Compare commits

..

56 Commits

Author SHA1 Message Date
086aeea181 Update build-push.yml 2025-03-03 14:12:54 +08:00
1d7c4a87d0 Merge branch 'feat/support-knowledge-metadata' into dev/plugin-deploy 2025-03-03 13:36:13 +08:00
9042b368e9 add metadata migration 2025-03-03 13:35:51 +08:00
f1bcd26c69 Update build-push.yml
remove api image build task
2025-02-28 22:23:30 +08:00
3dcd8b6330 Update build-push.yml 2025-02-28 18:32:41 +08:00
10c088029c Merge branch 'feat/beta-offline-notice' into dev/plugin-deploy 2025-02-28 18:11:39 +08:00
73b1adf862 fix: update notice date 2025-02-28 18:10:48 +08:00
ae76dbd92c fix: update offline notice style 2025-02-28 18:10:13 +08:00
782df0c383 fix: update offline notice style 2025-02-28 18:08:26 +08:00
089207240e fix: add offline notice 2025-02-28 18:08:09 +08:00
53d30d537f Revert "Merge branch 'fix/adjust-price-frontend' into dev/plugin-deploy"
This reverts commit 7710d8e83b, reversing
changes made to 96cf0ed5af.
2025-02-28 18:02:51 +08:00
53512a4650 Revert "Merge branch 'feat/compliance-report-download' into dev/plugin-deploy"
This reverts commit 202a246e83, reversing
changes made to 7710d8e83b.
2025-02-28 18:01:35 +08:00
1fb7dcda24 Merge remote-tracking branch 'origin/dev/plugin-deploy' into dev/plugin-deploy 2025-02-28 16:57:49 +08:00
3c3e0a35f4 add metadata migration 2025-02-28 16:34:11 +08:00
202a246e83 Merge branch 'feat/compliance-report-download' into dev/plugin-deploy 2025-02-28 12:26:27 +08:00
08b968eca5 fix: workspace selector style 2025-02-28 12:25:50 +08:00
b1ac71db3e Merge branch 'main' into feat/compliance-report-download 2025-02-28 11:45:02 +08:00
7710d8e83b Merge branch 'fix/adjust-price-frontend' into dev/plugin-deploy 2025-02-27 18:14:08 +08:00
cf75fcdffc fix: merge main 2025-02-27 18:04:24 +08:00
6e8601b52c Merge branch 'main' into fix/adjust-price-frontend 2025-02-27 17:57:55 +08:00
96cf0ed5af add metadata migration 2025-02-27 17:21:54 +08:00
46a798bea8 dataset metadata fix 2025-02-27 16:23:02 +08:00
9e258c495d dataset metadata fix 2025-02-27 15:30:37 +08:00
c53786d229 dataset metadata update 2025-02-26 19:59:57 +08:00
17f23f4798 Merge branch 'main' into feat/support-knowledge-metadata
# Conflicts:
#	api/core/rag/datasource/retrieval_service.py
#	api/core/workflow/nodes/code/code_node.py
#	api/services/dataset_service.py
2025-02-26 19:59:14 +08:00
67f2c766bc dataset metadata update 2025-02-26 19:56:19 +08:00
5f995fac32 metadata update 2025-02-20 17:13:44 +08:00
f88f9d6970 metadata 2025-02-19 15:50:28 +08:00
d2cc502c71 knowledge metadata 2025-02-17 18:17:26 +08:00
b88194d1c6 fix: regenerate icons; replace iso icon 2025-02-10 16:38:56 +08:00
2b95e54d54 fix: add compliance file name ellipsis support 2025-02-10 16:34:59 +08:00
9bff9b5c9e fix: keep menus under open state when compliance is downloading 2025-02-07 14:16:51 +08:00
3dd2c170e7 fix: only saas version can download compliance 2025-02-07 12:24:52 +08:00
88f41f164f feat: support user download compliance files 2025-02-06 16:47:01 +08:00
cd932519b3 fix: add icon to user profile dropdown menu item 2025-02-05 15:49:50 +08:00
2ff2b08739 Merge branch 'main' into feat/compliance-report-download 2025-02-05 11:23:03 +08:00
a4a45421cc fix: update sandbox log history value in jp 2025-01-23 17:16:54 +08:00
aafab1b59e fix: update sandbox log histroy value 2025-01-23 17:09:44 +08:00
7f49f96c3f fix: update team members value 2025-01-23 17:02:49 +08:00
5673f03db5 fix: update documentsRequestQuota value 2025-01-23 16:30:39 +08:00
278adbc10e fix: update jp translate error 2025-01-23 14:49:04 +08:00
5d4e517397 fix: update billing button disabled style 2025-01-23 14:44:26 +08:00
c2671c16a8 fix: update bill page background opacity 2025-01-23 11:41:10 +08:00
10991cbc03 fix: update bill page background image 2025-01-23 11:06:01 +08:00
3fcf7e88b0 fix: UI adjust 2025-01-22 20:01:00 +08:00
ffa5af1356 fix: supports number format 2025-01-22 19:41:18 +08:00
066516b54d fix: update document limit tooltip content 2025-01-14 18:57:03 +08:00
49415e5e7f fix: update Knowledge Request Ratelimit tooltip text 2025-01-14 16:38:30 +08:00
a697bbdfa7 fix: update i18n 2025-01-09 10:25:04 +08:00
d5c31f8728 fix: update billing i18n in setting modal 2025-01-08 17:58:51 +08:00
508005b741 fix: replace contact sales url address 2025-01-08 14:32:16 +08:00
4f0ecdbb6e fix: use repeat-linear-gradient for GridMask to improve darkmode support 2025-01-07 14:23:19 +08:00
ab2e69faef fix: plan item can not show all content if language is jp 2025-01-07 12:23:17 +08:00
e46a3343b8 fix: new upgrade page 2025-01-07 11:42:41 +08:00
47637da734 wip: adjust self hosted page style 2025-01-06 10:47:38 +08:00
525bde28f6 fix: adjust cloud service 2025-01-03 16:18:24 +08:00
582 changed files with 8009 additions and 23258 deletions

2
.gitattributes vendored
View File

@ -1,5 +1,5 @@
# Ensure that .sh scripts use LF as line separator, even if they are checked out
# to Windows(NTFS) file-system, by a user of Docker for Windows.
# to Windows(NTFS) file-system, by a user of Docker for Window.
# These .sh scripts will be run from the Container after `docker compose up -d`.
# If they appear to be CRLF style, Dash from the Container will fail to execute
# them.

View File

@ -1,13 +0,0 @@
name: "👾 Tracker"
description: For inner usages, please donot use this template.
title: "[Tracker] "
labels:
- tracker
body:
- type: textarea
id: content
attributes:
label: Blockers
placeholder: "- [ ] ..."
validations:
required: true

View File

@ -5,6 +5,7 @@ on:
branches:
- "main"
- "deploy/dev"
- "dev/plugin-deploy"
release:
types: [published]

1
.gitignore vendored
View File

@ -183,7 +183,6 @@ docker/nginx/conf.d/default.conf
docker/nginx/ssl/*
!docker/nginx/ssl/.gitkeep
docker/middleware.env
docker/docker-compose.override.yaml
sdks/python-client/build
sdks/python-client/dist

View File

@ -1,155 +0,0 @@
# MITWIRKEN
So, du möchtest zu Dify beitragen das ist großartig, wir können es kaum erwarten, zu sehen, was du beisteuern wirst. Als ein Startup mit begrenzter Mitarbeiterzahl und Finanzierung haben wir große Ambitionen, den intuitivsten Workflow zum Aufbau und zur Verwaltung von LLM-Anwendungen zu entwickeln. Jede Unterstützung aus der Community zählt wirklich.
Dieser Leitfaden, ebenso wie Dify selbst, ist ein ständig in Entwicklung befindliches Projekt. Wir schätzen Ihr Verständnis, falls er zeitweise hinter dem tatsächlichen Projekt zurückbleibt, und freuen uns über jegliches Feedback, das uns hilft, ihn zu verbessern.
Bezüglich der Lizenzierung nehmen Sie sich bitte einen Moment Zeit, um unser kurzes [License and Contributor Agreement](./LICENSE) zu lesen. Die Community hält sich außerdem an den [Code of Conduct](https://github.com/langgenius/.github/blob/main/CODE_OF_CONDUCT.md).
## Bevor Sie loslegen
[Finde](https://github.com/langgenius/dify/issues?q=is:issue+is:open) ein bestehendes Issue, oder [öffne](https://github.com/langgenius/dify/issues/new/choose) ein neues. Wir kategorisieren Issues in zwei Typen:
### Feature-Anfragen
* Wenn Sie eine neue Feature-Anfrage stellen, bitten wir Sie zu erklären, was das vorgeschlagene Feature bewirken soll und so viel Kontext wie möglich bereitzustellen. [@perzeusss](https://github.com/perzeuss) hat einen soliden [Feature Request Copilot](https://udify.app/chat/MK2kVSnw1gakVwMX) entwickelt, der Ihnen dabei hilft, Ihre Anforderungen zu formulieren. Probieren Sie ihn gerne aus.
* Wenn Sie eines der bestehenden Issues übernehmen möchten, hinterlassen Sie einfach einen Kommentar darunter, in dem Sie uns dies mitteilen.
Ein Teammitglied, das in der entsprechenden Richtung arbeitet, wird hinzugezogen. Wenn alles in Ordnung ist, gibt es das Okay, mit der Codierung zu beginnen. Wir bitten Sie, mit der Umsetzung des Features zu warten, damit keine Ihrer Arbeiten verloren gehen sollte unsererseits Änderungen vorgeschlagen werden.
Je nachdem, in welchen Bereich das vorgeschlagene Feature fällt, können Sie mit verschiedenen Teammitgliedern sprechen. Hier ist eine Übersicht der Bereiche, an denen unsere Teammitglieder derzeit arbeiten:
| Member | Scope |
| ------------------------------------------------------------ | ---------------------------------------------------- |
| [@yeuoly](https://github.com/Yeuoly) | Architecting Agents |
| [@jyong](https://github.com/JohnJyong) | RAG pipeline design |
| [@GarfieldDai](https://github.com/GarfieldDai) | Building workflow orchestrations |
| [@iamjoel](https://github.com/iamjoel) & [@zxhlyh](https://github.com/zxhlyh) | Making our frontend a breeze to use |
| [@guchenhe](https://github.com/guchenhe) & [@crazywoola](https://github.com/crazywoola) | Developer experience, points of contact for anything |
| [@takatost](https://github.com/takatost) | Overall product direction and architecture |
Wie wir Prioritäten setzen:
| Feature Type | Priority |
| ------------------------------------------------------------ | --------------- |
| Funktionen mit hoher Priorität, wie sie von einem Teammitglied gekennzeichnet wurden | High Priority |
| Beliebte Funktionsanfragen von unserem [Community-Feedback-Board](https://github.com/langgenius/dify/discussions/categories/feedbacks) | Medium Priority |
| Nicht-Kernfunktionen und kleinere Verbesserungen | Low Priority |
| Wertvoll, aber nicht unmittelbar | Future-Feature |
### Sonstiges (e.g. bug report, performance optimization, typo correction)
* Fangen Sie sofort an zu programmieren..
Wie wir Prioritäten setzen:
| Issue Type | Priority |
| ------------------------------------------------------------ | --------------- |
| Fehler in Kernfunktionen (Anmeldung nicht möglich, Anwendungen funktionieren nicht, Sicherheitslücken) | Critical |
| Nicht-kritische Fehler, Leistungsverbesserungen | Medium Priority |
| Kleinere Fehlerkorrekturen (Schreibfehler, verwirrende, aber funktionierende Benutzeroberfläche) | Low Priority |
## Installieren
Hier sind die Schritte, um Dify für die Entwicklung einzurichten:
### 1. Fork dieses Repository
### 2. Clone das Repo
Klonen Sie das geforkte Repository von Ihrem Terminal aus:
```shell
git clone git@github.com:<github_username>/dify.git
```
### 3. Abhängigkeiten prüfen
Dify benötigt die folgenden Abhängigkeiten zum Bauen stellen Sie sicher, dass sie auf Ihrem System installiert sind:
* [Docker](https://www.docker.com/)
* [Docker Compose](https://docs.docker.com/compose/install/)
* [Node.js v18.x (LTS)](http://nodejs.org)
* [pnpm](https://pnpm.io/)
* [Python](https://www.python.org/) version 3.11.x or 3.12.x
### 4. Installationen
Dify setzt sich aus einem Backend und einem Frontend zusammen. Wechseln Sie in das Backend-Verzeichnis mit `cd api/` und folgen Sie der [Backend README](api/README.md) zur Installation. Öffnen Sie in einem separaten Terminal das Frontend-Verzeichnis mit `cd web/` und folgen Sie der [Frontend README](web/README.md) zur Installation.
Überprüfen Sie die [Installation FAQ](https://docs.dify.ai/learn-more/faq/install-faq) für eine Liste bekannter Probleme und Schritte zur Fehlerbehebung.
### 5. Besuchen Sie dify in Ihrem Browser
Um Ihre Einrichtung zu validieren, öffnen Sie Ihren Browser und navigieren Sie zu [http://localhost:3000](http://localhost:3000) (Standardwert oder Ihre selbst konfigurierte URL und Port). Sie sollten nun Dify im laufenden Betrieb sehen.
## Entwickeln
Wenn Sie einen Modellanbieter hinzufügen, ist [dieser Leitfaden](https://github.com/langgenius/dify/blob/main/api/core/model_runtime/README.md) für Sie.
Wenn Sie einen Tool-Anbieter für Agent oder Workflow hinzufügen möchten, ist [dieser Leitfaden](./api/core/tools/README.md) für Sie.
Um Ihnen eine schnelle Orientierung zu bieten, wo Ihr Beitrag passt, folgt eine kurze, kommentierte Übersicht des Backends und Frontends von Dify:
### Backend
Difys Backend ist in Python geschrieben und nutzt [Flask](https://flask.palletsprojects.com/en/3.0.x/) als Web-Framework. Es verwendet [SQLAlchemy](https://www.sqlalchemy.org/) für ORM und [Celery](https://docs.celeryq.dev/en/stable/getting-started/introduction.html) für Task-Queueing. Die Autorisierungslogik erfolgt über Flask-login.
```text
[api/]
├── constants // Konstante Einstellungen, die in der gesamten Codebasis verwendet werden.
├── controllers // API-Routendefinitionen und Logik zur Bearbeitung von Anfragen.
├── core // Orchestrierung von Kernanwendungen, Modellintegrationen und Tools.
├── docker // Konfigurationen im Zusammenhang mit Docker und Containerisierung.
├── events // Ereignisbehandlung und -verarbeitung
├── extensions // Erweiterungen mit Frameworks/Plattformen von Drittanbietern.
├── fields // Felddefinitionen für die Serialisierung/Marshalling.
├── libs // Wiederverwendbare Bibliotheken und Hilfsprogramme
├── migrations // Skripte für die Datenbankmigration.
├── models // Datenbankmodelle und Schemadefinitionen.
├── services // Gibt die Geschäftslogik an.
├── storage // Speicherung privater Schlüssel.
├── tasks // Handhabung von asynchronen Aufgaben und Hintergrundaufträgen.
└── tests
```
### Frontend
Die Website basiert auf einem [Next.js](https://nextjs.org/)-Boilerplate in TypeScript und verwendet [Tailwind CSS](https://tailwindcss.com/) für das Styling. [React-i18next](https://react.i18next.com/) wird für die Internationalisierung genutzt.
```text
[web/]
├── app // Layouts, Seiten und Komponenten
│ ├── (commonLayout) // gemeinsames Layout für die gesamte Anwendung
│ ├── (shareLayout) // Layouts, die speziell für tokenspezifische Sitzungen gemeinsam genutzt werden
│ ├── activate // Seite aufrufen
│ ├── components // gemeinsam genutzt von Seiten und Layouts
│ ├── install // Seite installieren
│ ├── signin // Anmeldeseite
│ └── styles // global geteilte Stile
├── assets // Statische Vermögenswerte
├── bin // Skripte, die beim Build-Schritt ausgeführt werden
├── config // einstellbare Einstellungen und Optionen
├── context // gemeinsame Kontexte, die von verschiedenen Teilen der Anwendung verwendet werden
├── dictionaries // Sprachspezifische Übersetzungsdateien
├── docker // Container-Konfigurationen
├── hooks // Wiederverwendbare Haken
├── i18n // Konfiguration der Internationalisierung
├── models // beschreibt Datenmodelle und Formen von API-Antworten
├── public // Meta-Assets wie Favicon
├── service // legt Formen von API-Aktionen fest
├── test
├── types // Beschreibungen von Funktionsparametern und Rückgabewerten
└── utils // Gemeinsame Nutzenfunktionen
```
## Einreichung Ihrer PR
Am Ende ist es Zeit, einen Pull Request (PR) in unserem Repository zu eröffnen. Für wesentliche Features mergen wir diese zunächst in den `deploy/dev`-Branch zum Testen, bevor sie in den `main`-Branch übernommen werden. Falls Sie auf Probleme wie Merge-Konflikte stoßen oder nicht wissen, wie man einen Pull Request erstellt, schauen Sie sich [GitHub's Pull Request Tutorial](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests) an.
Und das war's! Sobald Ihr PR gemerged wurde, werden Sie als Mitwirkender in unserem [README](https://github.com/langgenius/dify/blob/main/README.md) aufgeführt.
## Hilfe bekommen
Wenn Sie beim Beitragen jemals nicht weiter wissen oder eine brennende Frage haben, richten Sie Ihre Anfrage einfach über das entsprechende GitHub-Issue an uns oder besuchen Sie unseren [Discord](https://discord.gg/8Tpq4AcN9c) für ein kurzes Gespräch.

View File

@ -1,153 +0,0 @@
# 貢獻指南
您想為 Dify 做出貢獻 - 這太棒了,我們迫不及待地想看看您的成果。作為一家人力和資金有限的初創公司,我們有宏大的抱負,希望設計出最直觀的工作流程來構建和管理 LLM 應用程式。來自社群的任何幫助都非常珍貴,真的。
鑑於我們的現狀,我們需要靈活且快速地發展,但同時也希望確保像您這樣的貢獻者能夠獲得盡可能順暢的貢獻體驗。我們編寫了這份貢獻指南,目的是幫助您熟悉代碼庫以及我們如何與貢獻者合作,讓您可以更快地進入有趣的部分。
這份指南,就像 Dify 本身一樣,是不斷發展的。如果有時它落後於實際項目,我們非常感謝您的理解,也歡迎任何改進的反饋。
關於授權,請花一分鐘閱讀我們簡短的[授權和貢獻者協議](./LICENSE)。社群也遵守[行為準則](https://github.com/langgenius/.github/blob/main/CODE_OF_CONDUCT.md)。
## 在開始之前
[尋找](https://github.com/langgenius/dify/issues?q=is:issue+is:open)現有的 issue或[創建](https://github.com/langgenius/dify/issues/new/choose)一個新的。我們將 issues 分為 2 種類型:
### 功能請求
- 如果您要開啟新的功能請求,我們希望您能解釋所提議的功能要達成什麼目標,並且盡可能包含更多的相關背景資訊。[@perzeusss](https://github.com/perzeuss) 已經製作了一個實用的[功能請求輔助工具](https://udify.app/chat/MK2kVSnw1gakVwMX),能幫助您草擬您的需求。歡迎試用。
- 如果您想從現有問題中選擇一個來處理,只需在其下方留言表示即可。
相關方向的團隊成員會加入討論。如果一切順利,他們會同意您開始編寫代碼。我們要求您在得到許可前先不要開始處理該功能,以免我們提出變更時您的工作成果被浪費。
根據所提議功能的領域不同,您可能會與不同的團隊成員討論。以下是目前每位團隊成員所負責的領域概述:
| 成員 | 負責領域 |
| --------------------------------------------------------------------------------------- | ------------------------------ |
| [@yeuoly](https://github.com/Yeuoly) | 設計 Agents 架構 |
| [@jyong](https://github.com/JohnJyong) | RAG 管道設計 |
| [@GarfieldDai](https://github.com/GarfieldDai) | 建構工作流程編排 |
| [@iamjoel](https://github.com/iamjoel) & [@zxhlyh](https://github.com/zxhlyh) | 打造易用的前端界面 |
| [@guchenhe](https://github.com/guchenhe) & [@crazywoola](https://github.com/crazywoola) | 開發者體驗,各類問題的聯絡窗口 |
| [@takatost](https://github.com/takatost) | 整體產品方向與架構 |
我們如何排定優先順序:
| 功能類型 | 優先級 |
| ------------------------------------------------------------------------------------------------------- | -------- |
| 被團隊成員標記為高優先級的功能 | 高優先級 |
| 來自我們[社群回饋版](https://github.com/langgenius/dify/discussions/categories/feedbacks)的熱門功能請求 | 中優先級 |
| 非核心功能和次要增強 | 低優先級 |
| 有價值但非急迫的功能 | 未來功能 |
### 其他事項 (例如錯誤回報、效能優化、錯字更正)
- 可以直接開始編寫程式碼。
我們如何排定優先順序:
| 問題類型 | 優先級 |
| ----------------------------------------------------- | -------- |
| 核心功能的錯誤 (無法登入、應用程式無法運行、安全漏洞) | 重要 |
| 非關鍵性錯誤、效能提升 | 中優先級 |
| 小修正 (錯字、令人困惑但仍可運作的使用者界面) | 低優先級 |
## 安裝
以下是設置 Dify 開發環境的步驟:
### 1. 分叉此存儲庫
### 2. 複製代碼庫
從您的終端機複製分叉的代碼庫:
```shell
git clone git@github.com:<github_username>/dify.git
```
- [Docker](https://www.docker.com/)
- [Docker Compose](https://docs.docker.com/compose/install/)
- [Node.js v18.x (LTS)](http://nodejs.org)
- [pnpm](https://pnpm.io/)
- [Python](https://www.python.org/) version 3.11.x or 3.12.x
### 4. 安裝
Dify 由後端和前端組成。透過 `cd api/` 導航至後端目錄,然後按照[後端 README](api/README.md)進行安裝。在另一個終端機視窗中,透過 `cd web/` 導航至前端目錄,然後按照[前端 README](web/README.md)進行安裝。
查閱[安裝常見問題](https://docs.dify.ai/learn-more/faq/install-faq)了解常見問題和故障排除步驟的列表。
### 5. 在瀏覽器中訪問 Dify
要驗證您的設置,請在瀏覽器中訪問 [http://localhost:3000](http://localhost:3000)(預設值,或您自行設定的 URL 和埠號)。現在您應該能看到 Dify 已啟動並運行。
## 開發
如果您要添加模型提供者,請參考[此指南](https://github.com/langgenius/dify/blob/main/api/core/model_runtime/README.md)。
如果您要為 Agent 或工作流程添加工具提供者,請參考[此指南](./api/core/tools/README.md)。
為了幫助您快速找到您的貢獻適合的位置,以下是 Dify 後端和前端的簡要註解大綱:
### 後端
Dify 的後端使用 Python 的 [Flask](https://flask.palletsprojects.com/en/3.0.x/) 框架編寫。它使用 [SQLAlchemy](https://www.sqlalchemy.org/) 作為 ORM 工具,使用 [Celery](https://docs.celeryq.dev/en/stable/getting-started/introduction.html) 進行任務佇列處理。授權邏輯則透過 Flask-login 實現。
```text
[api/]
├── constants // 整個專案中使用的常數與設定值
├── controllers // API 路由定義與請求處理邏輯
├── core // 核心應用服務、模型整合與工具實現
├── docker // Docker 容器化相關設定檔案
├── events // 事件處理與流程管理機制
├── extensions // 與第三方框架或平台的整合擴充功能
├── fields // 資料序列化與結構定義欄位
├── libs // 可重複使用的共用程式庫與輔助工具
├── migrations // 資料庫結構變更與遷移腳本
├── models // 資料庫模型與資料結構定義
├── services // 核心業務邏輯與功能實現
├── storage // 私鑰與敏感資訊儲存機制
├── tasks // 非同步任務與背景作業處理器
└── tests
```
### 前端
網站基於 [Next.js](https://nextjs.org/) 的 Typescript 樣板,並使用 [Tailwind CSS](https://tailwindcss.com/) 進行樣式設計。[React-i18next](https://react.i18next.com/) 用於國際化。
```text
[web/]
├── app // 頁面佈局與介面元件
│ ├── (commonLayout) // 應用程式共用佈局結構
│ ├── (shareLayout) // Token 會話專用共享佈局
│ ├── activate // 帳號啟用頁面
│ ├── components // 頁面與佈局共用元件
│ ├── install // 系統安裝頁面
│ ├── signin // 使用者登入頁面
│ └── styles // 全域共用樣式定義
├── assets // 靜態資源檔案庫
├── bin // 建構流程執行腳本
├── config // 系統可調整設定與選項
├── context // 應用程式狀態共享上下文
├── dictionaries // 多語系翻譯詞彙庫
├── docker // Docker 容器設定檔
├── hooks // 可重複使用的 React Hooks
├── i18n // 國際化與本地化設定
├── models // 資料結構與 API 回應模型
├── public // 靜態資源與網站圖標
├── service // API 操作介面定義
├── test // 測試用例與測試框架
├── types // TypeScript 型別定義
└── utils // 共用輔助功能函式庫
```
## 提交您的 PR
最後是時候向我們的存儲庫開啟拉取請求PR了。對於主要功能我們會先將它們合併到 `deploy/dev` 分支進行測試,然後才會進入 `main` 分支。如果您遇到合併衝突或不知道如何開啟拉取請求等問題,請查看 [GitHub 的拉取請求教學](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests)。
就是這樣!一旦您的 PR 被合併,您將作為貢獻者出現在我們的 [README](https://github.com/langgenius/dify/blob/main/README.md) 中。
## 獲取幫助
如果您在貢獻過程中遇到困難或有迫切的問題,只需通過相關的 GitHub issue 向我們提問,或加入我們的 [Discord](https://discord.gg/8Tpq4AcN9c) 進行快速交流。

