@ -4,6 +4,8 @@
- anthropic.claude-v1
- anthropic.claude-v2
- anthropic.claude-v2:1
- anthropic.claude-3-sonnet-v1:0
- anthropic.claude-3-haiku-v1:0
- cohere.command-light-text-v14
- cohere.command-text-v14
- meta.llama2-13b-chat-v1

View File

@ -0,0 +1,57 @@
model: anthropic.claude-3-haiku-20240307-v1:0
label:
en_US: Claude 3 Haiku
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
# docs: https://docs.anthropic.com/claude/docs/system-prompts
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
pricing:
input: '0.003'
output: '0.015'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,56 @@
model: anthropic.claude-3-sonnet-20240229-v1:0
label:
en_US: Claude 3 Sonnet
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
pricing:
input: '0.00025'
output: '0.00125'
unit: '0.001'
currency: USD

View File

@ -1,33 +1,50 @@
model: anthropic.claude-instant-v1
label:
en_US: Claude Instant V1
en_US: Claude Instant 1
model_type: llm
model_properties:
mode: chat
context_size: 100000
parameter_rules:
- name: temperature
use_template: temperature
- name: topP
use_template: top_p
- name: topK
label:
zh_Hans: 取样数量
en_US: Top K
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
default: 250
min: 0
max: 500
- name: max_tokens_to_sample
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
pricing:
input: '0.0008'
output: '0.0024'

View File

@ -1,33 +1,50 @@
model: anthropic.claude-v1
label:
en_US: Claude V1
en_US: Claude 1
model_type: llm
model_properties:
mode: chat
context_size: 100000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top K
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
default: 250
min: 0
max: 500
- name: max_tokens_to_sample
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
pricing:
input: '0.008'
output: '0.024'

View File

@ -1,33 +1,50 @@
model: anthropic.claude-v2:1
label:
en_US: Claude V2.1
en_US: Claude 2.1
model_type: llm
model_properties:
mode: chat
context_size: 200000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top K
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
default: 250
min: 0
max: 500
- name: max_tokens_to_sample
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
pricing:
input: '0.008'
output: '0.024'

View File

@ -1,33 +1,50 @@
model: anthropic.claude-v2
label:
en_US: Claude V2
en_US: Claude 2
model_type: llm
model_properties:
mode: chat
context_size: 100000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top K
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
default: 250
min: 0
max: 500
- name: max_tokens_to_sample
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
pricing:
input: '0.008'
output: '0.024'

View File

@ -1,9 +1,22 @@
import base64
import json
import logging
import mimetypes
import time
from collections.abc import Generator
from typing import Optional, Union
from typing import Optional, Union, cast
import boto3
import requests
from anthropic import AnthropicBedrock, Stream
from anthropic.types import (
ContentBlockDeltaEvent,
Message,
MessageDeltaEvent,
MessageStartEvent,
MessageStopEvent,
MessageStreamEvent,
)
from botocore.config import Config
from botocore.exceptions import (
ClientError,
@ -13,14 +26,18 @@ from botocore.exceptions import (
UnknownServiceError,
)
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
ImagePromptMessageContent,
PromptMessage,
PromptMessageContentType,
PromptMessageTool,
SystemPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.errors.invoke import (
InvokeAuthorizationError,
InvokeBadRequestError,
@ -54,9 +71,293 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
:param user: unique user id
:return: full response or stream response chunk generator result
"""
# invoke model
# invoke anthropic models via anthropic official SDK
if "anthropic" in model:
return self._generate_anthropic(model, credentials, prompt_messages, model_parameters, stop, stream, user)
# invoke other models via boto3 client
return self._generate(model, credentials, prompt_messages, model_parameters, stop, stream, user)
def _generate_anthropic(self, model: str, credentials: dict, prompt_messages: list[PromptMessage], model_parameters: dict,
stop: Optional[list[str]] = None, stream: bool = True, user: Optional[str] = None) -> Union[LLMResult, Generator]:
"""
Invoke Anthropic large language model
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param stop: stop words
:param stream: is stream response
:return: full response or stream response chunk generator result
"""
# use Anthropic official SDK references
# - https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
# - https://github.com/anthropics/anthropic-sdk-python
client = AnthropicBedrock(
aws_access_key=credentials["aws_access_key_id"],
aws_secret_key=credentials["aws_secret_access_key"],
aws_region=credentials["aws_region"],
)
extra_model_kwargs = {}
if stop:
extra_model_kwargs['stop_sequences'] = stop
# Notice: If you request the current version of the SDK to the bedrock server,
# you will get the following error message and you need to wait for the service or SDK to be updated.
# Response: Error code: 400
# {'message': 'Malformed input request: #: subject must not be valid against schema
# {"required":["messages"]}#: extraneous key [metadata] is not permitted, please reformat your input and try again.'}
# TODO: Open in the future when the interface is properly supported
# if user:
# ref: https://github.com/anthropics/anthropic-sdk-python/blob/e84645b07ca5267066700a104b4d8d6a8da1383d/src/anthropic/resources/messages.py#L465
# extra_model_kwargs['metadata'] = message_create_params.Metadata(user_id=user)
system, prompt_message_dicts = self._convert_claude_prompt_messages(prompt_messages)
if system:
extra_model_kwargs['system'] = system
response = client.messages.create(
model=model,
messages=prompt_message_dicts,
stream=stream,
**model_parameters,
**extra_model_kwargs
)
if stream:
return self._handle_claude_stream_response(model, credentials, response, prompt_messages)
return self._handle_claude_response(model, credentials, response, prompt_messages)
def _handle_claude_response(self, model: str, credentials: dict, response: Message,
prompt_messages: list[PromptMessage]) -> LLMResult:
"""
Handle llm chat response
:param model: model name
:param credentials: credentials
:param response: response
:param prompt_messages: prompt messages
:return: full response chunk generator result
"""
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=response.content[0].text
)
# calculate num tokens
if response.usage:
# transform usage
prompt_tokens = response.usage.input_tokens
completion_tokens = response.usage.output_tokens
else:
# calculate num tokens
prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
completion_tokens = self.get_num_tokens(model, credentials, [assistant_prompt_message])
# transform usage
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
# transform response
response = LLMResult(
model=response.model,
prompt_messages=prompt_messages,
message=assistant_prompt_message,
usage=usage
)
return response
def _handle_claude_stream_response(self, model: str, credentials: dict, response: Stream[MessageStreamEvent],
prompt_messages: list[PromptMessage], ) -> Generator:
"""
Handle llm chat stream response
:param model: model name
:param credentials: credentials
:param response: response
:param prompt_messages: prompt messages
:return: full response or stream response chunk generator result
"""
try:
full_assistant_content = ''
return_model = None
input_tokens = 0
output_tokens = 0
finish_reason = None
index = 0
for chunk in response:
if isinstance(chunk, MessageStartEvent):
return_model = chunk.message.model
input_tokens = chunk.message.usage.input_tokens
elif isinstance(chunk, MessageDeltaEvent):
output_tokens = chunk.usage.output_tokens
finish_reason = chunk.delta.stop_reason
elif isinstance(chunk, MessageStopEvent):
usage = self._calc_response_usage(model, credentials, input_tokens, output_tokens)
yield LLMResultChunk(
model=return_model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=index + 1,
message=AssistantPromptMessage(
content=''
),
finish_reason=finish_reason,
usage=usage
)
)
elif isinstance(chunk, ContentBlockDeltaEvent):
chunk_text = chunk.delta.text if chunk.delta.text else ''
full_assistant_content += chunk_text
assistant_prompt_message = AssistantPromptMessage(
content=chunk_text if chunk_text else '',
)
index = chunk.index
yield LLMResultChunk(
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=index,
message=assistant_prompt_message,
)
)
except Exception as ex:
raise InvokeError(str(ex))
def _calc_claude_response_usage(self, model: str, credentials: dict, prompt_tokens: int, completion_tokens: int) -> LLMUsage:
"""
Calculate response usage
:param model: model name
:param credentials: model credentials
:param prompt_tokens: prompt tokens
:param completion_tokens: completion tokens
:return: usage
"""
# get prompt price info
prompt_price_info = self.get_price(
model=model,
credentials=credentials,
price_type=PriceType.INPUT,
tokens=prompt_tokens,
)
# get completion price info
completion_price_info = self.get_price(
model=model,
credentials=credentials,
price_type=PriceType.OUTPUT,
tokens=completion_tokens
)
# transform usage
usage = LLMUsage(
prompt_tokens=prompt_tokens,
prompt_unit_price=prompt_price_info.unit_price,
prompt_price_unit=prompt_price_info.unit,
prompt_price=prompt_price_info.total_amount,
completion_tokens=completion_tokens,
completion_unit_price=completion_price_info.unit_price,
completion_price_unit=completion_price_info.unit,
completion_price=completion_price_info.total_amount,
total_tokens=prompt_tokens + completion_tokens,
total_price=prompt_price_info.total_amount + completion_price_info.total_amount,
currency=prompt_price_info.currency,
latency=time.perf_counter() - self.started_at
)
return usage
def _convert_claude_prompt_messages(self, prompt_messages: list[PromptMessage]) -> tuple[str, list[dict]]:
"""
Convert prompt messages to dict list and system
"""
system = ""
first_loop = True
for message in prompt_messages:
if isinstance(message, SystemPromptMessage):
message.content=message.content.strip()
if first_loop:
system=message.content
first_loop=False
else:
system+="\n"
system+=message.content
prompt_message_dicts = []
for message in prompt_messages:
if not isinstance(message, SystemPromptMessage):
prompt_message_dicts.append(self._convert_claude_prompt_message_to_dict(message))
return system, prompt_message_dicts
def _convert_claude_prompt_message_to_dict(self, message: PromptMessage) -> dict:
"""
Convert PromptMessage to dict
"""
if isinstance(message, UserPromptMessage):
message = cast(UserPromptMessage, message)
if isinstance(message.content, str):
message_dict = {"role": "user", "content": message.content}
else:
sub_messages = []
for message_content in message.content:
if message_content.type == PromptMessageContentType.TEXT:
message_content = cast(TextPromptMessageContent, message_content)
sub_message_dict = {
"type": "text",
"text": message_content.data
}
sub_messages.append(sub_message_dict)
elif message_content.type == PromptMessageContentType.IMAGE:
message_content = cast(ImagePromptMessageContent, message_content)
if not message_content.data.startswith("data:"):
# fetch image data from url
try:
image_content = requests.get(message_content.data).content
mime_type, _ = mimetypes.guess_type(message_content.data)
base64_data = base64.b64encode(image_content).decode('utf-8')
except Exception as ex:
raise ValueError(f"Failed to fetch image data from url {message_content.data}, {ex}")
else:
data_split = message_content.data.split(";base64,")
mime_type = data_split[0].replace("data:", "")
base64_data = data_split[1]
if mime_type not in ["image/jpeg", "image/png", "image/gif", "image/webp"]:
raise ValueError(f"Unsupported image type {mime_type}, "
f"only support image/jpeg, image/png, image/gif, and image/webp")
sub_message_dict = {
"type": "image",
"source": {
"type": "base64",
"media_type": mime_type,
"data": base64_data
}
}
sub_messages.append(sub_message_dict)
message_dict = {"role": "user", "content": sub_messages}
elif isinstance(message, AssistantPromptMessage):
message = cast(AssistantPromptMessage, message)
message_dict = {"role": "assistant", "content": message.content}
elif isinstance(message, SystemPromptMessage):
message = cast(SystemPromptMessage, message)
message_dict = {"role": "system", "content": message.content}
else:
raise ValueError(f"Got unknown type {message}")
return message_dict
def get_num_tokens(self, model: str, credentials: dict, messages: list[PromptMessage] | str,
tools: Optional[list[PromptMessageTool]] = None) -> int:
"""
@ -101,7 +402,19 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
:param credentials: model credentials
:return:
"""
if "anthropic.claude-3" in model:
try:
self._invoke_claude(model=model,
credentials=credentials,
prompt_messages=[{"role": "user", "content": "ping"}],
model_parameters={},
stop=None,
stream=False)
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
try:
ping_message = UserPromptMessage(content="ping")
self._generate(model=model,

