Compare commits

...

52 Commits

Author SHA1 Message Date
eabfd84ceb bump to 0.6.14 (#6294) 2024-07-15 21:01:09 +08:00
d320d1468d Feat/delete file when clean document (#5882) 2024-07-15 19:57:05 +08:00
b47fa27a35 fix: zhipuai validate error when user's api key not support for chatglm_turbo in issue #6289 (#6290) 2024-07-15 19:27:18 +08:00
68ad9a91b2 fix: validateColorHex: cannot read properties of undefined (reading 'length') (#6242) 2024-07-15 19:26:00 +08:00
c17a4165c1 6282 i18n add support for Italian (#6288) 2024-07-15 19:25:07 +08:00
96c171805a Update bedrock.yaml (#6281) 2024-07-15 16:53:03 +08:00
9a536979ab feat(frontend): workflow import dsl from url (#6286) 2024-07-15 16:24:03 +08:00
46a5294d94 feat(backend): support import DSL from URL (#6287) 2024-07-15 16:23:40 +08:00
ec181649ae Update model provider configuration for Triton Inference Server and X… (#6274) 2024-07-15 15:07:28 +08:00
4fdcb30ff8 fix: custom tool input number fail (#6200)
Co-authored-by: jinqi.guo <jinqi.guo@ubtrobot.com>
2024-07-14 22:11:13 +08:00
07add06c59 Feat/add zhipu CogView 3 tool (#6210) 2024-07-13 17:39:17 +08:00
a7b33b55e8 Fix mermaid render (#6088)
Co-authored-by: 靖谦 <jingqian@kaiwu.cloud>
2024-07-12 20:09:24 +08:00
0cbbaf3f68 fix: markdown proc will remove image (#5855) 2024-07-12 20:07:22 +08:00
c564f32ab6 fix: remove the maximum length limit of "paragraph" variable (#6234) 2024-07-12 19:58:42 +08:00
7c2c949f01 Update ernie_bot.py (#6236) 2024-07-12 19:54:53 +08:00
066168da52 fix: model-provider-card-style (#6246) 2024-07-12 17:17:07 +08:00
1df71ec64d refactor(api): switch to dify_config with Pydantic in controllers and schedule (#6237) 2024-07-12 16:51:43 +08:00
a9ee52f2d7 Fix/firecrawl parameters issue (#6213) 2024-07-12 12:59:50 +08:00
7b225a5ab0 refactor(services/tasks): Swtich to dify_config witch Pydantic (#6203) 2024-07-12 12:25:38 +08:00
d7a6f25c63 fix: differentiate prompts fields based on function_calling_type (#5880) 2024-07-12 11:07:38 +08:00
f46792334c chore: remove underscore in util class name and css variable (#6221) 2024-07-12 11:07:24 +08:00
ee3936916f upgrade deepseek params (#6215) 2024-07-12 10:55:44 +08:00
109de52fe2 Fix: When editing an Agent, selecting custom tools does not allow filtering by labels. (#6197)
Co-authored-by: dufei <du_fei@venusgroup.com.cn>
2024-07-12 09:02:25 +08:00
10dd0f3fa0 fix document error for "/workflows/:task_id/stop" (#6209) 2024-07-12 08:33:50 +08:00
2f064c68bc Create ernie-4.0-turbo-8k-preview (#6132) 2024-07-11 20:20:07 +08:00
079583eaa4 fix: Correct environment variable name (#6184)
Co-authored-by: liuzhenghua-jk <liuzhenghua-jk@360shuke.com>
2024-07-11 20:16:52 +08:00
0e82072323 Fix if_else node compatibility with historical workflows. (#6186) 2024-07-11 17:13:16 +08:00
678ad6b7eb Fix/file stream azure blob (#6196) 2024-07-11 17:01:03 +08:00
63e34e5227 feat: support MyScale vector database (#6092) 2024-07-11 15:21:59 +08:00
c606295ea6 fix: data not updated (#6161) 2024-07-11 11:09:14 +08:00
27d72e30ad fix: can add a custom tool without a name (#6172) 2024-07-11 11:08:50 +08:00
5660878f7b chore: update the tool's doc (#6167) 2024-07-11 11:02:58 +08:00
12e55b2cac chore: update i18n for #6069 (#6163) 2024-07-11 10:02:35 +08:00
97e094dfd8 chore: update i18n for #5943 (#6162) 2024-07-10 23:28:02 +08:00
9622fbb62f feat: app rate limit (#5844)
Co-authored-by: liuzhenghua-jk <liuzhenghua-jk@360shuke.com>
Co-authored-by: takatost <takatost@gmail.com>
2024-07-10 21:31:35 +08:00
cc8dc6d35e Revert "chore: update the tool's doc" (#6153) 2024-07-10 19:57:12 +08:00
215661ef91 feat: add PerfXCloud, Qwen series #6116 (#6117) 2024-07-10 18:26:10 +08:00
Joe
5a3e09518c feat: add if elif (#6094) 2024-07-10 18:22:51 +08:00
ebba124c5c feat: workflow if-else support elif (#6072) 2024-07-10 18:20:13 +08:00
a62325ac87 feat: add until className defines (#6141) 2024-07-10 15:34:56 +08:00
1d2ab2126c chore: update the tool's doc (#6122) 2024-07-10 12:42:34 +08:00
b07dea836c feat(embed): enhance config and add custom styling support (#5781) 2024-07-10 09:27:24 +08:00
f9d00e0498 chore: use poetry for linter tools installation and bump Ruff from 0.4 to 0.5 (#6081) 2024-07-09 23:06:23 +08:00
757ceda063 chore(deps): bump braces from 3.0.2 to 3.0.3 in /web (#6098)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-09 23:05:12 +08:00
d27e3ab99d chore: remove unresolved reference (#6110) 2024-07-09 23:04:44 +08:00
Joe
ce930f19b9 fix dataset operator (#6064)
Co-authored-by: JzoNg <jzongcode@gmail.com>
2024-07-09 17:47:54 +08:00
3b14939d66 Chore: new tailwind vars (#6100) 2024-07-09 16:37:59 +08:00
279caf033c fix: node-title-is-overflow-in-checklist (#5870) 2024-07-09 15:12:41 +08:00
eff280f3e7 feat: tailwind related improvement (#6085) 2024-07-09 15:05:40 +08:00
7c70eb87bc feat: support AnalyticDB vector store (#5586)
Co-authored-by: xiaozeyu <xiaozeyu.xzy@alibaba-inc.com>
2024-07-09 13:32:04 +08:00
6ef401a9f0 feat:add tts-streaming config and future (#5492) 2024-07-09 11:33:58 +08:00
b29a36f461 Feat: add index bar to select tool panel of workflow (#6066)
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-07-09 09:43:34 +08:00
603 changed files with 14351 additions and 3271 deletions

View File

@ -75,7 +75,7 @@ jobs:
- name: Run Workflow
run: poetry run -C api bash dev/pytest/pytest_workflow.sh
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma)
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale)
uses: hoverkraft-tech/compose-action@v2.0.0
with:
compose-file: |
@ -89,5 +89,6 @@ jobs:
pgvecto-rs
pgvector
chroma
myscale
- name: Test Vector Stores
run: poetry run -C api bash dev/pytest/pytest_vdb.sh

View File

@ -83,7 +83,7 @@ OCI_REGION=your-region
WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
CONSOLE_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
# Vector database configuration, support: weaviate, qdrant, milvus, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector
# Vector database configuration, support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector
VECTOR_STORE=weaviate
# Weaviate configuration
@ -106,6 +106,14 @@ MILVUS_USER=root
MILVUS_PASSWORD=Milvus
MILVUS_SECURE=false
# MyScale configuration
MYSCALE_HOST=127.0.0.1
MYSCALE_PORT=8123
MYSCALE_USER=default
MYSCALE_PASSWORD=
MYSCALE_DATABASE=default
MYSCALE_FTS_PARAMS=
# Relyt configuration
RELYT_HOST=127.0.0.1
RELYT_PORT=5432
@ -151,6 +159,16 @@ CHROMA_DATABASE=default_database
CHROMA_AUTH_PROVIDER=chromadb.auth.token_authn.TokenAuthenticationServerProvider
CHROMA_AUTH_CREDENTIALS=difyai123456
# AnalyticDB configuration
ANALYTICDB_KEY_ID=your-ak
ANALYTICDB_KEY_SECRET=your-sk
ANALYTICDB_REGION_ID=cn-hangzhou
ANALYTICDB_INSTANCE_ID=gp-ab123456
ANALYTICDB_ACCOUNT=testaccount
ANALYTICDB_PASSWORD=testpassword
ANALYTICDB_NAMESPACE=dify
ANALYTICDB_NAMESPACE_PASSWORD=difypassword
# OpenSearch configuration
OPENSEARCH_HOST=127.0.0.1
OPENSEARCH_PORT=9200
@ -237,4 +255,4 @@ WORKFLOW_CALL_MAX_DEPTH=5
# App configuration
APP_MAX_EXECUTION_TIME=1200
APP_MAX_ACTIVE_REQUESTS=0

View File

@ -337,6 +337,14 @@ def migrate_knowledge_vector_database():
"vector_store": {"class_prefix": collection_name}
}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == VectorType.ANALYTICDB:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": VectorType.ANALYTICDB,
"vector_store": {"class_prefix": collection_name}
}
dataset.index_struct = json.dumps(index_struct_dict)
else:
raise ValueError(f"Vector store {vector_type} is not supported.")

View File

@ -31,6 +31,10 @@ class AppExecutionConfig(BaseSettings):
description='execution timeout in seconds for app execution',
default=1200,
)
APP_MAX_ACTIVE_REQUESTS: NonNegativeInt = Field(
description='max active request per app, 0 means unlimited',
default=0,
)
class CodeExecutionSandboxConfig(BaseSettings):
@ -396,6 +400,11 @@ class DataSetConfig(BaseSettings):
default=30,
)
DATASET_OPERATOR_ENABLED: bool = Field(
description='whether to enable dataset operator',
default=False,
)
class WorkspaceConfig(BaseSettings):
"""

View File

@ -10,8 +10,10 @@ from configs.middleware.storage.azure_blob_storage_config import AzureBlobStorag
from configs.middleware.storage.google_cloud_storage_config import GoogleCloudStorageConfig
from configs.middleware.storage.oci_storage_config import OCIStorageConfig
from configs.middleware.storage.tencent_cos_storage_config import TencentCloudCOSStorageConfig
from configs.middleware.vdb.analyticdb_config import AnalyticdbConfig
from configs.middleware.vdb.chroma_config import ChromaConfig
from configs.middleware.vdb.milvus_config import MilvusConfig
from configs.middleware.vdb.myscale_config import MyScaleConfig
from configs.middleware.vdb.opensearch_config import OpenSearchConfig
from configs.middleware.vdb.oracle_config import OracleConfig
from configs.middleware.vdb.pgvector_config import PGVectorConfig
@ -183,8 +185,10 @@ class MiddlewareConfig(
# configs of vdb and vdb providers
VectorStoreConfig,
AnalyticdbConfig,
ChromaConfig,
MilvusConfig,
MyScaleConfig,
OpenSearchConfig,
OracleConfig,
PGVectorConfig,

View File

@ -0,0 +1,44 @@
from typing import Optional
from pydantic import BaseModel, Field
class AnalyticdbConfig(BaseModel):
"""
Configuration for connecting to AnalyticDB.
Refer to the following documentation for details on obtaining credentials:
https://www.alibabacloud.com/help/en/analyticdb-for-postgresql/getting-started/create-an-instance-instances-with-vector-engine-optimization-enabled
"""
ANALYTICDB_KEY_ID : Optional[str] = Field(
default=None,
description="The Access Key ID provided by Alibaba Cloud for authentication."
)
ANALYTICDB_KEY_SECRET : Optional[str] = Field(
default=None,
description="The Secret Access Key corresponding to the Access Key ID for secure access."
)
ANALYTICDB_REGION_ID : Optional[str] = Field(
default=None,
description="The region where the AnalyticDB instance is deployed (e.g., 'cn-hangzhou')."
)
ANALYTICDB_INSTANCE_ID : Optional[str] = Field(
default=None,
description="The unique identifier of the AnalyticDB instance you want to connect to (e.g., 'gp-ab123456').."
)
ANALYTICDB_ACCOUNT : Optional[str] = Field(
default=None,
description="The account name used to log in to the AnalyticDB instance."
)
ANALYTICDB_PASSWORD : Optional[str] = Field(
default=None,
description="The password associated with the AnalyticDB account for authentication."
)
ANALYTICDB_NAMESPACE : Optional[str] = Field(
default=None,
description="The namespace within AnalyticDB for schema isolation."
)
ANALYTICDB_NAMESPACE_PASSWORD : Optional[str] = Field(
default=None,
description="The password for accessing the specified namespace within the AnalyticDB instance."
)

View File

@ -0,0 +1,39 @@
from typing import Optional
from pydantic import BaseModel, Field, PositiveInt
class MyScaleConfig(BaseModel):
"""
MyScale configs
"""
MYSCALE_HOST: Optional[str] = Field(
description='MyScale host',
default=None,
)
MYSCALE_PORT: Optional[PositiveInt] = Field(
description='MyScale port',
default=8123,
)
MYSCALE_USER: Optional[str] = Field(
description='MyScale user',
default=None,
)
MYSCALE_PASSWORD: Optional[str] = Field(
description='MyScale password',
default=None,
)
MYSCALE_DATABASE: Optional[str] = Field(
description='MyScale database name',
default=None,
)
MYSCALE_FTS_PARAMS: Optional[str] = Field(
description='MyScale fts index parameters',
default=None,
)

View File

@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description='Dify version',
default='0.6.13',
default='0.6.14',
)
COMMIT_SHA: str = Field(

View File

@ -0,0 +1,4 @@
TTS_AUTO_PLAY_TIMEOUT = 5
# sleep 20 ms ( 40ms => 1280 byte audio file,20ms => 640 byte audio file)
TTS_AUTO_PLAY_YIELD_CPU_TIME = 0.02

View File

@ -15,6 +15,7 @@ from fields.app_fields import (
app_pagination_fields,
)
from libs.login import login_required
from services.app_dsl_service import AppDslService
from services.app_service import AppService
ALLOW_CREATE_APP_MODES = ['chat', 'agent-chat', 'advanced-chat', 'workflow', 'completion']
@ -97,8 +98,42 @@ class AppImportApi(Resource):
parser.add_argument('icon_background', type=str, location='json')
args = parser.parse_args()
app_service = AppService()
app = app_service.import_app(current_user.current_tenant_id, args['data'], args, current_user)
app = AppDslService.import_and_create_new_app(
tenant_id=current_user.current_tenant_id,
data=args['data'],
args=args,
account=current_user
)
return app, 201
class AppImportFromUrlApi(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(app_detail_fields_with_site)
@cloud_edition_billing_resource_check('apps')
def post(self):
"""Import app from url"""
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('url', type=str, required=True, nullable=False, location='json')
parser.add_argument('name', type=str, location='json')
parser.add_argument('description', type=str, location='json')
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
args = parser.parse_args()
app = AppDslService.import_and_create_new_app_from_url(
tenant_id=current_user.current_tenant_id,
url=args['url'],
args=args,
account=current_user
)
return app, 201
@ -134,6 +169,7 @@ class AppApi(Resource):
parser.add_argument('description', type=str, location='json')
parser.add_argument('icon', type=str, location='json')
parser.add_argument('icon_background', type=str, location='json')
parser.add_argument('max_active_requests', type=int, location='json')
args = parser.parse_args()
app_service = AppService()
@ -176,9 +212,13 @@ class AppCopyApi(Resource):
parser.add_argument('icon_background', type=str, location='json')
args = parser.parse_args()
app_service = AppService()
data = app_service.export_app(app_model)
app = app_service.import_app(current_user.current_tenant_id, data, args, current_user)
data = AppDslService.export_dsl(app_model=app_model)
app = AppDslService.import_and_create_new_app(
tenant_id=current_user.current_tenant_id,
data=data,
args=args,
account=current_user
)
return app, 201
@ -194,10 +234,8 @@ class AppExportApi(Resource):
if not current_user.is_editor:
raise Forbidden()
app_service = AppService()
return {
"data": app_service.export_app(app_model)
"data": AppDslService.export_dsl(app_model=app_model)
}
@ -321,6 +359,7 @@ class AppTraceApi(Resource):
api.add_resource(AppListApi, '/apps')
api.add_resource(AppImportApi, '/apps/import')
api.add_resource(AppImportFromUrlApi, '/apps/import/url')
api.add_resource(AppApi, '/apps/<uuid:app_id>')
api.add_resource(AppCopyApi, '/apps/<uuid:app_id>/copy')
api.add_resource(AppExportApi, '/apps/<uuid:app_id>/export')

View File

@ -81,15 +81,36 @@ class ChatMessageTextApi(Resource):
@account_initialization_required
@get_app_model
def post(self, app_model):
from werkzeug.exceptions import InternalServerError
try:
parser = reqparse.RequestParser()
parser.add_argument('message_id', type=str, location='json')
parser.add_argument('text', type=str, location='json')
parser.add_argument('voice', type=str, location='json')
parser.add_argument('streaming', type=bool, location='json')
args = parser.parse_args()
message_id = args.get('message_id', None)
text = args.get('text', None)
if (app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]
and app_model.workflow
and app_model.workflow.features_dict):
text_to_speech = app_model.workflow.features_dict.get('text_to_speech')
voice = args.get('voice') if args.get('voice') else text_to_speech.get('voice')
else:
try:
voice = args.get('voice') if args.get('voice') else app_model.app_model_config.text_to_speech_dict.get(
'voice')
except Exception:
voice = None
response = AudioService.transcript_tts(
app_model=app_model,
text=request.form['text'],
voice=request.form['voice'],
streaming=False
text=text,
message_id=message_id,
voice=voice
)
return {'data': response.data.decode('latin1')}
return response
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()

View File

@ -19,7 +19,12 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.errors.error import (
AppInvokeQuotaExceededError,
ModelCurrentlyNotSupportError,
ProviderTokenNotInitError,
QuotaExceededError,
)
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from libs.helper import uuid_value
@ -75,7 +80,7 @@ class CompletionMessageApi(Resource):
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
except (ValueError, AppInvokeQuotaExceededError) as e:
raise e
except Exception as e:
logging.exception("internal server error.")
@ -141,7 +146,7 @@ class ChatMessageApi(Resource):
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
except (ValueError, AppInvokeQuotaExceededError) as e:
raise e
except Exception as e:
logging.exception("internal server error.")