View File

@ -40,7 +40,6 @@
<p align="center">
<a href="./README.md"><img alt="README in English" src="https://img.shields.io/badge/English-d9d9d9"></a>
<a href="./README_TW.md"><img alt="繁體中文文件" src="https://img.shields.io/badge/繁體中文-d9d9d9"></a>
<a href="./README_CN.md"><img alt="简体中文版自述文件" src="https://img.shields.io/badge/简体中文-d9d9d9"></a>
<a href="./README_JA.md"><img alt="日本語のREADME" src="https://img.shields.io/badge/日本語-d9d9d9"></a>
<a href="./README_ES.md"><img alt="README en Español" src="https://img.shields.io/badge/Español-d9d9d9"></a>
@ -50,18 +49,16 @@
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_DE.md"><img alt="README in Deutsch" src="https://img.shields.io/badge/German-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>
Dify is an open-source LLM app development platform. Its intuitive interface combines agentic AI workflow, RAG pipeline, agent capabilities, model management, observability features and more, letting you quickly go from prototype to production.
Dify is an open-source LLM app development platform. Its intuitive interface combines agentic AI workflow, RAG pipeline, agent capabilities, model management, observability features and more, letting you quickly go from prototype to production.
## Quick start
> Before installing Dify, make sure your machine meets the following minimum system requirements:
>
> - CPU >= 2 Core
> - RAM >= 4 GiB
>
>- CPU >= 2 Core
>- RAM >= 4 GiB
</br>
@ -77,40 +74,41 @@ docker compose up -d
After running, you can access the Dify dashboard in your browser at [http://localhost/install](http://localhost/install) and start the initialization process.
#### Seeking help
Please refer to our [FAQ](https://docs.dify.ai/getting-started/install-self-hosted/faqs) if you encounter problems setting up Dify. Reach out to [the community and us](#community--contact) if you are still having issues.
> If you'd like to contribute to Dify or do additional development, refer to our [guide to deploying from source code](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code)
## Key features
**1. Workflow**:
Build and test powerful AI workflows on a visual canvas, leveraging all the following features and beyond.
**1. Workflow**:
Build and test powerful AI workflows on a visual canvas, leveraging all the following features and beyond.
https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
**2. Comprehensive model support**:
Seamless integration with hundreds of proprietary / open-source LLMs from dozens of inference providers and self-hosted solutions, covering GPT, Mistral, Llama3, and any OpenAI API-compatible models. A full list of supported model providers can be found [here](https://docs.dify.ai/getting-started/readme/model-providers).
**2. Comprehensive model support**:
Seamless integration with hundreds of proprietary / open-source LLMs from dozens of inference providers and self-hosted solutions, covering GPT, Mistral, Llama3, and any OpenAI API-compatible models. A full list of supported model providers can be found [here](https://docs.dify.ai/getting-started/readme/model-providers).
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
**3. Prompt IDE**:
Intuitive interface for crafting prompts, comparing model performance, and adding additional features such as text-to-speech to a chat-based app.
**4. RAG Pipeline**:
Extensive RAG capabilities that cover everything from document ingestion to retrieval, with out-of-box support for text extraction from PDFs, PPTs, and other common document formats.
**3. Prompt IDE**:
Intuitive interface for crafting prompts, comparing model performance, and adding additional features such as text-to-speech to a chat-based app.
**5. Agent capabilities**:
You can define agents based on LLM Function Calling or ReAct, and add pre-built or custom tools for the agent. Dify provides 50+ built-in tools for AI agents, such as Google Search, DALL·E, Stable Diffusion and WolframAlpha.
**4. RAG Pipeline**:
Extensive RAG capabilities that cover everything from document ingestion to retrieval, with out-of-box support for text extraction from PDFs, PPTs, and other common document formats.
**6. LLMOps**:
Monitor and analyze application logs and performance over time. You could continuously improve prompts, datasets, and models based on production data and annotations.
**5. Agent capabilities**:
You can define agents based on LLM Function Calling or ReAct, and add pre-built or custom tools for the agent. Dify provides 50+ built-in tools for AI agents, such as Google Search, DALL·E, Stable Diffusion and WolframAlpha.
**7. Backend-as-a-Service**:
All of Dify's offerings come with corresponding APIs, so you could effortlessly integrate Dify into your own business logic.
**6. LLMOps**:
Monitor and analyze application logs and performance over time. You could continuously improve prompts, datasets, and models based on production data and annotations.
**7. Backend-as-a-Service**:
All of Dify's offerings come with corresponding APIs, so you could effortlessly integrate Dify into your own business logic.
## Feature Comparison
<table style="width: 100%;">
<tr>
<th align="center">Feature</th>
@ -180,22 +178,24 @@ All of Dify's offerings come with corresponding APIs, so you could effortlessly
## Using Dify
- **Cloud </br>**
We host a [Dify Cloud](https://dify.ai) service for anyone to try with zero setup. It provides all the capabilities of the self-deployed version, and includes 200 free GPT-4 calls in the sandbox plan.
We host a [Dify Cloud](https://dify.ai) service for anyone to try with zero setup. It provides all the capabilities of the self-deployed version, and includes 200 free GPT-4 calls in the sandbox plan.
- **Self-hosting Dify Community Edition</br>**
Quickly get Dify running in your environment with this [starter guide](#quick-start).
Use our [documentation](https://docs.dify.ai) for further references and more in-depth instructions.
Quickly get Dify running in your environment with this [starter guide](#quick-start).
Use our [documentation](https://docs.dify.ai) for further references and more in-depth instructions.
- **Dify for enterprise / organizations</br>**
We provide additional enterprise-centric features. [Log your questions for us through this chatbot](https://udify.app/chat/22L1zSxg6yW1cWQg) or [send us an email](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry) to discuss enterprise needs. </br>
We provide additional enterprise-centric features. [Log your questions for us through this chatbot](https://udify.app/chat/22L1zSxg6yW1cWQg) or [send us an email](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry) to discuss enterprise needs. </br>
> For startups and small businesses using AWS, check out [Dify Premium on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6) and deploy it to your own AWS VPC with one-click. It's an affordable AMI offering with the option to create apps with custom logo and branding.
## Staying ahead
Star Dify on GitHub and be instantly notified of new releases.
![star-us](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
## Advanced Setup
If you need to customize the configuration, please refer to the comments in our [.env.example](docker/.env.example) file and update the corresponding values in your `.env` file. Additionally, you might need to make adjustments to the `docker-compose.yaml` file itself, such as changing image versions, port mappings, or volume mounts, based on your specific deployment environment and requirements. After making any changes, please re-run `docker-compose up -d`. You can find the full list of available environment variables [here](https://docs.dify.ai/getting-started/install-self-hosted/environments).
@ -211,34 +211,32 @@ If you'd like to configure a highly-available setup, there are community-contrib
Deploy Dify to Cloud Platform with a single click using [terraform](https://www.terraform.io/)
##### Azure Global
- [Azure Terraform by @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [Google Cloud Terraform by @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
#### Using AWS CDK for Deployment
Deploy Dify to AWS with [CDK](https://aws.amazon.com/cdk/)
##### AWS
##### AWS
- [AWS CDK by @KevinZhao](https://github.com/aws-samples/solution-for-deploying-dify-on-aws)
## Contributing
For those who'd like to contribute code, see our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
For those who'd like to contribute code, see our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
At the same time, please consider supporting Dify by sharing it on social media and at events and conferences.
> We are looking for contributors to help with translating Dify to languages other than Mandarin or English. If you are interested in helping, please see the [i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README.md) for more information, and leave us a comment in the `global-users` channel of our [Discord Community Server](https://discord.gg/8Tpq4AcN9c).
## Community & contact
- [Github Discussion](https://github.com/langgenius/dify/discussions). Best for: sharing feedback and asking questions.
- [GitHub Issues](https://github.com/langgenius/dify/issues). Best for: bugs you encounter using Dify.AI, and feature proposals. See our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
- [Discord](https://discord.gg/FngNHpbcY7). Best for: sharing your applications and hanging out with the community.
- [X(Twitter)](https://twitter.com/dify_ai). Best for: sharing your applications and hanging out with the community.
* [Github Discussion](https://github.com/langgenius/dify/discussions). Best for: sharing feedback and asking questions.
* [GitHub Issues](https://github.com/langgenius/dify/issues). Best for: bugs you encounter using Dify.AI, and feature proposals. See our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Discord](https://discord.gg/FngNHpbcY7). Best for: sharing your applications and hanging out with the community.
* [X(Twitter)](https://twitter.com/dify_ai). Best for: sharing your applications and hanging out with the community.
**Contributors**
@ -250,6 +248,7 @@ At the same time, please consider supporting Dify by sharing it on social media
[![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## Security disclosure
To protect your privacy, please avoid posting security issues on GitHub. Instead, send your questions to security@dify.ai and we will provide you with a more detailed answer.
@ -257,3 +256,4 @@ To protect your privacy, please avoid posting security issues on GitHub. Instead
## License
This repository is available under the [Dify Open Source License](LICENSE), which is essentially Apache 2.0 with a few additional restrictions.

View File

@ -45,7 +45,6 @@
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>
<div style="text-align: right;">
@ -54,7 +53,8 @@
**1. سير العمل**: قم ببناء واختبار سير عمل الذكاء الاصطناعي القوي على قماش بصري، مستفيدًا من جميع الميزات التالية وأكثر.
<https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa>
https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
**2. الدعم الشامل للنماذج**: تكامل سلس مع مئات من LLMs الخاصة / مفتوحة المصدر من عشرات من موفري التحليل والحلول المستضافة ذاتيًا، مما يغطي GPT و Mistral و Llama3 وأي نماذج متوافقة مع واجهة OpenAI API. يمكن العثور على قائمة كاملة بمزودي النموذج المدعومين [هنا](https://docs.dify.ai/getting-started/readme/model-providers).
@ -69,9 +69,7 @@
**6. الـ LLMOps**: راقب وتحلل سجلات التطبيق والأداء على مر الزمن. يمكنك تحسين الأوامر والبيانات والنماذج باستمرار استنادًا إلى البيانات الإنتاجية والتعليقات.
**7.الواجهة الخلفية (Backend) كخدمة**: تأتي جميع عروض Dify مع APIs مطابقة، حتى يمكنك دمج Dify بسهولة في منطق أعمالك الخاص.
## مقارنة الميزات
<table style="width: 100%;">
<tr>
<th align="center">الميزة</th>
@ -138,8 +136,8 @@
</tr>
</table>
## استخدام Dify
## استخدام Dify
- **سحابة </br>**
نحن نستضيف [خدمة Dify Cloud](https://dify.ai) لأي شخص لتجربتها بدون أي إعدادات. توفر كل قدرات النسخة التي تمت استضافتها ذاتيًا، وتتضمن 200 أمر GPT-4 مجانًا في خطة الصندوق الرملي.
@ -149,19 +147,15 @@
- **مشروع Dify للشركات / المؤسسات</br>**
نحن نوفر ميزات إضافية مركزة على الشركات. [جدول اجتماع معنا](https://cal.com/guchenhe/30min) أو [أرسل لنا بريدًا إلكترونيًا](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry) لمناقشة احتياجات الشركات. </br>
> بالنسبة للشركات الناشئة والشركات الصغيرة التي تستخدم خدمات AWS، تحقق من [Dify Premium على AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6) ونشرها في شبكتك الخاصة على AWS VPC بنقرة واحدة. إنها عرض AMI بأسعار معقولة مع خيار إنشاء تطبيقات بشعار وعلامة تجارية مخصصة.
>
## البقاء قدمًا
قم بإضافة نجمة إلى Dify على GitHub وتلق تنبيهًا فوريًا بالإصدارات الجديدة.
![نجمنا](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
## البداية السريعة
>
> قبل تثبيت Dify، تأكد من أن جهازك يلبي الحد الأدنى من متطلبات النظام التالية:
>
>
>- معالج >= 2 نواة
>- ذاكرة وصول عشوائي (RAM) >= 4 جيجابايت
@ -194,26 +188,24 @@ docker compose up -d
انشر Dify إلى منصة السحابة بنقرة واحدة باستخدام [terraform](https://www.terraform.io/)
##### Azure Global
- [Azure Terraform بواسطة @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [Google Cloud Terraform بواسطة @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
#### استخدام AWS CDK للنشر
انشر Dify على AWS باستخدام [CDK](https://aws.amazon.com/cdk/)
##### AWS
##### AWS
- [AWS CDK بواسطة @KevinZhao](https://github.com/aws-samples/solution-for-deploying-dify-on-aws)
## المساهمة
لأولئك الذين يرغبون في المساهمة، انظر إلى [دليل المساهمة](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md) لدينا.
لأولئك الذين يرغبون في المساهمة، انظر إلى [دليل المساهمة](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md) لدينا.
في الوقت نفسه، يرجى النظر في دعم Dify عن طريق مشاركته على وسائل التواصل الاجتماعي وفي الفعاليات والمؤتمرات.
> نحن نبحث عن مساهمين لمساعدة في ترجمة Dify إلى لغات أخرى غير اللغة الصينية المندرين أو الإنجليزية. إذا كنت مهتمًا بالمساعدة، يرجى الاطلاع على [README للترجمة](https://github.com/langgenius/dify/blob/main/web/i18n/README.md) لمزيد من المعلومات، واترك لنا تعليقًا في قناة `global-users` على [خادم المجتمع على Discord](https://discord.gg/8Tpq4AcN9c).
**المساهمون**
@ -223,26 +215,26 @@ docker compose up -d
</a>
## المجتمع والاتصال
- [مناقشة Github](https://github.com/langgenius/dify/discussions). الأفضل لـ: مشاركة التعليقات وطرح الأسئلة.
- [المشكلات على GitHub](https://github.com/langgenius/dify/issues). الأفضل لـ: الأخطاء التي تواجهها في استخدام Dify.AI، واقتراحات الميزات. انظر [دليل المساهمة](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
- [Discord](https://discord.gg/FngNHpbcY7). الأفضل لـ: مشاركة تطبيقاتك والترفيه مع المجتمع.
- [تويتر](https://twitter.com/dify_ai). الأفضل لـ: مشاركة تطبيقاتك والترفيه مع المجتمع.
* [مناقشة Github](https://github.com/langgenius/dify/discussions). الأفضل لـ: مشاركة التعليقات وطرح الأسئلة.
* [المشكلات على GitHub](https://github.com/langgenius/dify/issues). الأفضل لـ: الأخطاء التي تواجهها في استخدام Dify.AI، واقتراحات الميزات. انظر [دليل المساهمة](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Discord](https://discord.gg/FngNHpbcY7). الأفضل لـ: مشاركة تطبيقاتك والترفيه مع المجتمع.
* [تويتر](https://twitter.com/dify_ai). الأفضل لـ: مشاركة تطبيقاتك والترفيه مع المجتمع.
## تاريخ النجمة
[![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## الكشف عن الأمان
لحماية خصوصيتك، يرجى تجنب نشر مشكلات الأمان على GitHub. بدلاً من ذلك، أرسل أسئلتك إلى <security@dify.ai> وسنقدم لك إجابة أكثر تفصيلاً.
لحماية خصوصيتك، يرجى تجنب نشر مشكلات الأمان على GitHub. بدلاً من ذلك، أرسل أسئلتك إلى security@dify.ai وسنقدم لك إجابة أكثر تفصيلاً.
## الرخصة
هذا المستودع متاح تحت [رخصة البرنامج الحر Dify](LICENSE)، والتي تعتبر بشكل أساسي Apache 2.0 مع بعض القيود الإضافية.
## الكشف عن الأمان
لحماية خصوصيتك، يرجى تجنب نشر مشكلات الأمان على GitHub. بدلاً من ذلك، أرسل أسئلتك إلى <security@dify.ai> وسنقدم لك إجابة أكثر تفصيلاً.
لحماية خصوصيتك، يرجى تجنب نشر مشكلات الأمان على GitHub. بدلاً من ذلك، أرسل أسئلتك إلى security@dify.ai وسنقدم لك إجابة أكثر تفصيلاً.
## الرخصة

View File

@ -1,258 +0,0 @@
![cover-v5-optimized](https://github.com/langgenius/dify/assets/13230914/f9e19af5-61ba-4119-b926-d10c4c06ebab)
<p align="center">
📌 <a href="https://dify.ai/blog/introducing-dify-workflow-file-upload-a-demo-on-ai-podcast">ডিফাই ওয়ার্কফ্লো ফাইল আপলোড পরিচিতি: গুগল নোটবুক-এলএম পডকাস্ট পুনর্নির্মাণ</a>
</p>
<p align="center">
<a href="https://cloud.dify.ai">ডিফাই ক্লাউড</a> ·
<a href="https://docs.dify.ai/getting-started/install-self-hosted">সেল্ফ-হোস্টিং</a> ·
<a href="https://docs.dify.ai">ডকুমেন্টেশন</a> ·
<a href="https://udify.app/chat/22L1zSxg6yW1cWQg">ব্যাবসায়িক অনুসন্ধান</a>
</p>
<p align="center">
<a href="https://dify.ai" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Product-F04438"></a>
<a href="https://dify.ai/pricing" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/free-pricing?logo=free&color=%20%23155EEF&label=pricing&labelColor=%20%23528bff"></a>
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat on Discord"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="join Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
<img alt="Commits last month" src="https://img.shields.io/github/commit-activity/m/langgenius/dify?labelColor=%20%2332b583&color=%20%2312b76a"></a>
<a href="https://github.com/langgenius/dify/" target="_blank">
<img alt="Issues closed" src="https://img.shields.io/github/issues-search?query=repo%3Alanggenius%2Fdify%20is%3Aclosed&label=issues%20closed&labelColor=%20%237d89b0&color=%20%235d6b98"></a>
<a href="https://github.com/langgenius/dify/discussions/" target="_blank">
<img alt="Discussion posts" src="https://img.shields.io/github/discussions/langgenius/dify?labelColor=%20%239b8afb&color=%20%237a5af8"></a>
</p>
<p align="center">
<a href="./README.md"><img alt="README in English" src="https://img.shields.io/badge/English-d9d9d9"></a>
<a href="./README_CN.md"><img alt="简体中文版自述文件" src="https://img.shields.io/badge/简体中文-d9d9d9"></a>
<a href="./README_JA.md"><img alt="日本語のREADME" src="https://img.shields.io/badge/日本語-d9d9d9"></a>
<a href="./README_ES.md"><img alt="README en Español" src="https://img.shields.io/badge/Español-d9d9d9"></a>
<a href="./README_FR.md"><img alt="README en Français" src="https://img.shields.io/badge/Français-d9d9d9"></a>
<a href="./README_KL.md"><img alt="README tlhIngan Hol" src="https://img.shields.io/badge/Klingon-d9d9d9"></a>
<a href="./README_KR.md"><img alt="README in Korean" src="https://img.shields.io/badge/한국어-d9d9d9"></a>
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_DE.md"><img alt="README in Deutsch" src="https://img.shields.io/badge/German-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>
ডিফাই একটি ওপেন-সোর্স LLM অ্যাপ ডেভেলপমেন্ট প্ল্যাটফর্ম। এটি ইন্টুইটিভ ইন্টারফেস, এজেন্টিক AI ওয়ার্কফ্লো, RAG পাইপলাইন, এজেন্ট ক্যাপাবিলিটি, মডেল ম্যানেজমেন্ট, মনিটরিং সুবিধা এবং আরও অনেক কিছু একত্রিত করে, যা দ্রুত প্রোটোটাইপ থেকে প্রোডাকশন পর্যন্ত নিয়ে যেতে সহায়তা করে।
## কুইক স্টার্ট
>
> ডিফাই ইনস্টল করার আগে, নিশ্চিত করুন যে আপনার মেশিন নিম্নলিখিত ন্যূনতম কনফিগারেশনের প্রয়োজনীয়তা পূরন করে :
>
>- সিপিউ >= 2 কোর
>- র‍্যাম >= 4 জিবি
</br>
ডিফাই সার্ভার চালু করার সবচেয়ে সহজ উপায় [docker compose](docker/docker-compose.yaml) মাধ্যমে। নিম্নলিখিত কমান্ডগুলো ব্যবহার করে ডিফাই চালানোর আগে, নিশ্চিত করুন যে আপনার মেশিনে [Docker](https://docs.docker.com/get-docker/) এবং [Docker Compose](https://docs.docker.com/compose/install/) ইনস্টল করা আছে :
```bash
cd dify
cd docker
cp .env.example .env
docker compose up -d
```
চালানোর পর, আপনি আপনার ব্রাউজারে [http://localhost/install](http://localhost/install)-এ ডিফাই ড্যাশবোর্ডে অ্যাক্সেস করতে পারেন এবং ইনিশিয়ালাইজেশন প্রক্রিয়া শুরু করতে পারেন।
#### সাহায্যের খোঁজে
ডিফাই সেট আপ করতে সমস্যা হলে দয়া করে আমাদের [FAQ](https://docs.dify.ai/getting-started/install-self-hosted/faqs) দেখুন। যদি তবুও সমস্যা থেকে থাকে, তাহলে [কমিউনিটি এবং আমাদের](#community--contact) সাথে যোগাযোগ করুন।
> যদি আপনি ডিফাইতে অবদান রাখতে বা অতিরিক্ত উন্নয়ন করতে চান, আমাদের [সোর্স কোড থেকে ডিপ্লয়মেন্টের গাইড](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code) দেখুন।
## প্রধান ফিচারসমূহ
**১. ওয়ার্কফ্লো**:
ভিজ্যুয়াল ক্যানভাসে AI ওয়ার্কফ্লো তৈরি এবং পরীক্ষা করুন, নিম্নলিখিত সব ফিচার এবং তার বাইরেও আরও অনেক কিছু ব্যবহার করে।
<https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa>
**২. মডেল সাপোর্ট**:
GPT, Mistral, Llama3, এবং যেকোনো OpenAI API-সামঞ্জস্যপূর্ণ মডেলসহ, কয়েক ডজন ইনফারেন্স প্রদানকারী এবং সেল্ফ-হোস্টেড সমাধান থেকে শুরু করে প্রোপ্রাইটরি/ওপেন-সোর্স LLM-এর সাথে সহজে ইন্টিগ্রেশন। সমর্থিত মডেল প্রদানকারীদের একটি সম্পূর্ণ তালিকা পাওয়া যাবে [এখানে](https://docs.dify.ai/getting-started/readme/model-providers)।
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
**3. প্রম্পট IDE**:
প্রম্পট তৈরি, মডেলের পারফরম্যান্স তুলনা এবং চ্যাট-বেজড অ্যাপে টেক্সট-টু-স্পিচের মতো বৈশিষ্ট্য যুক্ত করার জন্য ইন্টুইটিভ ইন্টারফেস।
**4. RAG পাইপলাইন**:
ডকুমেন্ট ইনজেশন থেকে শুরু করে রিট্রিভ পর্যন্ত সবকিছুই বিস্তৃত RAG ক্যাপাবিলিটির আওতাভুক্ত। PDF, PPT এবং অন্যান্য সাধারণ ডকুমেন্ট ফর্ম্যাট থেকে টেক্সট এক্সট্রাকশনের জন্য আউট-অফ-বক্স সাপোর্ট।
**5. এজেন্ট ক্যাপাবিলিটি**:
LLM ফাংশন কলিং বা ReAct উপর ভিত্তি করে এজেন্ট ডিফাইন করতে পারেন এবং এজেন্টের জন্য পূর্ব-নির্মিত বা কাস্টম টুলস যুক্ত করতে পারেন। Dify AI এজেন্টদের জন্য 50+ বিল্ট-ইন টুলস সরবরাহ করে, যেমন Google Search, DALL·E, Stable Diffusion এবং WolframAlpha।
**6. এলএলএম-অপ্স**:
সময়ের সাথে সাথে অ্যাপ্লিকেশন লগ এবং পারফরম্যান্স মনিটর এবং বিশ্লেষণ করুন। প্রডাকশন ডেটা এবং annotation এর উপর ভিত্তি করে প্রম্পট, ডেটাসেট এবং মডেলগুলিকে ক্রমাগত উন্নত করতে পারেন।
**7. ব্যাকএন্ড-অ্যাজ-এ-সার্ভিস**:
ডিফাই-এর সমস্ত অফার সংশ্লিষ্ট API-সহ আছে, যাতে আপনি অনায়াসে ডিফাইকে আপনার নিজস্ব বিজনেস লজিকে ইন্টেগ্রেট করতে পারেন।
## বৈশিষ্ট্য তুলনা
<table style="width: 100%;">
<tr>
<th align="center">বৈশিষ্ট্য</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">OpenAI Assistants API</th>
</tr>
<tr>
<td align="center">প্রোগ্রামিং পদ্ধতি</td>
<td align="center">API + App-oriented</td>
<td align="center">Python Code</td>
<td align="center">App-oriented</td>
<td align="center">API-oriented</td>
</tr>
<tr>
<td align="center">সাপোর্টেড LLMs</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">OpenAI-only</td>
</tr>
<tr>
<td align="center">RAG ইঞ্জিন</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">এজেন্ট</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">ওয়ার্কফ্লো</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">অবজার্ভেবল</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">এন্টারপ্রাইজ ফিচার (SSO/Access control)</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">লোকাল ডেপ্লয়মেন্ট</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
## ডিফাই-এর ব্যবহার
- **ক্লাউড </br>**
জিরো সেটাপে ব্যবহার করতে আমাদের [Dify Cloud](https://dify.ai) সার্ভিসটি ব্যবহার করতে পারেন। এখানে সেল্ফহোস্টিং-এর সকল ফিচার ও ক্যাপাবিলিটিসহ স্যান্ডবক্সে ২০০ জিপিটি- কল ফ্রি পাবেন।
- **সেল্ফহোস্টিং ডিফাই কমিউনিটি সংস্করণ</br>**
সেল্ফহোস্ট করতে এই [স্টার্টার গাইড](#quick-start) ব্যবহার করে দ্রুত আপনার এনভায়রনমেন্টে ডিফাই চালান।
আরো ইন-ডেপথ রেফারেন্সের জন্য [ডকুমেন্টেশন](https://docs.dify.ai) দেখেন।
- **এন্টারপ্রাইজ / প্রতিষ্ঠানের জন্য Dify</br>**
আমরা এন্টারপ্রাইজ/প্রতিষ্ঠান-কেন্দ্রিক সেবা প্রদান করে থাকি । [এই চ্যাটবটের মাধ্যমে আপনার প্রশ্নগুলি আমাদের জন্য লগ করুন।](https://udify.app/chat/22L1zSxg6yW1cWQg) অথবা [আমাদের ইমেল পাঠান](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry) আপনার চাহিদা সম্পর্কে আলোচনা করার জন্য। </br>
> AWS ব্যবহারকারী স্টার্টআপ এবং ছোট ব্যবসার জন্য, [AWS মার্কেটপ্লেসে Dify Premium](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6) দেখুন এবং এক-ক্লিকের মাধ্যমে এটি আপনার নিজস্ব AWS VPC-তে ডিপ্লয় করুন। এটি একটি সাশ্রয়ী মূল্যের AMI অফার, যাতে কাস্টম লোগো এবং ব্র্যান্ডিং সহ অ্যাপ তৈরির সুবিধা আছে।
## এগিয়ে থাকুন
GitHub-এ ডিফাইকে স্টার দিয়ে রাখুন এবং নতুন রিলিজের খবর তাৎক্ষণিকভাবে পান।
![star-us](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
## Advanced Setup
যদি আপনার কনফিগারেশনটি কাস্টমাইজ করার প্রয়োজন হয়, তাহলে অনুগ্রহ করে আমাদের [.env.example](docker/.env.example) ফাইল দেখুন এবং আপনার `.env` ফাইলে সংশ্লিষ্ট মানগুলি আপডেট করুন। এছাড়াও, আপনার নির্দিষ্ট এনভায়রনমেন্ট এবং প্রয়োজনীয়তার উপর ভিত্তি করে আপনাকে `docker-compose.yaml` ফাইলে সমন্বয় করতে হতে পারে, যেমন ইমেজ ভার্সন পরিবর্তন করা, পোর্ট ম্যাপিং করা, অথবা ভলিউম মাউন্ট করা।
যেকোনো পরিবর্তন করার পর, অনুগ্রহ করে `docker-compose up -d` পুনরায় চালান। ভেরিয়েবলের সম্পূর্ণ তালিকা [এখানে] (https://docs.dify.ai/getting-started/install-self-hosted/environments) খুঁজে পেতে পারেন।
যদি আপনি একটি হাইলি এভেইলেবল সেটআপ কনফিগার করতে চান, তাহলে কমিউনিটি [Helm Charts](https://helm.sh/) এবং YAML ফাইল রয়েছে যা Dify কে Kubernetes-এ ডিপ্লয় করার প্রক্রিয়া বর্ণনা করে।
- [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
- [YAML file by @Winson-030](https://github.com/Winson-030/dify-kubernetes)
#### টেরাফর্ম ব্যবহার করে ডিপ্লয়
[terraform](https://www.terraform.io/) ব্যবহার করে এক ক্লিকেই ক্লাউড প্ল্যাটফর্মে Dify ডিপ্লয় করুন।
##### অ্যাজুর গ্লোবাল
- [Azure Terraform by @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### গুগল ক্লাউড
- [Google Cloud Terraform by @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
#### AWS CDK ব্যবহার করে ডিপ্লয়
[CDK](https://aws.amazon.com/cdk/) দিয়ে AWS-এ Dify ডিপ্লয় করুন
##### AWS
- [AWS CDK by @KevinZhao](https://github.com/aws-samples/solution-for-deploying-dify-on-aws)
## Contributing
যারা কোড অবদান রাখতে চান, তাদের জন্য আমাদের [অবদান নির্দেশিকা] দেখুন (https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md)।
একই সাথে, সোশ্যাল মিডিয়া এবং ইভেন্ট এবং কনফারেন্সে এটি শেয়ার করে Dify কে সমর্থন করুন।
> আমরা ম্যান্ডারিন বা ইংরেজি ছাড়া অন্য ভাষায় Dify অনুবাদ করতে সাহায্য করার জন্য অবদানকারীদের খুঁজছি। আপনি যদি সাহায্য করতে আগ্রহী হন, তাহলে আরও তথ্যের জন্য [i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README.md) দেখুন এবং আমাদের [ডিসকর্ড কমিউনিটি সার্ভার](https://discord.gg/8Tpq4AcN9c) এর `গ্লোবাল-ইউজারস` চ্যানেলে আমাদের একটি মন্তব্য করুন।
## কমিউনিটি এবং যোগাযোগ
- [Github Discussion](https://github.com/langgenius/dify/discussions) ফিডব্যাক এবং প্রতিক্রিয়া জানানোর মাধ্যম।
- [GitHub Issues](https://github.com/langgenius/dify/issues). Dify.AI ব্যবহার করে আপনি যেসব বাগের সম্মুখীন হন এবং ফিচার প্রস্তাবনা। আমাদের [অবদান নির্দেশিকা](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md) দেখুন।
- [Discord](https://discord.gg/FngNHpbcY7) আপনার এপ্লিকেশন শেয়ার এবং কমিউনিটি আড্ডার মাধ্যম।
- [X(Twitter)](https://twitter.com/dify_ai) আপনার এপ্লিকেশন শেয়ার এবং কমিউনিটি আড্ডার মাধ্যম।
**অবদানকারীদের তালিকা**
<a href="https://github.com/langgenius/dify/graphs/contributors">
<img src="https://contrib.rocks/image?repo=langgenius/dify" />
</a>
## স্টার হিস্ট্রি
[![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## নিরাপত্তা বিষয়ক
আপনার গোপনীয়তা রক্ষা করতে, অনুগ্রহ করে GitHub-এ নিরাপত্তা সংক্রান্ত সমস্যা পোস্ট করা এড়িয়ে চলুন। পরিবর্তে, আপনার প্রশ্নগুলি <security@dify.ai> ঠিকানায় পাঠান এবং আমরা আপনাকে আরও বিস্তারিত উত্তর প্রদান করব।
## লাইসেন্স
এই রিপোজিটরিটি [ডিফাই ওপেন সোর্স লাইসেন্স](LICENSE) এর অধিনে , যা মূলত অ্যাপাচি ২., তবে কিছু অতিরিক্ত বিধিনিষেধ রয়েছে।