View File

@ -0,0 +1,4 @@
model: jina-colbert-v1-en
model_type: rerank
model_properties:
context_size: 8192

View File

@ -1,6 +1,5 @@
from collections.abc import Generator
from typing import cast
from urllib.parse import urljoin
from httpx import Timeout
from openai import (
@ -19,6 +18,7 @@ from openai import (
from openai.types.chat import ChatCompletion, ChatCompletionChunk
from openai.types.chat.chat_completion_message import FunctionCall
from openai.types.completion import Completion
from yarl import URL
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
@ -181,7 +181,7 @@ class LocalAILarguageModel(LargeLanguageModel):
UserPromptMessage(content='ping')
], model_parameters={
'max_tokens': 10,
}, stop=[])
}, stop=[], stream=False)
except Exception as ex:
raise CredentialsValidateFailedError(f'Invalid credentials {str(ex)}')
@ -227,6 +227,12 @@ class LocalAILarguageModel(LargeLanguageModel):
)
]
model_properties = {
ModelPropertyKey.MODE: completion_model,
} if completion_model else {}
model_properties[ModelPropertyKey.CONTEXT_SIZE] = int(credentials.get('context_size', '2048'))
entity = AIModelEntity(
model=model,
label=I18nObject(
@ -234,7 +240,7 @@ class LocalAILarguageModel(LargeLanguageModel):
),
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=ModelType.LLM,
model_properties={ ModelPropertyKey.MODE: completion_model } if completion_model else {},
model_properties=model_properties,
parameter_rules=rules
)
@ -319,7 +325,7 @@ class LocalAILarguageModel(LargeLanguageModel):
client_kwargs = {
"timeout": Timeout(315.0, read=300.0, write=10.0, connect=5.0),
"api_key": "1",
"base_url": urljoin(credentials['server_url'], 'v1'),
"base_url": str(URL(credentials['server_url']) / 'v1'),
}
return client_kwargs

View File

@ -56,3 +56,12 @@ model_credential_schema:
placeholder:
zh_Hans: 在此输入LocalAI的服务器地址如 http://192.168.1.100:8080
en_US: Enter the url of your LocalAI, e.g. http://192.168.1.100:8080
- variable: context_size
label:
zh_Hans: 上下文大小
en_US: Context size
placeholder:
zh_Hans: 输入上下文大小
en_US: Enter context size
required: false
type: text-input

View File

@ -1,11 +1,12 @@
import time
from json import JSONDecodeError, dumps
from os.path import join
from typing import Optional
from requests import post
from yarl import URL
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (
InvokeAuthorizationError,
@ -57,7 +58,7 @@ class LocalAITextEmbeddingModel(TextEmbeddingModel):
}
try:
response = post(join(url, 'embeddings'), headers=headers, data=dumps(data), timeout=10)
response = post(str(URL(url) / 'embeddings'), headers=headers, data=dumps(data), timeout=10)
except Exception as e:
raise InvokeConnectionError(str(e))
@ -113,6 +114,27 @@ class LocalAITextEmbeddingModel(TextEmbeddingModel):
# use GPT2Tokenizer to get num tokens
num_tokens += self._get_num_tokens_by_gpt2(text)
return num_tokens
def _get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
"""
Get customizable model schema
:param model: model name
:param credentials: model credentials
:return: model schema
"""
return AIModelEntity(
model=model,
label=I18nObject(zh_Hans=model, en_US=model),
model_type=ModelType.TEXT_EMBEDDING,
features=[],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
ModelPropertyKey.CONTEXT_SIZE: int(credentials.get('context_size', '512')),
ModelPropertyKey.MAX_CHUNKS: 1,
},
parameter_rules=[]
)
def validate_credentials(self, model: str, credentials: dict) -> None:
"""

