Compare commits

...

120 Commits

Author SHA1 Message Date
dc23d9e693 chore: optimize asynchronous workflow deletion performance of app related data 2024-07-24 18:53:29 +08:00
83050e4a6a remove unnecessary myscale vdb test 2024-07-24 18:07:37 +08:00
09993ca722 chore: optimize asynchronous deletion performance of app related data 2024-07-24 17:57:32 +08:00
5af2df0cd5 fix: qwen fc error (#6620)
Co-authored-by: dufei <du_fei@venusgroup.com.cn>
2024-07-24 16:56:06 +08:00
f324374b95 Fix/6615 40 varchar limit on model name (#6623) 2024-07-24 16:23:16 +08:00
2aad128883 Fix: DSL backup (#6616) 2024-07-24 15:02:30 +08:00
3c78fdec1c Fix: reset button in embedded chatbot (#6611) 2024-07-24 14:46:52 +08:00
6fe9aa69cc feat: n to 1 retrieval legacy (#6554) 2024-07-24 12:50:48 +08:00
e4bb943fe5 Feat/delete single dataset retrival (#6570) 2024-07-24 12:50:11 +08:00
0fb741f269 fix: downgraded sentry-sdk to 1.44.1 due to claude LLM token returning 0 (#6597) 2024-07-24 04:49:03 +08:00
4c85393a1d feat: add GroqCloud llama3.1 series models support (#6596) 2024-07-24 00:41:58 +08:00
d5c2680fde feat: support llama3.1 series models for openrouter provider (#6595) 2024-07-24 00:37:48 +08:00
49729647ea bump to 0.6.15 (#6592) 2024-07-23 22:46:42 +08:00
85a883e281 fix(variables): NoneVariable should inherit from NoneSegment. (#6584) 2024-07-23 21:46:08 +08:00
Joe
8123a00e97 feat: update prompt generate (#6516) 2024-07-23 19:52:14 +08:00
0f6a064c08 chore: enchance auto generate prompt (#6564) 2024-07-23 19:51:38 +08:00
2bc0632d0d fix(segments): Support NoneType. (#6581) 2024-07-23 17:59:32 +08:00
75445a0c66 fix audio not working during development due to react's useEffect wil be triggered twice (#6126) 2024-07-23 17:24:29 +08:00
6a9d202414 chore: layout UI upgrade (#6577) 2024-07-23 17:11:02 +08:00
ad7552ea8d fix(api/core/workflow/nodes/llm/llm_node.py): Fix LLM Node error. (#6576) 2024-07-23 17:09:16 +08:00
c0ada940bd fix: tool params not work as expected when develop a tool (#6550) 2024-07-23 17:00:39 +08:00
1690788827 fix: name 'current_app' is not defined in recommended_app_service (#6574) 2024-07-23 16:48:21 +08:00
7c55c39085 feat: add tencent asr (#6091) 2024-07-23 16:38:39 +08:00
f17d4fe412 fix: extract only like feedback to caculate User Satisfaction (#6553) 2024-07-23 16:32:36 +08:00
f019bc4bd7 feat(variables): Support to_object. (#6572) 2024-07-23 16:22:06 +08:00
cfc408095c fix(api/nodes): Fallback to get_any in some nodes that use object or array. (#6566) 2024-07-23 15:51:07 +08:00
6b5fac3004 fix: fetch context error in llm node (#6562) 2024-07-23 15:04:51 +08:00
0569c547ee fix the issue of MILVUS_DATABASE has no effect. (#6424) 2024-07-23 15:03:55 +08:00
06fc1bce9e Add search by full text when using Oracle23ai as vector DB (#6559) 2024-07-23 15:03:21 +08:00
093b8ca475 fix: escape double quotation marks in the vector DB search query (#6506) 2024-07-23 15:02:25 +08:00
5fcc2caeed feat: add Mingdao HAP tool, implemented read and maintain HAP application worksheet data. (#6257)
Co-authored-by: takatost <takatost@gmail.com>
2024-07-23 14:34:19 +08:00
f30a51e673 fix: chat flow chat with annotation or moderation but answer empty (#6202)
Co-authored-by: jinqi.guo <jinqi.guo@ubtrobot.com>
2024-07-23 14:13:58 +08:00
642723d09e chore(deps): bump sentry-sdk from 1.39.2 to 2.8.0 in /api (#6517)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-23 13:48:23 +08:00
155e708540 Revert "chore: improve prompt auto generator" (#6556) 2024-07-23 13:35:35 +08:00
d726473c6d Revert "chore: use node specify llm to auto generate prompt" (#6555) 2024-07-23 13:31:32 +08:00
e80412df23 feat: renanme template (#6547) 2024-07-23 10:07:54 +08:00
66765acf00 Update help.yml (#6546) 2024-07-23 10:01:19 +08:00
7208ea1da9 fix: template (#6545) 2024-07-23 09:58:47 +08:00
5e2f3ec6f0 update discussion template (#6544) 2024-07-23 09:44:27 +08:00
cd7fa8027a fix(api/core/model_manager.py): Avoid mutation during iteration. (#6536) 2024-07-22 22:58:22 +08:00
617847e3c0 fix(api/services/app_generate_service.py): Remove wrong type hints. (#6535) 2024-07-22 22:58:07 +08:00
71a7211411 Feat/add email support for pro and team (#6533) 2024-07-22 19:56:46 +08:00
dc7335cdf8 chore: use node specify llm to auto generate prompt (#6525) 2024-07-22 18:16:33 +08:00
a7c1e4c7ae chore: remove support email from readme (#6530) 2024-07-22 17:23:19 +08:00
87594008f8 fix: iteration node bg color (#6523) 2024-07-22 15:43:24 +08:00
5e6fc58db3 Feat/environment variables in workflow (#6515)
Co-authored-by: JzoNg <jzongcode@gmail.com>
2024-07-22 15:29:39 +08:00
87d583f454 fix: privilege for editor role (#6521) 2024-07-22 15:01:25 +08:00
a67831773f refactor: handle missing position file gracefully (#6513) 2024-07-22 13:24:32 +08:00
5b89b6fe2d allow custom base_url of dify api server (#6510) 2024-07-22 13:24:24 +08:00
a6350daa02 chore: improve prompt auto generator (#6514) 2024-07-22 11:44:12 +08:00
dfb6f4fec6 fix: extract tool calls correctly while arguments is empty (#6503) 2024-07-22 07:43:18 +08:00
f38034e455 clean vector collection redis cache (#6494) 2024-07-21 15:09:09 +08:00
c57b3931d5 refactor(api): switch to dify_config in controllers/console (#6485) 2024-07-21 01:11:40 +08:00
f73a3a58ae update delete embeddings by id (#6489) 2024-07-20 09:04:21 +08:00
1e0e573165 update clean embedding cache query logic (#6483) 2024-07-20 01:29:25 +08:00
Joe
27e08a8e2e Fix/extra table tracing app config (#6487) 2024-07-20 00:53:31 +08:00
49ef9ef225 feat(tool): getimg.ai integration (#6260) 2024-07-19 20:32:42 +08:00
c013086e64 fix: next suggest question logic problem (#6451)
Co-authored-by: evenyan <yikun.yan@ubtrobot.com>
2024-07-19 20:26:11 +08:00
48f872a68c fix: build error (#6480) 2024-07-19 18:37:42 +08:00
4f9f175f25 fix: correct gpt-4o-mini max token (#6472)
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-07-19 18:24:58 +08:00
47e5dc218a Update CONTRIBUTING_CN "安装常见问题解答" link. (#6470) 2024-07-19 17:06:32 +08:00
90372932fe Update CONTRIBUTING "installation FAQ" link. (#6471) 2024-07-19 17:05:30 +08:00
0bb2b285da Update CONTRIBUTING_JA "installation FAQ" link. (#6469) 2024-07-19 17:05:20 +08:00
3da854fe40 chore: some components upgrage to new ui (#6468) 2024-07-19 16:39:49 +08:00
57729823a0 fix wrong method using (#6459) 2024-07-19 13:48:13 +08:00
9e168f9d1c feat: support gpt-4o-mini for openrouter provider (#6447) 2024-07-19 13:09:41 +08:00
ea45496a74 update ernie models (#6454) 2024-07-19 13:08:39 +08:00
a5fcd91ba5 chore: make text generation timeout duration configurable (#6450) 2024-07-19 12:54:15 +08:00
2ba05b041f refactor(myscale):Set the default value of the myscale vector db in DifyConfig. (#6441) 2024-07-19 10:57:45 +08:00
8e49146a35 [EMERGENCY] Fix Anthropic header issue (#6445) 2024-07-19 07:38:15 +08:00
dad3fd2dc1 feat: add gpt-4o-mini (#6442) 2024-07-19 01:53:43 +08:00
284ef52bba feat: passing the inputs values using difyChatbotConfig (#6376) 2024-07-18 21:54:16 +08:00
e493ce9981 update clean embedding cache logic (#6434) 2024-07-18 20:25:28 +08:00
7b45a5d452 fix: Unable to display images generated by Dall-E 3 (#6155) 2024-07-18 19:37:04 +08:00
4a026fa352 Enhancement: add model provider - Amazon Sagemaker (#6255)
Co-authored-by: Yuanbo Li <ybalbert@amazon.com>
Co-authored-by: crazywoola <427733928@qq.com>
2024-07-18 19:32:31 +08:00
dc847ba145 Fix the vector retrieval sorting issue (#6431)
Co-authored-by: weifj <“weifj@tuyuansu.com.cn”>
2024-07-18 19:25:41 +08:00
c0ec40e483 fix(api/core/tools/provider/builtin/spider/tools/scraper_crawler.yaml): Fix wrong placeholder config in scraper crawler tool. (#6432) 2024-07-18 19:23:18 +08:00
929c22a4e8 fix: tools edit modal schema edit issue (#6396) 2024-07-18 19:02:23 +08:00
ba181197c2 feat: api_key support for xinference (#6417)
Signed-off-by: themanforfree <themanforfree@gmail.com>
2024-07-18 18:58:46 +08:00
218930c897 fix tool icon get failed (#6375)
Co-authored-by: songyawen <songyawen@zkme.xyz>
2024-07-18 18:55:48 +08:00
c8f5dfcf17 refactor(rag): switch to dify_config. (#6410)
Co-authored-by: -LAN- <laipz8200@outlook.com>
2024-07-18 18:40:36 +08:00
27c8deb4ec feat: add custom tool timeout config to docker-compose.yaml and .env (#6419)
Signed-off-by: forrestsocool <sensensudo@gmail.com>
2024-07-18 18:40:17 +08:00
4ae4895ebe feat: add frontend unit test framework (#6426) 2024-07-18 17:35:10 +08:00
afe95fa780 feat: support get workflow task execution status (#6411) 2024-07-18 15:06:14 +08:00
166a40c66e fix: improve separation element in prompt log and TTS buttons in the operation (#6413) 2024-07-18 14:44:34 +08:00
588615b20e feat: Spider web scraper & crawler tool (#5725) 2024-07-18 14:29:33 +08:00
d5dca46854 feat: add a Tianditu tool (#6320)
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-07-18 13:04:03 +08:00
23e5eeec00 feat: added custom secure_ascii to the json_process tool (#6401) 2024-07-18 08:43:14 +08:00
287b42997d fix inconsistent label (#6404) 2024-07-18 08:37:16 +08:00
5236cb1888 fix: kill signal is not passed to the main process (#6159) 2024-07-18 07:50:54 +08:00
3b5b548af3 Add Stepfun LLM Support (#6346) 2024-07-18 07:47:18 +08:00
4782fb50c4 Support new Claude-3.5 Sonnet max token limit (#6335) 2024-07-18 07:47:06 +08:00
f55876bcc5 fix web import url is too long (#6402) 2024-07-18 01:14:36 +08:00
8a80af39c9 refactor(models&tools): switch to dify_config in models and tools. (#6394)
Co-authored-by: Poorandy <andymonicamua1@gmail.com>
2024-07-17 22:26:18 +08:00
35f4a264d6 fix: default duration (#6393) 2024-07-17 21:19:04 +08:00
6c798cbdaf fix: tool authorization setting panel not validate required fields (#6387) 2024-07-17 21:10:28 +08:00
279f1c986f embed.js add esc exit and fix avoid infinite nesting (#6360)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
2024-07-17 20:52:44 +08:00
443e96777b update empty document caused delete exist collection (#6392) 2024-07-17 20:38:32 +08:00
65bc4e0fc0 Fix issues related to search apps, notification duration, and loading icon on the explore page (#6374) 2024-07-17 20:24:31 +08:00
a6dbd26f75 Add the API documentation for streaming TTS (Text-to-Speech) (#6382) 2024-07-17 19:44:16 +08:00
f3f052ba36 fix: rename model from ernie-4.0-8k-Latest to ernie-4.0-8k-latest (#6383) 2024-07-17 19:07:47 +08:00
1bc90b992b Feat/optimize clean dataset logic (#6384) 2024-07-17 17:36:11 +08:00
fc37887a21 refactor(api/core/workflow/nodes/http_request): Remove mask_authorization_header because its alwary true. (#6379) 2024-07-17 16:52:14 +08:00
984658f5e9 fix: workflow sync before export (#6380) 2024-07-17 16:51:48 +08:00
4ed1476531 fix: incorrect config key name (#6371)
Co-authored-by: LionYuYu <lyu@theknotww.com>
2024-07-17 15:52:51 +08:00
ca69e1a2f5 Add multilingual support for TTS (Text-to-Speech) functionality. (#6369) 2024-07-17 14:41:29 +08:00
20f73cb756 fix: default model set wrong(#6327) (#6332)
Co-authored-by: maiyouming <maiyouming@yafex.cn>
2024-07-17 14:14:12 +08:00
4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) 2024-07-17 14:13:57 +08:00
7943f7f697 chore: fix legacy API usages of Query.get() by Session.get() in SqlAlchemy 2 (#6340) 2024-07-17 13:54:35 +08:00
7c397f5722 update celery beat scheduler time to env (#6352) 2024-07-17 02:31:30 +08:00
06fcc0c650 Fix tts api err (#6349)
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2024-07-16 21:53:57 +08:00
0de224b153 fix wrong using of RetrievalMethod Enum (#6345) 2024-07-16 19:09:04 +08:00
ed9e692263 feat: bedrock model runtime enhancement (#6299) 2024-07-16 15:54:39 +08:00
cc0c826f36 Add tool: Google Translate (#6156) 2024-07-16 15:28:33 +08:00
0099ef6896 fix: better qr code panel and webapp url regen confirmation (#6321) 2024-07-16 15:06:49 +08:00
55d7374ab7 Docs: Translate (#6329) 2024-07-16 15:01:25 +08:00
988aa4b5da update clean_unused_datasets_task timedelta (#6324) 2024-07-16 13:43:04 +08:00
c5d06e7943 dep: bump Pydantic from 2.7 to 2.8 (#6273) 2024-07-16 13:40:58 +08:00
23e8043160 fix: prompt editor new line (#6310) 2024-07-16 11:23:26 +08:00
d66d7146a3 chore:update azure GA version 2024-06-01 (#6307) 2024-07-16 10:32:18 +08:00
526 changed files with 16170 additions and 3090 deletions

24
.github/DISCUSSION_TEMPLATE/general.yml vendored Normal file
View File

@ -0,0 +1,24 @@
title: "General Discussion"
body:
- type: checkboxes
attributes:
label: Self Checks
description: "To make sure we get to you in time, please check the following :)"
options:
- label: I have searched for existing issues [search for existing issues](https://github.com/langgenius/dify/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit this report (我已阅读并同意 [Language Policy](https://github.com/langgenius/dify/issues/1542)).
required: true
- label: "请务必使用英文提交 Issue否则会被关闭。谢谢:"
required: true
- label: "Please do not modify this template :) and fill in all the required fields."
required: true
- type: textarea
attributes:
label: Content
placeholder: Please describe the content you would like to discuss.
validations:
required: true
- type: markdown
attributes:
value: Please limit one request per issue.