View File

@ -45,7 +45,6 @@
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</div>

View File

@ -1,259 +0,0 @@
![cover-v5-optimized](https://github.com/langgenius/dify/assets/13230914/f9e19af5-61ba-4119-b926-d10c4c06ebab)
<p align="center">
📌 <a href="https://dify.ai/blog/introducing-dify-workflow-file-upload-a-demo-on-ai-podcast">Einführung in Dify Workflow File Upload: Google NotebookLM Podcast nachbilden</a>
</p>
<p align="center">
<a href="https://cloud.dify.ai">Dify Cloud</a> ·
<a href="https://docs.dify.ai/getting-started/install-self-hosted">Selbstgehostetes</a> ·
<a href="https://docs.dify.ai">Dokumentation</a> ·
<a href="https://udify.app/chat/22L1zSxg6yW1cWQg">Anfrage an Unternehmen</a>
</p>
<p align="center">
<a href="https://dify.ai" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Product-F04438"></a>
<a href="https://dify.ai/pricing" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/free-pricing?logo=free&color=%20%23155EEF&label=pricing&labelColor=%20%23528bff"></a>
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat on Discord"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="join Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
<img alt="Commits last month" src="https://img.shields.io/github/commit-activity/m/langgenius/dify?labelColor=%20%2332b583&color=%20%2312b76a"></a>
<a href="https://github.com/langgenius/dify/" target="_blank">
<img alt="Issues closed" src="https://img.shields.io/github/issues-search?query=repo%3Alanggenius%2Fdify%20is%3Aclosed&label=issues%20closed&labelColor=%20%237d89b0&color=%20%235d6b98"></a>
<a href="https://github.com/langgenius/dify/discussions/" target="_blank">
<img alt="Discussion posts" src="https://img.shields.io/github/discussions/langgenius/dify?labelColor=%20%239b8afb&color=%20%237a5af8"></a>
</p>
<p align="center">
<a href="./README.md"><img alt="README in English" src="https://img.shields.io/badge/English-d9d9d9"></a>
<a href="./README_CN.md"><img alt="简体中文版自述文件" src="https://img.shields.io/badge/简体中文-d9d9d9"></a>
<a href="./README_JA.md"><img alt="日本語のREADME" src="https://img.shields.io/badge/日本語-d9d9d9"></a>
<a href="./README_ES.md"><img alt="README en Español" src="https://img.shields.io/badge/Español-d9d9d9"></a>
<a href="./README_FR.md"><img alt="README en Français" src="https://img.shields.io/badge/Français-d9d9d9"></a>
<a href="./README_KL.md"><img alt="README tlhIngan Hol" src="https://img.shields.io/badge/Klingon-d9d9d9"></a>
<a href="./README_KR.md"><img alt="README in Korean" src="https://img.shields.io/badge/한국어-d9d9d9"></a>
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_DE.md"><img alt="README in Deutsch" src="https://img.shields.io/badge/German-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>
Dify ist eine Open-Source-Plattform zur Entwicklung von LLM-Anwendungen. Ihre intuitive Benutzeroberfläche vereint agentenbasierte KI-Workflows, RAG-Pipelines, Agentenfunktionen, Modellverwaltung, Überwachungsfunktionen und mehr, sodass Sie schnell von einem Prototyp in die Produktion übergehen können.
## Schnellstart
> Bevor Sie Dify installieren, stellen Sie sicher, dass Ihr System die folgenden Mindestanforderungen erfüllt:
>
>- CPU >= 2 Core
>- RAM >= 4 GiB
</br>
Der einfachste Weg, den Dify-Server zu starten, ist über [docker compose](docker/docker-compose.yaml). Stellen Sie vor dem Ausführen von Dify mit den folgenden Befehlen sicher, dass [Docker](https://docs.docker.com/get-docker/) und [Docker Compose](https://docs.docker.com/compose/install/) auf Ihrem System installiert sind:
```bash
cd dify
cd docker
cp .env.example .env
docker compose up -d
```
Nachdem Sie den Server gestartet haben, können Sie über Ihren Browser auf das Dify Dashboard unter [http://localhost/install](http://localhost/install) zugreifen und den Initialisierungsprozess starten.
#### Hilfe suchen
Bitte beachten Sie unsere [FAQ](https://docs.dify.ai/getting-started/install-self-hosted/faqs), wenn Sie Probleme bei der Einrichtung von Dify haben. Wenden Sie sich an [die Community und uns](#community--contact), falls weiterhin Schwierigkeiten auftreten.
> Wenn Sie zu Dify beitragen oder zusätzliche Entwicklungen durchführen möchten, lesen Sie bitte unseren [Leitfaden zur Bereitstellung aus dem Quellcode](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code).
## Wesentliche Merkmale
**1. Workflow**:
Erstellen und testen Sie leistungsstarke KI-Workflows auf einer visuellen Oberfläche, wobei Sie alle der folgenden Funktionen und darüber hinaus nutzen können.
https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
**2. Umfassende Modellunterstützung**:
Nahtlose Integration mit Hunderten von proprietären und Open-Source-LLMs von Dutzenden Inferenzanbietern und selbstgehosteten Lösungen, die GPT, Mistral, Llama3 und alle mit der OpenAI API kompatiblen Modelle abdecken. Eine vollständige Liste der unterstützten Modellanbieter finden Sie [hier](https://docs.dify.ai/getting-started/readme/model-providers).
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
**3. Prompt IDE**:
Intuitive Benutzeroberfläche zum Erstellen von Prompts, zum Vergleichen der Modellleistung und zum Hinzufügen zusätzlicher Funktionen wie Text-to-Speech in einer chatbasierten Anwendung.
**4. RAG Pipeline**:
Umfassende RAG-Funktionalitäten, die alles von der Dokumenteneinlesung bis zur -abfrage abdecken, mit sofort einsatzbereiter Unterstützung für die Textextraktion aus PDFs, PPTs und anderen gängigen Dokumentformaten.
**5. Fähigkeiten des Agenten**:
Sie können Agenten basierend auf LLM Function Calling oder ReAct definieren und vorgefertigte oder benutzerdefinierte Tools für den Agenten hinzufügen. Dify stellt über 50 integrierte Tools für KI-Agenten bereit, wie zum Beispiel Google Search, DALL·E, Stable Diffusion und WolframAlpha.
**6. LLMOps**:
Überwachen und analysieren Sie Anwendungsprotokolle und die Leistung im Laufe der Zeit. Sie können kontinuierlich Prompts, Datensätze und Modelle basierend auf Produktionsdaten und Annotationen verbessern.
**7. Backend-as-a-Service**:
Alle Dify-Angebote kommen mit entsprechenden APIs, sodass Sie Dify mühelos in Ihre eigene Geschäftslogik integrieren können.
## Vergleich der Merkmale
<table style="width: 100%;">
<tr>
<th align="center">Feature</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">OpenAI Assistants API</th>
</tr>
<tr>
<td align="center">Programming Approach</td>
<td align="center">API + App-oriented</td>
<td align="center">Python Code</td>
<td align="center">App-oriented</td>
<td align="center">API-oriented</td>
</tr>
<tr>
<td align="center">Supported LLMs</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">OpenAI-only</td>
</tr>
<tr>
<td align="center">RAG Engine</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Agent</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Workflow</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Observability</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Enterprise Feature (SSO/Access control)</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Local Deployment</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
## Dify verwenden
- **Cloud </br>**
Wir hosten einen [Dify Cloud](https://dify.ai)-Service, den jeder ohne Einrichtung ausprobieren kann. Er bietet alle Funktionen der selbstgehosteten Version und beinhaltet 200 kostenlose GPT-4-Aufrufe im Sandbox-Plan.
- **Selbstgehostete Dify Community Edition</br>**
Starten Sie Dify schnell in Ihrer Umgebung mit diesem [Schnellstart-Leitfaden](#quick-start). Nutzen Sie unsere [Dokumentation](https://docs.dify.ai) für weiterführende Informationen und detaillierte Anweisungen.
- **Dify für Unternehmen / Organisationen</br>**
Wir bieten zusätzliche, unternehmensspezifische Funktionen. [Über diesen Chatbot können Sie uns Ihre Fragen mitteilen](https://udify.app/chat/22L1zSxg6yW1cWQg) oder [senden Sie uns eine E-Mail](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry), um Ihre unternehmerischen Bedürfnisse zu besprechen. </br>
> Für Startups und kleine Unternehmen, die AWS nutzen, schauen Sie sich [Dify Premium on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6) an und stellen Sie es mit nur einem Klick in Ihrer eigenen AWS VPC bereit. Es handelt sich um ein erschwingliches AMI-Angebot mit der Option, Apps mit individuellem Logo und Branding zu erstellen.
## Immer einen Schritt voraus
Star Dify auf GitHub und lassen Sie sich sofort über neue Releases benachrichtigen.
![star-us](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
## Erweiterte Einstellungen
Falls Sie die Konfiguration anpassen müssen, lesen Sie bitte die Kommentare in unserer [.env.example](docker/.env.example)-Datei und aktualisieren Sie die entsprechenden Werte in Ihrer `.env`-Datei. Zusätzlich müssen Sie eventuell Anpassungen an der `docker-compose.yaml`-Datei vornehmen, wie zum Beispiel das Ändern von Image-Versionen, Portzuordnungen oder Volumen-Mounts, je nach Ihrer spezifischen Einsatzumgebung und Ihren Anforderungen. Nachdem Sie Änderungen vorgenommen haben, starten Sie `docker-compose up -d` erneut. Eine vollständige Liste der verfügbaren Umgebungsvariablen finden Sie [hier](https://docs.dify.ai/getting-started/install-self-hosted/environments).
Falls Sie eine hochverfügbare Konfiguration einrichten möchten, gibt es von der Community bereitgestellte [Helm Charts](https://helm.sh/) und YAML-Dateien, die es ermöglichen, Dify auf Kubernetes bereitzustellen.
- [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
- [YAML file by @Winson-030](https://github.com/Winson-030/dify-kubernetes)
#### Terraform für die Bereitstellung verwenden
Stellen Sie Dify mit nur einem Klick mithilfe von [terraform](https://www.terraform.io/) auf einer Cloud-Plattform bereit.
##### Azure Global
- [Azure Terraform by @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [Google Cloud Terraform by @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
#### Verwendung von AWS CDK für die Bereitstellung
Bereitstellung von Dify auf AWS mit [CDK](https://aws.amazon.com/cdk/)
##### AWS
- [AWS CDK by @KevinZhao](https://github.com/aws-samples/solution-for-deploying-dify-on-aws)
## Contributing
Falls Sie Code beitragen möchten, lesen Sie bitte unseren [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md). Gleichzeitig bitten wir Sie, Dify zu unterstützen, indem Sie es in den sozialen Medien teilen und auf Veranstaltungen und Konferenzen präsentieren.
> Wir suchen Mitwirkende, die dabei helfen, Dify in weitere Sprachen zu übersetzen außer Mandarin oder Englisch. Wenn Sie Interesse an einer Mitarbeit haben, lesen Sie bitte die [i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README.md) für weitere Informationen und hinterlassen Sie einen Kommentar im `global-users`-Kanal unseres [Discord Community Servers](https://discord.gg/8Tpq4AcN9c).
## Gemeinschaft & Kontakt
* [Github Discussion](https://github.com/langgenius/dify/discussions). Am besten geeignet für: den Austausch von Feedback und das Stellen von Fragen.
* [GitHub Issues](https://github.com/langgenius/dify/issues). Am besten für: Fehler, auf die Sie bei der Verwendung von Dify.AI stoßen, und Funktionsvorschläge. Siehe unseren [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Discord](https://discord.gg/FngNHpbcY7). Am besten geeignet für: den Austausch von Bewerbungen und den Austausch mit der Community.
* [X(Twitter)](https://twitter.com/dify_ai). Am besten geeignet für: den Austausch von Bewerbungen und den Austausch mit der Community.
**Mitwirkende**
<a href="https://github.com/langgenius/dify/graphs/contributors">
<img src="https://contrib.rocks/image?repo=langgenius/dify" />
</a>
## Star-Geschichte
[![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## Offenlegung der Sicherheit
Um Ihre Privatsphäre zu schützen, vermeiden Sie es bitte, Sicherheitsprobleme auf GitHub zu posten. Schicken Sie Ihre Fragen stattdessen an security@dify.ai und wir werden Ihnen eine ausführlichere Antwort geben.
## Lizenz
Dieses Repository steht unter der [Dify Open Source License](LICENSE), die im Wesentlichen Apache 2.0 mit einigen zusätzlichen Einschränkungen ist.

View File

@ -45,7 +45,6 @@
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>
#

View File

@ -45,7 +45,6 @@
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>
#

View File

@ -15,7 +15,7 @@
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="Discordでチャット"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
@ -45,7 +45,6 @@
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>
#
@ -57,7 +56,7 @@
DifyはオープンソースのLLMアプリケーション開発プラットフォームです。直感的なインターフェイスには、AIワークフロー、RAGパイプライン、エージェント機能、モデル管理、観測機能などが組み合わさっており、プロトタイプから生産まで迅速に進めることができます。以下の機能が含まれます
</br> </br>
**1. ワークフロー**:
**1. ワークフロー**:
強力なAIワークフローをビジュアルキャンバス上で構築し、テストできます。すべての機能、および以下の機能を使用できます。
@ -65,25 +64,25 @@ DifyはオープンソースのLLMアプリケーション開発プラットフ
**2. 総合的なモデルサポート**:
**2. 総合的なモデルサポート**:
数百ものプロプライエタリ/オープンソースのLLMと、数十もの推論プロバイダーおよびセルフホスティングソリューションとのシームレスな統合を提供します。GPT、Mistral、Llama3、OpenAI APIと互換性のあるすべてのモデルを統合されています。サポートされているモデルプロバイダーの完全なリストは[こちら](https://docs.dify.ai/getting-started/readme/model-providers)をご覧ください。
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
**3. プロンプトIDE**:
**3. プロンプトIDE**:
プロンプトの作成、モデルパフォーマンスの比較が行え、チャットベースのアプリに音声合成などの機能も追加できます。
**4. RAGパイプライン**:
**4. RAGパイプライン**:
ドキュメントの取り込みから検索までをカバーする広範なRAG機能ができます。ほかにもPDF、PPT、その他の一般的なドキュメントフォーマットからのテキスト抽出のサポートも提供します。
**5. エージェント機能**:
**5. エージェント機能**:
LLM Function CallingやReActに基づくエージェントの定義が可能で、AIエージェント用のプリビルトまたはカスタムツールを追加できます。Difyには、Google検索、DALL·E、Stable Diffusion、WolframAlphaなどのAIエージェント用の50以上の組み込みツールが提供します。
**6. LLMOps**:
**6. LLMOps**:
アプリケーションのログやパフォーマンスを監視と分析し、生産のデータと注釈に基づいて、プロンプト、データセット、モデルを継続的に改善できます。
**7. Backend-as-a-Service**:
**7. Backend-as-a-Service**:
すべての機能はAPIを提供されており、Difyを自分のビジネスロジックに簡単に統合できます。
@ -165,7 +164,7 @@ DifyはオープンソースのLLMアプリケーション開発プラットフ
- **企業/組織向けのDify</br>**
企業中心の機能を提供しています。[メールを送信](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry)して企業のニーズについて相談してください。 </br>
> AWSを使用しているスタートアップ企業や中小企業の場合は、[AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6)のDify Premiumをチェックして、ワンクリックで自分のAWS VPCにデプロイできます。さらに、手頃な価格のAMIオファリングとして、ロゴやブランディングをカスタマイズしてアプリケーションを作成するオプションがあります。
> AWSを使用しているスタートアップ企業や中小企業の場合は、[AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-t23mebxzwjhu6)のDify Premiumをチェックして、ワンクリックで自分のAWS VPCにデプロイできます。さらに、手頃な価格のAMIオファリングとして、ロゴやブランディングをカスタマイズしてアプリケーションを作成するオプションがあります。
## 最新の情報を入手
@ -178,7 +177,7 @@ GitHub上でDifyにスターを付けることで、Difyに関する新しいニ
## クイックスタート
> Difyをインストールする前に、お使いのマシンが以下の最小システム要件を満たしていることを確認してください
>
>
>- CPU >= 2コア
>- RAM >= 4GB
@ -220,7 +219,7 @@ docker compose up -d
[CDK](https://aws.amazon.com/cdk/) を使用して、DifyをAWSにデプロイします
##### AWS
##### AWS
- [@KevinZhaoによるAWS CDK](https://github.com/aws-samples/solution-for-deploying-dify-on-aws)
## 貢献

View File

@ -45,7 +45,6 @@
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>
#

View File

@ -45,7 +45,6 @@
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>

View File

@ -50,7 +50,6 @@
<a href="./README_TR.md"><img alt="README em Turco" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README em Vietnamita" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_PT.md"><img alt="README em Português - BR" src="https://img.shields.io/badge/Portugu%C3%AAs-BR?style=flat&label=BR&color=d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>
Dify é uma plataforma de desenvolvimento de aplicativos LLM de código aberto. Sua interface intuitiva combina workflow de IA, pipeline RAG, capacidades de agente, gerenciamento de modelos, recursos de observabilidade e muito mais, permitindo que você vá rapidamente do protótipo à produção. Aqui está uma lista das principais funcionalidades:

View File

@ -47,7 +47,6 @@
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_SI.md"><img alt="README Slovenščina" src="https://img.shields.io/badge/Sloven%C5%A1%C4%8Dina-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>

View File

@ -45,7 +45,6 @@
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>

View File

@ -1,258 +0,0 @@
![cover-v5-optimized](https://github.com/langgenius/dify/assets/13230914/f9e19af5-61ba-4119-b926-d10c4c06ebab)
<p align="center">
📌 <a href="https://dify.ai/blog/introducing-dify-workflow-file-upload-a-demo-on-ai-podcast">介紹 Dify 工作流程檔案上傳功能:重現 Google NotebookLM Podcast</a>
</p>
<p align="center">
<a href="https://cloud.dify.ai">Dify 雲端服務</a> ·
<a href="https://docs.dify.ai/getting-started/install-self-hosted">自行託管</a> ·
<a href="https://docs.dify.ai">說明文件</a> ·
<a href="https://udify.app/chat/22L1zSxg6yW1cWQg">企業諮詢</a>
</p>
<p align="center">
<a href="https://dify.ai" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Product-F04438"></a>
<a href="https://dify.ai/pricing" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/free-pricing?logo=free&color=%20%23155EEF&label=pricing&labelColor=%20%23528bff"></a>
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat on Discord"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="join Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
<img alt="Commits last month" src="https://img.shields.io/github/commit-activity/m/langgenius/dify?labelColor=%20%2332b583&color=%20%2312b76a"></a>
<a href="https://github.com/langgenius/dify/" target="_blank">
<img alt="Issues closed" src="https://img.shields.io/github/issues-search?query=repo%3Alanggenius%2Fdify%20is%3Aclosed&label=issues%20closed&labelColor=%20%237d89b0&color=%20%235d6b98"></a>
<a href="https://github.com/langgenius/dify/discussions/" target="_blank">
<img alt="Discussion posts" src="https://img.shields.io/github/discussions/langgenius/dify?labelColor=%20%239b8afb&color=%20%237a5af8"></a>
</p>
<p align="center">
<a href="./README.md"><img alt="README in English" src="https://img.shields.io/badge/English-d9d9d9"></a>
<a href="./README_TW.md"><img alt="繁體中文文件" src="https://img.shields.io/badge/繁體中文-d9d9d9"></a>
<a href="./README_CN.md"><img alt="简体中文版自述文件" src="https://img.shields.io/badge/简体中文-d9d9d9"></a>
<a href="./README_JA.md"><img alt="日本語のREADME" src="https://img.shields.io/badge/日本語-d9d9d9"></a>
<a href="./README_ES.md"><img alt="README en Español" src="https://img.shields.io/badge/Español-d9d9d9"></a>
<a href="./README_FR.md"><img alt="README en Français" src="https://img.shields.io/badge/Français-d9d9d9"></a>
<a href="./README_KL.md"><img alt="README tlhIngan Hol" src="https://img.shields.io/badge/Klingon-d9d9d9"></a>
<a href="./README_KR.md"><img alt="README in Korean" src="https://img.shields.io/badge/한국어-d9d9d9"></a>
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_DE.md"><img alt="README in Deutsch" src="https://img.shields.io/badge/German-d9d9d9"></a>
</p>
Dify 是一個開源的 LLM 應用程式開發平台。其直觀的界面結合了智能代理工作流程、RAG 管道、代理功能、模型管理、可觀察性功能等,讓您能夠快速從原型進展到生產環境。
## 快速開始
> 安裝 Dify 之前,請確保您的機器符合以下最低系統要求:
>
> - CPU >= 2 核心
> - 記憶體 >= 4 GiB
</br>
啟動 Dify 伺服器最簡單的方式是透過 [docker compose](docker/docker-compose.yaml)。在使用以下命令運行 Dify 之前,請確保您的機器已安裝 [Docker](https://docs.docker.com/get-docker/) 和 [Docker Compose](https://docs.docker.com/compose/install/)
```bash
cd dify
cd docker
cp .env.example .env
docker compose up -d
```
運行後,您可以在瀏覽器中通過 [http://localhost/install](http://localhost/install) 訪問 Dify 儀表板並開始初始化過程。
### 尋求幫助
如果您在設置 Dify 時遇到問題,請參考我們的 [常見問題](https://docs.dify.ai/getting-started/install-self-hosted/faqs)。如果仍有疑問,請聯絡 [社區和我們](#community--contact)。
> 如果您想為 Dify 做出貢獻或進行額外開發,請參考我們的 [從原始碼部署指南](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code)
## 核心功能
**1. 工作流程**
在視覺化畫布上建立和測試強大的 AI 工作流程,利用以下所有功能及更多。
https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
**2. 全面的模型支援**
無縫整合來自數十個推理提供商和自託管解決方案的數百個專有/開源 LLM涵蓋 GPT、Mistral、Llama3 和任何與 OpenAI API 兼容的模型。您可以在[此處](https://docs.dify.ai/getting-started/readme/model-providers)找到支援的模型提供商完整列表。
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
**3. 提示詞 IDE**
直觀的界面,用於編寫提示詞、比較模型性能,以及為聊天型應用程式添加文字轉語音等額外功能。
**4. RAG 管道**
廣泛的 RAG 功能,涵蓋從文件擷取到檢索的全部流程,內建支援從 PDF、PPT 和其他常見文件格式提取文本。
**5. 代理功能**
您可以基於 LLM 函數調用或 ReAct 定義代理並為代理添加預構建或自定義工具。Dify 為 AI 代理提供 50 多種內建工具,如 Google 搜尋、DALL·E、Stable Diffusion 和 WolframAlpha。
**6. LLMOps**
監控並分析應用程式日誌和長期效能。您可以根據生產數據和標註持續改進提示詞、數據集和模型。
**7. 後端即服務**
Dify 的所有功能都提供相應的 API因此您可以輕鬆地將 Dify 整合到您自己的業務邏輯中。
## 功能比較
<table style="width: 100%;">
<tr>
<th align="center">功能</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">OpenAI Assistants API</th>
</tr>
<tr>
<td align="center">程式設計方法</td>
<td align="center">API + 應用導向</td>
<td align="center">Python 代碼</td>
<td align="center">應用導向</td>
<td align="center">API 導向</td>
</tr>
<tr>
<td align="center">支援的 LLM 模型</td>
<td align="center">豐富多樣</td>
<td align="center">豐富多樣</td>
<td align="center">豐富多樣</td>
<td align="center">僅限 OpenAI</td>
</tr>
<tr>
<td align="center">RAG 引擎</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">代理功能</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">工作流程</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">可觀察性</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">企業級功能 (SSO/存取控制)</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">本地部署</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
## 使用 Dify
- **雲端服務 </br>**
我們提供 [Dify Cloud](https://dify.ai) 服務,任何人都可以零配置嘗試。它提供與自部署版本相同的所有功能,並在沙盒計劃中包含 200 次免費 GPT-4 調用。
- **自託管 Dify 社區版</br>**
使用這份[快速指南](#快速開始)在您的環境中快速運行 Dify。
使用我們的[文檔](https://docs.dify.ai)獲取更多參考和深入指導。
- **企業/組織版 Dify</br>**
我們提供額外的企業中心功能。[通過這個聊天機器人記錄您的問題](https://udify.app/chat/22L1zSxg6yW1cWQg)或[發送電子郵件給我們](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry)討論企業需求。</br>
> 對於使用 AWS 的初創企業和小型企業,請查看 [AWS Marketplace 上的 Dify Premium](https://aws.amazon.com/marketplace/pp/prodview-t22mebxzwjhu6),並一鍵部署到您自己的 AWS VPC。這是一個經濟實惠的 AMI 產品,可選擇使用自定義徽標和品牌創建應用。
## 保持領先
在 GitHub 上為 Dify 加星,即時獲取新版本通知。
![star-us](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
## 進階設定
如果您需要自定義配置,請參考我們的 [.env.example](docker/.env.example) 文件中的註釋,並在您的 `.env` 文件中更新相應的值。此外,根據您特定的部署環境和需求,您可能需要調整 `docker-compose.yaml` 文件本身,例如更改映像版本、端口映射或卷掛載。進行任何更改後,請重新運行 `docker-compose up -d`。您可以在[這裡](https://docs.dify.ai/getting-started/install-self-hosted/environments)找到可用環境變數的完整列表。
如果您想配置高可用性設置,社區貢獻的 [Helm Charts](https://helm.sh/) 和 YAML 文件允許在 Kubernetes 上部署 Dify。
- [由 @LeoQuote 提供的 Helm Chart](https://github.com/douban/charts/tree/master/charts/dify)
- [由 @BorisPolonsky 提供的 Helm Chart](https://github.com/BorisPolonsky/dify-helm)
- [由 @Winson-030 提供的 YAML 文件](https://github.com/Winson-030/dify-kubernetes)
### 使用 Terraform 進行部署
使用 [terraform](https://www.terraform.io/) 一鍵部署 Dify 到雲端平台
### Azure 全球
- [由 @nikawang 提供的 Azure Terraform](https://github.com/nikawang/dify-azure-terraform)
### Google Cloud
- [由 @sotazum 提供的 Google Cloud Terraform](https://github.com/DeNA/dify-google-cloud-terraform)
### 使用 AWS CDK 進行部署
使用 [CDK](https://aws.amazon.com/cdk/) 部署 Dify 到 AWS
### AWS
- [由 @KevinZhao 提供的 AWS CDK](https://github.com/aws-samples/solution-for-deploying-dify-on-aws)
## 貢獻
對於想要貢獻程式碼的開發者,請參閱我們的[貢獻指南](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md)。
同時,也請考慮透過在社群媒體和各種活動與會議上分享 Dify 來支持我們。
> 我們正在尋找貢獻者協助將 Dify 翻譯成中文和英文以外的語言。如果您有興趣幫忙,請查看 [i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README.md) 獲取更多資訊,並在我們的 [Discord 社群伺服器](https://discord.gg/8Tpq4AcN9c) 的 `global-users` 頻道留言給我們。
## 社群與聯絡方式
- [Github Discussion](https://github.com/langgenius/dify/discussions):最適合分享反饋和提問。
- [GitHub Issues](https://github.com/langgenius/dify/issues):最適合報告使用 Dify.AI 時遇到的問題和提出功能建議。請參閱我們的[貢獻指南](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md)。
- [Discord](https://discord.gg/FngNHpbcY7):最適合分享您的應用程式並與社群互動。
- [X(Twitter)](https://twitter.com/dify_ai):最適合分享您的應用程式並與社群互動。
**貢獻者**
<a href="https://github.com/langgenius/dify/graphs/contributors">
<img src="https://contrib.rocks/image?repo=langgenius/dify" />
</a>
## 星星歷史
[![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## 安全揭露
為保護您的隱私,請避免在 GitHub 上發布安全性問題。請將您的問題發送至 security@dify.ai我們將為您提供更詳細的答覆。
## 授權條款
本代碼庫採用 [Dify 開源授權](LICENSE),這基本上是 Apache 2.0 授權加上一些額外限制條款。