View File

@ -1,10 +1,7 @@
import importlib
import logging
import os
from collections import OrderedDict
from typing import Optional
import yaml
from pydantic import BaseModel
from core.model_runtime.entities.model_entities import ModelType
@ -12,6 +9,8 @@ from core.model_runtime.entities.provider_entities import ProviderConfig, Provid
from core.model_runtime.model_providers.__base.model_provider import ModelProvider
from core.model_runtime.schema_validators.model_credential_schema_validator import ModelCredentialSchemaValidator
from core.model_runtime.schema_validators.provider_credential_schema_validator import ProviderCredentialSchemaValidator
from core.utils.module_import_helper import load_single_subclass_from_source
from core.utils.position_helper import get_position_map, sort_to_dict_by_position_map
logger = logging.getLogger(__name__)
@ -200,7 +199,6 @@ class ModelProviderFactory:
if self.model_provider_extensions:
return self.model_provider_extensions
model_providers = {}
# get the path of current classes
current_path = os.path.abspath(__file__)
@ -215,17 +213,10 @@ class ModelProviderFactory:
]
# get _position.yaml file path
position_file_path = os.path.join(model_providers_path, '_position.yaml')
# read _position.yaml file
position_map = {}
if os.path.exists(position_file_path):
with open(position_file_path, encoding='utf-8') as f:
positions = yaml.safe_load(f)
# convert list to dict with key as model provider name, value as index
position_map = {position: index for index, position in enumerate(positions)}
position_map = get_position_map(model_providers_path)
# traverse all model_provider_dir_paths
model_providers: list[ModelProviderExtension] = []
for model_provider_dir_path in model_provider_dir_paths:
# get model_provider dir name
model_provider_name = os.path.basename(model_provider_dir_path)
@ -238,15 +229,10 @@ class ModelProviderFactory:
# Dynamic loading {model_provider_name}.py file and find the subclass of ModelProvider
py_path = os.path.join(model_provider_dir_path, model_provider_name + '.py')
spec = importlib.util.spec_from_file_location(f'core.model_runtime.model_providers.{model_provider_name}.{model_provider_name}', py_path)
mod = importlib.util.module_from_spec(spec)
spec.loader.exec_module(mod)
model_provider_class = None
for name, obj in vars(mod).items():
if isinstance(obj, type) and issubclass(obj, ModelProvider) and obj != ModelProvider:
model_provider_class = obj
break
model_provider_class = load_single_subclass_from_source(
module_name=f'core.model_runtime.model_providers.{model_provider_name}.{model_provider_name}',
script_path=py_path,
parent_type=ModelProvider)
if not model_provider_class:
logger.warning(f"Missing Model Provider Class that extends ModelProvider in {py_path}, Skip.")
@ -256,14 +242,13 @@ class ModelProviderFactory:
logger.warning(f"Missing {model_provider_name}.yaml file in {model_provider_dir_path}, Skip.")
continue
model_providers[model_provider_name] = ModelProviderExtension(
model_providers.append(ModelProviderExtension(
name=model_provider_name,
provider_instance=model_provider_class(),
position=position_map.get(model_provider_name)
)
))
sorted_items = sorted(model_providers.items(), key=lambda x: (x[1].position is None, x[1].position))
sorted_extensions = OrderedDict(sorted_items)
sorted_extensions = sort_to_dict_by_position_map(position_map, model_providers, lambda x: x.name)
self.model_provider_extensions = sorted_extensions

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

View File

@ -0,0 +1,3 @@
<svg width="567" height="376" viewBox="0 0 567 376" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M58.0366 161.868C58.0366 161.868 109.261 86.2912 211.538 78.4724V51.053C98.2528 60.1511 0.152344 156.098 0.152344 156.098C0.152344 156.098 55.7148 316.717 211.538 331.426V302.282C97.1876 287.896 58.0366 161.868 58.0366 161.868ZM211.538 244.32V271.013C125.114 255.603 101.125 165.768 101.125 165.768C101.125 165.768 142.621 119.799 211.538 112.345V141.633C211.486 141.633 211.449 141.617 211.406 141.617C175.235 137.276 146.978 171.067 146.978 171.067C146.978 171.067 162.816 227.949 211.538 244.32ZM211.538 0.47998V51.053C214.864 50.7981 218.189 50.5818 221.533 50.468C350.326 46.1273 434.243 156.098 434.243 156.098C434.243 156.098 337.861 273.296 237.448 273.296C228.245 273.296 219.63 272.443 211.538 271.009V302.282C218.695 303.201 225.903 303.667 233.119 303.675C326.56 303.675 394.134 255.954 459.566 199.474C470.415 208.162 514.828 229.299 523.958 238.55C461.745 290.639 316.752 332.626 234.551 332.626C226.627 332.626 219.018 332.148 211.538 331.426V375.369H566.701V0.47998H211.538ZM211.538 112.345V78.4724C214.829 78.2425 218.146 78.0672 221.533 77.9602C314.148 75.0512 374.909 157.548 374.909 157.548C374.909 157.548 309.281 248.693 238.914 248.693C228.787 248.693 219.707 247.065 211.536 244.318V141.631C247.591 145.987 254.848 161.914 276.524 198.049L324.737 157.398C324.737 157.398 289.544 111.243 230.219 111.243C223.768 111.241 217.597 111.696 211.538 112.345Z" fill="#77B900"/>
</svg>

After

Width:  |  Height:  |  Size: 1.5 KiB

View File

@ -0,0 +1,4 @@
- google/gemma-7b
- meta/llama2-70b
- mistralai/mixtral-8x7b-instruct-v0.1
- fuyu-8b

View File

@ -0,0 +1,27 @@
model: fuyu-8b
label:
zh_Hans: fuyu-8b
en_US: fuyu-8b
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 16000
parameter_rules:
- name: temperature
use_template: temperature
default: 0.2
min: 0.1
max: 1
- name: top_p
use_template: top_p
default: 0.7
min: 0.1
max: 1
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 1024

View File

@ -0,0 +1,30 @@
model: google/gemma-7b
label:
zh_Hans: google/gemma-7b
en_US: google/gemma-7b
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 1024
- name: frequency_penalty
use_template: frequency_penalty
min: -2
max: 2
default: 0
- name: presence_penalty
use_template: presence_penalty
min: -2
max: 2
default: 0

View File

@ -0,0 +1,30 @@
model: meta/llama2-70b
label:
zh_Hans: meta/llama2-70b
en_US: meta/llama2-70b
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 1024
- name: frequency_penalty
use_template: frequency_penalty
min: -2
max: 2
default: 0
- name: presence_penalty
use_template: presence_penalty
min: -2
max: 2
default: 0

