mirror of
https://github.com/langgenius/dify.git
synced 2026-01-22 13:05:24 +08:00
Compare commits
1 Commits
codex/run-
...
feat/fallb
| Author | SHA1 | Date | |
|---|---|---|---|
| 61a6c6dbcf |
@ -1,205 +0,0 @@
|
||||
# Test Generation Checklist
|
||||
|
||||
Use this checklist when generating or reviewing tests for Dify frontend components.
|
||||
|
||||
## Pre-Generation
|
||||
|
||||
- [ ] Read the component source code completely
|
||||
- [ ] Identify component type (component, hook, utility, page)
|
||||
- [ ] Run `pnpm analyze-component <path>` if available
|
||||
- [ ] Note complexity score and features detected
|
||||
- [ ] Check for existing tests in the same directory
|
||||
- [ ] **Identify ALL files in the directory** that need testing (not just index)
|
||||
|
||||
## Testing Strategy
|
||||
|
||||
### ⚠️ Incremental Workflow (CRITICAL for Multi-File)
|
||||
|
||||
- [ ] **NEVER generate all tests at once** - process one file at a time
|
||||
- [ ] Order files by complexity: utilities → hooks → simple → complex → integration
|
||||
- [ ] Create a todo list to track progress before starting
|
||||
- [ ] For EACH file: write → run test → verify pass → then next
|
||||
- [ ] **DO NOT proceed** to next file until current one passes
|
||||
|
||||
### Path-Level Coverage
|
||||
|
||||
- [ ] **Test ALL files** in the assigned directory/path
|
||||
- [ ] List all components, hooks, utilities that need coverage
|
||||
- [ ] Decide: single spec file (integration) or multiple spec files (unit)
|
||||
|
||||
### Complexity Assessment
|
||||
|
||||
- [ ] Run `pnpm analyze-component <path>` for complexity score
|
||||
- [ ] **Complexity > 50**: Consider refactoring before testing
|
||||
- [ ] **500+ lines**: Consider splitting before testing
|
||||
- [ ] **30-50 complexity**: Use multiple describe blocks, organized structure
|
||||
|
||||
### Integration vs Mocking
|
||||
|
||||
- [ ] **DO NOT mock base components** (`Loading`, `Button`, `Tooltip`, etc.)
|
||||
- [ ] Import real project components instead of mocking
|
||||
- [ ] Only mock: API calls, complex context providers, third-party libs with side effects
|
||||
- [ ] Prefer integration testing when using single spec file
|
||||
|
||||
## Required Test Sections
|
||||
|
||||
### All Components MUST Have
|
||||
|
||||
- [ ] **Rendering tests** - Component renders without crashing
|
||||
- [ ] **Props tests** - Required props, optional props, default values
|
||||
- [ ] **Edge cases** - null, undefined, empty values, boundaries
|
||||
|
||||
### Conditional Sections (Add When Feature Present)
|
||||
|
||||
| Feature | Add Tests For |
|
||||
|---------|---------------|
|
||||
| `useState` | Initial state, transitions, cleanup |
|
||||
| `useEffect` | Execution, dependencies, cleanup |
|
||||
| Event handlers | onClick, onChange, onSubmit, keyboard |
|
||||
| API calls | Loading, success, error states |
|
||||
| Routing | Navigation, params, query strings |
|
||||
| `useCallback`/`useMemo` | Referential equality |
|
||||
| Context | Provider values, consumer behavior |
|
||||
| Forms | Validation, submission, error display |
|
||||
|
||||
## Code Quality Checklist
|
||||
|
||||
### Structure
|
||||
|
||||
- [ ] Uses `describe` blocks to group related tests
|
||||
- [ ] Test names follow `should <behavior> when <condition>` pattern
|
||||
- [ ] AAA pattern (Arrange-Act-Assert) is clear
|
||||
- [ ] Comments explain complex test scenarios
|
||||
|
||||
### Mocks
|
||||
|
||||
- [ ] **DO NOT mock base components** (`@/app/components/base/*`)
|
||||
- [ ] `jest.clearAllMocks()` in `beforeEach` (not `afterEach`)
|
||||
- [ ] Shared mock state reset in `beforeEach`
|
||||
- [ ] i18n uses shared mock (auto-loaded); only override locally for custom translations
|
||||
- [ ] Router mocks match actual Next.js API
|
||||
- [ ] Mocks reflect actual component conditional behavior
|
||||
- [ ] Only mock: API services, complex context providers, third-party libs
|
||||
|
||||
### Queries
|
||||
|
||||
- [ ] Prefer semantic queries (`getByRole`, `getByLabelText`)
|
||||
- [ ] Use `queryBy*` for absence assertions
|
||||
- [ ] Use `findBy*` for async elements
|
||||
- [ ] `getByTestId` only as last resort
|
||||
|
||||
### Async
|
||||
|
||||
- [ ] All async tests use `async/await`
|
||||
- [ ] `waitFor` wraps async assertions
|
||||
- [ ] Fake timers properly setup/teardown
|
||||
- [ ] No floating promises
|
||||
|
||||
### TypeScript
|
||||
|
||||
- [ ] No `any` types without justification
|
||||
- [ ] Mock data uses actual types from source
|
||||
- [ ] Factory functions have proper return types
|
||||
|
||||
## Coverage Goals (Per File)
|
||||
|
||||
For the current file being tested:
|
||||
|
||||
- [ ] 100% function coverage
|
||||
- [ ] 100% statement coverage
|
||||
- [ ] >95% branch coverage
|
||||
- [ ] >95% line coverage
|
||||
|
||||
## Post-Generation (Per File)
|
||||
|
||||
**Run these checks after EACH test file, not just at the end:**
|
||||
|
||||
- [ ] Run `pnpm test -- path/to/file.spec.tsx` - **MUST PASS before next file**
|
||||
- [ ] Fix any failures immediately
|
||||
- [ ] Mark file as complete in todo list
|
||||
- [ ] Only then proceed to next file
|
||||
|
||||
### After All Files Complete
|
||||
|
||||
- [ ] Run full directory test: `pnpm test -- path/to/directory/`
|
||||
- [ ] Check coverage report: `pnpm test -- --coverage`
|
||||
- [ ] Run `pnpm lint:fix` on all test files
|
||||
- [ ] Run `pnpm type-check:tsgo`
|
||||
|
||||
## Common Issues to Watch
|
||||
|
||||
### False Positives
|
||||
|
||||
```typescript
|
||||
// ❌ Mock doesn't match actual behavior
|
||||
jest.mock('./Component', () => () => <div>Mocked</div>)
|
||||
|
||||
// ✅ Mock matches actual conditional logic
|
||||
jest.mock('./Component', () => ({ isOpen }: any) =>
|
||||
isOpen ? <div>Content</div> : null
|
||||
)
|
||||
```
|
||||
|
||||
### State Leakage
|
||||
|
||||
```typescript
|
||||
// ❌ Shared state not reset
|
||||
let mockState = false
|
||||
jest.mock('./useHook', () => () => mockState)
|
||||
|
||||
// ✅ Reset in beforeEach
|
||||
beforeEach(() => {
|
||||
mockState = false
|
||||
})
|
||||
```
|
||||
|
||||
### Async Race Conditions
|
||||
|
||||
```typescript
|
||||
// ❌ Not awaited
|
||||
it('loads data', () => {
|
||||
render(<Component />)
|
||||
expect(screen.getByText('Data')).toBeInTheDocument()
|
||||
})
|
||||
|
||||
// ✅ Properly awaited
|
||||
it('loads data', async () => {
|
||||
render(<Component />)
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText('Data')).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
### Missing Edge Cases
|
||||
|
||||
Always test these scenarios:
|
||||
|
||||
- `null` / `undefined` inputs
|
||||
- Empty strings / arrays / objects
|
||||
- Boundary values (0, -1, MAX_INT)
|
||||
- Error states
|
||||
- Loading states
|
||||
- Disabled states
|
||||
|
||||
## Quick Commands
|
||||
|
||||
```bash
|
||||
# Run specific test
|
||||
pnpm test -- path/to/file.spec.tsx
|
||||
|
||||
# Run with coverage
|
||||
pnpm test -- --coverage path/to/file.spec.tsx
|
||||
|
||||
# Watch mode
|
||||
pnpm test -- --watch path/to/file.spec.tsx
|
||||
|
||||
# Update snapshots (use sparingly)
|
||||
pnpm test -- -u path/to/file.spec.tsx
|
||||
|
||||
# Analyze component
|
||||
pnpm analyze-component path/to/component.tsx
|
||||
|
||||
# Review existing test
|
||||
pnpm analyze-component path/to/component.tsx --review
|
||||
```
|
||||
@ -1,321 +0,0 @@
|
||||
---
|
||||
name: Dify Frontend Testing
|
||||
description: Generate Jest + React Testing Library tests for Dify frontend components, hooks, and utilities. Triggers on testing, spec files, coverage, Jest, RTL, unit tests, integration tests, or write/review test requests.
|
||||
---
|
||||
|
||||
# Dify Frontend Testing Skill
|
||||
|
||||
This skill enables Claude to generate high-quality, comprehensive frontend tests for the Dify project following established conventions and best practices.
|
||||
|
||||
> **⚠️ Authoritative Source**: This skill is derived from `web/testing/testing.md`. When in doubt, always refer to that document as the canonical specification.
|
||||
|
||||
## When to Apply This Skill
|
||||
|
||||
Apply this skill when the user:
|
||||
|
||||
- Asks to **write tests** for a component, hook, or utility
|
||||
- Asks to **review existing tests** for completeness
|
||||
- Mentions **Jest**, **React Testing Library**, **RTL**, or **spec files**
|
||||
- Requests **test coverage** improvement
|
||||
- Uses `pnpm analyze-component` output as context
|
||||
- Mentions **testing**, **unit tests**, or **integration tests** for frontend code
|
||||
- Wants to understand **testing patterns** in the Dify codebase
|
||||
|
||||
**Do NOT apply** when:
|
||||
|
||||
- User is asking about backend/API tests (Python/pytest)
|
||||
- User is asking about E2E tests (Playwright/Cypress)
|
||||
- User is only asking conceptual questions without code context
|
||||
|
||||
## Quick Reference
|
||||
|
||||
### Tech Stack
|
||||
|
||||
| Tool | Version | Purpose |
|
||||
|------|---------|---------|
|
||||
| Jest | 29.7 | Test runner |
|
||||
| React Testing Library | 16.0 | Component testing |
|
||||
| happy-dom | - | Test environment |
|
||||
| nock | 14.0 | HTTP mocking |
|
||||
| TypeScript | 5.x | Type safety |
|
||||
|
||||
### Key Commands
|
||||
|
||||
```bash
|
||||
# Run all tests
|
||||
pnpm test
|
||||
|
||||
# Watch mode
|
||||
pnpm test -- --watch
|
||||
|
||||
# Run specific file
|
||||
pnpm test -- path/to/file.spec.tsx
|
||||
|
||||
# Generate coverage report
|
||||
pnpm test -- --coverage
|
||||
|
||||
# Analyze component complexity
|
||||
pnpm analyze-component <path>
|
||||
|
||||
# Review existing test
|
||||
pnpm analyze-component <path> --review
|
||||
```
|
||||
|
||||
### File Naming
|
||||
|
||||
- Test files: `ComponentName.spec.tsx` (same directory as component)
|
||||
- Integration tests: `web/__tests__/` directory
|
||||
|
||||
## Test Structure Template
|
||||
|
||||
```typescript
|
||||
import { render, screen, fireEvent, waitFor } from '@testing-library/react'
|
||||
import Component from './index'
|
||||
|
||||
// ✅ Import real project components (DO NOT mock these)
|
||||
// import Loading from '@/app/components/base/loading'
|
||||
// import { ChildComponent } from './child-component'
|
||||
|
||||
// ✅ Mock external dependencies only
|
||||
jest.mock('@/service/api')
|
||||
jest.mock('next/navigation', () => ({
|
||||
useRouter: () => ({ push: jest.fn() }),
|
||||
usePathname: () => '/test',
|
||||
}))
|
||||
|
||||
// Shared state for mocks (if needed)
|
||||
let mockSharedState = false
|
||||
|
||||
describe('ComponentName', () => {
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks() // ✅ Reset mocks BEFORE each test
|
||||
mockSharedState = false // ✅ Reset shared state
|
||||
})
|
||||
|
||||
// Rendering tests (REQUIRED)
|
||||
describe('Rendering', () => {
|
||||
it('should render without crashing', () => {
|
||||
// Arrange
|
||||
const props = { title: 'Test' }
|
||||
|
||||
// Act
|
||||
render(<Component {...props} />)
|
||||
|
||||
// Assert
|
||||
expect(screen.getByText('Test')).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
// Props tests (REQUIRED)
|
||||
describe('Props', () => {
|
||||
it('should apply custom className', () => {
|
||||
render(<Component className="custom" />)
|
||||
expect(screen.getByRole('button')).toHaveClass('custom')
|
||||
})
|
||||
})
|
||||
|
||||
// User Interactions
|
||||
describe('User Interactions', () => {
|
||||
it('should handle click events', () => {
|
||||
const handleClick = jest.fn()
|
||||
render(<Component onClick={handleClick} />)
|
||||
|
||||
fireEvent.click(screen.getByRole('button'))
|
||||
|
||||
expect(handleClick).toHaveBeenCalledTimes(1)
|
||||
})
|
||||
})
|
||||
|
||||
// Edge Cases (REQUIRED)
|
||||
describe('Edge Cases', () => {
|
||||
it('should handle null data', () => {
|
||||
render(<Component data={null} />)
|
||||
expect(screen.getByText(/no data/i)).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should handle empty array', () => {
|
||||
render(<Component items={[]} />)
|
||||
expect(screen.getByText(/empty/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
## Testing Workflow (CRITICAL)
|
||||
|
||||
### ⚠️ Incremental Approach Required
|
||||
|
||||
**NEVER generate all test files at once.** For complex components or multi-file directories:
|
||||
|
||||
1. **Analyze & Plan**: List all files, order by complexity (simple → complex)
|
||||
1. **Process ONE at a time**: Write test → Run test → Fix if needed → Next
|
||||
1. **Verify before proceeding**: Do NOT continue to next file until current passes
|
||||
|
||||
```
|
||||
For each file:
|
||||
┌────────────────────────────────────────┐
|
||||
│ 1. Write test │
|
||||
│ 2. Run: pnpm test -- <file>.spec.tsx │
|
||||
│ 3. PASS? → Mark complete, next file │
|
||||
│ FAIL? → Fix first, then continue │
|
||||
└────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
### Complexity-Based Order
|
||||
|
||||
Process in this order for multi-file testing:
|
||||
|
||||
1. 🟢 Utility functions (simplest)
|
||||
1. 🟢 Custom hooks
|
||||
1. 🟡 Simple components (presentational)
|
||||
1. 🟡 Medium components (state, effects)
|
||||
1. 🔴 Complex components (API, routing)
|
||||
1. 🔴 Integration tests (index files - last)
|
||||
|
||||
### When to Refactor First
|
||||
|
||||
- **Complexity > 50**: Break into smaller pieces before testing
|
||||
- **500+ lines**: Consider splitting before testing
|
||||
- **Many dependencies**: Extract logic into hooks first
|
||||
|
||||
> 📖 See `guides/workflow.md` for complete workflow details and todo list format.
|
||||
|
||||
## Testing Strategy
|
||||
|
||||
### Path-Level Testing (Directory Testing)
|
||||
|
||||
When assigned to test a directory/path, test **ALL content** within that path:
|
||||
|
||||
- Test all components, hooks, utilities in the directory (not just `index` file)
|
||||
- Use incremental approach: one file at a time, verify each before proceeding
|
||||
- Goal: 100% coverage of ALL files in the directory
|
||||
|
||||
### Integration Testing First
|
||||
|
||||
**Prefer integration testing** when writing tests for a directory:
|
||||
|
||||
- ✅ **Import real project components** directly (including base components and siblings)
|
||||
- ✅ **Only mock**: API services (`@/service/*`), `next/navigation`, complex context providers
|
||||
- ❌ **DO NOT mock** base components (`@/app/components/base/*`)
|
||||
- ❌ **DO NOT mock** sibling/child components in the same directory
|
||||
|
||||
> See [Test Structure Template](#test-structure-template) for correct import/mock patterns.
|
||||
|
||||
## Core Principles
|
||||
|
||||
### 1. AAA Pattern (Arrange-Act-Assert)
|
||||
|
||||
Every test should clearly separate:
|
||||
|
||||
- **Arrange**: Setup test data and render component
|
||||
- **Act**: Perform user actions
|
||||
- **Assert**: Verify expected outcomes
|
||||
|
||||
### 2. Black-Box Testing
|
||||
|
||||
- Test observable behavior, not implementation details
|
||||
- Use semantic queries (getByRole, getByLabelText)
|
||||
- Avoid testing internal state directly
|
||||
- **Prefer pattern matching over hardcoded strings** in assertions:
|
||||
|
||||
```typescript
|
||||
// ❌ Avoid: hardcoded text assertions
|
||||
expect(screen.getByText('Loading...')).toBeInTheDocument()
|
||||
|
||||
// ✅ Better: role-based queries
|
||||
expect(screen.getByRole('status')).toBeInTheDocument()
|
||||
|
||||
// ✅ Better: pattern matching
|
||||
expect(screen.getByText(/loading/i)).toBeInTheDocument()
|
||||
```
|
||||
|
||||
### 3. Single Behavior Per Test
|
||||
|
||||
Each test verifies ONE user-observable behavior:
|
||||
|
||||
```typescript
|
||||
// ✅ Good: One behavior
|
||||
it('should disable button when loading', () => {
|
||||
render(<Button loading />)
|
||||
expect(screen.getByRole('button')).toBeDisabled()
|
||||
})
|
||||
|
||||
// ❌ Bad: Multiple behaviors
|
||||
it('should handle loading state', () => {
|
||||
render(<Button loading />)
|
||||
expect(screen.getByRole('button')).toBeDisabled()
|
||||
expect(screen.getByText('Loading...')).toBeInTheDocument()
|
||||
expect(screen.getByRole('button')).toHaveClass('loading')
|
||||
})
|
||||
```
|
||||
|
||||
### 4. Semantic Naming
|
||||
|
||||
Use `should <behavior> when <condition>`:
|
||||
|
||||
```typescript
|
||||
it('should show error message when validation fails')
|
||||
it('should call onSubmit when form is valid')
|
||||
it('should disable input when isReadOnly is true')
|
||||
```
|
||||
|
||||
## Required Test Scenarios
|
||||
|
||||
### Always Required (All Components)
|
||||
|
||||
1. **Rendering**: Component renders without crashing
|
||||
1. **Props**: Required props, optional props, default values
|
||||
1. **Edge Cases**: null, undefined, empty values, boundary conditions
|
||||
|
||||
### Conditional (When Present)
|
||||
|
||||
| Feature | Test Focus |
|
||||
|---------|-----------|
|
||||
| `useState` | Initial state, transitions, cleanup |
|
||||
| `useEffect` | Execution, dependencies, cleanup |
|
||||
| Event handlers | All onClick, onChange, onSubmit, keyboard |
|
||||
| API calls | Loading, success, error states |
|
||||
| Routing | Navigation, params, query strings |
|
||||
| `useCallback`/`useMemo` | Referential equality |
|
||||
| Context | Provider values, consumer behavior |
|
||||
| Forms | Validation, submission, error display |
|
||||
|
||||
## Coverage Goals (Per File)
|
||||
|
||||
For each test file generated, aim for:
|
||||
|
||||
- ✅ **100%** function coverage
|
||||
- ✅ **100%** statement coverage
|
||||
- ✅ **>95%** branch coverage
|
||||
- ✅ **>95%** line coverage
|
||||
|
||||
> **Note**: For multi-file directories, process one file at a time with full coverage each. See `guides/workflow.md`.
|
||||
|
||||
## Detailed Guides
|
||||
|
||||
For more detailed information, refer to:
|
||||
|
||||
- `guides/workflow.md` - **Incremental testing workflow** (MUST READ for multi-file testing)
|
||||
- `guides/mocking.md` - Mock patterns and best practices
|
||||
- `guides/async-testing.md` - Async operations and API calls
|
||||
- `guides/domain-components.md` - Workflow, Dataset, Configuration testing
|
||||
- `guides/common-patterns.md` - Frequently used testing patterns
|
||||
|
||||
## Authoritative References
|
||||
|
||||
### Primary Specification (MUST follow)
|
||||
|
||||
- **`web/testing/testing.md`** - The canonical testing specification. This skill is derived from this document.
|
||||
|
||||
### Reference Examples in Codebase
|
||||
|
||||
- `web/utils/classnames.spec.ts` - Utility function tests
|
||||
- `web/app/components/base/button/index.spec.tsx` - Component tests
|
||||
- `web/__mocks__/provider-context.ts` - Mock factory example
|
||||
|
||||
### Project Configuration
|
||||
|
||||
- `web/jest.config.ts` - Jest configuration
|
||||
- `web/jest.setup.ts` - Test environment setup
|
||||
- `web/testing/analyze-component.js` - Component analysis tool
|
||||
- `web/__mocks__/react-i18next.ts` - Shared i18n mock (auto-loaded by Jest, no explicit mock needed; override locally only for custom translations)
|
||||
@ -1,345 +0,0 @@
|
||||
# Async Testing Guide
|
||||
|
||||
## Core Async Patterns
|
||||
|
||||
### 1. waitFor - Wait for Condition
|
||||
|
||||
```typescript
|
||||
import { render, screen, waitFor } from '@testing-library/react'
|
||||
|
||||
it('should load and display data', async () => {
|
||||
render(<DataComponent />)
|
||||
|
||||
// Wait for element to appear
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText('Loaded Data')).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
it('should hide loading spinner after load', async () => {
|
||||
render(<DataComponent />)
|
||||
|
||||
// Wait for element to disappear
|
||||
await waitFor(() => {
|
||||
expect(screen.queryByText('Loading...')).not.toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
### 2. findBy\* - Async Queries
|
||||
|
||||
```typescript
|
||||
it('should show user name after fetch', async () => {
|
||||
render(<UserProfile />)
|
||||
|
||||
// findBy returns a promise, auto-waits up to 1000ms
|
||||
const userName = await screen.findByText('John Doe')
|
||||
expect(userName).toBeInTheDocument()
|
||||
|
||||
// findByRole with options
|
||||
const button = await screen.findByRole('button', { name: /submit/i })
|
||||
expect(button).toBeEnabled()
|
||||
})
|
||||
```
|
||||
|
||||
### 3. userEvent for Async Interactions
|
||||
|
||||
```typescript
|
||||
import userEvent from '@testing-library/user-event'
|
||||
|
||||
it('should submit form', async () => {
|
||||
const user = userEvent.setup()
|
||||
const onSubmit = jest.fn()
|
||||
|
||||
render(<Form onSubmit={onSubmit} />)
|
||||
|
||||
// userEvent methods are async
|
||||
await user.type(screen.getByLabelText('Email'), 'test@example.com')
|
||||
await user.click(screen.getByRole('button', { name: /submit/i }))
|
||||
|
||||
await waitFor(() => {
|
||||
expect(onSubmit).toHaveBeenCalledWith({ email: 'test@example.com' })
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
## Fake Timers
|
||||
|
||||
### When to Use Fake Timers
|
||||
|
||||
- Testing components with `setTimeout`/`setInterval`
|
||||
- Testing debounce/throttle behavior
|
||||
- Testing animations or delayed transitions
|
||||
- Testing polling or retry logic
|
||||
|
||||
### Basic Fake Timer Setup
|
||||
|
||||
```typescript
|
||||
describe('Debounced Search', () => {
|
||||
beforeEach(() => {
|
||||
jest.useFakeTimers()
|
||||
})
|
||||
|
||||
afterEach(() => {
|
||||
jest.useRealTimers()
|
||||
})
|
||||
|
||||
it('should debounce search input', async () => {
|
||||
const onSearch = jest.fn()
|
||||
render(<SearchInput onSearch={onSearch} debounceMs={300} />)
|
||||
|
||||
// Type in the input
|
||||
fireEvent.change(screen.getByRole('textbox'), { target: { value: 'query' } })
|
||||
|
||||
// Search not called immediately
|
||||
expect(onSearch).not.toHaveBeenCalled()
|
||||
|
||||
// Advance timers
|
||||
jest.advanceTimersByTime(300)
|
||||
|
||||
// Now search is called
|
||||
expect(onSearch).toHaveBeenCalledWith('query')
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
### Fake Timers with Async Code
|
||||
|
||||
```typescript
|
||||
it('should retry on failure', async () => {
|
||||
jest.useFakeTimers()
|
||||
const fetchData = jest.fn()
|
||||
.mockRejectedValueOnce(new Error('Network error'))
|
||||
.mockResolvedValueOnce({ data: 'success' })
|
||||
|
||||
render(<RetryComponent fetchData={fetchData} retryDelayMs={1000} />)
|
||||
|
||||
// First call fails
|
||||
await waitFor(() => {
|
||||
expect(fetchData).toHaveBeenCalledTimes(1)
|
||||
})
|
||||
|
||||
// Advance timer for retry
|
||||
jest.advanceTimersByTime(1000)
|
||||
|
||||
// Second call succeeds
|
||||
await waitFor(() => {
|
||||
expect(fetchData).toHaveBeenCalledTimes(2)
|
||||
expect(screen.getByText('success')).toBeInTheDocument()
|
||||
})
|
||||
|
||||
jest.useRealTimers()
|
||||
})
|
||||
```
|
||||
|
||||
### Common Fake Timer Utilities
|
||||
|
||||
```typescript
|
||||
// Run all pending timers
|
||||
jest.runAllTimers()
|
||||
|
||||
// Run only pending timers (not new ones created during execution)
|
||||
jest.runOnlyPendingTimers()
|
||||
|
||||
// Advance by specific time
|
||||
jest.advanceTimersByTime(1000)
|
||||
|
||||
// Get current fake time
|
||||
jest.now()
|
||||
|
||||
// Clear all timers
|
||||
jest.clearAllTimers()
|
||||
```
|
||||
|
||||
## API Testing Patterns
|
||||
|
||||
### Loading → Success → Error States
|
||||
|
||||
```typescript
|
||||
describe('DataFetcher', () => {
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks()
|
||||
})
|
||||
|
||||
it('should show loading state', () => {
|
||||
mockedApi.fetchData.mockImplementation(() => new Promise(() => {})) // Never resolves
|
||||
|
||||
render(<DataFetcher />)
|
||||
|
||||
expect(screen.getByTestId('loading-spinner')).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should show data on success', async () => {
|
||||
mockedApi.fetchData.mockResolvedValue({ items: ['Item 1', 'Item 2'] })
|
||||
|
||||
render(<DataFetcher />)
|
||||
|
||||
// Use findBy* for multiple async elements (better error messages than waitFor with multiple assertions)
|
||||
const item1 = await screen.findByText('Item 1')
|
||||
const item2 = await screen.findByText('Item 2')
|
||||
expect(item1).toBeInTheDocument()
|
||||
expect(item2).toBeInTheDocument()
|
||||
|
||||
expect(screen.queryByTestId('loading-spinner')).not.toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should show error on failure', async () => {
|
||||
mockedApi.fetchData.mockRejectedValue(new Error('Failed to fetch'))
|
||||
|
||||
render(<DataFetcher />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText(/failed to fetch/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
it('should retry on error', async () => {
|
||||
mockedApi.fetchData.mockRejectedValue(new Error('Network error'))
|
||||
|
||||
render(<DataFetcher />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByRole('button', { name: /retry/i })).toBeInTheDocument()
|
||||
})
|
||||
|
||||
mockedApi.fetchData.mockResolvedValue({ items: ['Item 1'] })
|
||||
fireEvent.click(screen.getByRole('button', { name: /retry/i }))
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText('Item 1')).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
### Testing Mutations
|
||||
|
||||
```typescript
|
||||
it('should submit form and show success', async () => {
|
||||
const user = userEvent.setup()
|
||||
mockedApi.createItem.mockResolvedValue({ id: '1', name: 'New Item' })
|
||||
|
||||
render(<CreateItemForm />)
|
||||
|
||||
await user.type(screen.getByLabelText('Name'), 'New Item')
|
||||
await user.click(screen.getByRole('button', { name: /create/i }))
|
||||
|
||||
// Button should be disabled during submission
|
||||
expect(screen.getByRole('button', { name: /creating/i })).toBeDisabled()
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText(/created successfully/i)).toBeInTheDocument()
|
||||
})
|
||||
|
||||
expect(mockedApi.createItem).toHaveBeenCalledWith({ name: 'New Item' })
|
||||
})
|
||||
```
|
||||
|
||||
## useEffect Testing
|
||||
|
||||
### Testing Effect Execution
|
||||
|
||||
```typescript
|
||||
it('should fetch data on mount', async () => {
|
||||
const fetchData = jest.fn().mockResolvedValue({ data: 'test' })
|
||||
|
||||
render(<ComponentWithEffect fetchData={fetchData} />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(fetchData).toHaveBeenCalledTimes(1)
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
### Testing Effect Dependencies
|
||||
|
||||
```typescript
|
||||
it('should refetch when id changes', async () => {
|
||||
const fetchData = jest.fn().mockResolvedValue({ data: 'test' })
|
||||
|
||||
const { rerender } = render(<ComponentWithEffect id="1" fetchData={fetchData} />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(fetchData).toHaveBeenCalledWith('1')
|
||||
})
|
||||
|
||||
rerender(<ComponentWithEffect id="2" fetchData={fetchData} />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(fetchData).toHaveBeenCalledWith('2')
|
||||
expect(fetchData).toHaveBeenCalledTimes(2)
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
### Testing Effect Cleanup
|
||||
|
||||
```typescript
|
||||
it('should cleanup subscription on unmount', () => {
|
||||
const subscribe = jest.fn()
|
||||
const unsubscribe = jest.fn()
|
||||
subscribe.mockReturnValue(unsubscribe)
|
||||
|
||||
const { unmount } = render(<SubscriptionComponent subscribe={subscribe} />)
|
||||
|
||||
expect(subscribe).toHaveBeenCalledTimes(1)
|
||||
|
||||
unmount()
|
||||
|
||||
expect(unsubscribe).toHaveBeenCalledTimes(1)
|
||||
})
|
||||
```
|
||||
|
||||
## Common Async Pitfalls
|
||||
|
||||
### ❌ Don't: Forget to await
|
||||
|
||||
```typescript
|
||||
// Bad - test may pass even if assertion fails
|
||||
it('should load data', () => {
|
||||
render(<Component />)
|
||||
waitFor(() => {
|
||||
expect(screen.getByText('Data')).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
// Good - properly awaited
|
||||
it('should load data', async () => {
|
||||
render(<Component />)
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText('Data')).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
### ❌ Don't: Use multiple assertions in single waitFor
|
||||
|
||||
```typescript
|
||||
// Bad - if first assertion fails, won't know about second
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText('Title')).toBeInTheDocument()
|
||||
expect(screen.getByText('Description')).toBeInTheDocument()
|
||||
})
|
||||
|
||||
// Good - separate waitFor or use findBy
|
||||
const title = await screen.findByText('Title')
|
||||
const description = await screen.findByText('Description')
|
||||
expect(title).toBeInTheDocument()
|
||||
expect(description).toBeInTheDocument()
|
||||
```
|
||||
|
||||
### ❌ Don't: Mix fake timers with real async
|
||||
|
||||
```typescript
|
||||
// Bad - fake timers don't work well with real Promises
|
||||
jest.useFakeTimers()
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText('Data')).toBeInTheDocument()
|
||||
}) // May timeout!
|
||||
|
||||
// Good - use runAllTimers or advanceTimersByTime
|
||||
jest.useFakeTimers()
|
||||
render(<Component />)
|
||||
jest.runAllTimers()
|
||||
expect(screen.getByText('Data')).toBeInTheDocument()
|
||||
```
|
||||
@ -1,449 +0,0 @@
|
||||
# Common Testing Patterns
|
||||
|
||||
## Query Priority
|
||||
|
||||
Use queries in this order (most to least preferred):
|
||||
|
||||
```typescript
|
||||
// 1. getByRole - Most recommended (accessibility)
|
||||
screen.getByRole('button', { name: /submit/i })
|
||||
screen.getByRole('textbox', { name: /email/i })
|
||||
screen.getByRole('heading', { level: 1 })
|
||||
|
||||
// 2. getByLabelText - Form fields
|
||||
screen.getByLabelText('Email address')
|
||||
screen.getByLabelText(/password/i)
|
||||
|
||||
// 3. getByPlaceholderText - When no label
|
||||
screen.getByPlaceholderText('Search...')
|
||||
|
||||
// 4. getByText - Non-interactive elements
|
||||
screen.getByText('Welcome to Dify')
|
||||
screen.getByText(/loading/i)
|
||||
|
||||
// 5. getByDisplayValue - Current input value
|
||||
screen.getByDisplayValue('current value')
|
||||
|
||||
// 6. getByAltText - Images
|
||||
screen.getByAltText('Company logo')
|
||||
|
||||
// 7. getByTitle - Tooltip elements
|
||||
screen.getByTitle('Close')
|
||||
|
||||
// 8. getByTestId - Last resort only!
|
||||
screen.getByTestId('custom-element')
|
||||
```
|
||||
|
||||
## Event Handling Patterns
|
||||
|
||||
### Click Events
|
||||
|
||||
```typescript
|
||||
// Basic click
|
||||
fireEvent.click(screen.getByRole('button'))
|
||||
|
||||
// With userEvent (preferred for realistic interaction)
|
||||
const user = userEvent.setup()
|
||||
await user.click(screen.getByRole('button'))
|
||||
|
||||
// Double click
|
||||
await user.dblClick(screen.getByRole('button'))
|
||||
|
||||
// Right click
|
||||
await user.pointer({ keys: '[MouseRight]', target: screen.getByRole('button') })
|
||||
```
|
||||
|
||||
### Form Input
|
||||
|
||||
```typescript
|
||||
const user = userEvent.setup()
|
||||
|
||||
// Type in input
|
||||
await user.type(screen.getByRole('textbox'), 'Hello World')
|
||||
|
||||
// Clear and type
|
||||
await user.clear(screen.getByRole('textbox'))
|
||||
await user.type(screen.getByRole('textbox'), 'New value')
|
||||
|
||||
// Select option
|
||||
await user.selectOptions(screen.getByRole('combobox'), 'option-value')
|
||||
|
||||
// Check checkbox
|
||||
await user.click(screen.getByRole('checkbox'))
|
||||
|
||||
// Upload file
|
||||
const file = new File(['content'], 'test.pdf', { type: 'application/pdf' })
|
||||
await user.upload(screen.getByLabelText(/upload/i), file)
|
||||
```
|
||||
|
||||
### Keyboard Events
|
||||
|
||||
```typescript
|
||||
const user = userEvent.setup()
|
||||
|
||||
// Press Enter
|
||||
await user.keyboard('{Enter}')
|
||||
|
||||
// Press Escape
|
||||
await user.keyboard('{Escape}')
|
||||
|
||||
// Keyboard shortcut
|
||||
await user.keyboard('{Control>}a{/Control}') // Ctrl+A
|
||||
|
||||
// Tab navigation
|
||||
await user.tab()
|
||||
|
||||
// Arrow keys
|
||||
await user.keyboard('{ArrowDown}')
|
||||
await user.keyboard('{ArrowUp}')
|
||||
```
|
||||
|
||||
## Component State Testing
|
||||
|
||||
### Testing State Transitions
|
||||
|
||||
```typescript
|
||||
describe('Counter', () => {
|
||||
it('should increment count', async () => {
|
||||
const user = userEvent.setup()
|
||||
render(<Counter initialCount={0} />)
|
||||
|
||||
// Initial state
|
||||
expect(screen.getByText('Count: 0')).toBeInTheDocument()
|
||||
|
||||
// Trigger transition
|
||||
await user.click(screen.getByRole('button', { name: /increment/i }))
|
||||
|
||||
// New state
|
||||
expect(screen.getByText('Count: 1')).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
### Testing Controlled Components
|
||||
|
||||
```typescript
|
||||
describe('ControlledInput', () => {
|
||||
it('should call onChange with new value', async () => {
|
||||
const user = userEvent.setup()
|
||||
const handleChange = jest.fn()
|
||||
|
||||
render(<ControlledInput value="" onChange={handleChange} />)
|
||||
|
||||
await user.type(screen.getByRole('textbox'), 'a')
|
||||
|
||||
expect(handleChange).toHaveBeenCalledWith('a')
|
||||
})
|
||||
|
||||
it('should display controlled value', () => {
|
||||
render(<ControlledInput value="controlled" onChange={jest.fn()} />)
|
||||
|
||||
expect(screen.getByRole('textbox')).toHaveValue('controlled')
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
## Conditional Rendering Testing
|
||||
|
||||
```typescript
|
||||
describe('ConditionalComponent', () => {
|
||||
it('should show loading state', () => {
|
||||
render(<DataDisplay isLoading={true} data={null} />)
|
||||
|
||||
expect(screen.getByText(/loading/i)).toBeInTheDocument()
|
||||
expect(screen.queryByTestId('data-content')).not.toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should show error state', () => {
|
||||
render(<DataDisplay isLoading={false} data={null} error="Failed to load" />)
|
||||
|
||||
expect(screen.getByText(/failed to load/i)).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should show data when loaded', () => {
|
||||
render(<DataDisplay isLoading={false} data={{ name: 'Test' }} />)
|
||||
|
||||
expect(screen.getByText('Test')).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should show empty state when no data', () => {
|
||||
render(<DataDisplay isLoading={false} data={[]} />)
|
||||
|
||||
expect(screen.getByText(/no data/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
## List Rendering Testing
|
||||
|
||||
```typescript
|
||||
describe('ItemList', () => {
|
||||
const items = [
|
||||
{ id: '1', name: 'Item 1' },
|
||||
{ id: '2', name: 'Item 2' },
|
||||
{ id: '3', name: 'Item 3' },
|
||||
]
|
||||
|
||||
it('should render all items', () => {
|
||||
render(<ItemList items={items} />)
|
||||
|
||||
expect(screen.getAllByRole('listitem')).toHaveLength(3)
|
||||
items.forEach(item => {
|
||||
expect(screen.getByText(item.name)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
it('should handle item selection', async () => {
|
||||
const user = userEvent.setup()
|
||||
const onSelect = jest.fn()
|
||||
|
||||
render(<ItemList items={items} onSelect={onSelect} />)
|
||||
|
||||
await user.click(screen.getByText('Item 2'))
|
||||
|
||||
expect(onSelect).toHaveBeenCalledWith(items[1])
|
||||
})
|
||||
|
||||
it('should handle empty list', () => {
|
||||
render(<ItemList items={[]} />)
|
||||
|
||||
expect(screen.getByText(/no items/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
## Modal/Dialog Testing
|
||||
|
||||
```typescript
|
||||
describe('Modal', () => {
|
||||
it('should not render when closed', () => {
|
||||
render(<Modal isOpen={false} onClose={jest.fn()} />)
|
||||
|
||||
expect(screen.queryByRole('dialog')).not.toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should render when open', () => {
|
||||
render(<Modal isOpen={true} onClose={jest.fn()} />)
|
||||
|
||||
expect(screen.getByRole('dialog')).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should call onClose when clicking overlay', async () => {
|
||||
const user = userEvent.setup()
|
||||
const handleClose = jest.fn()
|
||||
|
||||
render(<Modal isOpen={true} onClose={handleClose} />)
|
||||
|
||||
await user.click(screen.getByTestId('modal-overlay'))
|
||||
|
||||
expect(handleClose).toHaveBeenCalled()
|
||||
})
|
||||
|
||||
it('should call onClose when pressing Escape', async () => {
|
||||
const user = userEvent.setup()
|
||||
const handleClose = jest.fn()
|
||||
|
||||
render(<Modal isOpen={true} onClose={handleClose} />)
|
||||
|
||||
await user.keyboard('{Escape}')
|
||||
|
||||
expect(handleClose).toHaveBeenCalled()
|
||||
})
|
||||
|
||||
it('should trap focus inside modal', async () => {
|
||||
const user = userEvent.setup()
|
||||
|
||||
render(
|
||||
<Modal isOpen={true} onClose={jest.fn()}>
|
||||
<button>First</button>
|
||||
<button>Second</button>
|
||||
</Modal>
|
||||
)
|
||||
|
||||
// Focus should cycle within modal
|
||||
await user.tab()
|
||||
expect(screen.getByText('First')).toHaveFocus()
|
||||
|
||||
await user.tab()
|
||||
expect(screen.getByText('Second')).toHaveFocus()
|
||||
|
||||
await user.tab()
|
||||
expect(screen.getByText('First')).toHaveFocus() // Cycles back
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
## Form Testing
|
||||
|
||||
```typescript
|
||||
describe('LoginForm', () => {
|
||||
it('should submit valid form', async () => {
|
||||
const user = userEvent.setup()
|
||||
const onSubmit = jest.fn()
|
||||
|
||||
render(<LoginForm onSubmit={onSubmit} />)
|
||||
|
||||
await user.type(screen.getByLabelText(/email/i), 'test@example.com')
|
||||
await user.type(screen.getByLabelText(/password/i), 'password123')
|
||||
await user.click(screen.getByRole('button', { name: /sign in/i }))
|
||||
|
||||
expect(onSubmit).toHaveBeenCalledWith({
|
||||
email: 'test@example.com',
|
||||
password: 'password123',
|
||||
})
|
||||
})
|
||||
|
||||
it('should show validation errors', async () => {
|
||||
const user = userEvent.setup()
|
||||
|
||||
render(<LoginForm onSubmit={jest.fn()} />)
|
||||
|
||||
// Submit empty form
|
||||
await user.click(screen.getByRole('button', { name: /sign in/i }))
|
||||
|
||||
expect(screen.getByText(/email is required/i)).toBeInTheDocument()
|
||||
expect(screen.getByText(/password is required/i)).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should validate email format', async () => {
|
||||
const user = userEvent.setup()
|
||||
|
||||
render(<LoginForm onSubmit={jest.fn()} />)
|
||||
|
||||
await user.type(screen.getByLabelText(/email/i), 'invalid-email')
|
||||
await user.click(screen.getByRole('button', { name: /sign in/i }))
|
||||
|
||||
expect(screen.getByText(/invalid email/i)).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should disable submit button while submitting', async () => {
|
||||
const user = userEvent.setup()
|
||||
const onSubmit = jest.fn(() => new Promise(resolve => setTimeout(resolve, 100)))
|
||||
|
||||
render(<LoginForm onSubmit={onSubmit} />)
|
||||
|
||||
await user.type(screen.getByLabelText(/email/i), 'test@example.com')
|
||||
await user.type(screen.getByLabelText(/password/i), 'password123')
|
||||
await user.click(screen.getByRole('button', { name: /sign in/i }))
|
||||
|
||||
expect(screen.getByRole('button', { name: /signing in/i })).toBeDisabled()
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByRole('button', { name: /sign in/i })).toBeEnabled()
|
||||
})
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
## Data-Driven Tests with test.each
|
||||
|
||||
```typescript
|
||||
describe('StatusBadge', () => {
|
||||
test.each([
|
||||
['success', 'bg-green-500'],
|
||||
['warning', 'bg-yellow-500'],
|
||||
['error', 'bg-red-500'],
|
||||
['info', 'bg-blue-500'],
|
||||
])('should apply correct class for %s status', (status, expectedClass) => {
|
||||
render(<StatusBadge status={status} />)
|
||||
|
||||
expect(screen.getByTestId('status-badge')).toHaveClass(expectedClass)
|
||||
})
|
||||
|
||||
test.each([
|
||||
{ input: null, expected: 'Unknown' },
|
||||
{ input: undefined, expected: 'Unknown' },
|
||||
{ input: '', expected: 'Unknown' },
|
||||
{ input: 'invalid', expected: 'Unknown' },
|
||||
])('should show "Unknown" for invalid input: $input', ({ input, expected }) => {
|
||||
render(<StatusBadge status={input} />)
|
||||
|
||||
expect(screen.getByText(expected)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
## Debugging Tips
|
||||
|
||||
```typescript
|
||||
// Print entire DOM
|
||||
screen.debug()
|
||||
|
||||
// Print specific element
|
||||
screen.debug(screen.getByRole('button'))
|
||||
|
||||
// Log testing playground URL
|
||||
screen.logTestingPlaygroundURL()
|
||||
|
||||
// Pretty print DOM
|
||||
import { prettyDOM } from '@testing-library/react'
|
||||
console.log(prettyDOM(screen.getByRole('dialog')))
|
||||
|
||||
// Check available roles
|
||||
import { getRoles } from '@testing-library/react'
|
||||
console.log(getRoles(container))
|
||||
```
|
||||
|
||||
## Common Mistakes to Avoid
|
||||
|
||||
### ❌ Don't Use Implementation Details
|
||||
|
||||
```typescript
|
||||
// Bad - testing implementation
|
||||
expect(component.state.isOpen).toBe(true)
|
||||
expect(wrapper.find('.internal-class').length).toBe(1)
|
||||
|
||||
// Good - testing behavior
|
||||
expect(screen.getByRole('dialog')).toBeInTheDocument()
|
||||
```
|
||||
|
||||
### ❌ Don't Forget Cleanup
|
||||
|
||||
```typescript
|
||||
// Bad - may leak state between tests
|
||||
it('test 1', () => {
|
||||
render(<Component />)
|
||||
})
|
||||
|
||||
// Good - cleanup is automatic with RTL, but reset mocks
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks()
|
||||
})
|
||||
```
|
||||
|
||||
### ❌ Don't Use Exact String Matching (Prefer Black-Box Assertions)
|
||||
|
||||
```typescript
|
||||
// ❌ Bad - hardcoded strings are brittle
|
||||
expect(screen.getByText('Submit Form')).toBeInTheDocument()
|
||||
expect(screen.getByText('Loading...')).toBeInTheDocument()
|
||||
|
||||
// ✅ Good - role-based queries (most semantic)
|
||||
expect(screen.getByRole('button', { name: /submit/i })).toBeInTheDocument()
|
||||
expect(screen.getByRole('status')).toBeInTheDocument()
|
||||
|
||||
// ✅ Good - pattern matching (flexible)
|
||||
expect(screen.getByText(/submit/i)).toBeInTheDocument()
|
||||
expect(screen.getByText(/loading/i)).toBeInTheDocument()
|
||||
|
||||
// ✅ Good - test behavior, not exact UI text
|
||||
expect(screen.getByRole('button')).toBeDisabled()
|
||||
expect(screen.getByRole('alert')).toBeInTheDocument()
|
||||
```
|
||||
|
||||
**Why prefer black-box assertions?**
|
||||
|
||||
- Text content may change (i18n, copy updates)
|
||||
- Role-based queries test accessibility
|
||||
- Pattern matching is resilient to minor changes
|
||||
- Tests focus on behavior, not implementation details
|
||||
|
||||
### ❌ Don't Assert on Absence Without Query
|
||||
|
||||
```typescript
|
||||
// Bad - throws if not found
|
||||
expect(screen.getByText('Error')).not.toBeInTheDocument() // Error!