View File

@ -45,7 +45,6 @@
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_BN.md"><img alt="README in বাংলা" src="https://img.shields.io/badge/বাংলা-d9d9d9"></a>
</p>

View File

@ -427,6 +427,7 @@ PLUGIN_DAEMON_URL=http://127.0.0.1:5002
PLUGIN_REMOTE_INSTALL_PORT=5003
PLUGIN_REMOTE_INSTALL_HOST=localhost
PLUGIN_MAX_PACKAGE_SIZE=15728640
INNER_API_KEY=QaHbTe77CtuXmsfyhR7+vRjI/+XbV1AaFy691iy+kGDv2Jvy0/eAh8Y1
INNER_API_KEY_FOR_PLUGIN=QaHbTe77CtuXmsfyhR7+vRjI/+XbV1AaFy691iy+kGDv2Jvy0/eAh8Y1
# Marketplace configuration

View File

@ -7,7 +7,7 @@ line-length = 120
quote-style = "double"
[lint]
preview = false
preview = true
select = [
"B", # flake8-bugbear rules
"C4", # flake8-comprehensions
@ -18,6 +18,7 @@ select = [
"N", # pep8-naming
"PT", # flake8-pytest-style rules
"PLC0208", # iteration-over-set
"PLC2801", # unnecessary-dunder-call
"PLC0414", # useless-import-alias
"PLE0604", # invalid-all-object
"PLE0605", # invalid-all-format
@ -45,6 +46,7 @@ ignore = [
"E712", # true-false-comparison
"E721", # type-comparison
"E722", # bare-except
"E731", # lambda-assignment
"F821", # undefined-name
"F841", # unused-variable
"FURB113", # repeated-append

View File

@ -389,6 +389,11 @@ class InnerAPIConfig(BaseSettings):
default=False,
)
INNER_API_KEY: Optional[str] = Field(
description="API key for accessing the internal API",
default=None,
)
class LoggingConfig(BaseSettings):
"""

View File

@ -1,6 +1,6 @@
from typing import Optional
from pydantic import Field
from pydantic import Field, PositiveInt
from pydantic_settings import BaseSettings
@ -9,6 +9,16 @@ class OracleConfig(BaseSettings):
Configuration settings for Oracle database
"""
ORACLE_HOST: Optional[str] = Field(
description="Hostname or IP address of the Oracle database server (e.g., 'localhost' or 'oracle.example.com')",
default=None,
)
ORACLE_PORT: PositiveInt = Field(
description="Port number on which the Oracle database server is listening (default is 1521)",
default=1521,
)
ORACLE_USER: Optional[str] = Field(
description="Username for authenticating with the Oracle database",
default=None,
@ -19,28 +29,7 @@ class OracleConfig(BaseSettings):
default=None,
)
ORACLE_DSN: Optional[str] = Field(
description="Oracle database connection string. For traditional database, use format 'host:port/service_name'. "
"For autonomous database, use the service name from tnsnames.ora in the wallet",
ORACLE_DATABASE: Optional[str] = Field(
description="Name of the Oracle database or service to connect to (e.g., 'ORCL' or 'pdborcl')",
default=None,
)
ORACLE_CONFIG_DIR: Optional[str] = Field(
description="Directory containing the tnsnames.ora configuration file. Only used in thin mode connection",
default=None,
)
ORACLE_WALLET_LOCATION: Optional[str] = Field(
description="Oracle wallet directory path containing the wallet files for secure connection",
default=None,
)
ORACLE_WALLET_PASSWORD: Optional[str] = Field(
description="Password to decrypt the Oracle wallet, if it is encrypted",
default=None,
)
ORACLE_IS_AUTONOMOUS: bool = Field(
description="Flag indicating whether connecting to Oracle Autonomous Database",
default=False,
)

View File

@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description="Dify version",
default="1.0.1",
default="1.0.0",
)
COMMIT_SHA: str = Field(

View File

@ -5,7 +5,6 @@ from typing import TYPE_CHECKING
from contexts.wrapper import RecyclableContextVar
if TYPE_CHECKING:
from core.model_runtime.entities.model_entities import AIModelEntity
from core.plugin.entities.plugin_daemon import PluginModelProviderEntity
from core.tools.plugin_tool.provider import PluginToolProviderController
from core.workflow.entities.variable_pool import VariablePool
@ -21,19 +20,11 @@ To avoid race-conditions caused by gunicorn thread recycling, using RecyclableCo
plugin_tool_providers: RecyclableContextVar[dict[str, "PluginToolProviderController"]] = RecyclableContextVar(
ContextVar("plugin_tool_providers")
)
plugin_tool_providers_lock: RecyclableContextVar[Lock] = RecyclableContextVar(ContextVar("plugin_tool_providers_lock"))
plugin_model_providers: RecyclableContextVar[list["PluginModelProviderEntity"] | None] = RecyclableContextVar(
ContextVar("plugin_model_providers")
)
plugin_model_providers_lock: RecyclableContextVar[Lock] = RecyclableContextVar(
ContextVar("plugin_model_providers_lock")
)
plugin_model_schema_lock: RecyclableContextVar[Lock] = RecyclableContextVar(ContextVar("plugin_model_schema_lock"))
plugin_model_schemas: RecyclableContextVar[dict[str, "AIModelEntity"]] = RecyclableContextVar(
ContextVar("plugin_model_schemas")
)

View File

@ -71,7 +71,7 @@ from .app import (
from .auth import activate, data_source_bearer_auth, data_source_oauth, forgot_password, login, oauth
# Import billing controllers
from .billing import billing, compliance
from .billing import billing
# Import datasets controllers
from .datasets import (

View File

@ -316,7 +316,7 @@ class AppTraceApi(Resource):
@account_initialization_required
def post(self, app_id):
# add app trace
if not current_user.is_editing_role:
if not current_user.is_admin_or_owner:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument("enabled", type=bool, required=True, location="json")

View File

@ -2,6 +2,7 @@ from datetime import UTC, datetime
from flask_login import current_user # type: ignore
from flask_restful import Resource, marshal_with, reqparse # type: ignore
from sqlalchemy.orm import Session
from werkzeug.exceptions import Forbidden, NotFound
from constants.languages import supported_language
@ -50,35 +51,37 @@ class AppSite(Resource):
if not current_user.is_editor:
raise Forbidden()
site = db.session.query(Site).filter(Site.app_id == app_model.id).first()
if not site:
raise NotFound
with Session(db.engine) as session:
site = session.query(Site).filter(Site.app_id == app_model.id).first()
for attr_name in [
"title",
"icon_type",
"icon",
"icon_background",
"description",
"default_language",
"chat_color_theme",
"chat_color_theme_inverted",
"customize_domain",
"copyright",
"privacy_policy",
"custom_disclaimer",
"customize_token_strategy",
"prompt_public",
"show_workflow_steps",
"use_icon_as_answer_icon",
]:
value = args.get(attr_name)
if value is not None:
setattr(site, attr_name, value)
if not site:
raise NotFound
site.updated_by = current_user.id
site.updated_at = datetime.now(UTC).replace(tzinfo=None)
db.session.commit()
for attr_name in [
"title",
"icon_type",
"icon",
"icon_background",
"description",
"default_language",
"chat_color_theme",
"chat_color_theme_inverted",
"customize_domain",
"copyright",
"privacy_policy",
"custom_disclaimer",
"customize_token_strategy",
"prompt_public",
"show_workflow_steps",
"use_icon_as_answer_icon",
]:
value = args.get(attr_name)
if value is not None:
setattr(site, attr_name, value)
site.updated_by = current_user.id
site.updated_at = datetime.now(UTC).replace(tzinfo=None)
session.commit()
return site

View File

@ -1,10 +1,8 @@
import json
import logging
from typing import cast
from flask import abort, request
from flask_restful import Resource, inputs, marshal_with, reqparse # type: ignore
from sqlalchemy.orm import Session
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
import services
@ -15,7 +13,6 @@ from controllers.console.app.wraps import get_app_model
from controllers.console.wraps import account_initialization_required, setup_required
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.entities.app_invoke_entities import InvokeFrom
from extensions.ext_database import db
from factories import variable_factory
from fields.workflow_fields import workflow_fields, workflow_pagination_fields
from fields.workflow_run_fields import workflow_run_node_execution_fields
@ -27,7 +24,7 @@ from models.account import Account
from models.model import AppMode
from services.app_generate_service import AppGenerateService
from services.errors.app import WorkflowHashNotEqualError
from services.workflow_service import DraftWorkflowDeletionError, WorkflowInUseError, WorkflowService
from services.workflow_service import WorkflowService
logger = logging.getLogger(__name__)
@ -249,80 +246,6 @@ class WorkflowDraftRunIterationNodeApi(Resource):
raise InternalServerError()
class AdvancedChatDraftRunLoopNodeApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT])
def post(self, app_model: App, node_id: str):
"""
Run draft workflow loop node
"""
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
if not isinstance(current_user, Account):
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument("inputs", type=dict, location="json")
args = parser.parse_args()
try:
response = AppGenerateService.generate_single_loop(
app_model=app_model, user=current_user, node_id=node_id, args=args, streaming=True
)
return helper.compact_generate_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
raise ConversationCompletedError()
except ValueError as e:
raise e
except Exception:
logging.exception("internal server error.")
raise InternalServerError()
class WorkflowDraftRunLoopNodeApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.WORKFLOW])
def post(self, app_model: App, node_id: str):
"""
Run draft workflow loop node
"""
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
if not isinstance(current_user, Account):
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument("inputs", type=dict, location="json")
args = parser.parse_args()
try:
response = AppGenerateService.generate_single_loop(
app_model=app_model, user=current_user, node_id=node_id, args=args, streaming=True
)
return helper.compact_generate_response(response)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")
except services.errors.conversation.ConversationCompletedError:
raise ConversationCompletedError()
except ValueError as e:
raise e
except Exception:
logging.exception("internal server error.")
raise InternalServerError()
class DraftWorkflowRunApi(Resource):
@setup_required
@login_required
@ -442,38 +365,10 @@ class PublishedWorkflowApi(Resource):
if not isinstance(current_user, Account):
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument("marked_name", type=str, required=False, default="", location="json")
parser.add_argument("marked_comment", type=str, required=False, default="", location="json")
args = parser.parse_args()
# Validate name and comment length
if args.marked_name and len(args.marked_name) > 20:
raise ValueError("Marked name cannot exceed 20 characters")
if args.marked_comment and len(args.marked_comment) > 100:
raise ValueError("Marked comment cannot exceed 100 characters")
workflow_service = WorkflowService()
with Session(db.engine) as session:
workflow = workflow_service.publish_workflow(
session=session,
app_model=app_model,
account=current_user,
marked_name=args.marked_name or "",
marked_comment=args.marked_comment or "",
)
workflow = workflow_service.publish_workflow(app_model=app_model, account=current_user)
app_model.workflow_id = workflow.id
db.session.commit()
workflow_created_at = TimestampField().format(workflow.created_at)
session.commit()
return {
"result": "success",
"created_at": workflow_created_at,
}
return {"result": "success", "created_at": TimestampField().format(workflow.created_at)}
class DefaultBlockConfigsApi(Resource):
@ -595,193 +490,32 @@ class PublishedAllWorkflowApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument("page", type=inputs.int_range(1, 99999), required=False, default=1, location="args")
parser.add_argument("limit", type=inputs.int_range(1, 100), required=False, default=20, location="args")
parser.add_argument("user_id", type=str, required=False, location="args")
parser.add_argument("named_only", type=inputs.boolean, required=False, default=False, location="args")
args = parser.parse_args()
page = int(args.get("page", 1))
limit = int(args.get("limit", 10))
user_id = args.get("user_id")
named_only = args.get("named_only", False)
if user_id:
if user_id != current_user.id:
raise Forbidden()
user_id = cast(str, user_id)
page = args.get("page")
limit = args.get("limit")
workflow_service = WorkflowService()
with Session(db.engine) as session:
workflows, has_more = workflow_service.get_all_published_workflow(
session=session,
app_model=app_model,
page=page,
limit=limit,
user_id=user_id,
named_only=named_only,
)
workflows, has_more = workflow_service.get_all_published_workflow(app_model=app_model, page=page, limit=limit)
return {
"items": workflows,
"page": page,
"limit": limit,
"has_more": has_more,
}
return {"items": workflows, "page": page, "limit": limit, "has_more": has_more}
class WorkflowByIdApi(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@marshal_with(workflow_fields)
def patch(self, app_model: App, workflow_id: str):
"""
Update workflow attributes
"""
# Check permission
if not current_user.is_editor:
raise Forbidden()
if not isinstance(current_user, Account):
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument("marked_name", type=str, required=False, location="json")
parser.add_argument("marked_comment", type=str, required=False, location="json")
args = parser.parse_args()
# Validate name and comment length
if args.marked_name and len(args.marked_name) > 20:
raise ValueError("Marked name cannot exceed 20 characters")
if args.marked_comment and len(args.marked_comment) > 100:
raise ValueError("Marked comment cannot exceed 100 characters")
args = parser.parse_args()
# Prepare update data
update_data = {}
if args.get("marked_name") is not None:
update_data["marked_name"] = args["marked_name"]
if args.get("marked_comment") is not None:
update_data["marked_comment"] = args["marked_comment"]
if not update_data:
return {"message": "No valid fields to update"}, 400
workflow_service = WorkflowService()
# Create a session and manage the transaction
with Session(db.engine, expire_on_commit=False) as session:
workflow = workflow_service.update_workflow(
session=session,
workflow_id=workflow_id,
tenant_id=app_model.tenant_id,
account_id=current_user.id,
data=update_data,
)
if not workflow:
raise NotFound("Workflow not found")
# Commit the transaction in the controller
session.commit()
return workflow
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def delete(self, app_model: App, workflow_id: str):
"""
Delete workflow
"""
# Check permission
if not current_user.is_editor:
raise Forbidden()
if not isinstance(current_user, Account):
raise Forbidden()
workflow_service = WorkflowService()
# Create a session and manage the transaction
with Session(db.engine) as session:
try:
workflow_service.delete_workflow(
session=session, workflow_id=workflow_id, tenant_id=app_model.tenant_id
)
# Commit the transaction in the controller
session.commit()
except WorkflowInUseError as e:
abort(400, description=str(e))
except DraftWorkflowDeletionError as e:
abort(400, description=str(e))
except ValueError as e:
raise NotFound(str(e))
return None, 204
api.add_resource(
DraftWorkflowApi,
"/apps/<uuid:app_id>/workflows/draft",
)
api.add_resource(
WorkflowConfigApi,
"/apps/<uuid:app_id>/workflows/draft/config",
)
api.add_resource(
AdvancedChatDraftWorkflowRunApi,
"/apps/<uuid:app_id>/advanced-chat/workflows/draft/run",
)
api.add_resource(
DraftWorkflowRunApi,
"/apps/<uuid:app_id>/workflows/draft/run",
)
api.add_resource(
WorkflowTaskStopApi,
"/apps/<uuid:app_id>/workflow-runs/tasks/<string:task_id>/stop",
)
api.add_resource(
DraftWorkflowNodeRunApi,
"/apps/<uuid:app_id>/workflows/draft/nodes/<string:node_id>/run",
)
api.add_resource(DraftWorkflowApi, "/apps/<uuid:app_id>/workflows/draft")
api.add_resource(WorkflowConfigApi, "/apps/<uuid:app_id>/workflows/draft/config")
api.add_resource(AdvancedChatDraftWorkflowRunApi, "/apps/<uuid:app_id>/advanced-chat/workflows/draft/run")
api.add_resource(DraftWorkflowRunApi, "/apps/<uuid:app_id>/workflows/draft/run")
api.add_resource(WorkflowTaskStopApi, "/apps/<uuid:app_id>/workflow-runs/tasks/<string:task_id>/stop")
api.add_resource(DraftWorkflowNodeRunApi, "/apps/<uuid:app_id>/workflows/draft/nodes/<string:node_id>/run")
api.add_resource(
AdvancedChatDraftRunIterationNodeApi,
"/apps/<uuid:app_id>/advanced-chat/workflows/draft/iteration/nodes/<string:node_id>/run",
)
api.add_resource(
WorkflowDraftRunIterationNodeApi,
"/apps/<uuid:app_id>/workflows/draft/iteration/nodes/<string:node_id>/run",
WorkflowDraftRunIterationNodeApi, "/apps/<uuid:app_id>/workflows/draft/iteration/nodes/<string:node_id>/run"
)
api.add_resource(PublishedWorkflowApi, "/apps/<uuid:app_id>/workflows/publish")
api.add_resource(PublishedAllWorkflowApi, "/apps/<uuid:app_id>/workflows")
api.add_resource(DefaultBlockConfigsApi, "/apps/<uuid:app_id>/workflows/default-workflow-block-configs")
api.add_resource(
AdvancedChatDraftRunLoopNodeApi,
"/apps/<uuid:app_id>/advanced-chat/workflows/draft/loop/nodes/<string:node_id>/run",
)
api.add_resource(
WorkflowDraftRunLoopNodeApi,
"/apps/<uuid:app_id>/workflows/draft/loop/nodes/<string:node_id>/run",
)
api.add_resource(
PublishedWorkflowApi,
"/apps/<uuid:app_id>/workflows/publish",
)
api.add_resource(
PublishedAllWorkflowApi,
"/apps/<uuid:app_id>/workflows",
)
api.add_resource(
DefaultBlockConfigsApi,
"/apps/<uuid:app_id>/workflows/default-workflow-block-configs",
)
api.add_resource(
DefaultBlockConfigApi,
"/apps/<uuid:app_id>/workflows/default-workflow-block-configs/<string:block_type>",
)
api.add_resource(
ConvertToWorkflowApi,
"/apps/<uuid:app_id>/convert-to-workflow",
)
api.add_resource(
WorkflowByIdApi,
"/apps/<uuid:app_id>/workflows/<string:workflow_id>",
DefaultBlockConfigApi, "/apps/<uuid:app_id>/workflows/default-workflow-block-configs/<string:block_type>"
)
api.add_resource(ConvertToWorkflowApi, "/apps/<uuid:app_id>/convert-to-workflow")

View File

@ -1,18 +1,13 @@
from datetime import datetime
from flask_restful import Resource, marshal_with, reqparse # type: ignore
from flask_restful.inputs import int_range # type: ignore
from sqlalchemy.orm import Session
from controllers.console import api
from controllers.console.app.wraps import get_app_model
from controllers.console.wraps import account_initialization_required, setup_required
from extensions.ext_database import db
from fields.workflow_app_log_fields import workflow_app_log_pagination_fields
from libs.login import login_required
from models import App
from models.model import AppMode
from models.workflow import WorkflowRunStatus
from services.workflow_app_service import WorkflowAppService
@ -29,38 +24,17 @@ class WorkflowAppLogApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument("keyword", type=str, location="args")
parser.add_argument("status", type=str, choices=["succeeded", "failed", "stopped"], location="args")
parser.add_argument(
"created_at__before", type=str, location="args", help="Filter logs created before this timestamp"
)
parser.add_argument(
"created_at__after", type=str, location="args", help="Filter logs created after this timestamp"
)
parser.add_argument("page", type=int_range(1, 99999), default=1, location="args")
parser.add_argument("limit", type=int_range(1, 100), default=20, location="args")
args = parser.parse_args()
args.status = WorkflowRunStatus(args.status) if args.status else None
if args.created_at__before:
args.created_at__before = datetime.fromisoformat(args.created_at__before.replace("Z", "+00:00"))
if args.created_at__after:
args.created_at__after = datetime.fromisoformat(args.created_at__after.replace("Z", "+00:00"))
# get paginate workflow app logs
workflow_app_service = WorkflowAppService()
with Session(db.engine) as session:
workflow_app_log_pagination = workflow_app_service.get_paginate_workflow_app_logs(
session=session,
app_model=app_model,
keyword=args.keyword,
status=args.status,
created_at_before=args.created_at__before,
created_at_after=args.created_at__after,
page=args.page,
limit=args.limit,
)
workflow_app_log_pagination = workflow_app_service.get_paginate_workflow_app_logs(
app_model=app_model, args=args
)
return workflow_app_log_pagination
return workflow_app_log_pagination
api.add_resource(WorkflowAppLogApi, "/apps/<uuid:app_id>/workflow-app-logs")

View File

@ -1,35 +0,0 @@
from flask import request
from flask_login import current_user # type: ignore
from flask_restful import Resource, reqparse # type: ignore
from libs.helper import extract_remote_ip
from libs.login import login_required
from services.billing_service import BillingService
from .. import api
from ..wraps import account_initialization_required, only_edition_cloud, setup_required
class ComplianceApi(Resource):
@setup_required
@login_required
@account_initialization_required
@only_edition_cloud
def get(self):
parser = reqparse.RequestParser()
parser.add_argument("doc_name", type=str, required=True, location="args")
args = parser.parse_args()
ip_address = extract_remote_ip(request)
device_info = request.headers.get("User-Agent", "Unknown device")
return BillingService.get_compliance_download_link(
doc_name=args.doc_name,
account_id=current_user.id,
tenant_id=current_user.current_tenant_id,
ip=ip_address,
device_info=device_info,
)
api.add_resource(ComplianceApi, "/compliance/download")

View File

@ -122,7 +122,7 @@ class DataSourceNotionListApi(Resource):
if dataset.data_source_type != "notion_import":
raise ValueError("Dataset is not notion type.")
documents = session.scalars(
documents = session.execute(
select(Document).filter_by(
dataset_id=dataset_id,
tenant_id=current_user.current_tenant_id,

View File

@ -10,12 +10,7 @@ from controllers.console import api
from controllers.console.apikey import api_key_fields, api_key_list
from controllers.console.app.error import ProviderNotInitializeError
from controllers.console.datasets.error import DatasetInUseError, DatasetNameDuplicateError, IndexingEstimateError
from controllers.console.wraps import (
account_initialization_required,
cloud_edition_billing_rate_limit_check,
enterprise_license_required,
setup_required,
)
from controllers.console.wraps import account_initialization_required, enterprise_license_required, setup_required
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.indexing_runner import IndexingRunner
from core.model_runtime.entities.model_entities import ModelType
@ -101,7 +96,6 @@ class DatasetListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_rate_limit_check("knowledge")
def post(self):
parser = reqparse.RequestParser()
parser.add_argument(
@ -216,7 +210,6 @@ class DatasetApi(Resource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_rate_limit_check("knowledge")
def patch(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
@ -283,11 +276,7 @@ class DatasetApi(Resource):
data = request.get_json()
# check embedding model setting
if (
data.get("indexing_technique") == "high_quality"
and data.get("embedding_model_provider") is not None
and data.get("embedding_model") is not None
):
if data.get("indexing_technique") == "high_quality":
DatasetService.check_embedding_model_setting(
dataset.tenant_id, data.get("embedding_model_provider"), data.get("embedding_model")
)
@ -324,7 +313,6 @@ class DatasetApi(Resource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_rate_limit_check("knowledge")
def delete(self, dataset_id):
dataset_id_str = str(dataset_id)

View File

@ -26,7 +26,6 @@ from controllers.console.datasets.error import (
)
from controllers.console.wraps import (
account_initialization_required,
cloud_edition_billing_rate_limit_check,
cloud_edition_billing_resource_check,
setup_required,
)
@ -243,7 +242,6 @@ class DatasetDocumentListApi(Resource):
@account_initialization_required
@marshal_with(documents_and_batch_fields)
@cloud_edition_billing_resource_check("vector_space")
@cloud_edition_billing_rate_limit_check("knowledge")
def post(self, dataset_id):
dataset_id = str(dataset_id)
@ -299,7 +297,6 @@ class DatasetDocumentListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_rate_limit_check("knowledge")
def delete(self, dataset_id):
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
@ -323,7 +320,6 @@ class DatasetInitApi(Resource):
@account_initialization_required
@marshal_with(dataset_and_document_fields)
@cloud_edition_billing_resource_check("vector_space")
@cloud_edition_billing_rate_limit_check("knowledge")
def post(self):
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
@ -621,7 +617,7 @@ class DocumentDetailApi(DocumentResource):
raise InvalidMetadataError(f"Invalid metadata value: {metadata}")
if metadata == "only":
response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata}
response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata_details}
elif metadata == "without":
dataset_process_rules = DatasetService.get_process_rules(dataset_id)
document_process_rules = document.dataset_process_rule.to_dict()
@ -682,7 +678,7 @@ class DocumentDetailApi(DocumentResource):
"disabled_by": document.disabled_by,
"archived": document.archived,
"doc_type": document.doc_type,
"doc_metadata": document.doc_metadata,
"doc_metadata": document.doc_metadata_details,
"segment_count": document.segment_count,
"average_segment_length": document.average_segment_length,
"hit_count": document.hit_count,
@ -698,7 +694,6 @@ class DocumentProcessingApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_rate_limit_check("knowledge")
def patch(self, dataset_id, document_id, action):
dataset_id = str(dataset_id)
document_id = str(document_id)
@ -735,7 +730,6 @@ class DocumentDeleteApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_rate_limit_check("knowledge")
def delete(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
@ -804,7 +798,6 @@ class DocumentStatusApi(DocumentResource):
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check("vector_space")
@cloud_edition_billing_rate_limit_check("knowledge")
def patch(self, dataset_id, action):
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
@ -900,7 +893,6 @@ class DocumentPauseApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_rate_limit_check("knowledge")
def patch(self, dataset_id, document_id):
"""pause document."""
dataset_id = str(dataset_id)
@ -933,7 +925,6 @@ class DocumentRecoverApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_rate_limit_check("knowledge")
def patch(self, dataset_id, document_id):
"""recover document."""
dataset_id = str(dataset_id)
@ -963,7 +954,6 @@ class DocumentRetryApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_rate_limit_check("knowledge")
def post(self, dataset_id):
"""retry document."""