View File

@ -0,0 +1,247 @@
import json
from collections.abc import Generator
from typing import Optional, Union
import requests
from yarl import URL
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult
from core.model_runtime.entities.message_entities import (
PromptMessage,
PromptMessageContentType,
PromptMessageFunction,
PromptMessageTool,
UserPromptMessage,
)
from core.model_runtime.errors.invoke import InvokeError
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.openai_api_compatible.llm.llm import OAIAPICompatLargeLanguageModel
from core.model_runtime.utils import helper
class NVIDIALargeLanguageModel(OAIAPICompatLargeLanguageModel):
MODEL_SUFFIX_MAP = {
'fuyu-8b': 'vlm/adept/fuyu-8b',
'mistralai/mixtral-8x7b-instruct-v0.1': '',
'google/gemma-7b': '',
'meta/llama2-70b': ''
}
def _invoke(self, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
stream: bool = True, user: Optional[str] = None) \
-> Union[LLMResult, Generator]:
self._add_custom_parameters(credentials, model)
prompt_messages = self._transform_prompt_messages(prompt_messages)
stop = []
user = None
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user)
def _transform_prompt_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Handle Image transform
"""
for i, p in enumerate(prompt_messages):
if isinstance(p, UserPromptMessage) and isinstance(p.content, list):
content = p.content
content_text = ''
for prompt_content in content:
if prompt_content.type == PromptMessageContentType.TEXT:
content_text += prompt_content.data
else:
content_text += f' <img src="{prompt_content.data}" />'
prompt_message = UserPromptMessage(
content=content_text
)
prompt_messages[i] = prompt_message
return prompt_messages
def validate_credentials(self, model: str, credentials: dict) -> None:
self._add_custom_parameters(credentials, model)
self._validate_credentials(model, credentials)
def _add_custom_parameters(self, credentials: dict, model: str) -> None:
credentials['mode'] = 'chat'
if self.MODEL_SUFFIX_MAP[model]:
credentials['server_url'] = f'https://ai.api.nvidia.com/v1/{self.MODEL_SUFFIX_MAP[model]}'
credentials.pop('endpoint_url')
else:
credentials['endpoint_url'] = 'https://integrate.api.nvidia.com/v1'
credentials['stream_mode_delimiter'] = '\n'
def _validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials using requests to ensure compatibility with all providers following OpenAI's API standard.
:param model: model name
:param credentials: model credentials
:return:
"""
try:
headers = {
'Content-Type': 'application/json'
}
api_key = credentials.get('api_key')
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
endpoint_url = credentials['endpoint_url'] if 'endpoint_url' in credentials else None
if endpoint_url and not endpoint_url.endswith('/'):
endpoint_url += '/'
server_url = credentials['server_url'] if 'server_url' in credentials else None
# prepare the payload for a simple ping to the model
data = {
'model': model,
'max_tokens': 5
}
completion_type = LLMMode.value_of(credentials['mode'])
if completion_type is LLMMode.CHAT:
data['messages'] = [
{
"role": "user",
"content": "ping"
},
]
if 'endpoint_url' in credentials:
endpoint_url = str(URL(endpoint_url) / 'chat' / 'completions')
elif 'server_url' in credentials:
endpoint_url = server_url
elif completion_type is LLMMode.COMPLETION:
data['prompt'] = 'ping'
if 'endpoint_url' in credentials:
endpoint_url = str(URL(endpoint_url) / 'completions')
elif 'server_url' in credentials:
endpoint_url = server_url
else:
raise ValueError("Unsupported completion type for model configuration.")
# send a post request to validate the credentials
response = requests.post(
endpoint_url,
headers=headers,
json=data,
timeout=(10, 60)
)
if response.status_code != 200:
raise CredentialsValidateFailedError(
f'Credentials validation failed with status code {response.status_code}')
try:
json_result = response.json()
except json.JSONDecodeError as e:
raise CredentialsValidateFailedError('Credentials validation failed: JSON decode error')
except CredentialsValidateFailedError:
raise
except Exception as ex:
raise CredentialsValidateFailedError(f'An error occurred during credentials validation: {str(ex)}')
def _generate(self, model: str, credentials: dict, prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
stream: bool = True, \
user: Optional[str] = None) -> Union[LLMResult, Generator]:
"""
Invoke llm completion model
:param model: model name
:param credentials: credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param stop: stop words
:param stream: is stream response
:param user: unique user id
:return: full response or stream response chunk generator result
"""
headers = {
'Content-Type': 'application/json',
'Accept-Charset': 'utf-8',
}
api_key = credentials.get('api_key')
if api_key:
headers['Authorization'] = f'Bearer {api_key}'
if stream:
headers['Accept'] = 'text/event-stream'
endpoint_url = credentials['endpoint_url'] if 'endpoint_url' in credentials else None
if endpoint_url and not endpoint_url.endswith('/'):
endpoint_url += '/'
server_url = credentials['server_url'] if 'server_url' in credentials else None
data = {
"model": model,
"stream": stream,
**model_parameters
}
completion_type = LLMMode.value_of(credentials['mode'])
if completion_type is LLMMode.CHAT:
if 'endpoint_url' in credentials:
endpoint_url = str(URL(endpoint_url) / 'chat' / 'completions')
elif 'server_url' in credentials:
endpoint_url = server_url
data['messages'] = [self._convert_prompt_message_to_dict(m) for m in prompt_messages]
elif completion_type is LLMMode.COMPLETION:
data['prompt'] = 'ping'
if 'endpoint_url' in credentials:
endpoint_url = str(URL(endpoint_url) / 'completions')
elif 'server_url' in credentials:
endpoint_url = server_url
else:
raise ValueError("Unsupported completion type for model configuration.")
# annotate tools with names, descriptions, etc.
function_calling_type = credentials.get('function_calling_type', 'no_call')
formatted_tools = []
if tools:
if function_calling_type == 'function_call':
data['functions'] = [{
"name": tool.name,
"description": tool.description,
"parameters": tool.parameters
} for tool in tools]
elif function_calling_type == 'tool_call':
data["tool_choice"] = "auto"
for tool in tools:
formatted_tools.append(helper.dump_model(PromptMessageFunction(function=tool)))
data["tools"] = formatted_tools
if stop:
data["stop"] = stop
if user:
data["user"] = user
response = requests.post(
endpoint_url,
headers=headers,
json=data,
timeout=(10, 60),
stream=stream
)
if response.encoding is None or response.encoding == 'ISO-8859-1':
response.encoding = 'utf-8'
if not response.ok:
raise InvokeError(f"API request failed with status code {response.status_code}: {response.text}")
if stream:
return self._handle_generate_stream_response(model, credentials, response, prompt_messages)
return self._handle_generate_response(model, credentials, response, prompt_messages)

View File

@ -0,0 +1,30 @@
model: mistralai/mixtral-8x7b-instruct-v0.1
label:
zh_Hans: mistralai/mixtral-8x7b-instruct-v0.1
en_US: mistralai/mixtral-8x7b-instruct-v0.1
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 1024
- name: frequency_penalty
use_template: frequency_penalty
min: -2
max: 2
default: 0
- name: presence_penalty
use_template: presence_penalty
min: -2
max: 2
default: 0

View File

@ -0,0 +1,30 @@
import logging
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.model_provider import ModelProvider
logger = logging.getLogger(__name__)
class MistralAIProvider(ModelProvider):
def validate_provider_credentials(self, credentials: dict) -> None:
"""
Validate provider credentials
if validate failed, raise exception
:param credentials: provider credentials, credentials form defined in `provider_credential_schema`.
"""
try:
model_instance = self.get_model_instance(ModelType.LLM)
model_instance.validate_credentials(
model='mistralai/mixtral-8x7b-instruct-v0.1',
credentials=credentials
)
except CredentialsValidateFailedError as ex:
raise ex
except Exception as ex:
logger.exception(f'{self.get_provider_schema().provider} credentials validate failed')
raise ex

View File

@ -0,0 +1,30 @@
provider: nvidia
label:
en_US: NVIDIA
icon_small:
en_US: icon_s_en.svg
icon_large:
en_US: icon_l_en.png
background: "#FFFFFF"
help:
title:
en_US: Get your API Key from NVIDIA
zh_Hans: 从 NVIDIA 获取 API Key
url:
en_US: https://build.nvidia.com/explore/discover
supported_model_types:
- llm
- text-embedding
- rerank
configurate_methods:
- predefined-model
provider_credential_schema:
credential_form_schemas:
- variable: api_key
label:
en_US: API Key
type: secret-input
required: true
placeholder:
zh_Hans: 在此输入您的 API Key
en_US: Enter your API Key

View File

@ -0,0 +1,4 @@
model: nv-rerank-qa-mistral-4b:1
model_type: rerank
model_properties:
context_size: 8192

View File

@ -0,0 +1,112 @@
from math import exp
from typing import Optional
import requests
from core.model_runtime.entities.rerank_entities import RerankDocument, RerankResult
from core.model_runtime.errors.invoke import (
InvokeAuthorizationError,
InvokeBadRequestError,
InvokeConnectionError,
InvokeError,
InvokeRateLimitError,
InvokeServerUnavailableError,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
class NvidiaRerankModel(RerankModel):
"""
Model class for NVIDIA rerank model.
"""
def _sigmoid(self, logit: float) -> float:
return 1/(1+exp(-logit))
def _invoke(self, model: str, credentials: dict,
query: str, docs: list[str], score_threshold: Optional[float] = None, top_n: Optional[int] = None,
user: Optional[str] = None) -> RerankResult:
"""
Invoke rerank model
:param model: model name
:param credentials: model credentials
:param query: search query
:param docs: docs for reranking
:param score_threshold: score threshold
:param top_n: top n documents to return
:param user: unique user id
:return: rerank result
"""
if len(docs) == 0:
return RerankResult(model=model, docs=[])
try:
invoke_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/reranking"
headers = {
"Authorization": f"Bearer {credentials.get('api_key')}",
"Accept": "application/json",
}
payload = {
"model": model,
"query": {"text": query},
"passages": [{"text": doc} for doc in docs],
}
session = requests.Session()
response = session.post(invoke_url, headers=headers, json=payload)
response.raise_for_status()
results = response.json()
rerank_documents = []
for result in results['rankings']:
index = result['index']
logit = result['logit']
rerank_document = RerankDocument(
index=index,
text=docs[index],
score=self._sigmoid(logit),
)
rerank_documents.append(rerank_document)
return RerankResult(model=model, docs=rerank_documents)
except requests.HTTPError as e:
raise InvokeServerUnavailableError(str(e))
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return:
"""
try:
self._invoke(
model=model,
credentials=credentials,
query="What is the GPU memory bandwidth of H100 SXM?",
docs=[
"Example doc 1",
"Example doc 2",
"Example doc 3",
],
)
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
@property
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
"""
Map model invoke error to unified error
"""
return {
InvokeConnectionError: [requests.ConnectionError],
InvokeServerUnavailableError: [requests.HTTPError],
InvokeRateLimitError: [],
InvokeAuthorizationError: [requests.HTTPError],
InvokeBadRequestError: [requests.RequestException]
}