|
||||
|
||||
// Good - use queryBy for absence assertions
|
||||
expect(screen.queryByText('Error')).not.toBeInTheDocument()
|
||||
```
|
||||
@ -1,523 +0,0 @@
|
||||
# Domain-Specific Component Testing
|
||||
|
||||
This guide covers testing patterns for Dify's domain-specific components.
|
||||
|
||||
## Workflow Components (`workflow/`)
|
||||
|
||||
Workflow components handle node configuration, data flow, and graph operations.
|
||||
|
||||
### Key Test Areas
|
||||
|
||||
1. **Node Configuration**
|
||||
1. **Data Validation**
|
||||
1. **Variable Passing**
|
||||
1. **Edge Connections**
|
||||
1. **Error Handling**
|
||||
|
||||
### Example: Node Configuration Panel
|
||||
|
||||
```typescript
|
||||
import { render, screen, fireEvent, waitFor } from '@testing-library/react'
|
||||
import userEvent from '@testing-library/user-event'
|
||||
import NodeConfigPanel from './node-config-panel'
|
||||
import { createMockNode, createMockWorkflowContext } from '@/__mocks__/workflow'
|
||||
|
||||
// Mock workflow context
|
||||
jest.mock('@/app/components/workflow/hooks', () => ({
|
||||
useWorkflowStore: () => mockWorkflowStore,
|
||||
useNodesInteractions: () => mockNodesInteractions,
|
||||
}))
|
||||
|
||||
let mockWorkflowStore = {
|
||||
nodes: [],
|
||||
edges: [],
|
||||
updateNode: jest.fn(),
|
||||
}
|
||||
|
||||
let mockNodesInteractions = {
|
||||
handleNodeSelect: jest.fn(),
|
||||
handleNodeDelete: jest.fn(),
|
||||
}
|
||||
|
||||
describe('NodeConfigPanel', () => {
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks()
|
||||
mockWorkflowStore = {
|
||||
nodes: [],
|
||||
edges: [],
|
||||
updateNode: jest.fn(),
|
||||
}
|
||||
})
|
||||
|
||||
describe('Node Configuration', () => {
|
||||
it('should render node type selector', () => {
|
||||
const node = createMockNode({ type: 'llm' })
|
||||
render(<NodeConfigPanel node={node} />)
|
||||
|
||||
expect(screen.getByLabelText(/model/i)).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should update node config on change', async () => {
|
||||
const user = userEvent.setup()
|
||||
const node = createMockNode({ type: 'llm' })
|
||||
|
||||
render(<NodeConfigPanel node={node} />)
|
||||
|
||||
await user.selectOptions(screen.getByLabelText(/model/i), 'gpt-4')
|
||||
|
||||
expect(mockWorkflowStore.updateNode).toHaveBeenCalledWith(
|
||||
node.id,
|
||||
expect.objectContaining({ model: 'gpt-4' })
|
||||
)
|
||||
})
|
||||
})
|
||||
|
||||
describe('Data Validation', () => {
|
||||
it('should show error for invalid input', async () => {
|
||||
const user = userEvent.setup()
|
||||
const node = createMockNode({ type: 'code' })
|
||||
|
||||
render(<NodeConfigPanel node={node} />)
|
||||
|
||||
// Enter invalid code
|
||||
const codeInput = screen.getByLabelText(/code/i)
|
||||
await user.clear(codeInput)
|
||||
await user.type(codeInput, 'invalid syntax {{{')
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText(/syntax error/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
it('should validate required fields', async () => {
|
||||
const node = createMockNode({ type: 'http', data: { url: '' } })
|
||||
|
||||
render(<NodeConfigPanel node={node} />)
|
||||
|
||||
fireEvent.click(screen.getByRole('button', { name: /save/i }))
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText(/url is required/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
})
|
||||
|
||||
describe('Variable Passing', () => {
|
||||
it('should display available variables from upstream nodes', () => {
|
||||
const upstreamNode = createMockNode({
|
||||
id: 'node-1',
|
||||
type: 'start',
|
||||
data: { outputs: [{ name: 'user_input', type: 'string' }] },
|
||||
})
|
||||
const currentNode = createMockNode({
|
||||
id: 'node-2',
|
||||
type: 'llm',
|
||||
})
|
||||
|
||||
mockWorkflowStore.nodes = [upstreamNode, currentNode]
|
||||
mockWorkflowStore.edges = [{ source: 'node-1', target: 'node-2' }]
|
||||
|
||||
render(<NodeConfigPanel node={currentNode} />)
|
||||
|
||||
// Variable selector should show upstream variables
|
||||
fireEvent.click(screen.getByRole('button', { name: /add variable/i }))
|
||||
|
||||
expect(screen.getByText('user_input')).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should insert variable into prompt template', async () => {
|
||||
const user = userEvent.setup()
|
||||
const node = createMockNode({ type: 'llm' })
|
||||
|
||||
render(<NodeConfigPanel node={node} />)
|
||||
|
||||
// Click variable button
|
||||
await user.click(screen.getByRole('button', { name: /insert variable/i }))
|
||||
await user.click(screen.getByText('user_input'))
|
||||
|
||||
const promptInput = screen.getByLabelText(/prompt/i)
|
||||
expect(promptInput).toHaveValue(expect.stringContaining('{{user_input}}'))
|
||||
})
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
## Dataset Components (`dataset/`)
|
||||
|
||||
Dataset components handle file uploads, data display, and search/filter operations.
|
||||
|
||||
### Key Test Areas
|
||||
|
||||
1. **File Upload**
|
||||
1. **File Type Validation**
|
||||
1. **Pagination**
|
||||
1. **Search & Filtering**
|
||||
1. **Data Format Handling**
|
||||
|
||||
### Example: Document Uploader
|
||||
|
||||
```typescript
|
||||
import { render, screen, fireEvent, waitFor } from '@testing-library/react'
|
||||
import userEvent from '@testing-library/user-event'
|
||||
import DocumentUploader from './document-uploader'
|
||||
|
||||
jest.mock('@/service/datasets', () => ({
|
||||
uploadDocument: jest.fn(),
|
||||
parseDocument: jest.fn(),
|
||||
}))
|
||||
|
||||
import * as datasetService from '@/service/datasets'
|
||||
const mockedService = datasetService as jest.Mocked<typeof datasetService>
|
||||
|
||||
describe('DocumentUploader', () => {
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks()
|
||||
})
|
||||
|
||||
describe('File Upload', () => {
|
||||
it('should accept valid file types', async () => {
|
||||
const user = userEvent.setup()
|
||||
const onUpload = jest.fn()
|
||||
mockedService.uploadDocument.mockResolvedValue({ id: 'doc-1' })
|
||||
|
||||
render(<DocumentUploader onUpload={onUpload} />)
|
||||
|
||||
const file = new File(['content'], 'test.pdf', { type: 'application/pdf' })
|
||||
const input = screen.getByLabelText(/upload/i)
|
||||
|
||||
await user.upload(input, file)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(mockedService.uploadDocument).toHaveBeenCalledWith(
|
||||
expect.any(FormData)
|
||||
)
|
||||
})
|
||||
})
|
||||
|
||||
it('should reject invalid file types', async () => {
|
||||
const user = userEvent.setup()
|
||||
|
||||
render(<DocumentUploader />)
|
||||
|
||||
const file = new File(['content'], 'test.exe', { type: 'application/x-msdownload' })
|
||||
const input = screen.getByLabelText(/upload/i)
|
||||
|
||||
await user.upload(input, file)
|
||||
|
||||
expect(screen.getByText(/unsupported file type/i)).toBeInTheDocument()
|
||||
expect(mockedService.uploadDocument).not.toHaveBeenCalled()
|
||||
})
|
||||
|
||||
it('should show upload progress', async () => {
|
||||
const user = userEvent.setup()
|
||||
|
||||
// Mock upload with progress
|
||||
mockedService.uploadDocument.mockImplementation(() => {
|
||||
return new Promise((resolve) => {
|
||||
setTimeout(() => resolve({ id: 'doc-1' }), 100)
|
||||
})
|
||||
})
|
||||
|
||||
render(<DocumentUploader />)
|
||||
|
||||
const file = new File(['content'], 'test.pdf', { type: 'application/pdf' })
|
||||
await user.upload(screen.getByLabelText(/upload/i), file)
|
||||
|
||||
expect(screen.getByRole('progressbar')).toBeInTheDocument()
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.queryByRole('progressbar')).not.toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
})
|
||||
|
||||
describe('Error Handling', () => {
|
||||
it('should handle upload failure', async () => {
|
||||
const user = userEvent.setup()
|
||||
mockedService.uploadDocument.mockRejectedValue(new Error('Upload failed'))
|
||||
|
||||
render(<DocumentUploader />)
|
||||
|
||||
const file = new File(['content'], 'test.pdf', { type: 'application/pdf' })
|
||||
await user.upload(screen.getByLabelText(/upload/i), file)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText(/upload failed/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
it('should allow retry after failure', async () => {
|
||||
const user = userEvent.setup()
|
||||
mockedService.uploadDocument
|
||||
.mockRejectedValueOnce(new Error('Network error'))
|
||||
.mockResolvedValueOnce({ id: 'doc-1' })
|
||||
|
||||
render(<DocumentUploader />)
|
||||
|
||||
const file = new File(['content'], 'test.pdf', { type: 'application/pdf' })
|
||||
await user.upload(screen.getByLabelText(/upload/i), file)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByRole('button', { name: /retry/i })).toBeInTheDocument()
|
||||
})
|
||||
|
||||
await user.click(screen.getByRole('button', { name: /retry/i }))
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText(/uploaded successfully/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
### Example: Document List with Pagination
|
||||
|
||||
```typescript
|
||||
describe('DocumentList', () => {
|
||||
describe('Pagination', () => {
|
||||
it('should load first page on mount', async () => {
|
||||
mockedService.getDocuments.mockResolvedValue({
|
||||
data: [{ id: '1', name: 'Doc 1' }],
|
||||
total: 50,
|
||||
page: 1,
|
||||
pageSize: 10,
|
||||
})
|
||||
|
||||
render(<DocumentList datasetId="ds-1" />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText('Doc 1')).toBeInTheDocument()
|
||||
})
|
||||
|
||||
expect(mockedService.getDocuments).toHaveBeenCalledWith('ds-1', { page: 1 })
|
||||
})
|
||||
|
||||
it('should navigate to next page', async () => {
|
||||
const user = userEvent.setup()
|
||||
mockedService.getDocuments.mockResolvedValue({
|
||||
data: [{ id: '1', name: 'Doc 1' }],
|
||||
total: 50,
|
||||
page: 1,
|
||||
pageSize: 10,
|
||||
})
|
||||
|
||||
render(<DocumentList datasetId="ds-1" />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText('Doc 1')).toBeInTheDocument()
|
||||
})
|
||||
|
||||
mockedService.getDocuments.mockResolvedValue({
|
||||
data: [{ id: '11', name: 'Doc 11' }],
|
||||
total: 50,
|
||||
page: 2,
|
||||
pageSize: 10,
|
||||
})
|
||||
|
||||
await user.click(screen.getByRole('button', { name: /next/i }))
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText('Doc 11')).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
})
|
||||
|
||||
describe('Search & Filtering', () => {
|
||||
it('should filter by search query', async () => {
|
||||
const user = userEvent.setup()
|
||||
jest.useFakeTimers()
|
||||
|
||||
render(<DocumentList datasetId="ds-1" />)
|
||||
|
||||
await user.type(screen.getByPlaceholderText(/search/i), 'test query')
|
||||
|
||||
// Debounce
|
||||
jest.advanceTimersByTime(300)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(mockedService.getDocuments).toHaveBeenCalledWith(
|
||||
'ds-1',
|
||||
expect.objectContaining({ search: 'test query' })
|
||||
)
|
||||
})
|
||||
|
||||
jest.useRealTimers()
|
||||
})
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
## Configuration Components (`app/configuration/`, `config/`)
|
||||
|
||||
Configuration components handle forms, validation, and data persistence.
|
||||
|
||||
### Key Test Areas
|
||||
|
||||
1. **Form Validation**
|
||||
1. **Save/Reset**
|
||||
1. **Required vs Optional Fields**
|
||||
1. **Configuration Persistence**
|
||||
1. **Error Feedback**
|
||||
|
||||
### Example: App Configuration Form
|
||||
|
||||
```typescript
|
||||
import { render, screen, fireEvent, waitFor } from '@testing-library/react'
|
||||
import userEvent from '@testing-library/user-event'
|
||||
import AppConfigForm from './app-config-form'
|
||||
|
||||
jest.mock('@/service/apps', () => ({
|
||||
updateAppConfig: jest.fn(),
|
||||
getAppConfig: jest.fn(),
|
||||
}))
|
||||
|
||||
import * as appService from '@/service/apps'
|
||||
const mockedService = appService as jest.Mocked<typeof appService>
|
||||
|
||||
describe('AppConfigForm', () => {
|
||||
const defaultConfig = {
|
||||
name: 'My App',
|
||||
description: '',
|
||||
icon: 'default',
|
||||
openingStatement: '',
|
||||
}
|
||||
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks()
|
||||
mockedService.getAppConfig.mockResolvedValue(defaultConfig)
|
||||
})
|
||||
|
||||
describe('Form Validation', () => {
|
||||
it('should require app name', async () => {
|
||||
const user = userEvent.setup()
|
||||
|
||||
render(<AppConfigForm appId="app-1" />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByLabelText(/name/i)).toHaveValue('My App')
|
||||
})
|
||||
|
||||
// Clear name field
|
||||
await user.clear(screen.getByLabelText(/name/i))
|
||||
await user.click(screen.getByRole('button', { name: /save/i }))
|
||||
|
||||
expect(screen.getByText(/name is required/i)).toBeInTheDocument()
|
||||
expect(mockedService.updateAppConfig).not.toHaveBeenCalled()
|
||||
})
|
||||
|
||||
it('should validate name length', async () => {
|
||||
const user = userEvent.setup()
|
||||
|
||||
render(<AppConfigForm appId="app-1" />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByLabelText(/name/i)).toBeInTheDocument()
|
||||
})
|
||||
|
||||
// Enter very long name
|
||||
await user.clear(screen.getByLabelText(/name/i))
|
||||
await user.type(screen.getByLabelText(/name/i), 'a'.repeat(101))
|
||||
|
||||
expect(screen.getByText(/name must be less than 100 characters/i)).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should allow empty optional fields', async () => {
|
||||
const user = userEvent.setup()
|
||||
mockedService.updateAppConfig.mockResolvedValue({ success: true })
|
||||
|
||||
render(<AppConfigForm appId="app-1" />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByLabelText(/name/i)).toHaveValue('My App')
|
||||
})
|
||||
|
||||
// Leave description empty (optional)
|
||||
await user.click(screen.getByRole('button', { name: /save/i }))
|
||||
|
||||
await waitFor(() => {
|
||||
expect(mockedService.updateAppConfig).toHaveBeenCalled()
|
||||
})
|
||||
})
|
||||
})
|
||||
|
||||
describe('Save/Reset Functionality', () => {
|
||||
it('should save configuration', async () => {
|
||||
const user = userEvent.setup()
|
||||
mockedService.updateAppConfig.mockResolvedValue({ success: true })
|
||||
|
||||
render(<AppConfigForm appId="app-1" />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByLabelText(/name/i)).toHaveValue('My App')
|
||||
})
|
||||
|
||||
await user.clear(screen.getByLabelText(/name/i))
|
||||
await user.type(screen.getByLabelText(/name/i), 'Updated App')
|
||||
await user.click(screen.getByRole('button', { name: /save/i }))
|
||||
|
||||
await waitFor(() => {
|
||||
expect(mockedService.updateAppConfig).toHaveBeenCalledWith(
|
||||
'app-1',
|
||||
expect.objectContaining({ name: 'Updated App' })
|
||||
)
|
||||
})
|
||||
|
||||
expect(screen.getByText(/saved successfully/i)).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should reset to default values', async () => {
|
||||
const user = userEvent.setup()
|
||||
|
||||
render(<AppConfigForm appId="app-1" />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByLabelText(/name/i)).toHaveValue('My App')
|
||||
})
|
||||
|
||||
// Make changes
|
||||
await user.clear(screen.getByLabelText(/name/i))
|
||||
await user.type(screen.getByLabelText(/name/i), 'Changed Name')
|
||||
|
||||
// Reset
|
||||
await user.click(screen.getByRole('button', { name: /reset/i }))
|
||||
|
||||
expect(screen.getByLabelText(/name/i)).toHaveValue('My App')
|
||||
})
|
||||
|
||||
it('should show unsaved changes warning', async () => {
|
||||
const user = userEvent.setup()
|
||||
|
||||
render(<AppConfigForm appId="app-1" />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByLabelText(/name/i)).toHaveValue('My App')
|
||||
})
|
||||
|
||||
// Make changes
|
||||
await user.type(screen.getByLabelText(/name/i), ' Updated')
|
||||
|
||||
expect(screen.getByText(/unsaved changes/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
describe('Error Handling', () => {
|
||||
it('should show error on save failure', async () => {
|
||||
const user = userEvent.setup()
|
||||
mockedService.updateAppConfig.mockRejectedValue(new Error('Server error'))
|
||||
|
||||
render(<AppConfigForm appId="app-1" />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByLabelText(/name/i)).toHaveValue('My App')
|
||||
})
|
||||
|
||||
await user.click(screen.getByRole('button', { name: /save/i }))
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText(/failed to save/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
})
|
||||
})
|
||||
```
|
||||
@ -1,363 +0,0 @@
|
||||
# Mocking Guide for Dify Frontend Tests
|
||||
|
||||
## ⚠️ Important: What NOT to Mock
|
||||
|
||||
### DO NOT Mock Base Components
|
||||
|
||||
**Never mock components from `@/app/components/base/`** such as:
|
||||
|
||||
- `Loading`, `Spinner`
|
||||
- `Button`, `Input`, `Select`
|
||||
- `Tooltip`, `Modal`, `Dropdown`
|
||||
- `Icon`, `Badge`, `Tag`
|
||||
|
||||
**Why?**
|
||||
|
||||
- Base components will have their own dedicated tests
|
||||
- Mocking them creates false positives (tests pass but real integration fails)
|
||||
- Using real components tests actual integration behavior
|
||||
|
||||
```typescript
|
||||
// ❌ WRONG: Don't mock base components
|
||||
jest.mock('@/app/components/base/loading', () => () => <div>Loading</div>)
|
||||
jest.mock('@/app/components/base/button', () => ({ children }: any) => <button>{children}</button>)
|
||||
|
||||
// ✅ CORRECT: Import and use real base components
|
||||
import Loading from '@/app/components/base/loading'
|
||||
import Button from '@/app/components/base/button'
|
||||
// They will render normally in tests
|
||||
```
|
||||
|
||||
### What TO Mock
|
||||
|
||||
Only mock these categories:
|
||||
|
||||
1. **API services** (`@/service/*`) - Network calls
|
||||
1. **Complex context providers** - When setup is too difficult
|
||||
1. **Third-party libraries with side effects** - `next/navigation`, external SDKs
|
||||
1. **i18n** - Always mock to return keys
|
||||
|
||||
## Mock Placement
|
||||
|
||||
| Location | Purpose |
|
||||
|----------|---------|
|
||||
| `web/__mocks__/` | Reusable mocks shared across multiple test files |
|
||||
| Test file | Test-specific mocks, inline with `jest.mock()` |
|
||||
|
||||
## Essential Mocks
|
||||
|
||||
### 1. i18n (Auto-loaded via Shared Mock)
|
||||
|
||||
A shared mock is available at `web/__mocks__/react-i18next.ts` and is auto-loaded by Jest.
|
||||
**No explicit mock needed** for most tests - it returns translation keys as-is.
|
||||
|
||||
For tests requiring custom translations, override the mock:
|
||||
|
||||
```typescript
|
||||
jest.mock('react-i18next', () => ({
|
||||
useTranslation: () => ({
|
||||
t: (key: string) => {
|
||||
const translations: Record<string, string> = {
|
||||
'my.custom.key': 'Custom translation',
|
||||
}
|
||||
return translations[key] || key
|
||||
},
|
||||
}),
|
||||
}))
|
||||
```
|
||||
|
||||
### 2. Next.js Router
|
||||
|
||||
```typescript
|
||||
const mockPush = jest.fn()
|
||||
const mockReplace = jest.fn()
|
||||
|
||||
jest.mock('next/navigation', () => ({
|
||||
useRouter: () => ({
|
||||
push: mockPush,
|
||||
replace: mockReplace,
|
||||
back: jest.fn(),
|
||||
prefetch: jest.fn(),
|
||||
}),
|
||||
usePathname: () => '/current-path',
|
||||
useSearchParams: () => new URLSearchParams('?key=value'),
|
||||
}))
|
||||
|
||||
describe('Component', () => {
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks()
|
||||
})
|
||||
|
||||
it('should navigate on click', () => {
|
||||
render(<Component />)
|
||||
fireEvent.click(screen.getByRole('button'))
|
||||
expect(mockPush).toHaveBeenCalledWith('/expected-path')
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
### 3. Portal Components (with Shared State)
|
||||
|
||||
```typescript
|
||||
// ⚠️ Important: Use shared state for components that depend on each other
|
||||
let mockPortalOpenState = false
|
||||
|
||||
jest.mock('@/app/components/base/portal-to-follow-elem', () => ({
|
||||
PortalToFollowElem: ({ children, open, ...props }: any) => {
|
||||
mockPortalOpenState = open || false // Update shared state
|
||||
return <div data-testid="portal" data-open={open}>{children}</div>
|
||||
},
|
||||
PortalToFollowElemContent: ({ children }: any) => {
|
||||
// ✅ Matches actual: returns null when portal is closed
|
||||
if (!mockPortalOpenState) return null
|
||||
return <div data-testid="portal-content">{children}</div>
|
||||
},
|
||||
PortalToFollowElemTrigger: ({ children }: any) => (
|
||||
<div data-testid="portal-trigger">{children}</div>
|
||||
),
|
||||
}))
|
||||
|
||||
describe('Component', () => {
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks()
|
||||
mockPortalOpenState = false // ✅ Reset shared state
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
### 4. API Service Mocks
|
||||
|
||||
```typescript
|
||||
import * as api from '@/service/api'
|
||||
|
||||
jest.mock('@/service/api')
|
||||
|
||||
const mockedApi = api as jest.Mocked<typeof api>
|
||||
|
||||
describe('Component', () => {
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks()
|
||||
|
||||
// Setup default mock implementation
|
||||
mockedApi.fetchData.mockResolvedValue({ data: [] })
|
||||
})
|
||||
|
||||
it('should show data on success', async () => {
|
||||
mockedApi.fetchData.mockResolvedValue({ data: [{ id: 1 }] })
|
||||
|
||||
render(<Component />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText('1')).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
it('should show error on failure', async () => {
|
||||
mockedApi.fetchData.mockRejectedValue(new Error('Network error'))
|
||||
|
||||
render(<Component />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText(/error/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
### 5. HTTP Mocking with Nock
|
||||
|
||||
```typescript
|
||||
import nock from 'nock'
|
||||
|
||||
const GITHUB_HOST = 'https://api.github.com'
|
||||
const GITHUB_PATH = '/repos/owner/repo'
|
||||
|
||||
const mockGithubApi = (status: number, body: Record<string, unknown>, delayMs = 0) => {
|
||||
return nock(GITHUB_HOST)
|
||||
.get(GITHUB_PATH)
|
||||
.delay(delayMs)
|
||||
.reply(status, body)
|
||||
}
|
||||
|
||||
describe('GithubComponent', () => {
|
||||
afterEach(() => {
|
||||
nock.cleanAll()
|
||||
})
|
||||
|
||||
it('should display repo info', async () => {
|
||||
mockGithubApi(200, { name: 'dify', stars: 1000 })
|
||||
|
||||
render(<GithubComponent />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText('dify')).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
it('should handle API error', async () => {
|
||||
mockGithubApi(500, { message: 'Server error' })
|
||||
|
||||
render(<GithubComponent />)
|
||||
|
||||
await waitFor(() => {
|
||||
expect(screen.getByText(/error/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
### 6. Context Providers
|
||||
|
||||
```typescript
|
||||
import { ProviderContext } from '@/context/provider-context'
|
||||
import { createMockProviderContextValue, createMockPlan } from '@/__mocks__/provider-context'
|
||||
|
||||
describe('Component with Context', () => {
|
||||
it('should render for free plan', () => {
|
||||
const mockContext = createMockPlan('sandbox')
|
||||
|
||||
render(
|
||||
<ProviderContext.Provider value={mockContext}>
|
||||
<Component />
|
||||
</ProviderContext.Provider>
|
||||
)
|
||||
|
||||
expect(screen.getByText('Upgrade')).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should render for pro plan', () => {
|
||||
const mockContext = createMockPlan('professional')
|
||||
|
||||
render(
|
||||
<ProviderContext.Provider value={mockContext}>
|
||||
<Component />
|
||||
</ProviderContext.Provider>
|
||||
)
|
||||
|
||||
expect(screen.queryByText('Upgrade')).not.toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
### 7. SWR / React Query
|
||||
|
||||
```typescript
|
||||
// SWR
|
||||
jest.mock('swr', () => ({
|
||||
__esModule: true,
|
||||
default: jest.fn(),
|
||||
}))
|
||||
|
||||
import useSWR from 'swr'
|
||||
const mockedUseSWR = useSWR as jest.Mock
|
||||
|
||||
describe('Component with SWR', () => {
|
||||
it('should show loading state', () => {
|
||||
mockedUseSWR.mockReturnValue({
|
||||
data: undefined,
|
||||
error: undefined,
|
||||
isLoading: true,
|
||||
})
|
||||
|
||||
render(<Component />)
|
||||
expect(screen.getByText(/loading/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
// React Query
|
||||
import { QueryClient, QueryClientProvider } from '@tanstack/react-query'
|
||||
|
||||
const createTestQueryClient = () => new QueryClient({
|
||||
defaultOptions: {
|
||||
queries: { retry: false },
|
||||
mutations: { retry: false },
|
||||
},
|
||||
})
|
||||
|
||||
const renderWithQueryClient = (ui: React.ReactElement) => {
|
||||
const queryClient = createTestQueryClient()
|
||||
return render(
|
||||
<QueryClientProvider client={queryClient}>
|
||||
{ui}
|
||||
</QueryClientProvider>
|
||||
)
|
||||
}
|
||||
```
|
||||
|
||||
## Mock Best Practices
|
||||
|
||||
### ✅ DO
|
||||
|
||||
1. **Use real base components** - Import from `@/app/components/base/` directly
|
||||
1. **Use real project components** - Prefer importing over mocking
|
||||
1. **Reset mocks in `beforeEach`**, not `afterEach`
|
||||
1. **Match actual component behavior** in mocks (when mocking is necessary)
|
||||
1. **Use factory functions** for complex mock data
|
||||
1. **Import actual types** for type safety
|
||||
1. **Reset shared mock state** in `beforeEach`
|
||||
|
||||
### ❌ DON'T
|
||||
|
||||
1. **Don't mock base components** (`Loading`, `Button`, `Tooltip`, etc.)
|
||||
1. Don't mock components you can import directly
|
||||
1. Don't create overly simplified mocks that miss conditional logic
|
||||
1. Don't forget to clean up nock after each test
|
||||
1. Don't use `any` types in mocks without necessity
|
||||
|
||||
### Mock Decision Tree
|
||||
|
||||
```
|
||||
Need to use a component in test?
|
||||
│
|
||||
├─ Is it from @/app/components/base/*?
|
||||
│ └─ YES → Import real component, DO NOT mock
|
||||
│
|
||||
├─ Is it a project component?
|
||||
│ └─ YES → Prefer importing real component
|
||||
│ Only mock if setup is extremely complex
|
||||
│
|
||||
├─ Is it an API service (@/service/*)?
|
||||
│ └─ YES → Mock it
|
||||
│
|
||||
├─ Is it a third-party lib with side effects?
|
||||
│ └─ YES → Mock it (next/navigation, external SDKs)
|
||||
│
|
||||
└─ Is it i18n?
|
||||
└─ YES → Uses shared mock (auto-loaded). Override only for custom translations
|
||||
```
|
||||
|
||||
## Factory Function Pattern
|
||||
|
||||
```typescript
|
||||
// __mocks__/data-factories.ts
|
||||
import type { User, Project } from '@/types'
|
||||
|
||||
export const createMockUser = (overrides: Partial<User> = {}): User => ({
|
||||
id: 'user-1',
|
||||
name: 'Test User',
|
||||
email: 'test@example.com',
|
||||
role: 'member',
|
||||
createdAt: new Date().toISOString(),
|
||||
...overrides,
|
||||
})
|
||||
|
||||
export const createMockProject = (overrides: Partial<Project> = {}): Project => ({
|
||||
id: 'project-1',
|
||||
name: 'Test Project',
|
||||
description: 'A test project',
|
||||
owner: createMockUser(),
|
||||
members: [],
|
||||
createdAt: new Date().toISOString(),
|
||||
...overrides,
|
||||
})
|
||||
|
||||
// Usage in tests
|
||||
it('should display project owner', () => {
|
||||
const project = createMockProject({
|
||||
owner: createMockUser({ name: 'John Doe' }),
|
||||
})
|
||||
|
||||
render(<ProjectCard project={project} />)
|
||||
expect(screen.getByText('John Doe')).toBeInTheDocument()
|
||||
})
|
||||
```
|
||||
@ -1,269 +0,0 @@
|
||||
# Testing Workflow Guide
|
||||
|
||||
This guide defines the workflow for generating tests, especially for complex components or directories with multiple files.
|
||||
|
||||
## Scope Clarification
|
||||
|
||||
This guide addresses **multi-file workflow** (how to process multiple test files). For coverage requirements within a single test file, see `web/testing/testing.md` § Coverage Goals.
|
||||
|
||||
| Scope | Rule |
|
||||
|-------|------|
|
||||
| **Single file** | Complete coverage in one generation (100% function, >95% branch) |
|
||||
| **Multi-file directory** | Process one file at a time, verify each before proceeding |
|
||||
|
||||
## ⚠️ Critical Rule: Incremental Approach for Multi-File Testing
|
||||
|
||||
When testing a **directory with multiple files**, **NEVER generate all test files at once.** Use an incremental, verify-as-you-go approach.
|
||||
|
||||
### Why Incremental?
|
||||
|
||||
| Batch Approach (❌) | Incremental Approach (✅) |
|
||||
|---------------------|---------------------------|
|
||||
| Generate 5+ tests at once | Generate 1 test at a time |
|
||||
| Run tests only at the end | Run test immediately after each file |
|
||||
| Multiple failures compound | Single point of failure, easy to debug |
|
||||
| Hard to identify root cause | Clear cause-effect relationship |
|
||||
| Mock issues affect many files | Mock issues caught early |
|
||||
| Messy git history | Clean, atomic commits possible |
|
||||
|
||||
## Single File Workflow
|
||||
|
||||
When testing a **single component, hook, or utility**:
|
||||
|
||||
```
|
||||
1. Read source code completely
|
||||
2. Run `pnpm analyze-component <path>` (if available)
|
||||
3. Check complexity score and features detected
|
||||
4. Write the test file
|
||||
5. Run test: `pnpm test -- <file>.spec.tsx`
|
||||
6. Fix any failures
|
||||
7. Verify coverage meets goals (100% function, >95% branch)
|
||||
```
|
||||
|
||||
## Directory/Multi-File Workflow (MUST FOLLOW)
|
||||
|
||||
When testing a **directory or multiple files**, follow this strict workflow:
|
||||
|
||||
### Step 1: Analyze and Plan
|
||||
|
||||
1. **List all files** that need tests in the directory
|
||||
1. **Categorize by complexity**:
|
||||
- 🟢 **Simple**: Utility functions, simple hooks, presentational components
|
||||
- 🟡 **Medium**: Components with state, effects, or event handlers
|
||||
- 🔴 **Complex**: Components with API calls, routing, or many dependencies
|
||||
1. **Order by dependency**: Test dependencies before dependents
|
||||
1. **Create a todo list** to track progress
|
||||
|
||||
### Step 2: Determine Processing Order
|
||||
|
||||
Process files in this recommended order:
|
||||
|
||||
```
|
||||
1. Utility functions (simplest, no React)
|
||||
2. Custom hooks (isolated logic)
|
||||
3. Simple presentational components (few/no props)
|
||||
4. Medium complexity components (state, effects)
|
||||
5. Complex components (API, routing, many deps)
|
||||
6. Container/index components (integration tests - last)
|
||||
```
|
||||
|
||||
**Rationale**:
|
||||
|
||||
- Simpler files help establish mock patterns
|
||||
- Hooks used by components should be tested first
|
||||
- Integration tests (index files) depend on child components working
|
||||
|
||||
### Step 3: Process Each File Incrementally
|
||||
|
||||
**For EACH file in the ordered list:**
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────┐
|
||||
│ 1. Write test file │
|
||||
│ 2. Run: pnpm test -- <file>.spec.tsx │
|
||||
│ 3. If FAIL → Fix immediately, re-run │
|
||||
│ 4. If PASS → Mark complete in todo list │
|
||||
│ 5. ONLY THEN proceed to next file │
|
||||
└─────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
**DO NOT proceed to the next file until the current one passes.**
|
||||
|
||||
### Step 4: Final Verification
|
||||
|
||||
After all individual tests pass:
|
||||
|
||||
```bash
|
||||
# Run all tests in the directory together
|
||||
pnpm test -- path/to/directory/
|
||||
|
||||
# Check coverage
|
||||
pnpm test -- --coverage path/to/directory/
|
||||
```
|
||||
|
||||
## Component Complexity Guidelines
|
||||
|
||||
Use `pnpm analyze-component <path>` to assess complexity before testing.
|
||||
|
||||
### 🔴 Very Complex Components (Complexity > 50)
|
||||
|
||||
**Consider refactoring BEFORE testing:**
|
||||
|
||||
- Break component into smaller, testable pieces
|
||||
- Extract complex logic into custom hooks
|
||||
- Separate container and presentational layers
|
||||
|
||||
**If testing as-is:**
|
||||
|
||||
- Use integration tests for complex workflows
|
||||
- Use `test.each()` for data-driven testing
|
||||
- Multiple `describe` blocks for organization
|
||||
- Consider testing major sections separately
|
||||
|
||||
### 🟡 Medium Complexity (Complexity 30-50)
|
||||
|
||||
- Group related tests in `describe` blocks
|
||||
- Test integration scenarios between internal parts
|
||||
- Focus on state transitions and side effects
|
||||
- Use helper functions to reduce test complexity
|
||||
|
||||
### 🟢 Simple Components (Complexity < 30)
|
||||
|
||||
- Standard test structure
|
||||
- Focus on props, rendering, and edge cases
|
||||
- Usually straightforward to test
|
||||
|
||||
### 📏 Large Files (500+ lines)
|
||||
|
||||
Regardless of complexity score:
|
||||
|
||||
- **Strongly consider refactoring** before testing
|
||||
- If testing as-is, test major sections separately
|
||||
- Create helper functions for test setup
|
||||
- May need multiple test files
|
||||
|
||||
## Todo List Format
|
||||
|
||||
When testing multiple files, use a todo list like this:
|
||||
|
||||
```
|
||||
Testing: path/to/directory/
|
||||
|
||||
Ordered by complexity (simple → complex):
|
||||
|
||||
☐ utils/helper.ts [utility, simple]
|
||||
☐ hooks/use-custom-hook.ts [hook, simple]
|
||||
☐ empty-state.tsx [component, simple]
|
||||
☐ item-card.tsx [component, medium]
|
||||
☐ list.tsx [component, complex]
|
||||
☐ index.tsx [integration]
|
||||
|
||||
Progress: 0/6 complete
|
||||
```
|
||||
|
||||
Update status as you complete each:
|
||||
|
||||
- ☐ → ⏳ (in progress)
|
||||
- ⏳ → ✅ (complete and verified)
|
||||
- ⏳ → ❌ (blocked, needs attention)
|
||||
|
||||
## When to Stop and Verify
|
||||
|
||||
**Always run tests after:**
|
||||
|
||||
- Completing a test file
|
||||
- Making changes to fix a failure
|
||||
- Modifying shared mocks
|
||||
- Updating test utilities or helpers
|
||||
|
||||
**Signs you should pause:**
|
||||
|
||||
- More than 2 consecutive test failures
|
||||
- Mock-related errors appearing
|
||||
- Unclear why a test is failing
|
||||
- Test passing but coverage unexpectedly low
|
||||
|
||||
## Common Pitfalls to Avoid
|
||||
|
||||
### ❌ Don't: Generate Everything First
|
||||
|
||||
```
|
||||
# BAD: Writing all files then testing
|
||||
Write component-a.spec.tsx
|
||||
Write component-b.spec.tsx
|
||||
Write component-c.spec.tsx
|
||||
Write component-d.spec.tsx
|
||||
Run pnpm test ← Multiple failures, hard to debug
|
||||
```
|
||||
|
||||
### ✅ Do: Verify Each Step
|
||||
|
||||
```
|
||||
# GOOD: Incremental with verification
|
||||
Write component-a.spec.tsx
|
||||
Run pnpm test -- component-a.spec.tsx ✅
|
||||
Write component-b.spec.tsx
|
||||
Run pnpm test -- component-b.spec.tsx ✅
|
||||
...continue...
|
||||
```
|
||||
|
||||
### ❌ Don't: Skip Verification for "Simple" Components
|
||||
|
||||
Even simple components can have:
|
||||
|
||||
- Import errors
|
||||
- Missing mock setup
|
||||
- Incorrect assumptions about props
|
||||
|
||||
**Always verify, regardless of perceived simplicity.**
|
||||
|
||||
### ❌ Don't: Continue When Tests Fail
|
||||
|
||||
Failing tests compound:
|
||||
|
||||
- A mock issue in file A affects files B, C, D
|
||||
- Fixing A later requires revisiting all dependent tests
|
||||
- Time wasted on debugging cascading failures
|
||||
|
||||
**Fix failures immediately before proceeding.**
|
||||
|
||||
## Integration with Claude's Todo Feature
|
||||
|
||||
When using Claude for multi-file testing:
|
||||
|
||||
1. **Ask Claude to create a todo list** before starting
|
||||
1. **Request one file at a time** or ensure Claude processes incrementally
|
||||
1. **Verify each test passes** before asking for the next
|
||||
1. **Mark todos complete** as you progress
|
||||
|
||||
Example prompt:
|
||||
|
||||
```
|
||||
Test all components in `path/to/directory/`.
|
||||
First, analyze the directory and create a todo list ordered by complexity.
|
||||
Then, process ONE file at a time, waiting for my confirmation that tests pass
|
||||
before proceeding to the next.
|
||||
```
|
||||
|
||||
## Summary Checklist
|
||||
|
||||
Before starting multi-file testing:
|
||||
|
||||
- [ ] Listed all files needing tests
|
||||
- [ ] Ordered by complexity (simple → complex)
|
||||
- [ ] Created todo list for tracking
|
||||
- [ ] Understand dependencies between files
|
||||
|
||||
During testing:
|
||||
|
||||
- [ ] Processing ONE file at a time
|
||||
- [ ] Running tests after EACH file
|
||||
- [ ] Fixing failures BEFORE proceeding
|
||||
- [ ] Updating todo list progress
|
||||
|
||||
After completion:
|
||||
|
||||
- [ ] All individual tests pass
|
||||
- [ ] Full directory test run passes
|
||||
- [ ] Coverage goals met
|
||||
- [ ] Todo list shows all complete
|
||||
@ -1,296 +0,0 @@
|
||||
/**
|
||||
* Test Template for React Components
|
||||
*
|
||||
* WHY THIS STRUCTURE?
|
||||
* - Organized sections make tests easy to navigate and maintain
|
||||
* - Mocks at top ensure consistent test isolation
|
||||
* - Factory functions reduce duplication and improve readability
|
||||
* - describe blocks group related scenarios for better debugging
|
||||
*
|
||||
* INSTRUCTIONS:
|
||||
* 1. Replace `ComponentName` with your component name
|
||||
* 2. Update import path
|
||||
* 3. Add/remove test sections based on component features (use analyze-component)
|
||||
* 4. Follow AAA pattern: Arrange → Act → Assert
|
||||
*
|
||||
* RUN FIRST: pnpm analyze-component <path> to identify required test scenarios
|
||||
*/
|
||||
|
||||
import { render, screen, fireEvent, waitFor } from '@testing-library/react'
|
||||
import userEvent from '@testing-library/user-event'
|
||||
// import ComponentName from './index'
|
||||
|
||||
// ============================================================================
|
||||
// Mocks
|
||||
// ============================================================================
|
||||
// WHY: Mocks must be hoisted to top of file (Jest requirement).