View File

@ -19,7 +19,6 @@ from controllers.console.datasets.error import (
from controllers.console.wraps import (
account_initialization_required,
cloud_edition_billing_knowledge_limit_check,
cloud_edition_billing_rate_limit_check,
cloud_edition_billing_resource_check,
setup_required,
)
@ -107,7 +106,6 @@ class DatasetDocumentSegmentListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_rate_limit_check("knowledge")
def delete(self, dataset_id, document_id):
# check dataset
dataset_id = str(dataset_id)
@ -139,7 +137,6 @@ class DatasetDocumentSegmentApi(Resource):
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check("vector_space")
@cloud_edition_billing_rate_limit_check("knowledge")
def patch(self, dataset_id, document_id, action):
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
@ -194,7 +191,6 @@ class DatasetDocumentSegmentAddApi(Resource):
@account_initialization_required
@cloud_edition_billing_resource_check("vector_space")
@cloud_edition_billing_knowledge_limit_check("add_segment")
@cloud_edition_billing_rate_limit_check("knowledge")
def post(self, dataset_id, document_id):
# check dataset
dataset_id = str(dataset_id)
@ -244,7 +240,6 @@ class DatasetDocumentSegmentUpdateApi(Resource):
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check("vector_space")
@cloud_edition_billing_rate_limit_check("knowledge")
def patch(self, dataset_id, document_id, segment_id):
# check dataset
dataset_id = str(dataset_id)
@ -304,7 +299,6 @@ class DatasetDocumentSegmentUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_rate_limit_check("knowledge")
def delete(self, dataset_id, document_id, segment_id):
# check dataset
dataset_id = str(dataset_id)
@ -342,7 +336,6 @@ class DatasetDocumentSegmentBatchImportApi(Resource):
@account_initialization_required
@cloud_edition_billing_resource_check("vector_space")
@cloud_edition_billing_knowledge_limit_check("add_segment")
@cloud_edition_billing_rate_limit_check("knowledge")
def post(self, dataset_id, document_id):
# check dataset
dataset_id = str(dataset_id)
@ -409,7 +402,6 @@ class ChildChunkAddApi(Resource):
@account_initialization_required
@cloud_edition_billing_resource_check("vector_space")
@cloud_edition_billing_knowledge_limit_check("add_segment")
@cloud_edition_billing_rate_limit_check("knowledge")
def post(self, dataset_id, document_id, segment_id):
# check dataset
dataset_id = str(dataset_id)
@ -507,7 +499,6 @@ class ChildChunkAddApi(Resource):
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check("vector_space")
@cloud_edition_billing_rate_limit_check("knowledge")
def patch(self, dataset_id, document_id, segment_id):
# check dataset
dataset_id = str(dataset_id)
@ -551,7 +542,6 @@ class ChildChunkUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_rate_limit_check("knowledge")
def delete(self, dataset_id, document_id, segment_id, child_chunk_id):
# check dataset
dataset_id = str(dataset_id)
@ -596,7 +586,6 @@ class ChildChunkUpdateApi(Resource):
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check("vector_space")
@cloud_edition_billing_rate_limit_check("knowledge")
def patch(self, dataset_id, document_id, segment_id, child_chunk_id):
# check dataset
dataset_id = str(dataset_id)

View File

@ -2,11 +2,7 @@ from flask_restful import Resource # type: ignore
from controllers.console import api
from controllers.console.datasets.hit_testing_base import DatasetsHitTestingBase
from controllers.console.wraps import (
account_initialization_required,
cloud_edition_billing_rate_limit_check,
setup_required,
)
from controllers.console.wraps import account_initialization_required, setup_required
from libs.login import login_required
@ -14,7 +10,6 @@ class HitTestingApi(Resource, DatasetsHitTestingBase):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_rate_limit_check("knowledge")
def post(self, dataset_id):
dataset_id_str = str(dataset_id)

View File

@ -0,0 +1,143 @@
from flask_login import current_user # type: ignore # type: ignore
from flask_restful import Resource, marshal_with, reqparse # type: ignore
from werkzeug.exceptions import NotFound
from controllers.console import api
from controllers.console.wraps import account_initialization_required, enterprise_license_required, setup_required
from fields.dataset_fields import dataset_metadata_fields
from libs.login import login_required
from services.dataset_service import DatasetService
from services.entities.knowledge_entities.knowledge_entities import (
MetadataArgs,
MetadataOperationData,
)
from services.metadata_service import MetadataService
def _validate_name(name):
if not name or len(name) < 1 or len(name) > 40:
raise ValueError("Name must be between 1 to 40 characters.")
return name
def _validate_description_length(description):
if len(description) > 400:
raise ValueError("Description cannot exceed 400 characters.")
return description
class DatasetListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@enterprise_license_required
@marshal_with(dataset_metadata_fields)
def post(self, dataset_id):
parser = reqparse.RequestParser()
parser.add_argument("type", type=str, required=True, nullable=True, location="json")
parser.add_argument("name", type=str, required=True, nullable=True, location="json")
args = parser.parse_args()
metadata_args = MetadataArgs(**args)
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
DatasetService.check_dataset_permission(dataset, current_user)
metadata = MetadataService.create_metadata(dataset_id_str, metadata_args)
return metadata, 201
class DatasetMetadataApi(Resource):
@setup_required
@login_required
@account_initialization_required
@enterprise_license_required
def patch(self, dataset_id, metadata_id):
parser = reqparse.RequestParser()
parser.add_argument("name", type=str, required=True, nullable=True, location="json")
args = parser.parse_args()
dataset_id_str = str(dataset_id)
metadata_id_str = str(metadata_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
DatasetService.check_dataset_permission(dataset, current_user)
metadata = MetadataService.update_metadata_name(dataset_id_str, metadata_id_str, args.get("name"))
return metadata, 200
@setup_required
@login_required
@account_initialization_required
@enterprise_license_required
def delete(self, dataset_id, metadata_id):
dataset_id_str = str(dataset_id)
metadata_id_str = str(metadata_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
DatasetService.check_dataset_permission(dataset, current_user)
MetadataService.delete_metadata(dataset_id_str, metadata_id_str)
return 200
class DatasetMetadataBuiltInFieldApi(Resource):
@setup_required
@login_required
@account_initialization_required
@enterprise_license_required
def get(self):
built_in_fields = MetadataService.get_built_in_fields()
return built_in_fields, 200
class DatasetMetadataBuiltInFieldActionApi(Resource):
@setup_required
@login_required
@account_initialization_required
@enterprise_license_required
def post(self, dataset_id, action):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
DatasetService.check_dataset_permission(dataset, current_user)
if action == "enable":
MetadataService.enable_built_in_field(dataset)
elif action == "disable":
MetadataService.disable_built_in_field(dataset)
return 200
class DocumentMetadataApi(Resource):
@setup_required
@login_required
@account_initialization_required
@enterprise_license_required
def post(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
DatasetService.check_dataset_permission(dataset, current_user)
parser = reqparse.RequestParser()
parser.add_argument("operation_data", type=list, required=True, nullable=True, location="json")
args = parser.parse_args()
metadata_args = MetadataOperationData(**args)
MetadataService.update_documents_metadata(dataset, metadata_args)
return 200
api.add_resource(DatasetListApi, "/datasets/<uuid:dataset_id>/metadata")
api.add_resource(DatasetMetadataApi, "/datasets/<uuid:dataset_id>/metadata/<uuid:metadata_id>")
api.add_resource(DatasetMetadataBuiltInFieldApi, "/datasets/metadata/built-in")
api.add_resource(DatasetMetadataBuiltInFieldActionApi, "/datasets/metadata/built-in/<string:action>")
api.add_resource(DocumentMetadataApi, "/datasets/<uuid:dataset_id>/documents/metadata")

View File

@ -101,9 +101,3 @@ class AccountInFreezeError(BaseHTTPException):
"This email account has been deleted within the past 30 days"
"and is temporarily unavailable for new account registration."
)
class CompilanceRateLimitError(BaseHTTPException):
error_code = "compilance_rate_limit"
description = "Rate limit exceeded for downloading compliance report."
code = 429

View File

@ -26,7 +26,6 @@ from libs.helper import TimestampField
from libs.login import login_required
from models.account import Tenant, TenantStatus
from services.account_service import TenantService
from services.feature_service import FeatureService
from services.file_service import FileService
from services.workspace_service import WorkspaceService
@ -69,11 +68,6 @@ class TenantListApi(Resource):
tenants = TenantService.get_join_tenants(current_user)
for tenant in tenants:
features = FeatureService.get_features(tenant.id)
if features.billing.enabled:
tenant.plan = features.billing.subscription.plan
else:
tenant.plan = "sandbox"
if tenant.id == current_user.current_tenant_id:
tenant.current = True # Set current=True for current tenant
return {"workspaces": marshal(tenants, tenants_fields)}, 200

View File

@ -1,6 +1,5 @@
import json
import os
import time
from functools import wraps
from flask import abort, request
@ -9,8 +8,6 @@ from flask_login import current_user # type: ignore
from configs import dify_config
from controllers.console.workspace.error import AccountNotInitializedError
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import RateLimitLog
from models.model import DifySetup
from services.feature_service import FeatureService, LicenseStatus
from services.operation_service import OperationService
@ -70,9 +67,7 @@ def cloud_edition_billing_resource_check(resource: str):
elif resource == "apps" and 0 < apps.limit <= apps.size:
abort(403, "The number of apps has reached the limit of your subscription.")
elif resource == "vector_space" and 0 < vector_space.limit <= vector_space.size:
abort(
403, "The capacity of the knowledge storage space has reached the limit of your subscription."
)
abort(403, "The capacity of the vector space has reached the limit of your subscription.")
elif resource == "documents" and 0 < documents_upload_quota.limit <= documents_upload_quota.size:
# The api of file upload is used in the multiple places,
# so we need to check the source of the request from datasets
@ -117,41 +112,6 @@ def cloud_edition_billing_knowledge_limit_check(resource: str):
return interceptor
def cloud_edition_billing_rate_limit_check(resource: str):
def interceptor(view):
@wraps(view)
def decorated(*args, **kwargs):
if resource == "knowledge":
knowledge_rate_limit = FeatureService.get_knowledge_rate_limit(current_user.current_tenant_id)
if knowledge_rate_limit.enabled:
current_time = int(time.time() * 1000)
key = f"rate_limit_{current_user.current_tenant_id}"
redis_client.zadd(key, {current_time: current_time})
redis_client.zremrangebyscore(key, 0, current_time - 60000)
request_count = redis_client.zcard(key)
if request_count > knowledge_rate_limit.limit:
# add ratelimit record
rate_limit_log = RateLimitLog(
tenant_id=current_user.current_tenant_id,
subscription_plan=knowledge_rate_limit.subscription_plan,
operation="knowledge",
)
db.session.add(rate_limit_log)
db.session.commit()
abort(
403, "Sorry, you have reached the knowledge base request rate limit of your subscription."
)
return view(*args, **kwargs)
return decorated
return interceptor
def cloud_utm_record(view):
@wraps(view)
def decorated(*args, **kwargs):

View File

@ -70,7 +70,7 @@ class MessageListApi(Resource):
try:
return MessageService.pagination_by_first_id(
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"]
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"], "desc"
)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")

View File

@ -1,9 +1,7 @@
import logging
from datetime import datetime
from flask_restful import Resource, fields, marshal_with, reqparse # type: ignore
from flask_restful.inputs import int_range # type: ignore
from sqlalchemy.orm import Session
from werkzeug.exceptions import InternalServerError
from controllers.service_api import api
@ -27,7 +25,7 @@ from extensions.ext_database import db
from fields.workflow_app_log_fields import workflow_app_log_pagination_fields
from libs import helper
from models.model import App, AppMode, EndUser
from models.workflow import WorkflowRun, WorkflowRunStatus
from models.workflow import WorkflowRun
from services.app_generate_service import AppGenerateService
from services.workflow_app_service import WorkflowAppService
@ -127,34 +125,17 @@ class WorkflowAppLogApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument("keyword", type=str, location="args")
parser.add_argument("status", type=str, choices=["succeeded", "failed", "stopped"], location="args")
parser.add_argument("created_at__before", type=str, location="args")
parser.add_argument("created_at__after", type=str, location="args")
parser.add_argument("page", type=int_range(1, 99999), default=1, location="args")
parser.add_argument("limit", type=int_range(1, 100), default=20, location="args")
args = parser.parse_args()
args.status = WorkflowRunStatus(args.status) if args.status else None
if args.created_at__before:
args.created_at__before = datetime.fromisoformat(args.created_at__before.replace("Z", "+00:00"))
if args.created_at__after:
args.created_at__after = datetime.fromisoformat(args.created_at__after.replace("Z", "+00:00"))
# get paginate workflow app logs
workflow_app_service = WorkflowAppService()
with Session(db.engine) as session:
workflow_app_log_pagination = workflow_app_service.get_paginate_workflow_app_logs(
session=session,
app_model=app_model,
keyword=args.keyword,
status=args.status,
created_at_before=args.created_at__before,
created_at_after=args.created_at__after,
page=args.page,
limit=args.limit,
)
workflow_app_log_pagination = workflow_app_service.get_paginate_workflow_app_logs(
app_model=app_model, args=args
)
return workflow_app_log_pagination
return workflow_app_log_pagination
api.add_resource(WorkflowRunApi, "/workflows/run")

View File

@ -1,4 +1,3 @@
import time
from collections.abc import Callable
from datetime import UTC, datetime, timedelta
from enum import Enum
@ -14,10 +13,8 @@ from sqlalchemy.orm import Session
from werkzeug.exceptions import Forbidden, Unauthorized
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from libs.login import _get_user
from models.account import Account, Tenant, TenantAccountJoin, TenantStatus
from models.dataset import RateLimitLog
from models.model import ApiToken, App, EndUser
from services.feature_service import FeatureService
@ -142,43 +139,6 @@ def cloud_edition_billing_knowledge_limit_check(resource: str, api_token_type: s
return interceptor
def cloud_edition_billing_rate_limit_check(resource: str, api_token_type: str):
def interceptor(view):
@wraps(view)
def decorated(*args, **kwargs):
api_token = validate_and_get_api_token(api_token_type)
if resource == "knowledge":
knowledge_rate_limit = FeatureService.get_knowledge_rate_limit(api_token.tenant_id)
if knowledge_rate_limit.enabled:
current_time = int(time.time() * 1000)
key = f"rate_limit_{api_token.tenant_id}"
redis_client.zadd(key, {current_time: current_time})
redis_client.zremrangebyscore(key, 0, current_time - 60000)
request_count = redis_client.zcard(key)
if request_count > knowledge_rate_limit.limit:
# add ratelimit record
rate_limit_log = RateLimitLog(
tenant_id=api_token.tenant_id,
subscription_plan=knowledge_rate_limit.subscription_plan,
operation="knowledge",
)
db.session.add(rate_limit_log)
db.session.commit()
raise Forbidden(
"Sorry, you have reached the knowledge base request rate limit of your subscription."
)
return view(*args, **kwargs)
return decorated
return interceptor
def validate_dataset_token(view=None):
def decorator(view):
@wraps(view)

View File

@ -223,61 +223,6 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
stream=streaming,
)
def single_loop_generate(
self,
app_model: App,
workflow: Workflow,
node_id: str,
user: Account | EndUser,
args: Mapping,
streaming: bool = True,
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], Any, None]:
"""
Generate App response.
:param app_model: App
:param workflow: Workflow
:param user: account or end user
:param args: request args
:param invoke_from: invoke from source
:param stream: is stream
"""
if not node_id:
raise ValueError("node_id is required")
if args.get("inputs") is None:
raise ValueError("inputs is required")
# convert to app config
app_config = AdvancedChatAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
# init application generate entity
application_generate_entity = AdvancedChatAppGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=app_config,
conversation_id=None,
inputs={},
query="",
files=[],
user_id=user.id,
stream=streaming,
invoke_from=InvokeFrom.DEBUGGER,
extras={"auto_generate_conversation_name": False},
single_loop_run=AdvancedChatAppGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args["inputs"]),
)
contexts.tenant_id.set(application_generate_entity.app_config.tenant_id)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
return self._generate(
workflow=workflow,
user=user,
invoke_from=InvokeFrom.DEBUGGER,
application_generate_entity=application_generate_entity,
conversation=None,
stream=streaming,
)
def _generate(
self,
*,

View File

@ -79,13 +79,6 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
node_id=self.application_generate_entity.single_iteration_run.node_id,
user_inputs=dict(self.application_generate_entity.single_iteration_run.inputs),
)
elif self.application_generate_entity.single_loop_run:
# if only single loop run is requested
graph, variable_pool = self._get_graph_and_variable_pool_of_single_loop(
workflow=workflow,
node_id=self.application_generate_entity.single_loop_run.node_id,
user_inputs=dict(self.application_generate_entity.single_loop_run.inputs),
)
else:
inputs = self.application_generate_entity.inputs
query = self.application_generate_entity.query

View File

@ -23,14 +23,10 @@ from core.app.entities.queue_entities import (
QueueIterationCompletedEvent,
QueueIterationNextEvent,
QueueIterationStartEvent,
QueueLoopCompletedEvent,
QueueLoopNextEvent,
QueueLoopStartEvent,
QueueMessageReplaceEvent,
QueueNodeExceptionEvent,
QueueNodeFailedEvent,
QueueNodeInIterationFailedEvent,
QueueNodeInLoopFailedEvent,
QueueNodeRetryEvent,
QueueNodeStartedEvent,
QueueNodeSucceededEvent,
@ -376,13 +372,7 @@ class AdvancedChatAppGenerateTaskPipeline:
if node_finish_resp:
yield node_finish_resp
elif isinstance(
event,
QueueNodeFailedEvent
| QueueNodeInIterationFailedEvent
| QueueNodeInLoopFailedEvent
| QueueNodeExceptionEvent,
):
elif isinstance(event, QueueNodeFailedEvent | QueueNodeInIterationFailedEvent | QueueNodeExceptionEvent):
with Session(db.engine, expire_on_commit=False) as session:
workflow_node_execution = self._workflow_cycle_manager._handle_workflow_node_execution_failed(
session=session, event=event
@ -482,54 +472,6 @@ class AdvancedChatAppGenerateTaskPipeline:
)
yield iter_finish_resp
elif isinstance(event, QueueLoopStartEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
with Session(db.engine, expire_on_commit=False) as session:
workflow_run = self._workflow_cycle_manager._get_workflow_run(
session=session, workflow_run_id=self._workflow_run_id
)
loop_start_resp = self._workflow_cycle_manager._workflow_loop_start_to_stream_response(
session=session,
task_id=self._application_generate_entity.task_id,
workflow_run=workflow_run,
event=event,
)
yield loop_start_resp
elif isinstance(event, QueueLoopNextEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
with Session(db.engine, expire_on_commit=False) as session:
workflow_run = self._workflow_cycle_manager._get_workflow_run(
session=session, workflow_run_id=self._workflow_run_id
)
loop_next_resp = self._workflow_cycle_manager._workflow_loop_next_to_stream_response(
session=session,
task_id=self._application_generate_entity.task_id,
workflow_run=workflow_run,
event=event,
)
yield loop_next_resp
elif isinstance(event, QueueLoopCompletedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
with Session(db.engine, expire_on_commit=False) as session:
workflow_run = self._workflow_cycle_manager._get_workflow_run(
session=session, workflow_run_id=self._workflow_run_id
)
loop_finish_resp = self._workflow_cycle_manager._workflow_loop_completed_to_stream_response(
session=session,
task_id=self._application_generate_entity.task_id,
workflow_run=workflow_run,
event=event,
)
yield loop_finish_resp
elif isinstance(event, QueueWorkflowSucceededEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
@ -640,15 +582,6 @@ class AdvancedChatAppGenerateTaskPipeline:
session.commit()
yield workflow_finish_resp
elif event.stopped_by in (
QueueStopEvent.StopBy.INPUT_MODERATION,
QueueStopEvent.StopBy.ANNOTATION_REPLY,
):
# When hitting input-moderation or annotation-reply, the workflow will not start
with Session(db.engine, expire_on_commit=False) as session:
# Save message
self._save_message(session=session)
session.commit()
yield self._message_end_to_stream_response()
break

View File

@ -250,60 +250,6 @@ class WorkflowAppGenerator(BaseAppGenerator):
streaming=streaming,
)
def single_loop_generate(
self,
app_model: App,
workflow: Workflow,
node_id: str,
user: Account | EndUser,
args: Mapping[str, Any],
streaming: bool = True,
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
"""
Generate App response.
:param app_model: App
:param workflow: Workflow
:param user: account or end user
:param args: request args
:param invoke_from: invoke from source
:param stream: is stream
"""
if not node_id:
raise ValueError("node_id is required")
if args.get("inputs") is None:
raise ValueError("inputs is required")
# convert to app config
app_config = WorkflowAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
# init application generate entity
application_generate_entity = WorkflowAppGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=app_config,
inputs={},
files=[],
user_id=user.id,
stream=streaming,
invoke_from=InvokeFrom.DEBUGGER,
extras={"auto_generate_conversation_name": False},
single_loop_run=WorkflowAppGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args["inputs"]),
workflow_run_id=str(uuid.uuid4()),
)
contexts.tenant_id.set(application_generate_entity.app_config.tenant_id)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
return self._generate(
app_model=app_model,
workflow=workflow,
user=user,
invoke_from=InvokeFrom.DEBUGGER,
application_generate_entity=application_generate_entity,
streaming=streaming,
)
def _generate_worker(
self,
flask_app: Flask,

View File

@ -81,13 +81,6 @@ class WorkflowAppRunner(WorkflowBasedAppRunner):
node_id=self.application_generate_entity.single_iteration_run.node_id,
user_inputs=self.application_generate_entity.single_iteration_run.inputs,
)
elif self.application_generate_entity.single_loop_run:
# if only single loop run is requested
graph, variable_pool = self._get_graph_and_variable_pool_of_single_loop(
workflow=workflow,
node_id=self.application_generate_entity.single_loop_run.node_id,
user_inputs=self.application_generate_entity.single_loop_run.inputs,
)
else:
inputs = self.application_generate_entity.inputs
files = self.application_generate_entity.files

View File

@ -18,13 +18,9 @@ from core.app.entities.queue_entities import (
QueueIterationCompletedEvent,
QueueIterationNextEvent,
QueueIterationStartEvent,
QueueLoopCompletedEvent,
QueueLoopNextEvent,
QueueLoopStartEvent,
QueueNodeExceptionEvent,
QueueNodeFailedEvent,
QueueNodeInIterationFailedEvent,
QueueNodeInLoopFailedEvent,
QueueNodeRetryEvent,
QueueNodeStartedEvent,
QueueNodeSucceededEvent,
@ -327,13 +323,7 @@ class WorkflowAppGenerateTaskPipeline:
if node_success_response:
yield node_success_response
elif isinstance(
event,
QueueNodeFailedEvent
| QueueNodeInIterationFailedEvent
| QueueNodeInLoopFailedEvent
| QueueNodeExceptionEvent,
):
elif isinstance(event, QueueNodeFailedEvent | QueueNodeInIterationFailedEvent | QueueNodeExceptionEvent):
with Session(db.engine, expire_on_commit=False) as session:
workflow_node_execution = self._workflow_cycle_manager._handle_workflow_node_execution_failed(
session=session,
@ -439,57 +429,6 @@ class WorkflowAppGenerateTaskPipeline:
yield iter_finish_resp
elif isinstance(event, QueueLoopStartEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
with Session(db.engine, expire_on_commit=False) as session:
workflow_run = self._workflow_cycle_manager._get_workflow_run(
session=session, workflow_run_id=self._workflow_run_id
)
loop_start_resp = self._workflow_cycle_manager._workflow_loop_start_to_stream_response(
session=session,
task_id=self._application_generate_entity.task_id,
workflow_run=workflow_run,
event=event,
)
yield loop_start_resp
elif isinstance(event, QueueLoopNextEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
with Session(db.engine, expire_on_commit=False) as session:
workflow_run = self._workflow_cycle_manager._get_workflow_run(
session=session, workflow_run_id=self._workflow_run_id
)
loop_next_resp = self._workflow_cycle_manager._workflow_loop_next_to_stream_response(
session=session,
task_id=self._application_generate_entity.task_id,
workflow_run=workflow_run,
event=event,
)
yield loop_next_resp
elif isinstance(event, QueueLoopCompletedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
with Session(db.engine, expire_on_commit=False) as session:
workflow_run = self._workflow_cycle_manager._get_workflow_run(
session=session, workflow_run_id=self._workflow_run_id
)
loop_finish_resp = self._workflow_cycle_manager._workflow_loop_completed_to_stream_response(
session=session,
task_id=self._application_generate_entity.task_id,
workflow_run=workflow_run,
event=event,
)
yield loop_finish_resp
elif isinstance(event, QueueWorkflowSucceededEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")