30
.github/DISCUSSION_TEMPLATE/help.yml vendored Normal file
View File

@ -0,0 +1,30 @@
title: "Help"
body:
- type: checkboxes
attributes:
label: Self Checks
description: "To make sure we get to you in time, please check the following :)"
options:
- label: I have searched for existing issues [search for existing issues](https://github.com/langgenius/dify/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit this report (我已阅读并同意 [Language Policy](https://github.com/langgenius/dify/issues/1542)).
required: true
- label: "请务必使用英文提交 Issue否则会被关闭。谢谢:"
required: true
- label: "Please do not modify this template :) and fill in all the required fields."
required: true
- type: textarea
attributes:
label: 1. Is this request related to a challenge you're experiencing? Tell me about your story.
placeholder: Please describe the specific scenario or problem you're facing as clearly as possible. For instance "I was trying to use [feature] for [specific task], and [what happened]... It was frustrating because...."
validations:
required: true
- type: textarea
attributes:
label: 2. Additional context or comments
placeholder: (Any other information, comments, documentations, links, or screenshots that would provide more clarity. This is the place to add anything else not covered above.)
validations:
required: false
- type: markdown
attributes:
value: Please limit one request per issue.

View File

@ -0,0 +1,37 @@
title: Suggestions for New Features
body:
- type: checkboxes
attributes:
label: Self Checks
description: "To make sure we get to you in time, please check the following :)"
options:
- label: I have searched for existing issues [search for existing issues](https://github.com/langgenius/dify/issues), including closed ones.
required: true
- label: I confirm that I am using English to submit this report (我已阅读并同意 [Language Policy](https://github.com/langgenius/dify/issues/1542)).
required: true
- label: "请务必使用英文提交 Issue否则会被关闭。谢谢:"
required: true
- label: "Please do not modify this template :) and fill in all the required fields."
required: true
- type: textarea
attributes:
label: 1. Is this request related to a challenge you're experiencing? Tell me about your story.
placeholder: Please describe the specific scenario or problem you're facing as clearly as possible. For instance "I was trying to use [feature] for [specific task], and [what happened]... It was frustrating because...."
validations:
required: true
- type: textarea
attributes:
label: 2. Additional context or comments
placeholder: (Any other information, comments, documentations, links, or screenshots that would provide more clarity. This is the place to add anything else not covered above.)
validations:
required: false
- type: checkboxes
attributes:
label: 3. Can you help us with this feature?
description: Let us know! This is not a commitment, but a starting point for collaboration.
options:
- label: I am interested in contributing to this feature.
required: false
- type: markdown
attributes:
value: Please limit one request per issue.

View File

@ -89,6 +89,5 @@ jobs:
pgvecto-rs
pgvector
chroma
myscale
- name: Test Vector Stores
run: poetry run -C api bash dev/pytest/pytest_vdb.sh

1
.gitignore vendored
View File

@ -174,5 +174,6 @@ sdks/python-client/dify_client.egg-info
.vscode/*
!.vscode/launch.json
pyrightconfig.json
api/.vscode
.idea/

View File

@ -81,7 +81,7 @@ Dify requires the following dependencies to build, make sure they're installed o
Dify is composed of a backend and a frontend. Navigate to the backend directory by `cd api/`, then follow the [Backend README](api/README.md) to install it. In a separate terminal, navigate to the frontend directory by `cd web/`, then follow the [Frontend README](web/README.md) to install.
Check the [installation FAQ](https://docs.dify.ai/getting-started/faq/install-faq) for a list of common issues and steps to troubleshoot.
Check the [installation FAQ](https://docs.dify.ai/learn-more/faq/self-host-faq) for a list of common issues and steps to troubleshoot.
### 5. Visit dify in your browser