View File

@ -13,12 +13,14 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import AppInvokeQuotaExceededError
from fields.workflow_fields import workflow_fields
from fields.workflow_run_fields import workflow_run_node_execution_fields
from libs import helper
from libs.helper import TimestampField, uuid_value
from libs.login import current_user, login_required
from models.model import App, AppMode
from services.app_dsl_service import AppDslService
from services.app_generate_service import AppGenerateService
from services.errors.app import WorkflowHashNotEqualError
from services.workflow_service import WorkflowService
@ -127,8 +129,7 @@ class DraftWorkflowImportApi(Resource):
parser.add_argument('data', type=str, required=True, nullable=False, location='json')
args = parser.parse_args()
workflow_service = WorkflowService()
workflow = workflow_service.import_draft_workflow(
workflow = AppDslService.import_and_overwrite_workflow(
app_model=app_model,
data=args['data'],
account=current_user
@ -279,7 +280,7 @@ class DraftWorkflowRunApi(Resource):
)
return helper.compact_generate_response(response)
except ValueError as e:
except (ValueError, AppInvokeQuotaExceededError) as e:
raise e
except Exception as e:
logging.exception("internal server error.")

View File

@ -25,7 +25,7 @@ from fields.document_fields import document_status_fields
from libs.login import login_required
from models.dataset import Dataset, Document, DocumentSegment
from models.model import ApiToken, UploadFile
from services.dataset_service import DatasetService, DocumentService
from services.dataset_service import DatasetPermissionService, DatasetService, DocumentService
def _validate_name(name):
@ -85,6 +85,12 @@ class DatasetListApi(Resource):
else:
item['embedding_available'] = True
if item.get('permission') == 'partial_members':
part_users_list = DatasetPermissionService.get_dataset_partial_member_list(item['id'])
item.update({'partial_member_list': part_users_list})
else:
item.update({'partial_member_list': []})
response = {
'data': data,
'has_more': len(datasets) == limit,
@ -108,8 +114,8 @@ class DatasetListApi(Resource):
help='Invalid indexing technique.')
args = parser.parse_args()
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
try:
@ -140,6 +146,10 @@ class DatasetApi(Resource):
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
data = marshal(dataset, dataset_detail_fields)
if data.get('permission') == 'partial_members':
part_users_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
data.update({'partial_member_list': part_users_list})
# check embedding setting
provider_manager = ProviderManager()
configurations = provider_manager.get_configurations(
@ -163,6 +173,11 @@ class DatasetApi(Resource):
data['embedding_available'] = False
else:
data['embedding_available'] = True
if data.get('permission') == 'partial_members':
part_users_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
data.update({'partial_member_list': part_users_list})
return data, 200
@setup_required
@ -188,17 +203,21 @@ class DatasetApi(Resource):
nullable=True,
help='Invalid indexing technique.')
parser.add_argument('permission', type=str, location='json', choices=(
'only_me', 'all_team_members'), help='Invalid permission.')
'only_me', 'all_team_members', 'partial_members'), help='Invalid permission.'
)
parser.add_argument('embedding_model', type=str,
location='json', help='Invalid embedding model.')
parser.add_argument('embedding_model_provider', type=str,
location='json', help='Invalid embedding model provider.')
parser.add_argument('retrieval_model', type=dict, location='json', help='Invalid retrieval model.')
parser.add_argument('partial_member_list', type=list, location='json', help='Invalid parent user list.')
args = parser.parse_args()
data = request.get_json()
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
# The role of the current user in the ta table must be admin, owner, editor, or dataset_operator
DatasetPermissionService.check_permission(
current_user, dataset, data.get('permission'), data.get('partial_member_list')
)
dataset = DatasetService.update_dataset(
dataset_id_str, args, current_user)
@ -206,7 +225,20 @@ class DatasetApi(Resource):
if dataset is None:
raise NotFound("Dataset not found.")
return marshal(dataset, dataset_detail_fields), 200
result_data = marshal(dataset, dataset_detail_fields)
tenant_id = current_user.current_tenant_id
if data.get('partial_member_list') and data.get('permission') == 'partial_members':
DatasetPermissionService.update_partial_member_list(
tenant_id, dataset_id_str, data.get('partial_member_list')
)
else:
DatasetPermissionService.clear_partial_member_list(dataset_id_str)
partial_member_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
result_data.update({'partial_member_list': partial_member_list})
return result_data, 200
@setup_required
@login_required
@ -215,11 +247,12 @@ class DatasetApi(Resource):
dataset_id_str = str(dataset_id)
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
if not current_user.is_editor or current_user.is_dataset_operator:
raise Forbidden()
try:
if DatasetService.delete_dataset(dataset_id_str, current_user):
DatasetPermissionService.clear_partial_member_list(dataset_id_str)
return {'result': 'success'}, 204
else:
raise NotFound("Dataset not found.")
@ -515,7 +548,7 @@ class DatasetRetrievalSettingApi(Resource):
RetrievalMethod.SEMANTIC_SEARCH
]
}
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH:
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH | VectorType.ANALYTICDB | VectorType.MYSCALE:
return {
'retrieval_method': [
RetrievalMethod.SEMANTIC_SEARCH,
@ -539,7 +572,7 @@ class DatasetRetrievalSettingMockApi(Resource):
RetrievalMethod.SEMANTIC_SEARCH
]
}
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH:
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH| VectorType.ANALYTICDB | VectorType.MYSCALE:
return {
'retrieval_method': [
RetrievalMethod.SEMANTIC_SEARCH,
@ -569,6 +602,27 @@ class DatasetErrorDocs(Resource):
}, 200
class DatasetPermissionUserListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
partial_members_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
return {
'data': partial_members_list,
}, 200
api.add_resource(DatasetListApi, '/datasets')
api.add_resource(DatasetApi, '/datasets/<uuid:dataset_id>')
api.add_resource(DatasetUseCheckApi, '/datasets/<uuid:dataset_id>/use-check')
@ -582,3 +636,4 @@ api.add_resource(DatasetApiDeleteApi, '/datasets/api-keys/<uuid:api_key_id>')
api.add_resource(DatasetApiBaseUrlApi, '/datasets/api-base-info')
api.add_resource(DatasetRetrievalSettingApi, '/datasets/retrieval-setting')
api.add_resource(DatasetRetrievalSettingMockApi, '/datasets/retrieval-setting/<string:vector_type>')
api.add_resource(DatasetPermissionUserListApi, '/datasets/<uuid:dataset_id>/permission-part-users')

View File

@ -228,7 +228,7 @@ class DatasetDocumentListApi(Resource):
raise NotFound('Dataset not found.')
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
if not current_user.is_dataset_editor:
raise Forbidden()
try:
@ -294,6 +294,11 @@ class DatasetInitApi(Resource):
parser.add_argument('retrieval_model', type=dict, required=False, nullable=False,
location='json')
args = parser.parse_args()
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
if args['indexing_technique'] == 'high_quality':
try:
model_manager = ModelManager()
@ -757,14 +762,18 @@ class DocumentStatusApi(DocumentResource):
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_dataset_editor:
raise Forbidden()
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
document = self.get_document(dataset_id, document_id)
# check user's permission
DatasetService.check_dataset_permission(dataset, current_user)
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
document = self.get_document(dataset_id, document_id)
indexing_cache_key = 'document_{}_indexing'.format(document.id)
cache_result = redis_client.get(indexing_cache_key)
@ -955,10 +964,11 @@ class DocumentRenameApi(DocumentResource):
@account_initialization_required
@marshal_with(document_fields)
def post(self, dataset_id, document_id):
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
# The role of the current user in the ta table must be admin, owner, editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
dataset = DatasetService.get_dataset(dataset_id)
DatasetService.check_dataset_operator_permission(current_user, dataset)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, nullable=False, location='json')
args = parser.parse_args()

View File

@ -19,6 +19,7 @@ from controllers.console.app.error import (
from controllers.console.explore.wraps import InstalledAppResource
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from models.model import AppMode
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -70,16 +71,33 @@ class ChatAudioApi(InstalledAppResource):
class ChatTextApi(InstalledAppResource):
def post(self, installed_app):
app_model = installed_app.app
from flask_restful import reqparse
app_model = installed_app.app
try:
parser = reqparse.RequestParser()
parser.add_argument('message_id', type=str, required=False, location='json')
parser.add_argument('voice', type=str, location='json')
parser.add_argument('streaming', type=bool, location='json')
args = parser.parse_args()
message_id = args.get('message_id')
if (app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]
and app_model.workflow
and app_model.workflow.features_dict):
text_to_speech = app_model.workflow.features_dict.get('text_to_speech')
voice = args.get('voice') if args.get('voice') else text_to_speech.get('voice')
else:
try:
voice = args.get('voice') if args.get('voice') else app_model.app_model_config.text_to_speech_dict.get('voice')
except Exception:
voice = None
response = AudioService.transcript_tts(
app_model=app_model,
text=request.form['text'],
voice=request.form['voice'] if request.form.get('voice') else app_model.app_model_config.text_to_speech_dict.get('voice'),
streaming=False
message_id=message_id,
voice=voice
)
return {'data': response.data.decode('latin1')}
return response
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()
@ -108,3 +126,5 @@ class ChatTextApi(InstalledAppResource):
api.add_resource(ChatAudioApi, '/installed-apps/<uuid:installed_app_id>/audio-to-text', endpoint='installed_app_audio')
api.add_resource(ChatTextApi, '/installed-apps/<uuid:installed_app_id>/text-to-audio', endpoint='installed_app_text')
# api.add_resource(ChatTextApiWithMessageId, '/installed-apps/<uuid:installed_app_id>/text-to-audio/message-id',
# endpoint='installed_app_text_with_message_id')

View File

@ -36,7 +36,7 @@ class TagListApi(Resource):
@account_initialization_required
def post(self):
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
if not (current_user.is_editor or current_user.is_dataset_editor):
raise Forbidden()
parser = reqparse.RequestParser()
@ -68,7 +68,7 @@ class TagUpdateDeleteApi(Resource):
def patch(self, tag_id):
tag_id = str(tag_id)
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
if not (current_user.is_editor or current_user.is_dataset_editor):
raise Forbidden()
parser = reqparse.RequestParser()
@ -109,8 +109,8 @@ class TagBindingCreateApi(Resource):
@login_required
@account_initialization_required
def post(self):
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
# The role of the current user in the ta table must be admin, owner, editor, or dataset_operator
if not (current_user.is_editor or current_user.is_dataset_editor):
raise Forbidden()
parser = reqparse.RequestParser()
@ -134,8 +134,8 @@ class TagBindingDeleteApi(Resource):
@login_required
@account_initialization_required
def post(self):
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
# The role of the current user in the ta table must be admin, owner, editor, or dataset_operator
if not (current_user.is_editor or current_user.is_dataset_editor):
raise Forbidden()
parser = reqparse.RequestParser()

View File

@ -131,7 +131,20 @@ class MemberUpdateRoleApi(Resource):
return {'result': 'success'}
class DatasetOperatorMemberListApi(Resource):
"""List all members of current tenant."""
@setup_required
@login_required
@account_initialization_required
@marshal_with(account_with_role_list_fields)
def get(self):
members = TenantService.get_dataset_operator_members(current_user.current_tenant)
return {'result': 'success', 'accounts': members}, 200
api.add_resource(MemberListApi, '/workspaces/current/members')
api.add_resource(MemberInviteEmailApi, '/workspaces/current/members/invite-email')
api.add_resource(MemberCancelInviteApi, '/workspaces/current/members/<uuid:member_id>')
api.add_resource(MemberUpdateRoleApi, '/workspaces/current/members/<uuid:member_id>/update-role')
api.add_resource(DatasetOperatorMemberListApi, '/workspaces/current/dataset-operators')

View File

@ -3,8 +3,9 @@ from functools import wraps
from hashlib import sha1
from hmac import new as hmac_new
from flask import abort, current_app, request
from flask import abort, request
from configs import dify_config
from extensions.ext_database import db
from models.model import EndUser
@ -12,12 +13,12 @@ from models.model import EndUser
def inner_api_only(view):
@wraps(view)
def decorated(*args, **kwargs):
if not current_app.config['INNER_API']:
if not dify_config.INNER_API:
abort(404)
# get header 'X-Inner-Api-Key'
inner_api_key = request.headers.get('X-Inner-Api-Key')
if not inner_api_key or inner_api_key != current_app.config['INNER_API_KEY']:
if not inner_api_key or inner_api_key != dify_config.INNER_API_KEY:
abort(404)
return view(*args, **kwargs)
@ -28,7 +29,7 @@ def inner_api_only(view):
def inner_api_user_auth(view):
@wraps(view)
def decorated(*args, **kwargs):
if not current_app.config['INNER_API']:
if not dify_config.INNER_API:
return view(*args, **kwargs)
# get header 'X-Inner-Api-Key'

View File

@ -1,7 +1,7 @@
from flask import current_app
from flask_restful import Resource, fields, marshal_with
from configs import dify_config
from controllers.service_api import api
from controllers.service_api.app.error import AppUnavailableError
from controllers.service_api.wraps import validate_app_token
@ -78,7 +78,7 @@ class AppParameterApi(Resource):
"transfer_methods": ["remote_url", "local_file"]
}}),
'system_parameters': {
'image_file_size_limit': current_app.config.get('UPLOAD_IMAGE_FILE_SIZE_LIMIT')
'image_file_size_limit': dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT
}
}

View File

@ -20,7 +20,7 @@ from controllers.service_api.app.error import (
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from models.model import App, EndUser
from models.model import App, AppMode, EndUser
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -72,19 +72,30 @@ class AudioApi(Resource):
class TextApi(Resource):
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON))
def post(self, app_model: App, end_user: EndUser):
parser = reqparse.RequestParser()
parser.add_argument('text', type=str, required=True, nullable=False, location='json')
parser.add_argument('voice', type=str, location='json')
parser.add_argument('streaming', type=bool, required=False, nullable=False, location='json')
args = parser.parse_args()
try:
parser = reqparse.RequestParser()
parser.add_argument('message_id', type=str, required=False, location='json')
parser.add_argument('voice', type=str, location='json')
parser.add_argument('streaming', type=bool, location='json')
args = parser.parse_args()
message_id = args.get('message_id')
if (app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]
and app_model.workflow
and app_model.workflow.features_dict):
text_to_speech = app_model.workflow.features_dict.get('text_to_speech')
voice = args.get('voice') if args.get('voice') else text_to_speech.get('voice')
else:
try:
voice = args.get('voice') if args.get('voice') else app_model.app_model_config.text_to_speech_dict.get(
'voice')
except Exception:
voice = None
response = AudioService.transcript_tts(
app_model=app_model,
text=args['text'],
end_user=end_user,
voice=args.get('voice'),
streaming=args['streaming']
message_id=message_id,
end_user=end_user.external_user_id,
voice=voice
)
return response

View File

@ -17,7 +17,12 @@ from controllers.service_api.app.error import (
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.errors.error import (
AppInvokeQuotaExceededError,
ModelCurrentlyNotSupportError,
ProviderTokenNotInitError,
QuotaExceededError,
)
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from libs.helper import uuid_value
@ -69,7 +74,7 @@ class CompletionApi(Resource):
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
except (ValueError, AppInvokeQuotaExceededError) as e:
raise e
except Exception as e:
logging.exception("internal server error.")
@ -132,7 +137,7 @@ class ChatApi(Resource):
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
except (ValueError, AppInvokeQuotaExceededError) as e:
raise e
except Exception as e:
logging.exception("internal server error.")

View File

@ -14,7 +14,12 @@ from controllers.service_api.app.error import (
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.errors.error import (
AppInvokeQuotaExceededError,
ModelCurrentlyNotSupportError,
ProviderTokenNotInitError,
QuotaExceededError,
)
from core.model_runtime.errors.invoke import InvokeError
from libs import helper
from models.model import App, AppMode, EndUser
@ -59,7 +64,7 @@ class WorkflowRunApi(Resource):
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
except ValueError as e:
except (ValueError, AppInvokeQuotaExceededError) as e:
raise e
except Exception as e:
logging.exception("internal server error.")

View File

@ -1,6 +1,6 @@
from flask import current_app
from flask_restful import Resource
from configs import dify_config
from controllers.service_api import api
@ -9,7 +9,7 @@ class IndexApi(Resource):
return {
"welcome": "Dify OpenAPI",
"api_version": "v1",
"server_version": current_app.config['CURRENT_VERSION']
"server_version": dify_config.CURRENT_VERSION,
}

View File

@ -1,6 +1,6 @@
from flask import current_app
from flask_restful import fields, marshal_with
from configs import dify_config
from controllers.web import api
from controllers.web.error import AppUnavailableError
from controllers.web.wraps import WebApiResource
@ -75,7 +75,7 @@ class AppParameterApi(WebApiResource):
"transfer_methods": ["remote_url", "local_file"]
}}),
'system_parameters': {
'image_file_size_limit': current_app.config.get('UPLOAD_IMAGE_FILE_SIZE_LIMIT')
'image_file_size_limit': dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT
}
}

View File

@ -19,7 +19,7 @@ from controllers.web.error import (
from controllers.web.wraps import WebApiResource
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from models.model import App
from models.model import App, AppMode
from services.audio_service import AudioService
from services.errors.audio import (
AudioTooLargeServiceError,
@ -69,16 +69,35 @@ class AudioApi(WebApiResource):
class TextApi(WebApiResource):
def post(self, app_model: App, end_user):
from flask_restful import reqparse
try:
parser = reqparse.RequestParser()
parser.add_argument('message_id', type=str, required=False, location='json')
parser.add_argument('voice', type=str, location='json')
parser.add_argument('streaming', type=bool, location='json')
args = parser.parse_args()
message_id = args.get('message_id')
if (app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]
and app_model.workflow
and app_model.workflow.features_dict):
text_to_speech = app_model.workflow.features_dict.get('text_to_speech')
voice = args.get('voice') if args.get('voice') else text_to_speech.get('voice')
else:
try:
voice = args.get('voice') if args.get(
'voice') else app_model.app_model_config.text_to_speech_dict.get('voice')
except Exception:
voice = None
response = AudioService.transcript_tts(
app_model=app_model,
text=request.form['text'],
message_id=message_id,
end_user=end_user.external_user_id,
voice=request.form['voice'] if request.form.get('voice') else None,
streaming=False
voice=voice
)
return {'data': response.data.decode('latin1')}
return response
except services.errors.app_model_config.AppModelConfigBrokenError:
logging.exception("App model config broken.")
raise AppUnavailableError()

View File

@ -1,8 +1,8 @@
from flask import current_app
from flask_restful import fields, marshal_with
from werkzeug.exceptions import Forbidden
from configs import dify_config
from controllers.web import api
from controllers.web.wraps import WebApiResource
from extensions.ext_database import db
@ -84,7 +84,7 @@ class AppSiteInfo:
self.can_replace_logo = can_replace_logo
if can_replace_logo:
base_url = current_app.config.get('FILES_URL')
base_url = dify_config.FILES_URL
remove_webapp_brand = tenant.custom_config_dict.get('remove_webapp_brand', False)
replace_webapp_logo = f'{base_url}/files/workspaces/{tenant.id}/webapp-logo' if tenant.custom_config_dict.get('replace_webapp_logo') else None
self.custom_config = {