|
||||
// They run BEFORE imports, so keep them before component imports.
|
||||
|
||||
// i18n (automatically mocked)
|
||||
// WHY: Shared mock at web/__mocks__/react-i18next.ts is auto-loaded by Jest
|
||||
// No explicit mock needed - it returns translation keys as-is
|
||||
// Override only if custom translations are required:
|
||||
// jest.mock('react-i18next', () => ({
|
||||
// useTranslation: () => ({
|
||||
// t: (key: string) => {
|
||||
// const customTranslations: Record<string, string> = {
|
||||
// 'my.custom.key': 'Custom Translation',
|
||||
// }
|
||||
// return customTranslations[key] || key
|
||||
// },
|
||||
// }),
|
||||
// }))
|
||||
|
||||
// Router (if component uses useRouter, usePathname, useSearchParams)
|
||||
// WHY: Isolates tests from Next.js routing, enables testing navigation behavior
|
||||
// const mockPush = jest.fn()
|
||||
// jest.mock('next/navigation', () => ({
|
||||
// useRouter: () => ({ push: mockPush }),
|
||||
// usePathname: () => '/test-path',
|
||||
// }))
|
||||
|
||||
// API services (if component fetches data)
|
||||
// WHY: Prevents real network calls, enables testing all states (loading/success/error)
|
||||
// jest.mock('@/service/api')
|
||||
// import * as api from '@/service/api'
|
||||
// const mockedApi = api as jest.Mocked<typeof api>
|
||||
|
||||
// Shared mock state (for portal/dropdown components)
|
||||
// WHY: Portal components like PortalToFollowElem need shared state between
|
||||
// parent and child mocks to correctly simulate open/close behavior
|
||||
// let mockOpenState = false
|
||||
|
||||
// ============================================================================
|
||||
// Test Data Factories
|
||||
// ============================================================================
|
||||
// WHY FACTORIES?
|
||||
// - Avoid hard-coded test data scattered across tests
|
||||
// - Easy to create variations with overrides
|
||||
// - Type-safe when using actual types from source
|
||||
// - Single source of truth for default test values
|
||||
|
||||
// const createMockProps = (overrides = {}) => ({
|
||||
// // Default props that make component render successfully
|
||||
// ...overrides,
|
||||
// })
|
||||
|
||||
// const createMockItem = (overrides = {}) => ({
|
||||
// id: 'item-1',
|
||||
// name: 'Test Item',
|
||||
// ...overrides,
|
||||
// })
|
||||
|
||||
// ============================================================================
|
||||
// Test Helpers
|
||||
// ============================================================================
|
||||
|
||||
// const renderComponent = (props = {}) => {
|
||||
// return render(<ComponentName {...createMockProps(props)} />)
|
||||
// }
|
||||
|
||||
// ============================================================================
|
||||
// Tests
|
||||
// ============================================================================
|
||||
|
||||
describe('ComponentName', () => {
|
||||
// WHY beforeEach with clearAllMocks?
|
||||
// - Ensures each test starts with clean slate
|
||||
// - Prevents mock call history from leaking between tests
|
||||
// - MUST be beforeEach (not afterEach) to reset BEFORE assertions like toHaveBeenCalledTimes
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks()
|
||||
// Reset shared mock state if used (CRITICAL for portal/dropdown tests)
|
||||
// mockOpenState = false
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Rendering Tests (REQUIRED - Every component MUST have these)
|
||||
// --------------------------------------------------------------------------
|
||||
// WHY: Catches import errors, missing providers, and basic render issues
|
||||
describe('Rendering', () => {
|
||||
it('should render without crashing', () => {
|
||||
// Arrange - Setup data and mocks
|
||||
// const props = createMockProps()
|
||||
|
||||
// Act - Render the component
|
||||
// render(<ComponentName {...props} />)
|
||||
|
||||
// Assert - Verify expected output
|
||||
// Prefer getByRole for accessibility; it's what users "see"
|
||||
// expect(screen.getByRole('...')).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should render with default props', () => {
|
||||
// WHY: Verifies component works without optional props
|
||||
// render(<ComponentName />)
|
||||
// expect(screen.getByText('...')).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Props Tests (REQUIRED - Every component MUST test prop behavior)
|
||||
// --------------------------------------------------------------------------
|
||||
// WHY: Props are the component's API contract. Test them thoroughly.
|
||||
describe('Props', () => {
|
||||
it('should apply custom className', () => {
|
||||
// WHY: Common pattern in Dify - components should merge custom classes
|
||||
// render(<ComponentName className="custom-class" />)
|
||||
// expect(screen.getByTestId('component')).toHaveClass('custom-class')
|
||||
})
|
||||
|
||||
it('should use default values for optional props', () => {
|
||||
// WHY: Verifies TypeScript defaults work at runtime
|
||||
// render(<ComponentName />)
|
||||
// expect(screen.getByRole('...')).toHaveAttribute('...', 'default-value')
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// User Interactions (if component has event handlers - on*, handle*)
|
||||
// --------------------------------------------------------------------------
|
||||
// WHY: Event handlers are core functionality. Test from user's perspective.
|
||||
describe('User Interactions', () => {
|
||||
it('should call onClick when clicked', async () => {
|
||||
// WHY userEvent over fireEvent?
|
||||
// - userEvent simulates real user behavior (focus, hover, then click)
|
||||
// - fireEvent is lower-level, doesn't trigger all browser events
|
||||
// const user = userEvent.setup()
|
||||
// const handleClick = jest.fn()
|
||||
// render(<ComponentName onClick={handleClick} />)
|
||||
//
|
||||
// await user.click(screen.getByRole('button'))
|
||||
//
|
||||
// expect(handleClick).toHaveBeenCalledTimes(1)
|
||||
})
|
||||
|
||||
it('should call onChange when value changes', async () => {
|
||||
// const user = userEvent.setup()
|
||||
// const handleChange = jest.fn()
|
||||
// render(<ComponentName onChange={handleChange} />)
|
||||
//
|
||||
// await user.type(screen.getByRole('textbox'), 'new value')
|
||||
//
|
||||
// expect(handleChange).toHaveBeenCalled()
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// State Management (if component uses useState/useReducer)
|
||||
// --------------------------------------------------------------------------
|
||||
// WHY: Test state through observable UI changes, not internal state values
|
||||
describe('State Management', () => {
|
||||
it('should update state on interaction', async () => {
|
||||
// WHY test via UI, not state?
|
||||
// - State is implementation detail; UI is what users see
|
||||
// - If UI works correctly, state must be correct
|
||||
// const user = userEvent.setup()
|
||||
// render(<ComponentName />)
|
||||
//
|
||||
// // Initial state - verify what user sees
|
||||
// expect(screen.getByText('Initial')).toBeInTheDocument()
|
||||
//
|
||||
// // Trigger state change via user action
|
||||
// await user.click(screen.getByRole('button'))
|
||||
//
|
||||
// // New state - verify UI updated
|
||||
// expect(screen.getByText('Updated')).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Async Operations (if component fetches data - useSWR, useQuery, fetch)
|
||||
// --------------------------------------------------------------------------
|
||||
// WHY: Async operations have 3 states users experience: loading, success, error
|
||||
describe('Async Operations', () => {
|
||||
it('should show loading state', () => {
|
||||
// WHY never-resolving promise?
|
||||
// - Keeps component in loading state for assertion
|
||||
// - Alternative: use fake timers
|
||||
// mockedApi.fetchData.mockImplementation(() => new Promise(() => {}))
|
||||
// render(<ComponentName />)
|
||||
//
|
||||
// expect(screen.getByText(/loading/i)).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should show data on success', async () => {
|
||||
// WHY waitFor?
|
||||
// - Component updates asynchronously after fetch resolves
|
||||
// - waitFor retries assertion until it passes or times out
|
||||
// mockedApi.fetchData.mockResolvedValue({ items: ['Item 1'] })
|
||||
// render(<ComponentName />)
|
||||
//
|
||||
// await waitFor(() => {
|
||||
// expect(screen.getByText('Item 1')).toBeInTheDocument()
|
||||
// })
|
||||
})
|
||||
|
||||
it('should show error on failure', async () => {
|
||||
// mockedApi.fetchData.mockRejectedValue(new Error('Network error'))
|
||||
// render(<ComponentName />)
|
||||
//
|
||||
// await waitFor(() => {
|
||||
// expect(screen.getByText(/error/i)).toBeInTheDocument()
|
||||
// })
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Edge Cases (REQUIRED - Every component MUST handle edge cases)
|
||||
// --------------------------------------------------------------------------
|
||||
// WHY: Real-world data is messy. Components must handle:
|
||||
// - Null/undefined from API failures or optional fields
|
||||
// - Empty arrays/strings from user clearing data
|
||||
// - Boundary values (0, MAX_INT, special characters)
|
||||
describe('Edge Cases', () => {
|
||||
it('should handle null value', () => {
|
||||
// WHY test null specifically?
|
||||
// - API might return null for missing data
|
||||
// - Prevents "Cannot read property of null" in production
|
||||
// render(<ComponentName value={null} />)
|
||||
// expect(screen.getByText(/no data/i)).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should handle undefined value', () => {
|
||||
// WHY test undefined separately from null?
|
||||
// - TypeScript treats them differently
|
||||
// - Optional props are undefined, not null
|
||||
// render(<ComponentName value={undefined} />)
|
||||
// expect(screen.getByText(/no data/i)).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should handle empty array', () => {
|
||||
// WHY: Empty state often needs special UI (e.g., "No items yet")
|
||||
// render(<ComponentName items={[]} />)
|
||||
// expect(screen.getByText(/empty/i)).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should handle empty string', () => {
|
||||
// WHY: Empty strings are truthy in JS but visually empty
|
||||
// render(<ComponentName text="" />)
|
||||
// expect(screen.getByText(/placeholder/i)).toBeInTheDocument()
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Accessibility (optional but recommended for Dify's enterprise users)
|
||||
// --------------------------------------------------------------------------
|
||||
// WHY: Dify has enterprise customers who may require accessibility compliance
|
||||
describe('Accessibility', () => {
|
||||
it('should have accessible name', () => {
|
||||
// WHY getByRole with name?
|
||||
// - Tests that screen readers can identify the element
|
||||
// - Enforces proper labeling practices
|
||||
// render(<ComponentName label="Test Label" />)
|
||||
// expect(screen.getByRole('button', { name: /test label/i })).toBeInTheDocument()
|
||||
})
|
||||
|
||||
it('should support keyboard navigation', async () => {
|
||||
// WHY: Some users can't use a mouse
|
||||
// const user = userEvent.setup()
|
||||
// render(<ComponentName />)
|
||||
//
|
||||
// await user.tab()
|
||||
// expect(screen.getByRole('button')).toHaveFocus()
|
||||
})
|
||||
})
|
||||
})
|
||||
@ -1,207 +0,0 @@
|
||||
/**
|
||||
* Test Template for Custom Hooks
|
||||
*
|
||||
* Instructions:
|
||||
* 1. Replace `useHookName` with your hook name
|
||||
* 2. Update import path
|
||||
* 3. Add/remove test sections based on hook features
|
||||
*/
|
||||
|
||||
import { renderHook, act, waitFor } from '@testing-library/react'
|
||||
// import { useHookName } from './use-hook-name'
|
||||
|
||||
// ============================================================================
|
||||
// Mocks
|
||||
// ============================================================================
|
||||
|
||||
// API services (if hook fetches data)
|
||||
// jest.mock('@/service/api')
|
||||
// import * as api from '@/service/api'
|
||||
// const mockedApi = api as jest.Mocked<typeof api>
|
||||
|
||||
// ============================================================================
|
||||
// Test Helpers
|
||||
// ============================================================================
|
||||
|
||||
// Wrapper for hooks that need context
|
||||
// const createWrapper = (contextValue = {}) => {
|
||||
// return ({ children }: { children: React.ReactNode }) => (
|
||||
// <SomeContext.Provider value={contextValue}>
|
||||
// {children}
|
||||
// </SomeContext.Provider>
|
||||
// )
|
||||
// }
|
||||
|
||||
// ============================================================================
|
||||
// Tests
|
||||
// ============================================================================
|
||||
|
||||
describe('useHookName', () => {
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks()
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Initial State
|
||||
// --------------------------------------------------------------------------
|
||||
describe('Initial State', () => {
|
||||
it('should return initial state', () => {
|
||||
// const { result } = renderHook(() => useHookName())
|
||||
//
|
||||
// expect(result.current.value).toBe(initialValue)
|
||||
// expect(result.current.isLoading).toBe(false)
|
||||
})
|
||||
|
||||
it('should accept initial value from props', () => {
|
||||
// const { result } = renderHook(() => useHookName({ initialValue: 'custom' }))
|
||||
//
|
||||
// expect(result.current.value).toBe('custom')
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// State Updates
|
||||
// --------------------------------------------------------------------------
|
||||
describe('State Updates', () => {
|
||||
it('should update value when setValue is called', () => {
|
||||
// const { result } = renderHook(() => useHookName())
|
||||
//
|
||||
// act(() => {
|
||||
// result.current.setValue('new value')
|
||||
// })
|
||||
//
|
||||
// expect(result.current.value).toBe('new value')
|
||||
})
|
||||
|
||||
it('should reset to initial value', () => {
|
||||
// const { result } = renderHook(() => useHookName({ initialValue: 'initial' }))
|
||||
//
|
||||
// act(() => {
|
||||
// result.current.setValue('changed')
|
||||
// })
|
||||
// expect(result.current.value).toBe('changed')
|
||||
//
|
||||
// act(() => {
|
||||
// result.current.reset()
|
||||
// })
|
||||
// expect(result.current.value).toBe('initial')
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Async Operations
|
||||
// --------------------------------------------------------------------------
|
||||
describe('Async Operations', () => {
|
||||
it('should fetch data on mount', async () => {
|
||||
// mockedApi.fetchData.mockResolvedValue({ data: 'test' })
|
||||
//
|
||||
// const { result } = renderHook(() => useHookName())
|
||||
//
|
||||
// // Initially loading
|
||||
// expect(result.current.isLoading).toBe(true)
|
||||
//
|
||||
// // Wait for data
|
||||
// await waitFor(() => {
|
||||
// expect(result.current.isLoading).toBe(false)
|
||||
// })
|
||||
//
|
||||
// expect(result.current.data).toEqual({ data: 'test' })
|
||||
})
|
||||
|
||||
it('should handle fetch error', async () => {
|
||||
// mockedApi.fetchData.mockRejectedValue(new Error('Network error'))
|
||||
//
|
||||
// const { result } = renderHook(() => useHookName())
|
||||
//
|
||||
// await waitFor(() => {
|
||||
// expect(result.current.error).toBeTruthy()
|
||||
// })
|
||||
//
|
||||
// expect(result.current.error?.message).toBe('Network error')
|
||||
})
|
||||
|
||||
it('should refetch when dependency changes', async () => {
|
||||
// mockedApi.fetchData.mockResolvedValue({ data: 'test' })
|
||||
//
|
||||
// const { result, rerender } = renderHook(
|
||||
// ({ id }) => useHookName(id),
|
||||
// { initialProps: { id: '1' } }
|
||||
// )
|
||||
//
|
||||
// await waitFor(() => {
|
||||
// expect(mockedApi.fetchData).toHaveBeenCalledWith('1')
|
||||
// })
|
||||
//
|
||||
// rerender({ id: '2' })
|
||||
//
|
||||
// await waitFor(() => {
|
||||
// expect(mockedApi.fetchData).toHaveBeenCalledWith('2')
|
||||
// })
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Side Effects
|
||||
// --------------------------------------------------------------------------
|
||||
describe('Side Effects', () => {
|
||||
it('should call callback when value changes', () => {
|
||||
// const callback = jest.fn()
|
||||
// const { result } = renderHook(() => useHookName({ onChange: callback }))
|
||||
//
|
||||
// act(() => {
|
||||
// result.current.setValue('new value')
|
||||
// })
|
||||
//
|
||||
// expect(callback).toHaveBeenCalledWith('new value')
|
||||
})
|
||||
|
||||
it('should cleanup on unmount', () => {
|
||||
// const cleanup = jest.fn()
|
||||
// jest.spyOn(window, 'addEventListener')
|
||||
// jest.spyOn(window, 'removeEventListener')
|
||||
//
|
||||
// const { unmount } = renderHook(() => useHookName())
|
||||
//
|
||||
// expect(window.addEventListener).toHaveBeenCalled()
|
||||
//
|
||||
// unmount()
|
||||
//
|
||||
// expect(window.removeEventListener).toHaveBeenCalled()
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Edge Cases
|
||||
// --------------------------------------------------------------------------
|
||||
describe('Edge Cases', () => {
|
||||
it('should handle null input', () => {
|
||||
// const { result } = renderHook(() => useHookName(null))
|
||||
//
|
||||
// expect(result.current.value).toBeNull()
|
||||
})
|
||||
|
||||
it('should handle rapid updates', () => {
|
||||
// const { result } = renderHook(() => useHookName())
|
||||
//
|
||||
// act(() => {
|
||||
// result.current.setValue('1')
|
||||
// result.current.setValue('2')
|
||||
// result.current.setValue('3')
|
||||
// })
|
||||
//
|
||||
// expect(result.current.value).toBe('3')
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// With Context (if hook uses context)
|
||||
// --------------------------------------------------------------------------
|
||||
describe('With Context', () => {
|
||||
it('should use context value', () => {
|
||||
// const wrapper = createWrapper({ someValue: 'context-value' })
|
||||
// const { result } = renderHook(() => useHookName(), { wrapper })
|
||||
//
|
||||
// expect(result.current.contextValue).toBe('context-value')
|
||||
})
|
||||
})
|
||||
})
|
||||
@ -1,154 +0,0 @@
|
||||
/**
|
||||
* Test Template for Utility Functions
|
||||
*
|
||||
* Instructions:
|
||||
* 1. Replace `utilityFunction` with your function name
|
||||
* 2. Update import path
|
||||
* 3. Use test.each for data-driven tests
|
||||
*/
|
||||
|
||||
// import { utilityFunction } from './utility'
|
||||
|
||||
// ============================================================================
|
||||
// Tests
|
||||
// ============================================================================
|
||||
|
||||
describe('utilityFunction', () => {
|
||||
// --------------------------------------------------------------------------
|
||||
// Basic Functionality
|
||||
// --------------------------------------------------------------------------
|
||||
describe('Basic Functionality', () => {
|
||||
it('should return expected result for valid input', () => {
|
||||
// expect(utilityFunction('input')).toBe('expected-output')
|
||||
})
|
||||
|
||||
it('should handle multiple arguments', () => {
|
||||
// expect(utilityFunction('a', 'b', 'c')).toBe('abc')
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Data-Driven Tests
|
||||
// --------------------------------------------------------------------------
|
||||
describe('Input/Output Mapping', () => {
|
||||
test.each([
|
||||
// [input, expected]
|
||||
['input1', 'output1'],
|
||||
['input2', 'output2'],
|
||||
['input3', 'output3'],
|
||||
])('should return %s for input %s', (input, expected) => {
|
||||
// expect(utilityFunction(input)).toBe(expected)
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Edge Cases
|
||||
// --------------------------------------------------------------------------
|
||||
describe('Edge Cases', () => {
|
||||
it('should handle empty string', () => {
|
||||
// expect(utilityFunction('')).toBe('')
|
||||
})
|
||||
|
||||
it('should handle null', () => {
|
||||
// expect(utilityFunction(null)).toBe(null)
|
||||
// or
|
||||
// expect(() => utilityFunction(null)).toThrow()
|
||||
})
|
||||
|
||||
it('should handle undefined', () => {
|
||||
// expect(utilityFunction(undefined)).toBe(undefined)
|
||||
// or
|
||||
// expect(() => utilityFunction(undefined)).toThrow()
|
||||
})
|
||||
|
||||
it('should handle empty array', () => {
|
||||
// expect(utilityFunction([])).toEqual([])
|
||||
})
|
||||
|
||||
it('should handle empty object', () => {
|
||||
// expect(utilityFunction({})).toEqual({})
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Boundary Conditions
|
||||
// --------------------------------------------------------------------------
|
||||
describe('Boundary Conditions', () => {
|
||||
it('should handle minimum value', () => {
|
||||
// expect(utilityFunction(0)).toBe(0)
|
||||
})
|
||||
|
||||
it('should handle maximum value', () => {
|
||||
// expect(utilityFunction(Number.MAX_SAFE_INTEGER)).toBe(...)
|
||||
})
|
||||
|
||||
it('should handle negative numbers', () => {
|
||||
// expect(utilityFunction(-1)).toBe(...)
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Type Coercion (if applicable)
|
||||
// --------------------------------------------------------------------------
|
||||
describe('Type Handling', () => {
|
||||
it('should handle numeric string', () => {
|
||||
// expect(utilityFunction('123')).toBe(123)
|
||||
})
|
||||
|
||||
it('should handle boolean', () => {
|
||||
// expect(utilityFunction(true)).toBe(...)
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Error Cases
|
||||
// --------------------------------------------------------------------------
|
||||
describe('Error Handling', () => {
|
||||
it('should throw for invalid input', () => {
|
||||
// expect(() => utilityFunction('invalid')).toThrow('Error message')
|
||||
})
|
||||
|
||||
it('should throw with specific error type', () => {
|
||||
// expect(() => utilityFunction('invalid')).toThrow(ValidationError)
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Complex Objects (if applicable)
|
||||
// --------------------------------------------------------------------------
|
||||
describe('Object Handling', () => {
|
||||
it('should preserve object structure', () => {
|
||||
// const input = { a: 1, b: 2 }
|
||||
// expect(utilityFunction(input)).toEqual({ a: 1, b: 2 })
|
||||
})
|
||||
|
||||
it('should handle nested objects', () => {
|
||||
// const input = { nested: { deep: 'value' } }
|
||||
// expect(utilityFunction(input)).toEqual({ nested: { deep: 'transformed' } })
|
||||
})
|
||||
|
||||
it('should not mutate input', () => {
|
||||
// const input = { a: 1 }
|
||||
// const inputCopy = { ...input }
|
||||
// utilityFunction(input)
|
||||
// expect(input).toEqual(inputCopy)
|
||||
})
|
||||
})
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Array Handling (if applicable)
|
||||
// --------------------------------------------------------------------------
|
||||
describe('Array Handling', () => {
|
||||
it('should process all elements', () => {
|
||||
// expect(utilityFunction([1, 2, 3])).toEqual([2, 4, 6])
|
||||
})
|
||||
|
||||
it('should handle single element array', () => {
|
||||
// expect(utilityFunction([1])).toEqual([2])
|
||||
})
|
||||
|
||||
it('should preserve order', () => {
|
||||
// expect(utilityFunction(['c', 'a', 'b'])).toEqual(['c', 'a', 'b'])
|
||||
})
|
||||
})
|
||||
})
|
||||
@ -1,5 +0,0 @@
|
||||
[run]
|
||||
omit =
|
||||
api/tests/*
|
||||
api/migrations/*
|
||||
api/core/rag/datasource/vdb/*
|
||||
@ -1,5 +1,6 @@
|
||||
# Cursor Rules for Dify Project
|
||||
|
||||
## Automated Test Generation
|
||||
|
||||
- Use `web/testing/testing.md` as the canonical instruction set for generating frontend automated tests.
|
||||
- When proposing or saving tests, re-read that document and follow every requirement.
|
||||
- All frontend tests MUST also comply with the `frontend-testing` skill. Treat the skill as a mandatory constraint, not optional guidance.
|
||||
8
.github/CODEOWNERS
vendored
8
.github/CODEOWNERS
vendored
@ -9,14 +9,6 @@
|
||||
# Backend (default owner, more specific rules below will override)
|
||||
api/ @QuantumGhost
|
||||
|
||||
# Backend - MCP
|
||||
api/core/mcp/ @Nov1c444
|
||||
api/core/entities/mcp_provider.py @Nov1c444
|
||||
api/services/tools/mcp_tools_manage_service.py @Nov1c444
|
||||
api/controllers/mcp/ @Nov1c444
|
||||
api/controllers/console/app/mcp_server.py @Nov1c444
|
||||
api/tests/**/*mcp* @Nov1c444
|
||||
|
||||
# Backend - Workflow - Engine (Core graph execution engine)
|
||||
api/core/workflow/graph_engine/ @laipz8200 @QuantumGhost
|
||||
api/core/workflow/runtime/ @laipz8200 @QuantumGhost
|
||||
|
||||
14
.github/ISSUE_TEMPLATE/refactor.yml
vendored
14
.github/ISSUE_TEMPLATE/refactor.yml
vendored
@ -1,6 +1,8 @@
|
||||
name: "✨ Refactor or Chore"
|
||||
description: Refactor existing code or perform maintenance chores to improve readability and reliability.
|
||||
title: "[Refactor/Chore] "
|
||||
name: "✨ Refactor"
|
||||
description: Refactor existing code for improved readability and maintainability.
|
||||
title: "[Chore/Refactor] "
|
||||
labels:
|
||||
- refactor
|
||||
body:
|
||||
- type: checkboxes
|
||||
attributes:
|
||||
@ -9,7 +11,7 @@ body:
|
||||
options:
|
||||
- label: I have read the [Contributing Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md) and [Language Policy](https://github.com/langgenius/dify/issues/1542).
|
||||
required: true
|
||||
- label: This is only for refactors or chores; if you would like to ask a question, please head to [Discussions](https://github.com/langgenius/dify/discussions/categories/general).
|
||||
- label: This is only for refactoring, if you would like to ask a question, please head to [Discussions](https://github.com/langgenius/dify/discussions/categories/general).
|
||||
required: true
|
||||
- label: I have searched for existing issues [search for existing issues](https://github.com/langgenius/dify/issues), including closed ones.
|
||||
required: true
|
||||
@ -23,14 +25,14 @@ body:
|
||||
id: description
|
||||
attributes:
|
||||
label: Description
|
||||
placeholder: "Describe the refactor or chore you are proposing."
|
||||
placeholder: "Describe the refactor you are proposing."
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: motivation
|
||||
attributes:
|
||||
label: Motivation
|
||||
placeholder: "Explain why this refactor or chore is necessary."
|
||||
placeholder: "Explain why this refactor is necessary."
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
|
||||
13
.github/ISSUE_TEMPLATE/tracker.yml
vendored
Normal file
13
.github/ISSUE_TEMPLATE/tracker.yml
vendored
Normal file
@ -0,0 +1,13 @@
|
||||
name: "👾 Tracker"
|
||||
description: For inner usages, please do not use this template.
|
||||
title: "[Tracker] "
|
||||
labels:
|
||||
- tracker
|
||||
body:
|
||||
- type: textarea
|
||||
id: content
|
||||
attributes:
|
||||
label: Blockers
|
||||
placeholder: "- [ ] ..."
|
||||
validations:
|
||||
required: true
|
||||
12
.github/copilot-instructions.md
vendored
Normal file
12
.github/copilot-instructions.md
vendored
Normal file
@ -0,0 +1,12 @@
|
||||
# Copilot Instructions
|
||||
|
||||
GitHub Copilot must follow the unified frontend testing requirements documented in `web/testing/testing.md`.
|
||||
|
||||
Key reminders:
|
||||
|
||||
- Generate tests using the mandated tech stack, naming, and code style (AAA pattern, `fireEvent`, descriptive test names, cleans up mocks).
|
||||
- Cover rendering, prop combinations, and edge cases by default; extend coverage for hooks, routing, async flows, and domain-specific components when applicable.
|
||||
- Target >95% line and branch coverage and 100% function/statement coverage.
|
||||
- Apply the project's mocking conventions for i18n, toast notifications, and Next.js utilities.
|
||||
|
||||
Any suggestions from Copilot that conflict with `web/testing/testing.md` should be revised before acceptance.
|
||||
33
.github/workflows/api-tests.yml
vendored
33
.github/workflows/api-tests.yml
vendored
@ -71,18 +71,18 @@ jobs:
|
||||
run: |
|
||||
cp api/tests/integration_tests/.env.example api/tests/integration_tests/.env
|
||||
|
||||
- name: Run API Tests
|
||||
env:
|
||||
STORAGE_TYPE: opendal
|
||||
OPENDAL_SCHEME: fs
|
||||
OPENDAL_FS_ROOT: /tmp/dify-storage
|
||||
- name: Run Workflow
|
||||
run: uv run --project api bash dev/pytest/pytest_workflow.sh
|
||||
|
||||
- name: Run Tool
|
||||
run: uv run --project api bash dev/pytest/pytest_tools.sh
|
||||
|
||||
- name: Run TestContainers
|
||||
run: uv run --project api bash dev/pytest/pytest_testcontainers.sh
|
||||
|
||||
- name: Run Unit tests
|
||||
run: |
|
||||
uv run --project api pytest \
|
||||
--timeout "${PYTEST_TIMEOUT:-180}" \
|
||||
api/tests/integration_tests/workflow \
|
||||
api/tests/integration_tests/tools \
|
||||
api/tests/test_containers_integration_tests \
|
||||
api/tests/unit_tests
|
||||
uv run --project api bash dev/pytest/pytest_unit_tests.sh
|
||||
|
||||
- name: Coverage Summary
|
||||
run: |
|
||||
@ -93,12 +93,5 @@ jobs:
|
||||
# Create a detailed coverage summary
|
||||
echo "### Test Coverage Summary :test_tube:" >> $GITHUB_STEP_SUMMARY
|
||||
echo "Total Coverage: ${TOTAL_COVERAGE}%" >> $GITHUB_STEP_SUMMARY
|
||||
{
|
||||
echo ""
|
||||
echo "<details><summary>File-level coverage (click to expand)</summary>"
|
||||
echo ""
|
||||
echo '```'
|
||||
uv run --project api coverage report -m
|
||||
echo '```'
|
||||
echo "</details>"
|
||||
} >> $GITHUB_STEP_SUMMARY
|
||||
uv run --project api coverage report --format=markdown >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
|
||||
24
.github/workflows/autofix.yml
vendored
24
.github/workflows/autofix.yml
vendored
@ -13,12 +13,11 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
|
||||
# Use uv to ensure we have the same ruff version in CI and locally.
|
||||
- uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
python-version: "3.11"
|
||||
|
||||
- uses: astral-sh/setup-uv@v6
|
||||
|
||||
- run: |
|
||||
cd api
|
||||
uv sync --dev
|
||||
@ -36,11 +35,10 @@ jobs:
|
||||
|
||||
- name: ast-grep
|
||||
run: |
|
||||
# ast-grep exits 1 if no matches are found; allow idempotent runs.
|
||||
uvx --from ast-grep-cli ast-grep --pattern 'db.session.query($WHATEVER).filter($HERE)' --rewrite 'db.session.query($WHATEVER).where($HERE)' -l py --update-all || true
|
||||
uvx --from ast-grep-cli ast-grep --pattern 'session.query($WHATEVER).filter($HERE)' --rewrite 'session.query($WHATEVER).where($HERE)' -l py --update-all || true
|
||||
uvx --from ast-grep-cli ast-grep -p '$A = db.Column($$$B)' -r '$A = mapped_column($$$B)' -l py --update-all || true
|
||||
uvx --from ast-grep-cli ast-grep -p '$A : $T = db.Column($$$B)' -r '$A : $T = mapped_column($$$B)' -l py --update-all || true
|
||||
uvx --from ast-grep-cli sg --pattern 'db.session.query($WHATEVER).filter($HERE)' --rewrite 'db.session.query($WHATEVER).where($HERE)' -l py --update-all
|
||||
uvx --from ast-grep-cli sg --pattern 'session.query($WHATEVER).filter($HERE)' --rewrite 'session.query($WHATEVER).where($HERE)' -l py --update-all
|
||||
uvx --from ast-grep-cli sg -p '$A = db.Column($$$B)' -r '$A = mapped_column($$$B)' -l py --update-all
|
||||
uvx --from ast-grep-cli sg -p '$A : $T = db.Column($$$B)' -r '$A : $T = mapped_column($$$B)' -l py --update-all
|
||||
# Convert Optional[T] to T | None (ignoring quoted types)
|
||||
cat > /tmp/optional-rule.yml << 'EOF'
|
||||
id: convert-optional-to-union
|
||||
@ -58,15 +56,14 @@ jobs:
|
||||
pattern: $T
|
||||
fix: $T | None
|
||||
EOF
|
||||
uvx --from ast-grep-cli ast-grep scan . --inline-rules "$(cat /tmp/optional-rule.yml)" --update-all
|
||||
uvx --from ast-grep-cli sg scan --inline-rules "$(cat /tmp/optional-rule.yml)" --update-all
|
||||
# Fix forward references that were incorrectly converted (Python doesn't support "Type" | None syntax)
|
||||
find . -name "*.py" -type f -exec sed -i.bak -E 's/"([^"]+)" \| None/Optional["\1"]/g; s/'"'"'([^'"'"']+)'"'"' \| None/Optional['"'"'\1'"'"']/g' {} \;
|
||||
find . -name "*.py.bak" -type f -delete
|
||||
|
||||
# mdformat breaks YAML front matter in markdown files. Add --exclude for directories containing YAML front matter.
|
||||
- name: mdformat
|
||||
run: |
|
||||
uvx --python 3.13 mdformat . --exclude ".claude/skills/**"
|
||||
uvx mdformat .
|
||||
|
||||
- name: Install pnpm
|
||||
uses: pnpm/action-setup@v4
|
||||
@ -87,6 +84,7 @@ jobs:
|
||||
|
||||
- name: oxlint
|
||||
working-directory: ./web
|
||||
run: pnpm exec oxlint --config .oxlintrc.json --fix .
|
||||
run: |
|
||||
pnpx oxlint --fix
|
||||
|
||||
- uses: autofix-ci/action@635ffb0c9798bd160680f18fd73371e355b85f27
|
||||
|
||||
21
.github/workflows/semantic-pull-request.yml
vendored
21
.github/workflows/semantic-pull-request.yml
vendored
@ -1,21 +0,0 @@
|
||||
name: Semantic Pull Request
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
types:
|
||||
- opened
|
||||
- edited
|
||||
- reopened
|
||||
- synchronize
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
name: Validate PR title
|
||||
permissions:
|
||||
pull-requests: read
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check title
|
||||
uses: amannn/action-semantic-pull-request@v6.1.1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@ -189,7 +189,6 @@ docker/volumes/matrixone/*
|
||||
docker/volumes/mysql/*
|
||||
docker/volumes/seekdb/*
|
||||
!docker/volumes/oceanbase/init.d
|
||||
docker/volumes/iris/*
|
||||
|
||||
docker/nginx/conf.d/default.conf
|
||||
docker/nginx/ssl/*
|
||||
|
||||
5
.windsurf/rules/testing.md
Normal file
5
.windsurf/rules/testing.md
Normal file
@ -0,0 +1,5 @@
|
||||
# Windsurf Testing Rules
|
||||
|
||||
- Use `web/testing/testing.md` as the single source of truth for frontend automated testing.
|
||||
- Honor every requirement in that document when generating or accepting tests.
|
||||
- When proposing or saving tests, re-read that document and follow every requirement.
|
||||
@ -543,25 +543,6 @@ APP_MAX_EXECUTION_TIME=1200
|
||||
APP_DEFAULT_ACTIVE_REQUESTS=0
|
||||
APP_MAX_ACTIVE_REQUESTS=0
|
||||
|
||||
# Aliyun SLS Logstore Configuration
|
||||
# Aliyun Access Key ID
|
||||
ALIYUN_SLS_ACCESS_KEY_ID=
|
||||
# Aliyun Access Key Secret
|
||||
ALIYUN_SLS_ACCESS_KEY_SECRET=
|
||||
# Aliyun SLS Endpoint (e.g., cn-hangzhou.log.aliyuncs.com)
|
||||
ALIYUN_SLS_ENDPOINT=
|
||||
# Aliyun SLS Region (e.g., cn-hangzhou)
|
||||
ALIYUN_SLS_REGION=
|
||||
# Aliyun SLS Project Name
|
||||
ALIYUN_SLS_PROJECT_NAME=
|
||||
# Number of days to retain workflow run logs (default: 365 days, 3650 for permanent storage)
|
||||
ALIYUN_SLS_LOGSTORE_TTL=365
|
||||
# Enable dual-write to both SLS LogStore and SQL database (default: false)
|
||||
LOGSTORE_DUAL_WRITE_ENABLED=false
|
||||
# Enable dual-read fallback to SQL database when LogStore returns no results (default: true)
|
||||
# Useful for migration scenarios where historical data exists only in SQL database
|
||||
LOGSTORE_DUAL_READ_ENABLED=true
|
||||
|
||||
# Celery beat configuration
|
||||
CELERY_BEAT_SCHEDULER_TIME=1
|
||||
|
||||
@ -673,20 +654,3 @@ TENANT_ISOLATED_TASK_CONCURRENCY=1
|
||||
|
||||
# Maximum number of segments for dataset segments API (0 for unlimited)
|
||||
DATASET_MAX_SEGMENTS_PER_REQUEST=0
|
||||
|
||||
# Multimodal knowledgebase limit
|
||||
SINGLE_CHUNK_ATTACHMENT_LIMIT=10
|
||||
ATTACHMENT_IMAGE_FILE_SIZE_LIMIT=2
|
||||
ATTACHMENT_IMAGE_DOWNLOAD_TIMEOUT=60
|
||||
IMAGE_FILE_BATCH_LIMIT=10
|
||||
|
||||
# Maximum allowed CSV file size for annotation import in megabytes
|
||||
ANNOTATION_IMPORT_FILE_SIZE_LIMIT=2
|
||||
#Maximum number of annotation records allowed in a single import
|
||||
ANNOTATION_IMPORT_MAX_RECORDS=10000
|
||||
# Minimum number of annotation records required in a single import
|
||||
ANNOTATION_IMPORT_MIN_RECORDS=1
|
||||
ANNOTATION_IMPORT_RATE_LIMIT_PER_MINUTE=5
|
||||
ANNOTATION_IMPORT_RATE_LIMIT_PER_HOUR=20
|
||||
# Maximum number of concurrent annotation import tasks per tenant
|
||||
ANNOTATION_IMPORT_MAX_CONCURRENT=5
|
||||
|
||||
@ -75,7 +75,6 @@ def initialize_extensions(app: DifyApp):
|
||||
ext_import_modules,
|
||||
ext_logging,
|
||||
ext_login,
|
||||
ext_logstore,
|
||||
ext_mail,
|
||||
ext_migrate,
|
||||
ext_orjson,
|
||||
@ -84,7 +83,6 @@ def initialize_extensions(app: DifyApp):
|
||||
ext_redis,
|
||||
ext_request_logging,
|
||||
ext_sentry,
|
||||
ext_session_factory,
|
||||
ext_set_secretkey,
|
||||
ext_storage,
|
||||
ext_timezone,
|
||||
@ -106,7 +104,6 @@ def initialize_extensions(app: DifyApp):
|
||||
ext_migrate,
|
||||
ext_redis,
|
||||
ext_storage,
|
||||
ext_logstore, # Initialize logstore after storage, before celery
|
||||
ext_celery,
|
||||
ext_login,
|
||||
ext_mail,
|
||||
@ -117,7 +114,6 @@ def initialize_extensions(app: DifyApp):
|
||||
ext_commands,
|
||||
ext_otel,
|
||||
ext_request_logging,
|
||||
ext_session_factory,
|
||||
]
|
||||
for ext in extensions:
|
||||
short_name = ext.__name__.split(".")[-1]
|
||||
|
||||
@ -360,57 +360,6 @@ class FileUploadConfig(BaseSettings):
|
||||
default=10,
|
||||
)
|
||||
|
||||
IMAGE_FILE_BATCH_LIMIT: PositiveInt = Field(
|
||||
description="Maximum number of files allowed in a image batch upload operation",
|
||||
default=10,
|
||||
)
|
||||
|
||||
SINGLE_CHUNK_ATTACHMENT_LIMIT: PositiveInt = Field(
|
||||
description="Maximum number of files allowed in a single chunk attachment",
|
||||
default=10,
|
||||
)
|
||||
|
||||
ATTACHMENT_IMAGE_FILE_SIZE_LIMIT: NonNegativeInt = Field(
|
||||
description="Maximum allowed image file size for attachments in megabytes",
|
||||
default=2,
|
||||
)
|
||||
|
||||
ATTACHMENT_IMAGE_DOWNLOAD_TIMEOUT: NonNegativeInt = Field(
|
||||
description="Timeout for downloading image attachments in seconds",
|
||||
default=60,
|
||||
)
|
||||
|
||||
# Annotation Import Security Configurations
|
||||
ANNOTATION_IMPORT_FILE_SIZE_LIMIT: NonNegativeInt = Field(
|
||||
description="Maximum allowed CSV file size for annotation import in megabytes",
|
||||
default=2,
|
||||
)
|
||||
|
||||
ANNOTATION_IMPORT_MAX_RECORDS: PositiveInt = Field(
|
||||
description="Maximum number of annotation records allowed in a single import",
|
||||
default=10000,
|
||||
)
|
||||
|
||||
ANNOTATION_IMPORT_MIN_RECORDS: PositiveInt = Field(
|
||||
description="Minimum number of annotation records required in a single import",
|
||||
default=1,
|
||||
)
|
||||
|
||||
ANNOTATION_IMPORT_RATE_LIMIT_PER_MINUTE: PositiveInt = Field(
|
||||
description="Maximum number of annotation import requests per minute per tenant",
|
||||
default=5,
|
||||
)
|
||||
|
||||
ANNOTATION_IMPORT_RATE_LIMIT_PER_HOUR: PositiveInt = Field(
|
||||
description="Maximum number of annotation import requests per hour per tenant",
|
||||
default=20,
|
||||
)
|
||||
|
||||
ANNOTATION_IMPORT_MAX_CONCURRENT: PositiveInt = Field(
|
||||
description="Maximum number of concurrent annotation import tasks per tenant",
|
||||
default=2,
|
||||
)
|
||||
|
||||
inner_UPLOAD_FILE_EXTENSION_BLACKLIST: str = Field(
|
||||
description=(
|
||||
"Comma-separated list of file extensions that are blocked from upload. "
|
||||
|
||||
@ -26,7 +26,6 @@ from .vdb.clickzetta_config import ClickzettaConfig
|
||||
from .vdb.couchbase_config import CouchbaseConfig
|
||||
from .vdb.elasticsearch_config import ElasticsearchConfig
|
||||
from .vdb.huawei_cloud_config import HuaweiCloudConfig
|
||||
from .vdb.iris_config import IrisVectorConfig
|
||||
from .vdb.lindorm_config import LindormConfig
|
||||
from .vdb.matrixone_config import MatrixoneConfig
|
||||
from .vdb.milvus_config import MilvusConfig
|
||||
@ -107,7 +106,7 @@ class KeywordStoreConfig(BaseSettings):
|
||||
|
||||
class DatabaseConfig(BaseSettings):
|
||||
# Database type selector
|
||||
DB_TYPE: Literal["postgresql", "mysql", "oceanbase", "seekdb"] = Field(
|
||||
DB_TYPE: Literal["postgresql", "mysql", "oceanbase"] = Field(
|
||||
description="Database type to use. OceanBase is MySQL-compatible.",
|
||||
default="postgresql",
|
||||
)
|
||||
@ -337,7 +336,6 @@ class MiddlewareConfig(
|
||||
ChromaConfig,
|
||||
ClickzettaConfig,
|
||||
HuaweiCloudConfig,
|
||||
IrisVectorConfig,
|
||||
MilvusConfig,
|
||||
AlibabaCloudMySQLConfig,
|
||||
MyScaleConfig,
|
||||
|
||||
@ -1,91 +0,0 @@
|
||||
"""Configuration for InterSystems IRIS vector database."""