View File

@ -2,17 +2,17 @@
考虑到我们的现状,我们需要灵活快速地交付,但我们也希望确保像你这样的贡献者在贡献过程中获得尽可能顺畅的体验。我们为此编写了这份贡献指南,旨在让你熟悉代码库和我们与贡献者的合作方式,以便你能快速进入有趣的部分。
这份指南,就像 Dify 本身一样,是一个不断改进的工作。如果有时它落后于实际项目,我们非常感谢你的理解,并欢迎任何反馈以供我们改进。
这份指南,就像 Dify 本身一样,是一个不断改进的工作。如果有时它落后于实际项目,我们非常感谢你的理解,并欢迎提供任何反馈以供我们改进。
在许可方面,请花一分钟阅读我们简短的[许可证和贡献者协议](./LICENSE)。社区还遵守[行为准则](https://github.com/langgenius/.github/blob/main/CODE_OF_CONDUCT.md)。
在许可方面,请花一分钟阅读我们简短的 [许可证和贡献者协议](./LICENSE)。社区还遵守 [行为准则](https://github.com/langgenius/.github/blob/main/CODE_OF_CONDUCT.md)。
## 在开始之前
[查找](https://github.com/langgenius/dify/issues?q=is:issue+is:closed)现有问题,或[创建](https://github.com/langgenius/dify/issues/new/choose)一个新问题。我们将问题分为两类:
[查找](https://github.com/langgenius/dify/issues?q=is:issue+is:closed)现有问题,或 [创建](https://github.com/langgenius/dify/issues/new/choose) 一个新问题。我们将问题分为两类:
### 功能请求:
* 如果您要提出新的功能请求,请解释所提议的功能的目标,并尽可能提供详细的上下文。[@perzeusss](https://github.com/perzeuss)制作了一个很好的[功能请求助手](https://udify.app/chat/MK2kVSnw1gakVwMX),可以帮助您起草需求。随时尝试一下。
* 如果您要提出新的功能请求,请解释所提议的功能的目标,并尽可能提供详细的上下文。[@perzeusss](https://github.com/perzeuss) 制作了一个很好的 [功能请求助手](https://udify.app/chat/MK2kVSnw1gakVwMX),可以帮助您起草需求。随时尝试一下。
* 如果您想从现有问题中选择一个,请在其下方留下评论表示您的意愿。
@ -20,45 +20,44 @@
根据所提议的功能所属的领域不同,您可能需要与不同的团队成员交流。以下是我们团队成员目前正在从事的各个领域的概述:
| Member | Scope |
| 团队成员 | 工作范围 |
| ------------------------------------------------------------ | ---------------------------------------------------- |
| [@yeuoly](https://github.com/Yeuoly) | Architecting Agents |
| [@jyong](https://github.com/JohnJyong) | RAG pipeline design |
| [@GarfieldDai](https://github.com/GarfieldDai) | Building workflow orchestrations |
| [@iamjoel](https://github.com/iamjoel) & [@zxhlyh](https://github.com/zxhlyh) | Making our frontend a breeze to use |
| [@guchenhe](https://github.com/guchenhe) & [@crazywoola](https://github.com/crazywoola) | Developer experience, points of contact for anything |
| [@takatost](https://github.com/takatost) | Overall product direction and architecture |
| [@yeuoly](https://github.com/Yeuoly) | 架构 Agents |
| [@jyong](https://github.com/JohnJyong) | RAG 流水线设计 |
| [@GarfieldDai](https://github.com/GarfieldDai) | 构建 workflow 编排 |
| [@iamjoel](https://github.com/iamjoel) & [@zxhlyh](https://github.com/zxhlyh) | 让我们的前端更易用 |
| [@guchenhe](https://github.com/guchenhe) & [@crazywoola](https://github.com/crazywoola) | 开发人员体验, 综合事项联系人 |
| [@takatost](https://github.com/takatost) | 产品整体方向和架构 |
How we prioritize:
事项优先级:
| Feature Type | Priority |
| 功能类型 | 优先级 |
| ------------------------------------------------------------ | --------------- |
| High-Priority Features as being labeled by a team member | High Priority |
| Popular feature requests from our [community feedback board](https://github.com/langgenius/dify/discussions/categories/feedbacks) | Medium Priority |
| Non-core features and minor enhancements | Low Priority |
| Valuable but not immediate | Future-Feature |
| 被团队成员标记为高优先级的功能 | 高优先级 |
| [community feedback board](https://github.com/langgenius/dify/discussions/categories/feedbacks) 内反馈的常见功能请求 | 中等优先级 |
| 非核心功能和小幅改进 | 低优先级 |
| 有价值当不紧急 | 未来功能 |
### 其他任何事情例如bug报告、性能优化、拼写错误更正
### 其他任何事情(例如 bug 报告、性能优化、拼写错误更正):
* 立即开始编码。
How we prioritize:
事项优先级:
| Issue Type | Priority |
| Issue 类型 | 优先级 |
| ------------------------------------------------------------ | --------------- |
| Bugs in core functions (cannot login, applications not working, security loopholes) | Critical |
| Non-critical bugs, performance boosts | Medium Priority |
| Minor fixes (typos, confusing but working UI) | Low Priority |
| 核心功能的 Bugs例如无法登录、应用无法工作、安全漏洞 | 紧急 |
| 非紧急 bugs, 性能提升 | 中等优先级 |
| 小幅修复(错别字, 能正常工作但存在误导的 UI) | 低优先级 |
## 安装
以下是设置Dify进行开发的步骤
以下是设置 Dify 进行开发的步骤:
### 1. Fork该仓库
### 1. Fork 该仓库
### 2. 克隆仓库
从终端克隆fork的仓库:
从终端克隆代码仓库:
```
git clone git@github.com:<github_username>/dify.git
@ -76,72 +75,72 @@ Dify 依赖以下工具和库:
### 4. 安装
Dify由后端和前端组成。通过`cd api/`导航到后端目录,然后按照[后端README](api/README.md)进行安装。在另一个终端中,通过`cd web/`导航到前端目录,然后按照[前端README](web/README.md)进行安装。
Dify 由后端和前端组成。通过 `cd api/` 导航到后端目录,然后按照 [后端 README](api/README.md) 进行安装。在另一个终端中,通过 `cd web/` 导航到前端目录,然后按照 [前端 README](web/README.md) 进行安装。
查看[安装常见问题解答](https://docs.dify.ai/getting-started/faq/install-faq)以获取常见问题列表和故障排除步骤。
查看 [安装常见问题解答](https://docs.dify.ai/v/zh-hans/learn-more/faq/install-faq) 以获取常见问题列表和故障排除步骤。
### 5. 在浏览器中访问Dify
### 5. 在浏览器中访问 Dify
为了验证您的设置,打开浏览器并访问[http://localhost:3000](http://localhost:3000)默认或您自定义的URL和端口。现在您应该看到Dify正在运行。
为了验证您的设置,打开浏览器并访问 [http://localhost:3000](http://localhost:3000)(默认或您自定义的 URL 和端口)。现在您应该看到 Dify 正在运行。
## 开发
如果您要添加模型提供程序,请参考[此指南](https://github.com/langgenius/dify/blob/main/api/core/model_runtime/README.md)。
如果您要添加模型提供程序,请参考 [此指南](https://github.com/langgenius/dify/blob/main/api/core/model_runtime/README.md)。
如果您要向AgentWorkflow添加工具提供程序请参考[此指南](./api/core/tools/README.md)。
如果您要向 AgentWorkflow 添加工具提供程序,请参考 [此指南](./api/core/tools/README.md)。
为了帮助您快速了解您的贡献在哪个部分以下是Dify后端和前端的简要注释大纲
为了帮助您快速了解您的贡献在哪个部分,以下是 Dify 后端和前端的简要注释大纲:
### 后端
Dify的后端使用Python编写使用[Flask](https://flask.palletsprojects.com/en/3.0.x/)框架。它使用[SQLAlchemy](https://www.sqlalchemy.org/)作为ORM使用[Celery](https://docs.celeryq.dev/en/stable/getting-started/introduction.html)作为任务队列。授权逻辑通过Flask-login进行处理。
Dify 的后端使用 Python 编写,使用 [Flask](https://flask.palletsprojects.com/en/3.0.x/) 框架。它使用 [SQLAlchemy](https://www.sqlalchemy.org/) 作为 ORM使用 [Celery](https://docs.celeryq.dev/en/stable/getting-started/introduction.html) 作为任务队列。授权逻辑通过 Flask-login 进行处理。
```
[api/]
├── constants // Constant settings used throughout code base.
├── controllers // API route definitions and request handling logic.
├── core // Core application orchestration, model integrations, and tools.
├── docker // Docker & containerization related configurations.
├── events // Event handling and processing
├── extensions // Extensions with 3rd party frameworks/platforms.
├── fields // field definitions for serialization/marshalling.
├── libs // Reusable libraries and helpers.
├── migrations // Scripts for database migration.
├── models // Database models & schema definitions.
├── services // Specifies business logic.
├── storage // Private key storage.
├── tasks // Handling of async tasks and background jobs.
├── constants // 用于整个代码库的常量设置。
├── controllers // API 路由定义和请求处理逻辑。
├── core // 核心应用编排、模型集成和工具。
├── docker // Docker 和容器化相关配置。
├── events // 事件处理和处理。
├── extensions // 与第三方框架/平台的扩展。
├── fields // 用于序列化/封装的字段定义。
├── libs // 可重用的库和助手。
├── migrations // 数据库迁移脚本。
├── models // 数据库模型和架构定义。
├── services // 指定业务逻辑。
├── storage // 私钥存储。
├── tasks // 异步任务和后台作业的处理。
└── tests
```
### 前端
该网站使用基于Typescript[Next.js](https://nextjs.org/)模板进行引导,并使用[Tailwind CSS](https://tailwindcss.com/)进行样式设计。[React-i18next](https://react.i18next.com/)用于国际化。
该网站使用基于 Typescript[Next.js](https://nextjs.org/) 模板进行引导,并使用 [Tailwind CSS](https://tailwindcss.com/) 进行样式设计。[React-i18next](https://react.i18next.com/) 用于国际化。
```
[web/]
├── app // layouts, pages, and components
│ ├── (commonLayout) // common layout used throughout the app
│ ├── (shareLayout) // layouts specifically shared across token-specific sessions
│ ├── activate // activate page
│ ├── components // shared by pages and layouts
│ ├── install // install page
│ ├── signin // signin page
│ └── styles // globally shared styles
├── assets // Static assets
├── bin // scripts ran at build step
├── config // adjustable settings and options
├── context // shared contexts used by different portions of the app
├── dictionaries // Language-specific translate files
├── docker // container configurations
├── hooks // Reusable hooks
├── i18n // Internationalization configuration
├── models // describes data models & shapes of API responses
├── public // meta assets like favicon
├── service // specifies shapes of API actions
├── app // 布局、页面和组件
│ ├── (commonLayout) // 整个应用通用的布局
│ ├── (shareLayout) // 在特定会话中共享的布局
│ ├── activate // 激活页面
│ ├── components // 页面和布局共享的组件
│ ├── install // 安装页面
│ ├── signin // 登录页面
│ └── styles // 全局共享的样式
├── assets // 静态资源
├── bin // 构建步骤运行的脚本
├── config // 可调整的设置和选项
├── context // 应用中不同部分使用的共享上下文
├── dictionaries // 语言特定的翻译文件
├── docker // 容器配置
├── hooks // 可重用的钩子
├── i18n // 国际化配置
├── models // 描述数据模型和 API 响应的形状
├── public // favicon 等元资源
├── service // 定义 API 操作的形状
├── test
├── types // descriptions of function params and return values
└── utils // Shared utility functions
├── types // 函数参数和返回值的描述
└── utils // 共享的实用函数
```
## 提交你的 PR

View File

@ -82,7 +82,7 @@ Dify はバックエンドとフロントエンドから構成されています
まず`cd api/`でバックエンドのディレクトリに移動し、[Backend README](api/README.md)に従ってインストールします。
次に別のターミナルで、`cd web/`でフロントエンドのディレクトリに移動し、[Frontend README](web/README.md)に従ってインストールしてください。
よくある問題とトラブルシューティングの手順については、[installation FAQ](https://docs.dify.ai/getting-started/faq/install-faq) を確認してください。
よくある問題とトラブルシューティングの手順については、[installation FAQ](https://docs.dify.ai/v/japanese/learn-more/faq/install-faq) を確認してください。
### 5. ブラウザで dify にアクセスする

View File

@ -216,7 +216,6 @@ At the same time, please consider supporting Dify by sharing it on social media
* [Github Discussion](https://github.com/langgenius/dify/discussions). Best for: sharing feedback and asking questions.
* [GitHub Issues](https://github.com/langgenius/dify/issues). Best for: bugs you encounter using Dify.AI, and feature proposals. See our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Email](mailto:support@dify.ai?subject=[GitHub]Questions%20About%20Dify). Best for: questions you have about using Dify.AI.
* [Discord](https://discord.gg/FngNHpbcY7). Best for: sharing your applications and hanging out with the community.
* [Twitter](https://twitter.com/dify_ai). Best for: sharing your applications and hanging out with the community.

View File

@ -199,7 +199,6 @@ docker compose up -d
## المجتمع والاتصال
* [مناقشة Github](https://github.com/langgenius/dify/discussions). الأفضل لـ: مشاركة التعليقات وطرح الأسئلة.
* [المشكلات على GitHub](https://github.com/langgenius/dify/issues). الأفضل لـ: الأخطاء التي تواجهها في استخدام Dify.AI، واقتراحات الميزات. انظر [دليل المساهمة](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [البريد الإلكتروني](mailto:support@dify.ai?subject=[GitHub]Questions%20About%20Dify). الأفضل لـ: الأسئلة التي تتعلق باستخدام Dify.AI.
* [Discord](https://discord.gg/FngNHpbcY7). الأفضل لـ: مشاركة تطبيقاتك والترفيه مع المجتمع.
* [تويتر](https://twitter.com/dify_ai). الأفضل لـ: مشاركة تطبيقاتك والترفيه مع المجتمع.

View File

@ -224,7 +224,6 @@ Al mismo tiempo, considera apoyar a Dify compartiéndolo en redes sociales y en
* [Discusión en GitHub](https://github.com/langgenius/dify/discussions). Lo mejor para: compartir comentarios y hacer preguntas.
* [Reporte de problemas en GitHub](https://github.com/langgenius/dify/issues). Lo mejor para: errores que encuentres usando Dify.AI y propuestas de características. Consulta nuestra [Guía de contribución](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Correo electrónico](mailto:support@dify.ai?subject=[GitHub]Questions%20About%20Dify). Lo mejor para: preguntas que tengas sobre el uso de Dify.AI.
* [Discord](https://discord.gg/FngNHpbcY7). Lo mejor para: compartir tus aplicaciones y pasar el rato con la comunidad.
* [Twitter](https://twitter.com/dify_ai). Lo mejor para: compartir tus aplicaciones y pasar el rato con la comunidad.

View File

@ -222,7 +222,6 @@ Dans le même temps, veuillez envisager de soutenir Dify en le partageant sur le
* [Discussion GitHub](https://github.com/langgenius/dify/discussions). Meilleur pour: partager des commentaires et poser des questions.
* [Problèmes GitHub](https://github.com/langgenius/dify/issues). Meilleur pour: les bogues que vous rencontrez en utilisant Dify.AI et les propositions de fonctionnalités. Consultez notre [Guide de contribution](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [E-mail](mailto:support@dify.ai?subject=[GitHub]Questions%20About%20Dify). Meilleur pour: les questions que vous avez sur l'utilisation de Dify.AI.
* [Discord](https://discord.gg/FngNHpbcY7). Meilleur pour: partager vos applications et passer du temps avec la communauté.
* [Twitter](https://twitter.com/dify_ai). Meilleur pour: partager vos applications et passer du temps avec la communauté.

View File

@ -221,7 +221,6 @@ docker compose up -d
* [Github Discussion](https://github.com/langgenius/dify/discussions). 主に: フィードバックの共有や質問。
* [GitHub Issues](https://github.com/langgenius/dify/issues). 主に: Dify.AIを使用する際に発生するエラーや問題については、[貢献ガイド](CONTRIBUTING_JA.md)を参照してください
* [Email](mailto:support@dify.ai?subject=[GitHub]Questions%20About%20Dify). 主に: Dify.AIの使用に関する質問。
* [Discord](https://discord.gg/FngNHpbcY7). 主に: アプリケーションの共有やコミュニティとの交流。
* [Twitter](https://twitter.com/dify_ai). 主に: アプリケーションの共有やコミュニティとの交流。
@ -239,7 +238,7 @@ docker compose up -d
<td>無料の30分間のミーティングをスケジュール</td>
</tr>
<tr>
<td><a href='mailto:support@dify.ai?subject=[GitHub]Technical%20Support'>技術サポート</a></td>
<td><a href='https://github.com/langgenius/dify/issues'>技術サポート</a></td>
<td>技術的な問題やサポートに関する質問</td>
</tr>
<tr>

View File

@ -224,7 +224,6 @@ At the same time, please consider supporting Dify by sharing it on social media
). Best for: sharing feedback and asking questions.
* [GitHub Issues](https://github.com/langgenius/dify/issues). Best for: bugs you encounter using Dify.AI, and feature proposals. See our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Email](mailto:support@dify.ai?subject=[GitHub]Questions%20About%20Dify). Best for: questions you have about using Dify.AI.
* [Discord](https://discord.gg/FngNHpbcY7). Best for: sharing your applications and hanging out with the community.
* [Twitter](https://twitter.com/dify_ai). Best for: sharing your applications and hanging out with the community.

View File

@ -214,7 +214,6 @@ Dify를 Kubernetes에 배포하고 프리미엄 스케일링 설정을 구성했
* [Github 토론](https://github.com/langgenius/dify/discussions). 피드백 공유 및 질문하기에 적합합니다.
* [GitHub 이슈](https://github.com/langgenius/dify/issues). Dify.AI 사용 중 발견한 버그와 기능 제안에 적합합니다. [기여 가이드](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md)를 참조하세요.
* [이메일](mailto:support@dify.ai?subject=[GitHub]Questions%20About%20Dify). Dify.AI 사용에 대한 질문하기에 적합합니다.
* [디스코드](https://discord.gg/FngNHpbcY7). 애플리케이션 공유 및 커뮤니티와 소통하기에 적합합니다.
* [트위터](https://twitter.com/dify_ai). 애플리케이션 공유 및 커뮤니티와 소통하기에 적합합니다.

View File

@ -256,3 +256,7 @@ WORKFLOW_CALL_MAX_DEPTH=5
# App configuration
APP_MAX_EXECUTION_TIME=1200
APP_MAX_ACTIVE_REQUESTS=0
# Celery beat configuration
CELERY_BEAT_SCHEDULER_TIME=1

View File

@ -1,7 +1,5 @@
import os
from configs import dify_config
if os.environ.get("DEBUG", "false").lower() != 'true':
from gevent import monkey
@ -23,7 +21,9 @@ from flask import Flask, Response, request
from flask_cors import CORS
from werkzeug.exceptions import Unauthorized
import contexts
from commands import register_commands
from configs import dify_config
# DO NOT REMOVE BELOW
from events import event_handlers
@ -181,7 +181,10 @@ def load_user_from_request(request_from_flask_login):
decoded = PassportService().verify(auth_token)
user_id = decoded.get('user_id')
return AccountService.load_logged_in_account(account_id=user_id, token=auth_token)
account = AccountService.load_logged_in_account(account_id=user_id, token=auth_token)
if account:
contexts.tenant_id.set(account.current_tenant_id)
return account
@login_manager.unauthorized_handler

View File

@ -23,6 +23,7 @@ class SecurityConfig(BaseSettings):
default=24,
)
class AppExecutionConfig(BaseSettings):
"""
App Execution configs
@ -405,7 +406,6 @@ class DataSetConfig(BaseSettings):
default=False,
)
class WorkspaceConfig(BaseSettings):
"""
Workspace configs
@ -435,6 +435,13 @@ class ImageFormatConfig(BaseSettings):
)
class CeleryBeatConfig(BaseSettings):
CELERY_BEAT_SCHEDULER_TIME: int = Field(
description='the time of the celery scheduler, default to 1 day',
default=1,
)
class FeatureConfig(
# place the configs in alphabet order
AppExecutionConfig,
@ -462,5 +469,6 @@ class FeatureConfig(
# hosted services config
HostedServiceConfig,
CeleryBeatConfig,
):
pass

View File

@ -79,7 +79,7 @@ class HostedAzureOpenAiConfig(BaseSettings):
default=False,
)
HOSTED_OPENAI_API_KEY: Optional[str] = Field(