View File

@ -0,0 +1,5 @@
model: NV-Embed-QA
model_type: text-embedding
model_properties:
context_size: 512
max_chunks: 1

View File

@ -0,0 +1,172 @@
import time
from json import JSONDecodeError, dumps
from typing import Optional
from requests import post
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (
InvokeAuthorizationError,
InvokeBadRequestError,
InvokeConnectionError,
InvokeError,
InvokeRateLimitError,
InvokeServerUnavailableError,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
class NvidiaTextEmbeddingModel(TextEmbeddingModel):
"""
Model class for Nvidia text embedding model.
"""
api_base: str = 'https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings'
models: list[str] = ['NV-Embed-QA']
def _invoke(self, model: str, credentials: dict,
texts: list[str], user: Optional[str] = None) \
-> TextEmbeddingResult:
"""
Invoke text embedding model
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:return: embeddings result
"""
api_key = credentials['api_key']
if model not in self.models:
raise InvokeBadRequestError('Invalid model name')
if not api_key:
raise CredentialsValidateFailedError('api_key is required')
url = self.api_base
headers = {
'Authorization': 'Bearer ' + api_key,
'Content-Type': 'application/json'
}
data = {
'model': model,
'input': texts[0],
'input_type': 'query'
}
try:
response = post(url, headers=headers, data=dumps(data))
except Exception as e:
raise InvokeConnectionError(str(e))
if response.status_code != 200:
try:
resp = response.json()
msg = resp['detail']
if response.status_code == 401:
raise InvokeAuthorizationError(msg)
elif response.status_code == 429:
raise InvokeRateLimitError(msg)
elif response.status_code == 500:
raise InvokeServerUnavailableError(msg)
else:
raise InvokeError(msg)
except JSONDecodeError as e:
raise InvokeServerUnavailableError(f"Failed to convert response to json: {e} with text: {response.text}")
try:
resp = response.json()
embeddings = resp['data']
usage = resp['usage']
except Exception as e:
raise InvokeServerUnavailableError(f"Failed to convert response to json: {e} with text: {response.text}")
usage = self._calc_response_usage(model=model, credentials=credentials, tokens=usage['total_tokens'])
result = TextEmbeddingResult(
model=model,
embeddings=[[
float(data) for data in x['embedding']
] for x in embeddings],
usage=usage
)
return result
def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int:
"""
Get number of tokens for given prompt messages
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:return:
"""
num_tokens = 0
for text in texts:
# use JinaTokenizer to get num tokens
num_tokens += self._get_num_tokens_by_gpt2(text)
return num_tokens
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return:
"""
try:
self._invoke(model=model, credentials=credentials, texts=['ping'])
except InvokeAuthorizationError:
raise CredentialsValidateFailedError('Invalid api key')
@property
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
return {
InvokeConnectionError: [
InvokeConnectionError
],
InvokeServerUnavailableError: [
InvokeServerUnavailableError
],
InvokeRateLimitError: [
InvokeRateLimitError
],
InvokeAuthorizationError: [
InvokeAuthorizationError
],
InvokeBadRequestError: [
KeyError
]
}
def _calc_response_usage(self, model: str, credentials: dict, tokens: int) -> EmbeddingUsage:
"""
Calculate response usage
:param model: model name
:param credentials: model credentials
:param tokens: input tokens
:return: usage
"""
# get input price info
input_price_info = self.get_price(
model=model,
credentials=credentials,
price_type=PriceType.INPUT,
tokens=tokens
)
# transform usage
usage = EmbeddingUsage(
tokens=tokens,
total_tokens=tokens,
unit_price=input_price_info.unit_price,
price_unit=input_price_info.unit,
total_price=input_price_info.total_amount,
currency=input_price_info.currency,
latency=time.perf_counter() - self.started_at
)
return usage

View File

@ -449,7 +449,7 @@ class OllamaLargeLanguageModel(LargeLanguageModel):
help=I18nObject(en_US="The temperature of the model. "
"Increasing the temperature will make the model answer "
"more creatively. (Default: 0.8)"),
default=0.8,
default=0.1,
min=0,
max=2
),
@ -472,7 +472,6 @@ class OllamaLargeLanguageModel(LargeLanguageModel):
help=I18nObject(en_US="Reduces the probability of generating nonsense. "
"A higher value (e.g. 100) will give more diverse answers, "
"while a lower value (e.g. 10) will be more conservative. (Default: 40)"),
default=40,
min=1,
max=100
),
@ -483,7 +482,6 @@ class OllamaLargeLanguageModel(LargeLanguageModel):
help=I18nObject(en_US="Sets how strongly to penalize repetitions. "
"A higher value (e.g., 1.5) will penalize repetitions more strongly, "
"while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)"),
default=1.1,
min=-2,
max=2
),
@ -494,7 +492,7 @@ class OllamaLargeLanguageModel(LargeLanguageModel):
type=ParameterType.INT,
help=I18nObject(en_US="Maximum number of tokens to predict when generating text. "
"(Default: 128, -1 = infinite generation, -2 = fill context)"),
default=128,
default=512 if int(credentials.get('max_tokens', 4096)) >= 768 else 128,
min=-2,
max=int(credentials.get('max_tokens', 4096)),
),
@ -504,7 +502,6 @@ class OllamaLargeLanguageModel(LargeLanguageModel):
type=ParameterType.INT,
help=I18nObject(en_US="Enable Mirostat sampling for controlling perplexity. "
"(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)"),
default=0,
min=0,
max=2
),
@ -516,7 +513,6 @@ class OllamaLargeLanguageModel(LargeLanguageModel):
"the generated text. A lower learning rate will result in slower adjustments, "
"while a higher learning rate will make the algorithm more responsive. "
"(Default: 0.1)"),
default=0.1,
precision=1
),
ParameterRule(
@ -525,7 +521,6 @@ class OllamaLargeLanguageModel(LargeLanguageModel):
type=ParameterType.FLOAT,
help=I18nObject(en_US="Controls the balance between coherence and diversity of the output. "
"A lower value will result in more focused and coherent text. (Default: 5.0)"),
default=5.0,
precision=1
),
ParameterRule(
@ -543,7 +538,6 @@ class OllamaLargeLanguageModel(LargeLanguageModel):
type=ParameterType.INT,
help=I18nObject(en_US="The number of layers to send to the GPU(s). "
"On macOS it defaults to 1 to enable metal support, 0 to disable."),
default=1,
min=0,
max=1
),
@ -563,7 +557,6 @@ class OllamaLargeLanguageModel(LargeLanguageModel):
type=ParameterType.INT,
help=I18nObject(en_US="Sets how far back for the model to look back to prevent repetition. "
"(Default: 64, 0 = disabled, -1 = num_ctx)"),
default=64,
min=-1
),
ParameterRule(
@ -573,7 +566,6 @@ class OllamaLargeLanguageModel(LargeLanguageModel):
help=I18nObject(en_US="Tail free sampling is used to reduce the impact of less probable tokens "
"from the output. A higher value (e.g., 2.0) will reduce the impact more, "
"while a value of 1.0 disables this setting. (default: 1)"),
default=1,
precision=1
),
ParameterRule(
@ -583,7 +575,6 @@ class OllamaLargeLanguageModel(LargeLanguageModel):
help=I18nObject(en_US="Sets the random number seed to use for generation. Setting this to "
"a specific number will make the model generate the same text for "
"the same prompt. (Default: 0)"),
default=0
),
ParameterRule(
name='format',

View File

@ -656,6 +656,8 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
if assistant_message_function_call:
# start of stream function call
delta_assistant_message_function_call_storage = assistant_message_function_call
if delta_assistant_message_function_call_storage.arguments is None:
delta_assistant_message_function_call_storage.arguments = ''
if not has_finish_reason:
continue

View File

@ -148,7 +148,8 @@ class SparkLLMClient:
data = {
"header": {
"app_id": self.app_id,
"uid": user_id
# resolve this error message => $.header.uid' length must be less or equal than 32
"uid": user_id[:32] if user_id else None
},
"parameter": {
"chat": {