|
||||
|
||||
from pydantic import Field, PositiveInt, model_validator
|
||||
from pydantic_settings import BaseSettings
|
||||
|
||||
|
||||
class IrisVectorConfig(BaseSettings):
|
||||
"""Configuration settings for IRIS vector database connection and pooling."""
|
||||
|
||||
IRIS_HOST: str | None = Field(
|
||||
description="Hostname or IP address of the IRIS server.",
|
||||
default="localhost",
|
||||
)
|
||||
|
||||
IRIS_SUPER_SERVER_PORT: PositiveInt | None = Field(
|
||||
description="Port number for IRIS connection.",
|
||||
default=1972,
|
||||
)
|
||||
|
||||
IRIS_USER: str | None = Field(
|
||||
description="Username for IRIS authentication.",
|
||||
default="_SYSTEM",
|
||||
)
|
||||
|
||||
IRIS_PASSWORD: str | None = Field(
|
||||
description="Password for IRIS authentication.",
|
||||
default="Dify@1234",
|
||||
)
|
||||
|
||||
IRIS_SCHEMA: str | None = Field(
|
||||
description="Schema name for IRIS tables.",
|
||||
default="dify",
|
||||
)
|
||||
|
||||
IRIS_DATABASE: str | None = Field(
|
||||
description="Database namespace for IRIS connection.",
|
||||
default="USER",
|
||||
)
|
||||
|
||||
IRIS_CONNECTION_URL: str | None = Field(
|
||||
description="Full connection URL for IRIS (overrides individual fields if provided).",
|
||||
default=None,
|
||||
)
|
||||
|
||||
IRIS_MIN_CONNECTION: PositiveInt = Field(
|
||||
description="Minimum number of connections in the pool.",
|
||||
default=1,
|
||||
)
|
||||
|
||||
IRIS_MAX_CONNECTION: PositiveInt = Field(
|
||||
description="Maximum number of connections in the pool.",
|
||||
default=3,
|
||||
)
|
||||
|
||||
IRIS_TEXT_INDEX: bool = Field(
|
||||
description="Enable full-text search index using %iFind.Index.Basic.",
|
||||
default=True,
|
||||
)
|
||||
|
||||
IRIS_TEXT_INDEX_LANGUAGE: str = Field(
|
||||
description="Language for full-text search index (e.g., 'en', 'ja', 'zh', 'de').",
|
||||
default="en",
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def validate_config(cls, values: dict) -> dict:
|
||||
"""Validate IRIS configuration values.
|
||||
|
||||
Args:
|
||||
values: Configuration dictionary
|
||||
|
||||
Returns:
|
||||
Validated configuration dictionary
|
||||
|
||||
Raises:
|
||||
ValueError: If required fields are missing or pool settings are invalid
|
||||
"""
|
||||
# Only validate required fields if IRIS is being used as the vector store
|
||||
# This allows the config to be loaded even when IRIS is not in use
|
||||
|
||||
# vector_store = os.environ.get("VECTOR_STORE", "")
|
||||
# We rely on Pydantic defaults for required fields if they are missing from env.
|
||||
# Strict existence check is removed to allow defaults to work.
|
||||
|
||||
min_conn = values.get("IRIS_MIN_CONNECTION", 1)
|
||||
max_conn = values.get("IRIS_MAX_CONNECTION", 3)
|
||||
if min_conn > max_conn:
|
||||
raise ValueError("IRIS_MIN_CONNECTION must be less than or equal to IRIS_MAX_CONNECTION")
|
||||
|
||||
return values
|
||||
@ -20,7 +20,6 @@ language_timezone_mapping = {
|
||||
"sl-SI": "Europe/Ljubljana",
|
||||
"th-TH": "Asia/Bangkok",
|
||||
"id-ID": "Asia/Jakarta",
|
||||
"ar-TN": "Africa/Tunis",
|
||||
}
|
||||
|
||||
languages = list(language_timezone_mapping.keys())
|
||||
|
||||
@ -6,20 +6,19 @@ from flask import request
|
||||
from flask_restx import Resource
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
from werkzeug.exceptions import NotFound, Unauthorized
|
||||
|
||||
P = ParamSpec("P")
|
||||
R = TypeVar("R")
|
||||
from configs import dify_config
|
||||
from constants.languages import supported_language
|
||||
from controllers.console import console_ns
|
||||
from controllers.console.wraps import only_edition_cloud
|
||||
from core.db.session_factory import session_factory
|
||||
from extensions.ext_database import db
|
||||
from libs.token import extract_access_token
|
||||
from models.model import App, InstalledApp, RecommendedApp
|
||||
|
||||
P = ParamSpec("P")
|
||||
R = TypeVar("R")
|
||||
|
||||
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
|
||||
|
||||
|
||||
@ -91,7 +90,7 @@ class InsertExploreAppListApi(Resource):
|
||||
privacy_policy = site.privacy_policy or payload.privacy_policy or ""
|
||||
custom_disclaimer = site.custom_disclaimer or payload.custom_disclaimer or ""
|
||||
|
||||
with session_factory.create_session() as session:
|
||||
with Session(db.engine) as session:
|
||||
recommended_app = session.execute(
|
||||
select(RecommendedApp).where(RecommendedApp.app_id == payload.app_id)
|
||||
).scalar_one_or_none()
|
||||
@ -139,7 +138,7 @@ class InsertExploreAppApi(Resource):
|
||||
@only_edition_cloud
|
||||
@admin_required
|
||||
def delete(self, app_id):
|
||||
with session_factory.create_session() as session:
|
||||
with Session(db.engine) as session:
|
||||
recommended_app = session.execute(
|
||||
select(RecommendedApp).where(RecommendedApp.app_id == str(app_id))
|
||||
).scalar_one_or_none()
|
||||
@ -147,13 +146,13 @@ class InsertExploreAppApi(Resource):
|
||||
if not recommended_app:
|
||||
return {"result": "success"}, 204
|
||||
|
||||
with session_factory.create_session() as session:
|
||||
with Session(db.engine) as session:
|
||||
app = session.execute(select(App).where(App.id == recommended_app.app_id)).scalar_one_or_none()
|
||||
|
||||
if app:
|
||||
app.is_public = False
|
||||
|
||||
with session_factory.create_session() as session:
|
||||
with Session(db.engine) as session:
|
||||
installed_apps = (
|
||||
session.execute(
|
||||
select(InstalledApp).where(
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
from typing import Any, Literal
|
||||
|
||||
from flask import abort, make_response, request
|
||||
from flask import request
|
||||
from flask_restx import Resource, fields, marshal, marshal_with
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
@ -8,8 +8,6 @@ from controllers.common.errors import NoFileUploadedError, TooManyFilesError
|
||||
from controllers.console import console_ns
|
||||
from controllers.console.wraps import (
|
||||
account_initialization_required,
|
||||
annotation_import_concurrency_limit,
|
||||
annotation_import_rate_limit,
|
||||
cloud_edition_billing_resource_check,
|
||||
edit_permission_required,
|
||||
setup_required,
|
||||
@ -259,7 +257,7 @@ class AnnotationApi(Resource):
|
||||
@console_ns.route("/apps/<uuid:app_id>/annotations/export")
|
||||
class AnnotationExportApi(Resource):
|
||||
@console_ns.doc("export_annotations")
|
||||
@console_ns.doc(description="Export all annotations for an app with CSV injection protection")
|
||||
@console_ns.doc(description="Export all annotations for an app")
|
||||
@console_ns.doc(params={"app_id": "Application ID"})
|
||||
@console_ns.response(
|
||||
200,
|
||||
@ -274,14 +272,8 @@ class AnnotationExportApi(Resource):
|
||||
def get(self, app_id):
|
||||
app_id = str(app_id)
|
||||
annotation_list = AppAnnotationService.export_annotation_list_by_app_id(app_id)
|
||||
response_data = {"data": marshal(annotation_list, annotation_fields)}
|
||||
|
||||
# Create response with secure headers for CSV export
|
||||
response = make_response(response_data, 200)
|
||||
response.headers["Content-Type"] = "application/json; charset=utf-8"
|
||||
response.headers["X-Content-Type-Options"] = "nosniff"
|
||||
|
||||
return response
|
||||
response = {"data": marshal(annotation_list, annotation_fields)}
|
||||
return response, 200
|
||||
|
||||
|
||||
@console_ns.route("/apps/<uuid:app_id>/annotations/<uuid:annotation_id>")
|
||||
@ -322,25 +314,18 @@ class AnnotationUpdateDeleteApi(Resource):
|
||||
@console_ns.route("/apps/<uuid:app_id>/annotations/batch-import")
|
||||
class AnnotationBatchImportApi(Resource):
|
||||
@console_ns.doc("batch_import_annotations")
|
||||
@console_ns.doc(description="Batch import annotations from CSV file with rate limiting and security checks")
|
||||
@console_ns.doc(description="Batch import annotations from CSV file")
|
||||
@console_ns.doc(params={"app_id": "Application ID"})
|
||||
@console_ns.response(200, "Batch import started successfully")
|
||||
@console_ns.response(403, "Insufficient permissions")
|
||||
@console_ns.response(400, "No file uploaded or too many files")
|
||||
@console_ns.response(413, "File too large")
|
||||
@console_ns.response(429, "Too many requests or concurrent imports")
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@cloud_edition_billing_resource_check("annotation")
|
||||
@annotation_import_rate_limit
|
||||
@annotation_import_concurrency_limit
|
||||
@edit_permission_required
|
||||
def post(self, app_id):
|
||||
from configs import dify_config
|
||||
|
||||
app_id = str(app_id)
|
||||
|
||||
# check file
|
||||
if "file" not in request.files:
|
||||
raise NoFileUploadedError()
|
||||
@ -350,27 +335,9 @@ class AnnotationBatchImportApi(Resource):
|
||||
|
||||
# get file from request
|
||||
file = request.files["file"]
|
||||
|
||||
# check file type
|
||||
if not file.filename or not file.filename.lower().endswith(".csv"):
|
||||
raise ValueError("Invalid file type. Only CSV files are allowed")
|
||||
|
||||
# Check file size before processing
|
||||
file.seek(0, 2) # Seek to end of file
|
||||
file_size = file.tell()
|
||||
file.seek(0) # Reset to beginning
|
||||
|
||||
max_size_bytes = dify_config.ANNOTATION_IMPORT_FILE_SIZE_LIMIT * 1024 * 1024
|
||||
if file_size > max_size_bytes:
|
||||
abort(
|
||||
413,
|
||||
f"File size exceeds maximum limit of {dify_config.ANNOTATION_IMPORT_FILE_SIZE_LIMIT}MB. "
|
||||
f"Please reduce the file size and try again.",
|
||||
)
|
||||
|
||||
if file_size == 0:
|
||||
raise ValueError("The uploaded file is empty")
|
||||
|
||||
return AppAnnotationService.batch_import_app_annotations(app_id, file)
|
||||
|
||||
|
||||
|
||||
@ -61,7 +61,6 @@ class ChatMessagesQuery(BaseModel):
|
||||
class MessageFeedbackPayload(BaseModel):
|
||||
message_id: str = Field(..., description="Message ID")
|
||||
rating: Literal["like", "dislike"] | None = Field(default=None, description="Feedback rating")
|
||||
content: str | None = Field(default=None, description="Feedback content")
|
||||
|
||||
@field_validator("message_id")
|
||||
@classmethod
|
||||
@ -325,7 +324,6 @@ class MessageFeedbackApi(Resource):
|
||||
db.session.delete(feedback)
|
||||
elif args.rating and feedback:
|
||||
feedback.rating = args.rating
|
||||
feedback.content = args.content
|
||||
elif not args.rating and not feedback:
|
||||
raise ValueError("rating cannot be None when feedback not exists")
|
||||
else:
|
||||
@ -337,7 +335,6 @@ class MessageFeedbackApi(Resource):
|
||||
conversation_id=message.conversation_id,
|
||||
message_id=message.id,
|
||||
rating=rating_value,
|
||||
content=args.content,
|
||||
from_source="admin",
|
||||
from_account_id=current_user.id,
|
||||
)
|
||||
|
||||
@ -114,7 +114,7 @@ class AppTriggersApi(Resource):
|
||||
|
||||
@console_ns.route("/apps/<uuid:app_id>/trigger-enable")
|
||||
class AppTriggerEnableApi(Resource):
|
||||
@console_ns.expect(console_ns.models[ParserEnable.__name__])
|
||||
@console_ns.expect(console_ns.models[ParserEnable.__name__], validate=True)
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
|
||||
@ -22,12 +22,7 @@ from controllers.console.error import (
|
||||
NotAllowedCreateWorkspace,
|
||||
WorkspacesLimitExceeded,
|
||||
)
|
||||
from controllers.console.wraps import (
|
||||
decrypt_code_field,
|
||||
decrypt_password_field,
|
||||
email_password_login_enabled,
|
||||
setup_required,
|
||||
)
|
||||
from controllers.console.wraps import email_password_login_enabled, setup_required
|
||||
from events.tenant_event import tenant_was_created
|
||||
from libs.helper import EmailStr, extract_remote_ip
|
||||
from libs.login import current_account_with_tenant
|
||||
@ -84,7 +79,6 @@ class LoginApi(Resource):
|
||||
@setup_required
|
||||
@email_password_login_enabled
|
||||
@console_ns.expect(console_ns.models[LoginPayload.__name__])
|
||||
@decrypt_password_field
|
||||
def post(self):
|
||||
"""Authenticate user and login."""
|
||||
args = LoginPayload.model_validate(console_ns.payload)
|
||||
@ -224,7 +218,6 @@ class EmailCodeLoginSendEmailApi(Resource):
|
||||
class EmailCodeLoginApi(Resource):
|
||||
@setup_required
|
||||
@console_ns.expect(console_ns.models[EmailCodeLoginPayload.__name__])
|
||||
@decrypt_code_field
|
||||
def post(self):
|
||||
args = EmailCodeLoginPayload.model_validate(console_ns.payload)
|
||||
|
||||
|
||||
@ -140,18 +140,6 @@ class DataSourceNotionListApi(Resource):
|
||||
credential_id = request.args.get("credential_id", default=None, type=str)
|
||||
if not credential_id:
|
||||
raise ValueError("Credential id is required.")
|
||||
|
||||
# Get datasource_parameters from query string (optional, for GitHub and other datasources)
|
||||
datasource_parameters_str = request.args.get("datasource_parameters", default=None, type=str)
|
||||
datasource_parameters = {}
|
||||
if datasource_parameters_str:
|
||||
try:
|
||||
datasource_parameters = json.loads(datasource_parameters_str)
|
||||
if not isinstance(datasource_parameters, dict):
|
||||
raise ValueError("datasource_parameters must be a JSON object.")
|
||||
except json.JSONDecodeError:
|
||||
raise ValueError("Invalid datasource_parameters JSON format.")
|
||||
|
||||
datasource_provider_service = DatasourceProviderService()
|
||||
credential = datasource_provider_service.get_datasource_credentials(
|
||||
tenant_id=current_tenant_id,
|
||||
@ -199,7 +187,7 @@ class DataSourceNotionListApi(Resource):
|
||||
online_document_result: Generator[OnlineDocumentPagesMessage, None, None] = (
|
||||
datasource_runtime.get_online_document_pages(
|
||||
user_id=current_user.id,
|
||||
datasource_parameters=datasource_parameters,
|
||||
datasource_parameters={},
|
||||
provider_type=datasource_runtime.datasource_provider_type(),
|
||||
)
|
||||
)
|
||||
@ -230,14 +218,14 @@ class DataSourceNotionListApi(Resource):
|
||||
|
||||
|
||||
@console_ns.route(
|
||||
"/notion/pages/<uuid:page_id>/<string:page_type>/preview",
|
||||
"/notion/workspaces/<uuid:workspace_id>/pages/<uuid:page_id>/<string:page_type>/preview",
|
||||
"/datasets/notion-indexing-estimate",
|
||||
)
|
||||
class DataSourceNotionApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self, page_id, page_type):
|
||||
def get(self, workspace_id, page_id, page_type):
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
|
||||
credential_id = request.args.get("credential_id", default=None, type=str)
|
||||
@ -251,10 +239,11 @@ class DataSourceNotionApi(Resource):
|
||||
plugin_id="langgenius/notion_datasource",
|
||||
)
|
||||
|
||||
workspace_id = str(workspace_id)
|
||||
page_id = str(page_id)
|
||||
|
||||
extractor = NotionExtractor(
|
||||
notion_workspace_id="",
|
||||
notion_workspace_id=workspace_id,
|
||||
notion_obj_id=page_id,
|
||||
notion_page_type=page_type,
|
||||
notion_access_token=credential.get("integration_secret"),
|
||||
|
||||
@ -151,7 +151,6 @@ class DatasetUpdatePayload(BaseModel):
|
||||
external_knowledge_id: str | None = None
|
||||
external_knowledge_api_id: str | None = None
|
||||
icon_info: dict[str, Any] | None = None
|
||||
is_multimodal: bool | None = False
|
||||
|
||||
@field_validator("indexing_technique")
|
||||
@classmethod
|
||||
@ -223,7 +222,6 @@ def _get_retrieval_methods_by_vector_type(vector_type: str | None, is_mock: bool
|
||||
VectorType.COUCHBASE,
|
||||
VectorType.OPENGAUSS,
|
||||
VectorType.OCEANBASE,
|
||||
VectorType.SEEKDB,
|
||||
VectorType.TABLESTORE,
|
||||
VectorType.HUAWEI_CLOUD,
|
||||
VectorType.TENCENT,
|
||||
@ -231,7 +229,6 @@ def _get_retrieval_methods_by_vector_type(vector_type: str | None, is_mock: bool
|
||||
VectorType.CLICKZETTA,
|
||||
VectorType.BAIDU,
|
||||
VectorType.ALIBABACLOUD_MYSQL,
|
||||
VectorType.IRIS,
|
||||
}
|
||||
|
||||
semantic_methods = {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
|
||||
@ -424,18 +421,19 @@ class DatasetApi(Resource):
|
||||
raise NotFound("Dataset not found.")
|
||||
|
||||
payload = DatasetUpdatePayload.model_validate(console_ns.payload or {})
|
||||
payload_data = payload.model_dump(exclude_unset=True)
|
||||
current_user, current_tenant_id = current_account_with_tenant()
|
||||
|
||||
# check embedding model setting
|
||||
if (
|
||||
payload.indexing_technique == "high_quality"
|
||||
and payload.embedding_model_provider is not None
|
||||
and payload.embedding_model is not None
|
||||
):
|
||||
is_multimodal = DatasetService.check_is_multimodal_model(
|
||||
DatasetService.check_embedding_model_setting(
|
||||
dataset.tenant_id, payload.embedding_model_provider, payload.embedding_model
|
||||
)
|
||||
payload.is_multimodal = is_multimodal
|
||||
payload_data = payload.model_dump(exclude_unset=True)
|
||||
|
||||
# The role of the current user in the ta table must be admin, owner, editor, or dataset_operator
|
||||
DatasetPermissionService.check_permission(
|
||||
current_user, dataset, payload.permission, payload.partial_member_list
|
||||
|
||||
@ -424,10 +424,6 @@ class DatasetInitApi(Resource):
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
model=knowledge_config.embedding_model,
|
||||
)
|
||||
is_multimodal = DatasetService.check_is_multimodal_model(
|
||||
current_tenant_id, knowledge_config.embedding_model_provider, knowledge_config.embedding_model
|
||||
)
|
||||
knowledge_config.is_multimodal = is_multimodal
|
||||
except InvokeAuthorizationError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
|
||||
|
||||
@ -51,7 +51,6 @@ class SegmentCreatePayload(BaseModel):
|
||||
content: str
|
||||
answer: str | None = None
|
||||
keywords: list[str] | None = None
|
||||
attachment_ids: list[str] | None = None
|
||||
|
||||
|
||||
class SegmentUpdatePayload(BaseModel):
|
||||
@ -59,7 +58,6 @@ class SegmentUpdatePayload(BaseModel):
|
||||
answer: str | None = None
|
||||
keywords: list[str] | None = None
|
||||
regenerate_child_chunks: bool = False
|
||||
attachment_ids: list[str] | None = None
|
||||
|
||||
|
||||
class BatchImportPayload(BaseModel):
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from flask_restx import marshal, reqparse
|
||||
from flask_restx import marshal
|
||||
from pydantic import BaseModel, Field
|
||||
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
|
||||
|
||||
@ -33,7 +33,6 @@ class HitTestingPayload(BaseModel):
|
||||
query: str = Field(max_length=250)
|
||||
retrieval_model: dict[str, Any] | None = None
|
||||
external_retrieval_model: dict[str, Any] | None = None
|
||||
attachment_ids: list[str] | None = None
|
||||
|
||||
|
||||
class DatasetsHitTestingBase:
|
||||
@ -55,28 +54,16 @@ class DatasetsHitTestingBase:
|
||||
def hit_testing_args_check(args: dict[str, Any]):
|
||||
HitTestingService.hit_testing_args_check(args)
|
||||
|
||||
@staticmethod
|
||||
def parse_args():
|
||||
parser = (
|
||||
reqparse.RequestParser()
|
||||
.add_argument("query", type=str, required=False, location="json")
|
||||
.add_argument("attachment_ids", type=list, required=False, location="json")
|
||||
.add_argument("retrieval_model", type=dict, required=False, location="json")
|
||||
.add_argument("external_retrieval_model", type=dict, required=False, location="json")
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
@staticmethod
|
||||
def perform_hit_testing(dataset, args):
|
||||
assert isinstance(current_user, Account)
|
||||
try:
|
||||
response = HitTestingService.retrieve(
|
||||
dataset=dataset,
|
||||
query=args.get("query"),
|
||||
query=args["query"],
|
||||
account=current_user,
|
||||
retrieval_model=args.get("retrieval_model"),
|
||||
external_retrieval_model=args.get("external_retrieval_model"),
|
||||
attachment_ids=args.get("attachment_ids"),
|
||||
retrieval_model=args["retrieval_model"],
|
||||
external_retrieval_model=args["external_retrieval_model"],
|
||||
limit=10,
|
||||
)
|
||||
return {"query": response["query"], "records": marshal(response["records"], hit_testing_record_fields)}
|
||||
|
||||
@ -26,7 +26,7 @@ console_ns.schema_model(Parser.__name__, Parser.model_json_schema(ref_template=D
|
||||
|
||||
@console_ns.route("/rag/pipelines/<uuid:pipeline_id>/workflows/published/datasource/nodes/<string:node_id>/preview")
|
||||
class DataSourceContentPreviewApi(Resource):
|
||||
@console_ns.expect(console_ns.models[Parser.__name__])
|
||||
@console_ns.expect(console_ns.models[Parser.__name__], validate=True)
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
|
||||
@ -4,7 +4,7 @@ from typing import Any, Literal, cast
|
||||
from uuid import UUID
|
||||
|
||||
from flask import abort, request
|
||||
from flask_restx import Resource, marshal_with, reqparse # type: ignore
|
||||
from flask_restx import Resource, marshal_with # type: ignore
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy.orm import Session
|
||||
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
|
||||
@ -975,11 +975,6 @@ class RagPipelineRecommendedPluginApi(Resource):
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
def get(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("type", type=str, location="args", required=False, default="all")
|
||||
args = parser.parse_args()
|
||||
type = args["type"]
|
||||
|
||||
rag_pipeline_service = RagPipelineService()
|
||||
recommended_plugins = rag_pipeline_service.get_recommended_plugins(type)
|
||||
recommended_plugins = rag_pipeline_service.get_recommended_plugins()
|
||||
return recommended_plugins
|
||||
|
||||
@ -2,7 +2,7 @@ import logging
|
||||
from typing import Any, Literal
|
||||
from uuid import UUID
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from pydantic import BaseModel, Field
|
||||
from werkzeug.exceptions import InternalServerError, NotFound
|
||||
|
||||
import services
|
||||
@ -52,24 +52,10 @@ class ChatMessagePayload(BaseModel):
|
||||
inputs: dict[str, Any]
|
||||
query: str
|
||||
files: list[dict[str, Any]] | None = None
|
||||
conversation_id: str | None = None
|
||||
parent_message_id: str | None = None
|
||||
conversation_id: UUID | None = None
|
||||
parent_message_id: UUID | None = None
|
||||
retriever_from: str = Field(default="explore_app")
|
||||
|
||||
@field_validator("conversation_id", "parent_message_id", mode="before")
|
||||
@classmethod
|
||||
def normalize_uuid(cls, value: str | UUID | None) -> str | None:
|
||||
"""
|
||||
Accept blank IDs and validate UUID format when provided.
|
||||
"""
|
||||
if not value:
|
||||
return None
|
||||
|
||||
try:
|
||||
return helper.uuid_value(value)
|
||||
except ValueError as exc:
|
||||
raise ValueError("must be a valid UUID") from exc
|
||||
|
||||
|
||||
register_schema_models(console_ns, CompletionMessagePayload, ChatMessagePayload)
|
||||
|
||||
|
||||
@ -3,7 +3,7 @@ from uuid import UUID
|
||||
|
||||
from flask import request
|
||||
from flask_restx import marshal_with
|
||||
from pydantic import BaseModel, Field, model_validator
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy.orm import Session
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
@ -30,16 +30,9 @@ class ConversationListQuery(BaseModel):
|
||||
|
||||
|
||||
class ConversationRenamePayload(BaseModel):
|
||||
name: str | None = None
|
||||
name: str
|
||||
auto_generate: bool = False
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_name_requirement(self):
|
||||
if not self.auto_generate:
|
||||
if self.name is None or not self.name.strip():
|
||||
raise ValueError("name is required when auto_generate is false")
|
||||
return self
|
||||
|
||||
|
||||
register_schema_models(console_ns, ConversationListQuery, ConversationRenamePayload)
|
||||
|
||||
|
||||
@ -45,9 +45,6 @@ class FileApi(Resource):
|
||||
"video_file_size_limit": dify_config.UPLOAD_VIDEO_FILE_SIZE_LIMIT,
|
||||
"audio_file_size_limit": dify_config.UPLOAD_AUDIO_FILE_SIZE_LIMIT,
|
||||
"workflow_file_upload_limit": dify_config.WORKFLOW_FILE_UPLOAD_LIMIT,
|
||||
"image_file_batch_limit": dify_config.IMAGE_FILE_BATCH_LIMIT,
|
||||
"single_chunk_attachment_limit": dify_config.SINGLE_CHUNK_ATTACHMENT_LIMIT,
|
||||
"attachment_image_file_size_limit": dify_config.ATTACHMENT_IMAGE_FILE_SIZE_LIMIT,
|
||||
}, 200
|
||||
|
||||
@setup_required
|
||||
|
||||
@ -230,7 +230,7 @@ class ModelProviderModelApi(Resource):
|
||||
|
||||
return {"result": "success"}, 200
|
||||
|
||||
@console_ns.expect(console_ns.models[ParserDeleteModels.__name__])
|
||||
@console_ns.expect(console_ns.models[ParserDeleteModels.__name__], validate=True)
|
||||
@setup_required
|
||||
@login_required
|
||||
@is_admin_or_owner_required
|
||||
@ -282,10 +282,9 @@ class ModelProviderModelCredentialApi(Resource):
|
||||
tenant_id=tenant_id, provider_name=provider
|
||||
)
|
||||
else:
|
||||
# Normalize model_type to the origin value stored in DB (e.g., "text-generation" for LLM)
|
||||
normalized_model_type = args.model_type.to_origin_model_type()
|
||||
model_type = args.model_type
|
||||
available_credentials = model_provider_service.provider_manager.get_provider_model_available_credentials(
|
||||
tenant_id=tenant_id, provider_name=provider, model_type=normalized_model_type, model_name=args.model
|
||||
tenant_id=tenant_id, provider_name=provider, model_type=model_type, model_name=args.model
|
||||
)
|
||||
|
||||
return jsonable_encoder(
|
||||
|
||||
@ -46,8 +46,8 @@ class PluginDebuggingKeyApi(Resource):
|
||||
|
||||
|
||||
class ParserList(BaseModel):
|
||||
page: int = Field(default=1, ge=1, description="Page number")
|
||||
page_size: int = Field(default=256, ge=1, le=256, description="Page size (1-256)")
|
||||
page: int = Field(default=1)
|
||||
page_size: int = Field(default=256)
|
||||
|
||||
|
||||
reg(ParserList)
|
||||
@ -106,8 +106,8 @@ class ParserPluginIdentifierQuery(BaseModel):
|
||||
|
||||
|
||||
class ParserTasks(BaseModel):
|
||||
page: int = Field(default=1, ge=1, description="Page number")
|
||||
page_size: int = Field(default=256, ge=1, le=256, description="Page size (1-256)")
|
||||
page: int
|
||||
page_size: int
|
||||
|
||||
|
||||
class ParserMarketplaceUpgrade(BaseModel):
|
||||
|
||||
@ -9,12 +9,10 @@ from typing import ParamSpec, TypeVar
|
||||
from flask import abort, request
|
||||
|
||||
from configs import dify_config
|
||||
from controllers.console.auth.error import AuthenticationFailedError, EmailCodeError
|
||||
from controllers.console.workspace.error import AccountNotInitializedError
|
||||
from enums.cloud_plan import CloudPlan
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from libs.encryption import FieldEncryption
|
||||
from libs.login import current_account_with_tenant
|
||||
from models.account import AccountStatus
|
||||
from models.dataset import RateLimitLog
|
||||
@ -27,14 +25,6 @@ from .error import NotInitValidateError, NotSetupError, UnauthorizedAndForceLogo
|
||||
P = ParamSpec("P")
|
||||
R = TypeVar("R")
|
||||
|
||||
# Field names for decryption
|
||||
FIELD_NAME_PASSWORD = "password"
|
||||
FIELD_NAME_CODE = "code"
|
||||
|
||||
# Error messages for decryption failures
|
||||
ERROR_MSG_INVALID_ENCRYPTED_DATA = "Invalid encrypted data"
|
||||
ERROR_MSG_INVALID_ENCRYPTED_CODE = "Invalid encrypted code"
|
||||
|
||||
|
||||
def account_initialization_required(view: Callable[P, R]):
|
||||
@wraps(view)
|
||||
@ -341,163 +331,3 @@ def is_admin_or_owner_required(f: Callable[P, R]):
|
||||
return f(*args, **kwargs)
|
||||
|
||||
return decorated_function
|
||||
|
||||
|
||||
def annotation_import_rate_limit(view: Callable[P, R]):
|
||||
"""
|
||||
Rate limiting decorator for annotation import operations.
|
||||
|
||||
Implements sliding window rate limiting with two tiers:
|
||||
- Short-term: Configurable requests per minute (default: 5)
|
||||
- Long-term: Configurable requests per hour (default: 20)
|
||||
|
||||
Uses Redis ZSET for distributed rate limiting across multiple instances.
|
||||
"""
|
||||
|
||||
@wraps(view)
|
||||
def decorated(*args: P.args, **kwargs: P.kwargs):
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
current_time = int(time.time() * 1000)
|
||||
|
||||
# Check per-minute rate limit
|
||||
minute_key = f"annotation_import_rate_limit:{current_tenant_id}:1min"
|
||||
redis_client.zadd(minute_key, {current_time: current_time})
|
||||
redis_client.zremrangebyscore(minute_key, 0, current_time - 60000)
|
||||
minute_count = redis_client.zcard(minute_key)
|
||||
redis_client.expire(minute_key, 120) # 2 minutes TTL
|
||||
|
||||
if minute_count > dify_config.ANNOTATION_IMPORT_RATE_LIMIT_PER_MINUTE:
|
||||
abort(
|
||||
429,
|
||||
f"Too many annotation import requests. Maximum {dify_config.ANNOTATION_IMPORT_RATE_LIMIT_PER_MINUTE} "
|
||||
f"requests per minute allowed. Please try again later.",
|
||||
)
|
||||
|
||||
# Check per-hour rate limit
|
||||
hour_key = f"annotation_import_rate_limit:{current_tenant_id}:1hour"
|
||||
redis_client.zadd(hour_key, {current_time: current_time})
|
||||
redis_client.zremrangebyscore(hour_key, 0, current_time - 3600000)
|
||||
hour_count = redis_client.zcard(hour_key)
|
||||
redis_client.expire(hour_key, 7200) # 2 hours TTL
|
||||
|
||||
if hour_count > dify_config.ANNOTATION_IMPORT_RATE_LIMIT_PER_HOUR:
|
||||
abort(
|
||||
429,
|
||||
f"Too many annotation import requests. Maximum {dify_config.ANNOTATION_IMPORT_RATE_LIMIT_PER_HOUR} "
|
||||
f"requests per hour allowed. Please try again later.",
|
||||
)
|
||||
|
||||
return view(*args, **kwargs)
|
||||
|
||||
return decorated
|
||||
|
||||
|
||||
def annotation_import_concurrency_limit(view: Callable[P, R]):
|
||||
"""
|
||||
Concurrency control decorator for annotation import operations.
|
||||
|
||||
Limits the number of concurrent import tasks per tenant to prevent
|
||||
resource exhaustion and ensure fair resource allocation.
|
||||
|
||||
Uses Redis ZSET to track active import jobs with automatic cleanup
|
||||
of stale entries (jobs older than 2 minutes).
|
||||
"""
|
||||
|
||||
@wraps(view)
|
||||
def decorated(*args: P.args, **kwargs: P.kwargs):
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
current_time = int(time.time() * 1000)
|
||||
|
||||
active_jobs_key = f"annotation_import_active:{current_tenant_id}"
|
||||
|
||||
# Clean up stale entries (jobs that should have completed or timed out)
|
||||
stale_threshold = current_time - 120000 # 2 minutes ago
|
||||
redis_client.zremrangebyscore(active_jobs_key, 0, stale_threshold)
|
||||
|
||||
# Check current active job count
|
||||
active_count = redis_client.zcard(active_jobs_key)
|
||||
|
||||
if active_count >= dify_config.ANNOTATION_IMPORT_MAX_CONCURRENT:
|
||||
abort(
|
||||
429,
|
||||
f"Too many concurrent import tasks. Maximum {dify_config.ANNOTATION_IMPORT_MAX_CONCURRENT} "
|
||||
f"concurrent imports allowed per workspace. Please wait for existing imports to complete.",
|
||||
)
|
||||
|
||||
# Allow the request to proceed
|
||||
# The actual job registration will happen in the service layer
|
||||
return view(*args, **kwargs)
|
||||
|
||||
return decorated
|
||||
|
||||
|
||||
def _decrypt_field(field_name: str, error_class: type[Exception], error_message: str) -> None:
|
||||
"""
|
||||
Helper to decode a Base64 encoded field in the request payload.
|
||||
|
||||
Args:
|
||||
field_name: Name of the field to decode
|
||||
error_class: Exception class to raise on decoding failure
|
||||
error_message: Error message to include in the exception
|
||||
"""
|
||||
if not request or not request.is_json:
|
||||
return
|
||||
# Get the payload dict - it's cached and mutable
|
||||
payload = request.get_json()
|
||||
if not payload or field_name not in payload:
|
||||
return
|
||||
encoded_value = payload[field_name]
|
||||
decoded_value = FieldEncryption.decrypt_field(encoded_value)
|
||||
|
||||
# If decoding failed, raise error immediately
|
||||
if decoded_value is None:
|
||||
raise error_class(error_message)
|
||||
|
||||
# Update payload dict in-place with decoded value
|
||||
# Since payload is a mutable dict and get_json() returns the cached reference,
|
||||
# modifying it will affect all subsequent accesses including console_ns.payload
|
||||
payload[field_name] = decoded_value
|
||||
|
||||
|
||||
def decrypt_password_field(view: Callable[P, R]):
|
||||
"""
|
||||
Decorator to decrypt password field in request payload.
|
||||
|
||||
Automatically decrypts the 'password' field if encryption is enabled.
|
||||
If decryption fails, raises AuthenticationFailedError.
|
||||
|
||||
Usage:
|
||||
@decrypt_password_field
|
||||
def post(self):
|
||||
args = LoginPayload.model_validate(console_ns.payload)
|
||||
# args.password is now decrypted
|
||||
"""
|
||||
|
||||
@wraps(view)
|
||||
def decorated(*args: P.args, **kwargs: P.kwargs):
|
||||
_decrypt_field(FIELD_NAME_PASSWORD, AuthenticationFailedError, ERROR_MSG_INVALID_ENCRYPTED_DATA)
|
||||
return view(*args, **kwargs)
|
||||
|
||||
return decorated
|
||||
|
||||
|
||||
def decrypt_code_field(view: Callable[P, R]):
|
||||
"""
|
||||
Decorator to decrypt verification code field in request payload.
|
||||
|
||||
Automatically decrypts the 'code' field if encryption is enabled.
|
||||
If decryption fails, raises EmailCodeError.
|
||||
|
||||
Usage:
|
||||
@decrypt_code_field
|
||||
def post(self):
|
||||
args = EmailCodeLoginPayload.model_validate(console_ns.payload)
|
||||
# args.code is now decrypted
|
||||
"""
|
||||
|
||||
@wraps(view)
|
||||
def decorated(*args: P.args, **kwargs: P.kwargs):
|
||||
_decrypt_field(FIELD_NAME_CODE, EmailCodeError, ERROR_MSG_INVALID_ENCRYPTED_CODE)
|
||||
return view(*args, **kwargs)
|
||||
|
||||
return decorated
|
||||
|
||||
@ -4,7 +4,7 @@ from uuid import UUID
|
||||
|
||||
from flask import request
|
||||
from flask_restx import Resource
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from pydantic import BaseModel, Field
|
||||
from werkzeug.exceptions import BadRequest, InternalServerError, NotFound
|
||||
|
||||
import services
|
||||
@ -52,26 +52,11 @@ class ChatRequestPayload(BaseModel):
|
||||
query: str
|
||||
files: list[dict[str, Any]] | None = None
|
||||
response_mode: Literal["blocking", "streaming"] | None = None
|
||||
conversation_id: str | None = Field(default=None, description="Conversation UUID")
|
||||
conversation_id: UUID | None = None
|
||||
retriever_from: str = Field(default="dev")
|
||||
auto_generate_name: bool = Field(default=True, description="Auto generate conversation name")
|
||||
workflow_id: str | None = Field(default=None, description="Workflow ID for advanced chat")
|
||||
|
||||
@field_validator("conversation_id", mode="before")
|
||||
@classmethod
|
||||
def normalize_conversation_id(cls, value: str | UUID | None) -> str | None:
|
||||
"""Allow missing or blank conversation IDs; enforce UUID format when provided."""
|
||||
if isinstance(value, str):
|
||||
value = value.strip()
|
||||
|
||||
if not value:
|
||||
return None
|
||||
|
||||
try:
|
||||
return helper.uuid_value(value)
|
||||
except ValueError as exc:
|
||||
raise ValueError("conversation_id must be a valid UUID") from exc
|
||||
|
||||
|
||||
register_schema_models(service_api_ns, CompletionRequestPayload, ChatRequestPayload)
|
||||
|
||||
|
||||
@ -4,7 +4,7 @@ from uuid import UUID
|
||||
from flask import request
|
||||
from flask_restx import Resource
|
||||
from flask_restx._http import HTTPStatus
|
||||
from pydantic import BaseModel, Field, model_validator
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy.orm import Session
|
||||
from werkzeug.exceptions import BadRequest, NotFound
|
||||
|
||||
@ -37,16 +37,9 @@ class ConversationListQuery(BaseModel):
|
||||
|
||||
|
||||
class ConversationRenamePayload(BaseModel):
|
||||
name: str | None = Field(default=None, description="New conversation name (required if auto_generate is false)")
|
||||
name: str = Field(description="New conversation name")
|
||||
auto_generate: bool = Field(default=False, description="Auto-generate conversation name")
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_name_requirement(self):
|
||||
if not self.auto_generate:
|
||||
if self.name is None or not self.name.strip():
|
||||
raise ValueError("name is required when auto_generate is false")
|
||||
return self
|
||||
|
||||
|
||||
class ConversationVariablesQuery(BaseModel):
|
||||
last_id: UUID | None = Field(default=None, description="Last variable ID for pagination")
|
||||
|
||||
@ -33,7 +33,7 @@ def trigger_endpoint(endpoint_id: str):
|
||||
if response:
|
||||
break
|
||||
if not response:
|
||||
logger.info("Endpoint not found for %s", endpoint_id)
|
||||
logger.error("Endpoint not found for {endpoint_id}")
|
||||
return jsonify({"error": "Endpoint not found"}), 404
|
||||
return response
|
||||
except ValueError as e:
|
||||
|
||||
@ -62,7 +62,8 @@ from core.app.task_pipeline.message_cycle_manager import MessageCycleManager
|
||||
from core.base.tts import AppGeneratorTTSPublisher, AudioTrunk
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.ops.entities.trace_entity import TraceTaskName
|
||||
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
|
||||
from core.workflow.enums import WorkflowExecutionStatus
|
||||
from core.workflow.nodes import NodeType
|
||||
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
|
||||
@ -72,7 +73,7 @@ from extensions.ext_database import db
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models import Account, Conversation, EndUser, Message, MessageFile
|
||||
from models.enums import CreatorUserRole
|
||||
from models.workflow import Workflow
|
||||
from models.workflow import Workflow, WorkflowNodeExecutionModel
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -580,7 +581,7 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
|
||||
with self._database_session() as session:
|
||||
# Save message
|
||||
self._save_message(session=session, graph_runtime_state=resolved_state)
|
||||
self._save_message(session=session, graph_runtime_state=resolved_state, trace_manager=trace_manager)
|
||||
|
||||
yield workflow_finish_resp
|
||||
elif event.stopped_by in (
|
||||
@ -590,7 +591,7 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
# When hitting input-moderation or annotation-reply, the workflow will not start
|
||||
with self._database_session() as session:
|
||||
# Save message
|
||||
self._save_message(session=session)
|
||||
self._save_message(session=session, trace_manager=trace_manager)
|
||||
|
||||
yield self._message_end_to_stream_response()
|
||||
|
||||
@ -599,6 +600,7 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
event: QueueAdvancedChatMessageEndEvent,
|
||||
*,
|
||||
graph_runtime_state: GraphRuntimeState | None = None,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle advanced chat message end events."""
|
||||
@ -616,7 +618,7 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
|
||||
# Save message
|
||||
with self._database_session() as session:
|
||||
self._save_message(session=session, graph_runtime_state=resolved_state)
|
||||
self._save_message(session=session, graph_runtime_state=resolved_state, trace_manager=trace_manager)
|
||||
|
||||
yield self._message_end_to_stream_response()
|
||||
|
||||
@ -770,7 +772,13 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
if self._conversation_name_generate_thread:
|
||||
logger.debug("Conversation name generation running as daemon thread")
|
||||
|
||||
def _save_message(self, *, session: Session, graph_runtime_state: GraphRuntimeState | None = None):
|
||||
def _save_message(
|
||||
self,
|
||||
*,
|
||||
session: Session,
|
||||
graph_runtime_state: GraphRuntimeState | None = None,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
):
|
||||
message = self._get_message(session=session)
|
||||
|
||||
# If there are assistant files, remove markdown image links from answer
|
||||
@ -809,6 +817,14 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
|
||||
metadata = self._task_state.metadata.model_dump()
|
||||
message.message_metadata = json.dumps(jsonable_encoder(metadata))
|
||||
|
||||
# Extract model provider and model_id from workflow node executions for tracing
|
||||
if message.workflow_run_id:
|
||||
model_info = self._extract_model_info_from_workflow(session, message.workflow_run_id)
|
||||
if model_info:
|
||||
message.model_provider = model_info.get("provider")
|
||||
message.model_id = model_info.get("model")
|
||||
|
||||
message_files = [
|
||||
MessageFile(
|
||||
message_id=message.id,
|
||||
@ -826,6 +842,68 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
]
|
||||
session.add_all(message_files)
|
||||
|
||||
# Trigger MESSAGE_TRACE for tracing integrations
|
||||
if trace_manager:
|
||||
trace_manager.add_trace_task(
|
||||
TraceTask(
|
||||
TraceTaskName.MESSAGE_TRACE, conversation_id=self._conversation_id, message_id=self._message_id
|
||||
)
|
||||
)
|
||||
|
||||
def _extract_model_info_from_workflow(self, session: Session, workflow_run_id: str) -> dict[str, str] | None:
|
||||
"""
|
||||
Extract model provider and model_id from workflow node executions.