HOSTED_AZURE_OPENAI_API_KEY: Optional[str] = Field(
description='',
default=None,
)

View File

@ -1,4 +1,3 @@
from typing import Optional
from pydantic import BaseModel, Field, PositiveInt
@ -8,32 +7,32 @@ class MyScaleConfig(BaseModel):
MyScale configs
"""
MYSCALE_HOST: Optional[str] = Field(
MYSCALE_HOST: str = Field(
description='MyScale host',
default=None,
default='localhost',
)
MYSCALE_PORT: Optional[PositiveInt] = Field(
MYSCALE_PORT: PositiveInt = Field(
description='MyScale port',
default=8123,
)
MYSCALE_USER: Optional[str] = Field(
MYSCALE_USER: str = Field(
description='MyScale user',
default=None,
default='default',
)
MYSCALE_PASSWORD: Optional[str] = Field(
MYSCALE_PASSWORD: str = Field(
description='MyScale password',
default=None,
default='',
)
MYSCALE_DATABASE: Optional[str] = Field(
MYSCALE_DATABASE: str = Field(
description='MyScale database name',
default=None,
default='default',
)
MYSCALE_FTS_PARAMS: Optional[str] = Field(
MYSCALE_FTS_PARAMS: str = Field(
description='MyScale fts index parameters',
default=None,
default='',
)

View File

@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description='Dify version',
default='0.6.14',
default='0.6.15',
)
COMMIT_SHA: str = Field(

View File

@ -0,0 +1,2 @@
# TODO: Update all string in code to use this constant
HIDDEN_VALUE = '[__HIDDEN__]'

3
api/contexts/__init__.py Normal file
View File

@ -0,0 +1,3 @@
from contextvars import ContextVar
tenant_id: ContextVar[str] = ContextVar('tenant_id')

View File

@ -212,7 +212,7 @@ class AppCopyApi(Resource):
parser.add_argument('icon_background', type=str, location='json')
args = parser.parse_args()
data = AppDslService.export_dsl(app_model=app_model)
data = AppDslService.export_dsl(app_model=app_model, include_secret=True)
app = AppDslService.import_and_create_new_app(
tenant_id=current_user.current_tenant_id,
data=data,
@ -234,8 +234,13 @@ class AppExportApi(Resource):
if not current_user.is_editor:
raise Forbidden()
# Add include_secret params
parser = reqparse.RequestParser()
parser.add_argument('include_secret', type=inputs.boolean, default=False, location='args')
args = parser.parse_args()
return {
"data": AppDslService.export_dsl(app_model=app_model)
"data": AppDslService.export_dsl(app_model=app_model, include_secret=args['include_secret'])
}

View File

@ -22,17 +22,19 @@ class RuleGenerateApi(Resource):
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument('audiences', type=str, required=True, nullable=False, location='json')
parser.add_argument('hoping_to_solve', type=str, required=True, nullable=False, location='json')
parser.add_argument('instruction', type=str, required=True, nullable=False, location='json')
parser.add_argument('model_config', type=dict, required=True, nullable=False, location='json')
parser.add_argument('no_variable', type=bool, required=True, default=False, location='json')
args = parser.parse_args()
account = current_user
try:
rules = LLMGenerator.generate_rule_config(
account.current_tenant_id,
args['audiences'],
args['hoping_to_solve']
tenant_id=account.current_tenant_id,
instruction=args['instruction'],
model_config=args['model_config'],
no_variable=args['no_variable']
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)

View File

@ -281,7 +281,7 @@ class UserSatisfactionRateStatistic(Resource):
SELECT date(DATE_TRUNC('day', m.created_at AT TIME ZONE 'UTC' AT TIME ZONE :tz )) AS date,
COUNT(m.id) as message_count, COUNT(mf.id) as feedback_count
FROM messages m
LEFT JOIN message_feedbacks mf on mf.message_id=m.id
LEFT JOIN message_feedbacks mf on mf.message_id=m.id and mf.rating='like'
WHERE m.app_id = :app_id
'''
arg_dict = {'tz': account.timezone, 'app_id': app_model.id}

View File

@ -13,6 +13,7 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.app.segments import factory
from core.errors.error import AppInvokeQuotaExceededError
from fields.workflow_fields import workflow_fields
from fields.workflow_run_fields import workflow_run_node_execution_fields
@ -41,7 +42,7 @@ class DraftWorkflowApi(Resource):
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
# fetch draft workflow by app_model
workflow_service = WorkflowService()
workflow = workflow_service.get_draft_workflow(app_model=app_model)
@ -64,13 +65,15 @@ class DraftWorkflowApi(Resource):
if not current_user.is_editor:
raise Forbidden()
content_type = request.headers.get('Content-Type')
content_type = request.headers.get('Content-Type', '')
if 'application/json' in content_type:
parser = reqparse.RequestParser()
parser.add_argument('graph', type=dict, required=True, nullable=False, location='json')
parser.add_argument('features', type=dict, required=True, nullable=False, location='json')
parser.add_argument('hash', type=str, required=False, location='json')
# TODO: set this to required=True after frontend is updated
parser.add_argument('environment_variables', type=list, required=False, location='json')
args = parser.parse_args()
elif 'text/plain' in content_type:
try:
@ -84,7 +87,8 @@ class DraftWorkflowApi(Resource):
args = {
'graph': data.get('graph'),
'features': data.get('features'),
'hash': data.get('hash')
'hash': data.get('hash'),
'environment_variables': data.get('environment_variables')
}
except json.JSONDecodeError:
return {'message': 'Invalid JSON data'}, 400
@ -94,12 +98,15 @@ class DraftWorkflowApi(Resource):
workflow_service = WorkflowService()
try:
environment_variables_list = args.get('environment_variables') or []
environment_variables = [factory.build_variable_from_mapping(obj) for obj in environment_variables_list]
workflow = workflow_service.sync_draft_workflow(
app_model=app_model,
graph=args.get('graph'),
features=args.get('features'),
graph=args['graph'],
features=args['features'],
unique_hash=args.get('hash'),
account=current_user
account=current_user,
environment_variables=environment_variables,
)
except WorkflowHashNotEqualError:
raise DraftWorkflowNotSync()

View File

@ -1,10 +1,11 @@
import flask_restful
from flask import current_app, request
from flask import request
from flask_login import current_user
from flask_restful import Resource, marshal, marshal_with, reqparse
from werkzeug.exceptions import Forbidden, NotFound
import services
from configs import dify_config
from controllers.console import api
from controllers.console.apikey import api_key_fields, api_key_list
from controllers.console.app.error import ProviderNotInitializeError
@ -530,7 +531,7 @@ class DatasetApiBaseUrlApi(Resource):
@account_initialization_required
def get(self):
return {
'api_base_url': (current_app.config['SERVICE_API_URL'] if current_app.config['SERVICE_API_URL']
'api_base_url': (dify_config.SERVICE_API_URL if dify_config.SERVICE_API_URL
else request.host_url.rstrip('/')) + '/v1'
}
@ -540,20 +541,20 @@ class DatasetRetrievalSettingApi(Resource):
@login_required
@account_initialization_required
def get(self):
vector_type = current_app.config['VECTOR_STORE']
vector_type = dify_config.VECTOR_STORE
match vector_type:
case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT | VectorType.ORACLE:
case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT:
return {
'retrieval_method': [
RetrievalMethod.SEMANTIC_SEARCH
RetrievalMethod.SEMANTIC_SEARCH.value
]
}
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH | VectorType.ANALYTICDB | VectorType.MYSCALE:
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH | VectorType.ANALYTICDB | VectorType.MYSCALE | VectorType.ORACLE:
return {
'retrieval_method': [
RetrievalMethod.SEMANTIC_SEARCH,
RetrievalMethod.FULL_TEXT_SEARCH,
RetrievalMethod.HYBRID_SEARCH,
RetrievalMethod.SEMANTIC_SEARCH.value,
RetrievalMethod.FULL_TEXT_SEARCH.value,
RetrievalMethod.HYBRID_SEARCH.value,
]
}
case _:
@ -566,18 +567,18 @@ class DatasetRetrievalSettingMockApi(Resource):
@account_initialization_required
def get(self, vector_type):
match vector_type:
case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT | VectorType.ORACLE:
case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT:
return {
'retrieval_method': [
RetrievalMethod.SEMANTIC_SEARCH
RetrievalMethod.SEMANTIC_SEARCH.value
]
}
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH| VectorType.ANALYTICDB | VectorType.MYSCALE:
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH| VectorType.ANALYTICDB | VectorType.MYSCALE | VectorType.ORACLE:
return {
'retrieval_method': [
RetrievalMethod.SEMANTIC_SEARCH,
RetrievalMethod.FULL_TEXT_SEARCH,
RetrievalMethod.HYBRID_SEARCH,
RetrievalMethod.SEMANTIC_SEARCH.value,
RetrievalMethod.FULL_TEXT_SEARCH.value,
RetrievalMethod.HYBRID_SEARCH.value,
]
}
case _:

View File

@ -75,7 +75,7 @@ class DatasetDocumentSegmentListApi(Resource):
)
if last_id is not None:
last_segment = DocumentSegment.query.get(str(last_id))
last_segment = db.session.get(DocumentSegment, str(last_id))
if last_segment:
query = query.filter(
DocumentSegment.position > last_segment.position)

View File

@ -1,8 +1,9 @@
from flask import current_app, request
from flask import request
from flask_login import current_user
from flask_restful import Resource, marshal_with
import services
from configs import dify_config
from controllers.console import api
from controllers.console.datasets.error import (
FileTooLargeError,
@ -26,9 +27,9 @@ class FileApi(Resource):
@account_initialization_required
@marshal_with(upload_config_fields)
def get(self):
file_size_limit = current_app.config.get("UPLOAD_FILE_SIZE_LIMIT")
batch_count_limit = current_app.config.get("UPLOAD_FILE_BATCH_LIMIT")
image_file_size_limit = current_app.config.get("UPLOAD_IMAGE_FILE_SIZE_LIMIT")
file_size_limit = dify_config.UPLOAD_FILE_SIZE_LIMIT
batch_count_limit = dify_config.UPLOAD_FILE_BATCH_LIMIT
image_file_size_limit = dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT
return {
'file_size_limit': file_size_limit,
'batch_count_limit': batch_count_limit,
@ -76,7 +77,7 @@ class FileSupportTypeApi(Resource):
@login_required
@account_initialization_required
def get(self):
etl_type = current_app.config['ETL_TYPE']
etl_type = dify_config.ETL_TYPE
allowed_extensions = UNSTRUCTURED_ALLOWED_EXTENSIONS if etl_type == 'Unstructured' else ALLOWED_EXTENSIONS
return {'allowed_extensions': allowed_extensions}

View File

@ -78,10 +78,12 @@ class ChatTextApi(InstalledAppResource):
parser = reqparse.RequestParser()
parser.add_argument('message_id', type=str, required=False, location='json')
parser.add_argument('voice', type=str, location='json')
parser.add_argument('text', type=str, location='json')
parser.add_argument('streaming', type=bool, location='json')
args = parser.parse_args()
message_id = args.get('message_id')
message_id = args.get('message_id', None)
text = args.get('text', None)
if (app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]
and app_model.workflow
and app_model.workflow.features_dict):
@ -95,7 +97,8 @@ class ChatTextApi(InstalledAppResource):
response = AudioService.transcript_tts(
app_model=app_model,
message_id=message_id,
voice=voice
voice=voice,
text=text
)
return response
except services.errors.app_model_config.AppModelConfigBrokenError:

View File

@ -1,7 +1,7 @@
from flask import current_app
from flask_restful import fields, marshal_with
from configs import dify_config
from controllers.console import api
from controllers.console.app.error import AppUnavailableError
from controllers.console.explore.wraps import InstalledAppResource
@ -78,7 +78,7 @@ class AppParameterApi(InstalledAppResource):
"transfer_methods": ["remote_url", "local_file"]
}}),
'system_parameters': {
'image_file_size_limit': current_app.config.get('UPLOAD_IMAGE_FILE_SIZE_LIMIT')
'image_file_size_limit': dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT
}
}

View File

@ -1,8 +1,9 @@
import os
from flask import current_app, session
from flask import session
from flask_restful import Resource, reqparse
from configs import dify_config
from libs.helper import str_len
from models.model import DifySetup
from services.account_service import TenantService
@ -40,7 +41,7 @@ class InitValidateAPI(Resource):
return {'result': 'success'}, 201
def get_init_validate_status():
if current_app.config['EDITION'] == 'SELF_HOSTED':
if dify_config.EDITION == 'SELF_HOSTED':
if os.environ.get('INIT_PASSWORD'):
return session.get('is_init_validated') or DifySetup.query.first()

View File

@ -1,8 +1,9 @@
from functools import wraps
from flask import current_app, request
from flask import request
from flask_restful import Resource, reqparse
from configs import dify_config
from libs.helper import email, get_remote_ip, str_len
from libs.password import valid_password
from models.model import DifySetup
@ -17,7 +18,7 @@ from .wraps import only_edition_self_hosted
class SetupApi(Resource):
def get(self):
if current_app.config['EDITION'] == 'SELF_HOSTED':
if dify_config.EDITION == 'SELF_HOSTED':
setup_status = get_setup_status()
if setup_status:
return {
@ -77,7 +78,7 @@ def setup_required(view):
def get_setup_status():
if current_app.config['EDITION'] == 'SELF_HOSTED':
if dify_config.EDITION == 'SELF_HOSTED':
return DifySetup.query.first()
else:
return True

View File

@ -3,9 +3,10 @@ import json
import logging
import requests
from flask import current_app
from flask_restful import Resource, reqparse
from configs import dify_config
from . import api
@ -15,16 +16,16 @@ class VersionApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('current_version', type=str, required=True, location='args')
args = parser.parse_args()
check_update_url = current_app.config['CHECK_UPDATE_URL']
check_update_url = dify_config.CHECK_UPDATE_URL
result = {
'version': current_app.config['CURRENT_VERSION'],
'version': dify_config.CURRENT_VERSION,
'release_date': '',
'release_notes': '',
'can_auto_update': False,
'features': {
'can_replace_logo': current_app.config['CAN_REPLACE_LOGO'],
'model_load_balancing_enabled': current_app.config['MODEL_LB_ENABLED']
'can_replace_logo': dify_config.CAN_REPLACE_LOGO,
'model_load_balancing_enabled': dify_config.MODEL_LB_ENABLED
}
}

View File

@ -1,10 +1,11 @@
import datetime
import pytz
from flask import current_app, request
from flask import request
from flask_login import current_user
from flask_restful import Resource, fields, marshal_with, reqparse
from configs import dify_config
from constants.languages import supported_language
from controllers.console import api
from controllers.console.setup import setup_required
@ -36,7 +37,7 @@ class AccountInitApi(Resource):
parser = reqparse.RequestParser()
if current_app.config['EDITION'] == 'CLOUD':
if dify_config.EDITION == 'CLOUD':
parser.add_argument('invitation_code', type=str, location='json')
parser.add_argument(
@ -45,7 +46,7 @@ class AccountInitApi(Resource):
required=True, location='json')
args = parser.parse_args()
if current_app.config['EDITION'] == 'CLOUD':
if dify_config.EDITION == 'CLOUD':
if not args['invitation_code']:
raise ValueError('invitation_code is required')

View File

@ -1,8 +1,8 @@
from flask import current_app
from flask_login import current_user
from flask_restful import Resource, abort, marshal_with, reqparse
import services
from configs import dify_config
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
@ -48,7 +48,7 @@ class MemberInviteEmailApi(Resource):
inviter = current_user
invitation_results = []
console_web_url = current_app.config.get("CONSOLE_WEB_URL")
console_web_url = dify_config.CONSOLE_WEB_URL
for invitee_email in invitee_emails:
try:
token = RegisterService.invite_new_member(inviter.current_tenant, invitee_email, interface_language, role=invitee_role, inviter=inviter)
@ -117,7 +117,7 @@ class MemberUpdateRoleApi(Resource):
if not TenantAccountRole.is_valid_role(new_role):
return {'code': 'invalid-role', 'message': 'Invalid role'}, 400
member = Account.query.get(str(member_id))
member = db.session.get(Account, str(member_id))
if not member:
abort(404)

View File

@ -1,10 +1,11 @@
import io
from flask import current_app, send_file
from flask import send_file
from flask_login import current_user
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden
from configs import dify_config