View File

@ -8,54 +8,70 @@ model_properties:
parameter_rules:
- name: temperature
use_template: temperature
default: 1.0
type: float
default: 0.85
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: max_tokens
use_template: max_tokens
default: 1500
min: 1
max: 6000
help:
zh_Hans: 用于限制模型生成token的数量max_tokens设置的是生成上限并不表示一定会生成这么多的token数量。
en_US: It is used to limit the number of tokens generated by the model. max_tokens sets the upper limit of generation, which does not mean that so many tokens will be generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。默认不传递该参数取值为None或当top_k大于100时表示不启用top_k策略此时仅有top_p策略生效。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. This parameter is not passed by default. The value is None or when top_k is greater than 100, it means that the top_k policy is not enabled. At this time, only the top_p policy takes effect.
required: false
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
type: int
help:
zh_Hans: 生成时随机数种子,用控制模型生成的随机性。如果使用相同的种子每次运行生成的结果都将相同当需要复现模型的生成结果时可以使用相同的种子。seed参数支持无符号64位整数类型
en_US: When generating, the random number seed is used to control the randomness of model generation. If you use the same seed, the results generated by each run will be the same; when you need to reproduce the results of the model, you can use the same seed. The seed parameter supports unsigned 64-bit integer types.
required: false
zh_Hans: 生成时使用的随机数种子,用控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
label:
en_US: Repetition penalty
required: false
type: float
default: 1.1
label:
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repetition of model generation. Increasing the repetition_penalty can reduce the repetition of model generation. 1.0 means no punishment.
required: false
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:
input: '0.12'
output: '0.12'
unit: '0.001'
currency: RMB

View File

@ -4,58 +4,74 @@ label:
model_type: llm
model_properties:
mode: chat
context_size: 30000
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
default: 1.0
type: float
default: 0.85
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: max_tokens
use_template: max_tokens
default: 2000
min: 1
max: 28000
help:
zh_Hans: 用于限制模型生成token的数量max_tokens设置的是生成上限并不表示一定会生成这么多的token数量。
en_US: It is used to limit the number of tokens generated by the model. max_tokens sets the upper limit of generation, which does not mean that so many tokens will be generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。默认不传递该参数取值为None或当top_k大于100时表示不启用top_k策略此时仅有top_p策略生效。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. This parameter is not passed by default. The value is None or when top_k is greater than 100, it means that the top_k policy is not enabled. At this time, only the top_p policy takes effect.
required: false
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
type: int
help:
zh_Hans: 生成时随机数种子,用控制模型生成的随机性。如果使用相同的种子每次运行生成的结果都将相同当需要复现模型的生成结果时可以使用相同的种子。seed参数支持无符号64位整数类型
en_US: When generating, the random number seed is used to control the randomness of model generation. If you use the same seed, the results generated by each run will be the same; when you need to reproduce the results of the model, you can use the same seed. The seed parameter supports unsigned 64-bit integer types.
required: false
zh_Hans: 生成时使用的随机数种子,用控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
label:
en_US: Repetition penalty
required: false
type: float
default: 1.1
label:
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repetition of model generation. Increasing the repetition_penalty can reduce the repetition of model generation. 1.0 means no punishment.
required: false
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:
input: '0.12'
output: '0.12'
unit: '0.001'
currency: RMB

View File

@ -8,54 +8,70 @@ model_properties:
parameter_rules:
- name: temperature
use_template: temperature
default: 1.0
type: float
default: 0.85
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: max_tokens
use_template: max_tokens
default: 1500
min: 1
max: 6000
help:
zh_Hans: 用于限制模型生成token的数量max_tokens设置的是生成上限并不表示一定会生成这么多的token数量。
en_US: It is used to limit the number of tokens generated by the model. max_tokens sets the upper limit of generation, which does not mean that so many tokens will be generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。默认不传递该参数取值为None或当top_k大于100时表示不启用top_k策略此时仅有top_p策略生效。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. This parameter is not passed by default. The value is None or when top_k is greater than 100, it means that the top_k policy is not enabled. At this time, only the top_p policy takes effect.
required: false
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
type: int
help:
zh_Hans: 生成时随机数种子,用控制模型生成的随机性。如果使用相同的种子每次运行生成的结果都将相同当需要复现模型的生成结果时可以使用相同的种子。seed参数支持无符号64位整数类型
en_US: When generating, the random number seed is used to control the randomness of model generation. If you use the same seed, the results generated by each run will be the same; when you need to reproduce the results of the model, you can use the same seed. The seed parameter supports unsigned 64-bit integer types.
required: false
zh_Hans: 生成时使用的随机数种子,用控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
label:
en_US: Repetition penalty
required: false
type: float
default: 1.1
label:
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repetition of model generation. Increasing the repetition_penalty can reduce the repetition of model generation. 1.0 means no punishment.
required: false
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:
input: '0.12'
output: '0.12'
unit: '0.001'
currency: RMB

View File

@ -4,58 +4,70 @@ label:
model_type: llm
model_properties:
mode: completion
context_size: 32000
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
default: 1.0
type: float
default: 0.85
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 1500
min: 1
max: 1500
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: max_tokens
use_template: max_tokens
default: 2000
min: 1
max: 30000
help:
zh_Hans: 用于限制模型生成token的数量max_tokens设置的是生成上限并不表示一定会生成这么多的token数量。
en_US: It is used to limit the number of tokens generated by the model. max_tokens sets the upper limit of generation, which does not mean that so many tokens will be generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。默认不传递该参数取值为None或当top_k大于100时表示不启用top_k策略此时仅有top_p策略生效。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. This parameter is not passed by default. The value is None or when top_k is greater than 100, it means that the top_k policy is not enabled. At this time, only the top_p policy takes effect.
required: false
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
type: int
help:
zh_Hans: 生成时随机数种子,用控制模型生成的随机性。如果使用相同的种子每次运行生成的结果都将相同当需要复现模型的生成结果时可以使用相同的种子。seed参数支持无符号64位整数类型
en_US: When generating, the random number seed is used to control the randomness of model generation. If you use the same seed, the results generated by each run will be the same; when you need to reproduce the results of the model, you can use the same seed. The seed parameter supports unsigned 64-bit integer types.
required: false
zh_Hans: 生成时使用的随机数种子,用控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
label:
en_US: Repetition penalty
required: false
type: float
default: 1.1
label:
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repetition of model generation. Increasing the repetition_penalty can reduce the repetition of model generation. 1.0 means no punishment.
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@ -8,55 +8,66 @@ model_properties:
parameter_rules:
- name: temperature
use_template: temperature
default: 1.0
type: float
default: 0.85
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 1500
min: 1
max: 1500
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: max_tokens
use_template: max_tokens
default: 1500
min: 1
max: 6000
help:
zh_Hans: 用于限制模型生成token的数量max_tokens设置的是生成上限并不表示一定会生成这么多的token数量。
en_US: It is used to limit the number of tokens generated by the model. max_tokens sets the upper limit of generation, which does not mean that so many tokens will be generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。默认不传递该参数取值为None或当top_k大于100时表示不启用top_k策略此时仅有top_p策略生效。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated. This parameter is not passed by default. The value is None or when top_k is greater than 100, it means that the top_k policy is not enabled. At this time, only the top_p policy takes effect.
required: false
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
type: int
help:
zh_Hans: 生成时随机数种子,用控制模型生成的随机性。如果使用相同的种子每次运行生成的结果都将相同当需要复现模型的生成结果时可以使用相同的种子。seed参数支持无符号64位整数类型
en_US: When generating, the random number seed is used to control the randomness of model generation. If you use the same seed, the results generated by each run will be the same; when you need to reproduce the results of the model, you can use the same seed. The seed parameter supports unsigned 64-bit integer types.
required: false
zh_Hans: 生成时使用的随机数种子,用控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
label:
en_US: Repetition penalty
required: false
type: float
default: 1.1
label:
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repetition of model generation. Increasing the repetition_penalty can reduce the repetition of model generation. 1.0 means no punishment.
required: false
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: enable_search
type: boolean
default: false
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
use_template: response_format
pricing:

View File

@ -0,0 +1,4 @@
model: text-embedding-v1
model_type: text-embedding
model_properties:
context_size: 2048

View File

@ -0,0 +1,4 @@
model: text-embedding-v2
model_type: text-embedding
model_properties:
context_size: 2048