View File

@ -0,0 +1,135 @@
import base64
import concurrent.futures
import logging
import queue
import re
import threading
from core.app.entities.queue_entities import QueueAgentMessageEvent, QueueLLMChunkEvent, QueueTextChunkEvent
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
class AudioTrunk:
def __init__(self, status: str, audio):
self.audio = audio
self.status = status
def _invoiceTTS(text_content: str, model_instance, tenant_id: str, voice: str):
if not text_content or text_content.isspace():
return
return model_instance.invoke_tts(
content_text=text_content.strip(),
user="responding_tts",
tenant_id=tenant_id,
voice=voice
)
def _process_future(future_queue, audio_queue):
while True:
try:
future = future_queue.get()
if future is None:
break
for audio in future.result():
audio_base64 = base64.b64encode(bytes(audio))
audio_queue.put(AudioTrunk("responding", audio=audio_base64))
except Exception as e:
logging.getLogger(__name__).warning(e)
break
audio_queue.put(AudioTrunk("finish", b''))
class AppGeneratorTTSPublisher:
def __init__(self, tenant_id: str, voice: str):
self.logger = logging.getLogger(__name__)
self.tenant_id = tenant_id
self.msg_text = ''
self._audio_queue = queue.Queue()
self._msg_queue = queue.Queue()
self.match = re.compile(r'[。.!?]')
self.model_manager = ModelManager()
self.model_instance = self.model_manager.get_default_model_instance(
tenant_id=self.tenant_id,
model_type=ModelType.TTS
)
self.voices = self.model_instance.get_tts_voices()
values = [voice.get('value') for voice in self.voices]
self.voice = voice
if not voice or voice not in values:
self.voice = self.voices[0].get('value')
self.MAX_SENTENCE = 2
self._last_audio_event = None
self._runtime_thread = threading.Thread(target=self._runtime).start()
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=3)
def publish(self, message):
try:
self._msg_queue.put(message)
except Exception as e:
self.logger.warning(e)
def _runtime(self):
future_queue = queue.Queue()
threading.Thread(target=_process_future, args=(future_queue, self._audio_queue)).start()
while True:
try:
message = self._msg_queue.get()
if message is None:
if self.msg_text and len(self.msg_text.strip()) > 0:
futures_result = self.executor.submit(_invoiceTTS, self.msg_text,
self.model_instance, self.tenant_id, self.voice)
future_queue.put(futures_result)
break
elif isinstance(message.event, QueueAgentMessageEvent | QueueLLMChunkEvent):
self.msg_text += message.event.chunk.delta.message.content
elif isinstance(message.event, QueueTextChunkEvent):
self.msg_text += message.event.text
self.last_message = message
sentence_arr, text_tmp = self._extract_sentence(self.msg_text)
if len(sentence_arr) >= min(self.MAX_SENTENCE, 7):
self.MAX_SENTENCE += 1
text_content = ''.join(sentence_arr)
futures_result = self.executor.submit(_invoiceTTS, text_content,
self.model_instance,
self.tenant_id,
self.voice)
future_queue.put(futures_result)
if text_tmp:
self.msg_text = text_tmp
else:
self.msg_text = ''
except Exception as e:
self.logger.warning(e)
break
future_queue.put(None)
def checkAndGetAudio(self) -> AudioTrunk | None:
try:
if self._last_audio_event and self._last_audio_event.status == "finish":
if self.executor:
self.executor.shutdown(wait=False)
return self.last_message
audio = self._audio_queue.get_nowait()
if audio and audio.status == "finish":
self.executor.shutdown(wait=False)
self._runtime_thread = None
if audio:
self._last_audio_event = audio
return audio
except queue.Empty:
return None
def _extract_sentence(self, org_text):
tx = self.match.finditer(org_text)
start = 0
result = []
for i in tx:
end = i.regs[0][1]
result.append(org_text[start:end])
start = end
return result, org_text[start:]

View File

@ -255,6 +255,12 @@ class AdvancedChatAppRunner(AppRunner):
)
index += 1
time.sleep(0.01)
else:
queue_manager.publish(
QueueTextChunkEvent(
text=text
), PublishFrom.APPLICATION_MANAGER
)
queue_manager.publish(
QueueStopEvent(stopped_by=stopped_by),

View File

@ -4,6 +4,8 @@ import time
from collections.abc import Generator
from typing import Any, Optional, Union, cast
from constants.tts_auto_play_timeout import TTS_AUTO_PLAY_TIMEOUT, TTS_AUTO_PLAY_YIELD_CPU_TIME
from core.app.apps.advanced_chat.app_generator_tts_publisher import AppGeneratorTTSPublisher, AudioTrunk
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.entities.app_invoke_entities import (
AdvancedChatAppGenerateEntity,
@ -33,6 +35,8 @@ from core.app.entities.task_entities import (
ChatbotAppStreamResponse,
ChatflowStreamGenerateRoute,
ErrorStreamResponse,
MessageAudioEndStreamResponse,
MessageAudioStreamResponse,
MessageEndStreamResponse,
StreamResponse,
)
@ -71,13 +75,13 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
_iteration_nested_relations: dict[str, list[str]]
def __init__(
self, application_generate_entity: AdvancedChatAppGenerateEntity,
workflow: Workflow,
queue_manager: AppQueueManager,
conversation: Conversation,
message: Message,
user: Union[Account, EndUser],
stream: bool
self, application_generate_entity: AdvancedChatAppGenerateEntity,
workflow: Workflow,
queue_manager: AppQueueManager,
conversation: Conversation,
message: Message,
user: Union[Account, EndUser],
stream: bool
) -> None:
"""
Initialize AdvancedChatAppGenerateTaskPipeline.
@ -129,7 +133,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
self._application_generate_entity.query
)
generator = self._process_stream_response(
generator = self._wrapper_process_stream_response(
trace_manager=self._application_generate_entity.trace_manager
)
if self._stream:
@ -138,7 +142,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
return self._to_blocking_response(generator)
def _to_blocking_response(self, generator: Generator[StreamResponse, None, None]) \
-> ChatbotAppBlockingResponse:
-> ChatbotAppBlockingResponse:
"""
Process blocking response.
:return:
@ -169,7 +173,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
raise Exception('Queue listening stopped unexpectedly.')
def _to_stream_response(self, generator: Generator[StreamResponse, None, None]) \
-> Generator[ChatbotAppStreamResponse, None, None]:
-> Generator[ChatbotAppStreamResponse, None, None]:
"""
To stream response.
:return:
@ -182,14 +186,68 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
stream_response=stream_response
)
def _listenAudioMsg(self, publisher, task_id: str):
if not publisher:
return None
audio_msg: AudioTrunk = publisher.checkAndGetAudio()
if audio_msg and audio_msg.status != "finish":
return MessageAudioStreamResponse(audio=audio_msg.audio, task_id=task_id)
return None
def _wrapper_process_stream_response(self, trace_manager: Optional[TraceQueueManager] = None) -> \
Generator[StreamResponse, None, None]:
publisher = None
task_id = self._application_generate_entity.task_id
tenant_id = self._application_generate_entity.app_config.tenant_id
features_dict = self._workflow.features_dict
if features_dict.get('text_to_speech') and features_dict['text_to_speech'].get('enabled') and features_dict[
'text_to_speech'].get('autoPlay') == 'enabled':
publisher = AppGeneratorTTSPublisher(tenant_id, features_dict['text_to_speech'].get('voice'))
for response in self._process_stream_response(publisher=publisher, trace_manager=trace_manager):
while True:
audio_response = self._listenAudioMsg(publisher, task_id=task_id)
if audio_response:
yield audio_response
else:
break
yield response
start_listener_time = time.time()
# timeout
while (time.time() - start_listener_time) < TTS_AUTO_PLAY_TIMEOUT:
try:
if not publisher:
break
audio_trunk = publisher.checkAndGetAudio()
if audio_trunk is None:
# release cpu
# sleep 20 ms ( 40ms => 1280 byte audio file,20ms => 640 byte audio file)
time.sleep(TTS_AUTO_PLAY_YIELD_CPU_TIME)
continue
if audio_trunk.status == "finish":
break
else:
start_listener_time = time.time()
yield MessageAudioStreamResponse(audio=audio_trunk.audio, task_id=task_id)
except Exception as e:
logger.error(e)
break
yield MessageAudioEndStreamResponse(audio='', task_id=task_id)
def _process_stream_response(
self, trace_manager: Optional[TraceQueueManager] = None
self,
publisher: AppGeneratorTTSPublisher,
trace_manager: Optional[TraceQueueManager] = None
) -> Generator[StreamResponse, None, None]:
"""
Process stream response.
:return:
"""
for message in self._queue_manager.listen():
if publisher:
publisher.publish(message=message)
event = message.event
if isinstance(event, QueueErrorEvent):
@ -301,7 +359,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
continue
if not self._is_stream_out_support(
event=event
event=event
):
continue
@ -318,7 +376,8 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
yield self._ping_stream_response()
else:
continue
if publisher:
publisher.publish(None)
if self._conversation_name_generate_thread:
self._conversation_name_generate_thread.join()
@ -402,7 +461,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
return stream_generate_routes
def _get_answer_start_at_node_ids(self, graph: dict, target_node_id: str) \
-> list[str]:
-> list[str]:
"""
Get answer start at node id.
:param graph: graph
@ -457,7 +516,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
start_node_id = target_node_id
start_node_ids.append(start_node_id)
elif node_type == NodeType.START.value or \
node_iteration_id is not None and iteration_start_node_id == source_node.get('id'):
node_iteration_id is not None and iteration_start_node_id == source_node.get('id'):
start_node_id = source_node_id
start_node_ids.append(start_node_id)
else:
@ -515,7 +574,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
# all route chunks are generated
if self._task_state.current_stream_generate_state.current_route_position == len(
self._task_state.current_stream_generate_state.generate_route
self._task_state.current_stream_generate_state.generate_route
):
self._task_state.current_stream_generate_state = None
@ -525,7 +584,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
:return:
"""
if not self._task_state.current_stream_generate_state:
return None
return
route_chunks = self._task_state.current_stream_generate_state.generate_route[
self._task_state.current_stream_generate_state.current_route_position:]
@ -573,7 +632,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
# get route chunk node execution info
route_chunk_node_execution_info = self._task_state.ran_node_execution_infos[route_chunk_node_id]
if (route_chunk_node_execution_info.node_type == NodeType.LLM
and latest_node_execution_info.node_type == NodeType.LLM):
and latest_node_execution_info.node_type == NodeType.LLM):
# only LLM support chunk stream output
self._task_state.current_stream_generate_state.current_route_position += 1
continue
@ -643,7 +702,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
# all route chunks are generated
if self._task_state.current_stream_generate_state.current_route_position == len(
self._task_state.current_stream_generate_state.generate_route
self._task_state.current_stream_generate_state.generate_route
):
self._task_state.current_stream_generate_state = None

View File

@ -51,7 +51,6 @@ class AppQueueManager:
listen_timeout = current_app.config.get("APP_MAX_EXECUTION_TIME")
start_time = time.time()
last_ping_time = 0
while True:
try:
message = self._q.get(timeout=1)

View File

@ -1,7 +1,10 @@
import logging
import time
from collections.abc import Generator
from typing import Any, Optional, Union
from constants.tts_auto_play_timeout import TTS_AUTO_PLAY_TIMEOUT, TTS_AUTO_PLAY_YIELD_CPU_TIME
from core.app.apps.advanced_chat.app_generator_tts_publisher import AppGeneratorTTSPublisher, AudioTrunk
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import (
InvokeFrom,
@ -25,6 +28,8 @@ from core.app.entities.queue_entities import (
)
from core.app.entities.task_entities import (
ErrorStreamResponse,
MessageAudioEndStreamResponse,
MessageAudioStreamResponse,
StreamResponse,
TextChunkStreamResponse,
TextReplaceStreamResponse,
@ -105,7 +110,7 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
db.session.refresh(self._user)
db.session.close()
generator = self._process_stream_response(
generator = self._wrapper_process_stream_response(
trace_manager=self._application_generate_entity.trace_manager
)
if self._stream:
@ -161,8 +166,58 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
stream_response=stream_response
)
def _listenAudioMsg(self, publisher, task_id: str):
if not publisher:
return None
audio_msg: AudioTrunk = publisher.checkAndGetAudio()
if audio_msg and audio_msg.status != "finish":
return MessageAudioStreamResponse(audio=audio_msg.audio, task_id=task_id)
return None
def _wrapper_process_stream_response(self, trace_manager: Optional[TraceQueueManager] = None) -> \
Generator[StreamResponse, None, None]:
publisher = None
task_id = self._application_generate_entity.task_id
tenant_id = self._application_generate_entity.app_config.tenant_id
features_dict = self._workflow.features_dict
if features_dict.get('text_to_speech') and features_dict['text_to_speech'].get('enabled') and features_dict[
'text_to_speech'].get('autoPlay') == 'enabled':
publisher = AppGeneratorTTSPublisher(tenant_id, features_dict['text_to_speech'].get('voice'))
for response in self._process_stream_response(publisher=publisher, trace_manager=trace_manager):
while True:
audio_response = self._listenAudioMsg(publisher, task_id=task_id)
if audio_response:
yield audio_response
else:
break
yield response
start_listener_time = time.time()
while (time.time() - start_listener_time) < TTS_AUTO_PLAY_TIMEOUT:
try:
if not publisher:
break
audio_trunk = publisher.checkAndGetAudio()
if audio_trunk is None:
# release cpu
# sleep 20 ms ( 40ms => 1280 byte audio file,20ms => 640 byte audio file)
time.sleep(TTS_AUTO_PLAY_YIELD_CPU_TIME)
continue
if audio_trunk.status == "finish":
break
else:
yield MessageAudioStreamResponse(audio=audio_trunk.audio, task_id=task_id)
except Exception as e:
logger.error(e)
break
yield MessageAudioEndStreamResponse(audio='', task_id=task_id)
def _process_stream_response(
self,
publisher: AppGeneratorTTSPublisher,
trace_manager: Optional[TraceQueueManager] = None
) -> Generator[StreamResponse, None, None]:
"""
@ -170,6 +225,8 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
:return:
"""
for message in self._queue_manager.listen():
if publisher:
publisher.publish(message=message)
event = message.event
if isinstance(event, QueueErrorEvent):
@ -251,6 +308,10 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
else:
continue
if publisher:
publisher.publish(None)
def _save_workflow_app_log(self, workflow_run: WorkflowRun) -> None:
"""
Save workflow app log.

View File

@ -69,6 +69,7 @@ class WorkflowTaskState(TaskState):
iteration_nested_node_ids: list[str] = None
class AdvancedChatTaskState(WorkflowTaskState):
"""
AdvancedChatTaskState entity
@ -86,6 +87,8 @@ class StreamEvent(Enum):
ERROR = "error"
MESSAGE = "message"
MESSAGE_END = "message_end"
TTS_MESSAGE = "tts_message"
TTS_MESSAGE_END = "tts_message_end"
MESSAGE_FILE = "message_file"
MESSAGE_REPLACE = "message_replace"
AGENT_THOUGHT = "agent_thought"
@ -130,6 +133,22 @@ class MessageStreamResponse(StreamResponse):
answer: str
class MessageAudioStreamResponse(StreamResponse):
"""
MessageStreamResponse entity
"""
event: StreamEvent = StreamEvent.TTS_MESSAGE
audio: str
class MessageAudioEndStreamResponse(StreamResponse):
"""
MessageStreamResponse entity
"""
event: StreamEvent = StreamEvent.TTS_MESSAGE_END
audio: str
class MessageEndStreamResponse(StreamResponse):
"""
MessageEndStreamResponse entity
@ -186,6 +205,7 @@ class WorkflowStartStreamResponse(StreamResponse):
"""
WorkflowStartStreamResponse entity
"""
class Data(BaseModel):
"""
Data entity
@ -205,6 +225,7 @@ class WorkflowFinishStreamResponse(StreamResponse):
"""
WorkflowFinishStreamResponse entity
"""
class Data(BaseModel):
"""
Data entity
@ -232,6 +253,7 @@ class NodeStartStreamResponse(StreamResponse):
"""
NodeStartStreamResponse entity
"""
class Data(BaseModel):
"""
Data entity
@ -273,6 +295,7 @@ class NodeFinishStreamResponse(StreamResponse):
"""
NodeFinishStreamResponse entity
"""
class Data(BaseModel):
"""
Data entity
@ -323,10 +346,12 @@ class NodeFinishStreamResponse(StreamResponse):
}
}
class IterationNodeStartStreamResponse(StreamResponse):
"""
NodeStartStreamResponse entity
"""
class Data(BaseModel):
"""
Data entity
@ -344,10 +369,12 @@ class IterationNodeStartStreamResponse(StreamResponse):
workflow_run_id: str
data: Data
class IterationNodeNextStreamResponse(StreamResponse):
"""
NodeStartStreamResponse entity
"""
class Data(BaseModel):
"""
Data entity
@ -365,10 +392,12 @@ class IterationNodeNextStreamResponse(StreamResponse):
workflow_run_id: str
data: Data
class IterationNodeCompletedStreamResponse(StreamResponse):
"""
NodeCompletedStreamResponse entity
"""
class Data(BaseModel):
"""
Data entity
@ -393,10 +422,12 @@ class IterationNodeCompletedStreamResponse(StreamResponse):
workflow_run_id: str
data: Data
class TextChunkStreamResponse(StreamResponse):
"""
TextChunkStreamResponse entity
"""
class Data(BaseModel):
"""
Data entity
@ -411,6 +442,7 @@ class TextReplaceStreamResponse(StreamResponse):
"""
TextReplaceStreamResponse entity
"""
class Data(BaseModel):
"""
Data entity
@ -473,6 +505,7 @@ class ChatbotAppBlockingResponse(AppBlockingResponse):
"""
ChatbotAppBlockingResponse entity
"""
class Data(BaseModel):
"""
Data entity
@ -492,6 +525,7 @@ class CompletionAppBlockingResponse(AppBlockingResponse):
"""
CompletionAppBlockingResponse entity
"""
class Data(BaseModel):
"""
Data entity
@ -510,6 +544,7 @@ class WorkflowAppBlockingResponse(AppBlockingResponse):
"""
WorkflowAppBlockingResponse entity
"""
class Data(BaseModel):
"""
Data entity
@ -528,10 +563,12 @@ class WorkflowAppBlockingResponse(AppBlockingResponse):
workflow_run_id: str
data: Data
class WorkflowIterationState(BaseModel):
"""
WorkflowIterationState entity
"""
class Data(BaseModel):
"""
Data entity