|
||||
Returns dict with 'provider' and 'model' keys, or None if not found.
|
||||
"""
|
||||
try:
|
||||
# Query workflow node executions for LLM or Agent nodes
|
||||
stmt = (
|
||||
select(WorkflowNodeExecutionModel)
|
||||
.where(WorkflowNodeExecutionModel.workflow_run_id == workflow_run_id)
|
||||
.where(WorkflowNodeExecutionModel.node_type.in_(["llm", "agent"]))
|
||||
.order_by(WorkflowNodeExecutionModel.created_at.desc())
|
||||
.limit(1)
|
||||
)
|
||||
node_execution = session.scalar(stmt)
|
||||
|
||||
if not node_execution:
|
||||
return None
|
||||
|
||||
# Try to extract from execution_metadata for agent nodes
|
||||
if node_execution.execution_metadata:
|
||||
try:
|
||||
metadata = json.loads(node_execution.execution_metadata)
|
||||
agent_log = metadata.get("agent_log", [])
|
||||
# Look for the first agent thought with provider info
|
||||
for log_entry in agent_log:
|
||||
entry_metadata = log_entry.get("metadata", {})
|
||||
provider_str = entry_metadata.get("provider")
|
||||
if provider_str:
|
||||
# Parse format like "langgenius/deepseek/deepseek"
|
||||
parts = provider_str.split("/")
|
||||
if len(parts) >= 3:
|
||||
return {"provider": parts[1], "model": parts[2]}
|
||||
elif len(parts) == 2:
|
||||
return {"provider": parts[0], "model": parts[1]}
|
||||
except (json.JSONDecodeError, KeyError, AttributeError) as e:
|
||||
logger.debug("Failed to parse execution_metadata: %s", e)
|
||||
|
||||
# Try to extract from process_data for llm nodes
|
||||
if node_execution.process_data:
|
||||
try:
|
||||
process_data = json.loads(node_execution.process_data)
|
||||
provider = process_data.get("model_provider")
|
||||
model = process_data.get("model_name")
|
||||
if provider and model:
|
||||
return {"provider": provider, "model": model}
|
||||
except (json.JSONDecodeError, KeyError) as e:
|
||||
logger.debug("Failed to parse process_data: %s", e)
|
||||
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.warning("Failed to extract model info from workflow: %s", e)
|
||||
return None
|
||||
|
||||
def _seed_graph_runtime_state_from_queue_manager(self) -> None:
|
||||
"""Bootstrap the cached runtime state from the queue manager when present."""
|
||||
candidate = self._base_task_pipeline.queue_manager.graph_runtime_state
|
||||
|
||||
@ -83,7 +83,6 @@ class AppRunner:
|
||||
context: str | None = None,
|
||||
memory: TokenBufferMemory | None = None,
|
||||
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
|
||||
context_files: list["File"] | None = None,
|
||||
) -> tuple[list[PromptMessage], list[str] | None]:
|
||||
"""
|
||||
Organize prompt messages
|
||||
@ -112,7 +111,6 @@ class AppRunner:
|
||||
memory=memory,
|
||||
model_config=model_config,
|
||||
image_detail_config=image_detail_config,
|
||||
context_files=context_files,
|
||||
)
|
||||
else:
|
||||
memory_config = MemoryConfig(window=MemoryConfig.WindowConfig(enabled=False))
|
||||
|
||||
@ -11,7 +11,6 @@ from core.app.entities.app_invoke_entities import (
|
||||
)
|
||||
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.file import File
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
|
||||
@ -147,7 +146,6 @@ class ChatAppRunner(AppRunner):
|
||||
|
||||
# get context from datasets
|
||||
context = None
|
||||
context_files: list[File] = []
|
||||
if app_config.dataset and app_config.dataset.dataset_ids:
|
||||
hit_callback = DatasetIndexToolCallbackHandler(
|
||||
queue_manager,
|
||||
@ -158,7 +156,7 @@ class ChatAppRunner(AppRunner):
|
||||
)
|
||||
|
||||
dataset_retrieval = DatasetRetrieval(application_generate_entity)
|
||||
context, retrieved_files = dataset_retrieval.retrieve(
|
||||
context = dataset_retrieval.retrieve(
|
||||
app_id=app_record.id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
tenant_id=app_record.tenant_id,
|
||||
@ -173,11 +171,7 @@ class ChatAppRunner(AppRunner):
|
||||
memory=memory,
|
||||
message_id=message.id,
|
||||
inputs=inputs,
|
||||
vision_enabled=application_generate_entity.app_config.app_model_config_dict.get("file_upload", {}).get(
|
||||
"enabled", False
|
||||
),
|
||||
)
|
||||
context_files = retrieved_files or []
|
||||
|
||||
# reorganize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
@ -192,7 +186,6 @@ class ChatAppRunner(AppRunner):
|
||||
context=context,
|
||||
memory=memory,
|
||||
image_detail_config=image_detail_config,
|
||||
context_files=context_files,
|
||||
)
|
||||
|
||||
# check hosting moderation
|
||||
|
||||
@ -10,7 +10,6 @@ from core.app.entities.app_invoke_entities import (
|
||||
CompletionAppGenerateEntity,
|
||||
)
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.file import File
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
|
||||
from core.moderation.base import ModerationError
|
||||
@ -103,7 +102,6 @@ class CompletionAppRunner(AppRunner):
|
||||
|
||||
# get context from datasets
|
||||
context = None
|
||||
context_files: list[File] = []
|
||||
if app_config.dataset and app_config.dataset.dataset_ids:
|
||||
hit_callback = DatasetIndexToolCallbackHandler(
|
||||
queue_manager,
|
||||
@ -118,7 +116,7 @@ class CompletionAppRunner(AppRunner):
|
||||
query = inputs.get(dataset_config.retrieve_config.query_variable, "")
|
||||
|
||||
dataset_retrieval = DatasetRetrieval(application_generate_entity)
|
||||
context, retrieved_files = dataset_retrieval.retrieve(
|
||||
context = dataset_retrieval.retrieve(
|
||||
app_id=app_record.id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
tenant_id=app_record.tenant_id,
|
||||
@ -132,11 +130,7 @@ class CompletionAppRunner(AppRunner):
|
||||
hit_callback=hit_callback,
|
||||
message_id=message.id,
|
||||
inputs=inputs,
|
||||
vision_enabled=application_generate_entity.app_config.app_model_config_dict.get("file_upload", {}).get(
|
||||
"enabled", False
|
||||
),
|
||||
)
|
||||
context_files = retrieved_files or []
|
||||
|
||||
# reorganize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
@ -150,7 +144,6 @@ class CompletionAppRunner(AppRunner):
|
||||
query=query,
|
||||
context=context,
|
||||
image_detail_config=image_detail_config,
|
||||
context_files=context_files,
|
||||
)
|
||||
|
||||
# check hosting moderation
|
||||
|
||||
@ -40,6 +40,9 @@ class EasyUITaskState(TaskState):
|
||||
"""
|
||||
|
||||
llm_result: LLMResult
|
||||
first_token_time: float | None = None
|
||||
last_token_time: float | None = None
|
||||
is_streaming_response: bool = False
|
||||
|
||||
|
||||
class WorkflowTaskState(TaskState):
|
||||
|
||||
@ -332,6 +332,12 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline):
|
||||
if not self._task_state.llm_result.prompt_messages:
|
||||
self._task_state.llm_result.prompt_messages = chunk.prompt_messages
|
||||
|
||||
# Track streaming response times
|
||||
if self._task_state.first_token_time is None:
|
||||
self._task_state.first_token_time = time.perf_counter()
|
||||
self._task_state.is_streaming_response = True
|
||||
self._task_state.last_token_time = time.perf_counter()
|
||||
|
||||
# handle output moderation chunk
|
||||
should_direct_answer = self._handle_output_moderation_chunk(cast(str, delta_text))
|
||||
if should_direct_answer:
|
||||
@ -398,6 +404,18 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline):
|
||||
message.total_price = usage.total_price
|
||||
message.currency = usage.currency
|
||||
self._task_state.llm_result.usage.latency = message.provider_response_latency
|
||||
|
||||
# Add streaming metrics to usage if available
|
||||
if self._task_state.is_streaming_response and self._task_state.first_token_time:
|
||||
start_time = self.start_at
|
||||
first_token_time = self._task_state.first_token_time
|
||||
last_token_time = self._task_state.last_token_time or first_token_time
|
||||
usage.time_to_first_token = round(first_token_time - start_time, 3)
|
||||
usage.time_to_generate = round(last_token_time - first_token_time, 3)
|
||||
|
||||
# Update metadata with the complete usage info
|
||||
self._task_state.metadata.usage = usage
|
||||
|
||||
message.message_metadata = self._task_state.metadata.model_dump_json()
|
||||
|
||||
if trace_manager:
|
||||
|
||||
@ -7,7 +7,7 @@ from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.queue_entities import QueueRetrieverResourcesEvent
|
||||
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import ChildChunk, DatasetQuery, DocumentSegment
|
||||
@ -59,7 +59,7 @@ class DatasetIndexToolCallbackHandler:
|
||||
document_id,
|
||||
)
|
||||
continue
|
||||
if dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
child_chunk_stmt = select(ChildChunk).where(
|
||||
ChildChunk.index_node_id == document.metadata["doc_id"],
|
||||
ChildChunk.dataset_id == dataset_document.dataset_id,
|
||||
|
||||
@ -1,38 +0,0 @@
|
||||
from sqlalchemy import Engine
|
||||
from sqlalchemy.orm import Session, sessionmaker
|
||||
|
||||
_session_maker: sessionmaker | None = None
|
||||
|
||||
|
||||
def configure_session_factory(engine: Engine, expire_on_commit: bool = False):
|
||||
"""Configure the global session factory"""
|
||||
global _session_maker
|
||||
_session_maker = sessionmaker(bind=engine, expire_on_commit=expire_on_commit)
|
||||
|
||||
|
||||
def get_session_maker() -> sessionmaker:
|
||||
if _session_maker is None:
|
||||
raise RuntimeError("Session factory not configured. Call configure_session_factory() first.")
|
||||
return _session_maker
|
||||
|
||||
|
||||
def create_session() -> Session:
|
||||
return get_session_maker()()
|
||||
|
||||
|
||||
# Class wrapper for convenience
|
||||
class SessionFactory:
|
||||
@staticmethod
|
||||
def configure(engine: Engine, expire_on_commit: bool = False):
|
||||
configure_session_factory(engine, expire_on_commit)
|
||||
|
||||
@staticmethod
|
||||
def get_session_maker() -> sessionmaker:
|
||||
return get_session_maker()
|
||||
|
||||
@staticmethod
|
||||
def create_session() -> Session:
|
||||
return create_session()
|
||||
|
||||
|
||||
session_factory = SessionFactory()
|
||||
@ -1,4 +1,4 @@
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class PreviewDetail(BaseModel):
|
||||
@ -20,17 +20,9 @@ class IndexingEstimate(BaseModel):
|
||||
class PipelineDataset(BaseModel):
|
||||
id: str
|
||||
name: str
|
||||
description: str = Field(default="", description="knowledge dataset description")
|
||||
description: str
|
||||
chunk_structure: str
|
||||
|
||||
@field_validator("description", mode="before")
|
||||
@classmethod
|
||||
def normalize_description(cls, value: str | None) -> str:
|
||||
"""Coerce None to empty string so description is always a string."""
|
||||
if value is None:
|
||||
return ""
|
||||
return value
|
||||
|
||||
|
||||
class PipelineDocument(BaseModel):
|
||||
id: str
|
||||
|
||||
@ -213,23 +213,12 @@ class MCPProviderEntity(BaseModel):
|
||||
return None
|
||||
|
||||
def retrieve_tokens(self) -> OAuthTokens | None:
|
||||
"""Retrieve OAuth tokens if authentication is complete.
|
||||
|
||||
Returns:
|
||||
OAuthTokens if the provider has been authenticated, None otherwise.
|
||||
"""
|
||||
"""OAuth tokens if available"""
|
||||
if not self.credentials:
|
||||
return None
|
||||
credentials = self.decrypt_credentials()
|
||||
access_token = credentials.get("access_token", "")
|
||||
# Return None if access_token is empty to avoid generating invalid "Authorization: Bearer " header.
|
||||
# Note: We don't check for whitespace-only strings here because:
|
||||
# 1. OAuth servers don't return whitespace-only access tokens in practice
|
||||
# 2. Even if they did, the server would return 401, triggering the OAuth flow correctly
|
||||
if not access_token:
|
||||
return None
|
||||
return OAuthTokens(
|
||||
access_token=access_token,
|
||||
access_token=credentials.get("access_token", ""),
|
||||
token_type=credentials.get("token_type", DEFAULT_TOKEN_TYPE),
|
||||
expires_in=int(credentials.get("expires_in", str(DEFAULT_EXPIRES_IN)) or DEFAULT_EXPIRES_IN),
|
||||
refresh_token=credentials.get("refresh_token", ""),
|
||||
|
||||
@ -1,89 +0,0 @@
|
||||
"""CSV sanitization utilities to prevent formula injection attacks."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
|
||||
class CSVSanitizer:
|
||||
"""
|
||||
Sanitizer for CSV export to prevent formula injection attacks.
|
||||
|
||||
This class provides methods to sanitize data before CSV export by escaping
|
||||
characters that could be interpreted as formulas by spreadsheet applications
|
||||
(Excel, LibreOffice, Google Sheets).
|
||||
|
||||
Formula injection occurs when user-controlled data starting with special
|
||||
characters (=, +, -, @, tab, carriage return) is exported to CSV and opened
|
||||
in a spreadsheet application, potentially executing malicious commands.
|
||||
"""
|
||||
|
||||
# Characters that can start a formula in Excel/LibreOffice/Google Sheets
|
||||
FORMULA_CHARS = frozenset({"=", "+", "-", "@", "\t", "\r"})
|
||||
|
||||
@classmethod
|
||||
def sanitize_value(cls, value: Any) -> str:
|
||||
"""
|
||||
Sanitize a value for safe CSV export.
|
||||
|
||||
Prefixes formula-initiating characters with a single quote to prevent
|
||||
Excel/LibreOffice/Google Sheets from treating them as formulas.
|
||||
|
||||
Args:
|
||||
value: The value to sanitize (will be converted to string)
|
||||
|
||||
Returns:
|
||||
Sanitized string safe for CSV export
|
||||
|
||||
Examples:
|
||||
>>> CSVSanitizer.sanitize_value("=1+1")
|
||||
"'=1+1"
|
||||
>>> CSVSanitizer.sanitize_value("Hello World")
|
||||
"Hello World"
|
||||
>>> CSVSanitizer.sanitize_value(None)
|
||||
""
|
||||
"""
|
||||
if value is None:
|
||||
return ""
|
||||
|
||||
# Convert to string
|
||||
str_value = str(value)
|
||||
|
||||
# If empty, return as is
|
||||
if not str_value:
|
||||
return ""
|
||||
|
||||
# Check if first character is a formula initiator
|
||||
if str_value[0] in cls.FORMULA_CHARS:
|
||||
# Prefix with single quote to escape
|
||||
return f"'{str_value}"
|
||||
|
||||
return str_value
|
||||
|
||||
@classmethod
|
||||
def sanitize_dict(cls, data: dict[str, Any], fields_to_sanitize: list[str] | None = None) -> dict[str, Any]:
|
||||
"""
|
||||
Sanitize specified fields in a dictionary.
|
||||
|
||||
Args:
|
||||
data: Dictionary containing data to sanitize
|
||||
fields_to_sanitize: List of field names to sanitize.
|
||||
If None, sanitizes all string fields.
|
||||
|
||||
Returns:
|
||||
Dictionary with sanitized values (creates a shallow copy)
|
||||
|
||||
Examples:
|
||||
>>> data = {"question": "=1+1", "answer": "+calc", "id": "123"}
|
||||
>>> CSVSanitizer.sanitize_dict(data, ["question", "answer"])
|
||||
{"question": "'=1+1", "answer": "'+calc", "id": "123"}
|
||||
"""
|
||||
sanitized = data.copy()
|
||||
|
||||
if fields_to_sanitize is None:
|
||||
# Sanitize all string fields
|
||||
fields_to_sanitize = [k for k, v in data.items() if isinstance(v, str)]
|
||||
|
||||
for field in fields_to_sanitize:
|
||||
if field in sanitized:
|
||||
sanitized[field] = cls.sanitize_value(sanitized[field])
|
||||
|
||||
return sanitized
|
||||
@ -9,7 +9,6 @@ import httpx
|
||||
|
||||
from configs import dify_config
|
||||
from core.helper.http_client_pooling import get_pooled_http_client
|
||||
from core.tools.errors import ToolSSRFError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -94,18 +93,6 @@ def make_request(method, url, max_retries=SSRF_DEFAULT_MAX_RETRIES, **kwargs):
|
||||
while retries <= max_retries:
|
||||
try:
|
||||
response = client.request(method=method, url=url, **kwargs)
|
||||
# Check for SSRF protection by Squid proxy
|
||||
if response.status_code in (401, 403):
|
||||
# Check if this is a Squid SSRF rejection
|
||||
server_header = response.headers.get("server", "").lower()
|
||||
via_header = response.headers.get("via", "").lower()
|
||||
|
||||
# Squid typically identifies itself in Server or Via headers
|
||||
if "squid" in server_header or "squid" in via_header:
|
||||
raise ToolSSRFError(
|
||||
f"Access to '{url}' was blocked by SSRF protection. "
|
||||
f"The URL may point to a private or local network address. "
|
||||
)
|
||||
|
||||
if response.status_code not in STATUS_FORCELIST:
|
||||
return response
|
||||
|
||||
@ -7,7 +7,7 @@ import time
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
from flask import Flask, current_app
|
||||
from flask import current_app
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm.exc import ObjectDeletedError
|
||||
|
||||
@ -21,7 +21,7 @@ from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
|
||||
from core.rag.extractor.entity.datasource_type import DatasourceType
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting, NotionInfo, WebsiteInfo
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
@ -36,7 +36,6 @@ from extensions.ext_redis import redis_client
|
||||
from extensions.ext_storage import storage
|
||||
from libs import helper
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models import Account
|
||||
from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from models.model import UploadFile
|
||||
@ -90,17 +89,8 @@ class IndexingRunner:
|
||||
text_docs = self._extract(index_processor, requeried_document, processing_rule.to_dict())
|
||||
|
||||
# transform
|
||||
current_user = db.session.query(Account).filter_by(id=requeried_document.created_by).first()
|
||||
if not current_user:
|
||||
raise ValueError("no current user found")
|
||||
current_user.set_tenant_id(dataset.tenant_id)
|
||||
documents = self._transform(
|
||||
index_processor,
|
||||
dataset,
|
||||
text_docs,
|
||||
requeried_document.doc_language,
|
||||
processing_rule.to_dict(),
|
||||
current_user=current_user,
|
||||
index_processor, dataset, text_docs, requeried_document.doc_language, processing_rule.to_dict()
|
||||
)
|
||||
# save segment
|
||||
self._load_segments(dataset, requeried_document, documents)
|
||||
@ -146,7 +136,7 @@ class IndexingRunner:
|
||||
|
||||
for document_segment in document_segments:
|
||||
db.session.delete(document_segment)
|
||||
if requeried_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
if requeried_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
# delete child chunks
|
||||
db.session.query(ChildChunk).where(ChildChunk.segment_id == document_segment.id).delete()
|
||||
db.session.commit()
|
||||
@ -162,17 +152,8 @@ class IndexingRunner:
|
||||
text_docs = self._extract(index_processor, requeried_document, processing_rule.to_dict())
|
||||
|
||||
# transform
|
||||
current_user = db.session.query(Account).filter_by(id=requeried_document.created_by).first()
|
||||
if not current_user:
|
||||
raise ValueError("no current user found")
|
||||
current_user.set_tenant_id(dataset.tenant_id)
|
||||
documents = self._transform(
|
||||
index_processor,
|
||||
dataset,
|
||||
text_docs,
|
||||
requeried_document.doc_language,
|
||||
processing_rule.to_dict(),
|
||||
current_user=current_user,
|
||||
index_processor, dataset, text_docs, requeried_document.doc_language, processing_rule.to_dict()
|
||||
)
|
||||
# save segment
|
||||
self._load_segments(dataset, requeried_document, documents)
|
||||
@ -228,7 +209,7 @@ class IndexingRunner:
|
||||
"dataset_id": document_segment.dataset_id,
|
||||
},
|
||||
)
|
||||
if requeried_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
if requeried_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
child_chunks = document_segment.get_child_chunks()
|
||||
if child_chunks:
|
||||
child_documents = []
|
||||
@ -321,7 +302,6 @@ class IndexingRunner:
|
||||
text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
|
||||
documents = index_processor.transform(
|
||||
text_docs,
|
||||
current_user=None,
|
||||
embedding_model_instance=embedding_model_instance,
|
||||
process_rule=processing_rule.to_dict(),
|
||||
tenant_id=tenant_id,
|
||||
@ -571,10 +551,7 @@ class IndexingRunner:
|
||||
indexing_start_at = time.perf_counter()
|
||||
tokens = 0
|
||||
create_keyword_thread = None
|
||||
if (
|
||||
dataset_document.doc_form != IndexStructureType.PARENT_CHILD_INDEX
|
||||
and dataset.indexing_technique == "economy"
|
||||
):
|
||||
if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX and dataset.indexing_technique == "economy":
|
||||
# create keyword index
|
||||
create_keyword_thread = threading.Thread(
|
||||
target=self._process_keyword_index,
|
||||
@ -613,7 +590,7 @@ class IndexingRunner:
|
||||
for future in futures:
|
||||
tokens += future.result()
|
||||
if (
|
||||
dataset_document.doc_form != IndexStructureType.PARENT_CHILD_INDEX
|
||||
dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX
|
||||
and dataset.indexing_technique == "economy"
|
||||
and create_keyword_thread is not None
|
||||
):
|
||||
@ -658,13 +635,7 @@ class IndexingRunner:
|
||||
db.session.commit()
|
||||
|
||||
def _process_chunk(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
index_processor: BaseIndexProcessor,
|
||||
chunk_documents: list[Document],
|
||||
dataset: Dataset,
|
||||
dataset_document: DatasetDocument,
|
||||
embedding_model_instance: ModelInstance | None,
|
||||
self, flask_app, index_processor, chunk_documents, dataset, dataset_document, embedding_model_instance
|
||||
):
|
||||
with flask_app.app_context():
|
||||
# check document is paused
|
||||
@ -675,15 +646,8 @@ class IndexingRunner:
|
||||
page_content_list = [document.page_content for document in chunk_documents]
|
||||
tokens += sum(embedding_model_instance.get_text_embedding_num_tokens(page_content_list))
|
||||
|
||||
multimodal_documents = []
|
||||
for document in chunk_documents:
|
||||
if document.attachments and dataset.is_multimodal:
|
||||
multimodal_documents.extend(document.attachments)
|
||||
|
||||
# load index
|
||||
index_processor.load(
|
||||
dataset, chunk_documents, multimodal_documents=multimodal_documents, with_keywords=False
|
||||
)
|
||||
index_processor.load(dataset, chunk_documents, with_keywords=False)
|
||||
|
||||
document_ids = [document.metadata["doc_id"] for document in chunk_documents]
|
||||
db.session.query(DocumentSegment).where(
|
||||
@ -746,7 +710,6 @@ class IndexingRunner:
|
||||
text_docs: list[Document],
|
||||
doc_language: str,
|
||||
process_rule: dict,
|
||||
current_user: Account | None = None,
|
||||
) -> list[Document]:
|
||||
# get embedding model instance
|
||||
embedding_model_instance = None
|
||||
@ -766,7 +729,6 @@ class IndexingRunner:
|
||||
|
||||
documents = index_processor.transform(
|
||||
text_docs,
|
||||
current_user,
|
||||
embedding_model_instance=embedding_model_instance,
|
||||
process_rule=process_rule,
|
||||
tenant_id=dataset.tenant_id,
|
||||
@ -775,16 +737,14 @@ class IndexingRunner:
|
||||
|
||||
return documents
|
||||
|
||||
def _load_segments(self, dataset: Dataset, dataset_document: DatasetDocument, documents: list[Document]):
|
||||
def _load_segments(self, dataset, dataset_document, documents):
|
||||
# save node to document segment
|
||||
doc_store = DatasetDocumentStore(
|
||||
dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id
|
||||
)
|
||||
|
||||
# add document segments
|
||||
doc_store.add_documents(
|
||||
docs=documents, save_child=dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX
|
||||
)
|
||||
doc_store.add_documents(docs=documents, save_child=dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX)
|
||||
|
||||
# update document status to indexing
|
||||
cur_time = naive_utc_now()
|
||||
|
||||
@ -72,22 +72,15 @@ class LLMGenerator:
|
||||
prompt_messages=list(prompts), model_parameters={"max_tokens": 500, "temperature": 1}, stream=False
|
||||
)
|
||||
answer = cast(str, response.message.content)
|
||||
if answer is None:
|
||||
cleaned_answer = re.sub(r"^.*(\{.*\}).*$", r"\1", answer, flags=re.DOTALL)
|
||||
if cleaned_answer is None:
|
||||
return ""
|
||||
try:
|
||||
result_dict = json.loads(answer)
|
||||
result_dict = json.loads(cleaned_answer)
|
||||
answer = result_dict["Your Output"]
|
||||
except json.JSONDecodeError:
|
||||
result_dict = json_repair.loads(answer)
|
||||
|
||||
if not isinstance(result_dict, dict):
|
||||
logger.exception("Failed to generate name after answer, use query instead")
|
||||
answer = query
|
||||
else:
|
||||
output = result_dict.get("Your Output")
|
||||
if isinstance(output, str) and output.strip():
|
||||
answer = output.strip()
|
||||
else:
|
||||
answer = query
|
||||
|
||||
name = answer.strip()
|
||||
|
||||
if len(name) > 75:
|
||||
@ -561,16 +554,11 @@ class LLMGenerator:
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
|
||||
generated_raw = response.message.get_text_content()
|
||||
generated_raw = cast(str, response.message.content)
|
||||
first_brace = generated_raw.find("{")
|
||||
last_brace = generated_raw.rfind("}")
|
||||
if first_brace == -1 or last_brace == -1 or last_brace < first_brace:
|
||||
raise ValueError(f"Could not find a valid JSON object in response: {generated_raw}")
|
||||
json_str = generated_raw[first_brace : last_brace + 1]
|
||||
data = json_repair.loads(json_str)
|
||||
if not isinstance(data, dict):
|
||||
raise TypeError(f"Expected a JSON object, but got {type(data).__name__}")
|
||||
return data
|
||||
return {**json.loads(generated_raw[first_brace : last_brace + 1])}
|
||||
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
return {"error": f"Failed to generate code. Error: {error}"}
|
||||
|
||||
@ -10,9 +10,9 @@ from core.errors.error import ProviderTokenNotInitError
|
||||
from core.model_runtime.callbacks.base_callback import Callback
|
||||
from core.model_runtime.entities.llm_entities import LLMResult
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.entities.rerank_entities import RerankResult
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingResult
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeConnectionError, InvokeRateLimitError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.model_runtime.model_providers.__base.moderation_model import ModerationModel
|
||||
@ -200,7 +200,7 @@ class ModelInstance:
|
||||
|
||||
def invoke_text_embedding(
|
||||
self, texts: list[str], user: str | None = None, input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT
|
||||
) -> EmbeddingResult:
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
@ -212,7 +212,7 @@ class ModelInstance:
|
||||
if not isinstance(self.model_type_instance, TextEmbeddingModel):
|
||||
raise Exception("Model type instance is not TextEmbeddingModel")
|
||||
return cast(
|
||||
EmbeddingResult,
|
||||
TextEmbeddingResult,
|
||||
self._round_robin_invoke(
|
||||
function=self.model_type_instance.invoke,
|
||||
model=self.model,
|
||||
@ -223,34 +223,6 @@ class ModelInstance:
|
||||
),
|
||||
)
|
||||
|
||||
def invoke_multimodal_embedding(
|
||||
self,
|
||||
multimodel_documents: list[dict],
|
||||
user: str | None = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> EmbeddingResult:
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param multimodel_documents: multimodel documents to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
if not isinstance(self.model_type_instance, TextEmbeddingModel):
|
||||
raise Exception("Model type instance is not TextEmbeddingModel")
|
||||
return cast(
|
||||
EmbeddingResult,
|
||||
self._round_robin_invoke(
|
||||
function=self.model_type_instance.invoke,
|
||||
model=self.model,
|
||||
credentials=self.credentials,
|
||||
multimodel_documents=multimodel_documents,
|
||||
user=user,
|
||||
input_type=input_type,
|
||||
),
|
||||
)
|
||||
|
||||
def get_text_embedding_num_tokens(self, texts: list[str]) -> list[int]:
|
||||
"""
|
||||
Get number of tokens for text embedding
|
||||
@ -304,40 +276,6 @@ class ModelInstance:
|
||||
),
|
||||
)
|
||||
|
||||
def invoke_multimodal_rerank(
|
||||
self,
|
||||
query: dict,
|
||||
docs: list[dict],
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> RerankResult:
|
||||
"""
|
||||
Invoke rerank model
|
||||
|
||||
:param query: search query
|
||||
:param docs: docs for reranking
|
||||
:param score_threshold: score threshold
|
||||
:param top_n: top n
|
||||
:param user: unique user id
|
||||
:return: rerank result
|
||||
"""
|
||||
if not isinstance(self.model_type_instance, RerankModel):
|
||||
raise Exception("Model type instance is not RerankModel")
|
||||
return cast(
|
||||
RerankResult,
|
||||
self._round_robin_invoke(
|
||||
function=self.model_type_instance.invoke_multimodal_rerank,
|
||||
model=self.model,
|
||||
credentials=self.credentials,
|
||||
query=query,
|
||||
docs=docs,
|
||||
score_threshold=score_threshold,
|
||||
top_n=top_n,
|
||||
user=user,
|
||||
),
|
||||
)
|
||||
|
||||
def invoke_moderation(self, text: str, user: str | None = None) -> bool:
|
||||
"""
|
||||
Invoke moderation model
|
||||
@ -523,32 +461,6 @@ class ModelManager:
|
||||
model=default_model_entity.model,
|
||||
)
|
||||
|
||||
def check_model_support_vision(self, tenant_id: str, provider: str, model: str, model_type: ModelType) -> bool:
|
||||
"""
|
||||
Check if model supports vision
|
||||
:param tenant_id: tenant id
|
||||
:param provider: provider name
|
||||
:param model: model name
|
||||
:return: True if model supports vision, False otherwise
|
||||
"""
|
||||
model_instance = self.get_model_instance(tenant_id, provider, model_type, model)
|
||||
model_type_instance = model_instance.model_type_instance
|
||||
match model_type:
|
||||
case ModelType.LLM:
|
||||
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
||||
case ModelType.TEXT_EMBEDDING:
|
||||
model_type_instance = cast(TextEmbeddingModel, model_type_instance)
|
||||
case ModelType.RERANK:
|
||||
model_type_instance = cast(RerankModel, model_type_instance)
|
||||
case _:
|
||||
raise ValueError(f"Model type {model_type} is not supported")
|
||||
model_schema = model_type_instance.get_model_schema(model, model_instance.credentials)
|
||||
if not model_schema:
|
||||
return False
|
||||
if model_schema.features and ModelFeature.VISION in model_schema.features:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class LBModelManager:
|
||||
def __init__(
|
||||
|
||||
@ -19,7 +19,7 @@ class EmbeddingUsage(ModelUsage):
|
||||
latency: float
|
||||
|
||||
|
||||
class EmbeddingResult(BaseModel):
|
||||
class TextEmbeddingResult(BaseModel):
|
||||
"""
|
||||
Model class for text embedding result.
|
||||
"""
|
||||
@ -27,13 +27,3 @@ class EmbeddingResult(BaseModel):
|
||||
model: str
|
||||
embeddings: list[list[float]]
|
||||
usage: EmbeddingUsage
|
||||
|
||||
|
||||
class FileEmbeddingResult(BaseModel):
|
||||
"""
|
||||
Model class for file embedding result.
|
||||
"""
|
||||
|
||||
model: str
|
||||
embeddings: list[list[float]]
|
||||
usage: EmbeddingUsage
|
||||
|
||||
@ -50,43 +50,3 @@ class RerankModel(AIModel):
|
||||
)
|
||||
except Exception as e:
|
||||
raise self._transform_invoke_error(e)
|
||||
|
||||
def invoke_multimodal_rerank(
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
query: dict,
|
||||
docs: list[dict],
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> RerankResult:
|
||||
"""
|
||||
Invoke multimodal rerank model
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param query: search query
|
||||
:param docs: docs for reranking
|
||||
:param score_threshold: score threshold
|
||||
:param top_n: top n
|
||||
:param user: unique user id
|
||||
:return: rerank result
|
||||
"""
|
||||
try:
|
||||
from core.plugin.impl.model import PluginModelClient
|
||||
|
||||
plugin_model_manager = PluginModelClient()
|
||||
return plugin_model_manager.invoke_multimodal_rerank(
|
||||
tenant_id=self.tenant_id,
|
||||
user_id=user or "unknown",
|
||||
plugin_id=self.plugin_id,
|
||||
provider=self.provider_name,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
query=query,
|
||||
docs=docs,
|
||||
score_threshold=score_threshold,
|
||||
top_n=top_n,
|
||||
)
|
||||
except Exception as e:
|
||||
raise self._transform_invoke_error(e)
|
||||
|
||||
@ -2,7 +2,7 @@ from pydantic import ConfigDict
|
||||
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingResult
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.model_providers.__base.ai_model import AIModel
|
||||
|
||||
|
||||
@ -20,18 +20,16 @@ class TextEmbeddingModel(AIModel):
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str] | None = None,
|
||||
multimodel_documents: list[dict] | None = None,
|
||||
texts: list[str],
|
||||
user: str | None = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> EmbeddingResult:
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param files: files to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
@ -40,29 +38,16 @@ class TextEmbeddingModel(AIModel):
|
||||
|
||||
try:
|
||||
plugin_model_manager = PluginModelClient()
|
||||
if texts:
|
||||
return plugin_model_manager.invoke_text_embedding(
|
||||
tenant_id=self.tenant_id,
|
||||
user_id=user or "unknown",
|
||||
plugin_id=self.plugin_id,
|
||||
provider=self.provider_name,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
texts=texts,
|
||||
input_type=input_type,
|
||||
)
|
||||
if multimodel_documents:
|
||||
return plugin_model_manager.invoke_multimodal_embedding(
|
||||
tenant_id=self.tenant_id,
|
||||
user_id=user or "unknown",
|
||||
plugin_id=self.plugin_id,
|
||||
provider=self.provider_name,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
documents=multimodel_documents,
|
||||
input_type=input_type,
|
||||
)
|
||||
raise ValueError("No texts or files provided")
|
||||
return plugin_model_manager.invoke_text_embedding(
|
||||
tenant_id=self.tenant_id,
|
||||
user_id=user or "unknown",
|
||||
plugin_id=self.plugin_id,
|
||||
provider=self.provider_name,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
texts=texts,
|
||||
input_type=input_type,
|
||||
)
|
||||
except Exception as e:
|
||||
raise self._transform_invoke_error(e)
|
||||
|
||||
|
||||
@ -6,13 +6,7 @@ from datetime import datetime, timedelta
|
||||
from typing import Any, Union, cast
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from openinference.semconv.trace import (
|
||||
MessageAttributes,
|
||||
OpenInferenceMimeTypeValues,
|
||||
OpenInferenceSpanKindValues,
|
||||
SpanAttributes,
|
||||
ToolCallAttributes,
|
||||
)
|
||||
from openinference.semconv.trace import OpenInferenceMimeTypeValues, OpenInferenceSpanKindValues, SpanAttributes
|
||||
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter as GrpcOTLPSpanExporter
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter as HttpOTLPSpanExporter
|
||||
from opentelemetry.sdk import trace as trace_sdk
|
||||
@ -101,14 +95,14 @@ def setup_tracer(arize_phoenix_config: ArizeConfig | PhoenixConfig) -> tuple[tra
|
||||
|
||||
|
||||
def datetime_to_nanos(dt: datetime | None) -> int:
|
||||
"""Convert datetime to nanoseconds since epoch for Arize/Phoenix."""
|
||||
"""Convert datetime to nanoseconds since epoch. If None, use current time."""
|
||||
if dt is None:
|
||||
dt = datetime.now()
|
||||
return int(dt.timestamp() * 1_000_000_000)
|
||||
|
||||
|
||||
def error_to_string(error: Exception | str | None) -> str:
|
||||
"""Convert an error to a string with traceback information for Arize/Phoenix."""
|
||||
"""Convert an error to a string with traceback information."""
|
||||
error_message = "Empty Stack Trace"
|
||||
if error:
|
||||
if isinstance(error, Exception):
|
||||
@ -120,7 +114,7 @@ def error_to_string(error: Exception | str | None) -> str:
|
||||
|
||||
|
||||
def set_span_status(current_span: Span, error: Exception | str | None = None):
|
||||
"""Set the status of the current span based on the presence of an error for Arize/Phoenix."""
|
||||
"""Set the status of the current span based on the presence of an error."""
|
||||
if error:
|
||||
error_string = error_to_string(error)
|
||||
current_span.set_status(Status(StatusCode.ERROR, error_string))
|
||||
@ -144,17 +138,10 @@ def set_span_status(current_span: Span, error: Exception | str | None = None):
|
||||
|
||||
|
||||
def safe_json_dumps(obj: Any) -> str:
|
||||
"""A convenience wrapper to ensure that any object can be safely encoded for Arize/Phoenix."""
|
||||
"""A convenience wrapper around `json.dumps` that ensures that any object can be safely encoded."""
|
||||
return json.dumps(obj, default=str, ensure_ascii=False)
|
||||
|
||||
|
||||
def wrap_span_metadata(metadata, **kwargs):
|
||||
"""Add common metatada to all trace entity types for Arize/Phoenix."""
|
||||
metadata["created_from"] = "Dify"
|
||||
metadata.update(kwargs)
|
||||
return metadata
|
||||
|
||||
|
||||
class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
def __init__(
|
||||
self,
|
||||
@ -196,27 +183,16 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
raise
|
||||
|
||||
def workflow_trace(self, trace_info: WorkflowTraceInfo):
|
||||
file_list = trace_info.file_list if isinstance(trace_info.file_list, list) else []
|
||||
|
||||
metadata = wrap_span_metadata(
|
||||
trace_info.metadata,
|
||||
trace_id=trace_info.trace_id or "",
|
||||
message_id=trace_info.message_id or "",
|
||||
status=trace_info.workflow_run_status or "",
|
||||
status_message=trace_info.error or "",
|
||||
level="ERROR" if trace_info.error else "DEFAULT",
|
||||
trace_entity_type="workflow",
|
||||
conversation_id=trace_info.conversation_id or "",
|
||||
workflow_app_log_id=trace_info.workflow_app_log_id or "",
|
||||
workflow_id=trace_info.workflow_id or "",
|
||||
tenant_id=trace_info.tenant_id or "",
|
||||
workflow_run_id=trace_info.workflow_run_id or "",
|
||||
workflow_run_elapsed_time=trace_info.workflow_run_elapsed_time or 0,
|
||||
workflow_run_version=trace_info.workflow_run_version or "",
|
||||
total_tokens=trace_info.total_tokens or 0,
|
||||
file_list=safe_json_dumps(file_list),
|
||||
query=trace_info.query or "",
|
||||
)
|
||||
workflow_metadata = {
|
||||
"workflow_run_id": trace_info.workflow_run_id or "",
|
||||
"message_id": trace_info.message_id or "",
|
||||
"workflow_app_log_id": trace_info.workflow_app_log_id or "",
|
||||
"status": trace_info.workflow_run_status or "",
|
||||
"status_message": trace_info.error or "",
|
||||
"level": "ERROR" if trace_info.error else "DEFAULT",
|
||||
"total_tokens": trace_info.total_tokens or 0,
|
||||
}
|
||||
workflow_metadata.update(trace_info.metadata)
|
||||
|
||||
dify_trace_id = trace_info.trace_id or trace_info.message_id or trace_info.workflow_run_id
|
||||
self.ensure_root_span(dify_trace_id)
|
||||
@ -225,12 +201,10 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
workflow_span = self.tracer.start_span(
|
||||
name=TraceTaskName.WORKFLOW_TRACE.value,
|
||||
attributes={
|
||||
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.workflow_run_inputs, ensure_ascii=False),
|
||||
SpanAttributes.OUTPUT_VALUE: json.dumps(trace_info.workflow_run_outputs, ensure_ascii=False),
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
|
||||
SpanAttributes.INPUT_VALUE: safe_json_dumps(trace_info.workflow_run_inputs),
|
||||
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
|
||||
SpanAttributes.OUTPUT_VALUE: safe_json_dumps(trace_info.workflow_run_outputs),
|
||||
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
|
||||
SpanAttributes.METADATA: safe_json_dumps(metadata),
|
||||
SpanAttributes.METADATA: json.dumps(workflow_metadata, ensure_ascii=False),
|
||||
SpanAttributes.SESSION_ID: trace_info.conversation_id or "",
|
||||
},
|
||||
start_time=datetime_to_nanos(trace_info.start_time),
|
||||
@ -283,7 +257,6 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
"app_id": app_id,
|
||||
"app_name": node_execution.title,
|
||||
"status": node_execution.status,
|
||||
"status_message": node_execution.error or "",
|
||||
"level": "ERROR" if node_execution.status == "failed" else "DEFAULT",
|
||||
}
|
||||
)
|
||||
@ -317,11 +290,11 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
node_span = self.tracer.start_span(
|
||||
name=node_execution.node_type,
|
||||
attributes={
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND: span_kind.value,
|
||||
SpanAttributes.INPUT_VALUE: safe_json_dumps(inputs_value),
|
||||
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
|
||||
SpanAttributes.OUTPUT_VALUE: safe_json_dumps(outputs_value),
|
||||
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND: span_kind.value,
|
||||
SpanAttributes.METADATA: safe_json_dumps(node_metadata),
|
||||
SpanAttributes.SESSION_ID: trace_info.conversation_id or "",
|
||||
},
|
||||
@ -366,37 +339,30 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
|
||||
def message_trace(self, trace_info: MessageTraceInfo):
|
||||
if trace_info.message_data is None:
|
||||
logger.warning("[Arize/Phoenix] Message data is None, skipping message trace.")