View File

@ -0,0 +1,132 @@
import time
from typing import Optional
import dashscope
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import (
EmbeddingUsage,
TextEmbeddingResult,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.text_embedding_model import (
TextEmbeddingModel,
)
from core.model_runtime.model_providers.tongyi._common import _CommonTongyi
class TongyiTextEmbeddingModel(_CommonTongyi, TextEmbeddingModel):
"""
Model class for Tongyi text embedding model.
"""
def _invoke(
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:return: embeddings result
"""
credentials_kwargs = self._to_credential_kwargs(credentials)
dashscope.api_key = credentials_kwargs["dashscope_api_key"]
embeddings, embedding_used_tokens = self.embed_documents(model, texts)
return TextEmbeddingResult(
embeddings=embeddings,
usage=self._calc_response_usage(model, credentials_kwargs, embedding_used_tokens),
model=model
)
def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int:
"""
Get number of tokens for given prompt messages
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:return:
"""
if len(texts) == 0:
return 0
total_num_tokens = 0
for text in texts:
total_num_tokens += self._get_num_tokens_by_gpt2(text)
return total_num_tokens
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return:
"""
try:
# transform credentials to kwargs for model instance
credentials_kwargs = self._to_credential_kwargs(credentials)
dashscope.api_key = credentials_kwargs["dashscope_api_key"]
# call embedding model
self.embed_documents(model=model, texts=["ping"])
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
@staticmethod
def embed_documents(model: str, texts: list[str]) -> tuple[list[list[float]], int]:
"""Call out to Tongyi's embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text, and tokens usage.
"""
embeddings = []
embedding_used_tokens = 0
for text in texts:
response = dashscope.TextEmbedding.call(model=model, input=text, text_type="document")
data = response.output["embeddings"][0]
embeddings.append(data["embedding"])
embedding_used_tokens += response.usage["total_tokens"]
return [list(map(float, e)) for e in embeddings], embedding_used_tokens
def _calc_response_usage(
self, model: str, credentials: dict, tokens: int
) -> EmbeddingUsage:
"""
Calculate response usage
:param model: model name
:param tokens: input tokens
:return: usage
"""
# get input price info
input_price_info = self.get_price(
model=model,
credentials=credentials,
price_type=PriceType.INPUT,
tokens=tokens
)
# transform usage
usage = EmbeddingUsage(
tokens=tokens,
total_tokens=tokens,
unit_price=input_price_info.unit_price,
price_unit=input_price_info.unit,
total_price=input_price_info.total_amount,
currency=input_price_info.currency,
latency=time.perf_counter() - self.started_at
)
return usage

View File

@ -17,15 +17,16 @@ help:
supported_model_types:
- llm
- tts
- text-embedding
configurate_methods:
- predefined-model
provider_credential_schema:
credential_form_schemas:
- variable: dashscope_api_key
label:
en_US: APIKey
en_US: API Key
type: secret-input
required: true
placeholder:
zh_Hans: 在此输入您的 APIKey
en_US: Enter your APIKey
zh_Hans: 在此输入您的 API Key
en_US: Enter your API Key

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

View File

@ -0,0 +1,3 @@
<svg width="567" height="376" viewBox="0 0 567 376" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M58.0366 161.868C58.0366 161.868 109.261 86.2912 211.538 78.4724V51.053C98.2528 60.1511 0.152344 156.098 0.152344 156.098C0.152344 156.098 55.7148 316.717 211.538 331.426V302.282C97.1876 287.896 58.0366 161.868 58.0366 161.868ZM211.538 244.32V271.013C125.114 255.603 101.125 165.768 101.125 165.768C101.125 165.768 142.621 119.799 211.538 112.345V141.633C211.486 141.633 211.449 141.617 211.406 141.617C175.235 137.276 146.978 171.067 146.978 171.067C146.978 171.067 162.816 227.949 211.538 244.32ZM211.538 0.47998V51.053C214.864 50.7981 218.189 50.5818 221.533 50.468C350.326 46.1273 434.243 156.098 434.243 156.098C434.243 156.098 337.861 273.296 237.448 273.296C228.245 273.296 219.63 272.443 211.538 271.009V302.282C218.695 303.201 225.903 303.667 233.119 303.675C326.56 303.675 394.134 255.954 459.566 199.474C470.415 208.162 514.828 229.299 523.958 238.55C461.745 290.639 316.752 332.626 234.551 332.626C226.627 332.626 219.018 332.148 211.538 331.426V375.369H566.701V0.47998H211.538ZM211.538 112.345V78.4724C214.829 78.2425 218.146 78.0672 221.533 77.9602C314.148 75.0512 374.909 157.548 374.909 157.548C374.909 157.548 309.281 248.693 238.914 248.693C228.787 248.693 219.707 247.065 211.536 244.318V141.631C247.591 145.987 254.848 161.914 276.524 198.049L324.737 157.398C324.737 157.398 289.544 111.243 230.219 111.243C223.768 111.241 217.597 111.696 211.538 112.345Z" fill="#77B900"/>
</svg>

After

Width:  |  Height:  |  Size: 1.5 KiB

View File

@ -0,0 +1,267 @@
from collections.abc import Generator
from httpx import Response, post
from yarl import URL
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
PromptMessageTool,
SystemPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import (
AIModelEntity,
FetchFrom,
ModelPropertyKey,
ModelType,
ParameterRule,
ParameterType,
)
from core.model_runtime.errors.invoke import (
InvokeAuthorizationError,
InvokeBadRequestError,
InvokeConnectionError,
InvokeError,
InvokeRateLimitError,
InvokeServerUnavailableError,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
class TritonInferenceAILargeLanguageModel(LargeLanguageModel):
def _invoke(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
model_parameters: dict, tools: list[PromptMessageTool] | None = None,
stop: list[str] | None = None, stream: bool = True, user: str | None = None) \
-> LLMResult | Generator:
"""
invoke LLM
see `core.model_runtime.model_providers.__base.large_language_model.LargeLanguageModel._invoke`
"""
return self._generate(
model=model, credentials=credentials, prompt_messages=prompt_messages, model_parameters=model_parameters,
tools=tools, stop=stop, stream=stream, user=user,
)
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
validate credentials
"""
if 'server_url' not in credentials:
raise CredentialsValidateFailedError('server_url is required in credentials')
try:
self._invoke(model=model, credentials=credentials, prompt_messages=[
UserPromptMessage(content='ping')
], model_parameters={}, stream=False)
except InvokeError as ex:
raise CredentialsValidateFailedError(f'An error occurred during connection: {str(ex)}')
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
tools: list[PromptMessageTool] | None = None) -> int:
"""
get number of tokens
cause TritonInference LLM is a customized model, we could net detect which tokenizer to use
so we just take the GPT2 tokenizer as default
"""
return self._get_num_tokens_by_gpt2(self._convert_prompt_message_to_text(prompt_messages))
def _convert_prompt_message_to_text(self, message: list[PromptMessage]) -> str:
"""
convert prompt message to text
"""
text = ''
for item in message:
if isinstance(item, UserPromptMessage):
text += f'User: {item.content}'
elif isinstance(item, SystemPromptMessage):
text += f'System: {item.content}'
elif isinstance(item, AssistantPromptMessage):
text += f'Assistant: {item.content}'
else:
raise NotImplementedError(f'PromptMessage type {type(item)} is not supported')
return text
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
"""
used to define customizable model schema
"""
rules = [
ParameterRule(
name='temperature',
type=ParameterType.FLOAT,
use_template='temperature',
label=I18nObject(
zh_Hans='温度',
en_US='Temperature'
),
),
ParameterRule(
name='top_p',
type=ParameterType.FLOAT,
use_template='top_p',
label=I18nObject(
zh_Hans='Top P',
en_US='Top P'
)
),
ParameterRule(
name='max_tokens',
type=ParameterType.INT,
use_template='max_tokens',
min=1,
max=int(credentials.get('context_length', 2048)),
default=min(512, int(credentials.get('context_length', 2048))),
label=I18nObject(
zh_Hans='最大生成长度',
en_US='Max Tokens'
)
)
]
completion_type = None
if 'completion_type' in credentials:
if credentials['completion_type'] == 'chat':
completion_type = LLMMode.CHAT.value
elif credentials['completion_type'] == 'completion':
completion_type = LLMMode.COMPLETION.value
else:
raise ValueError(f'completion_type {credentials["completion_type"]} is not supported')
entity = AIModelEntity(
model=model,
label=I18nObject(
en_US=model
),
parameter_rules=rules,
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=ModelType.LLM,
model_properties={
ModelPropertyKey.MODE: completion_type,
ModelPropertyKey.CONTEXT_SIZE: int(credentials.get('context_length', 2048)),
},
)
return entity
def _generate(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: list[PromptMessageTool] | None = None,
stop: list[str] | None = None, stream: bool = True, user: str | None = None) \
-> LLMResult | Generator:
"""
generate text from LLM
"""
if 'server_url' not in credentials:
raise CredentialsValidateFailedError('server_url is required in credentials')
if 'stream' in credentials and not bool(credentials['stream']) and stream:
raise ValueError(f'stream is not supported by model {model}')
try:
parameters = {}
if 'temperature' in model_parameters:
parameters['temperature'] = model_parameters['temperature']
if 'top_p' in model_parameters:
parameters['top_p'] = model_parameters['top_p']
if 'top_k' in model_parameters:
parameters['top_k'] = model_parameters['top_k']
if 'presence_penalty' in model_parameters:
parameters['presence_penalty'] = model_parameters['presence_penalty']
if 'frequency_penalty' in model_parameters:
parameters['frequency_penalty'] = model_parameters['frequency_penalty']
response = post(str(URL(credentials['server_url']) / 'v2' / 'models' / model / 'generate'), json={
'text_input': self._convert_prompt_message_to_text(prompt_messages),
'max_tokens': model_parameters.get('max_tokens', 512),
'parameters': {
'stream': False,
**parameters
},
}, timeout=(10, 120))
response.raise_for_status()
if response.status_code != 200:
raise InvokeBadRequestError(f'Invoke failed with status code {response.status_code}, {response.text}')
if stream:
return self._handle_chat_stream_response(model=model, credentials=credentials, prompt_messages=prompt_messages,
tools=tools, resp=response)
return self._handle_chat_generate_response(model=model, credentials=credentials, prompt_messages=prompt_messages,
tools=tools, resp=response)
except Exception as ex:
raise InvokeConnectionError(f'An error occurred during connection: {str(ex)}')
def _handle_chat_generate_response(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
tools: list[PromptMessageTool],
resp: Response) -> LLMResult:
"""
handle normal chat generate response
"""
text = resp.json()['text_output']
usage = LLMUsage.empty_usage()
usage.prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
usage.completion_tokens = self._get_num_tokens_by_gpt2(text)
return LLMResult(
model=model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(
content=text
),
usage=usage
)
def _handle_chat_stream_response(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
tools: list[PromptMessageTool],
resp: Response) -> Generator:
"""
handle normal chat generate response
"""
text = resp.json()['text_output']
usage = LLMUsage.empty_usage()
usage.prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
usage.completion_tokens = self._get_num_tokens_by_gpt2(text)
yield LLMResultChunk(
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(
content=text
),
usage=usage
)
)
@property
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
"""
Map model invoke error to unified error
The key is the error type thrown to the caller
The value is the error type thrown by the model,
which needs to be converted into a unified error type for the caller.
:return: Invoke error mapping
"""
return {
InvokeConnectionError: [
],
InvokeServerUnavailableError: [
],
InvokeRateLimitError: [
],
InvokeAuthorizationError: [
],
InvokeBadRequestError: [
ValueError
]
}