View File

@ -0,0 +1 @@
from .rate_limit import RateLimit

View File

@ -0,0 +1,120 @@
import logging
import time
import uuid
from collections.abc import Generator
from datetime import timedelta
from typing import Optional, Union
from core.errors.error import AppInvokeQuotaExceededError
from extensions.ext_redis import redis_client
logger = logging.getLogger(__name__)
class RateLimit:
_MAX_ACTIVE_REQUESTS_KEY = "dify:rate_limit:{}:max_active_requests"
_ACTIVE_REQUESTS_KEY = "dify:rate_limit:{}:active_requests"
_UNLIMITED_REQUEST_ID = "unlimited_request_id"
_REQUEST_MAX_ALIVE_TIME = 10 * 60 # 10 minutes
_ACTIVE_REQUESTS_COUNT_FLUSH_INTERVAL = 5 * 60 # recalculate request_count from request_detail every 5 minutes
_instance_dict = {}
def __new__(cls: type['RateLimit'], client_id: str, max_active_requests: int):
if client_id not in cls._instance_dict:
instance = super().__new__(cls)
cls._instance_dict[client_id] = instance
return cls._instance_dict[client_id]
def __init__(self, client_id: str, max_active_requests: int):
self.max_active_requests = max_active_requests
if hasattr(self, 'initialized'):
return
self.initialized = True
self.client_id = client_id
self.active_requests_key = self._ACTIVE_REQUESTS_KEY.format(client_id)
self.max_active_requests_key = self._MAX_ACTIVE_REQUESTS_KEY.format(client_id)
self.last_recalculate_time = float('-inf')
self.flush_cache(use_local_value=True)
def flush_cache(self, use_local_value=False):
self.last_recalculate_time = time.time()
# flush max active requests
if use_local_value or not redis_client.exists(self.max_active_requests_key):
with redis_client.pipeline() as pipe:
pipe.set(self.max_active_requests_key, self.max_active_requests)
pipe.expire(self.max_active_requests_key, timedelta(days=1))
pipe.execute()
else:
with redis_client.pipeline() as pipe:
self.max_active_requests = int(redis_client.get(self.max_active_requests_key).decode('utf-8'))
redis_client.expire(self.max_active_requests_key, timedelta(days=1))
# flush max active requests (in-transit request list)
if not redis_client.exists(self.active_requests_key):
return
request_details = redis_client.hgetall(self.active_requests_key)
redis_client.expire(self.active_requests_key, timedelta(days=1))
timeout_requests = [k for k, v in request_details.items() if
time.time() - float(v.decode('utf-8')) > RateLimit._REQUEST_MAX_ALIVE_TIME]
if timeout_requests:
redis_client.hdel(self.active_requests_key, *timeout_requests)
def enter(self, request_id: Optional[str] = None) -> str:
if time.time() - self.last_recalculate_time > RateLimit._ACTIVE_REQUESTS_COUNT_FLUSH_INTERVAL:
self.flush_cache()
if self.max_active_requests <= 0:
return RateLimit._UNLIMITED_REQUEST_ID
if not request_id:
request_id = RateLimit.gen_request_key()
active_requests_count = redis_client.hlen(self.active_requests_key)
if active_requests_count >= self.max_active_requests:
raise AppInvokeQuotaExceededError("Too many requests. Please try again later. The current maximum "
"concurrent requests allowed is {}.".format(self.max_active_requests))
redis_client.hset(self.active_requests_key, request_id, str(time.time()))
return request_id
def exit(self, request_id: str):
if request_id == RateLimit._UNLIMITED_REQUEST_ID:
return
redis_client.hdel(self.active_requests_key, request_id)
@staticmethod
def gen_request_key() -> str:
return str(uuid.uuid4())
def generate(self, generator: Union[Generator, callable, dict], request_id: str):
if isinstance(generator, dict):
return generator
else:
return RateLimitGenerator(self, generator, request_id)
class RateLimitGenerator:
def __init__(self, rate_limit: RateLimit, generator: Union[Generator, callable], request_id: str):
self.rate_limit = rate_limit
if callable(generator):
self.generator = generator()
else:
self.generator = generator
self.request_id = request_id
self.closed = False
def __iter__(self):
return self
def __next__(self):
if self.closed:
raise StopIteration
try:
return next(self.generator)
except StopIteration:
self.close()
raise
def close(self):
if not self.closed:
self.closed = True
self.rate_limit.exit(self.request_id)
if self.generator is not None and hasattr(self.generator, 'close'):
self.generator.close()

View File

@ -4,6 +4,8 @@ import time
from collections.abc import Generator
from typing import Optional, Union, cast
from constants.tts_auto_play_timeout import TTS_AUTO_PLAY_TIMEOUT, TTS_AUTO_PLAY_YIELD_CPU_TIME
from core.app.apps.advanced_chat.app_generator_tts_publisher import AppGeneratorTTSPublisher, AudioTrunk
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.entities.app_invoke_entities import (
AgentChatAppGenerateEntity,
@ -32,6 +34,8 @@ from core.app.entities.task_entities import (
CompletionAppStreamResponse,
EasyUITaskState,
ErrorStreamResponse,
MessageAudioEndStreamResponse,
MessageAudioStreamResponse,
MessageEndStreamResponse,
StreamResponse,
)
@ -87,6 +91,7 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
"""
super().__init__(application_generate_entity, queue_manager, user, stream)
self._model_config = application_generate_entity.model_conf
self._app_config = application_generate_entity.app_config
self._conversation = conversation
self._message = message
@ -102,7 +107,7 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
self._conversation_name_generate_thread = None
def process(
self,
self,
) -> Union[
ChatbotAppBlockingResponse,
CompletionAppBlockingResponse,
@ -123,7 +128,7 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
self._application_generate_entity.query
)
generator = self._process_stream_response(
generator = self._wrapper_process_stream_response(
trace_manager=self._application_generate_entity.trace_manager
)
if self._stream:
@ -202,14 +207,64 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
stream_response=stream_response
)
def _listenAudioMsg(self, publisher, task_id: str):
if publisher is None:
return None
audio_msg: AudioTrunk = publisher.checkAndGetAudio()
if audio_msg and audio_msg.status != "finish":
# audio_str = audio_msg.audio.decode('utf-8', errors='ignore')
return MessageAudioStreamResponse(audio=audio_msg.audio, task_id=task_id)
return None
def _wrapper_process_stream_response(self, trace_manager: Optional[TraceQueueManager] = None) -> \
Generator[StreamResponse, None, None]:
tenant_id = self._application_generate_entity.app_config.tenant_id
task_id = self._application_generate_entity.task_id
publisher = None
text_to_speech_dict = self._app_config.app_model_config_dict.get('text_to_speech')
if text_to_speech_dict and text_to_speech_dict.get('autoPlay') == 'enabled' and text_to_speech_dict.get('enabled'):
publisher = AppGeneratorTTSPublisher(tenant_id, text_to_speech_dict.get('voice', None))
for response in self._process_stream_response(publisher=publisher, trace_manager=trace_manager):
while True:
audio_response = self._listenAudioMsg(publisher, task_id)
if audio_response:
yield audio_response
else:
break
yield response
start_listener_time = time.time()
# timeout
while (time.time() - start_listener_time) < TTS_AUTO_PLAY_TIMEOUT:
if publisher is None:
break
audio = publisher.checkAndGetAudio()
if audio is None:
# release cpu
# sleep 20 ms ( 40ms => 1280 byte audio file,20ms => 640 byte audio file)
time.sleep(TTS_AUTO_PLAY_YIELD_CPU_TIME)
continue
if audio.status == "finish":
break
else:
start_listener_time = time.time()
yield MessageAudioStreamResponse(audio=audio.audio,
task_id=task_id)
yield MessageAudioEndStreamResponse(audio='', task_id=task_id)
def _process_stream_response(
self, trace_manager: Optional[TraceQueueManager] = None
self,
publisher: AppGeneratorTTSPublisher,
trace_manager: Optional[TraceQueueManager] = None
) -> Generator[StreamResponse, None, None]:
"""
Process stream response.
:return:
"""
for message in self._queue_manager.listen():
if publisher:
publisher.publish(message)
event = message.event
if isinstance(event, QueueErrorEvent):
@ -272,12 +327,13 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
yield self._ping_stream_response()
else:
continue
if publisher:
publisher.publish(None)
if self._conversation_name_generate_thread:
self._conversation_name_generate_thread.join()
def _save_message(
self, trace_manager: Optional[TraceQueueManager] = None
self, trace_manager: Optional[TraceQueueManager] = None
) -> None:
"""
Save message.

View File

@ -31,6 +31,13 @@ class QuotaExceededError(Exception):
description = "Quota Exceeded"
class AppInvokeQuotaExceededError(Exception):
"""
Custom exception raised when the quota for an app has been exceeded.
"""
description = "App Invoke Quota Exceeded"
class ModelCurrentlyNotSupportError(Exception):
"""
Custom exception raised when the model not support

View File

@ -730,7 +730,7 @@ class IndexingRunner:
self._check_document_paused_status(dataset_document.id)
tokens = 0
if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance:
if embedding_model_instance:
tokens += sum(
embedding_model_instance.get_text_embedding_num_tokens(
[document.page_content]

View File

@ -264,7 +264,7 @@ class ModelInstance:
user=user
)
def invoke_tts(self, content_text: str, tenant_id: str, voice: str, streaming: bool, user: Optional[str] = None) \
def invoke_tts(self, content_text: str, tenant_id: str, voice: str, user: Optional[str] = None) \
-> str:
"""
Invoke large language tts model
@ -287,8 +287,7 @@ class ModelInstance:
content_text=content_text,
user=user,
tenant_id=tenant_id,
voice=voice,
streaming=streaming
voice=voice
)
def _round_robin_invoke(self, function: Callable, *args, **kwargs):

View File

@ -1,4 +1,6 @@
import hashlib
import logging
import re
import subprocess
import uuid
from abc import abstractmethod
@ -10,7 +12,7 @@ from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelTy
from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.model_runtime.model_providers.__base.ai_model import AIModel
logger = logging.getLogger(__name__)
class TTSModel(AIModel):
"""
Model class for ttstext model.
@ -20,7 +22,7 @@ class TTSModel(AIModel):
# pydantic configs
model_config = ConfigDict(protected_namespaces=())
def invoke(self, model: str, tenant_id: str, credentials: dict, content_text: str, voice: str, streaming: bool,
def invoke(self, model: str, tenant_id: str, credentials: dict, content_text: str, voice: str,
user: Optional[str] = None):
"""
Invoke large language model
@ -35,14 +37,15 @@ class TTSModel(AIModel):
:return: translated audio file
"""
try:
logger.info(f"Invoke TTS model: {model} , invoke content : {content_text}")
self._is_ffmpeg_installed()
return self._invoke(model=model, credentials=credentials, user=user, streaming=streaming,
return self._invoke(model=model, credentials=credentials, user=user,
content_text=content_text, voice=voice, tenant_id=tenant_id)
except Exception as e:
raise self._transform_invoke_error(e)
@abstractmethod
def _invoke(self, model: str, tenant_id: str, credentials: dict, content_text: str, voice: str, streaming: bool,
def _invoke(self, model: str, tenant_id: str, credentials: dict, content_text: str, voice: str,
user: Optional[str] = None):
"""
Invoke large language model
@ -123,26 +126,26 @@ class TTSModel(AIModel):
return model_schema.model_properties[ModelPropertyKey.MAX_WORKERS]
@staticmethod
def _split_text_into_sentences(text: str, limit: int, delimiters=None):
if delimiters is None:
delimiters = set('。!?;\n')
buf = []
word_count = 0
for char in text:
buf.append(char)
if char in delimiters:
if word_count >= limit:
yield ''.join(buf)
buf = []
word_count = 0
else:
word_count += 1
else:
word_count += 1
if buf:
yield ''.join(buf)
def _split_text_into_sentences(org_text, max_length=2000, pattern=r'[。.!?]'):
match = re.compile(pattern)
tx = match.finditer(org_text)
start = 0
result = []
one_sentence = ''
for i in tx:
end = i.regs[0][1]
tmp = org_text[start:end]
if len(one_sentence + tmp) > max_length:
result.append(one_sentence)
one_sentence = ''
one_sentence += tmp
start = end
last_sens = org_text[start:]
if last_sens:
one_sentence += last_sens
if one_sentence != '':
result.append(one_sentence)
return result
@staticmethod
def _is_ffmpeg_installed():

View File

@ -33,3 +33,4 @@
- deepseek
- hunyuan
- siliconflow
- perfxcloud

View File

@ -4,7 +4,7 @@ from functools import reduce
from io import BytesIO
from typing import Optional
from flask import Response, stream_with_context
from flask import Response
from openai import AzureOpenAI
from pydub import AudioSegment
@ -14,7 +14,6 @@ from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.model_runtime.model_providers.azure_openai._common import _CommonAzureOpenAI
from core.model_runtime.model_providers.azure_openai._constant import TTS_BASE_MODELS, AzureBaseModel
from extensions.ext_storage import storage
class AzureOpenAIText2SpeechModel(_CommonAzureOpenAI, TTSModel):
@ -23,7 +22,7 @@ class AzureOpenAIText2SpeechModel(_CommonAzureOpenAI, TTSModel):
"""
def _invoke(self, model: str, tenant_id: str, credentials: dict,
content_text: str, voice: str, streaming: bool, user: Optional[str] = None) -> any:
content_text: str, voice: str, user: Optional[str] = None) -> any:
"""
_invoke text2speech model
@ -32,30 +31,23 @@ class AzureOpenAIText2SpeechModel(_CommonAzureOpenAI, TTSModel):
:param credentials: model credentials
:param content_text: text content to be translated
:param voice: model timbre
:param streaming: output is streaming
:param user: unique user id
:return: text translated to audio file
"""
audio_type = self._get_model_audio_type(model, credentials)
if not voice or voice not in [d['value'] for d in self.get_tts_model_voices(model=model, credentials=credentials)]:
voice = self._get_model_default_voice(model, credentials)
if streaming:
return Response(stream_with_context(self._tts_invoke_streaming(model=model,
credentials=credentials,
content_text=content_text,
tenant_id=tenant_id,
voice=voice)),
status=200, mimetype=f'audio/{audio_type}')
else:
return self._tts_invoke(model=model, credentials=credentials, content_text=content_text, voice=voice)
def validate_credentials(self, model: str, credentials: dict, user: Optional[str] = None) -> None:
return self._tts_invoke_streaming(model=model,
credentials=credentials,
content_text=content_text,
voice=voice)
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
validate credentials text2speech model
:param model: model name
:param credentials: model credentials
:param user: unique user id
:return: text translated to audio file
"""
try:
@ -82,7 +74,7 @@ class AzureOpenAIText2SpeechModel(_CommonAzureOpenAI, TTSModel):
word_limit = self._get_model_word_limit(model, credentials)
max_workers = self._get_model_workers_limit(model, credentials)
try:
sentences = list(self._split_text_into_sentences(text=content_text, limit=word_limit))
sentences = list(self._split_text_into_sentences(org_text=content_text, max_length=word_limit))
audio_bytes_list = []
# Create a thread pool and map the function to the list of sentences
@ -107,34 +99,37 @@ class AzureOpenAIText2SpeechModel(_CommonAzureOpenAI, TTSModel):
except Exception as ex:
raise InvokeBadRequestError(str(ex))
# Todo: To improve the streaming function
def _tts_invoke_streaming(self, model: str, tenant_id: str, credentials: dict, content_text: str,
def _tts_invoke_streaming(self, model: str, credentials: dict, content_text: str,
voice: str) -> any:
"""
_tts_invoke_streaming text2speech model
:param model: model name
:param tenant_id: user tenant id
:param credentials: model credentials
:param content_text: text content to be translated
:param voice: model timbre
:return: text translated to audio file
"""
# transform credentials to kwargs for model instance
credentials_kwargs = self._to_credential_kwargs(credentials)
if not voice or voice not in self.get_tts_model_voices(model=model, credentials=credentials):
voice = self._get_model_default_voice(model, credentials)
word_limit = self._get_model_word_limit(model, credentials)
audio_type = self._get_model_audio_type(model, credentials)
tts_file_id = self._get_file_name(content_text)
file_path = f'generate_files/audio/{tenant_id}/{tts_file_id}.{audio_type}'
try:
# doc: https://platform.openai.com/docs/guides/text-to-speech
credentials_kwargs = self._to_credential_kwargs(credentials)
client = AzureOpenAI(**credentials_kwargs)
sentences = list(self._split_text_into_sentences(text=content_text, limit=word_limit))
for sentence in sentences:
response = client.audio.speech.create(model=model, voice=voice, input=sentence.strip())
# response.stream_to_file(file_path)
storage.save(file_path, response.read())
# max font is 4096,there is 3500 limit for each request
max_length = 3500
if len(content_text) > max_length:
sentences = self._split_text_into_sentences(content_text, max_length=max_length)
executor = concurrent.futures.ThreadPoolExecutor(max_workers=min(3, len(sentences)))
futures = [executor.submit(client.audio.speech.with_streaming_response.create, model=model,
response_format="mp3",
input=sentences[i], voice=voice) for i in range(len(sentences))]
for index, future in enumerate(futures):
yield from future.result().__enter__().iter_bytes(1024)
else:
response = client.audio.speech.with_streaming_response.create(model=model, voice=voice,
response_format="mp3",
input=content_text.strip())
yield from response.__enter__().iter_bytes(1024)
except Exception as ex:
raise InvokeBadRequestError(str(ex))
@ -162,7 +157,7 @@ class AzureOpenAIText2SpeechModel(_CommonAzureOpenAI, TTSModel):
@staticmethod
def _get_ai_model_entity(base_model_name: str, model: str) -> AzureBaseModel:
def _get_ai_model_entity(base_model_name: str, model: str) -> AzureBaseModel | None:
for ai_model_entity in TTS_BASE_MODELS:
if ai_model_entity.base_model_name == base_model_name:
ai_model_entity_copy = copy.deepcopy(ai_model_entity)
@ -170,5 +165,4 @@ class AzureOpenAIText2SpeechModel(_CommonAzureOpenAI, TTSModel):
ai_model_entity_copy.entity.label.en_US = model
ai_model_entity_copy.entity.label.zh_Hans = model
return ai_model_entity_copy
return None

View File

@ -66,6 +66,10 @@ provider_credential_schema:
label:
en_US: Europe (Frankfurt)
zh_Hans: 欧洲 (法兰克福)
- value: eu-west-2
label:
en_US: Eu west London (London)
zh_Hans: 欧洲西部 (伦敦)
- value: us-gov-west-1
label:
en_US: AWS GovCloud (US-West)

View File

@ -7,7 +7,7 @@ features:
- agent-thought
model_properties:
mode: chat
context_size: 32000
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature

View File

@ -7,7 +7,7 @@ features:
- agent-thought
model_properties:
mode: chat
context_size: 32000
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature

View File

@ -21,7 +21,7 @@ model_properties:
- mode: 'shimmer'
name: 'Shimmer'
language: [ 'zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID' ]
word_limit: 120
word_limit: 3500
audio_type: 'mp3'
max_workers: 5
pricing:

View File

@ -21,7 +21,7 @@ model_properties:
- mode: 'shimmer'
name: 'Shimmer'
language: ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
word_limit: 120
word_limit: 3500
audio_type: 'mp3'
max_workers: 5
pricing:

View File

@ -3,7 +3,7 @@ from functools import reduce
from io import BytesIO
from typing import Optional
from flask import Response, stream_with_context
from flask import Response
from openai import OpenAI
from pydub import AudioSegment
@ -11,7 +11,6 @@ from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.model_runtime.model_providers.openai._common import _CommonOpenAI
from extensions.ext_storage import storage
class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
@ -20,7 +19,7 @@ class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
"""
def _invoke(self, model: str, tenant_id: str, credentials: dict,
content_text: str, voice: str, streaming: bool, user: Optional[str] = None) -> any:
content_text: str, voice: str, user: Optional[str] = None) -> any:
"""
_invoke text2speech model
@ -29,22 +28,17 @@ class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
:param credentials: model credentials
:param content_text: text content to be translated
:param voice: model timbre
:param streaming: output is streaming
:param user: unique user id
:return: text translated to audio file
"""
audio_type = self._get_model_audio_type(model, credentials)
if not voice or voice not in [d['value'] for d in self.get_tts_model_voices(model=model, credentials=credentials)]:
voice = self._get_model_default_voice(model, credentials)
if streaming:
return Response(stream_with_context(self._tts_invoke_streaming(model=model,
credentials=credentials,
content_text=content_text,
tenant_id=tenant_id,
voice=voice)),
status=200, mimetype=f'audio/{audio_type}')
else:
return self._tts_invoke(model=model, credentials=credentials, content_text=content_text, voice=voice)
# if streaming:
return self._tts_invoke_streaming(model=model,
credentials=credentials,
content_text=content_text,
voice=voice)
def validate_credentials(self, model: str, credentials: dict, user: Optional[str] = None) -> None:
"""
@ -79,7 +73,7 @@ class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
word_limit = self._get_model_word_limit(model, credentials)
max_workers = self._get_model_workers_limit(model, credentials)
try:
sentences = list(self._split_text_into_sentences(text=content_text, limit=word_limit))
sentences = list(self._split_text_into_sentences(org_text=content_text, max_length=word_limit))
audio_bytes_list = []
# Create a thread pool and map the function to the list of sentences
@ -104,34 +98,40 @@ class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
except Exception as ex:
raise InvokeBadRequestError(str(ex))
# Todo: To improve the streaming function
def _tts_invoke_streaming(self, model: str, tenant_id: str, credentials: dict, content_text: str,
def _tts_invoke_streaming(self, model: str, credentials: dict, content_text: str,
voice: str) -> any:
"""
_tts_invoke_streaming text2speech model
:param model: model name
:param tenant_id: user tenant id
:param credentials: model credentials
:param content_text: text content to be translated
:param voice: model timbre
:return: text translated to audio file
"""
# transform credentials to kwargs for model instance
credentials_kwargs = self._to_credential_kwargs(credentials)
if not voice or voice not in self.get_tts_model_voices(model=model, credentials=credentials):
voice = self._get_model_default_voice(model, credentials)
word_limit = self._get_model_word_limit(model, credentials)
audio_type = self._get_model_audio_type(model, credentials)
tts_file_id = self._get_file_name(content_text)
file_path = f'generate_files/audio/{tenant_id}/{tts_file_id}.{audio_type}'
try:
# doc: https://platform.openai.com/docs/guides/text-to-speech
credentials_kwargs = self._to_credential_kwargs(credentials)
client = OpenAI(**credentials_kwargs)
sentences = list(self._split_text_into_sentences(text=content_text, limit=word_limit))
for sentence in sentences:
response = client.audio.speech.create(model=model, voice=voice, input=sentence.strip())
# response.stream_to_file(file_path)
storage.save(file_path, response.read())
if not voice or voice not in self.get_tts_model_voices(model=model, credentials=credentials):
voice = self._get_model_default_voice(model, credentials)
word_limit = self._get_model_word_limit(model, credentials)
if len(content_text) > word_limit:
sentences = self._split_text_into_sentences(content_text, max_length=word_limit)
executor = concurrent.futures.ThreadPoolExecutor(max_workers=min(3, len(sentences)))
futures = [executor.submit(client.audio.speech.with_streaming_response.create, model=model,
response_format="mp3",
input=sentences[i], voice=voice) for i in range(len(sentences))]
for index, future in enumerate(futures):
yield from future.result().__enter__().iter_bytes(1024)
else:
response = client.audio.speech.with_streaming_response.create(model=model, voice=voice,
response_format="mp3",
input=content_text.strip())
yield from response.__enter__().iter_bytes(1024)
except Exception as ex:
raise InvokeBadRequestError(str(ex))

View File

@ -616,30 +616,34 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
message = cast(AssistantPromptMessage, message)
message_dict = {"role": "assistant", "content": message.content}
if message.tool_calls:
# message_dict["tool_calls"] = [helper.dump_model(PromptMessageFunction(function=tool_call)) for tool_call
# in
# message.tool_calls]
function_call = message.tool_calls[0]
message_dict["function_call"] = {
"name": function_call.function.name,
"arguments": function_call.function.arguments,
}
function_calling_type = credentials.get('function_calling_type', 'no_call')
if function_calling_type == 'tool_call':
message_dict["tool_calls"] = [tool_call.dict() for tool_call in
message.tool_calls]
elif function_calling_type == 'function_call':
function_call = message.tool_calls[0]
message_dict["function_call"] = {
"name": function_call.function.name,
"arguments": function_call.function.arguments,
}
elif isinstance(message, SystemPromptMessage):
message = cast(SystemPromptMessage, message)
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, ToolPromptMessage):
message = cast(ToolPromptMessage, message)
# message_dict = {
# "role": "tool",
# "content": message.content,
# "tool_call_id": message.tool_call_id
# }
message_dict = {
"role": "tool" if credentials and credentials.get('function_calling_type', 'no_call') == 'tool_call' else "function",
"content": message.content,
"name": message.tool_call_id
}
function_calling_type = credentials.get('function_calling_type', 'no_call')
if function_calling_type == 'tool_call':
message_dict = {
"role": "tool",
"content": message.content,
"tool_call_id": message.tool_call_id
}
elif function_calling_type == 'function_call':
message_dict = {
"role": "function",
"content": message.content,
"name": message.tool_call_id
}
else:
raise ValueError(f"Got unknown type {message}")

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 21 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 48 KiB

View File

@ -0,0 +1,61 @@
model: Qwen-14B-Chat-Int4
label:
en_US: Qwen-14B-Chat-Int4
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 4096
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 600
min: 1
max: 1248
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
pricing:
input: '0.000'
output: '0.000'
unit: '0.000'
currency: RMB

View File

@ -0,0 +1,61 @@
model: Qwen1.5-110B-Chat-GPTQ-Int4
label:
en_US: Qwen1.5-110B-Chat-GPTQ-Int4
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 128
min: 1
max: 256
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
pricing:
input: '0.000'
output: '0.000'
unit: '0.000'
currency: RMB

View File

@ -0,0 +1,61 @@
model: Qwen1.5-72B-Chat-GPTQ-Int4
label:
en_US: Qwen1.5-72B-Chat-GPTQ-Int4
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 600
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
pricing:
input: '0.000'
output: '0.000'
unit: '0.000'
currency: RMB

View File

@ -0,0 +1,61 @@
model: Qwen1.5-7B
label:
en_US: Qwen1.5-7B
model_type: llm
features:
- agent-thought
model_properties:
mode: completion
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 600
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
pricing:
input: '0.000'
output: '0.000'
unit: '0.000'
currency: RMB

View File

@ -0,0 +1,63 @@
model: Qwen2-72B-Instruct-GPTQ-Int4
label:
en_US: Qwen2-72B-Instruct-GPTQ-Int4
model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 600
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
pricing:
input: '0.000'
output: '0.000'
unit: '0.000'
currency: RMB

View File

@ -0,0 +1,63 @@
model: Qwen2-7B
label:
en_US: Qwen2-7B
model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: completion
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 600
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
pricing:
input: '0.000'
output: '0.000'
unit: '0.000'
currency: RMB

View File

@ -0,0 +1,6 @@
- Qwen2-72B-Instruct-GPTQ-Int4
- Qwen2-7B
- Qwen1.5-110B-Chat-GPTQ-Int4
- Qwen1.5-72B-Chat-GPTQ-Int4
- Qwen1.5-7B
- Qwen-14B-Chat-Int4

View File

@ -0,0 +1,110 @@
from collections.abc import Generator
from typing import Optional, Union
from urllib.parse import urlparse
import tiktoken
from core.model_runtime.entities.llm_entities import LLMResult
from core.model_runtime.entities.message_entities import (
PromptMessage,
PromptMessageTool,
)
from core.model_runtime.model_providers.openai.llm.llm import OpenAILargeLanguageModel
class PerfXCloudLargeLanguageModel(OpenAILargeLanguageModel):
def _invoke(self, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
stream: bool = True, user: Optional[str] = None) \
-> Union[LLMResult, Generator]:
self._add_custom_parameters(credentials)
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream)
def validate_credentials(self, model: str, credentials: dict) -> None:
self._add_custom_parameters(credentials)
super().validate_credentials(model, credentials)
# refactored from openai model runtime, use cl100k_base for calculate token number
def _num_tokens_from_string(self, model: str, text: str,
tools: Optional[list[PromptMessageTool]] = None) -> int:
"""
Calculate num tokens for text completion model with tiktoken package.
:param model: model name
:param text: prompt text
:param tools: tools for tool calling
:return: number of tokens
"""
encoding = tiktoken.get_encoding("cl100k_base")
num_tokens = len(encoding.encode(text))
if tools:
num_tokens += self._num_tokens_for_tools(encoding, tools)
return num_tokens
# refactored from openai model runtime, use cl100k_base for calculate token number
def _num_tokens_from_messages(self, model: str, messages: list[PromptMessage],
tools: Optional[list[PromptMessageTool]] = None) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
encoding = tiktoken.get_encoding("cl100k_base")
tokens_per_message = 3
tokens_per_name = 1
num_tokens = 0
messages_dict = [self._convert_prompt_message_to_dict(m) for m in messages]
for message in messages_dict:
num_tokens += tokens_per_message
for key, value in message.items():
# Cast str(value) in case the message value is not a string
# This occurs with function messages
# TODO: The current token calculation method for the image type is not implemented,
# which need to download the image and then get the resolution for calculation,
# and will increase the request delay
if isinstance(value, list):
text = ''
for item in value:
if isinstance(item, dict) and item['type'] == 'text':
text += item['text']
value = text
if key == "tool_calls":
for tool_call in value:
for t_key, t_value in tool_call.items():
num_tokens += len(encoding.encode(t_key))
if t_key == "function":
for f_key, f_value in t_value.items():
num_tokens += len(encoding.encode(f_key))
num_tokens += len(encoding.encode(f_value))
else:
num_tokens += len(encoding.encode(t_key))
num_tokens += len(encoding.encode(t_value))
else:
num_tokens += len(encoding.encode(str(value)))
if key == "name":
num_tokens += tokens_per_name
# every reply is primed with <im_start>assistant
num_tokens += 3
if tools:
num_tokens += self._num_tokens_for_tools(encoding, tools)
return num_tokens
@staticmethod
def _add_custom_parameters(credentials: dict) -> None:
credentials['mode'] = 'chat'
credentials['openai_api_key']=credentials['api_key']
if 'endpoint_url' not in credentials or credentials['endpoint_url'] == "":
credentials['openai_api_base']='https://cloud.perfxlab.cn'
else:
parsed_url = urlparse(credentials['endpoint_url'])
credentials['openai_api_base']=f"{parsed_url.scheme}://{parsed_url.netloc}"

View File

@ -0,0 +1,32 @@
import logging
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.model_provider import ModelProvider
logger = logging.getLogger(__name__)
class PerfXCloudProvider(ModelProvider):
def validate_provider_credentials(self, credentials: dict) -> None:
"""
Validate provider credentials
if validate failed, raise exception
:param credentials: provider credentials, credentials form defined in `provider_credential_schema`.
"""
try:
model_instance = self.get_model_instance(ModelType.LLM)
# Use `Qwen2_72B_Chat_GPTQ_Int4` model for validate,
# no matter what model you pass in, text completion model or chat model
model_instance.validate_credentials(
model='Qwen2-72B-Instruct-GPTQ-Int4',
credentials=credentials
)
except CredentialsValidateFailedError as ex:
raise ex
except Exception as ex:
logger.exception(f'{self.get_provider_schema().provider} credentials validate failed')
raise ex

View File

@ -0,0 +1,42 @@
provider: perfxcloud
label:
en_US: PerfXCloud
zh_Hans: PerfXCloud
description:
en_US: PerfXCloud (Pengfeng Technology) is an AI development and deployment platform tailored for developers and enterprises, providing reasoning capabilities for multiple models.
zh_Hans: PerfXCloud澎峰科技为开发者和企业量身打造的AI开发和部署平台提供多种模型的的推理能力。
icon_small:
en_US: icon_s_en.svg
icon_large:
en_US: icon_l_en.svg
background: "#e3f0ff"
help:
title:
en_US: Get your API Key from PerfXCloud
zh_Hans: 从 PerfXCloud 获取 API Key
url:
en_US: https://cloud.perfxlab.cn/panel/token
supported_model_types:
- llm
- text-embedding
configurate_methods:
- predefined-model
provider_credential_schema:
credential_form_schemas:
- variable: api_key
label:
en_US: API Key
type: secret-input
required: true
placeholder:
zh_Hans: 在此输入您的 API Key
en_US: Enter your API Key
- variable: endpoint_url
label:
zh_Hans: 自定义 API endpoint 地址
en_US: Custom API endpoint URL
type: text-input
required: false
placeholder:
zh_Hans: Base URL, e.g. https://cloud.perfxlab.cn/v1
en_US: Base URL, e.g. https://cloud.perfxlab.cn/v1

View File

@ -0,0 +1,4 @@
model: BAAI/bge-m3
model_type: text-embedding
model_properties:
context_size: 32768

View File

@ -0,0 +1,250 @@
import json
import time
from decimal import Decimal
from typing import Optional
from urllib.parse import urljoin
import numpy as np
import requests
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import (
AIModelEntity,
FetchFrom,
ModelPropertyKey,
ModelType,
PriceConfig,
PriceType,
)
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.model_runtime.model_providers.openai_api_compatible._common import _CommonOAI_API_Compat
class OAICompatEmbeddingModel(_CommonOAI_API_Compat, TextEmbeddingModel):
"""
Model class for an OpenAI API-compatible text embedding model.
"""
def _invoke(self, model: str, credentials: dict,
texts: list[str], user: Optional[str] = None) \
-> TextEmbeddingResult:
"""
Invoke text embedding model
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:return: embeddings result
"""
# Prepare headers and payload for the request
headers = {
'Content-Type': 'application/json'
}
api_key = credentials.get('api_key')
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
if 'endpoint_url' not in credentials or credentials['endpoint_url'] == "":
endpoint_url='https://cloud.perfxlab.cn/v1/'
else:
endpoint_url = credentials.get('endpoint_url')
if not endpoint_url.endswith('/'):
endpoint_url += '/'
endpoint_url = urljoin(endpoint_url, 'embeddings')
extra_model_kwargs = {}
if user:
extra_model_kwargs['user'] = user
extra_model_kwargs['encoding_format'] = 'float'
# get model properties
context_size = self._get_context_size(model, credentials)
max_chunks = self._get_max_chunks(model, credentials)
inputs = []
indices = []
used_tokens = 0
for i, text in enumerate(texts):
# Here token count is only an approximation based on the GPT2 tokenizer
# TODO: Optimize for better token estimation and chunking
num_tokens = self._get_num_tokens_by_gpt2(text)
if num_tokens >= context_size:
cutoff = int(len(text) * (np.floor(context_size / num_tokens)))
# if num tokens is larger than context length, only use the start
inputs.append(text[0: cutoff])
else:
inputs.append(text)
indices += [i]
batched_embeddings = []
_iter = range(0, len(inputs), max_chunks)
for i in _iter:
# Prepare the payload for the request
payload = {
'input': inputs[i: i + max_chunks],
'model': model,
**extra_model_kwargs
}
# Make the request to the OpenAI API
response = requests.post(
endpoint_url,
headers=headers,
data=json.dumps(payload),
timeout=(10, 300)
)
response.raise_for_status() # Raise an exception for HTTP errors
response_data = response.json()
# Extract embeddings and used tokens from the response
embeddings_batch = [data['embedding'] for data in response_data['data']]
embedding_used_tokens = response_data['usage']['total_tokens']
used_tokens += embedding_used_tokens
batched_embeddings += embeddings_batch
# calc usage
usage = self._calc_response_usage(
model=model,
credentials=credentials,
tokens=used_tokens
)
return TextEmbeddingResult(
embeddings=batched_embeddings,
usage=usage,
model=model
)
def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int:
"""
Approximate number of tokens for given messages using GPT2 tokenizer
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:return:
"""
return sum(self._get_num_tokens_by_gpt2(text) for text in texts)
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return:
"""
try:
headers = {
'Content-Type': 'application/json'
}
api_key = credentials.get('api_key')
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
if 'endpoint_url' not in credentials or credentials['endpoint_url'] == "":
endpoint_url='https://cloud.perfxlab.cn/v1/'
else:
endpoint_url = credentials.get('endpoint_url')
if not endpoint_url.endswith('/'):
endpoint_url += '/'
endpoint_url = urljoin(endpoint_url, 'embeddings')
payload = {
'input': 'ping',
'model': model
}
response = requests.post(
url=endpoint_url,
headers=headers,
data=json.dumps(payload),
timeout=(10, 300)
)
if response.status_code != 200:
raise CredentialsValidateFailedError(
f'Credentials validation failed with status code {response.status_code}')
try:
json_result = response.json()
except json.JSONDecodeError as e:
raise CredentialsValidateFailedError('Credentials validation failed: JSON decode error')
if 'model' not in json_result:
raise CredentialsValidateFailedError(
'Credentials validation failed: invalid response')
except CredentialsValidateFailedError:
raise
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity:
"""
generate custom model entities from credentials
"""
entity = AIModelEntity(
model=model,
label=I18nObject(en_US=model),
model_type=ModelType.TEXT_EMBEDDING,
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
ModelPropertyKey.CONTEXT_SIZE: int(credentials.get('context_size')),
ModelPropertyKey.MAX_CHUNKS: 1,
},
parameter_rules=[],
pricing=PriceConfig(
input=Decimal(credentials.get('input_price', 0)),
unit=Decimal(credentials.get('unit', 0)),
currency=credentials.get('currency', "USD")
)
)
return entity
def _calc_response_usage(self, model: str, credentials: dict, tokens: int) -> EmbeddingUsage:
"""
Calculate response usage
:param model: model name
:param credentials: model credentials
:param tokens: input tokens
:return: usage
"""
# get input price info
input_price_info = self.get_price(
model=model,
credentials=credentials,
price_type=PriceType.INPUT,
tokens=tokens
)
# transform usage
usage = EmbeddingUsage(
tokens=tokens,
total_tokens=tokens,
unit_price=input_price_info.unit_price,
price_unit=input_price_info.unit,
total_price=input_price_info.total_amount,
currency=input_price_info.currency,
latency=time.perf_counter() - self.started_at
)
return usage