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
@ -104,7 +105,7 @@ class ToolBuiltinProviderIconApi(Resource):
@setup_required
def get(self, provider):
icon_bytes, mimetype = BuiltinToolManageService.get_builtin_tool_provider_icon(provider)
icon_cache_max_age = current_app.config.get('TOOL_ICON_CACHE_MAX_AGE')
icon_cache_max_age = dify_config.TOOL_ICON_CACHE_MAX_AGE
return send_file(io.BytesIO(icon_bytes), mimetype=mimetype, max_age=icon_cache_max_age)
class ToolApiProviderAddApi(Resource):

View File

@ -1,9 +1,10 @@
import json
from functools import wraps
from flask import abort, current_app, request
from flask import abort, request
from flask_login import current_user
from configs import dify_config
from controllers.console.workspace.error import AccountNotInitializedError
from services.feature_service import FeatureService
from services.operation_service import OperationService
@ -26,7 +27,7 @@ def account_initialization_required(view):
def only_edition_cloud(view):
@wraps(view)
def decorated(*args, **kwargs):
if current_app.config['EDITION'] != 'CLOUD':
if dify_config.EDITION != 'CLOUD':
abort(404)
return view(*args, **kwargs)
@ -37,7 +38,7 @@ def only_edition_cloud(view):
def only_edition_self_hosted(view):
@wraps(view)
def decorated(*args, **kwargs):
if current_app.config['EDITION'] != 'SELF_HOSTED':
if dify_config.EDITION != 'SELF_HOSTED':
abort(404)
return view(*args, **kwargs)

View File

@ -76,10 +76,12 @@ class TextApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('message_id', type=str, required=False, location='json')
parser.add_argument('voice', type=str, location='json')
parser.add_argument('text', type=str, location='json')
parser.add_argument('streaming', type=bool, location='json')
args = parser.parse_args()
message_id = args.get('message_id')
message_id = args.get('message_id', None)
text = args.get('text', None)
if (app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]
and app_model.workflow
and app_model.workflow.features_dict):
@ -87,15 +89,15 @@ class TextApi(Resource):
voice = args.get('voice') if args.get('voice') else text_to_speech.get('voice')
else:
try:
voice = args.get('voice') if args.get('voice') else app_model.app_model_config.text_to_speech_dict.get(
'voice')
voice = args.get('voice') if args.get('voice') else app_model.app_model_config.text_to_speech_dict.get('voice')
except Exception:
voice = None
response = AudioService.transcript_tts(
app_model=app_model,
message_id=message_id,
end_user=end_user.external_user_id,
voice=voice
voice=voice,
text=text
)
return response

View File

@ -1,6 +1,6 @@
import logging
from flask_restful import Resource, reqparse
from flask_restful import Resource, fields, marshal_with, reqparse
from werkzeug.exceptions import InternalServerError
from controllers.service_api import api
@ -21,14 +21,43 @@ from core.errors.error import (
QuotaExceededError,
)
from core.model_runtime.errors.invoke import InvokeError
from extensions.ext_database import db
from libs import helper
from models.model import App, AppMode, EndUser
from models.workflow import WorkflowRun
from services.app_generate_service import AppGenerateService
logger = logging.getLogger(__name__)
class WorkflowRunApi(Resource):
workflow_run_fields = {
'id': fields.String,
'workflow_id': fields.String,
'status': fields.String,
'inputs': fields.Raw,
'outputs': fields.Raw,
'error': fields.String,
'total_steps': fields.Integer,
'total_tokens': fields.Integer,
'created_at': fields.DateTime,
'finished_at': fields.DateTime,
'elapsed_time': fields.Float,
}
@validate_app_token
@marshal_with(workflow_run_fields)
def get(self, app_model: App, workflow_id: str):
"""
Get a workflow task running detail
"""
app_mode = AppMode.value_of(app_model.mode)
if app_mode != AppMode.WORKFLOW:
raise NotWorkflowAppError()
workflow_run = db.session.query(WorkflowRun).filter(WorkflowRun.id == workflow_id).first()
return workflow_run
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON, required=True))
def post(self, app_model: App, end_user: EndUser):
"""
@ -88,5 +117,5 @@ class WorkflowTaskStopApi(Resource):
}
api.add_resource(WorkflowRunApi, '/workflows/run')
api.add_resource(WorkflowRunApi, '/workflows/run/<string:workflow_id>', '/workflows/run')
api.add_resource(WorkflowTaskStopApi, '/workflows/tasks/<string:task_id>/stop')

View File

@ -74,10 +74,12 @@ class TextApi(WebApiResource):
parser = reqparse.RequestParser()
parser.add_argument('message_id', type=str, required=False, location='json')
parser.add_argument('voice', type=str, location='json')
parser.add_argument('text', type=str, location='json')
parser.add_argument('streaming', type=bool, location='json')
args = parser.parse_args()
message_id = args.get('message_id')
message_id = args.get('message_id', None)
text = args.get('text', None)
if (app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]
and app_model.workflow
and app_model.workflow.features_dict):
@ -94,7 +96,8 @@ class TextApi(WebApiResource):
app_model=app_model,
message_id=message_id,
end_user=end_user.external_user_id,
voice=voice
voice=voice,
text=text
)
return response

View File

@ -342,10 +342,14 @@ class FunctionCallAgentRunner(BaseAgentRunner):
"""
tool_calls = []
for prompt_message in llm_result_chunk.delta.message.tool_calls:
args = {}
if prompt_message.function.arguments != '':
args = json.loads(prompt_message.function.arguments)
tool_calls.append((
prompt_message.id,
prompt_message.function.name,
json.loads(prompt_message.function.arguments),
args,
))
return tool_calls
@ -359,10 +363,14 @@ class FunctionCallAgentRunner(BaseAgentRunner):
"""
tool_calls = []
for prompt_message in llm_result.message.tool_calls:
args = {}
if prompt_message.function.arguments != '':
args = json.loads(prompt_message.function.arguments)
tool_calls.append((
prompt_message.id,
prompt_message.function.name,
json.loads(prompt_message.function.arguments),
args,
))
return tool_calls

View File

@ -1,6 +1,7 @@
from typing import Optional, Union
from collections.abc import Mapping
from typing import Any
from core.app.app_config.entities import AppAdditionalFeatures, EasyUIBasedAppModelConfigFrom
from core.app.app_config.entities import AppAdditionalFeatures
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.app_config.features.more_like_this.manager import MoreLikeThisConfigManager
from core.app.app_config.features.opening_statement.manager import OpeningStatementConfigManager
@ -10,37 +11,19 @@ from core.app.app_config.features.suggested_questions_after_answer.manager impor
SuggestedQuestionsAfterAnswerConfigManager,
)
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
from models.model import AppMode, AppModelConfig
from models.model import AppMode
class BaseAppConfigManager:
@classmethod
def convert_to_config_dict(cls, config_from: EasyUIBasedAppModelConfigFrom,
app_model_config: Union[AppModelConfig, dict],
config_dict: Optional[dict] = None) -> dict:
"""
Convert app model config to config dict
:param config_from: app model config from
:param app_model_config: app model config
:param config_dict: app model config dict
:return:
"""
if config_from != EasyUIBasedAppModelConfigFrom.ARGS:
app_model_config_dict = app_model_config.to_dict()
config_dict = app_model_config_dict.copy()
return config_dict
@classmethod
def convert_features(cls, config_dict: dict, app_mode: AppMode) -> AppAdditionalFeatures:
def convert_features(cls, config_dict: Mapping[str, Any], app_mode: AppMode) -> AppAdditionalFeatures:
"""
Convert app config to app model config
:param config_dict: app config
:param app_mode: app mode
"""
config_dict = config_dict.copy()
config_dict = dict(config_dict.items())
additional_features = AppAdditionalFeatures()
additional_features.show_retrieve_source = RetrievalResourceConfigManager.convert(

View File

@ -62,7 +62,12 @@ class DatasetConfigManager:
return None
# dataset configs
dataset_configs = config.get('dataset_configs', {'retrieval_model': 'single'})
if 'dataset_configs' in config and config.get('dataset_configs'):
dataset_configs = config.get('dataset_configs')
else:
dataset_configs = {
'retrieval_model': 'multiple'
}
query_variable = config.get('dataset_query_variable')
if dataset_configs['retrieval_model'] == 'single':
@ -83,9 +88,10 @@ class DatasetConfigManager:
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
dataset_configs['retrieval_model']
),
top_k=dataset_configs.get('top_k'),
top_k=dataset_configs.get('top_k', 4),
score_threshold=dataset_configs.get('score_threshold'),
reranking_model=dataset_configs.get('reranking_model')
reranking_model=dataset_configs.get('reranking_model'),
weights=dataset_configs.get('weights')
)
)

View File

@ -159,7 +159,11 @@ class DatasetRetrieveConfigEntity(BaseModel):
retrieve_strategy: RetrieveStrategy
top_k: Optional[int] = None
score_threshold: Optional[float] = None
rerank_mode: Optional[str] = 'reranking_model'
reranking_model: Optional[dict] = None
weights: Optional[dict] = None
class DatasetEntity(BaseModel):

View File

@ -1,11 +1,12 @@
from typing import Optional
from collections.abc import Mapping
from typing import Any, Optional
from core.app.app_config.entities import FileExtraConfig
class FileUploadConfigManager:
@classmethod
def convert(cls, config: dict, is_vision: bool = True) -> Optional[FileExtraConfig]:
def convert(cls, config: Mapping[str, Any], is_vision: bool = True) -> Optional[FileExtraConfig]:
"""
Convert model config to model config

View File

@ -3,13 +3,13 @@ from core.app.app_config.entities import TextToSpeechEntity
class TextToSpeechConfigManager:
@classmethod
def convert(cls, config: dict) -> bool:
def convert(cls, config: dict):
"""
Convert model config to model config
:param config: model config args
"""
text_to_speech = False
text_to_speech = None
text_to_speech_dict = config.get('text_to_speech')
if text_to_speech_dict:
if text_to_speech_dict.get('enabled'):

View File

@ -1,3 +1,4 @@
import contextvars
import logging
import os
import threading
@ -8,6 +9,7 @@ from typing import Union
from flask import Flask, current_app
from pydantic import ValidationError
import contexts
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManager
from core.app.apps.advanced_chat.app_runner import AdvancedChatAppRunner
@ -107,6 +109,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
extras=extras,
trace_manager=trace_manager
)
contexts.tenant_id.set(application_generate_entity.app_config.tenant_id)
return self._generate(
app_model=app_model,
@ -173,6 +176,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
inputs=args['inputs']
)
)
contexts.tenant_id.set(application_generate_entity.app_config.tenant_id)
return self._generate(
app_model=app_model,
@ -225,6 +229,8 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
'queue_manager': queue_manager,
'conversation_id': conversation.id,
'message_id': message.id,
'user': user,
'context': contextvars.copy_context()
})
worker_thread.start()
@ -249,7 +255,9 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
application_generate_entity: AdvancedChatAppGenerateEntity,
queue_manager: AppQueueManager,
conversation_id: str,
message_id: str) -> None:
message_id: str,
user: Account,
context: contextvars.Context) -> None:
"""
Generate worker in a new thread.
:param flask_app: Flask app
@ -259,6 +267,8 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
:param message_id: message ID
:return:
"""
for var, val in context.items():
var.set(val)
with flask_app.app_context():
try:
runner = AdvancedChatAppRunner()

View File

@ -1,7 +1,8 @@
import logging
import os
import time
from typing import Optional, cast
from collections.abc import Mapping
from typing import Any, Optional, cast
from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfig
from core.app.apps.advanced_chat.workflow_event_trigger_callback import WorkflowEventTriggerCallback
@ -14,6 +15,7 @@ from core.app.entities.app_invoke_entities import (
)
from core.app.entities.queue_entities import QueueAnnotationReplyEvent, QueueStopEvent, QueueTextChunkEvent
from core.moderation.base import ModerationException
from core.workflow.callbacks.base_workflow_callback import WorkflowCallback
from core.workflow.entities.node_entities import SystemVariable
from core.workflow.nodes.base_node import UserFrom
from core.workflow.workflow_engine_manager import WorkflowEngineManager
@ -87,7 +89,7 @@ class AdvancedChatAppRunner(AppRunner):
db.session.close()
workflow_callbacks = [WorkflowEventTriggerCallback(
workflow_callbacks: list[WorkflowCallback] = [WorkflowEventTriggerCallback(
queue_manager=queue_manager,
workflow=workflow
)]
@ -161,7 +163,7 @@ class AdvancedChatAppRunner(AppRunner):
self, queue_manager: AppQueueManager,
app_record: App,
app_generate_entity: AdvancedChatAppGenerateEntity,
inputs: dict,
inputs: Mapping[str, Any],
query: str,
message_id: str
) -> bool:

View File

@ -1,9 +1,11 @@
import json
from collections.abc import Generator
from typing import cast
from typing import Any, cast
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
from core.app.entities.task_entities import (
AppBlockingResponse,
AppStreamResponse,
ChatbotAppBlockingResponse,
ChatbotAppStreamResponse,
ErrorStreamResponse,
@ -18,12 +20,13 @@ class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
_blocking_response_type = ChatbotAppBlockingResponse
@classmethod
def convert_blocking_full_response(cls, blocking_response: ChatbotAppBlockingResponse) -> dict:
def convert_blocking_full_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
"""
Convert blocking full response.
:param blocking_response: blocking response
:return:
"""
blocking_response = cast(ChatbotAppBlockingResponse, blocking_response)
response = {
'event': 'message',
'task_id': blocking_response.task_id,
@ -39,7 +42,7 @@ class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
return response
@classmethod
def convert_blocking_simple_response(cls, blocking_response: ChatbotAppBlockingResponse) -> dict:
def convert_blocking_simple_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
"""
Convert blocking simple response.
:param blocking_response: blocking response
@ -53,8 +56,7 @@ class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
return response
@classmethod
def convert_stream_full_response(cls, stream_response: Generator[ChatbotAppStreamResponse, None, None]) \
-> Generator[str, None, None]:
def convert_stream_full_response(cls, stream_response: Generator[AppStreamResponse, None, None]) -> Generator[str, Any, None]:
"""
Convert stream full response.
:param stream_response: stream response
@ -83,8 +85,7 @@ class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
yield json.dumps(response_chunk)
@classmethod
def convert_stream_simple_response(cls, stream_response: Generator[ChatbotAppStreamResponse, None, None]) \
-> Generator[str, None, None]:
def convert_stream_simple_response(cls, stream_response: Generator[AppStreamResponse, None, None]) -> Generator[str, Any, None]:
"""
Convert stream simple response.
:param stream_response: stream response

View File

@ -118,7 +118,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
self._stream_generate_routes = self._get_stream_generate_routes()
self._conversation_name_generate_thread = None
def process(self) -> Union[ChatbotAppBlockingResponse, Generator[ChatbotAppStreamResponse, None, None]]:
def process(self):
"""
Process generate task pipeline.
:return:
@ -141,8 +141,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
else:
return self._to_blocking_response(generator)
def _to_blocking_response(self, generator: Generator[StreamResponse, None, None]) \
-> ChatbotAppBlockingResponse:
def _to_blocking_response(self, generator: Generator[StreamResponse, None, None]) -> ChatbotAppBlockingResponse:
"""
Process blocking response.
:return:
@ -172,8 +171,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
raise Exception('Queue listening stopped unexpectedly.')
def _to_stream_response(self, generator: Generator[StreamResponse, None, None]) \
-> Generator[ChatbotAppStreamResponse, None, None]:
def _to_stream_response(self, generator: Generator[StreamResponse, None, None]) -> Generator[ChatbotAppStreamResponse, Any, None]:
"""
To stream response.
:return:

View File

@ -14,13 +14,13 @@ from core.app.entities.queue_entities import (
QueueWorkflowStartedEvent,
QueueWorkflowSucceededEvent,
)
from core.workflow.callbacks.base_workflow_callback import BaseWorkflowCallback
from core.workflow.callbacks.base_workflow_callback import WorkflowCallback
from core.workflow.entities.base_node_data_entities import BaseNodeData
from core.workflow.entities.node_entities import NodeType
from models.workflow import Workflow
class WorkflowEventTriggerCallback(BaseWorkflowCallback):
class WorkflowEventTriggerCallback(WorkflowCallback):
def __init__(self, queue_manager: AppQueueManager, workflow: Workflow):
self._queue_manager = queue_manager

View File

@ -1,7 +1,7 @@
import logging
from abc import ABC, abstractmethod
from collections.abc import Generator
from typing import Union
from typing import Any, Union
from core.app.entities.app_invoke_entities import InvokeFrom
from core.app.entities.task_entities import AppBlockingResponse, AppStreamResponse
@ -15,44 +15,41 @@ class AppGenerateResponseConverter(ABC):
@classmethod
def convert(cls, response: Union[
AppBlockingResponse,
Generator[AppStreamResponse, None, None]
], invoke_from: InvokeFrom) -> Union[
dict,
Generator[str, None, None]
]:
Generator[AppStreamResponse, Any, None]
], invoke_from: InvokeFrom):
if invoke_from in [InvokeFrom.DEBUGGER, InvokeFrom.SERVICE_API]:
if isinstance(response, cls._blocking_response_type):
if isinstance(response, AppBlockingResponse):
return cls.convert_blocking_full_response(response)
else:
def _generate():
def _generate_full_response() -> Generator[str, Any, None]:
for chunk in cls.convert_stream_full_response(response):
if chunk == 'ping':
yield f'event: {chunk}\n\n'
else:
yield f'data: {chunk}\n\n'
return _generate()
return _generate_full_response()
else:
if isinstance(response, cls._blocking_response_type):
if isinstance(response, AppBlockingResponse):
return cls.convert_blocking_simple_response(response)
else:
def _generate():
def _generate_simple_response() -> Generator[str, Any, None]:
for chunk in cls.convert_stream_simple_response(response):
if chunk == 'ping':
yield f'event: {chunk}\n\n'
else:
yield f'data: {chunk}\n\n'
return _generate()
return _generate_simple_response()
@classmethod
@abstractmethod
def convert_blocking_full_response(cls, blocking_response: AppBlockingResponse) -> dict:
def convert_blocking_full_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
raise NotImplementedError
@classmethod
@abstractmethod
def convert_blocking_simple_response(cls, blocking_response: AppBlockingResponse) -> dict:
def convert_blocking_simple_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
raise NotImplementedError
@classmethod
@ -68,7 +65,7 @@ class AppGenerateResponseConverter(ABC):
raise NotImplementedError
@classmethod
def _get_simple_metadata(cls, metadata: dict) -> dict:
def _get_simple_metadata(cls, metadata: dict[str, Any]):
"""
Get simple metadata.
:param metadata: metadata

View File

@ -1,3 +1,4 @@
import contextvars
import logging
import os
import threading
@ -8,6 +9,7 @@ from typing import Union
from flask import Flask, current_app
from pydantic import ValidationError
import contexts
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.base_app_generator import BaseAppGenerator
from core.app.apps.base_app_queue_manager import AppQueueManager, GenerateTaskStoppedException, PublishFrom
@ -38,7 +40,7 @@ class WorkflowAppGenerator(BaseAppGenerator):
invoke_from: InvokeFrom,
stream: bool = True,
call_depth: int = 0,
) -> Union[dict, Generator[dict, None, None]]:
):
"""
Generate App response.
@ -86,6 +88,7 @@ class WorkflowAppGenerator(BaseAppGenerator):
call_depth=call_depth,
trace_manager=trace_manager
)
contexts.tenant_id.set(application_generate_entity.app_config.tenant_id)
return self._generate(
app_model=app_model,
@ -126,7 +129,8 @@ class WorkflowAppGenerator(BaseAppGenerator):
worker_thread = threading.Thread(target=self._generate_worker, kwargs={
'flask_app': current_app._get_current_object(),
'application_generate_entity': application_generate_entity,
'queue_manager': queue_manager
'queue_manager': queue_manager,
'context': contextvars.copy_context()
})
worker_thread.start()
@ -150,8 +154,7 @@ class WorkflowAppGenerator(BaseAppGenerator):
node_id: str,
user: Account,
args: dict,
stream: bool = True) \
-> Union[dict, Generator[dict, None, None]]:
stream: bool = True):
"""
Generate App response.
@ -193,6 +196,7 @@ class WorkflowAppGenerator(BaseAppGenerator):
inputs=args['inputs']
)
)
contexts.tenant_id.set(application_generate_entity.app_config.tenant_id)
return self._generate(
app_model=app_model,
@ -205,7 +209,8 @@ class WorkflowAppGenerator(BaseAppGenerator):
def _generate_worker(self, flask_app: Flask,
application_generate_entity: WorkflowAppGenerateEntity,
queue_manager: AppQueueManager) -> None:
queue_manager: AppQueueManager,
context: contextvars.Context) -> None:
"""
Generate worker in a new thread.
:param flask_app: Flask app
@ -213,6 +218,8 @@ class WorkflowAppGenerator(BaseAppGenerator):
:param queue_manager: queue manager
:return:
"""
for var, val in context.items():
var.set(val)
with flask_app.app_context():
try:
# workflow app

View File

@ -10,6 +10,7 @@ from core.app.entities.app_invoke_entities import (
InvokeFrom,
WorkflowAppGenerateEntity,
)
from core.workflow.callbacks.base_workflow_callback import WorkflowCallback
from core.workflow.entities.node_entities import SystemVariable
from core.workflow.nodes.base_node import UserFrom
from core.workflow.workflow_engine_manager import WorkflowEngineManager
@ -57,7 +58,7 @@ class WorkflowAppRunner:
db.session.close()
workflow_callbacks = [WorkflowEventTriggerCallback(
workflow_callbacks: list[WorkflowCallback] = [WorkflowEventTriggerCallback(
queue_manager=queue_manager,
workflow=workflow
)]

View File

@ -14,13 +14,13 @@ from core.app.entities.queue_entities import (
QueueWorkflowStartedEvent,
QueueWorkflowSucceededEvent,
)
from core.workflow.callbacks.base_workflow_callback import BaseWorkflowCallback
from core.workflow.callbacks.base_workflow_callback import WorkflowCallback
from core.workflow.entities.base_node_data_entities import BaseNodeData
from core.workflow.entities.node_entities import NodeType
from models.workflow import Workflow
class WorkflowEventTriggerCallback(BaseWorkflowCallback):
class WorkflowEventTriggerCallback(WorkflowCallback):
def __init__(self, queue_manager: AppQueueManager, workflow: Workflow):
self._queue_manager = queue_manager

View File

@ -2,7 +2,7 @@ from typing import Optional
from core.app.entities.queue_entities import AppQueueEvent
from core.model_runtime.utils.encoders import jsonable_encoder
from core.workflow.callbacks.base_workflow_callback import BaseWorkflowCallback
from core.workflow.callbacks.base_workflow_callback import WorkflowCallback
from core.workflow.entities.base_node_data_entities import BaseNodeData
from core.workflow.entities.node_entities import NodeType
@ -15,7 +15,7 @@ _TEXT_COLOR_MAPPING = {
}
class WorkflowLoggingCallback(BaseWorkflowCallback):
class WorkflowLoggingCallback(WorkflowCallback):
def __init__(self) -> None:
self.current_node_id = None

View File

@ -1,3 +1,4 @@
from collections.abc import Mapping
from enum import Enum
from typing import Any, Optional
@ -76,7 +77,7 @@ class AppGenerateEntity(BaseModel):
# app config
app_config: AppConfig
inputs: dict[str, Any]
inputs: Mapping[str, Any]
files: list[FileVar] = []
user_id: str
@ -140,7 +141,7 @@ class AdvancedChatAppGenerateEntity(AppGenerateEntity):
app_config: WorkflowUIBasedAppConfig
conversation_id: Optional[str] = None
query: Optional[str] = None
query: str
class SingleIterationRunEntity(BaseModel):
"""

View File

@ -0,0 +1,30 @@
from .segment_group import SegmentGroup
from .segments import NoneSegment, Segment
from .types import SegmentType
from .variables import (
ArrayVariable,
FileVariable,
FloatVariable,
IntegerVariable,
NoneVariable,
ObjectVariable,
SecretVariable,
StringVariable,
Variable,
)
__all__ = [
'IntegerVariable',
'FloatVariable',
'ObjectVariable',
'SecretVariable',
'FileVariable',
'StringVariable',
'ArrayVariable',
'Variable',
'SegmentType',
'SegmentGroup',
'Segment',
'NoneSegment',
'NoneVariable',
]

View File

@ -0,0 +1,67 @@
from collections.abc import Mapping
from typing import Any
from core.file.file_obj import FileVar
from .segments import Segment, StringSegment
from .types import SegmentType
from .variables import (
ArrayVariable,
FileVariable,
FloatVariable,
IntegerVariable,
NoneVariable,
ObjectVariable,
SecretVariable,
StringVariable,
Variable,
)
def build_variable_from_mapping(m: Mapping[str, Any], /) -> Variable:
if (value_type := m.get('value_type')) is None:
raise ValueError('missing value type')
if not m.get('name'):
raise ValueError('missing name')
if (value := m.get('value')) is None:
raise ValueError('missing value')
match value_type:
case SegmentType.STRING:
return StringVariable.model_validate(m)
case SegmentType.NUMBER if isinstance(value, int):
return IntegerVariable.model_validate(m)
case SegmentType.NUMBER if isinstance(value, float):
return FloatVariable.model_validate(m)
case SegmentType.SECRET:
return SecretVariable.model_validate(m)
case SegmentType.NUMBER if not isinstance(value, float | int):
raise ValueError(f'invalid number value {value}')
raise ValueError(f'not supported value type {value_type}')
def build_anonymous_variable(value: Any, /) -> Variable:
if value is None:
return NoneVariable(name='anonymous')
if isinstance(value, str):
return StringVariable(name='anonymous', value=value)
if isinstance(value, int):
return IntegerVariable(name='anonymous', value=value)
if isinstance(value, float):
return FloatVariable(name='anonymous', value=value)
if isinstance(value, dict):
# TODO: Limit the depth of the object
obj = {k: build_anonymous_variable(v) for k, v in value.items()}
return ObjectVariable(name='anonymous', value=obj)
if isinstance(value, list):
# TODO: Limit the depth of the array
elements = [build_anonymous_variable(v) for v in value]
return ArrayVariable(name='anonymous', value=elements)
if isinstance(value, FileVar):
return FileVariable(name='anonymous', value=value)
raise ValueError(f'not supported value {value}')
def build_segment(value: Any, /) -> Segment:
if isinstance(value, str):
return StringSegment(value=value)
raise ValueError(f'not supported value {value}')

View File

@ -0,0 +1,17 @@
import re
from core.app.segments import SegmentGroup, factory
from core.workflow.entities.variable_pool import VariablePool
VARIABLE_PATTERN = re.compile(r'\{\{#([a-zA-Z0-9_]{1,50}(?:\.[a-zA-Z_][a-zA-Z0-9_]{0,29}){1,10})#\}\}')
def convert_template(*, template: str, variable_pool: VariablePool):
parts = re.split(VARIABLE_PATTERN, template)
segments = []
for part in parts:
if '.' in part and (value := variable_pool.get(part.split('.'))):
segments.append(value)
else:
segments.append(factory.build_segment(part))
return SegmentGroup(segments=segments)

View File

@ -0,0 +1,19 @@
from pydantic import BaseModel
from .segments import Segment
class SegmentGroup(BaseModel):
segments: list[Segment]
@property
def text(self):
return ''.join([segment.text for segment in self.segments])
@property
def log(self):
return ''.join([segment.log for segment in self.segments])
@property
def markdown(self):
return ''.join([segment.markdown for segment in self.segments])

View File

@ -0,0 +1,65 @@
from typing import Any
from pydantic import BaseModel, ConfigDict, field_validator
from .types import SegmentType
class Segment(BaseModel):
model_config = ConfigDict(frozen=True)
value_type: SegmentType
value: Any
@field_validator('value_type')
def validate_value_type(cls, value):
"""
This validator checks if the provided value is equal to the default value of the 'value_type' field.
If the value is different, a ValueError is raised.
"""
if value != cls.model_fields['value_type'].default:
raise ValueError("Cannot modify 'value_type'")
return value
@property
def text(self) -> str:
return str(self.value)
@property
def log(self) -> str:
return str(self.value)
@property
def markdown(self) -> str:
return str(self.value)
def to_object(self) -> Any:
if isinstance(self.value, Segment):
return self.value.to_object()
if isinstance(self.value, list):
return [v.to_object() for v in self.value]
if isinstance(self.value, dict):
return {k: v.to_object() for k, v in self.value.items()}
return self.value
class NoneSegment(Segment):
value_type: SegmentType = SegmentType.NONE
value: None = None
@property
def text(self) -> str:
return 'null'
@property
def log(self) -> str:
return 'null'
@property
def markdown(self) -> str:
return 'null'
class StringSegment(Segment):
value_type: SegmentType = SegmentType.STRING
value: str

View File

@ -0,0 +1,11 @@
from enum import Enum
class SegmentType(str, Enum):
NONE = 'none'
NUMBER = 'number'
STRING = 'string'
SECRET = 'secret'
ARRAY = 'array'
OBJECT = 'object'
FILE = 'file'

View File

@ -0,0 +1,88 @@
import json
from collections.abc import Mapping, Sequence
from pydantic import Field
from core.file.file_obj import FileVar
from core.helper import encrypter
from .segments import NoneSegment, Segment, StringSegment
from .types import SegmentType
class Variable(Segment):
"""
A variable is a segment that has a name.
"""
id: str = Field(
default='',
description="Unique identity for variable. It's only used by environment variables now.",
)
name: str
class StringVariable(StringSegment, Variable):
pass
class FloatVariable(Variable):
value_type: SegmentType = SegmentType.NUMBER
value: float
class IntegerVariable(Variable):
value_type: SegmentType = SegmentType.NUMBER
value: int
class ObjectVariable(Variable):
value_type: SegmentType = SegmentType.OBJECT
value: Mapping[str, Variable]
@property
def text(self) -> str:
# TODO: Process variables.
return json.dumps(self.model_dump()['value'], ensure_ascii=False)
@property
def log(self) -> str:
# TODO: Process variables.
return json.dumps(self.model_dump()['value'], ensure_ascii=False, indent=2)
@property
def markdown(self) -> str:
# TODO: Use markdown code block
return json.dumps(self.model_dump()['value'], ensure_ascii=False, indent=2)
class ArrayVariable(Variable):
value_type: SegmentType = SegmentType.ARRAY
value: Sequence[Variable]
@property
def markdown(self) -> str:
return '\n'.join(['- ' + item.markdown for item in self.value])
class FileVariable(Variable):
value_type: SegmentType = SegmentType.FILE
# TODO: embed FileVar in this model.
value: FileVar
@property
def markdown(self) -> str:
return self.value.to_markdown()
class SecretVariable(StringVariable):
value_type: SegmentType = SegmentType.SECRET
@property
def log(self) -> str:
return encrypter.obfuscated_token(self.value)
class NoneVariable(NoneSegment, Variable):
value_type: SegmentType = SegmentType.NONE
value: None = None

View File

@ -1,9 +1,11 @@
import os
from collections.abc import Mapping, Sequence
from typing import Any, Optional, TextIO, Union
from pydantic import BaseModel
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask, TraceTaskName
from core.tools.entities.tool_entities import ToolInvokeMessage
_TEXT_COLOR_MAPPING = {
"blue": "36;1",
@ -43,7 +45,7 @@ class DifyAgentCallbackHandler(BaseModel):
def on_tool_start(
self,
tool_name: str,
tool_inputs: dict[str, Any],
tool_inputs: Mapping[str, Any],
) -> None:
"""Do nothing."""
print_text("\n[on_tool_start] ToolCall:" + tool_name + "\n" + str(tool_inputs) + "\n", color=self.color)
@ -51,8 +53,8 @@ class DifyAgentCallbackHandler(BaseModel):
def on_tool_end(
self,
tool_name: str,
tool_inputs: dict[str, Any],
tool_outputs: str,
tool_inputs: Mapping[str, Any],
tool_outputs: Sequence[ToolInvokeMessage],
message_id: Optional[str] = None,
timer: Optional[Any] = None,
trace_manager: Optional[TraceQueueManager] = None

View File

@ -1,4 +1,5 @@
from typing import Union
from collections.abc import Mapping, Sequence
from typing import Any, Union
import requests
@ -16,7 +17,7 @@ class MessageFileParser:
self.tenant_id = tenant_id
self.app_id = app_id