|
||||
return
|
||||
|
||||
file_list = trace_info.file_list if isinstance(trace_info.file_list, list) else []
|
||||
file_list = cast(list[str], trace_info.file_list) or []
|
||||
message_file_data: MessageFile | None = trace_info.message_file_data
|
||||
|
||||
if message_file_data is not None:
|
||||
file_url = f"{self.file_base_url}/{message_file_data.url}" if message_file_data else ""
|
||||
file_list.append(file_url)
|
||||
|
||||
metadata = wrap_span_metadata(
|
||||
trace_info.metadata,
|
||||
trace_id=trace_info.trace_id or "",
|
||||
message_id=trace_info.message_id or "",
|
||||
status=trace_info.message_data.status or "",
|
||||
status_message=trace_info.error or "",
|
||||
level="ERROR" if trace_info.error else "DEFAULT",
|
||||
trace_entity_type="message",
|
||||
conversation_model=trace_info.conversation_model or "",
|
||||
message_tokens=trace_info.message_tokens or 0,
|
||||
answer_tokens=trace_info.answer_tokens or 0,
|
||||
total_tokens=trace_info.total_tokens or 0,
|
||||
conversation_mode=trace_info.conversation_mode or "",
|
||||
gen_ai_server_time_to_first_token=trace_info.gen_ai_server_time_to_first_token or 0,
|
||||
llm_streaming_time_to_generate=trace_info.llm_streaming_time_to_generate or 0,
|
||||
is_streaming_request=trace_info.is_streaming_request or False,
|
||||
user_id=trace_info.message_data.from_account_id or "",
|
||||
file_list=safe_json_dumps(file_list),
|
||||
model_provider=trace_info.message_data.model_provider or "",
|
||||
model_id=trace_info.message_data.model_id or "",
|
||||
)
|
||||
message_metadata = {
|
||||
"message_id": trace_info.message_id or "",
|
||||
"conversation_mode": str(trace_info.conversation_mode or ""),
|
||||
"user_id": trace_info.message_data.from_account_id or "",
|
||||
"file_list": json.dumps(file_list),
|
||||
"status": trace_info.message_data.status or "",
|
||||
"status_message": trace_info.error or "",
|
||||
"level": "ERROR" if trace_info.error else "DEFAULT",
|
||||
"total_tokens": trace_info.total_tokens or 0,
|
||||
"prompt_tokens": trace_info.message_tokens or 0,
|
||||
"completion_tokens": trace_info.answer_tokens or 0,
|
||||
"ls_provider": trace_info.message_data.model_provider or "",
|
||||
"ls_model_name": trace_info.message_data.model_id or "",
|
||||
}
|
||||
message_metadata.update(trace_info.metadata)
|
||||
|
||||
# Add end user data if available
|
||||
if trace_info.message_data.from_end_user_id:
|
||||
@ -404,16 +370,14 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
db.session.query(EndUser).where(EndUser.id == trace_info.message_data.from_end_user_id).first()
|
||||
)
|
||||
if end_user_data is not None:
|
||||
metadata["end_user_id"] = end_user_data.session_id
|
||||
message_metadata["end_user_id"] = end_user_data.session_id
|
||||
|
||||
attributes = {
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
|
||||
SpanAttributes.INPUT_VALUE: trace_info.message_data.query,
|
||||
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.TEXT.value,
|
||||
SpanAttributes.OUTPUT_VALUE: trace_info.message_data.answer,
|
||||
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.TEXT.value,
|
||||
SpanAttributes.METADATA: safe_json_dumps(metadata),
|
||||
SpanAttributes.SESSION_ID: trace_info.message_data.conversation_id or "",
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
|
||||
SpanAttributes.METADATA: json.dumps(message_metadata, ensure_ascii=False),
|
||||
SpanAttributes.SESSION_ID: trace_info.message_data.conversation_id,
|
||||
}
|
||||
|
||||
dify_trace_id = trace_info.trace_id or trace_info.message_id
|
||||
@ -429,10 +393,8 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
|
||||
try:
|
||||
# Convert outputs to string based on type
|
||||
outputs_mime_type = OpenInferenceMimeTypeValues.TEXT.value
|
||||
if isinstance(trace_info.outputs, dict | list):
|
||||
outputs_str = safe_json_dumps(trace_info.outputs)
|
||||
outputs_mime_type = OpenInferenceMimeTypeValues.JSON.value
|
||||
outputs_str = json.dumps(trace_info.outputs, ensure_ascii=False)
|
||||
elif isinstance(trace_info.outputs, str):
|
||||
outputs_str = trace_info.outputs
|
||||
else:
|
||||
@ -440,12 +402,10 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
|
||||
llm_attributes = {
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.LLM.value,
|
||||
SpanAttributes.INPUT_VALUE: safe_json_dumps(trace_info.inputs),
|
||||
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
|
||||
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
|
||||
SpanAttributes.OUTPUT_VALUE: outputs_str,
|
||||
SpanAttributes.OUTPUT_MIME_TYPE: outputs_mime_type,
|
||||
SpanAttributes.METADATA: safe_json_dumps(metadata),
|
||||
SpanAttributes.SESSION_ID: trace_info.message_data.conversation_id or "",
|
||||
SpanAttributes.METADATA: json.dumps(message_metadata, ensure_ascii=False),
|
||||
SpanAttributes.SESSION_ID: trace_info.message_data.conversation_id,
|
||||
}
|
||||
llm_attributes.update(self._construct_llm_attributes(trace_info.inputs))
|
||||
if trace_info.total_tokens is not None and trace_info.total_tokens > 0:
|
||||
@ -489,20 +449,16 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
|
||||
def moderation_trace(self, trace_info: ModerationTraceInfo):
|
||||
if trace_info.message_data is None:
|
||||
logger.warning("[Arize/Phoenix] Message data is None, skipping moderation trace.")
|
||||
return
|
||||
|
||||
metadata = wrap_span_metadata(
|
||||
trace_info.metadata,
|
||||
trace_id=trace_info.trace_id or "",
|
||||
message_id=trace_info.message_id or "",
|
||||
status=trace_info.message_data.status or "",
|
||||
status_message=trace_info.message_data.error or "",
|
||||
level="ERROR" if trace_info.message_data.error else "DEFAULT",
|
||||
trace_entity_type="moderation",
|
||||
model_provider=trace_info.message_data.model_provider or "",
|
||||
model_id=trace_info.message_data.model_id or "",
|
||||
)
|
||||
metadata = {
|
||||
"message_id": trace_info.message_id,
|
||||
"tool_name": "moderation",
|
||||
"status": trace_info.message_data.status,
|
||||
"status_message": trace_info.message_data.error or "",
|
||||
"level": "ERROR" if trace_info.message_data.error else "DEFAULT",
|
||||
}
|
||||
metadata.update(trace_info.metadata)
|
||||
|
||||
dify_trace_id = trace_info.trace_id or trace_info.message_id
|
||||
self.ensure_root_span(dify_trace_id)
|
||||
@ -511,19 +467,18 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
span = self.tracer.start_span(
|
||||
name=TraceTaskName.MODERATION_TRACE.value,
|
||||
attributes={
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.TOOL.value,
|
||||
SpanAttributes.INPUT_VALUE: safe_json_dumps(trace_info.inputs),
|
||||
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
|
||||
SpanAttributes.OUTPUT_VALUE: safe_json_dumps(
|
||||
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
|
||||
SpanAttributes.OUTPUT_VALUE: json.dumps(
|
||||
{
|
||||
"flagged": trace_info.flagged,
|
||||
"action": trace_info.action,
|
||||
"flagged": trace_info.flagged,
|
||||
"preset_response": trace_info.preset_response,
|
||||
"query": trace_info.query,
|
||||
}
|
||||
"inputs": trace_info.inputs,
|
||||
},
|
||||
ensure_ascii=False,
|
||||
),
|
||||
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
|
||||
SpanAttributes.METADATA: safe_json_dumps(metadata),
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
|
||||
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
|
||||
},
|
||||
start_time=datetime_to_nanos(trace_info.start_time),
|
||||
context=root_span_context,
|
||||
@ -539,28 +494,22 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
|
||||
def suggested_question_trace(self, trace_info: SuggestedQuestionTraceInfo):
|
||||
if trace_info.message_data is None:
|
||||
logger.warning("[Arize/Phoenix] Message data is None, skipping suggested question trace.")
|
||||
return
|
||||
|
||||
start_time = trace_info.start_time or trace_info.message_data.created_at
|
||||
end_time = trace_info.end_time or trace_info.message_data.updated_at
|
||||
|
||||
metadata = wrap_span_metadata(
|
||||
trace_info.metadata,
|
||||
trace_id=trace_info.trace_id or "",
|
||||
message_id=trace_info.message_id or "",
|
||||
status=trace_info.status or "",
|
||||
status_message=trace_info.status_message or "",
|
||||
level=trace_info.level or "",
|
||||
trace_entity_type="suggested_question",
|
||||
total_tokens=trace_info.total_tokens or 0,
|
||||
from_account_id=trace_info.from_account_id or "",
|
||||
agent_based=trace_info.agent_based or False,
|
||||
from_source=trace_info.from_source or "",
|
||||
model_provider=trace_info.model_provider or "",
|
||||
model_id=trace_info.model_id or "",
|
||||
workflow_run_id=trace_info.workflow_run_id or "",
|
||||
)
|
||||
metadata = {
|
||||
"message_id": trace_info.message_id,
|
||||
"tool_name": "suggested_question",
|
||||
"status": trace_info.status,
|
||||
"status_message": trace_info.error or "",
|
||||
"level": "ERROR" if trace_info.error else "DEFAULT",
|
||||
"total_tokens": trace_info.total_tokens,
|
||||
"ls_provider": trace_info.model_provider or "",
|
||||
"ls_model_name": trace_info.model_id or "",
|
||||
}
|
||||
metadata.update(trace_info.metadata)
|
||||
|
||||
dify_trace_id = trace_info.trace_id or trace_info.message_id
|
||||
self.ensure_root_span(dify_trace_id)
|
||||
@ -569,12 +518,10 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
span = self.tracer.start_span(
|
||||
name=TraceTaskName.SUGGESTED_QUESTION_TRACE.value,
|
||||
attributes={
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.TOOL.value,
|
||||
SpanAttributes.INPUT_VALUE: safe_json_dumps(trace_info.inputs),
|
||||
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
|
||||
SpanAttributes.OUTPUT_VALUE: safe_json_dumps(trace_info.suggested_question),
|
||||
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
|
||||
SpanAttributes.METADATA: safe_json_dumps(metadata),
|
||||
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
|
||||
SpanAttributes.OUTPUT_VALUE: json.dumps(trace_info.suggested_question, ensure_ascii=False),
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
|
||||
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
|
||||
},
|
||||
start_time=datetime_to_nanos(start_time),
|
||||
context=root_span_context,
|
||||
@ -590,23 +537,21 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
|
||||
def dataset_retrieval_trace(self, trace_info: DatasetRetrievalTraceInfo):
|
||||
if trace_info.message_data is None:
|
||||
logger.warning("[Arize/Phoenix] Message data is None, skipping dataset retrieval trace.")
|
||||
return
|
||||
|
||||
start_time = trace_info.start_time or trace_info.message_data.created_at
|
||||
end_time = trace_info.end_time or trace_info.message_data.updated_at
|
||||
|
||||
metadata = wrap_span_metadata(
|
||||
trace_info.metadata,
|
||||
trace_id=trace_info.trace_id or "",
|
||||
message_id=trace_info.message_id or "",
|
||||
status=trace_info.message_data.status or "",
|
||||
status_message=trace_info.error or "",
|
||||
level="ERROR" if trace_info.error else "DEFAULT",
|
||||
trace_entity_type="dataset_retrieval",
|
||||
model_provider=trace_info.message_data.model_provider or "",
|
||||
model_id=trace_info.message_data.model_id or "",
|
||||
)
|
||||
metadata = {
|
||||
"message_id": trace_info.message_id,
|
||||
"tool_name": "dataset_retrieval",
|
||||
"status": trace_info.message_data.status,
|
||||
"status_message": trace_info.message_data.error or "",
|
||||
"level": "ERROR" if trace_info.message_data.error else "DEFAULT",
|
||||
"ls_provider": trace_info.message_data.model_provider or "",
|
||||
"ls_model_name": trace_info.message_data.model_id or "",
|
||||
}
|
||||
metadata.update(trace_info.metadata)
|
||||
|
||||
dify_trace_id = trace_info.trace_id or trace_info.message_id
|
||||
self.ensure_root_span(dify_trace_id)
|
||||
@ -615,20 +560,20 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
span = self.tracer.start_span(
|
||||
name=TraceTaskName.DATASET_RETRIEVAL_TRACE.value,
|
||||
attributes={
|
||||
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
|
||||
SpanAttributes.OUTPUT_VALUE: json.dumps({"documents": trace_info.documents}, ensure_ascii=False),
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.RETRIEVER.value,
|
||||
SpanAttributes.INPUT_VALUE: safe_json_dumps(trace_info.inputs),
|
||||
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
|
||||
SpanAttributes.OUTPUT_VALUE: safe_json_dumps({"documents": trace_info.documents}),
|
||||
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
|
||||
SpanAttributes.METADATA: safe_json_dumps(metadata),
|
||||
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
|
||||
"start_time": start_time.isoformat() if start_time else "",
|
||||
"end_time": end_time.isoformat() if end_time else "",
|
||||
},
|
||||
start_time=datetime_to_nanos(start_time),
|
||||
context=root_span_context,
|
||||
)
|
||||
|
||||
try:
|
||||
if trace_info.error:
|
||||
set_span_status(span, trace_info.error)
|
||||
if trace_info.message_data.error:
|
||||
set_span_status(span, trace_info.message_data.error)
|
||||
else:
|
||||
set_span_status(span)
|
||||
finally:
|
||||
@ -639,34 +584,30 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
logger.warning("[Arize/Phoenix] Message data is None, skipping tool trace.")
|
||||
return
|
||||
|
||||
metadata = wrap_span_metadata(
|
||||
trace_info.metadata,
|
||||
trace_id=trace_info.trace_id or "",
|
||||
message_id=trace_info.message_id or "",
|
||||
status=trace_info.message_data.status or "",
|
||||
status_message=trace_info.error or "",
|
||||
level="ERROR" if trace_info.error else "DEFAULT",
|
||||
trace_entity_type="tool",
|
||||
tool_config=safe_json_dumps(trace_info.tool_config),
|
||||
time_cost=trace_info.time_cost or 0,
|
||||
file_url=trace_info.file_url or "",
|
||||
)
|
||||
metadata = {
|
||||
"message_id": trace_info.message_id,
|
||||
"tool_config": json.dumps(trace_info.tool_config, ensure_ascii=False),
|
||||
}
|
||||
|
||||
dify_trace_id = trace_info.trace_id or trace_info.message_id
|
||||
self.ensure_root_span(dify_trace_id)
|
||||
root_span_context = self.propagator.extract(carrier=self.carrier)
|
||||
|
||||
tool_params_str = (
|
||||
json.dumps(trace_info.tool_parameters, ensure_ascii=False)
|
||||
if isinstance(trace_info.tool_parameters, dict)
|
||||
else str(trace_info.tool_parameters)
|
||||
)
|
||||
|
||||
span = self.tracer.start_span(
|
||||
name=trace_info.tool_name,
|
||||
attributes={
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.TOOL.value,
|
||||
SpanAttributes.INPUT_VALUE: safe_json_dumps(trace_info.tool_inputs),
|
||||
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
|
||||
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.tool_inputs, ensure_ascii=False),
|
||||
SpanAttributes.OUTPUT_VALUE: trace_info.tool_outputs,
|
||||
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.TEXT.value,
|
||||
SpanAttributes.METADATA: safe_json_dumps(metadata),
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.TOOL.value,
|
||||
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
|
||||
SpanAttributes.TOOL_NAME: trace_info.tool_name,
|
||||
SpanAttributes.TOOL_PARAMETERS: safe_json_dumps(trace_info.tool_parameters),
|
||||
SpanAttributes.TOOL_PARAMETERS: tool_params_str,
|
||||
},
|
||||
start_time=datetime_to_nanos(trace_info.start_time),
|
||||
context=root_span_context,
|
||||
@ -682,22 +623,16 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
|
||||
def generate_name_trace(self, trace_info: GenerateNameTraceInfo):
|
||||
if trace_info.message_data is None:
|
||||
logger.warning("[Arize/Phoenix] Message data is None, skipping generate name trace.")
|
||||
return
|
||||
|
||||
metadata = wrap_span_metadata(
|
||||
trace_info.metadata,
|
||||
trace_id=trace_info.trace_id or "",
|
||||
message_id=trace_info.message_id or "",
|
||||
status=trace_info.message_data.status or "",
|
||||
status_message=trace_info.message_data.error or "",
|
||||
level="ERROR" if trace_info.message_data.error else "DEFAULT",
|
||||
trace_entity_type="generate_name",
|
||||
model_provider=trace_info.message_data.model_provider or "",
|
||||
model_id=trace_info.message_data.model_id or "",
|
||||
conversation_id=trace_info.conversation_id or "",
|
||||
tenant_id=trace_info.tenant_id,
|
||||
)
|
||||
metadata = {
|
||||
"project_name": self.project,
|
||||
"message_id": trace_info.message_id,
|
||||
"status": trace_info.message_data.status,
|
||||
"status_message": trace_info.message_data.error or "",
|
||||
"level": "ERROR" if trace_info.message_data.error else "DEFAULT",
|
||||
}
|
||||
metadata.update(trace_info.metadata)
|
||||
|
||||
dify_trace_id = trace_info.trace_id or trace_info.message_id or trace_info.conversation_id
|
||||
self.ensure_root_span(dify_trace_id)
|
||||
@ -706,13 +641,13 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
span = self.tracer.start_span(
|
||||
name=TraceTaskName.GENERATE_NAME_TRACE.value,
|
||||
attributes={
|
||||
SpanAttributes.INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
|
||||
SpanAttributes.OUTPUT_VALUE: json.dumps(trace_info.outputs, ensure_ascii=False),
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND: OpenInferenceSpanKindValues.CHAIN.value,
|
||||
SpanAttributes.INPUT_VALUE: safe_json_dumps(trace_info.inputs),
|
||||
SpanAttributes.INPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
|
||||
SpanAttributes.OUTPUT_VALUE: safe_json_dumps(trace_info.outputs),
|
||||
SpanAttributes.OUTPUT_MIME_TYPE: OpenInferenceMimeTypeValues.JSON.value,
|
||||
SpanAttributes.METADATA: safe_json_dumps(metadata),
|
||||
SpanAttributes.SESSION_ID: trace_info.conversation_id or "",
|
||||
SpanAttributes.METADATA: json.dumps(metadata, ensure_ascii=False),
|
||||
SpanAttributes.SESSION_ID: trace_info.message_data.conversation_id,
|
||||
"start_time": trace_info.start_time.isoformat() if trace_info.start_time else "",
|
||||
"end_time": trace_info.end_time.isoformat() if trace_info.end_time else "",
|
||||
},
|
||||
start_time=datetime_to_nanos(trace_info.start_time),
|
||||
context=root_span_context,
|
||||
@ -753,85 +688,32 @@ class ArizePhoenixDataTrace(BaseTraceInstance):
|
||||
raise ValueError(f"[Arize/Phoenix] API check failed: {str(e)}")
|
||||
|
||||
def get_project_url(self):
|
||||
"""Build a redirect URL that forwards the user to the correct project for Arize/Phoenix."""
|
||||
try:
|
||||
project_name = self.arize_phoenix_config.project
|
||||
endpoint = self.arize_phoenix_config.endpoint.rstrip("/")
|
||||
|
||||
# Arize
|
||||
if isinstance(self.arize_phoenix_config, ArizeConfig):
|
||||
return f"https://app.arize.com/?redirect_project_name={project_name}"
|
||||
|
||||
# Phoenix
|
||||
return f"{endpoint}/projects/?redirect_project_name={project_name}"
|
||||
|
||||
if self.arize_phoenix_config.endpoint == "https://otlp.arize.com":
|
||||
return "https://app.arize.com/"
|
||||
else:
|
||||
return f"{self.arize_phoenix_config.endpoint}/projects/"
|
||||
except Exception as e:
|
||||
logger.info("[Arize/Phoenix] Failed to construct project URL: %s", str(e), exc_info=True)
|
||||
raise ValueError(f"[Arize/Phoenix] Failed to construct project URL: {str(e)}")
|
||||
logger.info("[Arize/Phoenix] Get run url failed: %s", str(e), exc_info=True)
|
||||
raise ValueError(f"[Arize/Phoenix] Get run url failed: {str(e)}")
|
||||
|
||||
def _construct_llm_attributes(self, prompts: dict | list | str | None) -> dict[str, str]:
|
||||
"""Construct LLM attributes with passed prompts for Arize/Phoenix."""
|
||||
attributes: dict[str, str] = {}
|
||||
|
||||
def set_attribute(path: str, value: object) -> None:
|
||||
"""Store an attribute safely as a string."""
|
||||
if value is None:
|
||||
return
|
||||
try:
|
||||
if isinstance(value, (dict, list)):
|
||||
value = safe_json_dumps(value)
|
||||
attributes[path] = str(value)
|
||||
except Exception:
|
||||
attributes[path] = str(value)
|
||||
|
||||
def set_message_attribute(message_index: int, key: str, value: object) -> None:
|
||||
path = f"{SpanAttributes.LLM_INPUT_MESSAGES}.{message_index}.{key}"
|
||||
set_attribute(path, value)
|
||||
|
||||
def set_tool_call_attributes(message_index: int, tool_index: int, tool_call: dict | object | None) -> None:
|
||||
"""Extract and assign tool call details safely."""
|
||||
if not tool_call:
|
||||
return
|
||||
|
||||
def safe_get(obj, key, default=None):
|
||||
if isinstance(obj, dict):
|
||||
return obj.get(key, default)
|
||||
return getattr(obj, key, default)
|
||||
|
||||
function_obj = safe_get(tool_call, "function", {})
|
||||
function_name = safe_get(function_obj, "name", "")
|
||||
function_args = safe_get(function_obj, "arguments", {})
|
||||
call_id = safe_get(tool_call, "id", "")
|
||||
|
||||
base_path = (
|
||||
f"{SpanAttributes.LLM_INPUT_MESSAGES}."
|
||||
f"{message_index}.{MessageAttributes.MESSAGE_TOOL_CALLS}.{tool_index}"
|
||||
)
|
||||
|
||||
set_attribute(f"{base_path}.{ToolCallAttributes.TOOL_CALL_FUNCTION_NAME}", function_name)
|
||||
set_attribute(f"{base_path}.{ToolCallAttributes.TOOL_CALL_FUNCTION_ARGUMENTS_JSON}", function_args)
|
||||
set_attribute(f"{base_path}.{ToolCallAttributes.TOOL_CALL_ID}", call_id)
|
||||
|
||||
# Handle list of messages
|
||||
"""Helper method to construct LLM attributes with passed prompts."""
|
||||
attributes = {}
|
||||
if isinstance(prompts, list):
|
||||
for message_index, message in enumerate(prompts):
|
||||
if not isinstance(message, dict):
|
||||
continue
|
||||
|
||||
role = message.get("role", "user")
|
||||
content = message.get("text") or message.get("content") or ""
|
||||
|
||||
set_message_attribute(message_index, MessageAttributes.MESSAGE_ROLE, role)
|
||||
set_message_attribute(message_index, MessageAttributes.MESSAGE_CONTENT, content)
|
||||
|
||||
tool_calls = message.get("tool_calls") or []
|
||||
if isinstance(tool_calls, list):
|
||||
for tool_index, tool_call in enumerate(tool_calls):
|
||||
set_tool_call_attributes(message_index, tool_index, tool_call)
|
||||
|
||||
# Handle single dict or plain string prompt
|
||||
elif isinstance(prompts, (dict, str)):
|
||||
set_message_attribute(0, MessageAttributes.MESSAGE_CONTENT, prompts)
|
||||
set_message_attribute(0, MessageAttributes.MESSAGE_ROLE, "user")
|
||||
for i, msg in enumerate(prompts):
|
||||
if isinstance(msg, dict):
|
||||
attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.{i}.message.content"] = msg.get("text", "")
|
||||
attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.{i}.message.role"] = msg.get("role", "user")
|
||||
# todo: handle assistant and tool role messages, as they don't always
|
||||
# have a text field, but may have a tool_calls field instead
|
||||
# e.g. 'tool_calls': [{'id': '98af3a29-b066-45a5-b4b1-46c74ddafc58',
|
||||
# 'type': 'function', 'function': {'name': 'current_time', 'arguments': '{}'}}]}
|
||||
elif isinstance(prompts, dict):
|
||||
attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.message.content"] = json.dumps(prompts)
|
||||
attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.message.role"] = "user"
|
||||
elif isinstance(prompts, str):
|
||||
attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.message.content"] = prompts
|
||||
attributes[f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.message.role"] = "user"
|
||||
|
||||
return attributes
|
||||
|
||||
@ -222,6 +222,59 @@ class TencentSpanBuilder:
|
||||
links=links,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def build_message_llm_span(
|
||||
trace_info: MessageTraceInfo, trace_id: int, parent_span_id: int, user_id: str
|
||||
) -> SpanData:
|
||||
"""Build LLM span for message traces with detailed LLM attributes."""
|
||||
status = Status(StatusCode.OK)
|
||||
if trace_info.error:
|
||||
status = Status(StatusCode.ERROR, trace_info.error)
|
||||
|
||||
# Extract model information from `metadata`` or `message_data`
|
||||
trace_metadata = trace_info.metadata or {}
|
||||
message_data = trace_info.message_data or {}
|
||||
|
||||
model_provider = trace_metadata.get("ls_provider") or (
|
||||
message_data.get("model_provider", "") if isinstance(message_data, dict) else ""
|
||||
)
|
||||
model_name = trace_metadata.get("ls_model_name") or (
|
||||
message_data.get("model_id", "") if isinstance(message_data, dict) else ""
|
||||
)
|
||||
|
||||
inputs_str = str(trace_info.inputs or "")
|
||||
outputs_str = str(trace_info.outputs or "")
|
||||
|
||||
attributes = {
|
||||
GEN_AI_SESSION_ID: trace_metadata.get("conversation_id", ""),
|
||||
GEN_AI_USER_ID: str(user_id),
|
||||
GEN_AI_SPAN_KIND: GenAISpanKind.GENERATION.value,
|
||||
GEN_AI_FRAMEWORK: "dify",
|
||||
GEN_AI_MODEL_NAME: str(model_name),
|
||||
GEN_AI_PROVIDER: str(model_provider),
|
||||
GEN_AI_USAGE_INPUT_TOKENS: str(trace_info.message_tokens or 0),
|
||||
GEN_AI_USAGE_OUTPUT_TOKENS: str(trace_info.answer_tokens or 0),
|
||||
GEN_AI_USAGE_TOTAL_TOKENS: str(trace_info.total_tokens or 0),
|
||||
GEN_AI_PROMPT: inputs_str,
|
||||
GEN_AI_COMPLETION: outputs_str,
|
||||
INPUT_VALUE: inputs_str,
|
||||
OUTPUT_VALUE: outputs_str,
|
||||
}
|
||||
|
||||
if trace_info.is_streaming_request:
|
||||
attributes[GEN_AI_IS_STREAMING_REQUEST] = "true"
|
||||
|
||||
return SpanData(
|
||||
trace_id=trace_id,
|
||||
parent_span_id=parent_span_id,
|
||||
span_id=TencentTraceUtils.convert_to_span_id(trace_info.message_id, "llm"),
|
||||
name="GENERATION",
|
||||
start_time=TencentSpanBuilder._get_time_nanoseconds(trace_info.start_time),
|
||||
end_time=TencentSpanBuilder._get_time_nanoseconds(trace_info.end_time),
|
||||
attributes=attributes,
|
||||
status=status,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def build_tool_span(trace_info: ToolTraceInfo, trace_id: int, parent_span_id: int) -> SpanData:
|
||||
"""Build tool span."""
|
||||
|
||||
@ -107,9 +107,13 @@ class TencentDataTrace(BaseTraceInstance):
|
||||
links.append(TencentTraceUtils.create_link(trace_info.trace_id))
|
||||
|
||||
message_span = TencentSpanBuilder.build_message_span(trace_info, trace_id, str(user_id), links)
|
||||
|
||||
self.trace_client.add_span(message_span)
|
||||
|
||||
# Add LLM child span with detailed attributes
|
||||
parent_span_id = TencentTraceUtils.convert_to_span_id(trace_info.message_id, "message")
|
||||
llm_span = TencentSpanBuilder.build_message_llm_span(trace_info, trace_id, parent_span_id, str(user_id))
|
||||
self.trace_client.add_span(llm_span)
|
||||
|
||||
self._record_message_llm_metrics(trace_info)
|
||||
|
||||
# Record trace duration for entry span
|
||||
|
||||
@ -6,7 +6,7 @@ from core.model_runtime.entities.llm_entities import LLMResultChunk
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity
|
||||
from core.model_runtime.entities.rerank_entities import RerankResult
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingResult
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.plugin.entities.plugin_daemon import (
|
||||
PluginBasicBooleanResponse,
|
||||
@ -243,14 +243,14 @@ class PluginModelClient(BasePluginClient):
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
input_type: str,
|
||||
) -> EmbeddingResult:
|
||||
) -> TextEmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding
|
||||
"""
|
||||
response = self._request_with_plugin_daemon_response_stream(
|
||||
method="POST",
|
||||
path=f"plugin/{tenant_id}/dispatch/text_embedding/invoke",
|
||||
type_=EmbeddingResult,
|
||||
type_=TextEmbeddingResult,
|
||||
data=jsonable_encoder(
|
||||
{
|
||||
"user_id": user_id,
|
||||
@ -275,48 +275,6 @@ class PluginModelClient(BasePluginClient):
|
||||
|
||||
raise ValueError("Failed to invoke text embedding")
|
||||
|
||||
def invoke_multimodal_embedding(
|
||||
self,
|
||||
tenant_id: str,
|
||||
user_id: str,
|
||||
plugin_id: str,
|
||||
provider: str,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
documents: list[dict],
|
||||
input_type: str,
|
||||
) -> EmbeddingResult:
|
||||
"""
|
||||
Invoke file embedding
|
||||
"""
|
||||
response = self._request_with_plugin_daemon_response_stream(
|
||||
method="POST",
|
||||
path=f"plugin/{tenant_id}/dispatch/multimodal_embedding/invoke",
|
||||
type_=EmbeddingResult,
|
||||
data=jsonable_encoder(
|
||||
{
|
||||
"user_id": user_id,
|
||||
"data": {
|
||||
"provider": provider,
|
||||
"model_type": "text-embedding",
|
||||
"model": model,
|
||||
"credentials": credentials,
|
||||
"documents": documents,
|
||||
"input_type": input_type,
|
||||
},
|
||||
}
|
||||
),
|
||||
headers={
|
||||
"X-Plugin-ID": plugin_id,
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
)
|
||||
|
||||
for resp in response:
|
||||
return resp
|
||||
|
||||
raise ValueError("Failed to invoke file embedding")
|
||||
|
||||
def get_text_embedding_num_tokens(
|
||||
self,
|
||||
tenant_id: str,
|
||||
@ -403,51 +361,6 @@ class PluginModelClient(BasePluginClient):
|
||||
|
||||
raise ValueError("Failed to invoke rerank")
|
||||
|
||||
def invoke_multimodal_rerank(
|
||||
self,
|
||||
tenant_id: str,
|
||||
user_id: str,
|
||||
plugin_id: str,
|
||||
provider: str,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
query: dict,
|
||||
docs: list[dict],
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
) -> RerankResult:
|
||||
"""
|
||||
Invoke multimodal rerank
|
||||
"""
|
||||
response = self._request_with_plugin_daemon_response_stream(
|
||||
method="POST",
|
||||
path=f"plugin/{tenant_id}/dispatch/multimodal_rerank/invoke",
|
||||
type_=RerankResult,
|
||||
data=jsonable_encoder(
|
||||
{
|
||||
"user_id": user_id,
|
||||
"data": {
|
||||
"provider": provider,
|
||||
"model_type": "rerank",
|
||||
"model": model,
|
||||
"credentials": credentials,
|
||||
"query": query,
|
||||
"docs": docs,
|
||||
"score_threshold": score_threshold,
|
||||
"top_n": top_n,
|
||||
},
|
||||
}
|
||||
),
|
||||
headers={
|
||||
"X-Plugin-ID": plugin_id,
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
)
|
||||
for resp in response:
|
||||
return resp
|
||||
|
||||
raise ValueError("Failed to invoke multimodal rerank")
|
||||
|
||||
def invoke_tts(
|
||||
self,
|
||||
tenant_id: str,
|
||||
|
||||
@ -49,7 +49,6 @@ class SimplePromptTransform(PromptTransform):
|
||||
memory: TokenBufferMemory | None,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
|
||||
context_files: list["File"] | None = None,
|
||||
) -> tuple[list[PromptMessage], list[str] | None]:
|
||||
inputs = {key: str(value) for key, value in inputs.items()}
|
||||
|
||||
@ -65,7 +64,6 @@ class SimplePromptTransform(PromptTransform):
|
||||
memory=memory,
|
||||
model_config=model_config,
|
||||
image_detail_config=image_detail_config,
|
||||
context_files=context_files,
|
||||
)
|
||||
else:
|
||||
prompt_messages, stops = self._get_completion_model_prompt_messages(
|
||||
@ -78,7 +76,6 @@ class SimplePromptTransform(PromptTransform):
|
||||
memory=memory,
|
||||
model_config=model_config,
|
||||
image_detail_config=image_detail_config,
|
||||
context_files=context_files,
|
||||
)
|
||||
|
||||
return prompt_messages, stops
|
||||
@ -190,7 +187,6 @@ class SimplePromptTransform(PromptTransform):
|
||||
memory: TokenBufferMemory | None,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
|
||||
context_files: list["File"] | None = None,
|
||||
) -> tuple[list[PromptMessage], list[str] | None]:
|
||||
prompt_messages: list[PromptMessage] = []
|
||||
|
||||
@ -220,9 +216,9 @@ class SimplePromptTransform(PromptTransform):
|
||||
)
|
||||
|
||||
if query:
|
||||
prompt_messages.append(self._get_last_user_message(query, files, image_detail_config, context_files))
|
||||
prompt_messages.append(self._get_last_user_message(query, files, image_detail_config))
|
||||
else:
|
||||
prompt_messages.append(self._get_last_user_message(prompt, files, image_detail_config, context_files))
|
||||
prompt_messages.append(self._get_last_user_message(prompt, files, image_detail_config))
|
||||
|
||||
return prompt_messages, None
|
||||
|
||||
@ -237,7 +233,6 @@ class SimplePromptTransform(PromptTransform):
|
||||
memory: TokenBufferMemory | None,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
|
||||
context_files: list["File"] | None = None,
|
||||
) -> tuple[list[PromptMessage], list[str] | None]:
|
||||
# get prompt
|
||||
prompt, prompt_rules = self._get_prompt_str_and_rules(
|
||||
@ -280,27 +275,20 @@ class SimplePromptTransform(PromptTransform):
|
||||
if stops is not None and len(stops) == 0:
|
||||
stops = None
|
||||
|
||||
return [self._get_last_user_message(prompt, files, image_detail_config, context_files)], stops
|
||||
return [self._get_last_user_message(prompt, files, image_detail_config)], stops
|
||||
|
||||
def _get_last_user_message(
|
||||
self,
|
||||
prompt: str,
|
||||
files: Sequence["File"],
|
||||
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
|
||||
context_files: list["File"] | None = None,
|
||||
) -> UserPromptMessage:
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
if files:
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
for file in files:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(file, image_detail_config=image_detail_config)
|
||||
)
|
||||
if context_files:
|
||||
for file in context_files:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(file, image_detail_config=image_detail_config)
|
||||
)
|
||||
if prompt_message_contents:
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=prompt))
|
||||
|
||||
prompt_message = UserPromptMessage(content=prompt_message_contents)
|
||||
|
||||
@ -2,7 +2,6 @@ from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.rag.data_post_processor.reorder import ReorderRunner
|
||||
from core.rag.index_processor.constant.query_type import QueryType
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.rerank.entity.weight import KeywordSetting, VectorSetting, Weights
|
||||
from core.rag.rerank.rerank_base import BaseRerankRunner
|
||||
@ -31,10 +30,9 @@ class DataPostProcessor:
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
query_type: QueryType = QueryType.TEXT_QUERY,
|
||||
) -> list[Document]:
|
||||
if self.rerank_runner:
|
||||
documents = self.rerank_runner.run(query, documents, score_threshold, top_n, user, query_type)
|
||||
documents = self.rerank_runner.run(query, documents, score_threshold, top_n, user)
|
||||
|
||||
if self.reorder_runner:
|
||||
documents = self.reorder_runner.run(documents)
|
||||
|
||||
@ -1,30 +1,23 @@
|
||||
import concurrent.futures
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Any
|
||||
|
||||
from flask import Flask, current_app
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session, load_only
|
||||
|
||||
from configs import dify_config
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.embedding.retrieval import RetrievalSegments
|
||||
from core.rag.entities.metadata_entities import MetadataCondition
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.constant.query_type import QueryType
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.rerank.rerank_type import RerankMode
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.tools.signature import sign_upload_file
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import ChildChunk, Dataset, DocumentSegment, SegmentAttachmentBinding
|
||||
from models.dataset import ChildChunk, Dataset, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from models.model import UploadFile
|
||||
from services.external_knowledge_service import ExternalDatasetService
|
||||
|
||||
default_retrieval_model = {
|
||||
@ -44,15 +37,14 @@ class RetrievalService:
|
||||
retrieval_method: RetrievalMethod,
|
||||
dataset_id: str,
|
||||
query: str,
|
||||
top_k: int = 4,
|
||||
top_k: int,
|
||||
score_threshold: float | None = 0.0,
|
||||
reranking_model: dict | None = None,
|
||||
reranking_mode: str = "reranking_model",
|
||||
weights: dict | None = None,
|
||||
document_ids_filter: list[str] | None = None,
|
||||
attachment_ids: list | None = None,
|
||||
):
|
||||
if not query and not attachment_ids:
|
||||
if not query:
|
||||
return []
|
||||
dataset = cls._get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
@ -64,52 +56,69 @@ class RetrievalService:
|
||||
# Optimize multithreading with thread pools
|
||||
with ThreadPoolExecutor(max_workers=dify_config.RETRIEVAL_SERVICE_EXECUTORS) as executor: # type: ignore
|
||||
futures = []
|
||||
retrieval_service = RetrievalService()
|
||||
if query:
|
||||
if retrieval_method == RetrievalMethod.KEYWORD_SEARCH:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
retrieval_service._retrieve,
|
||||
cls.keyword_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
retrieval_method=retrieval_method,
|
||||
dataset=dataset,
|
||||
dataset_id=dataset_id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
all_documents=all_documents,
|
||||
exceptions=exceptions,
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
)
|
||||
if RetrievalMethod.is_support_semantic_search(retrieval_method):
|
||||
futures.append(
|
||||
executor.submit(
|
||||
cls.embedding_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset_id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
reranking_mode=reranking_mode,
|
||||
weights=weights,
|
||||
document_ids_filter=document_ids_filter,
|
||||
attachment_id=None,
|
||||
all_documents=all_documents,
|
||||
retrieval_method=retrieval_method,
|
||||
exceptions=exceptions,
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
)
|
||||
if attachment_ids:
|
||||
for attachment_id in attachment_ids:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
retrieval_service._retrieve,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
retrieval_method=retrieval_method,
|
||||
dataset=dataset,
|
||||
query=None,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
reranking_mode=reranking_mode,
|
||||
weights=weights,
|
||||
document_ids_filter=document_ids_filter,
|
||||
attachment_id=attachment_id,
|
||||
all_documents=all_documents,
|
||||
exceptions=exceptions,
|
||||
)
|
||||
if RetrievalMethod.is_support_fulltext_search(retrieval_method):
|
||||
futures.append(
|
||||
executor.submit(
|
||||
cls.full_text_index_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset_id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
all_documents=all_documents,
|
||||
retrieval_method=retrieval_method,
|
||||
exceptions=exceptions,
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
|
||||
concurrent.futures.wait(futures, timeout=3600, return_when=concurrent.futures.ALL_COMPLETED)
|
||||
)
|
||||
concurrent.futures.wait(futures, timeout=30, return_when=concurrent.futures.ALL_COMPLETED)
|
||||
|
||||
if exceptions:
|
||||
raise ValueError(";\n".join(exceptions))
|
||||
|
||||
# Deduplicate documents for hybrid search to avoid duplicate chunks
|
||||
if retrieval_method == RetrievalMethod.HYBRID_SEARCH:
|
||||
all_documents = cls._deduplicate_documents(all_documents)
|
||||
data_post_processor = DataPostProcessor(
|
||||
str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
|
||||
)
|
||||
all_documents = data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=all_documents,
|
||||
score_threshold=score_threshold,
|
||||
top_n=top_k,
|
||||
)
|
||||
|
||||
return all_documents
|
||||
|
||||
@classmethod
|
||||
@ -214,7 +223,6 @@ class RetrievalService:
|
||||
retrieval_method: RetrievalMethod,
|
||||
exceptions: list,
|
||||
document_ids_filter: list[str] | None = None,
|
||||
query_type: QueryType = QueryType.TEXT_QUERY,
|
||||
):
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
@ -223,30 +231,14 @@ class RetrievalService:
|
||||
raise ValueError("dataset not found")
|
||||
|
||||
vector = Vector(dataset=dataset)
|
||||
documents = []
|
||||
if query_type == QueryType.TEXT_QUERY:
|
||||
documents.extend(
|
||||
vector.search_by_vector(
|
||||
query,
|
||||
search_type="similarity_score_threshold",
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
filter={"group_id": [dataset.id]},
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
)
|
||||
if query_type == QueryType.IMAGE_QUERY:
|
||||
if not dataset.is_multimodal:
|
||||
return
|
||||
documents.extend(
|
||||
vector.search_by_file(
|
||||
file_id=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
filter={"group_id": [dataset.id]},
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
)
|
||||
documents = vector.search_by_vector(
|
||||
query,
|
||||
search_type="similarity_score_threshold",
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
filter={"group_id": [dataset.id]},
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
|
||||
if documents:
|
||||
if (
|
||||
@ -258,37 +250,14 @@ class RetrievalService:
|
||||
data_post_processor = DataPostProcessor(
|
||||
str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL), reranking_model, None, False
|
||||
)
|
||||
if dataset.is_multimodal:
|
||||
model_manager = ModelManager()
|
||||
is_support_vision = model_manager.check_model_support_vision(
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider=reranking_model.get("reranking_provider_name") or "",
|
||||
model=reranking_model.get("reranking_model_name") or "",
|
||||
model_type=ModelType.RERANK,
|
||||
)
|
||||
if is_support_vision:
|
||||
all_documents.extend(
|
||||
data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=documents,
|
||||
score_threshold=score_threshold,
|
||||
top_n=len(documents),
|
||||
query_type=query_type,
|
||||
)
|
||||
)
|
||||
else:
|
||||
# not effective, return original documents
|
||||
all_documents.extend(documents)
|
||||
else:
|
||||
all_documents.extend(
|
||||
data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=documents,
|
||||
score_threshold=score_threshold,
|
||||
top_n=len(documents),
|
||||
query_type=query_type,
|
||||
)
|
||||
all_documents.extend(
|
||||
data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=documents,
|
||||
score_threshold=score_threshold,
|
||||
top_n=len(documents),
|
||||
)
|
||||
)
|
||||
else:
|
||||
all_documents.extend(documents)
|
||||
except Exception as e:
|
||||
@ -370,161 +339,103 @@ class RetrievalService:
|
||||
records = []
|
||||
include_segment_ids = set()
|
||||
segment_child_map = {}
|
||||
segment_file_map = {}
|
||||
with Session(bind=db.engine, expire_on_commit=False) as session:
|
||||
# Process documents
|
||||
for document in documents:
|
||||
segment_id = None
|
||||
attachment_info = None
|
||||
child_chunk = None
|
||||
document_id = document.metadata.get("document_id")
|
||||
if document_id not in dataset_documents:
|
||||
|
||||
# Process documents
|
||||
for document in documents:
|
||||
document_id = document.metadata.get("document_id")
|
||||
if document_id not in dataset_documents:
|
||||
continue
|
||||
|
||||
dataset_document = dataset_documents[document_id]
|
||||
if not dataset_document:
|
||||
continue
|
||||
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
# Handle parent-child documents
|
||||
child_index_node_id = document.metadata.get("doc_id")
|
||||
child_chunk_stmt = select(ChildChunk).where(ChildChunk.index_node_id == child_index_node_id)
|
||||
child_chunk = db.session.scalar(child_chunk_stmt)
|
||||
|
||||
if not child_chunk:
|
||||
continue
|
||||
|
||||
dataset_document = dataset_documents[document_id]
|
||||
if not dataset_document:
|
||||
continue
|
||||
|
||||
if dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
# Handle parent-child documents
|
||||
if document.metadata.get("doc_type") == DocType.IMAGE:
|
||||
attachment_info_dict = cls.get_segment_attachment_info(
|
||||
dataset_document.dataset_id,
|
||||
dataset_document.tenant_id,
|
||||
document.metadata.get("doc_id") or "",
|
||||
session,
|
||||
)
|
||||
if attachment_info_dict:
|
||||
attachment_info = attachment_info_dict["attachment_info"]
|
||||
segment_id = attachment_info_dict["segment_id"]
|
||||
else:
|
||||
child_index_node_id = document.metadata.get("doc_id")
|
||||
child_chunk_stmt = select(ChildChunk).where(ChildChunk.index_node_id == child_index_node_id)
|
||||
child_chunk = session.scalar(child_chunk_stmt)
|
||||
|
||||
if not child_chunk:
|
||||
continue
|
||||
segment_id = child_chunk.segment_id
|
||||
|
||||
if not segment_id:
|
||||
continue
|
||||
|
||||
segment = (
|
||||
session.query(DocumentSegment)
|
||||
.where(
|
||||
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.id == segment_id,
|
||||
)
|
||||
.first()
|
||||
segment = (
|
||||
db.session.query(DocumentSegment)
|
||||
.where(
|
||||
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.id == child_chunk.segment_id,
|
||||
)
|
||||
.options(
|
||||
load_only(
|
||||
DocumentSegment.id,
|
||||
DocumentSegment.content,
|
||||
DocumentSegment.answer,
|
||||
)
|
||||
)
|
||||
.first()
|
||||
)
|
||||
|
||||
if not segment:
|
||||
continue
|
||||
if not segment:
|
||||
continue
|
||||
|
||||
if segment.id not in include_segment_ids:
|
||||
include_segment_ids.add(segment.id)
|
||||
if child_chunk:
|
||||
child_chunk_detail = {
|
||||
"id": child_chunk.id,
|
||||
"content": child_chunk.content,
|
||||
"position": child_chunk.position,
|
||||
"score": document.metadata.get("score", 0.0),
|
||||
}
|
||||
map_detail = {
|
||||
"max_score": document.metadata.get("score", 0.0),
|
||||
"child_chunks": [child_chunk_detail],
|
||||
}
|
||||
segment_child_map[segment.id] = map_detail
|
||||
record = {
|
||||
"segment": segment,
|
||||
}
|
||||
if attachment_info:
|
||||
segment_file_map[segment.id] = [attachment_info]
|
||||
records.append(record)
|
||||
else:
|
||||
if child_chunk:
|
||||
child_chunk_detail = {
|
||||
"id": child_chunk.id,
|
||||
"content": child_chunk.content,
|
||||
"position": child_chunk.position,
|
||||
"score": document.metadata.get("score", 0.0),
|
||||
}
|
||||
if segment.id in segment_child_map:
|
||||
segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
|
||||
segment_child_map[segment.id]["max_score"] = max(
|
||||
segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
|
||||
)
|
||||
else:
|
||||
segment_child_map[segment.id] = {
|
||||
"max_score": document.metadata.get("score", 0.0),
|
||||
"child_chunks": [child_chunk_detail],
|
||||
}
|
||||
if attachment_info:
|
||||
if segment.id in segment_file_map:
|
||||
segment_file_map[segment.id].append(attachment_info)
|
||||
else:
|
||||
segment_file_map[segment.id] = [attachment_info]
|
||||
if segment.id not in include_segment_ids:
|
||||
include_segment_ids.add(segment.id)
|
||||
child_chunk_detail = {
|
||||
"id": child_chunk.id,
|
||||
"content": child_chunk.content,
|
||||
"position": child_chunk.position,
|
||||
"score": document.metadata.get("score", 0.0),
|
||||
}
|
||||
map_detail = {
|
||||
"max_score": document.metadata.get("score", 0.0),
|
||||
"child_chunks": [child_chunk_detail],
|
||||
}
|
||||
segment_child_map[segment.id] = map_detail
|
||||
record = {
|
||||
"segment": segment,
|
||||
}
|
||||
records.append(record)
|
||||
else:
|
||||
# Handle normal documents
|
||||
segment = None
|
||||
if document.metadata.get("doc_type") == DocType.IMAGE:
|
||||
attachment_info_dict = cls.get_segment_attachment_info(
|
||||
dataset_document.dataset_id,
|
||||
dataset_document.tenant_id,
|
||||
document.metadata.get("doc_id") or "",
|
||||
session,
|
||||
)
|
||||
if attachment_info_dict:
|
||||
attachment_info = attachment_info_dict["attachment_info"]
|
||||
segment_id = attachment_info_dict["segment_id"]
|
||||
document_segment_stmt = select(DocumentSegment).where(
|
||||
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.id == segment_id,
|
||||
)
|
||||
segment = session.scalar(document_segment_stmt)
|
||||
if segment:
|
||||
segment_file_map[segment.id] = [attachment_info]
|
||||
else:
|
||||
index_node_id = document.metadata.get("doc_id")
|
||||
if not index_node_id:
|
||||
continue
|
||||
document_segment_stmt = select(DocumentSegment).where(
|
||||
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.index_node_id == index_node_id,
|
||||
)
|
||||
segment = session.scalar(document_segment_stmt)
|
||||
child_chunk_detail = {
|
||||
"id": child_chunk.id,
|
||||
"content": child_chunk.content,
|
||||
"position": child_chunk.position,
|
||||
"score": document.metadata.get("score", 0.0),
|
||||
}
|
||||
segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
|
||||
segment_child_map[segment.id]["max_score"] = max(
|
||||
segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
|
||||
)
|
||||
else:
|
||||
# Handle normal documents
|
||||
index_node_id = document.metadata.get("doc_id")
|
||||
if not index_node_id:
|
||||
continue
|
||||
document_segment_stmt = select(DocumentSegment).where(
|
||||
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.index_node_id == index_node_id,
|
||||
)
|
||||
segment = db.session.scalar(document_segment_stmt)
|
||||
|
||||
if not segment:
|
||||
continue
|
||||
if segment.id not in include_segment_ids:
|
||||
include_segment_ids.add(segment.id)
|
||||
record = {
|
||||
"segment": segment,
|
||||
"score": document.metadata.get("score"), # type: ignore
|
||||
}
|
||||
if attachment_info:
|
||||
segment_file_map[segment.id] = [attachment_info]
|
||||
records.append(record)
|
||||
else:
|
||||
if attachment_info:
|
||||
attachment_infos = segment_file_map.get(segment.id, [])
|
||||
if attachment_info not in attachment_infos:
|
||||
attachment_infos.append(attachment_info)
|
||||
segment_file_map[segment.id] = attachment_infos
|
||||
if not segment:
|
||||
continue
|
||||
|
||||
include_segment_ids.add(segment.id)
|
||||
record = {
|
||||
"segment": segment,
|
||||
"score": document.metadata.get("score"), # type: ignore
|
||||
}
|
||||
records.append(record)
|
||||
|
||||
# Add child chunks information to records
|
||||
for record in records:
|
||||
if record["segment"].id in segment_child_map:
|
||||
record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks") # type: ignore
|
||||
record["score"] = segment_child_map[record["segment"].id]["max_score"]
|
||||
if record["segment"].id in segment_file_map:
|
||||
record["files"] = segment_file_map[record["segment"].id] # type: ignore[assignment]
|
||||
|
||||
result = []
|
||||
for record in records:
|
||||
@ -536,11 +447,6 @@ class RetrievalService:
|
||||
if not isinstance(child_chunks, list):
|
||||
child_chunks = None
|
||||
|
||||
# Extract files, ensuring it's a list or None
|
||||
files = record.get("files")
|
||||
if not isinstance(files, list):
|
||||
files = None
|
||||
|
||||
# Extract score, ensuring it's a float or None
|
||||
score_value = record.get("score")
|
||||
score = (
|
||||
@ -550,149 +456,10 @@ class RetrievalService:
|
||||
)
|
||||
|
||||
# Create RetrievalSegments object
|
||||
retrieval_segment = RetrievalSegments(
|
||||
segment=segment, child_chunks=child_chunks, score=score, files=files
|
||||
)
|
||||
retrieval_segment = RetrievalSegments(segment=segment, child_chunks=child_chunks, score=score)
|
||||
result.append(retrieval_segment)
|
||||
|
||||
return result
|
||||
except Exception as e:
|
||||
db.session.rollback()
|
||||
raise e
|
||||
|
||||
def _retrieve(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
retrieval_method: RetrievalMethod,
|
||||
dataset: Dataset,
|
||||
query: str | None = None,
|
||||
top_k: int = 4,
|
||||
score_threshold: float | None = 0.0,
|
||||
reranking_model: dict | None = None,
|
||||
reranking_mode: str = "reranking_model",
|
||||
weights: dict | None = None,
|
||||
document_ids_filter: list[str] | None = None,
|
||||
attachment_id: str | None = None,
|
||||
all_documents: list[Document] = [],
|
||||
exceptions: list[str] = [],
|
||||
):
|
||||
if not query and not attachment_id:
|
||||
return
|
||||
with flask_app.app_context():
|
||||
all_documents_item: list[Document] = []
|
||||
# Optimize multithreading with thread pools
|
||||
with ThreadPoolExecutor(max_workers=dify_config.RETRIEVAL_SERVICE_EXECUTORS) as executor: # type: ignore
|
||||
futures = []
|
||||
if retrieval_method == RetrievalMethod.KEYWORD_SEARCH and query:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
self.keyword_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
all_documents=all_documents_item,
|
||||
exceptions=exceptions,
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
)
|
||||
if RetrievalMethod.is_support_semantic_search(retrieval_method):
|
||||
if query:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
self.embedding_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
all_documents=all_documents_item,
|
||||
retrieval_method=retrieval_method,
|
||||
exceptions=exceptions,
|
||||
document_ids_filter=document_ids_filter,
|
||||
query_type=QueryType.TEXT_QUERY,
|
||||
)
|
||||
)
|
||||
if attachment_id:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
self.embedding_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset.id,
|
||||
query=attachment_id,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
all_documents=all_documents_item,
|
||||
retrieval_method=retrieval_method,
|
||||
exceptions=exceptions,
|
||||
document_ids_filter=document_ids_filter,
|
||||
query_type=QueryType.IMAGE_QUERY,
|
||||
)
|
||||
)
|
||||
if RetrievalMethod.is_support_fulltext_search(retrieval_method) and query:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
self.full_text_index_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
all_documents=all_documents_item,
|
||||
retrieval_method=retrieval_method,
|
||||
exceptions=exceptions,
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
)
|
||||
concurrent.futures.wait(futures, timeout=300, return_when=concurrent.futures.ALL_COMPLETED)
|
||||
|
||||
if exceptions:
|
||||
raise ValueError(";\n".join(exceptions))
|
||||
|
||||
# Deduplicate documents for hybrid search to avoid duplicate chunks
|
||||
if retrieval_method == RetrievalMethod.HYBRID_SEARCH:
|
||||
if attachment_id and reranking_mode == RerankMode.WEIGHTED_SCORE:
|
||||
all_documents.extend(all_documents_item)
|
||||
all_documents_item = self._deduplicate_documents(all_documents_item)
|
||||
data_post_processor = DataPostProcessor(
|
||||
str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
|
||||
)
|
||||
|
||||
query = query or attachment_id
|
||||
if not query:
|
||||
return
|
||||
all_documents_item = data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=all_documents_item,
|
||||
score_threshold=score_threshold,
|
||||
top_n=top_k,
|
||||
query_type=QueryType.TEXT_QUERY if query else QueryType.IMAGE_QUERY,
|
||||
)
|
||||
|
||||
all_documents.extend(all_documents_item)
|
||||
|
||||
@classmethod
|
||||
def get_segment_attachment_info(
|
||||
cls, dataset_id: str, tenant_id: str, attachment_id: str, session: Session
|
||||
) -> dict[str, Any] | None:
|
||||
upload_file = session.query(UploadFile).where(UploadFile.id == attachment_id).first()
|
||||
if upload_file:
|
||||
attachment_binding = (
|
||||
session.query(SegmentAttachmentBinding)
|
||||
.where(SegmentAttachmentBinding.attachment_id == upload_file.id)
|
||||
.first()
|
||||
)
|
||||
if attachment_binding:
|
||||
attachment_info = {
|
||||
"id": upload_file.id,
|
||||
"name": upload_file.name,
|
||||
"extension": "." + upload_file.extension,
|
||||
"mime_type": upload_file.mime_type,
|
||||
"source_url": sign_upload_file(upload_file.id, upload_file.extension),
|
||||
"size": upload_file.size,
|
||||
}
|
||||
return {"attachment_info": attachment_info, "segment_id": attachment_binding.segment_id}
|
||||
return None
|
||||
|
||||
@ -1,407 +0,0 @@
|
||||
"""InterSystems IRIS vector database implementation for Dify.