View File

@ -129,7 +129,7 @@ model_properties:
- mode: "sambert-waan-v1"
name: "Waan泰语女声"
language: [ "th-TH" ]
word_limit: 120
word_limit: 7000
audio_type: 'mp3'
max_workers: 5
pricing:

View File

@ -1,17 +1,21 @@
import concurrent.futures
import threading
from functools import reduce
from io import BytesIO
from queue import Queue
from typing import Optional
import dashscope
from flask import Response, stream_with_context
from dashscope import SpeechSynthesizer
from dashscope.api_entities.dashscope_response import SpeechSynthesisResponse
from dashscope.audio.tts import ResultCallback, SpeechSynthesisResult
from flask import Response
from pydub import AudioSegment
from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.model_runtime.model_providers.tongyi._common import _CommonTongyi
from extensions.ext_storage import storage
class TongyiText2SpeechModel(_CommonTongyi, TTSModel):
@ -19,7 +23,7 @@ class TongyiText2SpeechModel(_CommonTongyi, TTSModel):
Model class for Tongyi Speech to text model.
"""
def _invoke(self, model: str, tenant_id: str, credentials: dict, content_text: str, voice: str, streaming: bool,
def _invoke(self, model: str, tenant_id: str, credentials: dict, content_text: str, voice: str,
user: Optional[str] = None) -> any:
"""
_invoke text2speech model
@ -29,22 +33,17 @@ class TongyiText2SpeechModel(_CommonTongyi, TTSModel):
:param credentials: model credentials
:param voice: model timbre
:param content_text: text content to be translated
:param streaming: output is streaming
:param user: unique user id
:return: text translated to audio file
"""
audio_type = self._get_model_audio_type(model, credentials)
if not voice or voice not in [d['value'] for d in self.get_tts_model_voices(model=model, credentials=credentials)]:
if not voice or voice not in [d['value'] for d in
self.get_tts_model_voices(model=model, credentials=credentials)]:
voice = self._get_model_default_voice(model, credentials)
if streaming:
return Response(stream_with_context(self._tts_invoke_streaming(model=model,
credentials=credentials,
content_text=content_text,
voice=voice,
tenant_id=tenant_id)),
status=200, mimetype=f'audio/{audio_type}')
else:
return self._tts_invoke(model=model, credentials=credentials, content_text=content_text, voice=voice)
return self._tts_invoke_streaming(model=model,
credentials=credentials,
content_text=content_text,
voice=voice)
def validate_credentials(self, model: str, credentials: dict, user: Optional[str] = None) -> None:
"""
@ -79,7 +78,7 @@ class TongyiText2SpeechModel(_CommonTongyi, TTSModel):
word_limit = self._get_model_word_limit(model, credentials)
max_workers = self._get_model_workers_limit(model, credentials)
try:
sentences = list(self._split_text_into_sentences(text=content_text, limit=word_limit))
sentences = list(self._split_text_into_sentences(org_text=content_text, max_length=word_limit))
audio_bytes_list = []
# Create a thread pool and map the function to the list of sentences
@ -105,14 +104,12 @@ class TongyiText2SpeechModel(_CommonTongyi, TTSModel):
except Exception as ex:
raise InvokeBadRequestError(str(ex))
# Todo: To improve the streaming function
def _tts_invoke_streaming(self, model: str, tenant_id: str, credentials: dict, content_text: str,
def _tts_invoke_streaming(self, model: str, credentials: dict, content_text: str,
voice: str) -> any:
"""
_tts_invoke_streaming text2speech model
:param model: model name
:param tenant_id: user tenant id
:param credentials: model credentials
:param voice: model timbre
:param content_text: text content to be translated
@ -120,18 +117,32 @@ class TongyiText2SpeechModel(_CommonTongyi, TTSModel):
"""
word_limit = self._get_model_word_limit(model, credentials)
audio_type = self._get_model_audio_type(model, credentials)
tts_file_id = self._get_file_name(content_text)
file_path = f'generate_files/audio/{tenant_id}/{tts_file_id}.{audio_type}'
try:
sentences = list(self._split_text_into_sentences(text=content_text, limit=word_limit))
for sentence in sentences:
response = dashscope.audio.tts.SpeechSynthesizer.call(model=voice, sample_rate=48000,
api_key=credentials.get('dashscope_api_key'),
text=sentence.strip(),
format=audio_type, word_timestamp_enabled=True,
phoneme_timestamp_enabled=True)
if isinstance(response.get_audio_data(), bytes):
storage.save(file_path, response.get_audio_data())
audio_queue: Queue = Queue()
callback = Callback(queue=audio_queue)
def invoke_remote(content, v, api_key, cb, at, wl):
if len(content) < word_limit:
sentences = [content]
else:
sentences = list(self._split_text_into_sentences(org_text=content, max_length=wl))
for sentence in sentences:
SpeechSynthesizer.call(model=v, sample_rate=16000,
api_key=api_key,
text=sentence.strip(),
callback=cb,
format=at, word_timestamp_enabled=True,
phoneme_timestamp_enabled=True)
threading.Thread(target=invoke_remote, args=(
content_text, voice, credentials.get('dashscope_api_key'), callback, audio_type, word_limit)).start()
while True:
audio = audio_queue.get()
if audio is None:
break
yield audio
except Exception as ex:
raise InvokeBadRequestError(str(ex))
@ -152,3 +163,29 @@ class TongyiText2SpeechModel(_CommonTongyi, TTSModel):
format=audio_type)
if isinstance(response.get_audio_data(), bytes):
return response.get_audio_data()
class Callback(ResultCallback):
def __init__(self, queue: Queue):
self._queue = queue
def on_open(self):
pass
def on_complete(self):
self._queue.put(None)
self._queue.task_done()
def on_error(self, response: SpeechSynthesisResponse):
self._queue.put(None)
self._queue.task_done()
def on_close(self):
self._queue.put(None)
self._queue.task_done()
def on_event(self, result: SpeechSynthesisResult):
ad = result.get_audio_frame()
if ad:
self._queue.put(ad)

View File

@ -29,7 +29,7 @@ model_credential_schema:
label:
zh_Hans: 服务器URL
en_US: Server url
type: secret-input
type: text-input
required: true
placeholder:
zh_Hans: 在此输入 Triton Inference Server 的服务器地址,如 http://192.168.1.100:8000

View File

@ -0,0 +1,40 @@
model: ernie-4.0-turbo-8k-preview
label:
en_US: Ernie-4.0-turbo-8k-preview
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
min: 0.1
max: 1.0
default: 0.8
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 1024
min: 2
max: 2048
- name: presence_penalty
use_template: presence_penalty
default: 1.0
min: 1.0
max: 2.0
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
use_template: response_format
- name: disable_search
label:
zh_Hans: 禁用搜索
en_US: Disable Search
type: boolean
help:
zh_Hans: 禁用模型自行进行外部搜索。
en_US: Disable the model to perform external search.
required: false

View File

@ -138,6 +138,7 @@ class ErnieBotModel:
'ernie-lite-8k-0922': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant',
'ernie-lite-8k-0308': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-lite-8k',
'ernie-character-8k-0321': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-char-8k',
'ernie-4.0-tutbo-8k-preview': 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-4.0-turbo-8k-preview',
}
function_calling_supports = [
@ -149,6 +150,7 @@ class ErnieBotModel:
'ernie-3.5-4k-0205',
'ernie-3.5-128k',
'ernie-4.0-8k'
'ernie-4.0-turbo-8k-preview'
]
api_key: str = ''

View File

@ -32,7 +32,7 @@ model_credential_schema:
label:
zh_Hans: 服务器URL
en_US: Server url
type: secret-input
type: text-input
required: true
placeholder:
zh_Hans: 在此输入Xinference的服务器地址如 http://192.168.1.100:9997

View File

@ -20,7 +20,7 @@ class ZhipuaiProvider(ModelProvider):
model_instance = self.get_model_instance(ModelType.LLM)
model_instance.validate_credentials(
model='chatglm_turbo',
model='glm-4',
credentials=credentials
)
except CredentialsValidateFailedError as ex:

View File

@ -5,7 +5,7 @@ from typing import TYPE_CHECKING, Optional
import httpx
from ..core._base_api import BaseAPI
from ..core._base_type import NOT_GIVEN, Headers, NotGiven
from ..core._base_type import NOT_GIVEN, Body, Headers, NotGiven
from ..core._http_client import make_user_request_input
from ..types.image import ImagesResponded
@ -28,7 +28,9 @@ class Images(BaseAPI):
size: Optional[str] | NotGiven = NOT_GIVEN,
style: Optional[str] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
request_id: Optional[str] | NotGiven = NOT_GIVEN,
extra_headers: Headers | None = None,
extra_body: Body | None = None,
disable_strict_validation: Optional[bool] | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ImagesResponded:
@ -46,9 +48,12 @@ class Images(BaseAPI):
"size": size,
"style": style,
"user": user,
"request_id": request_id,
},
options=make_user_request_input(
extra_headers=extra_headers, timeout=timeout
extra_headers=extra_headers,
extra_body=extra_body,
timeout=timeout
),
cast_type=_cast_type,
enable_stream=False,

View File

@ -11,7 +11,7 @@ from tenacity import retry
from tenacity.stop import stop_after_attempt
from . import _errors
from ._base_type import NOT_GIVEN, Body, Data, Headers, NotGiven, Query, RequestFiles, ResponseT
from ._base_type import NOT_GIVEN, AnyMapping, Body, Data, Headers, NotGiven, Query, RequestFiles, ResponseT
from ._errors import APIResponseValidationError, APIStatusError, APITimeoutError
from ._files import make_httpx_files
from ._request_opt import ClientRequestParam, UserRequestInput
@ -358,6 +358,7 @@ def make_user_request_input(
max_retries: int | None = None,
timeout: float | Timeout | None | NotGiven = NOT_GIVEN,
extra_headers: Headers = None,
extra_body: Body | None = None,
query: Query | None = None,
) -> UserRequestInput:
options: UserRequestInput = {}
@ -370,5 +371,7 @@ def make_user_request_input(
options['timeout'] = timeout
if query is not None:
options["params"] = query
if extra_body is not None:
options["extra_json"] = cast(AnyMapping, extra_body)
return options

View File

@ -1,7 +1,6 @@
from typing import Any
from flask import current_app
from configs import dify_config
from core.rag.datasource.keyword.jieba.jieba import Jieba
from core.rag.datasource.keyword.keyword_base import BaseKeyword
from core.rag.models.document import Document
@ -14,8 +13,8 @@ class Keyword:
self._keyword_processor = self._init_keyword()
def _init_keyword(self) -> BaseKeyword:
config = current_app.config
keyword_type = config.get('KEYWORD_STORE')
config = dify_config
keyword_type = config.KEYWORD_STORE
if not keyword_type:
raise ValueError("Keyword store must be specified.")

View File

@ -0,0 +1,332 @@
import json
from typing import Any
from pydantic import BaseModel
_import_err_msg = (
"`alibabacloud_gpdb20160503` and `alibabacloud_tea_openapi` packages not found, "
"please run `pip install alibabacloud_gpdb20160503 alibabacloud_tea_openapi`"
)
from flask import current_app
from core.rag.datasource.entity.embedding import Embeddings
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.models.document import Document
from extensions.ext_redis import redis_client
from models.dataset import Dataset
class AnalyticdbConfig(BaseModel):
access_key_id: str
access_key_secret: str
region_id: str
instance_id: str
account: str
account_password: str
namespace: str = ("dify",)
namespace_password: str = (None,)
metrics: str = ("cosine",)
read_timeout: int = 60000
def to_analyticdb_client_params(self):
return {
"access_key_id": self.access_key_id,
"access_key_secret": self.access_key_secret,
"region_id": self.region_id,
"read_timeout": self.read_timeout,
}
class AnalyticdbVector(BaseVector):
_instance = None
_init = False
def __new__(cls, *args, **kwargs):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self, collection_name: str, config: AnalyticdbConfig):
# collection_name must be updated every time
self._collection_name = collection_name.lower()
if AnalyticdbVector._init:
return
try:
from alibabacloud_gpdb20160503.client import Client
from alibabacloud_tea_openapi import models as open_api_models
except:
raise ImportError(_import_err_msg)
self.config = config
self._client_config = open_api_models.Config(
user_agent="dify", **config.to_analyticdb_client_params()
)
self._client = Client(self._client_config)
self._initialize()
AnalyticdbVector._init = True
def _initialize(self) -> None:
self._initialize_vector_database()
self._create_namespace_if_not_exists()
def _initialize_vector_database(self) -> None:
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
request = gpdb_20160503_models.InitVectorDatabaseRequest(
dbinstance_id=self.config.instance_id,
region_id=self.config.region_id,
manager_account=self.config.account,
manager_account_password=self.config.account_password,
)
self._client.init_vector_database(request)
def _create_namespace_if_not_exists(self) -> None:
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
from Tea.exceptions import TeaException
try:
request = gpdb_20160503_models.DescribeNamespaceRequest(
dbinstance_id=self.config.instance_id,
region_id=self.config.region_id,
namespace=self.config.namespace,
manager_account=self.config.account,
manager_account_password=self.config.account_password,
)
self._client.describe_namespace(request)
except TeaException as e:
if e.statusCode == 404:
request = gpdb_20160503_models.CreateNamespaceRequest(
dbinstance_id=self.config.instance_id,
region_id=self.config.region_id,
manager_account=self.config.account,
manager_account_password=self.config.account_password,
namespace=self.config.namespace,
namespace_password=self.config.namespace_password,
)
self._client.create_namespace(request)
else:
raise ValueError(
f"failed to create namespace {self.config.namespace}: {e}"
)
def _create_collection_if_not_exists(self, embedding_dimension: int):
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
from Tea.exceptions import TeaException
cache_key = f"vector_indexing_{self._collection_name}"
lock_name = f"{cache_key}_lock"
with redis_client.lock(lock_name, timeout=20):
collection_exist_cache_key = f"vector_indexing_{self._collection_name}"
if redis_client.get(collection_exist_cache_key):
return
try:
request = gpdb_20160503_models.DescribeCollectionRequest(
dbinstance_id=self.config.instance_id,
region_id=self.config.region_id,
namespace=self.config.namespace,
namespace_password=self.config.namespace_password,
collection=self._collection_name,
)
self._client.describe_collection(request)
except TeaException as e:
if e.statusCode == 404:
metadata = '{"ref_doc_id":"text","page_content":"text","metadata_":"jsonb"}'
full_text_retrieval_fields = "page_content"
request = gpdb_20160503_models.CreateCollectionRequest(
dbinstance_id=self.config.instance_id,
region_id=self.config.region_id,
manager_account=self.config.account,
manager_account_password=self.config.account_password,
namespace=self.config.namespace,
collection=self._collection_name,
dimension=embedding_dimension,
metrics=self.config.metrics,
metadata=metadata,
full_text_retrieval_fields=full_text_retrieval_fields,
)
self._client.create_collection(request)
else:
raise ValueError(
f"failed to create collection {self._collection_name}: {e}"
)
redis_client.set(collection_exist_cache_key, 1, ex=3600)
def get_type(self) -> str:
return VectorType.ANALYTICDB
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
dimension = len(embeddings[0])
self._create_collection_if_not_exists(dimension)
self.add_texts(texts, embeddings)
def add_texts(
self, documents: list[Document], embeddings: list[list[float]], **kwargs
):
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
rows: list[gpdb_20160503_models.UpsertCollectionDataRequestRows] = []
for doc, embedding in zip(documents, embeddings, strict=True):
metadata = {
"ref_doc_id": doc.metadata["doc_id"],
"page_content": doc.page_content,
"metadata_": json.dumps(doc.metadata),
}
rows.append(
gpdb_20160503_models.UpsertCollectionDataRequestRows(
vector=embedding,
metadata=metadata,
)
)
request = gpdb_20160503_models.UpsertCollectionDataRequest(
dbinstance_id=self.config.instance_id,
region_id=self.config.region_id,
namespace=self.config.namespace,
namespace_password=self.config.namespace_password,
collection=self._collection_name,
rows=rows,
)
self._client.upsert_collection_data(request)
def text_exists(self, id: str) -> bool:
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
request = gpdb_20160503_models.QueryCollectionDataRequest(
dbinstance_id=self.config.instance_id,
region_id=self.config.region_id,
namespace=self.config.namespace,
namespace_password=self.config.namespace_password,
collection=self._collection_name,
metrics=self.config.metrics,
include_values=True,
vector=None,
content=None,
top_k=1,
filter=f"ref_doc_id='{id}'"
)
response = self._client.query_collection_data(request)
return len(response.body.matches.match) > 0
def delete_by_ids(self, ids: list[str]) -> None:
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
ids_str = ",".join(f"'{id}'" for id in ids)
ids_str = f"({ids_str})"
request = gpdb_20160503_models.DeleteCollectionDataRequest(
dbinstance_id=self.config.instance_id,
region_id=self.config.region_id,
namespace=self.config.namespace,
namespace_password=self.config.namespace_password,
collection=self._collection_name,
collection_data=None,
collection_data_filter=f"ref_doc_id IN {ids_str}",
)
self._client.delete_collection_data(request)
def delete_by_metadata_field(self, key: str, value: str) -> None:
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
request = gpdb_20160503_models.DeleteCollectionDataRequest(
dbinstance_id=self.config.instance_id,
region_id=self.config.region_id,
namespace=self.config.namespace,
namespace_password=self.config.namespace_password,
collection=self._collection_name,
collection_data=None,
collection_data_filter=f"metadata_ ->> '{key}' = '{value}'",
)
self._client.delete_collection_data(request)
def search_by_vector(
self, query_vector: list[float], **kwargs: Any
) -> list[Document]:
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
score_threshold = (
kwargs.get("score_threshold", 0.0)
if kwargs.get("score_threshold", 0.0)
else 0.0
)
request = gpdb_20160503_models.QueryCollectionDataRequest(
dbinstance_id=self.config.instance_id,
region_id=self.config.region_id,
namespace=self.config.namespace,
namespace_password=self.config.namespace_password,
collection=self._collection_name,
include_values=kwargs.pop("include_values", True),
metrics=self.config.metrics,
vector=query_vector,
content=None,
top_k=kwargs.get("top_k", 4),
filter=None,
)
response = self._client.query_collection_data(request)
documents = []
for match in response.body.matches.match:
if match.score > score_threshold:
doc = Document(
page_content=match.metadata.get("page_content"),
metadata=json.loads(match.metadata.get("metadata_")),
)
documents.append(doc)
return documents
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
score_threshold = (
kwargs.get("score_threshold", 0.0)
if kwargs.get("score_threshold", 0.0)
else 0.0
)
request = gpdb_20160503_models.QueryCollectionDataRequest(
dbinstance_id=self.config.instance_id,
region_id=self.config.region_id,
namespace=self.config.namespace,
namespace_password=self.config.namespace_password,
collection=self._collection_name,
include_values=kwargs.pop("include_values", True),
metrics=self.config.metrics,
vector=None,
content=query,
top_k=kwargs.get("top_k", 4),
filter=None,
)
response = self._client.query_collection_data(request)
documents = []
for match in response.body.matches.match:
if match.score > score_threshold:
doc = Document(
page_content=match.metadata.get("page_content"),
metadata=json.loads(match.metadata.get("metadata_")),
)
documents.append(doc)
return documents
def delete(self) -> None:
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
request = gpdb_20160503_models.DeleteCollectionRequest(
collection=self._collection_name,
dbinstance_id=self.config.instance_id,
namespace=self.config.namespace,
namespace_password=self.config.namespace_password,
region_id=self.config.region_id,
)
self._client.delete_collection(request)
class AnalyticdbVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings):
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict["vector_store"][
"class_prefix"
]
collection_name = class_prefix.lower()
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
dataset.index_struct = json.dumps(
self.gen_index_struct_dict(VectorType.ANALYTICDB, collection_name)
)
config = current_app.config
return AnalyticdbVector(
collection_name,
AnalyticdbConfig(
access_key_id=config.get("ANALYTICDB_KEY_ID"),
access_key_secret=config.get("ANALYTICDB_KEY_SECRET"),
region_id=config.get("ANALYTICDB_REGION_ID"),
instance_id=config.get("ANALYTICDB_INSTANCE_ID"),
account=config.get("ANALYTICDB_ACCOUNT"),
account_password=config.get("ANALYTICDB_PASSWORD"),
namespace=config.get("ANALYTICDB_NAMESPACE"),
namespace_password=config.get("ANALYTICDB_NAMESPACE_PASSWORD"),
),
)