def validate_and_transform_files_arg(self, files: list[dict], file_extra_config: FileExtraConfig,
def validate_and_transform_files_arg(self, files: Sequence[Mapping[str, Any]], file_extra_config: FileExtraConfig,
user: Union[Account, EndUser]) -> list[FileVar]:
"""
validate and transform files arg

View File

@ -21,7 +21,7 @@ logger = logging.getLogger(__name__)
CODE_EXECUTION_ENDPOINT = dify_config.CODE_EXECUTION_ENDPOINT
CODE_EXECUTION_API_KEY = dify_config.CODE_EXECUTION_API_KEY
CODE_EXECUTION_TIMEOUT= (10, 60)
CODE_EXECUTION_TIMEOUT = (10, 60)
class CodeExecutionException(Exception):
pass
@ -64,7 +64,7 @@ class CodeExecutor:
@classmethod
def execute_code(cls,
language: Literal['python3', 'javascript', 'jinja2'],
language: CodeLanguage,
preload: str,
code: str,
dependencies: Optional[list[CodeDependency]] = None) -> str:
@ -119,7 +119,7 @@ class CodeExecutor:
return response.data.stdout
@classmethod
def execute_workflow_code_template(cls, language: Literal['python3', 'javascript', 'jinja2'], code: str, inputs: dict, dependencies: Optional[list[CodeDependency]] = None) -> dict:
def execute_workflow_code_template(cls, language: CodeLanguage, code: str, inputs: dict, dependencies: Optional[list[CodeDependency]] = None) -> dict:
"""
Execute code
:param language: code language

View File

@ -6,11 +6,16 @@ from models.account import Tenant
def obfuscated_token(token: str):
return token[:6] + '*' * (len(token) - 8) + token[-2:]
if not token:
return token
if len(token) <= 8:
return '*' * 20
return token[:6] + '*' * 12 + token[-2:]
def encrypt_token(tenant_id: str, token: str):
tenant = db.session.query(Tenant).filter(Tenant.id == tenant_id).first()
if not (tenant := db.session.query(Tenant).filter(Tenant.id == tenant_id).first()):
raise ValueError(f'Tenant with id {tenant_id} not found')
encrypted_token = rsa.encrypt(token, tenant.encrypt_public_key)
return base64.b64encode(encrypted_token).decode()

View File

@ -14,6 +14,9 @@ def get_position_map(folder_path: str, *, file_name: str = "_position.yaml") ->
:return: a dict with name as key and index as value
"""
position_file_name = os.path.join(folder_path, file_name)
if not position_file_name or not os.path.exists(position_file_name):
return {}
positions = load_yaml_file(position_file_name, ignore_error=True)
position_map = {}
index = 0

View File

@ -3,10 +3,13 @@ import logging
import re
from typing import Optional
from core.llm_generator.output_parser.errors import OutputParserException
from core.llm_generator.output_parser.rule_config_generator import RuleConfigGeneratorOutputParser
from core.llm_generator.output_parser.suggested_questions_after_answer import SuggestedQuestionsAfterAnswerOutputParser
from core.llm_generator.prompts import CONVERSATION_TITLE_PROMPT, GENERATOR_QA_PROMPT
from core.llm_generator.prompts import (
CONVERSATION_TITLE_PROMPT,
GENERATOR_QA_PROMPT,
WORKFLOW_RULE_CONFIG_PROMPT_GENERATE_TEMPLATE,
)
from core.model_manager import ModelManager
from core.model_runtime.entities.message_entities import SystemPromptMessage, UserPromptMessage
from core.model_runtime.entities.model_entities import ModelType
@ -115,55 +118,158 @@ class LLMGenerator:
return questions
@classmethod
def generate_rule_config(cls, tenant_id: str, audiences: str, hoping_to_solve: str) -> dict:
def generate_rule_config(cls, tenant_id: str, instruction: str, model_config: dict, no_variable: bool) -> dict:
output_parser = RuleConfigGeneratorOutputParser()
error = ""
error_step = ""
rule_config = {
"prompt": "",
"variables": [],
"opening_statement": "",
"error": ""
}
model_parameters = {
"max_tokens": 512,
"temperature": 0.01
}
if no_variable:
prompt_template = PromptTemplateParser(
WORKFLOW_RULE_CONFIG_PROMPT_GENERATE_TEMPLATE
)
prompt_generate = prompt_template.format(
inputs={
"TASK_DESCRIPTION": instruction,
},
remove_template_variables=False
)
prompt_messages = [UserPromptMessage(content=prompt_generate)]
model_manager = ModelManager()
model_instance = model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM,
)
try:
response = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=model_parameters,
stream=False
)
rule_config["prompt"] = response.message.content
except InvokeError as e:
error = str(e)
error_step = "generate rule config"
except Exception as e:
logging.exception(e)
rule_config["error"] = str(e)
rule_config["error"] = f"Failed to {error_step}. Error: {error}" if error else ""
return rule_config
# get rule config prompt, parameter and statement
prompt_generate, parameter_generate, statement_generate = output_parser.get_format_instructions()
prompt_template = PromptTemplateParser(
template=output_parser.get_format_instructions()
prompt_generate
)
prompt = prompt_template.format(
parameter_template = PromptTemplateParser(
parameter_generate
)
statement_template = PromptTemplateParser(
statement_generate
)
# format the prompt_generate_prompt
prompt_generate_prompt = prompt_template.format(
inputs={
"audiences": audiences,
"hoping_to_solve": hoping_to_solve,
"variable": "{{variable}}",
"lanA": "{{lanA}}",
"lanB": "{{lanB}}",
"topic": "{{topic}}"
"TASK_DESCRIPTION": instruction,
},
remove_template_variables=False
)
prompt_messages = [UserPromptMessage(content=prompt_generate_prompt)]
# get model instance
model_manager = ModelManager()
model_instance = model_manager.get_default_model_instance(
model_instance = model_manager.get_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM,
provider=model_config.get("provider") if model_config else None,
model=model_config.get("name") if model_config else None,
)
prompt_messages = [UserPromptMessage(content=prompt)]
try:
response = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters={
"max_tokens": 512,
"temperature": 0
},
stream=False
)
try:
# the first step to generate the task prompt
prompt_content = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=model_parameters,
stream=False
)
except InvokeError as e:
error = str(e)
error_step = "generate prefix prompt"
rule_config["error"] = f"Failed to {error_step}. Error: {error}" if error else ""
return rule_config
rule_config["prompt"] = prompt_content.message.content
parameter_generate_prompt = parameter_template.format(
inputs={
"INPUT_TEXT": prompt_content.message.content,
},
remove_template_variables=False
)
parameter_messages = [UserPromptMessage(content=parameter_generate_prompt)]
# the second step to generate the task_parameter and task_statement
statement_generate_prompt = statement_template.format(
inputs={
"TASK_DESCRIPTION": instruction,
"INPUT_TEXT": prompt_content.message.content,
},
remove_template_variables=False
)
statement_messages = [UserPromptMessage(content=statement_generate_prompt)]
try:
parameter_content = model_instance.invoke_llm(
prompt_messages=parameter_messages,
model_parameters=model_parameters,
stream=False
)
rule_config["variables"] = re.findall(r'"\s*([^"]+)\s*"', parameter_content.message.content)
except InvokeError as e:
error = str(e)
error_step = "generate variables"
try:
statement_content = model_instance.invoke_llm(
prompt_messages=statement_messages,
model_parameters=model_parameters,
stream=False
)
rule_config["opening_statement"] = statement_content.message.content
except InvokeError as e:
error = str(e)
error_step = "generate conversation opener"
rule_config = output_parser.parse(response.message.content)
except InvokeError as e:
raise e
except OutputParserException:
raise ValueError('Please give a valid input for intended audience or hoping to solve problems.')
except Exception as e:
logging.exception(e)
rule_config = {
"prompt": "",
"variables": [],
"opening_statement": ""
}
rule_config["error"] = str(e)
rule_config["error"] = f"Failed to {error_step}. Error: {error}" if error else ""
return rule_config

View File

@ -1,14 +1,18 @@
from typing import Any
from core.llm_generator.output_parser.errors import OutputParserException
from core.llm_generator.prompts import RULE_CONFIG_GENERATE_TEMPLATE
from core.llm_generator.prompts import (
RULE_CONFIG_PARAMETER_GENERATE_TEMPLATE,
RULE_CONFIG_PROMPT_GENERATE_TEMPLATE,
RULE_CONFIG_STATEMENT_GENERATE_TEMPLATE,
)
from libs.json_in_md_parser import parse_and_check_json_markdown
class RuleConfigGeneratorOutputParser:
def get_format_instructions(self) -> str:
return RULE_CONFIG_GENERATE_TEMPLATE
def get_format_instructions(self) -> tuple[str, str, str]:
return RULE_CONFIG_PROMPT_GENERATE_TEMPLATE, RULE_CONFIG_PARAMETER_GENERATE_TEMPLATE, RULE_CONFIG_STATEMENT_GENERATE_TEMPLATE
def parse(self, text: str) -> Any:
try:

View File

@ -64,6 +64,7 @@ User Input:
SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT = (
"Please help me predict the three most likely questions that human would ask, "
"and keeping each question under 20 characters.\n"
"MAKE SURE your output is the SAME language as the Assistant's latest response(if the main response is written in Chinese, then the language of your output must be using Chinese.)!\n"
"The output must be an array in JSON format following the specified schema:\n"
"[\"question1\",\"question2\",\"question3\"]\n"
)
@ -80,65 +81,73 @@ GENERATOR_QA_PROMPT = (
'<QA Pairs>'
)
RULE_CONFIG_GENERATE_TEMPLATE = """Given MY INTENDED AUDIENCES and HOPING TO SOLVE using a language model, please select \
the model prompt that best suits the input.
You will be provided with the prompt, variables, and an opening statement.
Only the content enclosed in double curly braces, such as {{variable}}, in the prompt can be considered as a variable; \
otherwise, it cannot exist as a variable in the variables.
If you believe revising the original input will result in a better response from the language model, you may \
suggest revisions.
WORKFLOW_RULE_CONFIG_PROMPT_GENERATE_TEMPLATE = """
Here is a task description for which I would like you to create a high-quality prompt template for:
<task_description>
{{TASK_DESCRIPTION}}
</task_description>
Based on task description, please create a well-structured prompt template that another AI could use to consistently complete the task. The prompt template should include:
- Do not inlcude <input> or <output> section and variables in the prompt, assume user will add them at their own will.
- Clear instructions for the AI that will be using this prompt, demarcated with <instructions> tags. The instructions should provide step-by-step directions on how to complete the task using the input variables. Also Specifies in the instructions that the output should not contain any xml tag.
- Relevant examples if needed to clarify the task further, demarcated with <example> tags. Do not include variables in the prompt. Give three pairs of input and output examples.
- Include other relevant sections demarcated with appropriate XML tags like <examples>, <instructions>.
- Use the same language as task description.
- Output in ``` xml ``` and start with <instruction>
Please generate the full prompt template with at least 300 words and output only the prompt template.
"""
<<PRINCIPLES OF GOOD PROMPT>>
Integrate the intended audience in the prompt e.g. the audience is an expert in the field.
Break down complex tasks into a sequence of simpler prompts in an interactive conversation.
Implement example-driven prompting (Use few-shot prompting).
When formatting your prompt start with Instruction followed by either Example if relevant. \
Subsequently present your content. Use one or more line breaks to separate instructions examples questions context and input data.
Incorporate the following phrases: “Your task is” and “You MUST”.
Incorporate the following phrases: “You will be penalized”.
Use leading words like writing “think step by step”.
Add to your prompt the following phrase “Ensure that your answer is unbiased and does not rely on stereotypes”.
Assign a role to the large language models.
Use Delimiters.
To write an essay /text /paragraph /article or any type of text that should be detailed: “Write a detailed [essay/text/paragraph] for me on [topic] in detail by adding all the information necessary”.
Clearly state the requirements that the model must follow in order to produce content in the form of the keywords regulations hint or instructions
RULE_CONFIG_PROMPT_GENERATE_TEMPLATE = """
Here is a task description for which I would like you to create a high-quality prompt template for:
<task_description>
{{TASK_DESCRIPTION}}
</task_description>
Based on task description, please create a well-structured prompt template that another AI could use to consistently complete the task. The prompt template should include:
- Descriptive variable names surrounded by {{ }} (two curly brackets) to indicate where the actual values will be substituted in. Choose variable names that clearly indicate the type of value expected. Variable names have to be composed of number, english alphabets and underline and nothing else.
- Clear instructions for the AI that will be using this prompt, demarcated with <instructions> tags. The instructions should provide step-by-step directions on how to complete the task using the input variables. Also Specifies in the instructions that the output should not contain any xml tag.
- Relevant examples if needed to clarify the task further, demarcated with <example> tags. Do not use curly brackets any other than in <instruction> section.
- Any other relevant sections demarcated with appropriate XML tags like <input>, <output>, etc.
- Use the same language as task description.
- Output in ``` xml ``` and start with <instruction>
Please generate the full prompt template and output only the prompt template.
"""
<< FORMATTING >>
Return a markdown code snippet with a JSON object formatted to look like, \
no any other string out of markdown code snippet:
```json
{{{{
"prompt": string \\ generated prompt
"variables": list of string \\ variables
"opening_statement": string \\ an opening statement to guide users on how to ask questions with generated prompt \
and fill in variables, with a welcome sentence, and keep TLDR.
}}}}
```
RULE_CONFIG_PARAMETER_GENERATE_TEMPLATE = """
I need to extract the following information from the input text. The <information to be extracted> tag specifies the 'type', 'description' and 'required' of the information to be extracted.
<information to be extracted>
variables name bounded two double curly brackets. Variable name has to be composed of number, english alphabets and underline and nothing else.
</information to be extracted>
<< EXAMPLES >>
[EXAMPLE A]
```json
{
"prompt": "I need your help to translate the following {{Input_language}}paper paragraph into {{Target_language}}, in a style similar to a popular science magazine in {{Target_language}}. #### Rules Ensure accurate conveyance of the original text's facts and context during translation. Maintain the original paragraph format and retain technical terms and company abbreviations ",
"variables": ["Input_language", "Target_language"],
"opening_statement": " Hi. I am your translation assistant. I can help you with any translation and ensure accurate conveyance of information. "
}
```
Step 1: Carefully read the input and understand the structure of the expected output.
Step 2: Extract relevant parameters from the provided text based on the name and description of object.
Step 3: Structure the extracted parameters to JSON object as specified in <structure>.
Step 4: Ensure that the list of variable_names is properly formatted and valid. The output should not contain any XML tags. Output an empty list if there is no valid variable name in input text.
[EXAMPLE B]
```json
{
"prompt": "Your task is to review the provided meeting notes and create a concise summary that captures the essential information, focusing on key takeaways and action items assigned to specific individuals or departments during the meeting. Use clear and professional language, and organize the summary in a logical manner using appropriate formatting such as headings, subheadings, and bullet points. Ensure that the summary is easy to understand and provides a comprehensive but succinct overview of the meeting's content, with a particular focus on clearly indicating who is responsible for each action item.",