View File

@ -9,13 +9,9 @@ from core.app.entities.queue_entities import (
QueueIterationCompletedEvent,
QueueIterationNextEvent,
QueueIterationStartEvent,
QueueLoopCompletedEvent,
QueueLoopNextEvent,
QueueLoopStartEvent,
QueueNodeExceptionEvent,
QueueNodeFailedEvent,
QueueNodeInIterationFailedEvent,
QueueNodeInLoopFailedEvent,
QueueNodeRetryEvent,
QueueNodeStartedEvent,
QueueNodeSucceededEvent,
@ -42,12 +38,7 @@ from core.workflow.graph_engine.entities.event import (
IterationRunNextEvent,
IterationRunStartedEvent,
IterationRunSucceededEvent,
LoopRunFailedEvent,
LoopRunNextEvent,
LoopRunStartedEvent,
LoopRunSucceededEvent,
NodeInIterationFailedEvent,
NodeInLoopFailedEvent,
NodeRunExceptionEvent,
NodeRunFailedEvent,
NodeRunRetrieverResourceEvent,
@ -182,96 +173,6 @@ class WorkflowBasedAppRunner(AppRunner):
return graph, variable_pool
def _get_graph_and_variable_pool_of_single_loop(
self,
workflow: Workflow,
node_id: str,
user_inputs: dict,
) -> tuple[Graph, VariablePool]:
"""
Get variable pool of single loop
"""
# fetch workflow graph
graph_config = workflow.graph_dict
if not graph_config:
raise ValueError("workflow graph not found")
graph_config = cast(dict[str, Any], graph_config)
if "nodes" not in graph_config or "edges" not in graph_config:
raise ValueError("nodes or edges not found in workflow graph")
if not isinstance(graph_config.get("nodes"), list):
raise ValueError("nodes in workflow graph must be a list")
if not isinstance(graph_config.get("edges"), list):
raise ValueError("edges in workflow graph must be a list")
# filter nodes only in loop
node_configs = [
node
for node in graph_config.get("nodes", [])
if node.get("id") == node_id or node.get("data", {}).get("loop_id", "") == node_id
]
graph_config["nodes"] = node_configs
node_ids = [node.get("id") for node in node_configs]
# filter edges only in loop
edge_configs = [
edge
for edge in graph_config.get("edges", [])
if (edge.get("source") is None or edge.get("source") in node_ids)
and (edge.get("target") is None or edge.get("target") in node_ids)
]
graph_config["edges"] = edge_configs
# init graph
graph = Graph.init(graph_config=graph_config, root_node_id=node_id)
if not graph:
raise ValueError("graph not found in workflow")
# fetch node config from node id
loop_node_config = None
for node in node_configs:
if node.get("id") == node_id:
loop_node_config = node
break
if not loop_node_config:
raise ValueError("loop node id not found in workflow graph")
# Get node class
node_type = NodeType(loop_node_config.get("data", {}).get("type"))
node_version = loop_node_config.get("data", {}).get("version", "1")
node_cls = NODE_TYPE_CLASSES_MAPPING[node_type][node_version]
# init variable pool
variable_pool = VariablePool(
system_variables={},
user_inputs={},
environment_variables=workflow.environment_variables,
)
try:
variable_mapping = node_cls.extract_variable_selector_to_variable_mapping(
graph_config=workflow.graph_dict, config=loop_node_config
)
except NotImplementedError:
variable_mapping = {}
WorkflowEntry.mapping_user_inputs_to_variable_pool(
variable_mapping=variable_mapping,
user_inputs=user_inputs,
variable_pool=variable_pool,
tenant_id=workflow.tenant_id,
)
return graph, variable_pool
def _handle_event(self, workflow_entry: WorkflowEntry, event: GraphEngineEvent) -> None:
"""
Handle event
@ -315,7 +216,6 @@ class WorkflowBasedAppRunner(AppRunner):
node_run_index=event.route_node_state.index,
predecessor_node_id=event.predecessor_node_id,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
parallel_mode_run_id=event.parallel_mode_run_id,
inputs=inputs,
process_data=process_data,
@ -340,7 +240,6 @@ class WorkflowBasedAppRunner(AppRunner):
node_run_index=event.route_node_state.index,
predecessor_node_id=event.predecessor_node_id,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
parallel_mode_run_id=event.parallel_mode_run_id,
agent_strategy=event.agent_strategy,
)
@ -373,7 +272,6 @@ class WorkflowBasedAppRunner(AppRunner):
outputs=outputs,
execution_metadata=execution_metadata,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
)
)
elif isinstance(event, NodeRunFailedEvent):
@ -404,7 +302,6 @@ class WorkflowBasedAppRunner(AppRunner):
if event.route_node_state.node_run_result
else {},
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
)
)
elif isinstance(event, NodeRunExceptionEvent):
@ -435,7 +332,6 @@ class WorkflowBasedAppRunner(AppRunner):
if event.route_node_state.node_run_result
else {},
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
)
)
elif isinstance(event, NodeInIterationFailedEvent):
@ -466,49 +362,18 @@ class WorkflowBasedAppRunner(AppRunner):
error=event.error,
)
)
elif isinstance(event, NodeInLoopFailedEvent):
self._publish_event(
QueueNodeInLoopFailedEvent(
node_execution_id=event.id,
node_id=event.node_id,
node_type=event.node_type,
node_data=event.node_data,
parallel_id=event.parallel_id,
parallel_start_node_id=event.parallel_start_node_id,
parent_parallel_id=event.parent_parallel_id,
parent_parallel_start_node_id=event.parent_parallel_start_node_id,
start_at=event.route_node_state.start_at,
inputs=event.route_node_state.node_run_result.inputs
if event.route_node_state.node_run_result
else {},
process_data=event.route_node_state.node_run_result.process_data
if event.route_node_state.node_run_result
else {},
outputs=event.route_node_state.node_run_result.outputs or {}
if event.route_node_state.node_run_result
else {},
execution_metadata=event.route_node_state.node_run_result.metadata
if event.route_node_state.node_run_result
else {},
in_loop_id=event.in_loop_id,
error=event.error,
)
)
elif isinstance(event, NodeRunStreamChunkEvent):
self._publish_event(
QueueTextChunkEvent(
text=event.chunk_content,
from_variable_selector=event.from_variable_selector,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
)
)
elif isinstance(event, NodeRunRetrieverResourceEvent):
self._publish_event(
QueueRetrieverResourcesEvent(
retriever_resources=event.retriever_resources,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
retriever_resources=event.retriever_resources, in_iteration_id=event.in_iteration_id
)
)
elif isinstance(event, AgentLogEvent):
@ -522,7 +387,6 @@ class WorkflowBasedAppRunner(AppRunner):
status=event.status,
data=event.data,
metadata=event.metadata,
node_id=event.node_id,
)
)
elif isinstance(event, ParallelBranchRunStartedEvent):
@ -533,7 +397,6 @@ class WorkflowBasedAppRunner(AppRunner):
parent_parallel_id=event.parent_parallel_id,
parent_parallel_start_node_id=event.parent_parallel_start_node_id,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
)
)
elif isinstance(event, ParallelBranchRunSucceededEvent):
@ -544,7 +407,6 @@ class WorkflowBasedAppRunner(AppRunner):
parent_parallel_id=event.parent_parallel_id,
parent_parallel_start_node_id=event.parent_parallel_start_node_id,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
)
)
elif isinstance(event, ParallelBranchRunFailedEvent):
@ -555,7 +417,6 @@ class WorkflowBasedAppRunner(AppRunner):
parent_parallel_id=event.parent_parallel_id,
parent_parallel_start_node_id=event.parent_parallel_start_node_id,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
error=event.error,
)
)
@ -615,62 +476,6 @@ class WorkflowBasedAppRunner(AppRunner):
error=event.error if isinstance(event, IterationRunFailedEvent) else None,
)
)
elif isinstance(event, LoopRunStartedEvent):
self._publish_event(
QueueLoopStartEvent(
node_execution_id=event.loop_id,
node_id=event.loop_node_id,
node_type=event.loop_node_type,
node_data=event.loop_node_data,
parallel_id=event.parallel_id,
parallel_start_node_id=event.parallel_start_node_id,
parent_parallel_id=event.parent_parallel_id,
parent_parallel_start_node_id=event.parent_parallel_start_node_id,
start_at=event.start_at,
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
inputs=event.inputs,
predecessor_node_id=event.predecessor_node_id,
metadata=event.metadata,
)
)
elif isinstance(event, LoopRunNextEvent):
self._publish_event(
QueueLoopNextEvent(
node_execution_id=event.loop_id,
node_id=event.loop_node_id,
node_type=event.loop_node_type,
node_data=event.loop_node_data,
parallel_id=event.parallel_id,
parallel_start_node_id=event.parallel_start_node_id,
parent_parallel_id=event.parent_parallel_id,
parent_parallel_start_node_id=event.parent_parallel_start_node_id,
index=event.index,
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
output=event.pre_loop_output,
parallel_mode_run_id=event.parallel_mode_run_id,
duration=event.duration,
)
)
elif isinstance(event, (LoopRunSucceededEvent | LoopRunFailedEvent)):
self._publish_event(
QueueLoopCompletedEvent(
node_execution_id=event.loop_id,
node_id=event.loop_node_id,
node_type=event.loop_node_type,
node_data=event.loop_node_data,
parallel_id=event.parallel_id,
parallel_start_node_id=event.parallel_start_node_id,
parent_parallel_id=event.parent_parallel_id,
parent_parallel_start_node_id=event.parent_parallel_start_node_id,
start_at=event.start_at,
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
inputs=event.inputs,
outputs=event.outputs,
metadata=event.metadata,
steps=event.steps,
error=event.error if isinstance(event, LoopRunFailedEvent) else None,
)
)
def get_workflow(self, app_model: App, workflow_id: str) -> Optional[Workflow]:
"""

View File

@ -187,16 +187,6 @@ class AdvancedChatAppGenerateEntity(ConversationAppGenerateEntity):
single_iteration_run: Optional[SingleIterationRunEntity] = None
class SingleLoopRunEntity(BaseModel):
"""
Single Loop Run Entity.
"""
node_id: str
inputs: Mapping
single_loop_run: Optional[SingleLoopRunEntity] = None
class WorkflowAppGenerateEntity(AppGenerateEntity):
"""
@ -216,13 +206,3 @@ class WorkflowAppGenerateEntity(AppGenerateEntity):
inputs: dict
single_iteration_run: Optional[SingleIterationRunEntity] = None
class SingleLoopRunEntity(BaseModel):
"""
Single Loop Run Entity.
"""
node_id: str
inputs: dict
single_loop_run: Optional[SingleLoopRunEntity] = None

View File

@ -30,9 +30,6 @@ class QueueEvent(StrEnum):
ITERATION_START = "iteration_start"
ITERATION_NEXT = "iteration_next"
ITERATION_COMPLETED = "iteration_completed"
LOOP_START = "loop_start"
LOOP_NEXT = "loop_next"
LOOP_COMPLETED = "loop_completed"
NODE_STARTED = "node_started"
NODE_SUCCEEDED = "node_succeeded"
NODE_FAILED = "node_failed"
@ -152,89 +149,6 @@ class QueueIterationCompletedEvent(AppQueueEvent):
error: Optional[str] = None
class QueueLoopStartEvent(AppQueueEvent):
"""
QueueLoopStartEvent entity
"""
event: QueueEvent = QueueEvent.LOOP_START
node_execution_id: str
node_id: str
node_type: NodeType
node_data: BaseNodeData
parallel_id: Optional[str] = None
"""parallel id if node is in parallel"""
parallel_start_node_id: Optional[str] = None
"""parallel start node id if node is in parallel"""
parent_parallel_id: Optional[str] = None
"""parent parallel id if node is in parallel"""
parent_parallel_start_node_id: Optional[str] = None
"""parent parallel start node id if node is in parallel"""
start_at: datetime
node_run_index: int
inputs: Optional[Mapping[str, Any]] = None
predecessor_node_id: Optional[str] = None
metadata: Optional[Mapping[str, Any]] = None
class QueueLoopNextEvent(AppQueueEvent):
"""
QueueLoopNextEvent entity
"""
event: QueueEvent = QueueEvent.LOOP_NEXT
index: int
node_execution_id: str
node_id: str
node_type: NodeType
node_data: BaseNodeData
parallel_id: Optional[str] = None
"""parallel id if node is in parallel"""
parallel_start_node_id: Optional[str] = None
"""parallel start node id if node is in parallel"""
parent_parallel_id: Optional[str] = None
"""parent parallel id if node is in parallel"""
parent_parallel_start_node_id: Optional[str] = None
"""parent parallel start node id if node is in parallel"""
parallel_mode_run_id: Optional[str] = None
"""iteratoin run in parallel mode run id"""
node_run_index: int
output: Optional[Any] = None # output for the current loop
duration: Optional[float] = None
class QueueLoopCompletedEvent(AppQueueEvent):
"""
QueueLoopCompletedEvent entity
"""
event: QueueEvent = QueueEvent.LOOP_COMPLETED
node_execution_id: str
node_id: str
node_type: NodeType
node_data: BaseNodeData
parallel_id: Optional[str] = None
"""parallel id if node is in parallel"""
parallel_start_node_id: Optional[str] = None
"""parallel start node id if node is in parallel"""
parent_parallel_id: Optional[str] = None
"""parent parallel id if node is in parallel"""
parent_parallel_start_node_id: Optional[str] = None
"""parent parallel start node id if node is in parallel"""
start_at: datetime
node_run_index: int
inputs: Optional[Mapping[str, Any]] = None
outputs: Optional[Mapping[str, Any]] = None
metadata: Optional[Mapping[str, Any]] = None
steps: int = 0
error: Optional[str] = None
class QueueTextChunkEvent(AppQueueEvent):
"""
QueueTextChunkEvent entity
@ -246,8 +160,6 @@ class QueueTextChunkEvent(AppQueueEvent):
"""from variable selector"""
in_iteration_id: Optional[str] = None
"""iteration id if node is in iteration"""
in_loop_id: Optional[str] = None
"""loop id if node is in loop"""
class QueueAgentMessageEvent(AppQueueEvent):
@ -277,8 +189,6 @@ class QueueRetrieverResourcesEvent(AppQueueEvent):
retriever_resources: list[dict]
in_iteration_id: Optional[str] = None
"""iteration id if node is in iteration"""
in_loop_id: Optional[str] = None
"""loop id if node is in loop"""
class QueueAnnotationReplyEvent(AppQueueEvent):
@ -368,8 +278,6 @@ class QueueNodeStartedEvent(AppQueueEvent):
"""parent parallel start node id if node is in parallel"""
in_iteration_id: Optional[str] = None
"""iteration id if node is in iteration"""
in_loop_id: Optional[str] = None
"""loop id if node is in loop"""
start_at: datetime
parallel_mode_run_id: Optional[str] = None
"""iteratoin run in parallel mode run id"""
@ -397,8 +305,6 @@ class QueueNodeSucceededEvent(AppQueueEvent):
"""parent parallel start node id if node is in parallel"""
in_iteration_id: Optional[str] = None
"""iteration id if node is in iteration"""
in_loop_id: Optional[str] = None
"""loop id if node is in loop"""
start_at: datetime
inputs: Optional[Mapping[str, Any]] = None
@ -409,8 +315,6 @@ class QueueNodeSucceededEvent(AppQueueEvent):
error: Optional[str] = None
"""single iteration duration map"""
iteration_duration_map: Optional[dict[str, float]] = None
"""single loop duration map"""
loop_duration_map: Optional[dict[str, float]] = None
class QueueAgentLogEvent(AppQueueEvent):
@ -427,7 +331,6 @@ class QueueAgentLogEvent(AppQueueEvent):
status: str
data: Mapping[str, Any]
metadata: Optional[Mapping[str, Any]] = None
node_id: str
class QueueNodeRetryEvent(QueueNodeStartedEvent):
@ -465,41 +368,6 @@ class QueueNodeInIterationFailedEvent(AppQueueEvent):
"""parent parallel start node id if node is in parallel"""
in_iteration_id: Optional[str] = None
"""iteration id if node is in iteration"""
in_loop_id: Optional[str] = None
"""loop id if node is in loop"""
start_at: datetime
inputs: Optional[Mapping[str, Any]] = None
process_data: Optional[Mapping[str, Any]] = None
outputs: Optional[Mapping[str, Any]] = None
execution_metadata: Optional[Mapping[NodeRunMetadataKey, Any]] = None
error: str
class QueueNodeInLoopFailedEvent(AppQueueEvent):
"""
QueueNodeInLoopFailedEvent entity
"""
event: QueueEvent = QueueEvent.NODE_FAILED
node_execution_id: str
node_id: str
node_type: NodeType
node_data: BaseNodeData
parallel_id: Optional[str] = None
"""parallel id if node is in parallel"""
parallel_start_node_id: Optional[str] = None
"""parallel start node id if node is in parallel"""
parent_parallel_id: Optional[str] = None
"""parent parallel id if node is in parallel"""
parent_parallel_start_node_id: Optional[str] = None
"""parent parallel start node id if node is in parallel"""
in_iteration_id: Optional[str] = None
"""iteration id if node is in iteration"""
in_loop_id: Optional[str] = None
"""loop id if node is in loop"""
start_at: datetime
inputs: Optional[Mapping[str, Any]] = None
@ -531,8 +399,6 @@ class QueueNodeExceptionEvent(AppQueueEvent):
"""parent parallel start node id if node is in parallel"""
in_iteration_id: Optional[str] = None
"""iteration id if node is in iteration"""
in_loop_id: Optional[str] = None
"""loop id if node is in loop"""
start_at: datetime
inputs: Optional[Mapping[str, Any]] = None
@ -564,8 +430,6 @@ class QueueNodeFailedEvent(AppQueueEvent):
"""parent parallel start node id if node is in parallel"""
in_iteration_id: Optional[str] = None
"""iteration id if node is in iteration"""
in_loop_id: Optional[str] = None
"""loop id if node is in loop"""
start_at: datetime
inputs: Optional[Mapping[str, Any]] = None
@ -685,8 +549,6 @@ class QueueParallelBranchRunStartedEvent(AppQueueEvent):
"""parent parallel start node id if node is in parallel"""
in_iteration_id: Optional[str] = None
"""iteration id if node is in iteration"""
in_loop_id: Optional[str] = None
"""loop id if node is in loop"""
class QueueParallelBranchRunSucceededEvent(AppQueueEvent):
@ -704,8 +566,6 @@ class QueueParallelBranchRunSucceededEvent(AppQueueEvent):
"""parent parallel start node id if node is in parallel"""
in_iteration_id: Optional[str] = None
"""iteration id if node is in iteration"""
in_loop_id: Optional[str] = None
"""loop id if node is in loop"""
class QueueParallelBranchRunFailedEvent(AppQueueEvent):
@ -723,6 +583,4 @@ class QueueParallelBranchRunFailedEvent(AppQueueEvent):
"""parent parallel start node id if node is in parallel"""
in_iteration_id: Optional[str] = None
"""iteration id if node is in iteration"""
in_loop_id: Optional[str] = None
"""loop id if node is in loop"""
error: str

View File

@ -59,9 +59,6 @@ class StreamEvent(Enum):
ITERATION_STARTED = "iteration_started"
ITERATION_NEXT = "iteration_next"
ITERATION_COMPLETED = "iteration_completed"
LOOP_STARTED = "loop_started"
LOOP_NEXT = "loop_next"
LOOP_COMPLETED = "loop_completed"
TEXT_CHUNK = "text_chunk"
TEXT_REPLACE = "text_replace"
AGENT_LOG = "agent_log"
@ -251,7 +248,6 @@ class NodeStartStreamResponse(StreamResponse):
parent_parallel_id: Optional[str] = None
parent_parallel_start_node_id: Optional[str] = None
iteration_id: Optional[str] = None
loop_id: Optional[str] = None
parallel_run_id: Optional[str] = None
agent_strategy: Optional[AgentNodeStrategyInit] = None
@ -279,7 +275,6 @@ class NodeStartStreamResponse(StreamResponse):
"parent_parallel_id": self.data.parent_parallel_id,
"parent_parallel_start_node_id": self.data.parent_parallel_start_node_id,
"iteration_id": self.data.iteration_id,
"loop_id": self.data.loop_id,
},
}
@ -315,7 +310,6 @@ class NodeFinishStreamResponse(StreamResponse):
parent_parallel_id: Optional[str] = None
parent_parallel_start_node_id: Optional[str] = None
iteration_id: Optional[str] = None
loop_id: Optional[str] = None
event: StreamEvent = StreamEvent.NODE_FINISHED
workflow_run_id: str
@ -348,7 +342,6 @@ class NodeFinishStreamResponse(StreamResponse):
"parent_parallel_id": self.data.parent_parallel_id,
"parent_parallel_start_node_id": self.data.parent_parallel_start_node_id,
"iteration_id": self.data.iteration_id,
"loop_id": self.data.loop_id,
},
}
@ -384,7 +377,6 @@ class NodeRetryStreamResponse(StreamResponse):
parent_parallel_id: Optional[str] = None
parent_parallel_start_node_id: Optional[str] = None
iteration_id: Optional[str] = None
loop_id: Optional[str] = None
retry_index: int = 0
event: StreamEvent = StreamEvent.NODE_RETRY
@ -418,7 +410,6 @@ class NodeRetryStreamResponse(StreamResponse):
"parent_parallel_id": self.data.parent_parallel_id,
"parent_parallel_start_node_id": self.data.parent_parallel_start_node_id,
"iteration_id": self.data.iteration_id,
"loop_id": self.data.loop_id,
"retry_index": self.data.retry_index,
},
}
@ -439,7 +430,6 @@ class ParallelBranchStartStreamResponse(StreamResponse):
parent_parallel_id: Optional[str] = None
parent_parallel_start_node_id: Optional[str] = None
iteration_id: Optional[str] = None
loop_id: Optional[str] = None
created_at: int
event: StreamEvent = StreamEvent.PARALLEL_BRANCH_STARTED
@ -462,7 +452,6 @@ class ParallelBranchFinishedStreamResponse(StreamResponse):
parent_parallel_id: Optional[str] = None
parent_parallel_start_node_id: Optional[str] = None
iteration_id: Optional[str] = None
loop_id: Optional[str] = None
status: str
error: Optional[str] = None
created_at: int
@ -559,93 +548,6 @@ class IterationNodeCompletedStreamResponse(StreamResponse):
data: Data
class LoopNodeStartStreamResponse(StreamResponse):
"""
NodeStartStreamResponse entity
"""
class Data(BaseModel):
"""
Data entity
"""
id: str
node_id: str
node_type: str
title: str
created_at: int
extras: dict = {}
metadata: Mapping = {}
inputs: Mapping = {}
parallel_id: Optional[str] = None
parallel_start_node_id: Optional[str] = None
event: StreamEvent = StreamEvent.LOOP_STARTED
workflow_run_id: str
data: Data
class LoopNodeNextStreamResponse(StreamResponse):
"""
NodeStartStreamResponse entity
"""
class Data(BaseModel):
"""
Data entity
"""
id: str
node_id: str
node_type: str
title: str
index: int
created_at: int
pre_loop_output: Optional[Any] = None
extras: dict = {}
parallel_id: Optional[str] = None
parallel_start_node_id: Optional[str] = None
parallel_mode_run_id: Optional[str] = None
duration: Optional[float] = None
event: StreamEvent = StreamEvent.LOOP_NEXT
workflow_run_id: str
data: Data
class LoopNodeCompletedStreamResponse(StreamResponse):
"""
NodeCompletedStreamResponse entity
"""
class Data(BaseModel):
"""
Data entity
"""
id: str
node_id: str
node_type: str
title: str
outputs: Optional[Mapping] = None
created_at: int
extras: Optional[dict] = None
inputs: Optional[Mapping] = None
status: WorkflowNodeExecutionStatus
error: Optional[str] = None
elapsed_time: float
total_tokens: int
execution_metadata: Optional[Mapping] = None
finished_at: int
steps: int
parallel_id: Optional[str] = None
parallel_start_node_id: Optional[str] = None
event: StreamEvent = StreamEvent.LOOP_COMPLETED
workflow_run_id: str
data: Data
class TextChunkStreamResponse(StreamResponse):
"""
TextChunkStreamResponse entity
@ -817,7 +719,6 @@ class AgentLogStreamResponse(StreamResponse):
status: str
data: Mapping[str, Any]
metadata: Optional[Mapping[str, Any]] = None
node_id: str
event: StreamEvent = StreamEvent.AGENT_LOG
data: Data

View File

@ -14,13 +14,9 @@ from core.app.entities.queue_entities import (
QueueIterationCompletedEvent,
QueueIterationNextEvent,
QueueIterationStartEvent,
QueueLoopCompletedEvent,
QueueLoopNextEvent,
QueueLoopStartEvent,
QueueNodeExceptionEvent,
QueueNodeFailedEvent,
QueueNodeInIterationFailedEvent,
QueueNodeInLoopFailedEvent,
QueueNodeRetryEvent,
QueueNodeStartedEvent,
QueueNodeSucceededEvent,
@ -33,9 +29,6 @@ from core.app.entities.task_entities import (
IterationNodeCompletedStreamResponse,
IterationNodeNextStreamResponse,
IterationNodeStartStreamResponse,
LoopNodeCompletedStreamResponse,
LoopNodeNextStreamResponse,
LoopNodeStartStreamResponse,
NodeFinishStreamResponse,
NodeRetryStreamResponse,
NodeStartStreamResponse,
@ -311,7 +304,6 @@ class WorkflowCycleManage:
{
NodeRunMetadataKey.PARALLEL_MODE_RUN_ID: event.parallel_mode_run_id,
NodeRunMetadataKey.ITERATION_ID: event.in_iteration_id,
NodeRunMetadataKey.LOOP_ID: event.in_loop_id,
}
)
workflow_node_execution.created_at = datetime.now(UTC).replace(tzinfo=None)
@ -352,10 +344,7 @@ class WorkflowCycleManage:
self,
*,
session: Session,
event: QueueNodeFailedEvent
| QueueNodeInIterationFailedEvent
| QueueNodeInLoopFailedEvent
| QueueNodeExceptionEvent,
event: QueueNodeFailedEvent | QueueNodeInIterationFailedEvent | QueueNodeExceptionEvent,
) -> WorkflowNodeExecution:
"""
Workflow node execution failed
@ -407,7 +396,6 @@ class WorkflowCycleManage:
origin_metadata = {
NodeRunMetadataKey.ITERATION_ID: event.in_iteration_id,
NodeRunMetadataKey.PARALLEL_MODE_RUN_ID: event.parallel_mode_run_id,
NodeRunMetadataKey.LOOP_ID: event.in_loop_id,
}
merged_metadata = (
{**jsonable_encoder(event.execution_metadata), **origin_metadata}
@ -552,7 +540,6 @@ class WorkflowCycleManage:
parent_parallel_id=event.parent_parallel_id,
parent_parallel_start_node_id=event.parent_parallel_start_node_id,
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
parallel_run_id=event.parallel_mode_run_id,
agent_strategy=event.agent_strategy,
),
@ -576,7 +563,6 @@ class WorkflowCycleManage:
event: QueueNodeSucceededEvent
| QueueNodeFailedEvent
| QueueNodeInIterationFailedEvent
| QueueNodeInLoopFailedEvent
| QueueNodeExceptionEvent,
task_id: str,
workflow_node_execution: WorkflowNodeExecution,
@ -615,7 +601,6 @@ class WorkflowCycleManage:
parent_parallel_id=event.parent_parallel_id,
parent_parallel_start_node_id=event.parent_parallel_start_node_id,
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
),
)
@ -661,7 +646,6 @@ class WorkflowCycleManage:
parent_parallel_id=event.parent_parallel_id,
parent_parallel_start_node_id=event.parent_parallel_start_node_id,
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
retry_index=event.retry_index,
),
)
@ -680,7 +664,6 @@ class WorkflowCycleManage:
parent_parallel_id=event.parent_parallel_id,
parent_parallel_start_node_id=event.parent_parallel_start_node_id,
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
created_at=int(time.time()),
),
)
@ -704,7 +687,6 @@ class WorkflowCycleManage:
parent_parallel_id=event.parent_parallel_id,
parent_parallel_start_node_id=event.parent_parallel_start_node_id,
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
status="succeeded" if isinstance(event, QueueParallelBranchRunSucceededEvent) else "failed",
error=event.error if isinstance(event, QueueParallelBranchRunFailedEvent) else None,
created_at=int(time.time()),
@ -788,83 +770,6 @@ class WorkflowCycleManage:
),
)
def _workflow_loop_start_to_stream_response(
self, *, session: Session, task_id: str, workflow_run: WorkflowRun, event: QueueLoopStartEvent
) -> LoopNodeStartStreamResponse:
# receive session to make sure the workflow_run won't be expired, need a more elegant way to handle this
_ = session
return LoopNodeStartStreamResponse(
task_id=task_id,
workflow_run_id=workflow_run.id,
data=LoopNodeStartStreamResponse.Data(
id=event.node_id,
node_id=event.node_id,
node_type=event.node_type.value,
title=event.node_data.title,
created_at=int(time.time()),
extras={},
inputs=event.inputs or {},
metadata=event.metadata or {},
parallel_id=event.parallel_id,
parallel_start_node_id=event.parallel_start_node_id,
),
)
def _workflow_loop_next_to_stream_response(
self, *, session: Session, task_id: str, workflow_run: WorkflowRun, event: QueueLoopNextEvent
) -> LoopNodeNextStreamResponse:
# receive session to make sure the workflow_run won't be expired, need a more elegant way to handle this
_ = session
return LoopNodeNextStreamResponse(
task_id=task_id,
workflow_run_id=workflow_run.id,
data=LoopNodeNextStreamResponse.Data(
id=event.node_id,
node_id=event.node_id,
node_type=event.node_type.value,
title=event.node_data.title,
index=event.index,
pre_loop_output=event.output,
created_at=int(time.time()),
extras={},
parallel_id=event.parallel_id,
parallel_start_node_id=event.parallel_start_node_id,
parallel_mode_run_id=event.parallel_mode_run_id,
duration=event.duration,
),
)
def _workflow_loop_completed_to_stream_response(
self, *, session: Session, task_id: str, workflow_run: WorkflowRun, event: QueueLoopCompletedEvent
) -> LoopNodeCompletedStreamResponse:
# receive session to make sure the workflow_run won't be expired, need a more elegant way to handle this
_ = session
return LoopNodeCompletedStreamResponse(
task_id=task_id,
workflow_run_id=workflow_run.id,
data=LoopNodeCompletedStreamResponse.Data(
id=event.node_id,
node_id=event.node_id,
node_type=event.node_type.value,
title=event.node_data.title,
outputs=event.outputs,
created_at=int(time.time()),
extras={},
inputs=event.inputs or {},
status=WorkflowNodeExecutionStatus.SUCCEEDED
if event.error is None
else WorkflowNodeExecutionStatus.FAILED,
error=None,
elapsed_time=(datetime.now(UTC).replace(tzinfo=None) - event.start_at).total_seconds(),
total_tokens=event.metadata.get("total_tokens", 0) if event.metadata else 0,
execution_metadata=event.metadata,
finished_at=int(time.time()),
steps=event.steps,
parallel_id=event.parallel_id,
parallel_start_node_id=event.parallel_start_node_id,
),
)
def _fetch_files_from_node_outputs(self, outputs_dict: Mapping[str, Any]) -> Sequence[Mapping[str, Any]]:
"""
Fetch files from node outputs
@ -959,6 +864,5 @@ class WorkflowCycleManage:
status=event.status,
data=event.data,
metadata=event.metadata,
node_id=event.node_id,
),
)