View File

@ -0,0 +1,170 @@
import json
import logging
import uuid
from enum import Enum
from typing import Any
from clickhouse_connect import get_client
from flask import current_app
from pydantic import BaseModel
from core.rag.datasource.entity.embedding import Embeddings
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.models.document import Document
from models.dataset import Dataset
class MyScaleConfig(BaseModel):
host: str
port: int
user: str
password: str
database: str
fts_params: str
class SortOrder(Enum):
ASC = "ASC"
DESC = "DESC"
class MyScaleVector(BaseVector):
def __init__(self, collection_name: str, config: MyScaleConfig, metric: str = "Cosine"):
super().__init__(collection_name)
self._config = config
self._metric = metric
self._vec_order = SortOrder.ASC if metric.upper() in ["COSINE", "L2"] else SortOrder.DESC
self._client = get_client(
host=config.host,
port=config.port,
username=config.user,
password=config.password,
)
self._client.command("SET allow_experimental_object_type=1")
def get_type(self) -> str:
return VectorType.MYSCALE
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
dimension = len(embeddings[0])
self._create_collection(dimension)
return self.add_texts(documents=texts, embeddings=embeddings, **kwargs)
def _create_collection(self, dimension: int):
logging.info(f"create MyScale collection {self._collection_name} with dimension {dimension}")
self._client.command(f"CREATE DATABASE IF NOT EXISTS {self._config.database}")
fts_params = f"('{self._config.fts_params}')" if self._config.fts_params else ""
sql = f"""
CREATE TABLE IF NOT EXISTS {self._config.database}.{self._collection_name}(
id String,
text String,
vector Array(Float32),
metadata JSON,
CONSTRAINT cons_vec_len CHECK length(vector) = {dimension},
VECTOR INDEX vidx vector TYPE DEFAULT('metric_type = {self._metric}'),
INDEX text_idx text TYPE fts{fts_params}
) ENGINE = MergeTree ORDER BY id
"""
self._client.command(sql)
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
ids = []
columns = ["id", "text", "vector", "metadata"]
values = []
for i, doc in enumerate(documents):
doc_id = doc.metadata.get("doc_id", str(uuid.uuid4()))
row = (
doc_id,
self.escape_str(doc.page_content),
embeddings[i],
json.dumps(doc.metadata) if doc.metadata else {}
)
values.append(str(row))
ids.append(doc_id)
sql = f"""
INSERT INTO {self._config.database}.{self._collection_name}
({",".join(columns)}) VALUES {",".join(values)}
"""
self._client.command(sql)
return ids
@staticmethod
def escape_str(value: Any) -> str:
return "".join(f"\\{c}" if c in ("\\", "'") else c for c in str(value))
def text_exists(self, id: str) -> bool:
results = self._client.query(f"SELECT id FROM {self._config.database}.{self._collection_name} WHERE id='{id}'")
return results.row_count > 0
def delete_by_ids(self, ids: list[str]) -> None:
self._client.command(
f"DELETE FROM {self._config.database}.{self._collection_name} WHERE id IN {str(tuple(ids))}")
def get_ids_by_metadata_field(self, key: str, value: str):
rows = self._client.query(
f"SELECT DISTINCT id FROM {self._config.database}.{self._collection_name} WHERE metadata.{key}='{value}'"
).result_rows
return [row[0] for row in rows]
def delete_by_metadata_field(self, key: str, value: str) -> None:
self._client.command(
f"DELETE FROM {self._config.database}.{self._collection_name} WHERE metadata.{key}='{value}'"
)
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
return self._search(f"distance(vector, {str(query_vector)})", self._vec_order, **kwargs)
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
return self._search(f"TextSearch(text, '{query}')", SortOrder.DESC, **kwargs)
def _search(self, dist: str, order: SortOrder, **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 5)
score_threshold = kwargs.get("score_threshold", 0.0)
where_str = f"WHERE dist < {1 - score_threshold}" if \
self._metric.upper() == "COSINE" and order == SortOrder.ASC and score_threshold > 0.0 else ""
sql = f"""
SELECT text, metadata, {dist} as dist FROM {self._config.database}.{self._collection_name}
{where_str} ORDER BY dist {order.value} LIMIT {top_k}
"""
try:
return [
Document(
page_content=r["text"],
metadata=r["metadata"],
)
for r in self._client.query(sql).named_results()
]
except Exception as e:
logging.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
return []
def delete(self) -> None:
self._client.command(f"DROP TABLE IF EXISTS {self._config.database}.{self._collection_name}")
class MyScaleVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> MyScaleVector:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix.lower()
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
dataset.index_struct = json.dumps(
self.gen_index_struct_dict(VectorType.MYSCALE, collection_name))
config = current_app.config
return MyScaleVector(
collection_name=collection_name,
config=MyScaleConfig(
host=config.get("MYSCALE_HOST", "localhost"),
port=int(config.get("MYSCALE_PORT", 8123)),
user=config.get("MYSCALE_USER", "default"),
password=config.get("MYSCALE_PASSWORD", ""),
database=config.get("MYSCALE_DATABASE", "default"),
fts_params=config.get("MYSCALE_FTS_PARAMS", ""),
),
)

View File

@ -57,6 +57,9 @@ class Vector:
case VectorType.MILVUS:
from core.rag.datasource.vdb.milvus.milvus_vector import MilvusVectorFactory
return MilvusVectorFactory
case VectorType.MYSCALE:
from core.rag.datasource.vdb.myscale.myscale_vector import MyScaleVectorFactory
return MyScaleVectorFactory
case VectorType.PGVECTOR:
from core.rag.datasource.vdb.pgvector.pgvector import PGVectorFactory
return PGVectorFactory
@ -84,6 +87,9 @@ class Vector:
case VectorType.OPENSEARCH:
from core.rag.datasource.vdb.opensearch.opensearch_vector import OpenSearchVectorFactory
return OpenSearchVectorFactory
case VectorType.ANALYTICDB:
from core.rag.datasource.vdb.analyticdb.analyticdb_vector import AnalyticdbVectorFactory
return AnalyticdbVectorFactory
case _:
raise ValueError(f"Vector store {vector_type} is not supported.")

View File

@ -2,8 +2,10 @@ from enum import Enum
class VectorType(str, Enum):
ANALYTICDB = 'analyticdb'
CHROMA = 'chroma'
MILVUS = 'milvus'
MYSCALE = 'myscale'
PGVECTOR = 'pgvector'
PGVECTO_RS = 'pgvecto-rs'
QDRANT = 'qdrant'

View File

@ -46,7 +46,6 @@ class FirecrawlApp:
raise Exception(f'Failed to scrape URL. Status code: {response.status_code}')
def crawl_url(self, url, params=None) -> str:
start_time = time.time()
headers = self._prepare_headers()
json_data = {'url': url}
if params:

View File

@ -18,8 +18,8 @@ class MarkdownExtractor(BaseExtractor):
def __init__(
self,
file_path: str,
remove_hyperlinks: bool = True,
remove_images: bool = True,
remove_hyperlinks: bool = False,
remove_images: bool = False,
encoding: Optional[str] = None,
autodetect_encoding: bool = True,
):

View File

@ -8,7 +8,7 @@ We have defined a series of helper methods in the `Tool` class to help developer
### Message Return
Dify supports various message types such as `text`, `link`, `image`, and `file BLOB`. You can return different types of messages to the LLM and users through the following interfaces.
Dify supports various message types such as `text`, `link`, `json`, `image`, and `file BLOB`. You can return different types of messages to the LLM and users through the following interfaces.
Please note, some parameters in the following interfaces will be introduced in later sections.
@ -67,6 +67,18 @@ If you need to return the raw data of a file, such as images, audio, video, PPT,
"""
```
#### JSON
If you need to return a formatted JSON, you can use the following interface. This is commonly used for data transmission between nodes in a workflow, of course, in agent mode, most LLM are also able to read and understand JSON.
- `object` A Python dictionary object will be automatically serialized into JSON
```python
def create_json_message(self, object: dict) -> ToolInvokeMessage:
"""
create a json message
"""
```
### Shortcut Tools
In large model applications, we have two common needs:

View File

@ -145,19 +145,25 @@ parameters: # Parameter list
- The `identity` field is mandatory, it contains the basic information of the tool, including name, author, label, description, etc.
- `parameters` Parameter list
- `name` Parameter name, unique, no duplication with other parameters
- `type` Parameter type, currently supports `string`, `number`, `boolean`, `select`, `secret-input` four types, corresponding to string, number, boolean, drop-down box, and encrypted input box, respectively. For sensitive information, we recommend using `secret-input` type
- `required` Required or not
- `name` (Mandatory) Parameter name, must be unique and not duplicate with other parameters.
- `type` (Mandatory) Parameter type, currently supports `string`, `number`, `boolean`, `select`, `secret-input` five types, corresponding to string, number, boolean, drop-down box, and encrypted input box, respectively. For sensitive information, we recommend using the `secret-input` type
- `label` (Mandatory) Parameter label, for frontend display
- `form` (Mandatory) Form type, currently supports `llm`, `form` two types.
- In an agent app, `llm` indicates that the parameter is inferred by the LLM itself, while `form` indicates that the parameter can be pre-set for the tool.
- In a workflow app, both `llm` and `form` need to be filled out by the front end, but the parameters of `llm` will be used as input variables for the tool node.
- `required` Indicates whether the parameter is required or not
- In `llm` mode, if the parameter is required, the Agent is required to infer this parameter
- In `form` mode, if the parameter is required, the user is required to fill in this parameter on the frontend before the conversation starts
- `options` Parameter options
- In `llm` mode, Dify will pass all options to LLM, LLM can infer based on these options
- In `form` mode, when `type` is `select`, the frontend will display these options
- `default` Default value
- `label` Parameter label, for frontend display
- `min` Minimum value, can be set when the parameter type is `number`.
- `max` Maximum value, can be set when the parameter type is `number`.
- `placeholder` The prompt text for input boxes. It can be set when the form type is `form`, and the parameter type is `string`, `number`, or `secret-input`. It supports multiple languages.
- `human_description` Introduction for frontend display, supports multiple languages
- `llm_description` Introduction passed to LLM, in order to make LLM better understand this parameter, we suggest to write as detailed information about this parameter as possible here, so that LLM can understand this parameter
- `form` Form type, currently supports `llm`, `form` two types, corresponding to Agent self-inference and frontend filling
## 4. Add Tool Logic
@ -196,7 +202,7 @@ The overall logic of the tool is in the `_invoke` method, this method accepts tw
### Return Data
When the tool returns, you can choose to return one message or multiple messages, here we return one message, using `create_text_message` and `create_link_message` can create a text message or a link message.
When the tool returns, you can choose to return one message or multiple messages, here we return one message, using `create_text_message` and `create_link_message` can create a text message or a link message. If you want to return multiple messages, you can use `[self.create_text_message('msg1'), self.create_text_message('msg2')]` to create a list of messages.
## 5. Add Provider Code
@ -205,8 +211,6 @@ Finally, we need to create a provider class under the provider module to impleme
Create `google.py` under the `google` module, the content is as follows.
```python
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolProviderType
from core.tools.tool.tool import Tool
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
from core.tools.errors import ToolProviderCredentialValidationError

View File

@ -8,7 +8,7 @@
### 消息返回
Dify支持`文本` `链接` `图片` `文件BLOB` 等多种消息类型你可以通过以下几个接口返回不同类型的消息给LLM和用户。
Dify支持`文本` `链接` `图片` `文件BLOB` `JSON` 等多种消息类型你可以通过以下几个接口返回不同类型的消息给LLM和用户。
注意,在下面的接口中的部分参数将在后面的章节中介绍。
@ -67,6 +67,18 @@ Dify支持`文本` `链接` `图片` `文件BLOB` 等多种消息类型,你可
"""
```
#### JSON
如果你需要返回一个格式化的JSON可以使用以下接口。这通常用于workflow中的节点间的数据传递当然agent模式中大部分大模型也都能够阅读和理解JSON。
- `object` 一个Python的字典对象会被自动序列化为JSON
```python
def create_json_message(self, object: dict) -> ToolInvokeMessage:
"""
create a json message
"""
```
### 快捷工具
在大模型应用中,我们有两种常见的需求:
@ -97,8 +109,8 @@ Dify支持`文本` `链接` `图片` `文件BLOB` 等多种消息类型,你可
```python
def get_url(self, url: str, user_agent: str = None) -> str:
"""
get url
""" the crawled result
get url from the crawled result
"""
```
### 变量池

View File

@ -140,8 +140,12 @@ parameters: # 参数列表
- `identity` 字段是必须的,它包含了工具的基本信息,包括名称、作者、标签、描述等
- `parameters` 参数列表
- `name` 参数名称,唯一,不允许和其他参数重名
- `type` 参数类型,目前支持`string`、`number`、`boolean`、`select`、`secret-input` 五种类型,分别对应字符串、数字、布尔值、下拉框、加密输入框,对于敏感信息,我们建议使用`secret-input`类型
- `name` (必填)参数名称,唯一,不允许和其他参数重名
- `type` (必填)参数类型,目前支持`string`、`number`、`boolean`、`select`、`secret-input` 五种类型,分别对应字符串、数字、布尔值、下拉框、加密输入框,对于敏感信息,我们建议使用`secret-input`类型
- `label`(必填)参数标签,用于前端展示
- `form` (必填)表单类型,目前支持`llm`、`form`两种类型
- 在Agent应用中`llm`表示该参数LLM自行推理`form`表示要使用该工具可提前设定的参数
- 在workflow应用中`llm`和`form`均需要前端填写,但`llm`的参数会做为工具节点的输入变量
- `required` 是否必填
- 在`llm`模式下如果参数为必填则会要求Agent必须要推理出这个参数
- 在`form`模式下,如果参数为必填,则会要求用户在对话开始前在前端填写这个参数
@ -149,10 +153,12 @@ parameters: # 参数列表
- 在`llm`模式下Dify会将所有选项传递给LLMLLM可以根据这些选项进行推理
- 在`form`模式下,`type`为`select`时,前端会展示这些选项
- `default` 默认值
- `label` 参数标签,用于前端展示
- `min` 最小值,当参数类型为`number`时可以设定
- `max` 最大值,当参数类型为`number`时可以设定
- `human_description` 用于前端展示的介绍,支持多语言
- `placeholder` 字段输入框的提示文字,在表单类型为`form`,参数类型为`string`、`number`、`secret-input`时,可以设定,支持多语言
- `llm_description` 传递给LLM的介绍为了使得LLM更好理解这个参数我们建议在这里写上关于这个参数尽可能详细的信息让LLM能够理解这个参数
- `form` 表单类型,目前支持`llm`、`form`两种类型分别对应Agent自行推理和前端填写
## 4. 准备工具代码
当完成工具的配置以后,我们就可以开始编写工具代码了,主要用于实现工具的逻辑。
@ -176,7 +182,6 @@ class GoogleSearchTool(BuiltinTool):
query = tool_parameters['query']
result_type = tool_parameters['result_type']
api_key = self.runtime.credentials['serpapi_api_key']
# TODO: search with serpapi
result = SerpAPI(api_key).run(query, result_type=result_type)
if result_type == 'text':
@ -188,7 +193,7 @@ class GoogleSearchTool(BuiltinTool):
工具的整体逻辑都在`_invoke`方法中,这个方法接收两个参数:`user_id`和`tool_parameters`分别表示用户ID和工具参数
### 返回数据
在工具返回时,你可以选择返回一消息或者多个消息,这里我们返回一消息,使用`create_text_message`和`create_link_message`可以创建一文本消息或者一链接消息。
在工具返回时,你可以选择返回一消息或者多个消息,这里我们返回一消息,使用`create_text_message`和`create_link_message`可以创建一文本消息或者一链接消息。如需返回多条消息,可以使用列表构建,例如`[self.create_text_message('msg1'), self.create_text_message('msg2')]`
## 5. 准备供应商代码
最后,我们需要在供应商模块下创建一个供应商类,用于实现供应商的凭据验证逻辑,如果凭据验证失败,将会抛出`ToolProviderCredentialValidationError`异常。
@ -196,8 +201,6 @@ class GoogleSearchTool(BuiltinTool):
在`google`模块下创建`google.py`,内容如下。
```python
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolProviderType
from core.tools.tool.tool import Tool
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
from core.tools.errors import ToolProviderCredentialValidationError