"variables": ["meeting_notes"],
"opening_statement": "Hi! I'm your meeting notes summarizer AI. I can help you with any meeting notes and ensure accurate conveyance of information."
}
```
### Structure
Here is the structure of the expected output, I should always follow the output structure.
["variable_name_1", "variable_name_2"]
<< MY INTENDED AUDIENCES >>
{{audiences}}
### Input Text
Inside <text></text> XML tags, there is a text that I should extract parameters and convert to a JSON object.
<text>
{{INPUT_TEXT}}
</text>
<< HOPING TO SOLVE >>
{{hoping_to_solve}}
### Answer
I should always output a valid list. Output nothing other than the list of variable_name. Output an empty list if there is no variable name in input text.
"""
<< OUTPUT >>
"""
RULE_CONFIG_STATEMENT_GENERATE_TEMPLATE = """
<instruction>
Step 1: Identify the purpose of the chatbot from the variable {{TASK_DESCRIPTION}} and infer chatbot's tone (e.g., friendly, professional, etc.) to add personality traits.
Step 2: Create a coherent and engaging opening statement.
Step 3: Ensure the output is welcoming and clearly explains what the chatbot is designed to do. Do not include any XML tags in the output.
Please use the same language as the user's input language. If user uses chinese then generate opening statement in chinese, if user uses english then generate opening statement in english.
Example Input:
Provide customer support for an e-commerce website
Example Output:
Welcome! I'm here to assist you with any questions or issues you might have with your shopping experience. Whether you're looking for product information, need help with your order, or have any other inquiries, feel free to ask. I'm friendly, helpful, and ready to support you in any way I can.
<Task>
Here is the task description: {{INPUT_TEXT}}
You just need to generate the output
"""

View File

@ -103,7 +103,7 @@ class TokenBufferMemory:
if curr_message_tokens > max_token_limit:
pruned_memory = []
while curr_message_tokens > max_token_limit and prompt_messages:
while curr_message_tokens > max_token_limit and len(prompt_messages)>1:
pruned_memory.append(prompt_messages.pop(0))
curr_message_tokens = self.model_instance.get_llm_num_tokens(
prompt_messages

View File

@ -410,7 +410,7 @@ class LBModelManager:
self._model = model
self._load_balancing_configs = load_balancing_configs
for load_balancing_config in self._load_balancing_configs:
for load_balancing_config in self._load_balancing_configs[:]: # Iterate over a shallow copy of the list
if load_balancing_config.name == "__inherit__":
if not managed_credentials:
# remove __inherit__ if managed credentials is not provided

View File

@ -23,6 +23,7 @@
- tongyi
- wenxin
- moonshot
- tencent
- jina
- chatglm
- yi

View File

@ -27,9 +27,9 @@ parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
default: 4096
default: 8192
min: 1
max: 4096
max: 8192
- name: response_format
use_template: response_format
pricing:

View File

@ -113,6 +113,11 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
if system:
extra_model_kwargs['system'] = system
# Add the new header for claude-3-5-sonnet-20240620 model
extra_headers = {}
if model == "claude-3-5-sonnet-20240620":
extra_headers["anthropic-beta"] = "max-tokens-3-5-sonnet-2024-07-15"
if tools:
extra_model_kwargs['tools'] = [
self._transform_tool_prompt(tool) for tool in tools
@ -121,6 +126,7 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
model=model,
messages=prompt_message_dicts,
stream=stream,
extra_headers=extra_headers,
**model_parameters,
**extra_model_kwargs
)
@ -130,6 +136,7 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
model=model,
messages=prompt_message_dicts,
stream=stream,
extra_headers=extra_headers,
**model_parameters,
**extra_model_kwargs
)
@ -138,7 +145,7 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
return self._handle_chat_generate_stream_response(model, credentials, response, prompt_messages)
return self._handle_chat_generate_response(model, credentials, response, prompt_messages)
def _code_block_mode_wrapper(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
model_parameters: dict, tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None, stream: bool = True, user: Optional[str] = None,

View File

@ -71,6 +71,9 @@ model_credential_schema:
- label:
en_US: '2024-02-01'
value: '2024-02-01'
- label:
en_US: '2024-06-01'
value: '2024-06-01'
placeholder:
zh_Hans: 在此选择您的 API 版本
en_US: Select your API Version here

View File

@ -501,7 +501,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
sub_messages.append(sub_message_dict)
message_dict = {"role": "user", "content": sub_messages}
elif isinstance(message, AssistantPromptMessage):
message = cast(AssistantPromptMessage, message)
# message = cast(AssistantPromptMessage, message)
message_dict = {"role": "assistant", "content": message.content}
if message.tool_calls:
message_dict["tool_calls"] = [helper.dump_model(tool_call) for tool_call in message.tool_calls]

View File

@ -48,6 +48,28 @@ logger = logging.getLogger(__name__)
class BedrockLargeLanguageModel(LargeLanguageModel):
# please refer to the documentation: https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html
# TODO There is invoke issue: context limit on Cohere Model, will add them after fixed.
CONVERSE_API_ENABLED_MODEL_INFO=[
{'prefix': 'anthropic.claude-v2', 'support_system_prompts': True, 'support_tool_use': False},
{'prefix': 'anthropic.claude-v1', 'support_system_prompts': True, 'support_tool_use': False},
{'prefix': 'anthropic.claude-3', 'support_system_prompts': True, 'support_tool_use': True},
{'prefix': 'meta.llama', 'support_system_prompts': True, 'support_tool_use': False},
{'prefix': 'mistral.mistral-7b-instruct', 'support_system_prompts': False, 'support_tool_use': False},
{'prefix': 'mistral.mixtral-8x7b-instruct', 'support_system_prompts': False, 'support_tool_use': False},
{'prefix': 'mistral.mistral-large', 'support_system_prompts': True, 'support_tool_use': True},
{'prefix': 'mistral.mistral-small', 'support_system_prompts': True, 'support_tool_use': True},
{'prefix': 'amazon.titan', 'support_system_prompts': False, 'support_tool_use': False}
]
@staticmethod
def _find_model_info(model_id):
for model in BedrockLargeLanguageModel.CONVERSE_API_ENABLED_MODEL_INFO:
if model_id.startswith(model['prefix']):
return model
logger.info(f"current model id: {model_id} did not support by Converse API")
return None
def _invoke(self, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
@ -66,10 +88,12 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
:param user: unique user id
:return: full response or stream response chunk generator result
"""
# TODO: consolidate different invocation methods for models based on base model capabilities
# invoke anthropic models via boto3 client
if "anthropic" in model:
return self._generate_anthropic(model, credentials, prompt_messages, model_parameters, stop, stream, user, tools)
model_info= BedrockLargeLanguageModel._find_model_info(model)
if model_info:
model_info['model'] = model
# invoke models via boto3 converse API
return self._generate_with_converse(model_info, credentials, prompt_messages, model_parameters, stop, stream, user, tools)
# invoke Cohere models via boto3 client
if "cohere.command-r" in model:
return self._generate_cohere_chat(model, credentials, prompt_messages, model_parameters, stop, stream, user, tools)
@ -151,12 +175,12 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
return self._handle_generate_response(model, credentials, response, prompt_messages)
def _generate_anthropic(self, model: str, credentials: dict, prompt_messages: list[PromptMessage], model_parameters: dict,
def _generate_with_converse(self, model_info: dict, credentials: dict, prompt_messages: list[PromptMessage], model_parameters: dict,
stop: Optional[list[str]] = None, stream: bool = True, user: Optional[str] = None, tools: Optional[list[PromptMessageTool]] = None,) -> Union[LLMResult, Generator]:
"""
Invoke Anthropic large language model
Invoke large language model with converse API
:param model: model name
:param model_info: model information
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
@ -173,24 +197,24 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
inference_config, additional_model_fields = self._convert_converse_api_model_parameters(model_parameters, stop)
parameters = {
'modelId': model,
'modelId': model_info['model'],
'messages': prompt_message_dicts,
'inferenceConfig': inference_config,
'additionalModelRequestFields': additional_model_fields,
}
if system and len(system) > 0:
if model_info['support_system_prompts'] and system and len(system) > 0:
parameters['system'] = system
if tools:
if model_info['support_tool_use'] and tools:
parameters['toolConfig'] = self._convert_converse_tool_config(tools=tools)
if stream:
response = bedrock_client.converse_stream(**parameters)
return self._handle_converse_stream_response(model, credentials, response, prompt_messages)
return self._handle_converse_stream_response(model_info['model'], credentials, response, prompt_messages)
else:
response = bedrock_client.converse(**parameters)
return self._handle_converse_response(model, credentials, response, prompt_messages)
return self._handle_converse_response(model_info['model'], credentials, response, prompt_messages)
def _handle_converse_response(self, model: str, credentials: dict, response: dict,
prompt_messages: list[PromptMessage]) -> LLMResult:
@ -203,10 +227,30 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
:param prompt_messages: prompt messages
:return: full response chunk generator result
"""
response_content = response['output']['message']['content']
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=response['output']['message']['content'][0]['text']
)
if response['stopReason'] == 'tool_use':
tool_calls = []
text, tool_use = self._extract_tool_use(response_content)
tool_call = AssistantPromptMessage.ToolCall(
id=tool_use['toolUseId'],
type='function',
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=tool_use['name'],
arguments=json.dumps(tool_use['input'])
)
)
tool_calls.append(tool_call)
assistant_prompt_message = AssistantPromptMessage(
content=text,
tool_calls=tool_calls
)
else:
assistant_prompt_message = AssistantPromptMessage(
content=response_content[0]['text']
)
# calculate num tokens
if response['usage']:
@ -229,6 +273,18 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
)
return result
def _extract_tool_use(self, content:dict)-> tuple[str, dict]:
tool_use = {}
text = ''
for item in content:
if 'toolUse' in item:
tool_use = item['toolUse']
elif 'text' in item:
text = item['text']
else:
raise ValueError(f"Got unknown item: {item}")
return text, tool_use
def _handle_converse_stream_response(self, model: str, credentials: dict, response: dict,
prompt_messages: list[PromptMessage], ) -> Generator:
"""
@ -340,14 +396,12 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
"""
system = []
prompt_message_dicts = []
for message in prompt_messages:
if isinstance(message, SystemPromptMessage):
message.content=message.content.strip()
system.append({"text": message.content})
prompt_message_dicts = []
for message in prompt_messages:
if not isinstance(message, SystemPromptMessage):
else:
prompt_message_dicts.append(self._convert_prompt_message_to_dict(message))
return system, prompt_message_dicts
@ -448,7 +502,6 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
}
else:
raise ValueError(f"Got unknown type {message}")
return message_dict
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage] | str,

View File

@ -2,6 +2,9 @@ model: mistral.mistral-large-2402-v1:0
label:
en_US: Mistral Large
model_type: llm
features:
- tool-call
- agent-thought
model_properties:
mode: completion
context_size: 32000

View File

@ -2,6 +2,8 @@ model: mistral.mistral-small-2402-v1:0
label:
en_US: Mistral Small
model_type: llm
features:
- tool-call
model_properties:
mode: completion
context_size: 32000

View File

@ -0,0 +1,7 @@
- llama-3.1-405b-reasoning
- llama-3.1-70b-versatile
- llama-3.1-8b-instant
- llama3-70b-8192
- llama3-8b-8192
- mixtral-8x7b-32768
- llama2-70b-4096

View File

@ -0,0 +1,25 @@
model: llama-3.1-405b-reasoning
label:
zh_Hans: Llama-3.1-405b-reasoning
en_US: Llama-3.1-405b-reasoning
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 131072
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 8192
pricing:
input: '0.05'
output: '0.1'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,25 @@
model: llama-3.1-70b-versatile
label:
zh_Hans: Llama-3.1-70b-versatile
en_US: Llama-3.1-70b-versatile
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 131072
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 8192
pricing:
input: '0.05'
output: '0.1'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,25 @@
model: llama-3.1-8b-instant
label:
zh_Hans: Llama-3.1-8b-instant
en_US: Llama-3.1-8b-instant
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 131072
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 8192
pricing:
input: '0.05'
output: '0.1'
unit: '0.000001'
currency: USD

View File

@ -1,6 +1,8 @@
- gpt-4
- gpt-4o
- gpt-4o-2024-05-13
- gpt-4o-mini
- gpt-4o-mini-2024-07-18
- gpt-4-turbo
- gpt-4-turbo-2024-04-09
- gpt-4-turbo-preview

View File

@ -0,0 +1,44 @@
model: gpt-4o-mini-2024-07-18
label:
zh_Hans: gpt-4o-mini-2024-07-18
en_US: gpt-4o-mini-2024-07-18
model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
- vision
model_properties:
mode: chat
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 16384
- name: response_format
label:
zh_Hans: 回复格式
en_US: response_format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0.15'
output: '0.60'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,44 @@
model: gpt-4o-mini
label:
zh_Hans: gpt-4o-mini
en_US: gpt-4o-mini
model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
- vision
model_properties:
mode: chat
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 16384
- name: response_format
label:
zh_Hans: 回复格式
en_US: response_format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0.15'
output: '0.60'
unit: '0.000001'
currency: USD

View File

@ -1,4 +1,5 @@
- openai/gpt-4o
- openai/gpt-4o-mini
- openai/gpt-4
- openai/gpt-4-32k
- openai/gpt-3.5-turbo
@ -11,6 +12,9 @@
- google/gemini-pro
- cohere/command-r-plus
- cohere/command-r
- meta-llama/llama-3.1-405b-instruct
- meta-llama/llama-3.1-70b-instruct
- meta-llama/llama-3.1-8b-instruct
- meta-llama/llama-3-70b-instruct
- meta-llama/llama-3-8b-instruct
- mistralai/mixtral-8x22b-instruct

View File

@ -0,0 +1,43 @@
model: openai/gpt-4o-mini
label:
en_US: gpt-4o-mini
model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
- vision
model_properties:
mode: chat
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 16384
- name: response_format
label:
zh_Hans: 回复格式
en_US: response_format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: "0.15"
output: "0.60"
unit: "0.000001"
currency: USD

View File

@ -0,0 +1,23 @@
model: meta-llama/llama-3.1-405b-instruct
label:
en_US: llama-3.1-405b-instruct
model_type: llm
model_properties:
mode: chat
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
required: true
default: 512
min: 1
max: 128000
pricing:
input: "3"
output: "3"
unit: "0.000001"
currency: USD

View File

@ -0,0 +1,23 @@
model: meta-llama/llama-3.1-70b-instruct
label:
en_US: llama-3.1-70b-instruct
model_type: llm
model_properties:
mode: chat
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
required: true
default: 512
min: 1
max: 128000
pricing:
input: "0.9"
output: "0.9"
unit: "0.000001"
currency: USD

View File

@ -0,0 +1,23 @@
model: meta-llama/llama-3.1-8b-instruct
label:
en_US: llama-3.1-8b-instruct
model_type: llm
model_properties:
mode: chat
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
required: true
default: 512
min: 1
max: 128000
pricing:
input: "0.2"
output: "0.2"
unit: "0.000001"
currency: USD

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.5 KiB

Some files were not shown because too many files have changed in this diff Show More