|
||||
|
||||
This module provides vector storage and retrieval using IRIS native VECTOR type
|
||||
with HNSW indexing for efficient similarity search.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import logging
|
||||
import threading
|
||||
import uuid
|
||||
from contextlib import contextmanager
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from configs import dify_config
|
||||
from configs.middleware.vdb.iris_config import IrisVectorConfig
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import iris
|
||||
else:
|
||||
try:
|
||||
import iris
|
||||
except ImportError:
|
||||
iris = None # type: ignore[assignment]
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Singleton connection pool to minimize IRIS license usage
|
||||
_pool_lock = threading.Lock()
|
||||
_pool_instance: IrisConnectionPool | None = None
|
||||
|
||||
|
||||
def get_iris_pool(config: IrisVectorConfig) -> IrisConnectionPool:
|
||||
"""Get or create the global IRIS connection pool (singleton pattern)."""
|
||||
global _pool_instance # pylint: disable=global-statement
|
||||
with _pool_lock:
|
||||
if _pool_instance is None:
|
||||
logger.info("Initializing IRIS connection pool")
|
||||
_pool_instance = IrisConnectionPool(config)
|
||||
return _pool_instance
|
||||
|
||||
|
||||
class IrisConnectionPool:
|
||||
"""Thread-safe connection pool for IRIS database."""
|
||||
|
||||
def __init__(self, config: IrisVectorConfig) -> None:
|
||||
self.config = config
|
||||
self._pool: list[Any] = []
|
||||
self._lock = threading.Lock()
|
||||
self._min_size = config.IRIS_MIN_CONNECTION
|
||||
self._max_size = config.IRIS_MAX_CONNECTION
|
||||
self._in_use = 0
|
||||
self._schemas_initialized: set[str] = set() # Cache for initialized schemas
|
||||
self._initialize_pool()
|
||||
|
||||
def _initialize_pool(self) -> None:
|
||||
for _ in range(self._min_size):
|
||||
self._pool.append(self._create_connection())
|
||||
|
||||
def _create_connection(self) -> Any:
|
||||
return iris.connect(
|
||||
hostname=self.config.IRIS_HOST,
|
||||
port=self.config.IRIS_SUPER_SERVER_PORT,
|
||||
namespace=self.config.IRIS_DATABASE,
|
||||
username=self.config.IRIS_USER,
|
||||
password=self.config.IRIS_PASSWORD,
|
||||
)
|
||||
|
||||
def get_connection(self) -> Any:
|
||||
"""Get a connection from pool or create new if available."""
|
||||
with self._lock:
|
||||
if self._pool:
|
||||
conn = self._pool.pop()
|
||||
self._in_use += 1
|
||||
return conn
|
||||
if self._in_use < self._max_size:
|
||||
conn = self._create_connection()
|
||||
self._in_use += 1
|
||||
return conn
|
||||
raise RuntimeError("Connection pool exhausted")
|
||||
|
||||
def return_connection(self, conn: Any) -> None:
|
||||
"""Return connection to pool after validating it."""
|
||||
if not conn:
|
||||
return
|
||||
|
||||
# Validate connection health
|
||||
is_valid = False
|
||||
try:
|
||||
cursor = conn.cursor()
|
||||
cursor.execute("SELECT 1")
|
||||
cursor.close()
|
||||
is_valid = True
|
||||
except (OSError, RuntimeError) as e:
|
||||
logger.debug("Connection validation failed: %s", e)
|
||||
try:
|
||||
conn.close()
|
||||
except (OSError, RuntimeError):
|
||||
pass
|
||||
|
||||
with self._lock:
|
||||
self._pool.append(conn if is_valid else self._create_connection())
|
||||
self._in_use -= 1
|
||||
|
||||
def ensure_schema_exists(self, schema: str) -> None:
|
||||
"""Ensure schema exists in IRIS database.
|
||||
|
||||
This method is idempotent and thread-safe. It uses a memory cache to avoid
|
||||
redundant database queries for already-verified schemas.
|
||||
|
||||
Args:
|
||||
schema: Schema name to ensure exists
|
||||
|
||||
Raises:
|
||||
Exception: If schema creation fails
|
||||
"""
|
||||
# Fast path: check cache first (no lock needed for read-only set lookup)
|
||||
if schema in self._schemas_initialized:
|
||||
return
|
||||
|
||||
# Slow path: acquire lock and check again (double-checked locking)
|
||||
with self._lock:
|
||||
if schema in self._schemas_initialized:
|
||||
return
|
||||
|
||||
# Get a connection to check/create schema
|
||||
conn = self._pool[0] if self._pool else self._create_connection()
|
||||
cursor = conn.cursor()
|
||||
try:
|
||||
# Check if schema exists using INFORMATION_SCHEMA
|
||||
check_sql = """
|
||||
SELECT COUNT(*) FROM INFORMATION_SCHEMA.SCHEMATA
|
||||
WHERE SCHEMA_NAME = ?
|
||||
"""
|
||||
cursor.execute(check_sql, (schema,)) # Must be tuple or list
|
||||
exists = cursor.fetchone()[0] > 0
|
||||
|
||||
if not exists:
|
||||
# Schema doesn't exist, create it
|
||||
cursor.execute(f"CREATE SCHEMA {schema}")
|
||||
conn.commit()
|
||||
logger.info("Created schema: %s", schema)
|
||||
else:
|
||||
logger.debug("Schema already exists: %s", schema)
|
||||
|
||||
# Add to cache to skip future checks
|
||||
self._schemas_initialized.add(schema)
|
||||
|
||||
except Exception as e:
|
||||
conn.rollback()
|
||||
logger.exception("Failed to ensure schema %s exists", schema)
|
||||
raise
|
||||
finally:
|
||||
cursor.close()
|
||||
|
||||
def close_all(self) -> None:
|
||||
"""Close all connections (application shutdown only)."""
|
||||
with self._lock:
|
||||
for conn in self._pool:
|
||||
try:
|
||||
conn.close()
|
||||
except (OSError, RuntimeError):
|
||||
pass
|
||||
self._pool.clear()
|
||||
self._in_use = 0
|
||||
self._schemas_initialized.clear()
|
||||
|
||||
|
||||
class IrisVector(BaseVector):
|
||||
"""IRIS vector database implementation using native VECTOR type and HNSW indexing."""
|
||||
|
||||
def __init__(self, collection_name: str, config: IrisVectorConfig) -> None:
|
||||
super().__init__(collection_name)
|
||||
self.config = config
|
||||
self.table_name = f"embedding_{collection_name}".upper()
|
||||
self.schema = config.IRIS_SCHEMA or "dify"
|
||||
self.pool = get_iris_pool(config)
|
||||
|
||||
def get_type(self) -> str:
|
||||
return VectorType.IRIS
|
||||
|
||||
@contextmanager
|
||||
def _get_cursor(self):
|
||||
"""Context manager for database cursor with connection pooling."""
|
||||
conn = self.pool.get_connection()
|
||||
cursor = conn.cursor()
|
||||
try:
|
||||
yield cursor
|
||||
conn.commit()
|
||||
except Exception:
|
||||
conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
cursor.close()
|
||||
self.pool.return_connection(conn)
|
||||
|
||||
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs) -> list[str]:
|
||||
dimension = len(embeddings[0])
|
||||
self._create_collection(dimension)
|
||||
return self.add_texts(texts, embeddings)
|
||||
|
||||
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **_kwargs) -> list[str]:
|
||||
"""Add documents with embeddings to the collection."""
|
||||
added_ids = []
|
||||
with self._get_cursor() as cursor:
|
||||
for i, doc in enumerate(documents):
|
||||
doc_id = doc.metadata.get("doc_id", str(uuid.uuid4())) if doc.metadata else str(uuid.uuid4())
|
||||
metadata = json.dumps(doc.metadata) if doc.metadata else "{}"
|
||||
embedding_str = json.dumps(embeddings[i])
|
||||
|
||||
sql = f"INSERT INTO {self.schema}.{self.table_name} (id, text, meta, embedding) VALUES (?, ?, ?, ?)"
|
||||
cursor.execute(sql, (doc_id, doc.page_content, metadata, embedding_str))
|
||||
added_ids.append(doc_id)
|
||||
|
||||
return added_ids
|
||||
|
||||
def text_exists(self, id: str) -> bool: # pylint: disable=redefined-builtin
|
||||
try:
|
||||
with self._get_cursor() as cursor:
|
||||
sql = f"SELECT 1 FROM {self.schema}.{self.table_name} WHERE id = ?"
|
||||
cursor.execute(sql, (id,))
|
||||
return cursor.fetchone() is not None
|
||||
except (OSError, RuntimeError, ValueError):
|
||||
return False
|
||||
|
||||
def delete_by_ids(self, ids: list[str]) -> None:
|
||||
if not ids:
|
||||
return
|
||||
|
||||
with self._get_cursor() as cursor:
|
||||
placeholders = ",".join(["?" for _ in ids])
|
||||
sql = f"DELETE FROM {self.schema}.{self.table_name} WHERE id IN ({placeholders})"
|
||||
cursor.execute(sql, ids)
|
||||
|
||||
def delete_by_metadata_field(self, key: str, value: str) -> None:
|
||||
"""Delete documents by metadata field (JSON LIKE pattern matching)."""
|
||||
with self._get_cursor() as cursor:
|
||||
pattern = f'%"{key}": "{value}"%'
|
||||
sql = f"DELETE FROM {self.schema}.{self.table_name} WHERE meta LIKE ?"
|
||||
cursor.execute(sql, (pattern,))
|
||||
|
||||
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
||||
"""Search similar documents using VECTOR_COSINE with HNSW index."""
|
||||
top_k = kwargs.get("top_k", 4)
|
||||
score_threshold = float(kwargs.get("score_threshold") or 0.0)
|
||||
embedding_str = json.dumps(query_vector)
|
||||
|
||||
with self._get_cursor() as cursor:
|
||||
sql = f"""
|
||||
SELECT TOP {top_k} id, text, meta, VECTOR_COSINE(embedding, ?) as score
|
||||
FROM {self.schema}.{self.table_name}
|
||||
ORDER BY score DESC
|
||||
"""
|
||||
cursor.execute(sql, (embedding_str,))
|
||||
|
||||
docs = []
|
||||
for row in cursor.fetchall():
|
||||
if len(row) >= 4:
|
||||
text, meta_str, score = row[1], row[2], float(row[3])
|
||||
if score >= score_threshold:
|
||||
metadata = json.loads(meta_str) if meta_str else {}
|
||||
metadata["score"] = score
|
||||
docs.append(Document(page_content=text, metadata=metadata))
|
||||
return docs
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
"""Search documents by full-text using iFind index or fallback to LIKE search."""
|
||||
top_k = kwargs.get("top_k", 5)
|
||||
|
||||
with self._get_cursor() as cursor:
|
||||
if self.config.IRIS_TEXT_INDEX:
|
||||
# Use iFind full-text search with index
|
||||
text_index_name = f"idx_{self.table_name}_text"
|
||||
sql = f"""
|
||||
SELECT TOP {top_k} id, text, meta
|
||||
FROM {self.schema}.{self.table_name}
|
||||
WHERE %ID %FIND search_index({text_index_name}, ?)
|
||||
"""
|
||||
cursor.execute(sql, (query,))
|
||||
else:
|
||||
# Fallback to LIKE search (inefficient for large datasets)
|
||||
query_pattern = f"%{query}%"
|
||||
sql = f"""
|
||||
SELECT TOP {top_k} id, text, meta
|
||||
FROM {self.schema}.{self.table_name}
|
||||
WHERE text LIKE ?
|
||||
"""
|
||||
cursor.execute(sql, (query_pattern,))
|
||||
|
||||
docs = []
|
||||
for row in cursor.fetchall():
|
||||
if len(row) >= 3:
|
||||
metadata = json.loads(row[2]) if row[2] else {}
|
||||
docs.append(Document(page_content=row[1], metadata=metadata))
|
||||
|
||||
if not docs:
|
||||
logger.info("Full-text search for '%s' returned no results", query)
|
||||
|
||||
return docs
|
||||
|
||||
def delete(self) -> None:
|
||||
"""Delete the entire collection (drop table - permanent)."""
|
||||
with self._get_cursor() as cursor:
|
||||
sql = f"DROP TABLE {self.schema}.{self.table_name}"
|
||||
cursor.execute(sql)
|
||||
|
||||
def _create_collection(self, dimension: int) -> None:
|
||||
"""Create table with VECTOR column and HNSW index.
|
||||
|
||||
Uses Redis lock to prevent concurrent creation attempts across multiple
|
||||
API server instances (api, worker, worker_beat).
|
||||
"""
|
||||
cache_key = f"vector_indexing_{self._collection_name}"
|
||||
lock_name = f"{cache_key}_lock"
|
||||
|
||||
with redis_client.lock(lock_name, timeout=20): # pylint: disable=not-context-manager
|
||||
if redis_client.get(cache_key):
|
||||
return
|
||||
|
||||
# Ensure schema exists (idempotent, cached after first call)
|
||||
self.pool.ensure_schema_exists(self.schema)
|
||||
|
||||
with self._get_cursor() as cursor:
|
||||
# Create table with VECTOR column
|
||||
sql = f"""
|
||||
CREATE TABLE {self.schema}.{self.table_name} (
|
||||
id VARCHAR(255) PRIMARY KEY,
|
||||
text CLOB,
|
||||
meta CLOB,
|
||||
embedding VECTOR(DOUBLE, {dimension})
|
||||
)
|
||||
"""
|
||||
logger.info("Creating table: %s.%s", self.schema, self.table_name)
|
||||
cursor.execute(sql)
|
||||
|
||||
# Create HNSW index for vector similarity search
|
||||
index_name = f"idx_{self.table_name}_embedding"
|
||||
sql_index = (
|
||||
f"CREATE INDEX {index_name} ON {self.schema}.{self.table_name} "
|
||||
"(embedding) AS HNSW(Distance='Cosine')"
|
||||
)
|
||||
logger.info("Creating HNSW index: %s", index_name)
|
||||
cursor.execute(sql_index)
|
||||
logger.info("HNSW index created successfully: %s", index_name)
|
||||
|
||||
# Create full-text search index if enabled
|
||||
logger.info(
|
||||
"IRIS_TEXT_INDEX config value: %s (type: %s)",
|
||||
self.config.IRIS_TEXT_INDEX,
|
||||
type(self.config.IRIS_TEXT_INDEX),
|
||||
)
|
||||
if self.config.IRIS_TEXT_INDEX:
|
||||
text_index_name = f"idx_{self.table_name}_text"
|
||||
language = self.config.IRIS_TEXT_INDEX_LANGUAGE
|
||||
# Fixed: Removed extra parentheses and corrected syntax
|
||||
sql_text_index = f"""
|
||||
CREATE INDEX {text_index_name} ON {self.schema}.{self.table_name} (text)
|
||||
AS %iFind.Index.Basic
|
||||
(LANGUAGE = '{language}', LOWER = 1, INDEXOPTION = 0)
|
||||
"""
|
||||
logger.info("Creating text index: %s with language: %s", text_index_name, language)
|
||||
logger.info("SQL for text index: %s", sql_text_index)
|
||||
cursor.execute(sql_text_index)
|
||||
logger.info("Text index created successfully: %s", text_index_name)
|
||||
else:
|
||||
logger.warning("Text index creation skipped - IRIS_TEXT_INDEX is disabled")
|
||||
|
||||
redis_client.set(cache_key, 1, ex=3600)
|
||||
|
||||
|
||||
class IrisVectorFactory(AbstractVectorFactory):
|
||||
"""Factory for creating IrisVector instances."""
|
||||
|
||||
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> IrisVector:
|
||||
if dataset.index_struct_dict:
|
||||
class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"]
|
||||
collection_name = class_prefix
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = self.gen_index_struct_dict(VectorType.IRIS, collection_name)
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
|
||||
return IrisVector(
|
||||
collection_name=collection_name,
|
||||
config=IrisVectorConfig(
|
||||
IRIS_HOST=dify_config.IRIS_HOST,
|
||||
IRIS_SUPER_SERVER_PORT=dify_config.IRIS_SUPER_SERVER_PORT,
|
||||
IRIS_USER=dify_config.IRIS_USER,
|
||||
IRIS_PASSWORD=dify_config.IRIS_PASSWORD,
|
||||
IRIS_DATABASE=dify_config.IRIS_DATABASE,
|
||||
IRIS_SCHEMA=dify_config.IRIS_SCHEMA,
|
||||
IRIS_CONNECTION_URL=dify_config.IRIS_CONNECTION_URL,
|
||||
IRIS_MIN_CONNECTION=dify_config.IRIS_MIN_CONNECTION,
|
||||
IRIS_MAX_CONNECTION=dify_config.IRIS_MAX_CONNECTION,
|
||||
IRIS_TEXT_INDEX=dify_config.IRIS_TEXT_INDEX,
|
||||
IRIS_TEXT_INDEX_LANGUAGE=dify_config.IRIS_TEXT_INDEX_LANGUAGE,
|
||||
),
|
||||
)
|
||||
@ -1,4 +1,3 @@
|
||||
import base64
|
||||
import logging
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
@ -13,13 +12,10 @@ from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.cached_embedding import CacheEmbedding
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from extensions.ext_storage import storage
|
||||
from models.dataset import Dataset, Whitelist
|
||||
from models.model import UploadFile
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -163,7 +159,7 @@ class Vector:
|
||||
from core.rag.datasource.vdb.lindorm.lindorm_vector import LindormVectorStoreFactory
|
||||
|
||||
return LindormVectorStoreFactory
|
||||
case VectorType.OCEANBASE | VectorType.SEEKDB:
|
||||
case VectorType.OCEANBASE:
|
||||
from core.rag.datasource.vdb.oceanbase.oceanbase_vector import OceanBaseVectorFactory
|
||||
|
||||
return OceanBaseVectorFactory
|
||||
@ -187,10 +183,6 @@ class Vector:
|
||||
from core.rag.datasource.vdb.clickzetta.clickzetta_vector import ClickzettaVectorFactory
|
||||
|
||||
return ClickzettaVectorFactory
|
||||
case VectorType.IRIS:
|
||||
from core.rag.datasource.vdb.iris.iris_vector import IrisVectorFactory
|
||||
|
||||
return IrisVectorFactory
|
||||
case _:
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
@ -211,47 +203,6 @@ class Vector:
|
||||
self._vector_processor.create(texts=batch, embeddings=batch_embeddings, **kwargs)
|
||||
logger.info("Embedding %s texts took %s s", len(texts), time.time() - start)
|
||||
|
||||
def create_multimodal(self, file_documents: list | None = None, **kwargs):
|
||||
if file_documents:
|
||||
start = time.time()
|
||||
logger.info("start embedding %s files %s", len(file_documents), start)
|
||||
batch_size = 1000
|
||||
total_batches = len(file_documents) + batch_size - 1
|
||||
for i in range(0, len(file_documents), batch_size):
|
||||
batch = file_documents[i : i + batch_size]
|
||||
batch_start = time.time()
|
||||
logger.info("Processing batch %s/%s (%s files)", i // batch_size + 1, total_batches, len(batch))
|
||||
|
||||
# Batch query all upload files to avoid N+1 queries
|
||||
attachment_ids = [doc.metadata["doc_id"] for doc in batch]
|
||||
stmt = select(UploadFile).where(UploadFile.id.in_(attachment_ids))
|
||||
upload_files = db.session.scalars(stmt).all()
|
||||
upload_file_map = {str(f.id): f for f in upload_files}
|
||||
|
||||
file_base64_list = []
|
||||
real_batch = []
|
||||
for document in batch:
|
||||
attachment_id = document.metadata["doc_id"]
|
||||
doc_type = document.metadata["doc_type"]
|
||||
upload_file = upload_file_map.get(attachment_id)
|
||||
if upload_file:
|
||||
blob = storage.load_once(upload_file.key)
|
||||
file_base64_str = base64.b64encode(blob).decode()
|
||||
file_base64_list.append(
|
||||
{
|
||||
"content": file_base64_str,
|
||||
"content_type": doc_type,
|
||||
"file_id": attachment_id,
|
||||
}
|
||||
)
|
||||
real_batch.append(document)
|
||||
batch_embeddings = self._embeddings.embed_multimodal_documents(file_base64_list)
|
||||
logger.info(
|
||||
"Embedding batch %s/%s took %s s", i // batch_size + 1, total_batches, time.time() - batch_start
|
||||
)
|
||||
self._vector_processor.create(texts=real_batch, embeddings=batch_embeddings, **kwargs)
|
||||
logger.info("Embedding %s files took %s s", len(file_documents), time.time() - start)
|
||||
|
||||
def add_texts(self, documents: list[Document], **kwargs):
|
||||
if kwargs.get("duplicate_check", False):
|
||||
documents = self._filter_duplicate_texts(documents)
|
||||
@ -272,22 +223,6 @@ class Vector:
|
||||
query_vector = self._embeddings.embed_query(query)
|
||||
return self._vector_processor.search_by_vector(query_vector, **kwargs)
|
||||
|
||||
def search_by_file(self, file_id: str, **kwargs: Any) -> list[Document]:
|
||||
upload_file: UploadFile | None = db.session.query(UploadFile).where(UploadFile.id == file_id).first()
|
||||
|
||||
if not upload_file:
|
||||
return []
|
||||
blob = storage.load_once(upload_file.key)
|
||||
file_base64_str = base64.b64encode(blob).decode()
|
||||
multimodal_vector = self._embeddings.embed_multimodal_query(
|
||||
{
|
||||
"content": file_base64_str,
|
||||
"content_type": DocType.IMAGE,
|
||||
"file_id": file_id,
|
||||
}
|
||||
)
|
||||
return self._vector_processor.search_by_vector(multimodal_vector, **kwargs)
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
return self._vector_processor.search_by_full_text(query, **kwargs)
|
||||
|
||||
|
||||
@ -27,10 +27,8 @@ class VectorType(StrEnum):
|
||||
UPSTASH = "upstash"
|
||||
TIDB_ON_QDRANT = "tidb_on_qdrant"
|
||||
OCEANBASE = "oceanbase"
|
||||
SEEKDB = "seekdb"
|
||||
OPENGAUSS = "opengauss"
|
||||
TABLESTORE = "tablestore"
|
||||
HUAWEI_CLOUD = "huawei_cloud"
|
||||
MATRIXONE = "matrixone"
|
||||
CLICKZETTA = "clickzetta"
|
||||
IRIS = "iris"
|
||||
|
||||
@ -5,9 +5,9 @@ from sqlalchemy import func, select
|
||||
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.models.document import AttachmentDocument, Document
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import ChildChunk, Dataset, DocumentSegment, SegmentAttachmentBinding
|
||||
from models.dataset import ChildChunk, Dataset, DocumentSegment
|
||||
|
||||
|
||||
class DatasetDocumentStore:
|
||||
@ -120,9 +120,6 @@ class DatasetDocumentStore:
|
||||
|
||||
db.session.add(segment_document)
|
||||
db.session.flush()
|
||||
self.add_multimodel_documents_binding(
|
||||
segment_id=segment_document.id, multimodel_documents=doc.attachments
|
||||
)
|
||||
if save_child:
|
||||
if doc.children:
|
||||
for position, child in enumerate(doc.children, start=1):
|
||||
@ -147,9 +144,6 @@ class DatasetDocumentStore:
|
||||
segment_document.index_node_hash = doc.metadata.get("doc_hash")
|
||||
segment_document.word_count = len(doc.page_content)
|
||||
segment_document.tokens = tokens
|
||||
self.add_multimodel_documents_binding(
|
||||
segment_id=segment_document.id, multimodel_documents=doc.attachments
|
||||
)
|
||||
if save_child and doc.children:
|
||||
# delete the existing child chunks
|
||||
db.session.query(ChildChunk).where(
|
||||
@ -239,15 +233,3 @@ class DatasetDocumentStore:
|
||||
document_segment = db.session.scalar(stmt)
|
||||
|
||||
return document_segment
|
||||
|
||||
def add_multimodel_documents_binding(self, segment_id: str, multimodel_documents: list[AttachmentDocument] | None):
|
||||
if multimodel_documents:
|
||||
for multimodel_document in multimodel_documents:
|
||||
binding = SegmentAttachmentBinding(
|
||||
tenant_id=self._dataset.tenant_id,
|
||||
dataset_id=self._dataset.id,
|
||||
document_id=self._document_id,
|
||||
segment_id=segment_id,
|
||||
attachment_id=multimodel_document.metadata["doc_id"],
|
||||
)
|
||||
db.session.add(binding)
|
||||
|
||||
@ -104,88 +104,6 @@ class CacheEmbedding(Embeddings):
|
||||
|
||||
return text_embeddings
|
||||
|
||||
def embed_multimodal_documents(self, multimodel_documents: list[dict]) -> list[list[float]]:
|
||||
"""Embed file documents."""
|
||||
# use doc embedding cache or store if not exists
|
||||
multimodel_embeddings: list[Any] = [None for _ in range(len(multimodel_documents))]
|
||||
embedding_queue_indices = []
|
||||
for i, multimodel_document in enumerate(multimodel_documents):
|
||||
file_id = multimodel_document["file_id"]
|
||||
embedding = (
|
||||
db.session.query(Embedding)
|
||||
.filter_by(
|
||||
model_name=self._model_instance.model, hash=file_id, provider_name=self._model_instance.provider
|
||||
)
|
||||
.first()
|
||||
)
|
||||
if embedding:
|
||||
multimodel_embeddings[i] = embedding.get_embedding()
|
||||
else:
|
||||
embedding_queue_indices.append(i)
|
||||
|
||||
# NOTE: avoid closing the shared scoped session here; downstream code may still have pending work
|
||||
|
||||
if embedding_queue_indices:
|
||||
embedding_queue_multimodel_documents = [multimodel_documents[i] for i in embedding_queue_indices]
|
||||
embedding_queue_embeddings = []
|
||||
try:
|
||||
model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
|
||||
model_schema = model_type_instance.get_model_schema(
|
||||
self._model_instance.model, self._model_instance.credentials
|
||||
)
|
||||
max_chunks = (
|
||||
model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS]
|
||||
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties
|
||||
else 1
|
||||
)
|
||||
for i in range(0, len(embedding_queue_multimodel_documents), max_chunks):
|
||||
batch_multimodel_documents = embedding_queue_multimodel_documents[i : i + max_chunks]
|
||||
|
||||
embedding_result = self._model_instance.invoke_multimodal_embedding(
|
||||
multimodel_documents=batch_multimodel_documents,
|
||||
user=self._user,
|
||||
input_type=EmbeddingInputType.DOCUMENT,
|
||||
)
|
||||
|
||||
for vector in embedding_result.embeddings:
|
||||
try:
|
||||
# FIXME: type ignore for numpy here
|
||||
normalized_embedding = (vector / np.linalg.norm(vector)).tolist() # type: ignore
|
||||
# stackoverflow best way: https://stackoverflow.com/questions/20319813/how-to-check-list-containing-nan
|
||||
if np.isnan(normalized_embedding).any():
|
||||
# for issue #11827 float values are not json compliant
|
||||
logger.warning("Normalized embedding is nan: %s", normalized_embedding)
|
||||
continue
|
||||
embedding_queue_embeddings.append(normalized_embedding)
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except Exception:
|
||||
logger.exception("Failed transform embedding")
|
||||
cache_embeddings = []
|
||||
try:
|
||||
for i, n_embedding in zip(embedding_queue_indices, embedding_queue_embeddings):
|
||||
multimodel_embeddings[i] = n_embedding
|
||||
file_id = multimodel_documents[i]["file_id"]
|
||||
if file_id not in cache_embeddings:
|
||||
embedding_cache = Embedding(
|
||||
model_name=self._model_instance.model,
|
||||
hash=file_id,
|
||||
provider_name=self._model_instance.provider,
|
||||
embedding=pickle.dumps(n_embedding, protocol=pickle.HIGHEST_PROTOCOL),
|
||||
)
|
||||
embedding_cache.set_embedding(n_embedding)
|
||||
db.session.add(embedding_cache)
|
||||
cache_embeddings.append(file_id)
|
||||
db.session.commit()
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except Exception as ex:
|
||||
db.session.rollback()
|
||||
logger.exception("Failed to embed documents")
|
||||
raise ex
|
||||
|
||||
return multimodel_embeddings
|
||||
|
||||
def embed_query(self, text: str) -> list[float]:
|
||||
"""Embed query text."""
|
||||
# use doc embedding cache or store if not exists
|
||||
@ -228,46 +146,3 @@ class CacheEmbedding(Embeddings):
|
||||
raise ex
|
||||
|
||||
return embedding_results # type: ignore
|
||||
|
||||
def embed_multimodal_query(self, multimodel_document: dict) -> list[float]:
|
||||
"""Embed multimodal documents."""
|
||||
# use doc embedding cache or store if not exists
|
||||
file_id = multimodel_document["file_id"]
|
||||
embedding_cache_key = f"{self._model_instance.provider}_{self._model_instance.model}_{file_id}"
|
||||
embedding = redis_client.get(embedding_cache_key)
|
||||
if embedding:
|
||||
redis_client.expire(embedding_cache_key, 600)
|
||||
decoded_embedding = np.frombuffer(base64.b64decode(embedding), dtype="float")
|
||||
return [float(x) for x in decoded_embedding]
|
||||
try:
|
||||
embedding_result = self._model_instance.invoke_multimodal_embedding(
|
||||
multimodel_documents=[multimodel_document], user=self._user, input_type=EmbeddingInputType.QUERY
|
||||
)
|
||||
|
||||
embedding_results = embedding_result.embeddings[0]
|
||||
# FIXME: type ignore for numpy here
|
||||
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist() # type: ignore
|
||||
if np.isnan(embedding_results).any():
|
||||
raise ValueError("Normalized embedding is nan please try again")
|
||||
except Exception as ex:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception("Failed to embed multimodal document '%s'", multimodel_document["file_id"])
|
||||
raise ex
|
||||
|
||||
try:
|
||||
# encode embedding to base64
|
||||
embedding_vector = np.array(embedding_results)
|
||||
vector_bytes = embedding_vector.tobytes()
|
||||
# Transform to Base64
|
||||
encoded_vector = base64.b64encode(vector_bytes)
|
||||
# Transform to string
|
||||
encoded_str = encoded_vector.decode("utf-8")
|
||||
redis_client.setex(embedding_cache_key, 600, encoded_str)
|
||||
except Exception as ex:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception(
|
||||
"Failed to add embedding to redis for the multimodal document '%s'", multimodel_document["file_id"]
|
||||
)
|
||||
raise ex
|
||||
|
||||
return embedding_results # type: ignore
|
||||
|
||||
@ -9,21 +9,11 @@ class Embeddings(ABC):
|
||||
"""Embed search docs."""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def embed_multimodal_documents(self, multimodel_documents: list[dict]) -> list[list[float]]:
|
||||
"""Embed file documents."""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def embed_query(self, text: str) -> list[float]:
|
||||
"""Embed query text."""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def embed_multimodal_query(self, multimodel_document: dict) -> list[float]:
|
||||
"""Embed multimodal query."""