View File

@ -142,7 +142,8 @@ class ToolParameter(BaseModel):
name: str = Field(..., description="The name of the parameter")
label: I18nObject = Field(..., description="The label presented to the user")
human_description: I18nObject = Field(..., description="The description presented to the user")
human_description: Optional[I18nObject] = Field(None, description="The description presented to the user")
placeholder: Optional[I18nObject] = Field(None, description="The placeholder presented to the user")
type: ToolParameterType = Field(..., description="The type of the parameter")
form: ToolParameterForm = Field(..., description="The form of the parameter, schema/form/llm")
llm_description: Optional[str] = None

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

View File

@ -0,0 +1,27 @@
""" Provide the input parameters type for the cogview provider class """
from typing import Any
from core.tools.errors import ToolProviderCredentialValidationError
from core.tools.provider.builtin.cogview.tools.cogview3 import CogView3Tool
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
class COGVIEWProvider(BuiltinToolProviderController):
""" cogview provider """
def _validate_credentials(self, credentials: dict[str, Any]) -> None:
try:
CogView3Tool().fork_tool_runtime(
runtime={
"credentials": credentials,
}
).invoke(
user_id='',
tool_parameters={
"prompt": "一个城市在水晶瓶中欢快生活的场景,水彩画风格,展现出微观与珠宝般的美丽。",
"size": "square",
"n": 1
},
)
except Exception as e:
raise ToolProviderCredentialValidationError(str(e)) from e

View File

@ -0,0 +1,61 @@
identity:
author: Waffle
name: cogview
label:
en_US: CogView
zh_Hans: CogView 绘画
pt_BR: CogView
description:
en_US: CogView art
zh_Hans: CogView 绘画
pt_BR: CogView art
icon: icon.png
tags:
- image
- productivity
credentials_for_provider:
zhipuai_api_key:
type: secret-input
required: true
label:
en_US: ZhipuAI API key
zh_Hans: ZhipuAI API key
pt_BR: ZhipuAI API key
help:
en_US: Please input your ZhipuAI API key
zh_Hans: 请输入你的 ZhipuAI API key
pt_BR: Please input your ZhipuAI API key
placeholder:
en_US: Please input your ZhipuAI API key
zh_Hans: 请输入你的 ZhipuAI API key
pt_BR: Please input your ZhipuAI API key
zhipuai_organizaion_id:
type: text-input
required: false
label:
en_US: ZhipuAI organization ID
zh_Hans: ZhipuAI organization ID
pt_BR: ZhipuAI organization ID
help:
en_US: Please input your ZhipuAI organization ID
zh_Hans: 请输入你的 ZhipuAI organization ID
pt_BR: Please input your ZhipuAI organization ID
placeholder:
en_US: Please input your ZhipuAI organization ID
zh_Hans: 请输入你的 ZhipuAI organization ID
pt_BR: Please input your ZhipuAI organization ID
zhipuai_base_url:
type: text-input
required: false
label:
en_US: ZhipuAI base URL
zh_Hans: ZhipuAI base URL
pt_BR: ZhipuAI base URL
help:
en_US: Please input your ZhipuAI base URL
zh_Hans: 请输入你的 ZhipuAI base URL
pt_BR: Please input your ZhipuAI base URL
placeholder:
en_US: Please input your ZhipuAI base URL
zh_Hans: 请输入你的 ZhipuAI base URL
pt_BR: Please input your ZhipuAI base URL

View File

@ -0,0 +1,69 @@
import random
from typing import Any, Union
from core.model_runtime.model_providers.zhipuai.zhipuai_sdk._client import ZhipuAI
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class CogView3Tool(BuiltinTool):
""" CogView3 Tool """
def _invoke(self,
user_id: str,
tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
"""
Invoke CogView3 tool
"""
client = ZhipuAI(
base_url=self.runtime.credentials['zhipuai_base_url'],
api_key=self.runtime.credentials['zhipuai_api_key'],
)
size_mapping = {
'square': '1024x1024',
'vertical': '1024x1792',
'horizontal': '1792x1024',
}
# prompt
prompt = tool_parameters.get('prompt', '')
if not prompt:
return self.create_text_message('Please input prompt')
# get size
print(tool_parameters.get('prompt', 'square'))
size = size_mapping[tool_parameters.get('size', 'square')]
# get n
n = tool_parameters.get('n', 1)
# get quality
quality = tool_parameters.get('quality', 'standard')
if quality not in ['standard', 'hd']:
return self.create_text_message('Invalid quality')
# get style
style = tool_parameters.get('style', 'vivid')
if style not in ['natural', 'vivid']:
return self.create_text_message('Invalid style')
# set extra body
seed_id = tool_parameters.get('seed_id', self._generate_random_id(8))
extra_body = {'seed': seed_id}
response = client.images.generations(
prompt=prompt,
model="cogview-3",
size=size,
n=n,
extra_body=extra_body,
style=style,
quality=quality,
response_format='b64_json'
)
result = []
for image in response.data:
result.append(self.create_image_message(image=image.url))
result.append(self.create_text_message(
f'\nGenerate image source to Seed ID: {seed_id}'))
return result
@staticmethod
def _generate_random_id(length=8):
characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'
random_id = ''.join(random.choices(characters, k=length))
return random_id

View File

@ -0,0 +1,123 @@
identity:
name: cogview3
author: Waffle
label:
en_US: CogView 3
zh_Hans: CogView 3 绘画
pt_BR: CogView 3
description:
en_US: CogView 3 is a powerful drawing tool that can draw the image you want based on your prompt
zh_Hans: CogView 3 是一个强大的绘画工具,它可以根据您的提示词绘制出您想要的图像
pt_BR: CogView 3 is a powerful drawing tool that can draw the image you want based on your prompt
description:
human:
en_US: CogView 3 is a text to image tool
zh_Hans: CogView 3 是一个文本到图像的工具
pt_BR: CogView 3 is a text to image tool
llm: CogView 3 is a tool used to generate images from text
parameters:
- name: prompt
type: string
required: true
label:
en_US: Prompt
zh_Hans: 提示词
pt_BR: Prompt
human_description:
en_US: Image prompt, you can check the official documentation of CogView 3
zh_Hans: 图像提示词您可以查看CogView 3 的官方文档
pt_BR: Image prompt, you can check the official documentation of CogView 3
llm_description: Image prompt of CogView 3, you should describe the image you want to generate as a list of words as possible as detailed
form: llm
- name: size
type: select
required: true
human_description:
en_US: selecting the image size
zh_Hans: 选择图像大小
pt_BR: selecting the image size
label:
en_US: Image size
zh_Hans: 图像大小
pt_BR: Image size
form: form
options:
- value: square
label:
en_US: Squre(1024x1024)
zh_Hans: 方(1024x1024)
pt_BR: Squre(1024x1024)
- value: vertical
label:
en_US: Vertical(1024x1792)
zh_Hans: 竖屏(1024x1792)
pt_BR: Vertical(1024x1792)
- value: horizontal
label:
en_US: Horizontal(1792x1024)
zh_Hans: 横屏(1792x1024)
pt_BR: Horizontal(1792x1024)
default: square
- name: n
type: number
required: true
human_description:
en_US: selecting the number of images
zh_Hans: 选择图像数量
pt_BR: selecting the number of images
label:
en_US: Number of images
zh_Hans: 图像数量
pt_BR: Number of images
form: form
min: 1
max: 1
default: 1
- name: quality
type: select
required: true
human_description:
en_US: selecting the image quality
zh_Hans: 选择图像质量
pt_BR: selecting the image quality
label:
en_US: Image quality
zh_Hans: 图像质量
pt_BR: Image quality
form: form
options:
- value: standard
label:
en_US: Standard
zh_Hans: 标准
pt_BR: Standard
- value: hd
label:
en_US: HD
zh_Hans: 高清
pt_BR: HD
default: standard
- name: style
type: select
required: true
human_description:
en_US: selecting the image style
zh_Hans: 选择图像风格
pt_BR: selecting the image style
label:
en_US: Image style
zh_Hans: 图像风格
pt_BR: Image style
form: form
options:
- value: vivid
label:
en_US: Vivid
zh_Hans: 生动
pt_BR: Vivid
- value: natural
label:
en_US: Natural
zh_Hans: 自然
pt_BR: Natural
default: vivid

View File

@ -1,3 +1,4 @@
import logging
import time
from collections.abc import Mapping
from typing import Any
@ -5,6 +6,7 @@ from typing import Any
import requests
from requests.exceptions import HTTPError
logger = logging.getLogger(__name__)
class FirecrawlApp:
def __init__(self, api_key: str | None = None, base_url: str | None = None):
@ -48,6 +50,7 @@ class FirecrawlApp:
headers = self._prepare_headers()
data = {'url': url, **kwargs}
response = self._request('POST', endpoint, data, headers)
logger.debug(f"Sent request to {endpoint=} body={data}")
if response is None:
raise HTTPError("Failed to scrape URL after multiple retries")
return response
@ -57,6 +60,7 @@ class FirecrawlApp:
headers = self._prepare_headers()
data = {'query': query, **kwargs}
response = self._request('POST', endpoint, data, headers)
logger.debug(f"Sent request to {endpoint=} body={data}")
if response is None:
raise HTTPError("Failed to perform search after multiple retries")
return response
@ -66,8 +70,9 @@ class FirecrawlApp:
):
endpoint = f'{self.base_url}/v0/crawl'
headers = self._prepare_headers(idempotency_key)
data = {'url': url, **kwargs}
data = {'url': url, **kwargs['params']}
response = self._request('POST', endpoint, data, headers)
logger.debug(f"Sent request to {endpoint=} body={data}")
if response is None:
raise HTTPError("Failed to initiate crawl after multiple retries")
job_id: str = response['jobId']

View File

@ -238,7 +238,7 @@ class ApiTool(Tool):
return int(value)
elif property['type'] == 'number':
# check if it is a float
if '.' in value:
if '.' in str(value):
return float(value)
else:
return int(value)

View File

@ -5,22 +5,34 @@ from pydantic import BaseModel
from core.workflow.entities.base_node_data_entities import BaseNodeData
class Condition(BaseModel):
"""
Condition entity
"""
variable_selector: list[str]
comparison_operator: Literal[
# for string or array
"contains", "not contains", "start with", "end with", "is", "is not", "empty", "not empty",
# for number
"=", "", ">", "<", "", "", "null", "not null"
]
value: Optional[str] = None
class IfElseNodeData(BaseNodeData):
"""
Answer Node Data.
"""
class Condition(BaseModel):
"""
Condition entity
"""
variable_selector: list[str]
comparison_operator: Literal[
# for string or array
"contains", "not contains", "start with", "end with", "is", "is not", "empty", "not empty",
# for number
"=", "", ">", "<", "", "", "null", "not null"
]
value: Optional[str] = None
logical_operator: Literal["and", "or"] = "and"
conditions: list[Condition]
class Case(BaseModel):
"""
Case entity representing a single logical condition group
"""
case_id: str
logical_operator: Literal["and", "or"]
conditions: list[Condition]
logical_operator: Optional[Literal["and", "or"]] = "and"
conditions: Optional[list[Condition]] = None
cases: Optional[list[Case]] = None

View File

@ -4,7 +4,8 @@ from core.workflow.entities.base_node_data_entities import BaseNodeData
from core.workflow.entities.node_entities import NodeRunResult, NodeType
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.nodes.base_node import BaseNode
from core.workflow.nodes.if_else.entities import IfElseNodeData
from core.workflow.nodes.if_else.entities import Condition, IfElseNodeData
from core.workflow.utils.variable_template_parser import VariableTemplateParser
from models.workflow import WorkflowNodeExecutionStatus
@ -29,68 +30,48 @@ class IfElseNode(BaseNode):
"condition_results": []
}
input_conditions = []
final_result = False
selected_case_id = None
try:
logical_operator = node_data.logical_operator
input_conditions = []
for condition in node_data.conditions:
actual_value = variable_pool.get_variable_value(
variable_selector=condition.variable_selector
# Check if the new cases structure is used
if node_data.cases:
for case in node_data.cases:
input_conditions, group_result = self.process_conditions(variable_pool, case.conditions)
# Apply the logical operator for the current case
final_result = all(group_result) if case.logical_operator == "and" else any(group_result)
process_datas["condition_results"].append(
{
"group": case.model_dump(),
"results": group_result,
"final_result": final_result,
}
)
# Break if a case passes (logical short-circuit)
if final_result:
selected_case_id = case.case_id # Capture the ID of the passing case
break
else:
# Fallback to old structure if cases are not defined
input_conditions, group_result = self.process_conditions(variable_pool, node_data.conditions)
final_result = all(group_result) if node_data.logical_operator == "and" else any(group_result)
selected_case_id = "true" if final_result else "false"
process_datas["condition_results"].append(
{
"group": "default",
"results": group_result,
"final_result": final_result
}
)
expected_value = condition.value
input_conditions.append({
"actual_value": actual_value,
"expected_value": expected_value,
"comparison_operator": condition.comparison_operator
})
node_inputs["conditions"] = input_conditions
for input_condition in input_conditions:
actual_value = input_condition["actual_value"]
expected_value = input_condition["expected_value"]
comparison_operator = input_condition["comparison_operator"]
if comparison_operator == "contains":
compare_result = self._assert_contains(actual_value, expected_value)
elif comparison_operator == "not contains":
compare_result = self._assert_not_contains(actual_value, expected_value)
elif comparison_operator == "start with":
compare_result = self._assert_start_with(actual_value, expected_value)
elif comparison_operator == "end with":
compare_result = self._assert_end_with(actual_value, expected_value)
elif comparison_operator == "is":
compare_result = self._assert_is(actual_value, expected_value)
elif comparison_operator == "is not":
compare_result = self._assert_is_not(actual_value, expected_value)
elif comparison_operator == "empty":
compare_result = self._assert_empty(actual_value)
elif comparison_operator == "not empty":
compare_result = self._assert_not_empty(actual_value)
elif comparison_operator == "=":
compare_result = self._assert_equal(actual_value, expected_value)
elif comparison_operator == "":
compare_result = self._assert_not_equal(actual_value, expected_value)
elif comparison_operator == ">":
compare_result = self._assert_greater_than(actual_value, expected_value)
elif comparison_operator == "<":
compare_result = self._assert_less_than(actual_value, expected_value)
elif comparison_operator == "":
compare_result = self._assert_greater_than_or_equal(actual_value, expected_value)
elif comparison_operator == "":
compare_result = self._assert_less_than_or_equal(actual_value, expected_value)
elif comparison_operator == "null":
compare_result = self._assert_null(actual_value)
elif comparison_operator == "not null":
compare_result = self._assert_not_null(actual_value)
else:
continue
process_datas["condition_results"].append({
**input_condition,
"result": compare_result
})
except Exception as e:
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
@ -99,21 +80,102 @@ class IfElseNode(BaseNode):
error=str(e)
)
if logical_operator == "and":
compare_result = False not in [condition["result"] for condition in process_datas["condition_results"]]
else:
compare_result = True in [condition["result"] for condition in process_datas["condition_results"]]
outputs = {"result": final_result, "selected_case_id": selected_case_id}
return NodeRunResult(
data = NodeRunResult(
status=WorkflowNodeExecutionStatus.SUCCEEDED,
inputs=node_inputs,
process_data=process_datas,
edge_source_handle="false" if not compare_result else "true",
outputs={
"result": compare_result
}
edge_source_handle=selected_case_id if selected_case_id else "false", # Use case ID or 'default'
outputs=outputs
)
return data
def evaluate_condition(
self, actual_value: Optional[str | list], expected_value: str, comparison_operator: str
) -> bool:
"""
Evaluate condition
:param actual_value: actual value
:param expected_value: expected value
:param comparison_operator: comparison operator
:return: bool
"""
if comparison_operator == "contains":
return self._assert_contains(actual_value, expected_value)
elif comparison_operator == "not contains":
return self._assert_not_contains(actual_value, expected_value)
elif comparison_operator == "start with":
return self._assert_start_with(actual_value, expected_value)
elif comparison_operator == "end with":
return self._assert_end_with(actual_value, expected_value)
elif comparison_operator == "is":
return self._assert_is(actual_value, expected_value)
elif comparison_operator == "is not":
return self._assert_is_not(actual_value, expected_value)
elif comparison_operator == "empty":
return self._assert_empty(actual_value)
elif comparison_operator == "not empty":
return self._assert_not_empty(actual_value)
elif comparison_operator == "=":
return self._assert_equal(actual_value, expected_value)
elif comparison_operator == "":
return self._assert_not_equal(actual_value, expected_value)
elif comparison_operator == ">":
return self._assert_greater_than(actual_value, expected_value)
elif comparison_operator == "<":
return self._assert_less_than(actual_value, expected_value)
elif comparison_operator == "":
return self._assert_greater_than_or_equal(actual_value, expected_value)
elif comparison_operator == "":
return self._assert_less_than_or_equal(actual_value, expected_value)
elif comparison_operator == "null":
return self._assert_null(actual_value)
elif comparison_operator == "not null":
return self._assert_not_null(actual_value)
else:
raise ValueError(f"Invalid comparison operator: {comparison_operator}")
def process_conditions(self, variable_pool: VariablePool, conditions: list[Condition]):
input_conditions = []
group_result = []
for condition in conditions:
actual_value = variable_pool.get_variable_value(
variable_selector=condition.variable_selector
)
if condition.value is not None:
variable_template_parser = VariableTemplateParser(template=condition.value)
expected_value = variable_template_parser.extract_variable_selectors()
variable_selectors = variable_template_parser.extract_variable_selectors()
if variable_selectors:
for variable_selector in variable_selectors:
value = variable_pool.get_variable_value(
variable_selector=variable_selector.value_selector
)
expected_value = variable_template_parser.format({variable_selector.variable: value})
else:
expected_value = condition.value
else:
expected_value = None
comparison_operator = condition.comparison_operator
input_conditions.append(
{
"actual_value": actual_value,
"expected_value": expected_value,
"comparison_operator": comparison_operator
}
)
result = self.evaluate_condition(actual_value, expected_value, comparison_operator)
group_result.append(result)
return input_conditions, group_result
def _assert_contains(self, actual_value: Optional[str | list], expected_value: str) -> bool:
"""
Assert contains

View File

@ -7,4 +7,5 @@ def handle(sender, **kwargs):
document_id = sender
dataset_id = kwargs.get('dataset_id')
doc_form = kwargs.get('doc_form')
clean_document_task.delay(document_id, dataset_id, doc_form)
file_id = kwargs.get('file_id')
clean_document_task.delay(document_id, dataset_id, doc_form, file_id)

Some files were not shown because too many files have changed in this diff Show More