View File

@ -0,0 +1,9 @@
import logging
from core.model_runtime.model_providers.__base.model_provider import ModelProvider
logger = logging.getLogger(__name__)
class XinferenceAIProvider(ModelProvider):
def validate_provider_credentials(self, credentials: dict) -> None:
pass

View File

@ -0,0 +1,84 @@
provider: triton_inference_server
label:
en_US: Triton Inference Server
icon_small:
en_US: icon_s_en.svg
icon_large:
en_US: icon_l_en.png
background: "#EFFDFD"
help:
title:
en_US: How to deploy Triton Inference Server
zh_Hans: 如何部署 Triton Inference Server
url:
en_US: https://github.com/triton-inference-server/server
supported_model_types:
- llm
configurate_methods:
- customizable-model
model_credential_schema:
model:
label:
en_US: Model Name
zh_Hans: 模型名称
placeholder:
en_US: Enter your model name
zh_Hans: 输入模型名称
credential_form_schemas:
- variable: server_url
label:
zh_Hans: 服务器URL
en_US: Server url
type: secret-input
required: true
placeholder:
zh_Hans: 在此输入 Triton Inference Server 的服务器地址,如 http://192.168.1.100:8000
en_US: Enter the url of your Triton Inference Server, e.g. http://192.168.1.100:8000
- variable: context_size
label:
zh_Hans: 上下文大小
en_US: Context size
type: text-input
required: true
placeholder:
zh_Hans: 在此输入您的上下文大小
en_US: Enter the context size
default: 2048
- variable: completion_type
label:
zh_Hans: 补全类型
en_US: Model type
type: select
required: true
default: chat
placeholder:
zh_Hans: 在此输入您的补全类型
en_US: Enter the completion type
options:
- label:
zh_Hans: 补全模型
en_US: Completion model
value: completion
- label:
zh_Hans: 对话模型
en_US: Chat model
value: chat
- variable: stream
label:
zh_Hans: 流式输出
en_US: Stream output
type: select
required: true
default: true
placeholder:
zh_Hans: 是否支持流式输出
en_US: Whether to support stream output
options:
- label:
zh_Hans:
en_US: Yes
value: true
- label:
zh_Hans:
en_US: No
value: false

View File

@ -0,0 +1,37 @@
model: ernie-3.5-8k
label:
en_US: Ernie-3.5-8K
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 4096
parameter_rules:
- name: temperature
use_template: temperature
min: 0.1
max: 1.0
default: 0.8
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 1024
min: 2
max: 2048
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
use_template: response_format
- name: disable_search
label:
zh_Hans: 禁用搜索
en_US: Disable Search
type: boolean
help:
zh_Hans: 禁用模型自行进行外部搜索。
en_US: Disable the model to perform external search.
required: false

View File

@ -0,0 +1,37 @@
model: ernie-3.5-8k-0205
label:
en_US: Ernie-3.5-8K-0205
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
min: 0.1
max: 1.0
default: 0.8
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 1024
min: 2
max: 2048
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
use_template: response_format
- name: disable_search
label:
zh_Hans: 禁用搜索
en_US: Disable Search
type: boolean
help:
zh_Hans: 禁用模型自行进行外部搜索。
en_US: Disable the model to perform external search.
required: false

View File

@ -0,0 +1,37 @@
model: ernie-3.5-8k-1222
label:
en_US: Ernie-3.5-8K-1222
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
min: 0.1
max: 1.0
default: 0.8
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 1024
min: 2
max: 2048
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
use_template: response_format
- name: disable_search
label:
zh_Hans: 禁用搜索
en_US: Disable Search
type: boolean
help:
zh_Hans: 禁用模型自行进行外部搜索。
en_US: Disable the model to perform external search.
required: false

View File

@ -0,0 +1,37 @@
model: ernie-3.5-8k
label:
en_US: Ernie-3.5-8K
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
min: 0.1
max: 1.0
default: 0.8
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 1024
min: 2
max: 2048
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
use_template: response_format
- name: disable_search
label:
zh_Hans: 禁用搜索
en_US: Disable Search
type: boolean
help:
zh_Hans: 禁用模型自行进行外部搜索。
en_US: Disable the model to perform external search.
required: false

View File

@ -0,0 +1,37 @@
model: ernie-4.0-8k
label:
en_US: Ernie-4.0-8K
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
min: 0.1
max: 1.0
default: 0.8
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 1024
min: 2
max: 2048
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
use_template: response_format
- name: disable_search
label:
zh_Hans: 禁用搜索
en_US: Disable Search
type: boolean
help:
zh_Hans: 禁用模型自行进行外部搜索。
en_US: Disable the model to perform external search.
required: false

View File

@ -36,3 +36,4 @@ parameter_rules:
zh_Hans: 禁用模型自行进行外部搜索。
en_US: Disable the model to perform external search.
required: false
deprecated: true

View File

@ -36,3 +36,4 @@ parameter_rules:
zh_Hans: 禁用模型自行进行外部搜索。
en_US: Disable the model to perform external search.
required: false
deprecated: true

View File

@ -27,3 +27,4 @@ parameter_rules:
use_template: frequency_penalty
- name: response_format
use_template: response_format
deprecated: true

View File

@ -36,3 +36,4 @@ parameter_rules:
required: false
- name: response_format
use_template: response_format
deprecated: true

View File

@ -0,0 +1,30 @@
model: ernie-lite-8k-0308
label:
en_US: ERNIE-Lite-8K-0308
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
min: 0.1
max: 1.0
default: 0.95
- name: top_p
use_template: top_p
min: 0
max: 1.0
default: 0.7
- name: max_tokens
use_template: max_tokens
default: 1024
min: 2
max: 1024
- name: presence_penalty
use_template: presence_penalty
default: 1.0
min: 1.0
max: 2.0

Some files were not shown because too many files have changed in this diff Show More