View File

@ -1,11 +1,9 @@
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.entities.app_invoke_entities import InvokeFrom
from core.app.entities.queue_entities import QueueRetrieverResourcesEvent
from core.rag.index_processor.constant.index_type import IndexType
from core.rag.models.document import Document
from extensions.ext_database import db
from models.dataset import ChildChunk, DatasetQuery, DocumentSegment
from models.dataset import Document as DatasetDocument
from models.dataset import DatasetQuery, DocumentSegment
from models.model import DatasetRetrieverResource
@ -43,29 +41,15 @@ class DatasetIndexToolCallbackHandler:
"""Handle tool end."""
for document in documents:
if document.metadata is not None:
dataset_document = DatasetDocument.query.filter(
DatasetDocument.id == document.metadata["document_id"]
).first()
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
child_chunk = ChildChunk.query.filter(
ChildChunk.index_node_id == document.metadata["doc_id"],
ChildChunk.dataset_id == dataset_document.dataset_id,
ChildChunk.document_id == dataset_document.id,
).first()
if child_chunk:
segment = DocumentSegment.query.filter(DocumentSegment.id == child_chunk.segment_id).update(
{DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False
)
else:
query = db.session.query(DocumentSegment).filter(
DocumentSegment.index_node_id == document.metadata["doc_id"]
)
query = db.session.query(DocumentSegment).filter(
DocumentSegment.index_node_id == document.metadata["doc_id"]
)
if "dataset_id" in document.metadata:
query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
if "dataset_id" in document.metadata:
query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
# add hit count to document segment
query.update({DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False)
# add hit count to document segment
query.update({DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False)
db.session.commit()

View File

@ -7,6 +7,7 @@ from json import JSONDecodeError
from typing import Optional
from pydantic import BaseModel, ConfigDict, Field
from sqlalchemy import or_
from constants import HIDDEN_VALUE
from core.entities.model_entities import ModelStatus, ModelWithProviderEntity, SimpleModelProviderEntity
@ -179,35 +180,25 @@ class ProviderConfiguration(BaseModel):
else [],
)
def _get_custom_provider_credentials(self) -> Provider | None:
"""
Get custom provider credentials.
"""
# get provider
model_provider_id = ModelProviderID(self.provider.provider)
provider_names = [self.provider.provider]
if model_provider_id.is_langgenius():
provider_names.append(model_provider_id.provider_name)
provider_record = (
db.session.query(Provider)
.filter(
Provider.tenant_id == self.tenant_id,
Provider.provider_type == ProviderType.CUSTOM.value,
Provider.provider_name.in_(provider_names),
)
.first()
)
return provider_record
def custom_credentials_validate(self, credentials: dict) -> tuple[Provider | None, dict]:
"""
Validate custom credentials.
:param credentials: provider credentials
:return:
"""
provider_record = self._get_custom_provider_credentials()
# get provider
provider_record = (
db.session.query(Provider)
.filter(
Provider.tenant_id == self.tenant_id,
Provider.provider_type == ProviderType.CUSTOM.value,
or_(
Provider.provider_name == ModelProviderID(self.provider.provider).plugin_name,
Provider.provider_name == self.provider.provider,
),
)
.first()
)
# Get provider credential secret variables
provider_credential_secret_variables = self.extract_secret_variables(
@ -288,7 +279,18 @@ class ProviderConfiguration(BaseModel):
:return:
"""
# get provider
provider_record = self._get_custom_provider_credentials()
provider_record = (
db.session.query(Provider)
.filter(
Provider.tenant_id == self.tenant_id,
or_(
Provider.provider_name == ModelProviderID(self.provider.provider).plugin_name,
Provider.provider_name == self.provider.provider,
),
Provider.provider_type == ProviderType.CUSTOM.value,
)
.first()
)
# delete provider
if provider_record:
@ -335,33 +337,6 @@ class ProviderConfiguration(BaseModel):
return None
def _get_custom_model_credentials(
self,
model_type: ModelType,
model: str,
) -> ProviderModel | None:
"""
Get custom model credentials.
"""
# get provider model
model_provider_id = ModelProviderID(self.provider.provider)
provider_names = [self.provider.provider]
if model_provider_id.is_langgenius():
provider_names.append(model_provider_id.provider_name)
provider_model_record = (
db.session.query(ProviderModel)
.filter(
ProviderModel.tenant_id == self.tenant_id,
ProviderModel.provider_name.in_(provider_names),
ProviderModel.model_name == model,
ProviderModel.model_type == model_type.to_origin_model_type(),
)
.first()
)
return provider_model_record
def custom_model_credentials_validate(
self, model_type: ModelType, model: str, credentials: dict
) -> tuple[ProviderModel | None, dict]:
@ -374,7 +349,16 @@ class ProviderConfiguration(BaseModel):
:return:
"""
# get provider model
provider_model_record = self._get_custom_model_credentials(model_type, model)
provider_model_record = (
db.session.query(ProviderModel)
.filter(
ProviderModel.tenant_id == self.tenant_id,
ProviderModel.provider_name == self.provider.provider,
ProviderModel.model_name == model,
ProviderModel.model_type == model_type.to_origin_model_type(),
)
.first()
)
# Get provider credential secret variables
provider_credential_secret_variables = self.extract_secret_variables(
@ -455,7 +439,16 @@ class ProviderConfiguration(BaseModel):
:return:
"""
# get provider model
provider_model_record = self._get_custom_model_credentials(model_type, model)
provider_model_record = (
db.session.query(ProviderModel)
.filter(
ProviderModel.tenant_id == self.tenant_id,
ProviderModel.provider_name == self.provider.provider,
ProviderModel.model_name == model,
ProviderModel.model_type == model_type.to_origin_model_type(),
)
.first()
)
# delete provider model
if provider_model_record:
@ -470,26 +463,6 @@ class ProviderConfiguration(BaseModel):
provider_model_credentials_cache.delete()
def _get_provider_model_setting(self, model_type: ModelType, model: str) -> ProviderModelSetting | None:
"""
Get provider model setting.
"""
model_provider_id = ModelProviderID(self.provider.provider)
provider_names = [self.provider.provider]
if model_provider_id.is_langgenius():
provider_names.append(model_provider_id.provider_name)
return (
db.session.query(ProviderModelSetting)
.filter(
ProviderModelSetting.tenant_id == self.tenant_id,
ProviderModelSetting.provider_name.in_(provider_names),
ProviderModelSetting.model_type == model_type.to_origin_model_type(),
ProviderModelSetting.model_name == model,
)
.first()
)
def enable_model(self, model_type: ModelType, model: str) -> ProviderModelSetting:
"""
Enable model.
@ -497,7 +470,16 @@ class ProviderConfiguration(BaseModel):
:param model: model name
:return:
"""
model_setting = self._get_provider_model_setting(model_type, model)
model_setting = (
db.session.query(ProviderModelSetting)
.filter(
ProviderModelSetting.tenant_id == self.tenant_id,
ProviderModelSetting.provider_name == self.provider.provider,
ProviderModelSetting.model_type == model_type.to_origin_model_type(),
ProviderModelSetting.model_name == model,
)
.first()
)
if model_setting:
model_setting.enabled = True
@ -522,7 +504,16 @@ class ProviderConfiguration(BaseModel):
:param model: model name
:return:
"""
model_setting = self._get_provider_model_setting(model_type, model)
model_setting = (
db.session.query(ProviderModelSetting)
.filter(
ProviderModelSetting.tenant_id == self.tenant_id,
ProviderModelSetting.provider_name == self.provider.provider,
ProviderModelSetting.model_type == model_type.to_origin_model_type(),
ProviderModelSetting.model_name == model,
)
.first()
)
if model_setting:
model_setting.enabled = False
@ -547,24 +538,13 @@ class ProviderConfiguration(BaseModel):
:param model: model name
:return:
"""
return self._get_provider_model_setting(model_type, model)
def _get_load_balancing_config(self, model_type: ModelType, model: str) -> Optional[LoadBalancingModelConfig]:
"""
Get load balancing config.
"""
model_provider_id = ModelProviderID(self.provider.provider)
provider_names = [self.provider.provider]
if model_provider_id.is_langgenius():
provider_names.append(model_provider_id.provider_name)
return (
db.session.query(LoadBalancingModelConfig)
db.session.query(ProviderModelSetting)
.filter(
LoadBalancingModelConfig.tenant_id == self.tenant_id,
LoadBalancingModelConfig.provider_name.in_(provider_names),
LoadBalancingModelConfig.model_type == model_type.to_origin_model_type(),
LoadBalancingModelConfig.model_name == model,
ProviderModelSetting.tenant_id == self.tenant_id,
ProviderModelSetting.provider_name == self.provider.provider,
ProviderModelSetting.model_type == model_type.to_origin_model_type(),
ProviderModelSetting.model_name == model,
)
.first()
)
@ -576,16 +556,11 @@ class ProviderConfiguration(BaseModel):
:param model: model name
:return:
"""
model_provider_id = ModelProviderID(self.provider.provider)
provider_names = [self.provider.provider]
if model_provider_id.is_langgenius():
provider_names.append(model_provider_id.provider_name)
load_balancing_config_count = (
db.session.query(LoadBalancingModelConfig)
.filter(
LoadBalancingModelConfig.tenant_id == self.tenant_id,
LoadBalancingModelConfig.provider_name.in_(provider_names),
LoadBalancingModelConfig.provider_name == self.provider.provider,
LoadBalancingModelConfig.model_type == model_type.to_origin_model_type(),
LoadBalancingModelConfig.model_name == model,
)
@ -595,7 +570,16 @@ class ProviderConfiguration(BaseModel):
if load_balancing_config_count <= 1:
raise ValueError("Model load balancing configuration must be more than 1.")
model_setting = self._get_provider_model_setting(model_type, model)
model_setting = (
db.session.query(ProviderModelSetting)
.filter(
ProviderModelSetting.tenant_id == self.tenant_id,
ProviderModelSetting.provider_name == self.provider.provider,
ProviderModelSetting.model_type == model_type.to_origin_model_type(),
ProviderModelSetting.model_name == model,
)
.first()
)
if model_setting:
model_setting.load_balancing_enabled = True
@ -620,16 +604,11 @@ class ProviderConfiguration(BaseModel):
:param model: model name
:return:
"""
model_provider_id = ModelProviderID(self.provider.provider)
provider_names = [self.provider.provider]
if model_provider_id.is_langgenius():
provider_names.append(model_provider_id.provider_name)
model_setting = (
db.session.query(ProviderModelSetting)
.filter(
ProviderModelSetting.tenant_id == self.tenant_id,
ProviderModelSetting.provider_name.in_(provider_names),
ProviderModelSetting.provider_name == self.provider.provider,
ProviderModelSetting.model_type == model_type.to_origin_model_type(),
ProviderModelSetting.model_name == model,
)
@ -686,16 +665,11 @@ class ProviderConfiguration(BaseModel):
return
# get preferred provider
model_provider_id = ModelProviderID(self.provider.provider)
provider_names = [self.provider.provider]
if model_provider_id.is_langgenius():
provider_names.append(model_provider_id.provider_name)
preferred_model_provider = (
db.session.query(TenantPreferredModelProvider)
.filter(
TenantPreferredModelProvider.tenant_id == self.tenant_id,
TenantPreferredModelProvider.provider_name.in_(provider_names),
TenantPreferredModelProvider.provider_name == self.provider.provider,
)
.first()
)

View File

@ -97,18 +97,32 @@ class File(BaseModel):
return text
def generate_url(self) -> Optional[str]:
if self.transfer_method == FileTransferMethod.REMOTE_URL:
return self.remote_url
elif self.transfer_method == FileTransferMethod.LOCAL_FILE:
if self.related_id is None:
raise ValueError("Missing file related_id")
return helpers.get_signed_file_url(upload_file_id=self.related_id)
elif self.transfer_method == FileTransferMethod.TOOL_FILE:
assert self.related_id is not None
assert self.extension is not None
return ToolFileParser.get_tool_file_manager().sign_file(
tool_file_id=self.related_id, extension=self.extension
)
if self.type == FileType.IMAGE:
if self.transfer_method == FileTransferMethod.REMOTE_URL:
return self.remote_url
elif self.transfer_method == FileTransferMethod.LOCAL_FILE:
if self.related_id is None:
raise ValueError("Missing file related_id")
return helpers.get_signed_file_url(upload_file_id=self.related_id)
elif self.transfer_method == FileTransferMethod.TOOL_FILE:
assert self.related_id is not None
assert self.extension is not None
return ToolFileParser.get_tool_file_manager().sign_file(
tool_file_id=self.related_id, extension=self.extension
)
else:
if self.transfer_method == FileTransferMethod.REMOTE_URL:
return self.remote_url
elif self.transfer_method == FileTransferMethod.LOCAL_FILE:
if self.related_id is None:
raise ValueError("Missing file related_id")
return helpers.get_signed_file_url(upload_file_id=self.related_id)
elif self.transfer_method == FileTransferMethod.TOOL_FILE:
assert self.related_id is not None
assert self.extension is not None
return ToolFileParser.get_tool_file_manager().sign_file(
tool_file_id=self.related_id, extension=self.extension
)
def to_plugin_parameter(self) -> dict[str, Any]:
return {

View File

@ -1,11 +1,8 @@
import decimal
import hashlib
from threading import Lock
from typing import Optional
from pydantic import BaseModel, ConfigDict, Field
import contexts
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.defaults import PARAMETER_RULE_TEMPLATE
from core.model_runtime.entities.model_entities import (
@ -142,35 +139,15 @@ class AIModel(BaseModel):
:return: model schema
"""
plugin_model_manager = PluginModelManager()
cache_key = f"{self.tenant_id}:{self.plugin_id}:{self.provider_name}:{self.model_type.value}:{model}"
# sort credentials
sorted_credentials = sorted(credentials.items()) if credentials else []
cache_key += ":".join([hashlib.md5(f"{k}:{v}".encode()).hexdigest() for k, v in sorted_credentials])
try:
contexts.plugin_model_schemas.get()
except LookupError:
contexts.plugin_model_schemas.set({})
contexts.plugin_model_schema_lock.set(Lock())
with contexts.plugin_model_schema_lock.get():
if cache_key in contexts.plugin_model_schemas.get():
return contexts.plugin_model_schemas.get()[cache_key]
schema = plugin_model_manager.get_model_schema(
tenant_id=self.tenant_id,
user_id="unknown",
plugin_id=self.plugin_id,
provider=self.provider_name,
model_type=self.model_type.value,
model=model,
credentials=credentials or {},
)
if schema:
contexts.plugin_model_schemas.get()[cache_key] = schema
return schema
return plugin_model_manager.get_model_schema(
tenant_id=self.tenant_id,
user_id="unknown",
plugin_id=self.plugin_id,
provider=self.provider_name,
model_type=self.model_type.value,
model=model,
credentials=credentials or {},
)
def get_customizable_model_schema_from_credentials(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
@ -180,9 +157,14 @@ class AIModel(BaseModel):
:param credentials: model credentials
:return: model schema
"""
return self._get_customizable_model_schema(model, credentials)
# get customizable model schema
def _get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
Get customizable model schema and fill in the template
"""
schema = self.get_customizable_model_schema(model, credentials)
if not schema:
return None

View File

@ -1,4 +1,3 @@
import hashlib
import logging
import os
from collections.abc import Sequence
@ -207,35 +206,17 @@ class ModelProviderFactory:
Get model schema
"""
plugin_id, provider_name = self.get_plugin_id_and_provider_name_from_provider(provider)
cache_key = f"{self.tenant_id}:{plugin_id}:{provider_name}:{model_type.value}:{model}"
# sort credentials
sorted_credentials = sorted(credentials.items()) if credentials else []
cache_key += ":".join([hashlib.md5(f"{k}:{v}".encode()).hexdigest() for k, v in sorted_credentials])
model_schema = self.plugin_model_manager.get_model_schema(
tenant_id=self.tenant_id,
user_id="unknown",
plugin_id=plugin_id,
provider=provider_name,
model_type=model_type.value,
model=model,
credentials=credentials,
)
try:
contexts.plugin_model_schemas.get()
except LookupError:
contexts.plugin_model_schemas.set({})
contexts.plugin_model_schema_lock.set(Lock())
with contexts.plugin_model_schema_lock.get():
if cache_key in contexts.plugin_model_schemas.get():
return contexts.plugin_model_schemas.get()[cache_key]
schema = self.plugin_model_manager.get_model_schema(
tenant_id=self.tenant_id,
user_id="unknown",
plugin_id=plugin_id,
provider=provider_name,
model_type=model_type.value,
model=model,
credentials=credentials or {},
)
if schema:
contexts.plugin_model_schemas.get()[cache_key] = schema
return schema
return model_schema
def get_models(
self,

View File

@ -5,7 +5,6 @@ from collections.abc import Mapping
from typing import Any, Optional
from pydantic import BaseModel, Field, model_validator
from werkzeug.exceptions import NotFound
from core.agent.plugin_entities import AgentStrategyProviderEntity
from core.model_runtime.entities.provider_entities import ProviderEntity
@ -154,8 +153,6 @@ class GenericProviderID:
return f"{self.organization}/{self.plugin_name}/{self.provider_name}"
def __init__(self, value: str, is_hardcoded: bool = False) -> None:
if not value:
raise NotFound("plugin not found, please add plugin")
# check if the value is a valid plugin id with format: $organization/$plugin_name/$provider_name
if not re.match(r"^[a-z0-9_-]+\/[a-z0-9_-]+\/[a-z0-9_-]+$", value):
# check if matches [a-z0-9_-]+, if yes, append with langgenius/$value/$value
@ -167,9 +164,6 @@ class GenericProviderID:
self.organization, self.plugin_name, self.provider_name = value.split("/")
self.is_hardcoded = is_hardcoded
def is_langgenius(self) -> bool:
return self.organization == "langgenius"
@property
def plugin_id(self) -> str:
return f"{self.organization}/{self.plugin_name}"
@ -186,7 +180,7 @@ class ToolProviderID(GenericProviderID):
def __init__(self, value: str, is_hardcoded: bool = False) -> None:
super().__init__(value, is_hardcoded)
if self.organization == "langgenius":
if self.provider_name in ["jina", "siliconflow", "stepfun", "gitee_ai"]:
if self.provider_name in ["jina", "siliconflow", "stepfun"]:
self.plugin_name = f"{self.provider_name}_tool"

View File

@ -111,12 +111,6 @@ class ProviderManager:
# Get all provider model records of the workspace
provider_name_to_provider_model_records_dict = self._get_all_provider_models(tenant_id)
for provider_name in list(provider_name_to_provider_model_records_dict.keys()):
provider_id = ModelProviderID(provider_name)
if str(provider_id) not in provider_name_to_provider_model_records_dict:
provider_name_to_provider_model_records_dict[str(provider_id)] = (
provider_name_to_provider_model_records_dict[provider_name]
)
# Get all provider entities
model_provider_factory = ModelProviderFactory(tenant_id)

View File

@ -88,16 +88,17 @@ class Jieba(BaseKeyword):
keyword_table = self._get_dataset_keyword_table()
k = kwargs.get("top_k", 4)
document_ids_filter = kwargs.get("document_ids_filter")
sorted_chunk_indices = self._retrieve_ids_by_query(keyword_table or {}, query, k)
documents = []
for chunk_index in sorted_chunk_indices:
segment = (
db.session.query(DocumentSegment)
.filter(DocumentSegment.dataset_id == self.dataset.id, DocumentSegment.index_node_id == chunk_index)
.first()
segment_query = db.session.query(DocumentSegment).filter(
DocumentSegment.dataset_id == self.dataset.id, DocumentSegment.index_node_id == chunk_index
)
if document_ids_filter:
segment_query = segment_query.filter(DocumentSegment.document_id.in_(document_ids_filter))
segment = segment_query.first()
if segment:
documents.append(

View File

@ -42,6 +42,7 @@ class RetrievalService:
reranking_model: Optional[dict] = None,
reranking_mode: str = "reranking_model",
weights: Optional[dict] = None,
document_ids_filter: Optional[list[str]] = None,
):
if not query:
return []
@ -65,6 +66,7 @@ class RetrievalService:
top_k=top_k,
all_documents=all_documents,
exceptions=exceptions,
document_ids_filter=document_ids_filter,
)
)
if RetrievalMethod.is_support_semantic_search(retrieval_method):
@ -80,6 +82,7 @@ class RetrievalService:
all_documents=all_documents,
retrieval_method=retrieval_method,
exceptions=exceptions,
document_ids_filter=document_ids_filter,
)
)
if RetrievalMethod.is_support_fulltext_search(retrieval_method):
@ -131,7 +134,14 @@ class RetrievalService:
@classmethod
def keyword_search(
cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
cls,
flask_app: Flask,
dataset_id: str,
query: str,
top_k: int,
all_documents: list,
exceptions: list,
document_ids_filter: Optional[list[str]] = None,
):
with flask_app.app_context():
try:
@ -140,7 +150,10 @@ class RetrievalService:
raise ValueError("dataset not found")
keyword = Keyword(dataset=dataset)
documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
documents = keyword.search(
cls.escape_query_for_search(query), top_k=top_k, document_ids_filter=document_ids_filter
)
all_documents.extend(documents)
except Exception as e:
exceptions.append(str(e))
@ -157,6 +170,7 @@ class RetrievalService:
all_documents: list,
retrieval_method: str,
exceptions: list,
document_ids_filter: Optional[list[str]] = None,
):
with flask_app.app_context():
try:
@ -171,6 +185,7 @@ class RetrievalService:
top_k=top_k,
score_threshold=score_threshold,
filter={"group_id": [dataset.id]},
document_ids_filter=document_ids_filter,
)
if documents:

View File

@ -53,7 +53,7 @@ class AnalyticdbVector(BaseVector):
self.analyticdb_vector.delete_by_metadata_field(key, value)
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
return self.analyticdb_vector.search_by_vector(query_vector)
return self.analyticdb_vector.search_by_vector(query_vector, **kwargs)
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
return self.analyticdb_vector.search_by_full_text(query, **kwargs)

View File

@ -194,6 +194,11 @@ class AnalyticdbVectorBySql:
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 4)
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = "WHERE 1=1"
if document_ids_filter:
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause += f"AND metadata_->>'document_id' IN ({document_ids})"
score_threshold = float(kwargs.get("score_threshold") or 0.0)
with self._get_cursor() as cur:
query_vector_str = json.dumps(query_vector)
@ -202,7 +207,7 @@ class AnalyticdbVectorBySql:
f"SELECT t.id AS id, t.vector AS vector, (1.0 - t.score) AS score, "
f"t.page_content as page_content, t.metadata_ AS metadata_ "
f"FROM (SELECT id, vector, page_content, metadata_, vector <=> %s AS score "
f"FROM {self.table_name} ORDER BY score LIMIT {top_k} ) t",
f"FROM {self.table_name} {where_clause} ORDER BY score LIMIT {top_k} ) t",
(query_vector_str,),
)
documents = []
@ -220,12 +225,17 @@ class AnalyticdbVectorBySql:
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 4)
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = ""
if document_ids_filter:
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause += f"AND metadata_->>'document_id' IN ({document_ids})"
with self._get_cursor() as cur:
cur.execute(
f"""SELECT id, vector, page_content, metadata_,
ts_rank(to_tsvector, to_tsquery_from_text(%s, 'zh_cn'), 32) AS score
FROM {self.table_name}
WHERE to_tsvector@@to_tsquery_from_text(%s, 'zh_cn')
WHERE to_tsvector@@to_tsquery_from_text(%s, 'zh_cn') {where_clause}
ORDER BY score DESC
LIMIT {top_k}""",
(f"'{query}'", f"'{query}'"),

View File

@ -123,11 +123,21 @@ class BaiduVector(BaseVector):
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
query_vector = [float(val) if isinstance(val, np.float64) else val for val in query_vector]
anns = AnnSearch(
vector_field=self.field_vector,
vector_floats=query_vector,
params=HNSWSearchParams(ef=kwargs.get("ef", 10), limit=kwargs.get("top_k", 4)),
)
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
anns = AnnSearch(
vector_field=self.field_vector,
vector_floats=query_vector,
params=HNSWSearchParams(ef=kwargs.get("ef", 10), limit=kwargs.get("top_k", 4)),
filter=f"document_id IN ({document_ids})",
)
else:
anns = AnnSearch(
vector_field=self.field_vector,
vector_floats=query_vector,
params=HNSWSearchParams(ef=kwargs.get("ef", 10), limit=kwargs.get("top_k", 4)),
)
res = self._db.table(self._collection_name).search(
anns=anns,
projections=[self.field_id, self.field_text, self.field_metadata],

View File

@ -95,7 +95,15 @@ class ChromaVector(BaseVector):
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
collection = self._client.get_or_create_collection(self._collection_name)
results: QueryResult = collection.query(query_embeddings=query_vector, n_results=kwargs.get("top_k", 4))
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
results: QueryResult = collection.query(
query_embeddings=query_vector,
n_results=kwargs.get("top_k", 4),
where={"document_id": {"$in": document_ids_filter}},
)
else:
results: QueryResult = collection.query(query_embeddings=query_vector, n_results=kwargs.get("top_k", 4))
score_threshold = float(kwargs.get("score_threshold") or 0.0)
# Check if results contain data

View File

@ -117,6 +117,9 @@ class ElasticSearchVector(BaseVector):
top_k = kwargs.get("top_k", 4)
num_candidates = math.ceil(top_k * 1.5)
knn = {"field": Field.VECTOR.value, "query_vector": query_vector, "k": top_k, "num_candidates": num_candidates}
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
knn["filter"] = {"terms": {"metadata.document_id": document_ids_filter}}
results = self._client.search(index=self._collection_name, knn=knn, size=top_k)
@ -145,6 +148,9 @@ class ElasticSearchVector(BaseVector):
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
query_str = {"match": {Field.CONTENT_KEY.value: query}}
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
query_str["filter"] = {"terms": {"metadata.document_id": document_ids_filter}}
results = self._client.search(index=self._collection_name, query=query_str, size=kwargs.get("top_k", 4))
docs = []
for hit in results["hits"]["hits"]:

View File

@ -168,7 +168,12 @@ class LindormVectorStore(BaseVector):
raise ValueError("All elements in query_vector should be floats")
top_k = kwargs.get("top_k", 10)
query = default_vector_search_query(query_vector=query_vector, k=top_k, **kwargs)
document_ids_filter = kwargs.get("document_ids_filter")
filters = []
if document_ids_filter:
filters.append({"terms": {"metadata.document_id": document_ids_filter}})
query = default_vector_search_query(query_vector=query_vector, k=top_k, filters=filters, **kwargs)
try:
params = {}
if self._using_ugc:
@ -206,7 +211,10 @@ class LindormVectorStore(BaseVector):
should = kwargs.get("should")
minimum_should_match = kwargs.get("minimum_should_match", 0)
top_k = kwargs.get("top_k", 10)
filters = kwargs.get("filter")
filters = kwargs.get("filter", [])
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
filters.append({"terms": {"metadata.document_id": document_ids_filter}})
routing = self._routing
full_text_query = default_text_search_query(
query_text=query,

View File

@ -72,18 +72,8 @@ class MilvusVector(BaseVector):
self._client = self._init_client(config)
self._consistency_level = "Session" # Consistency level for Milvus operations
self._fields: list[str] = [] # List of fields in the collection
if self._client.has_collection(collection_name):
self._load_collection_fields()
self._hybrid_search_enabled = self._check_hybrid_search_support() # Check if hybrid search is supported
def _load_collection_fields(self, fields: Optional[list[str]] = None) -> None:
if fields is None:
# Load collection fields from remote server
collection_info = self._client.describe_collection(self._collection_name)
fields = [field["name"] for field in collection_info["fields"]]
# Since primary field is auto-id, no need to track it
self._fields = [f for f in fields if f != Field.PRIMARY_KEY.value]
def _check_hybrid_search_support(self) -> bool:
"""
Check if the current Milvus version supports hybrid search.
@ -228,12 +218,18 @@ class MilvusVector(BaseVector):
"""
Search for documents by vector similarity.
"""
document_ids_filter = kwargs.get("document_ids_filter")
filter = ""
if document_ids_filter:
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
filter = f'metadata["document_id"] in ({document_ids})'
results = self._client.search(
collection_name=self._collection_name,
data=[query_vector],
anns_field=Field.VECTOR.value,
limit=kwargs.get("top_k", 4),
output_fields=[Field.CONTENT_KEY.value, Field.METADATA_KEY.value],
filter=filter,
)
return self._process_search_results(
@ -249,6 +245,11 @@ class MilvusVector(BaseVector):
if not self._hybrid_search_enabled or not self.field_exists(Field.SPARSE_VECTOR.value):
logger.warning("Full-text search is not supported in current Milvus version (requires >= 2.5.0)")
return []
document_ids_filter = kwargs.get("document_ids_filter")
filter = ""
if document_ids_filter:
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
filter = f'metadata["document_id"] in ({document_ids})'
results = self._client.search(
collection_name=self._collection_name,
@ -256,6 +257,7 @@ class MilvusVector(BaseVector):
anns_field=Field.SPARSE_VECTOR.value,
limit=kwargs.get("top_k", 4),
output_fields=[Field.CONTENT_KEY.value, Field.METADATA_KEY.value],
filter=filter,
)
return self._process_search_results(
@ -316,7 +318,10 @@ class MilvusVector(BaseVector):
)
schema.add_function(bm25_function)
self._load_collection_fields([f.name for f in schema.fields])
for x in schema.fields:
self._fields.append(x.name)
# Since primary field is auto-id, no need to track it
self._fields.remove(Field.PRIMARY_KEY.value)
# Create Index params for the collection
index_params_obj = IndexParams()

View File

@ -131,6 +131,10 @@ class MyScaleVector(BaseVector):
if self._metric.upper() == "COSINE" and order == SortOrder.ASC and score_threshold > 0.0
else ""
)
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_str = f"{where_str} AND metadata['document_id'] in ({document_ids})"
sql = f"""
SELECT text, vector, metadata, {dist} as dist FROM {self._config.database}.{self._collection_name}
{where_str} ORDER BY dist {order.value} LIMIT {top_k}

View File

@ -154,6 +154,11 @@ class OceanBaseVector(BaseVector):
return []
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = None
if document_ids_filter:
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause = f"metadata->>'$.document_id' in ({document_ids})"
ef_search = kwargs.get("ef_search", self._hnsw_ef_search)
if ef_search != self._hnsw_ef_search:
self._client.set_ob_hnsw_ef_search(ef_search)
@ -167,6 +172,7 @@ class OceanBaseVector(BaseVector):
distance_func=func.l2_distance,
output_column_names=["text", "metadata"],
with_dist=True,
where_clause=where_clause,
)
docs = []
for text, metadata, distance in cur:

View File

@ -154,6 +154,9 @@ class OpenSearchVector(BaseVector):
"size": kwargs.get("top_k", 4),
"query": {"knn": {Field.VECTOR.value: {Field.VECTOR.value: query_vector, "k": kwargs.get("top_k", 4)}}},
}
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
query["query"] = {"terms": {"metadata.document_id": document_ids_filter}}
try:
response = self._client.search(index=self._collection_name.lower(), body=query)
@ -179,6 +182,9 @@ class OpenSearchVector(BaseVector):
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
full_text_query = {"query": {"match": {Field.CONTENT_KEY.value: query}}}
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
full_text_query["query"]["terms"] = {"metadata.document_id": document_ids_filter}
response = self._client.search(index=self._collection_name.lower(), body=full_text_query)

View File

@ -23,30 +23,25 @@ oracledb.defaults.fetch_lobs = False
class OracleVectorConfig(BaseModel):
host: str
port: int
user: str
password: str
dsn: str
config_dir: str | None = None
wallet_location: str | None = None
wallet_password: str | None = None
is_autonomous: bool = False
database: str
@model_validator(mode="before")
@classmethod
def validate_config(cls, values: dict) -> dict:
if not values["host"]:
raise ValueError("config ORACLE_HOST is required")
if not values["port"]:
raise ValueError("config ORACLE_PORT is required")
if not values["user"]:
raise ValueError("config ORACLE_USER is required")
if not values["password"]:
raise ValueError("config ORACLE_PASSWORD is required")
if not values["dsn"]:
raise ValueError("config ORACLE_DSN is required")
if values.get("is_autonomous", False):
if not values.get("config_dir"):
raise ValueError("config_dir is required for autonomous database")
if not values.get("wallet_location"):
raise ValueError("wallet_location is required for autonomous database")
if not values.get("wallet_password"):
raise ValueError("wallet_password is required for autonomous database")
if not values["database"]:
raise ValueError("config ORACLE_DB is required")
return values
@ -61,7 +56,7 @@ CREATE TABLE IF NOT EXISTS {table_name} (
SQL_CREATE_INDEX = """
CREATE INDEX IF NOT EXISTS idx_docs_{table_name} ON {table_name}(text)
INDEXTYPE IS CTXSYS.CONTEXT PARAMETERS
('FILTER CTXSYS.NULL_FILTER SECTION GROUP CTXSYS.HTML_SECTION_GROUP LEXER world_lexer')
('FILTER CTXSYS.NULL_FILTER SECTION GROUP CTXSYS.HTML_SECTION_GROUP LEXER sys.my_chinese_vgram_lexer')
"""
@ -108,25 +103,14 @@ class OracleVector(BaseVector):
)
def _create_connection_pool(self, config: OracleVectorConfig):
pool_params = {
"user": config.user,
"password": config.password,
"dsn": config.dsn,
"min": 1,
"max": 50,
"increment": 1,
}
if config.is_autonomous:
pool_params.update(
{
"config_dir": config.config_dir,
"wallet_location": config.wallet_location,
"wallet_password": config.wallet_password,
}
)
return oracledb.create_pool(**pool_params)
return oracledb.create_pool(
user=config.user,
password=config.password,
dsn="{}:{}/{}".format(config.host, config.port, config.database),
min=1,
max=50,
increment=1,
)
@contextmanager
def _get_cursor(self):
@ -201,10 +185,15 @@ class OracleVector(BaseVector):
:return: List of Documents that are nearest to the query vector.
"""
top_k = kwargs.get("top_k", 4)
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = ""
if document_ids_filter:
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause = f"WHERE metadata->>'document_id' in ({document_ids})"
with self._get_cursor() as cur:
cur.execute(
f"SELECT meta, text, vector_distance(embedding,:1) AS distance FROM {self.table_name}"
f" ORDER BY distance fetch first {top_k} rows only",
f" {where_clause} ORDER BY distance fetch first {top_k} rows only",
[numpy.array(query_vector)],
)
docs = []
@ -257,9 +246,15 @@ class OracleVector(BaseVector):
if token not in stop_words:
entities.append(token)
with self._get_cursor() as cur:
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = ""
if document_ids_filter:
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause = f" AND metadata->>'document_id' in ({document_ids}) "
cur.execute(
f"select meta, text, embedding FROM {self.table_name}"
f" WHERE CONTAINS(text, :1, 1) > 0 order by score(1) desc fetch first {top_k} rows only",
f"WHERE CONTAINS(text, :1, 1) > 0 {where_clause} "
f"order by score(1) desc fetch first {top_k} rows only",
[" ACCUM ".join(entities)],
)
docs = []
@ -303,12 +298,10 @@ class OracleVectorFactory(AbstractVectorFactory):
return OracleVector(
collection_name=collection_name,
config=OracleVectorConfig(
host=dify_config.ORACLE_HOST or "localhost",
port=dify_config.ORACLE_PORT,
user=dify_config.ORACLE_USER or "system",
password=dify_config.ORACLE_PASSWORD or "oracle",
dsn=dify_config.ORACLE_DSN or "oracle:1521/freepdb1",
config_dir=dify_config.ORACLE_CONFIG_DIR,
wallet_location=dify_config.ORACLE_WALLET_LOCATION,
wallet_password=dify_config.ORACLE_WALLET_PASSWORD,
is_autonomous=dify_config.ORACLE_IS_AUTONOMOUS,
database=dify_config.ORACLE_DATABASE or "orcl",
),
)

View File

@ -189,6 +189,9 @@ class PGVectoRS(BaseVector):
.limit(kwargs.get("top_k", 4))
.order_by("distance")
)
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
stmt = stmt.where(self._table.meta["document_id"].in_(document_ids_filter))
res = session.execute(stmt)
results = [(row[0], row[1]) for row in res]

View File

@ -155,10 +155,16 @@ class PGVector(BaseVector):
:return: List of Documents that are nearest to the query vector.
"""
top_k = kwargs.get("top_k", 4)
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = ""
if document_ids_filter:
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause = f" WHERE metadata->>'document_id' in ({document_ids}) "
with self._get_cursor() as cur:
cur.execute(
f"SELECT meta, text, embedding <=> %s AS distance FROM {self.table_name}"
f" {where_clause}"
f" ORDER BY distance LIMIT {top_k}",
(json.dumps(query_vector),),
)
@ -176,10 +182,16 @@ class PGVector(BaseVector):
top_k = kwargs.get("top_k", 5)
with self._get_cursor() as cur:
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = ""
if document_ids_filter:
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause = f" AND metadata->>'document_id' in ({document_ids}) "
cur.execute(
f"""SELECT meta, text, ts_rank(to_tsvector(coalesce(text, '')), plainto_tsquery(%s)) AS score
FROM {self.table_name}
WHERE to_tsvector(text) @@ plainto_tsquery(%s)
{where_clause}
ORDER BY score DESC
LIMIT {top_k}""",
# f"'{query}'" is required in order to account for whitespace in query

View File

@ -286,27 +286,26 @@ class QdrantVector(BaseVector):
from qdrant_client.http import models
from qdrant_client.http.exceptions import UnexpectedResponse
for node_id in ids:
try:
filter = models.Filter(
must=[
models.FieldCondition(
key="metadata.doc_id",
match=models.MatchValue(value=node_id),
),
],
)
self._client.delete(
collection_name=self._collection_name,
points_selector=FilterSelector(filter=filter),
)
except UnexpectedResponse as e:
# Collection does not exist, so return
if e.status_code == 404:
return
# Some other error occurred, so re-raise the exception
else:
raise e
try:
filter = models.Filter(
must=[
models.FieldCondition(
key="metadata.doc_id",
match=models.MatchAny(any=ids),
),
],
)
self._client.delete(
collection_name=self._collection_name,
points_selector=FilterSelector(filter=filter),
)
except UnexpectedResponse as e:
# Collection does not exist, so return
if e.status_code == 404:
return
# Some other error occurred, so re-raise the exception
else:
raise e
def text_exists(self, id: str) -> bool:
all_collection_name = []
@ -331,6 +330,14 @@ class QdrantVector(BaseVector):
),
],
)
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
filter.must.append(
models.FieldCondition(
key="metadata.document_id",
match=models.MatchAny(any=document_ids_filter),
)
)
results = self._client.search(
collection_name=self._collection_name,
query_vector=query_vector,
@ -377,6 +384,14 @@ class QdrantVector(BaseVector):
),
]
)
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
scroll_filter.must.append(
models.FieldCondition(
key="metadata.document_id",
match=models.MatchAny(any=document_ids_filter),
)
)
response = self._client.scroll(
collection_name=self._collection_name,
scroll_filter=scroll_filter,

View File

@ -223,8 +223,12 @@ class RelytVector(BaseVector):
return len(result) > 0
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
document_ids_filter = kwargs.get("document_ids_filter")
filter = kwargs.get("filter", {})
if document_ids_filter:
filter["document_id"] = document_ids_filter
results = self.similarity_search_with_score_by_vector(
k=int(kwargs.get("top_k", 4)), embedding=query_vector, filter=kwargs.get("filter")
k=int(kwargs.get("top_k", 4)), embedding=query_vector, filter=filter
)
# Organize results.
@ -246,9 +250,9 @@ class RelytVector(BaseVector):
filter_condition = ""
if filter is not None:
conditions = [
f"metadata->>{key!r} in ({', '.join(map(repr, value))})"
f"metadata->>'{key!r}' in ({', '.join(map(repr, value))})"
if len(value) > 1
else f"metadata->>{key!r} = {value[0]!r}"
else f"metadata->>'{key!r}' = {value[0]!r}"
for key, value in filter.items()
]
filter_condition = f"WHERE {' AND '.join(conditions)}"

View File

@ -145,11 +145,16 @@ class TencentVector(BaseVector):
self._db.collection(self._collection_name).delete(document_ids=ids)
def delete_by_metadata_field(self, key: str, value: str) -> None:
self._db.collection(self._collection_name).delete(filter=Filter(Filter.In(key, [value])))
self._db.collection(self._collection_name).delete(filter=Filter(Filter.In(f"metadata.{key}", [value])))
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
document_ids_filter = kwargs.get("document_ids_filter")
filter = None
if document_ids_filter:
filter = Filter(Filter.In("metadata.document_id", document_ids_filter))
res = self._db.collection(self._collection_name).search(
vectors=[query_vector],
filter=filter,
params=document.HNSWSearchParams(ef=kwargs.get("ef", 10)),
retrieve_vector=False,
limit=kwargs.get("top_k", 4),

View File

@ -326,6 +326,14 @@ class TidbOnQdrantVector(BaseVector):
),
],
)
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
filter.must.append(
models.FieldCondition(
key="metadata.document_id",
match=models.MatchAny(any=document_ids_filter),
)
)
results = self._client.search(
collection_name=self._collection_name,
query_vector=query_vector,
@ -368,6 +376,14 @@ class TidbOnQdrantVector(BaseVector):
)
]
)
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
scroll_filter.must.append(
models.FieldCondition(
key="metadata.document_id",
match=models.MatchAny(any=document_ids_filter),
)
)
response = self._client.scroll(
collection_name=self._collection_name,
scroll_filter=scroll_filter,

View File

@ -196,6 +196,11 @@ class TiDBVector(BaseVector):
docs = []
tidb_dist_func = self._get_distance_func()
document_ids_filter = kwargs.get("document_ids_filter")
where_clause = ""
if document_ids_filter:
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
where_clause = f" WHERE meta->>'$.document_id' in ({document_ids}) "
with Session(self._engine) as session:
select_statement = sql_text(f"""
@ -206,6 +211,7 @@ class TiDBVector(BaseVector):
text,
{tidb_dist_func}(vector, :query_vector_str) AS distance
FROM {self._collection_name}
{where_clause}
ORDER BY distance ASC
LIMIT :top_k
) t

View File

@ -88,7 +88,20 @@ class UpstashVector(BaseVector):
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 4)
result = self.index.query(vector=query_vector, top_k=top_k, include_metadata=True, include_data=True)
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
filter = f"document_id in ({document_ids})"
else:
filter = ""
result = self.index.query(
vector=query_vector,
top_k=top_k,
include_metadata=True,
include_data=True,
include_vectors=False,
filter=filter,
)
docs = []
score_threshold = float(kwargs.get("score_threshold") or 0.0)
for record in result:

View File

@ -49,6 +49,10 @@ class BaseVector(ABC):
def delete(self) -> None:
raise NotImplementedError
@abstractmethod
def update_metadata(self, document_id: str, metadata: dict) -> None:
raise NotImplementedError
def _filter_duplicate_texts(self, texts: list[Document]) -> list[Document]:
for text in texts.copy():
if text.metadata and "doc_id" in text.metadata:

View File

@ -177,7 +177,11 @@ class VikingDBVector(BaseVector):
query_vector, limit=kwargs.get("top_k", 4)
)
score_threshold = float(kwargs.get("score_threshold") or 0.0)
return self._get_search_res(results, score_threshold)
docs = self._get_search_res(results, score_threshold)
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
docs = [doc for doc in docs if doc.metadata.get("document_id") in document_ids_filter]
return docs
def _get_search_res(self, results, score_threshold) -> list[Document]:
if len(results) == 0:

View File

@ -168,16 +168,16 @@ class WeaviateVector(BaseVector):
# check whether the index already exists
schema = self._default_schema(self._collection_name)
if self._client.schema.contains(schema):
for uuid in ids:
try:
self._client.data_object.delete(
class_name=self._collection_name,
uuid=uuid,
)
except weaviate.UnexpectedStatusCodeException as e:
# tolerate not found error
if e.status_code != 404:
raise e
try:
self._client.batch.delete_objects(
class_name=self._collection_name,
where={"operator": "ContainsAny", "path": ["id"], "valueTextArray": ids},
output="minimal",
)
except weaviate.UnexpectedStatusCodeException as e:
# tolerate not found error
if e.status_code != 404:
raise e
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
"""Look up similar documents by embedding vector in Weaviate."""
@ -187,8 +187,10 @@ class WeaviateVector(BaseVector):
query_obj = self._client.query.get(collection_name, properties)
vector = {"vector": query_vector}
if kwargs.get("where_filter"):
query_obj = query_obj.with_where(kwargs.get("where_filter"))
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
where_filter = {"operator": "ContainsAny", "path": ["document_id"], "valueTextArray": document_ids_filter}
query_obj = query_obj.with_where(where_filter)
result = (
query_obj.with_near_vector(vector)
.with_limit(kwargs.get("top_k", 4))
@ -233,8 +235,10 @@ class WeaviateVector(BaseVector):
if kwargs.get("search_distance"):
content["certainty"] = kwargs.get("search_distance")
query_obj = self._client.query.get(collection_name, properties)
if kwargs.get("where_filter"):
query_obj = query_obj.with_where(kwargs.get("where_filter"))
document_ids_filter = kwargs.get("document_ids_filter")
if document_ids_filter:
where_filter = {"operator": "ContainsAny", "path": ["document_id"], "valueTextArray": document_ids_filter}
query_obj = query_obj.with_where(where_filter)
query_obj = query_obj.with_additional(["vector"])
properties = ["text"]
result = query_obj.with_bm25(query=query, properties=properties).with_limit(kwargs.get("top_k", 4)).do()

View File

@ -0,0 +1,9 @@
from enum import Enum
class BuiltInField(str, Enum):
document_name = "document_name"
uploader = "uploader"
upload_date = "upload_date"
last_update_date = "last_update_date"
source = "source"

View File

@ -21,7 +21,6 @@ from core.rag.data_post_processor.data_post_processor import DataPostProcessor
from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.entities.context_entities import DocumentContext
from core.rag.index_processor.constant.index_type import IndexType
from core.rag.models.document import Document
from core.rag.rerank.rerank_type import RerankMode
from core.rag.retrieval.retrieval_methods import RetrievalMethod
@ -29,7 +28,7 @@ from core.rag.retrieval.router.multi_dataset_function_call_router import Functio
from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
from core.tools.utils.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
from extensions.ext_database import db
from models.dataset import ChildChunk, Dataset, DatasetQuery, DocumentSegment
from models.dataset import Dataset, DatasetQuery, DocumentSegment
from models.dataset import Document as DatasetDocument
from services.external_knowledge_service import ExternalDatasetService
@ -204,7 +203,6 @@ class DatasetRetrieval:
"segment_id": segment.id,
"retriever_from": invoke_from.to_source(),
"score": record.score or 0.0,
"doc_metadata": document.doc_metadata,
}
if invoke_from.to_source() == "dev":
@ -239,6 +237,7 @@ class DatasetRetrieval:
model_config: ModelConfigWithCredentialsEntity,
planning_strategy: PlanningStrategy,
message_id: Optional[str] = None,
metadata_filter_document_ids: Optional[dict[str, list[str]]] = None,
):
tools = []
for dataset in available_datasets:
@ -293,6 +292,11 @@ class DatasetRetrieval:
document.metadata["dataset_name"] = dataset.name
results.append(document)
else:
document_ids_filter = None
if metadata_filter_document_ids:
document_ids = metadata_filter_document_ids.get(dataset.id, [])
if document_ids:
document_ids_filter = document_ids
retrieval_model_config = dataset.retrieval_model or default_retrieval_model
# get top k
@ -324,6 +328,7 @@ class DatasetRetrieval:
reranking_model=reranking_model,
reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
weights=retrieval_model_config.get("weights", None),
document_ids_filter=document_ids_filter,
)
self._on_query(query, [dataset_id], app_id, user_from, user_id)
@ -430,31 +435,16 @@ class DatasetRetrieval:
dify_documents = [document for document in documents if document.provider == "dify"]
for document in dify_documents:
if document.metadata is not None:
dataset_document = DatasetDocument.query.filter(
DatasetDocument.id == document.metadata["document_id"]
).first()
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
child_chunk = ChildChunk.query.filter(
ChildChunk.index_node_id == document.metadata["doc_id"],
ChildChunk.dataset_id == dataset_document.dataset_id,
ChildChunk.document_id == dataset_document.id,
).first()
if child_chunk:
segment = DocumentSegment.query.filter(DocumentSegment.id == child_chunk.segment_id).update(
{DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False
)
db.session.commit()
else:
query = db.session.query(DocumentSegment).filter(
DocumentSegment.index_node_id == document.metadata["doc_id"]
)
query = db.session.query(DocumentSegment).filter(
DocumentSegment.index_node_id == document.metadata["doc_id"]
)
# if 'dataset_id' in document.metadata:
if "dataset_id" in document.metadata:
query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
# if 'dataset_id' in document.metadata:
if "dataset_id" in document.metadata:
query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
# add hit count to document segment
query.update({DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False)
# add hit count to document segment
query.update({DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False)
db.session.commit()

View File

@ -88,10 +88,7 @@ class FixedRecursiveCharacterTextSplitter(EnhanceRecursiveCharacterTextSplitter)
break
# Now that we have the separator, split the text
if separator:
if separator == " ":
splits = text.split()
else:
splits = text.split(separator)
splits = text.split(separator)
else:
splits = list(text)
# Now go merging things, recursively splitting longer texts.

View File

@ -179,18 +179,6 @@ class ApiTool(Tool):
for content_type in self.api_bundle.openapi["requestBody"]["content"]:
headers["Content-Type"] = content_type
body_schema = self.api_bundle.openapi["requestBody"]["content"][content_type]["schema"]
# handle ref schema
if "$ref" in body_schema:
ref_path = body_schema["$ref"].split("/")
ref_name = ref_path[-1]
if (
"components" in self.api_bundle.openapi
and "schemas" in self.api_bundle.openapi["components"]
):
if ref_name in self.api_bundle.openapi["components"]["schemas"]:
body_schema = self.api_bundle.openapi["components"]["schemas"][ref_name]
required = body_schema.get("required", [])
properties = body_schema.get("properties", {})
for name, property in properties.items():
@ -198,8 +186,6 @@ class ApiTool(Tool):
if property.get("format") == "binary":
f = parameters[name]
files.append((name, (f.filename, download(f), f.mime_type)))
elif "$ref" in property:
body[name] = parameters[name]
else:
# convert type
body[name] = self._convert_body_property_type(property, parameters[name])

View File

@ -55,7 +55,7 @@ If you need to return a text message, you can use the following interface.
If you need to return the raw data of a file, such as images, audio, video, PPT, Word, Excel, etc., you can use the following interface.
- `blob` The raw data of the file, of bytes type
- `meta` The metadata of the file, if you know the type of the file, it is best to pass a `mime_type`, otherwise Dify will use `application/octet-stream` as the default type
- `meta` The metadata of the file, if you know the type of the file, it is best to pass a `mime_type`, otherwise Dify will use `octet/stream` as the default type
```python
def create_blob_message(self, blob: bytes, meta: dict = None, save_as: str = '') -> ToolInvokeMessage:

View File

@ -58,7 +58,7 @@ Difyは`テキスト`、`リンク`、`画像`、`ファイルBLOB`、`JSON`な
画像、音声、動画、PPT、Word、Excelなどのファイルの生データを返す必要がある場合は、以下のインターフェースを使用できます。
- `blob` ファイルの生データbytes型
- `meta` ファイルのメタデータ。ファイルの種類が分かっている場合は、`mime_type`を渡すことをお勧めします。そうでない場合、Difyはデフォルトタイプとして`application/octet-stream`を使用します。
- `meta` ファイルのメタデータ。ファイルの種類が分かっている場合は、`mime_type`を渡すことをお勧めします。そうでない場合、Difyはデフォルトタイプとして`octet/stream`を使用します。
```python
def create_blob_message(self, blob: bytes, meta: dict = None, save_as: str = '') -> ToolInvokeMessage:

View File

@ -58,7 +58,7 @@ Dify支持`文本` `链接` `图片` `文件BLOB` `JSON` 等多种消息类型
如果你需要返回文件的原始数据如图片、音频、视频、PPT、Word、Excel等可以使用以下接口。
- `blob` 文件的原始数据bytes类型
- `meta` 文件的元数据,如果你知道该文件的类型,最好传递一个`mime_type`否则Dify将使用`application/octet-stream`作为默认类型
- `meta` 文件的元数据,如果你知道该文件的类型,最好传递一个`mime_type`否则Dify将使用`octet/stream`作为默认类型
```python
def create_blob_message(self, blob: bytes, meta: dict = None, save_as: str = '') -> ToolInvokeMessage:

View File

@ -185,7 +185,7 @@ class ToolInvokeMessage(BaseModel):
"""
plain text, image url or link url
"""
message: JsonMessage | TextMessage | BlobMessage | LogMessage | FileMessage | None | VariableMessage
message: JsonMessage | TextMessage | BlobMessage | VariableMessage | FileMessage | LogMessage | None
meta: dict[str, Any] | None = None
@field_validator("message", mode="before")

View File

@ -290,16 +290,14 @@ class ToolEngine:
raise ValueError("missing meta data")
yield ToolInvokeMessageBinary(
mimetype=response.meta.get("mime_type", "application/octet-stream"),
mimetype=response.meta.get("mime_type", "octet/stream"),
url=cast(ToolInvokeMessage.TextMessage, response.message).text,
)
elif response.type == ToolInvokeMessage.MessageType.LINK:
# check if there is a mime type in meta
if response.meta and "mime_type" in response.meta:
yield ToolInvokeMessageBinary(
mimetype=response.meta.get("mime_type", "application/octet-stream")
if response.meta
else "application/octet-stream",
mimetype=response.meta.get("mime_type", "octet/stream") if response.meta else "octet/stream",
url=cast(ToolInvokeMessage.TextMessage, response.message).text,
)

View File

@ -101,7 +101,7 @@ class ToolFileManager:
except httpx.TimeoutException:
raise ValueError(f"timeout when downloading file from {file_url}")
mimetype = guess_type(file_url)[0] or "application/octet-stream"
mimetype = guess_type(file_url)[0] or "octet/stream"
extension = guess_extension(mimetype) or ".bin"
unique_name = uuid4().hex
filename = f"{unique_name}{extension}"

View File

@ -194,7 +194,7 @@ class ToolManager:
db.session.query(BuiltinToolProvider)
.filter(
BuiltinToolProvider.tenant_id == tenant_id,
(BuiltinToolProvider.provider == str(provider_id_entity))
(BuiltinToolProvider.provider == provider_id)
| (BuiltinToolProvider.provider == provider_id_entity.provider_name),
)
.first()
@ -765,22 +765,17 @@ class ToolManager:
@classmethod
def generate_builtin_tool_icon_url(cls, provider_id: str) -> str:
return str(
URL(dify_config.CONSOLE_API_URL or "/")
/ "console"
/ "api"
/ "workspaces"
/ "current"
/ "tool-provider"
/ "builtin"
/ provider_id
/ "icon"
return (
dify_config.CONSOLE_API_URL
+ "/console/api/workspaces/current/tool-provider/builtin/"
+ provider_id
+ "/icon"
)
@classmethod
def generate_plugin_tool_icon_url(cls, tenant_id: str, filename: str) -> str:
return str(
URL(dify_config.CONSOLE_API_URL or "/")
URL(dify_config.CONSOLE_API_URL)
/ "console"
/ "api"
/ "workspaces"

View File

@ -123,7 +123,6 @@ class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
"segment_id": segment.id,
"retriever_from": self.retriever_from,
"score": document_score_list.get(segment.index_node_id, None),
"doc_metadata": document.doc_metadata,
}
if self.retriever_from == "dev":

View File

@ -172,7 +172,6 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
"segment_id": segment.id,
"retriever_from": self.retriever_from,
"score": record.score or 0.0,
"doc_metadata": document.doc_metadata, # type: ignore
}
if self.retriever_from == "dev":

Some files were not shown because too many files have changed in this diff Show More