|
||||
raise NotImplementedError
|
||||
|
||||
async def aembed_documents(self, texts: list[str]) -> list[list[float]]:
|
||||
"""Asynchronous Embed search docs."""
|
||||
raise NotImplementedError
|
||||
|
||||
@ -19,4 +19,3 @@ class RetrievalSegments(BaseModel):
|
||||
segment: DocumentSegment
|
||||
child_chunks: list[RetrievalChildChunk] | None = None
|
||||
score: float | None = None
|
||||
files: list[dict[str, str | int]] | None = None
|
||||
|
||||
@ -21,4 +21,3 @@ class RetrievalSourceMetadata(BaseModel):
|
||||
page: int | None = None
|
||||
doc_metadata: dict[str, Any] | None = None
|
||||
title: str | None = None
|
||||
files: list[dict[str, Any]] | None = None
|
||||
|
||||
@ -10,7 +10,7 @@ class NotionInfo(BaseModel):
|
||||
"""
|
||||
|
||||
credential_id: str | None = None
|
||||
notion_workspace_id: str | None = ""
|
||||
notion_workspace_id: str
|
||||
notion_obj_id: str
|
||||
notion_page_type: str
|
||||
document: Document | None = None
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
"""Abstract interface for document loader implementations."""
|
||||
|
||||
import os
|
||||
from typing import TypedDict
|
||||
from typing import cast
|
||||
|
||||
import pandas as pd
|
||||
from openpyxl import load_workbook
|
||||
@ -10,12 +10,6 @@ from core.rag.extractor.extractor_base import BaseExtractor
|
||||
from core.rag.models.document import Document
|
||||
|
||||
|
||||
class Candidate(TypedDict):
|
||||
idx: int
|
||||
count: int
|
||||
map: dict[int, str]
|
||||
|
||||
|
||||
class ExcelExtractor(BaseExtractor):
|
||||
"""Load Excel files.
|
||||
|
||||
@ -36,38 +30,32 @@ class ExcelExtractor(BaseExtractor):
|
||||
file_extension = os.path.splitext(self._file_path)[-1].lower()
|
||||
|
||||
if file_extension == ".xlsx":
|
||||
wb = load_workbook(self._file_path, read_only=True, data_only=True)
|
||||
try:
|
||||
for sheet_name in wb.sheetnames:
|
||||
sheet = wb[sheet_name]
|
||||
header_row_idx, column_map, max_col_idx = self._find_header_and_columns(sheet)
|
||||
if not column_map:
|
||||
continue
|
||||
start_row = header_row_idx + 1
|
||||
for row in sheet.iter_rows(min_row=start_row, max_col=max_col_idx, values_only=False):
|
||||
if all(cell.value is None for cell in row):
|
||||
continue
|
||||
page_content = []
|
||||
for col_idx, cell in enumerate(row):
|
||||
value = cell.value
|
||||
if col_idx in column_map:
|
||||
col_name = column_map[col_idx]
|
||||
if hasattr(cell, "hyperlink") and cell.hyperlink:
|
||||
target = getattr(cell.hyperlink, "target", None)
|
||||
if target:
|
||||
value = f"[{value}]({target})"
|
||||
if value is None:
|
||||
value = ""
|
||||
elif not isinstance(value, str):
|
||||
value = str(value)
|
||||
value = value.strip().replace('"', '\\"')
|
||||
page_content.append(f'"{col_name}":"{value}"')
|
||||
if page_content:
|
||||
documents.append(
|
||||
Document(page_content=";".join(page_content), metadata={"source": self._file_path})
|
||||
)
|
||||
finally:
|
||||
wb.close()
|
||||
wb = load_workbook(self._file_path, data_only=True)
|
||||
for sheet_name in wb.sheetnames:
|
||||
sheet = wb[sheet_name]
|
||||
data = sheet.values
|
||||
cols = next(data, None)
|
||||
if cols is None:
|
||||
continue
|
||||
df = pd.DataFrame(data, columns=cols)
|
||||
|
||||
df.dropna(how="all", inplace=True)
|
||||
|
||||
for index, row in df.iterrows():
|
||||
page_content = []
|
||||
for col_index, (k, v) in enumerate(row.items()):
|
||||
if pd.notna(v):
|
||||
cell = sheet.cell(
|
||||
row=cast(int, index) + 2, column=col_index + 1
|
||||
) # +2 to account for header and 1-based index
|
||||
if cell.hyperlink:
|
||||
value = f"[{v}]({cell.hyperlink.target})"
|
||||
page_content.append(f'"{k}":"{value}"')
|
||||
else:
|
||||
page_content.append(f'"{k}":"{v}"')
|
||||
documents.append(
|
||||
Document(page_content=";".join(page_content), metadata={"source": self._file_path})
|
||||
)
|
||||
|
||||
elif file_extension == ".xls":
|
||||
excel_file = pd.ExcelFile(self._file_path, engine="xlrd")
|
||||
@ -75,9 +63,9 @@ class ExcelExtractor(BaseExtractor):
|
||||
df = excel_file.parse(sheet_name=excel_sheet_name)
|
||||
df.dropna(how="all", inplace=True)
|
||||
|
||||
for _, series_row in df.iterrows():
|
||||
for _, row in df.iterrows():
|
||||
page_content = []
|
||||
for k, v in series_row.items():
|
||||
for k, v in row.items():
|
||||
if pd.notna(v):
|
||||
page_content.append(f'"{k}":"{v}"')
|
||||
documents.append(
|
||||
@ -87,61 +75,3 @@ class ExcelExtractor(BaseExtractor):
|
||||
raise ValueError(f"Unsupported file extension: {file_extension}")
|
||||
|
||||
return documents
|
||||
|
||||
def _find_header_and_columns(self, sheet, scan_rows=10) -> tuple[int, dict[int, str], int]:
|
||||
"""
|
||||
Scan first N rows to find the most likely header row.
|
||||
Returns:
|
||||
header_row_idx: 1-based index of the header row
|
||||
column_map: Dict mapping 0-based column index to column name
|
||||
max_col_idx: 1-based index of the last valid column (for iter_rows boundary)
|
||||
"""
|
||||
# Store potential candidates: (row_index, non_empty_count, column_map)
|
||||
candidates: list[Candidate] = []
|
||||
|
||||
# Limit scan to avoid performance issues on huge files
|
||||
# We iterate manually to control the read scope
|
||||
for current_row_idx, row in enumerate(sheet.iter_rows(min_row=1, max_row=scan_rows, values_only=True), start=1):
|
||||
# Filter out empty cells and build a temp map for this row
|
||||
# col_idx is 0-based
|
||||
row_map = {}
|
||||
for col_idx, cell_value in enumerate(row):
|
||||
if cell_value is not None and str(cell_value).strip():
|
||||
row_map[col_idx] = str(cell_value).strip().replace('"', '\\"')
|
||||
|
||||
if not row_map:
|
||||
continue
|
||||
|
||||
non_empty_count = len(row_map)
|
||||
|
||||
# Header selection heuristic (implemented):
|
||||
# - Prefer the first row with at least 2 non-empty columns.
|
||||
# - Fallback: choose the row with the most non-empty columns
|
||||
# (tie-breaker: smaller row index).
|
||||
candidates.append({"idx": current_row_idx, "count": non_empty_count, "map": row_map})
|
||||
|
||||
if not candidates:
|
||||
return 0, {}, 0
|
||||
|
||||
# Choose the best candidate header row.
|
||||
|
||||
best_candidate: Candidate | None = None
|
||||
|
||||
# Strategy: prefer the first row with >= 2 non-empty columns; otherwise fallback.
|
||||
|
||||
for cand in candidates:
|
||||
if cand["count"] >= 2:
|
||||
best_candidate = cand
|
||||
break
|
||||
|
||||
# Fallback: if no row has >= 2 columns, or all have 1, just take the one with max columns
|
||||
if not best_candidate:
|
||||
# Sort by count desc, then index asc
|
||||
candidates.sort(key=lambda x: (-x["count"], x["idx"]))
|
||||
best_candidate = candidates[0]
|
||||
|
||||
# Determine max_col_idx (1-based for openpyxl)
|
||||
# It is the index of the last valid column in our map + 1
|
||||
max_col_idx = max(best_candidate["map"].keys()) + 1
|
||||
|
||||
return best_candidate["idx"], best_candidate["map"], max_col_idx
|
||||
|
||||
@ -166,7 +166,7 @@ class ExtractProcessor:
|
||||
elif extract_setting.datasource_type == DatasourceType.NOTION:
|
||||
assert extract_setting.notion_info is not None, "notion_info is required"
|
||||
extractor = NotionExtractor(
|
||||
notion_workspace_id=extract_setting.notion_info.notion_workspace_id or "",
|
||||
notion_workspace_id=extract_setting.notion_info.notion_workspace_id,
|
||||
notion_obj_id=extract_setting.notion_info.notion_obj_id,
|
||||
notion_page_type=extract_setting.notion_info.notion_page_type,
|
||||
document_model=extract_setting.notion_info.document,
|
||||
|
||||
@ -45,6 +45,6 @@ def detect_file_encodings(file_path: str, timeout: int = 5, sample_size: int = 1
|
||||
except concurrent.futures.TimeoutError:
|
||||
raise TimeoutError(f"Timeout reached while detecting encoding for {file_path}")
|
||||
|
||||
if all(encoding.encoding is None for encoding in encodings):
|
||||
if all(encoding["encoding"] is None for encoding in encodings):
|
||||
raise RuntimeError(f"Could not detect encoding for {file_path}")
|
||||
return [enc for enc in encodings if enc.encoding is not None]
|
||||
return [FileEncoding(**enc) for enc in encodings if enc["encoding"] is not None]
|
||||
|
||||
@ -84,45 +84,22 @@ class WordExtractor(BaseExtractor):
|
||||
image_count = 0
|
||||
image_map = {}
|
||||
|
||||
for r_id, rel in doc.part.rels.items():
|
||||
for rel in doc.part.rels.values():
|
||||
if "image" in rel.target_ref:
|
||||
image_count += 1
|
||||
if rel.is_external:
|
||||
url = rel.target_ref
|
||||
if not self._is_valid_url(url):
|
||||
continue
|
||||
try:
|
||||
response = ssrf_proxy.get(url)
|
||||
except Exception as e:
|
||||
logger.warning("Failed to download image from URL: %s: %s", url, str(e))
|
||||
continue
|
||||
response = ssrf_proxy.get(url)
|
||||
if response.status_code == 200:
|
||||
image_ext = mimetypes.guess_extension(response.headers.get("Content-Type", ""))
|
||||
image_ext = mimetypes.guess_extension(response.headers["Content-Type"])
|
||||
if image_ext is None:
|
||||
continue
|
||||
file_uuid = str(uuid.uuid4())
|
||||
file_key = "image_files/" + self.tenant_id + "/" + file_uuid + image_ext
|
||||
file_key = "image_files/" + self.tenant_id + "/" + file_uuid + "." + image_ext
|
||||
mime_type, _ = mimetypes.guess_type(file_key)
|
||||
storage.save(file_key, response.content)
|
||||
# save file to db
|
||||
upload_file = UploadFile(
|
||||
tenant_id=self.tenant_id,
|
||||
storage_type=dify_config.STORAGE_TYPE,
|
||||
key=file_key,
|
||||
name=file_key,
|
||||
size=0,
|
||||
extension=str(image_ext),
|
||||
mime_type=mime_type or "",
|
||||
created_by=self.user_id,
|
||||
created_by_role=CreatorUserRole.ACCOUNT,
|
||||
created_at=naive_utc_now(),
|
||||
used=True,
|
||||
used_by=self.user_id,
|
||||
used_at=naive_utc_now(),
|
||||
)
|
||||
db.session.add(upload_file)
|
||||
# Use r_id as key for external images since target_part is undefined
|
||||
image_map[r_id] = f""
|
||||
else:
|
||||
continue
|
||||
else:
|
||||
image_ext = rel.target_ref.split(".")[-1]
|
||||
if image_ext is None:
|
||||
@ -133,28 +110,27 @@ class WordExtractor(BaseExtractor):
|
||||
mime_type, _ = mimetypes.guess_type(file_key)
|
||||
|
||||
storage.save(file_key, rel.target_part.blob)
|
||||
# save file to db
|
||||
upload_file = UploadFile(
|
||||
tenant_id=self.tenant_id,
|
||||
storage_type=dify_config.STORAGE_TYPE,
|
||||
key=file_key,
|
||||
name=file_key,
|
||||
size=0,
|
||||
extension=str(image_ext),
|
||||
mime_type=mime_type or "",
|
||||
created_by=self.user_id,
|
||||
created_by_role=CreatorUserRole.ACCOUNT,
|
||||
created_at=naive_utc_now(),
|
||||
used=True,
|
||||
used_by=self.user_id,
|
||||
used_at=naive_utc_now(),
|
||||
)
|
||||
db.session.add(upload_file)
|
||||
# Use target_part as key for internal images
|
||||
image_map[rel.target_part] = (
|
||||
f""
|
||||
)
|
||||
db.session.commit()
|
||||
# save file to db
|
||||
upload_file = UploadFile(
|
||||
tenant_id=self.tenant_id,
|
||||
storage_type=dify_config.STORAGE_TYPE,
|
||||
key=file_key,
|
||||
name=file_key,
|
||||
size=0,
|
||||
extension=str(image_ext),
|
||||
mime_type=mime_type or "",
|
||||
created_by=self.user_id,
|
||||
created_by_role=CreatorUserRole.ACCOUNT,
|
||||
created_at=naive_utc_now(),
|
||||
used=True,
|
||||
used_by=self.user_id,
|
||||
used_at=naive_utc_now(),
|
||||
)
|
||||
|
||||
db.session.add(upload_file)
|
||||
db.session.commit()
|
||||
image_map[rel.target_part] = f""
|
||||
|
||||
return image_map
|
||||
|
||||
def _table_to_markdown(self, table, image_map):
|
||||
@ -210,17 +186,11 @@ class WordExtractor(BaseExtractor):
|
||||
image_id = blip.get("{http://schemas.openxmlformats.org/officeDocument/2006/relationships}embed")
|
||||
if not image_id:
|
||||
continue
|
||||
rel = paragraph.part.rels.get(image_id)
|
||||
if rel is None:
|
||||
continue
|
||||
# For external images, use image_id as key; for internal, use target_part
|
||||
if rel.is_external:
|
||||
if image_id in image_map:
|
||||
paragraph_content.append(image_map[image_id])
|
||||
else:
|
||||
image_part = rel.target_part
|
||||
if image_part in image_map:
|
||||
paragraph_content.append(image_map[image_part])
|
||||
image_part = paragraph.part.rels[image_id].target_part
|
||||
|
||||
if image_part in image_map:
|
||||
image_link = image_map[image_part]
|
||||
paragraph_content.append(image_link)
|
||||
else:
|
||||
paragraph_content.append(run.text)
|
||||
return "".join(paragraph_content).strip()
|
||||
@ -257,18 +227,6 @@ class WordExtractor(BaseExtractor):
|
||||
|
||||
def parse_paragraph(paragraph):
|
||||
paragraph_content = []
|
||||
|
||||
def append_image_link(image_id, has_drawing):
|
||||
"""Helper to append image link from image_map based on relationship type."""
|
||||
rel = doc.part.rels[image_id]
|
||||
if rel.is_external:
|
||||
if image_id in image_map and not has_drawing:
|
||||
paragraph_content.append(image_map[image_id])
|
||||
else:
|
||||
image_part = rel.target_part
|
||||
if image_part in image_map and not has_drawing:
|
||||
paragraph_content.append(image_map[image_part])
|
||||
|
||||
for run in paragraph.runs:
|
||||
if hasattr(run.element, "tag") and isinstance(run.element.tag, str) and run.element.tag.endswith("r"):
|
||||
# Process drawing type images
|
||||
@ -285,18 +243,10 @@ class WordExtractor(BaseExtractor):
|
||||
"{http://schemas.openxmlformats.org/officeDocument/2006/relationships}embed"
|
||||
)
|
||||
if embed_id:
|
||||
rel = doc.part.rels.get(embed_id)
|
||||
if rel is not None and rel.is_external:
|
||||
# External image: use embed_id as key
|
||||
if embed_id in image_map:
|
||||
has_drawing = True
|
||||
paragraph_content.append(image_map[embed_id])
|
||||
else:
|
||||
# Internal image: use target_part as key
|
||||
image_part = doc.part.related_parts.get(embed_id)
|
||||
if image_part in image_map:
|
||||
has_drawing = True
|
||||
paragraph_content.append(image_map[image_part])
|
||||
image_part = doc.part.related_parts.get(embed_id)
|
||||
if image_part in image_map:
|
||||
has_drawing = True
|
||||
paragraph_content.append(image_map[image_part])
|
||||
# Process pict type images
|
||||
shape_elements = run.element.findall(
|
||||
".//{http://schemas.openxmlformats.org/wordprocessingml/2006/main}pict"
|
||||
@ -311,7 +261,9 @@ class WordExtractor(BaseExtractor):
|
||||
"{http://schemas.openxmlformats.org/officeDocument/2006/relationships}id"
|
||||
)
|
||||
if image_id and image_id in doc.part.rels:
|
||||
append_image_link(image_id, has_drawing)
|
||||
image_part = doc.part.rels[image_id].target_part
|
||||
if image_part in image_map and not has_drawing:
|
||||
paragraph_content.append(image_map[image_part])
|
||||
# Find imagedata element in VML
|
||||
image_data = shape.find(".//{urn:schemas-microsoft-com:vml}imagedata")
|
||||
if image_data is not None:
|
||||
@ -319,7 +271,9 @@ class WordExtractor(BaseExtractor):
|
||||
"{http://schemas.openxmlformats.org/officeDocument/2006/relationships}id"
|
||||
)
|
||||
if image_id and image_id in doc.part.rels:
|
||||
append_image_link(image_id, has_drawing)
|
||||
image_part = doc.part.rels[image_id].target_part
|
||||
if image_part in image_map and not has_drawing:
|
||||
paragraph_content.append(image_map[image_part])
|
||||
if run.text.strip():
|
||||
paragraph_content.append(run.text.strip())
|
||||
return "".join(paragraph_content) if paragraph_content else ""
|
||||
|
||||
@ -15,4 +15,3 @@ class MetadataDataSource(StrEnum):
|
||||
notion_import = "notion"
|
||||
local_file = "file_upload"
|
||||
online_document = "online_document"
|
||||
online_drive = "online_drive"
|
||||
|
||||
@ -1,6 +0,0 @@
|
||||
from enum import StrEnum
|
||||
|
||||
|
||||
class DocType(StrEnum):
|
||||
TEXT = "text"
|
||||
IMAGE = "image"
|
||||
@ -1,12 +1,7 @@
|
||||
from enum import StrEnum
|
||||
|
||||
|
||||
class IndexStructureType(StrEnum):
|
||||
class IndexType(StrEnum):
|
||||
PARAGRAPH_INDEX = "text_model"
|
||||
QA_INDEX = "qa_model"
|
||||
PARENT_CHILD_INDEX = "hierarchical_model"
|
||||
|
||||
|
||||
class IndexTechniqueType(StrEnum):
|
||||
ECONOMY = "economy"
|
||||
HIGH_QUALITY = "high_quality"
|
||||
|
||||
@ -1,6 +0,0 @@
|
||||
from enum import StrEnum
|
||||
|
||||
|
||||
class QueryType(StrEnum):
|
||||
TEXT_QUERY = "text_query"
|
||||
IMAGE_QUERY = "image_query"
|
||||
@ -1,34 +1,20 @@
|
||||
"""Abstract interface for document loader implementations."""
|
||||
|
||||
import cgi
|
||||
import logging
|
||||
import mimetypes
|
||||
import os
|
||||
import re
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Mapping
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
from urllib.parse import unquote, urlparse
|
||||
|
||||
import httpx
|
||||
|
||||
from configs import dify_config
|
||||
from core.helper import ssrf_proxy
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.models.document import AttachmentDocument, Document
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.rag.splitter.fixed_text_splitter import (
|
||||
EnhanceRecursiveCharacterTextSplitter,
|
||||
FixedRecursiveCharacterTextSplitter,
|
||||
)
|
||||
from core.rag.splitter.text_splitter import TextSplitter
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_storage import storage
|
||||
from models import Account, ToolFile
|
||||
from models.dataset import Dataset, DatasetProcessRule
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from models.model import UploadFile
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.model_manager import ModelInstance
|
||||
@ -42,18 +28,11 @@ class BaseIndexProcessor(ABC):
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def transform(self, documents: list[Document], current_user: Account | None = None, **kwargs) -> list[Document]:
|
||||
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def load(
|
||||
self,
|
||||
dataset: Dataset,
|
||||
documents: list[Document],
|
||||
multimodal_documents: list[AttachmentDocument] | None = None,
|
||||
with_keywords: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
@ -117,178 +96,3 @@ class BaseIndexProcessor(ABC):
|
||||
)
|
||||
|
||||
return character_splitter # type: ignore
|
||||
|
||||
def _get_content_files(self, document: Document, current_user: Account | None = None) -> list[AttachmentDocument]:
|
||||
"""
|
||||
Get the content files from the document.
|
||||
"""
|
||||
multi_model_documents: list[AttachmentDocument] = []
|
||||
text = document.page_content
|
||||
images = self._extract_markdown_images(text)
|
||||
if not images:
|
||||
return multi_model_documents
|
||||
upload_file_id_list = []
|
||||
|
||||
for image in images:
|
||||
# Collect all upload_file_ids including duplicates to preserve occurrence count
|
||||
|
||||
# For data before v0.10.0
|
||||
pattern = r"/files/([a-f0-9\-]+)/image-preview(?:\?.*?)?"
|
||||
match = re.search(pattern, image)
|
||||
if match:
|
||||
upload_file_id = match.group(1)
|
||||
upload_file_id_list.append(upload_file_id)
|
||||
continue
|
||||
|
||||
# For data after v0.10.0
|
||||
pattern = r"/files/([a-f0-9\-]+)/file-preview(?:\?.*?)?"
|
||||
match = re.search(pattern, image)
|
||||
if match:
|
||||
upload_file_id = match.group(1)
|
||||
upload_file_id_list.append(upload_file_id)
|
||||
continue
|
||||
|
||||
# For tools directory - direct file formats (e.g., .png, .jpg, etc.)
|
||||
# Match URL including any query parameters up to common URL boundaries (space, parenthesis, quotes)
|
||||
pattern = r"/files/tools/([a-f0-9\-]+)\.([a-zA-Z0-9]+)(?:\?[^\s\)\"\']*)?"
|
||||
match = re.search(pattern, image)
|
||||
if match:
|
||||
if current_user:
|
||||
tool_file_id = match.group(1)
|
||||
upload_file_id = self._download_tool_file(tool_file_id, current_user)
|
||||
if upload_file_id:
|
||||
upload_file_id_list.append(upload_file_id)
|
||||
continue
|
||||
if current_user:
|
||||
upload_file_id = self._download_image(image.split(" ")[0], current_user)
|
||||
if upload_file_id:
|
||||
upload_file_id_list.append(upload_file_id)
|
||||
|
||||
if not upload_file_id_list:
|
||||
return multi_model_documents
|
||||
|
||||
# Get unique IDs for database query
|
||||
unique_upload_file_ids = list(set(upload_file_id_list))
|
||||
upload_files = db.session.query(UploadFile).where(UploadFile.id.in_(unique_upload_file_ids)).all()
|
||||
|
||||
# Create a mapping from ID to UploadFile for quick lookup
|
||||
upload_file_map = {upload_file.id: upload_file for upload_file in upload_files}
|
||||
|
||||
# Create a Document for each occurrence (including duplicates)
|
||||
for upload_file_id in upload_file_id_list:
|
||||
upload_file = upload_file_map.get(upload_file_id)
|
||||
if upload_file:
|
||||
multi_model_documents.append(
|
||||
AttachmentDocument(
|
||||
page_content=upload_file.name,
|
||||
metadata={
|
||||
"doc_id": upload_file.id,
|
||||
"doc_hash": "",
|
||||
"document_id": document.metadata.get("document_id"),
|
||||
"dataset_id": document.metadata.get("dataset_id"),
|
||||
"doc_type": DocType.IMAGE,
|
||||
},
|
||||
)
|
||||
)
|
||||
return multi_model_documents
|
||||
|
||||
def _extract_markdown_images(self, text: str) -> list[str]:
|
||||
"""
|
||||
Extract the markdown images from the text.
|
||||
"""
|
||||
pattern = r"!\[.*?\]\((.*?)\)"
|
||||
return re.findall(pattern, text)
|
||||
|
||||
def _download_image(self, image_url: str, current_user: Account) -> str | None:
|
||||
"""
|
||||
Download the image from the URL.
|
||||
Image size must not exceed 2MB.
|
||||
"""
|
||||
from services.file_service import FileService
|
||||
|
||||
MAX_IMAGE_SIZE = dify_config.ATTACHMENT_IMAGE_FILE_SIZE_LIMIT * 1024 * 1024
|
||||
DOWNLOAD_TIMEOUT = dify_config.ATTACHMENT_IMAGE_DOWNLOAD_TIMEOUT
|
||||
|
||||
try:
|
||||
# Download with timeout
|
||||
response = ssrf_proxy.get(image_url, timeout=DOWNLOAD_TIMEOUT)
|
||||
response.raise_for_status()
|
||||
|
||||
# Check Content-Length header if available
|
||||
content_length = response.headers.get("Content-Length")
|
||||
if content_length and int(content_length) > MAX_IMAGE_SIZE:
|
||||
logging.warning("Image from %s exceeds 2MB limit (size: %s bytes)", image_url, content_length)
|
||||
return None
|
||||
|
||||
filename = None
|
||||
|
||||
content_disposition = response.headers.get("content-disposition")
|
||||
if content_disposition:
|
||||
_, params = cgi.parse_header(content_disposition)
|
||||
if "filename" in params:
|
||||
filename = params["filename"]
|
||||
filename = unquote(filename)
|
||||
|
||||
if not filename:
|
||||
parsed_url = urlparse(image_url)
|
||||
# unquote 处理 URL 中的中文
|
||||
path = unquote(parsed_url.path)
|
||||
filename = os.path.basename(path)
|
||||
|
||||
if not filename:
|
||||
filename = "downloaded_image_file"
|
||||
|
||||
name, current_ext = os.path.splitext(filename)
|
||||
|
||||
content_type = response.headers.get("content-type", "").split(";")[0].strip()
|
||||
|
||||
real_ext = mimetypes.guess_extension(content_type)
|
||||
|
||||
if not current_ext and real_ext or current_ext in [".php", ".jsp", ".asp", ".html"] and real_ext:
|
||||
filename = f"{name}{real_ext}"
|
||||
# Download content with size limit
|
||||
blob = b""
|
||||
for chunk in response.iter_bytes(chunk_size=8192):
|
||||
blob += chunk
|
||||
if len(blob) > MAX_IMAGE_SIZE:
|
||||
logging.warning("Image from %s exceeds 2MB limit during download", image_url)
|
||||
return None
|
||||
|
||||
if not blob:
|
||||
logging.warning("Image from %s is empty", image_url)
|
||||
return None
|
||||
|
||||
upload_file = FileService(db.engine).upload_file(
|
||||
filename=filename,
|
||||
content=blob,
|
||||
mimetype=content_type,
|
||||
user=current_user,
|
||||
)
|
||||
return upload_file.id
|
||||
except httpx.TimeoutException:
|
||||
logging.warning("Timeout downloading image from %s after %s seconds", image_url, DOWNLOAD_TIMEOUT)
|
||||
return None
|
||||
except httpx.RequestError as e:
|
||||
logging.warning("Error downloading image from %s: %s", image_url, str(e))
|
||||
return None
|
||||
except Exception:
|
||||
logging.exception("Unexpected error downloading image from %s", image_url)
|
||||
return None
|
||||
|
||||
def _download_tool_file(self, tool_file_id: str, current_user: Account) -> str | None:
|
||||
"""
|
||||
Download the tool file from the ID.
|
||||
"""
|
||||
from services.file_service import FileService
|
||||
|
||||
tool_file = db.session.query(ToolFile).where(ToolFile.id == tool_file_id).first()
|
||||
if not tool_file:
|
||||
return None
|
||||
blob = storage.load_once(tool_file.file_key)
|
||||
upload_file = FileService(db.engine).upload_file(
|
||||
filename=tool_file.name,
|
||||
content=blob,
|
||||
mimetype=tool_file.mimetype,
|
||||
user=current_user,
|
||||
)
|
||||
return upload_file.id
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
"""Abstract interface for document loader implementations."""
|
||||
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.index_processor.processor.paragraph_index_processor import ParagraphIndexProcessor
|
||||
from core.rag.index_processor.processor.parent_child_index_processor import ParentChildIndexProcessor
|
||||
@ -19,11 +19,11 @@ class IndexProcessorFactory:
|
||||
if not self._index_type:
|
||||
raise ValueError("Index type must be specified.")
|
||||
|
||||
if self._index_type == IndexStructureType.PARAGRAPH_INDEX:
|
||||
if self._index_type == IndexType.PARAGRAPH_INDEX:
|
||||
return ParagraphIndexProcessor()
|
||||
elif self._index_type == IndexStructureType.QA_INDEX:
|
||||
elif self._index_type == IndexType.QA_INDEX:
|
||||
return QAIndexProcessor()
|
||||
elif self._index_type == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
elif self._index_type == IndexType.PARENT_CHILD_INDEX:
|
||||
return ParentChildIndexProcessor()
|
||||
else:
|
||||
raise ValueError(f"Index type {self._index_type} is not supported.")
|
||||
|
||||
@ -11,17 +11,14 @@ from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
from core.rag.extractor.extract_processor import ExtractProcessor
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.models.document import AttachmentDocument, Document, MultimodalGeneralStructureChunk
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.tools.utils.text_processing_utils import remove_leading_symbols
|
||||
from libs import helper
|
||||
from models.account import Account
|
||||
from models.dataset import Dataset, DatasetProcessRule
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from services.account_service import AccountService
|
||||
from services.entities.knowledge_entities.knowledge_entities import Rule
|
||||
|
||||
|
||||
@ -36,7 +33,7 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
|
||||
return text_docs
|
||||
|
||||
def transform(self, documents: list[Document], current_user: Account | None = None, **kwargs) -> list[Document]:
|
||||
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
|
||||
process_rule = kwargs.get("process_rule")
|
||||
if not process_rule:
|
||||
raise ValueError("No process rule found.")
|
||||
@ -72,11 +69,6 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
if document_node.metadata is not None:
|
||||
document_node.metadata["doc_id"] = doc_id
|
||||
document_node.metadata["doc_hash"] = hash
|
||||
multimodal_documents = (
|
||||
self._get_content_files(document_node, current_user) if document_node.metadata else None
|
||||
)
|
||||
if multimodal_documents:
|
||||
document_node.attachments = multimodal_documents
|
||||
# delete Splitter character
|
||||
page_content = remove_leading_symbols(document_node.page_content).strip()
|
||||
if len(page_content) > 0:
|
||||
@ -85,19 +77,10 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
all_documents.extend(split_documents)
|
||||
return all_documents
|
||||
|
||||
def load(
|
||||
self,
|
||||
dataset: Dataset,
|
||||
documents: list[Document],
|
||||
multimodal_documents: list[AttachmentDocument] | None = None,
|
||||
with_keywords: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True, **kwargs):
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
vector.create(documents)
|
||||
if multimodal_documents and dataset.is_multimodal:
|
||||
vector.create_multimodal(multimodal_documents)
|
||||
with_keywords = False
|
||||
if with_keywords:
|
||||
keywords_list = kwargs.get("keywords_list")
|
||||
@ -151,9 +134,8 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
return docs
|
||||
|
||||
def index(self, dataset: Dataset, document: DatasetDocument, chunks: Any):
|
||||
documents: list[Any] = []
|
||||
all_multimodal_documents: list[Any] = []
|
||||
if isinstance(chunks, list):
|
||||
documents = []
|
||||
for content in chunks:
|
||||
metadata = {
|
||||
"dataset_id": dataset.id,
|
||||
@ -162,68 +144,26 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
"doc_hash": helper.generate_text_hash(content),
|
||||
}
|
||||
doc = Document(page_content=content, metadata=metadata)
|
||||
attachments = self._get_content_files(doc)
|
||||
if attachments:
|
||||
doc.attachments = attachments
|
||||
all_multimodal_documents.extend(attachments)
|
||||
documents.append(doc)
|
||||
if documents:
|
||||
# save node to document segment
|
||||
doc_store = DatasetDocumentStore(dataset=dataset, user_id=document.created_by, document_id=document.id)
|
||||
# add document segments
|
||||
doc_store.add_documents(docs=documents, save_child=False)
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
vector.create(documents)
|
||||
elif dataset.indexing_technique == "economy":
|
||||
keyword = Keyword(dataset)
|
||||
keyword.add_texts(documents)
|
||||
else:
|
||||
multimodal_general_structure = MultimodalGeneralStructureChunk.model_validate(chunks)
|
||||
for general_chunk in multimodal_general_structure.general_chunks:
|
||||
metadata = {
|
||||
"dataset_id": dataset.id,
|
||||
"document_id": document.id,
|
||||
"doc_id": str(uuid.uuid4()),
|
||||
"doc_hash": helper.generate_text_hash(general_chunk.content),
|
||||
}
|
||||
doc = Document(page_content=general_chunk.content, metadata=metadata)
|
||||
if general_chunk.files:
|
||||
attachments = []
|
||||
for file in general_chunk.files:
|
||||
file_metadata = {
|
||||
"doc_id": file.id,
|
||||
"doc_hash": "",
|
||||
"document_id": document.id,
|
||||
"dataset_id": dataset.id,
|
||||
"doc_type": DocType.IMAGE,
|
||||
}
|
||||
file_document = AttachmentDocument(
|
||||
page_content=file.filename or "image_file", metadata=file_metadata
|
||||
)
|
||||
attachments.append(file_document)
|
||||
all_multimodal_documents.append(file_document)
|
||||
doc.attachments = attachments
|
||||
else:
|
||||
account = AccountService.load_user(document.created_by)
|
||||
if not account:
|
||||
raise ValueError("Invalid account")
|
||||
doc.attachments = self._get_content_files(doc, current_user=account)
|
||||
if doc.attachments:
|
||||
all_multimodal_documents.extend(doc.attachments)
|
||||
documents.append(doc)
|
||||
if documents:
|
||||
# save node to document segment
|
||||
doc_store = DatasetDocumentStore(dataset=dataset, user_id=document.created_by, document_id=document.id)
|
||||
# add document segments
|
||||
doc_store.add_documents(docs=documents, save_child=False)
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
vector.create(documents)
|
||||
if all_multimodal_documents and dataset.is_multimodal:
|
||||
vector.create_multimodal(all_multimodal_documents)
|
||||
elif dataset.indexing_technique == "economy":
|
||||
keyword = Keyword(dataset)
|
||||
keyword.add_texts(documents)
|
||||
raise ValueError("Chunks is not a list")
|
||||
|
||||
def format_preview(self, chunks: Any) -> Mapping[str, Any]:
|
||||
if isinstance(chunks, list):
|
||||
preview = []
|
||||
for content in chunks:
|
||||
preview.append({"content": content})
|
||||
return {
|
||||
"chunk_structure": IndexStructureType.PARAGRAPH_INDEX,
|
||||
"preview": preview,
|
||||
"total_segments": len(chunks),
|
||||
}
|
||||
return {"chunk_structure": IndexType.PARAGRAPH_INDEX, "preview": preview, "total_segments": len(chunks)}
|
||||
else:
|
||||
raise ValueError("Chunks is not a list")
|
||||
|
||||
@ -13,17 +13,14 @@ from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
from core.rag.extractor.extract_processor import ExtractProcessor
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.models.document import AttachmentDocument, ChildDocument, Document, ParentChildStructureChunk
|
||||
from core.rag.models.document import ChildDocument, Document, ParentChildStructureChunk
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from extensions.ext_database import db
|
||||
from libs import helper
|
||||
from models import Account
|
||||
from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from services.account_service import AccountService
|
||||
from services.entities.knowledge_entities.knowledge_entities import ParentMode, Rule
|
||||
|
||||
|
||||
@ -38,7 +35,7 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
|
||||
return text_docs
|
||||
|
||||
def transform(self, documents: list[Document], current_user: Account | None = None, **kwargs) -> list[Document]:
|
||||
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
|
||||
process_rule = kwargs.get("process_rule")
|
||||
if not process_rule:
|
||||
raise ValueError("No process rule found.")
|
||||
@ -80,9 +77,6 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
page_content = page_content
|
||||
if len(page_content) > 0:
|
||||
document_node.page_content = page_content
|
||||
multimodel_documents = self._get_content_files(document_node, current_user)
|
||||
if multimodel_documents:
|
||||
document_node.attachments = multimodel_documents
|
||||
# parse document to child nodes
|
||||
child_nodes = self._split_child_nodes(
|
||||
document_node, rules, process_rule.get("mode"), kwargs.get("embedding_model_instance")
|
||||
@ -93,9 +87,6 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
elif rules.parent_mode == ParentMode.FULL_DOC:
|
||||
page_content = "\n".join([document.page_content for document in documents])
|
||||
document = Document(page_content=page_content, metadata=documents[0].metadata)
|
||||
multimodel_documents = self._get_content_files(document)
|
||||
if multimodel_documents:
|
||||
document.attachments = multimodel_documents
|
||||
# parse document to child nodes
|
||||
child_nodes = self._split_child_nodes(
|
||||
document, rules, process_rule.get("mode"), kwargs.get("embedding_model_instance")
|
||||
@ -113,14 +104,7 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
|
||||
return all_documents
|
||||
|
||||
def load(
|
||||
self,
|
||||
dataset: Dataset,
|
||||
documents: list[Document],
|
||||
multimodal_documents: list[AttachmentDocument] | None = None,
|
||||
with_keywords: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True, **kwargs):
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
for document in documents:
|
||||
@ -130,8 +114,6 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
Document.model_validate(child_document.model_dump()) for child_document in child_documents
|
||||
]
|
||||
vector.create(formatted_child_documents)
|
||||
if multimodal_documents and dataset.is_multimodal:
|
||||
vector.create_multimodal(multimodal_documents)
|
||||
|
||||
def clean(self, dataset: Dataset, node_ids: list[str] | None, with_keywords: bool = True, **kwargs):
|
||||
# node_ids is segment's node_ids
|
||||
@ -262,24 +244,6 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
}
|
||||
child_documents.append(ChildDocument(page_content=child, metadata=child_metadata))
|
||||
doc = Document(page_content=parent_child.parent_content, metadata=metadata, children=child_documents)
|
||||
if parent_child.files and len(parent_child.files) > 0:
|
||||
attachments = []
|
||||
for file in parent_child.files:
|
||||
file_metadata = {
|
||||
"doc_id": file.id,
|
||||
"doc_hash": "",
|
||||
"document_id": document.id,
|
||||
"dataset_id": dataset.id,
|
||||
"doc_type": DocType.IMAGE,
|
||||
}
|
||||
file_document = AttachmentDocument(page_content=file.filename or "", metadata=file_metadata)
|
||||
attachments.append(file_document)
|
||||
doc.attachments = attachments
|
||||
else:
|
||||
account = AccountService.load_user(document.created_by)
|
||||
if not account:
|
||||
raise ValueError("Invalid account")
|
||||
doc.attachments = self._get_content_files(doc, current_user=account)
|
||||
documents.append(doc)
|
||||
if documents:
|
||||
# update document parent mode
|
||||
@ -303,17 +267,12 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
doc_store.add_documents(docs=documents, save_child=True)
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
all_child_documents = []
|
||||
all_multimodal_documents = []
|
||||
for doc in documents:
|
||||
if doc.children:
|
||||
all_child_documents.extend(doc.children)
|
||||
if doc.attachments:
|
||||
all_multimodal_documents.extend(doc.attachments)
|
||||
vector = Vector(dataset)
|
||||
if all_child_documents:
|
||||
vector = Vector(dataset)
|
||||
vector.create(all_child_documents)
|
||||
if all_multimodal_documents and dataset.is_multimodal:
|
||||
vector.create_multimodal(all_multimodal_documents)
|
||||
|
||||
def format_preview(self, chunks: Any) -> Mapping[str, Any]:
|
||||
parent_childs = ParentChildStructureChunk.model_validate(chunks)
|
||||
@ -321,7 +280,7 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
for parent_child in parent_childs.parent_child_chunks:
|
||||
preview.append({"content": parent_child.parent_content, "child_chunks": parent_child.child_contents})
|
||||
return {
|
||||
"chunk_structure": IndexStructureType.PARENT_CHILD_INDEX,
|
||||
"chunk_structure": IndexType.PARENT_CHILD_INDEX,
|
||||
"parent_mode": parent_childs.parent_mode,
|
||||
"preview": preview,
|
||||
"total_segments": len(parent_childs.parent_child_chunks),
|
||||
|
||||
@ -18,13 +18,12 @@ from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
from core.rag.extractor.extract_processor import ExtractProcessor
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.models.document import AttachmentDocument, Document, QAStructureChunk
|
||||
from core.rag.models.document import Document, QAStructureChunk
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.tools.utils.text_processing_utils import remove_leading_symbols
|
||||
from libs import helper
|
||||
from models.account import Account
|
||||
from models.dataset import Dataset
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from services.entities.knowledge_entities.knowledge_entities import Rule
|
||||
@ -42,7 +41,7 @@ class QAIndexProcessor(BaseIndexProcessor):
|
||||
)
|
||||
return text_docs
|
||||
|
||||
def transform(self, documents: list[Document], current_user: Account | None = None, **kwargs) -> list[Document]:
|
||||
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
|
||||
preview = kwargs.get("preview")
|
||||
process_rule = kwargs.get("process_rule")
|
||||
if not process_rule:
|
||||
@ -117,7 +116,7 @@ class QAIndexProcessor(BaseIndexProcessor):
|
||||
|
||||
try:
|
||||
# Skip the first row
|
||||
df = pd.read_csv(file) # type: ignore
|
||||
df = pd.read_csv(file)
|
||||
text_docs = []
|
||||
for _, row in df.iterrows():
|
||||
data = Document(page_content=row.iloc[0], metadata={"answer": row.iloc[1]})
|
||||
@ -129,19 +128,10 @@ class QAIndexProcessor(BaseIndexProcessor):
|
||||
raise ValueError(str(e))
|
||||
return text_docs
|
||||
|
||||
def load(
|
||||
self,
|
||||
dataset: Dataset,
|
||||
documents: list[Document],
|
||||
multimodal_documents: list[AttachmentDocument] | None = None,
|
||||
with_keywords: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True, **kwargs):
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
vector.create(documents)
|
||||
if multimodal_documents and dataset.is_multimodal:
|
||||
vector.create_multimodal(multimodal_documents)
|
||||
|
||||
def clean(self, dataset: Dataset, node_ids: list[str] | None, with_keywords: bool = True, **kwargs):
|
||||
vector = Vector(dataset)
|
||||
@ -207,7 +197,7 @@ class QAIndexProcessor(BaseIndexProcessor):
|
||||
for qa_chunk in qa_chunks.qa_chunks:
|
||||
preview.append({"question": qa_chunk.question, "answer": qa_chunk.answer})
|
||||
return {
|
||||
"chunk_structure": IndexStructureType.QA_INDEX,
|
||||
"chunk_structure": IndexType.QA_INDEX,
|
||||
"qa_preview": preview,
|
||||
"total_segments": len(qa_chunks.qa_chunks),
|
||||
}
|
||||
|
||||
@ -4,8 +4,6 @@ from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.file import File
|
||||
|
||||
|
||||
class ChildDocument(BaseModel):
|
||||
"""Class for storing a piece of text and associated metadata."""
|
||||
@ -17,19 +15,7 @@ class ChildDocument(BaseModel):
|
||||
"""Arbitrary metadata about the page content (e.g., source, relationships to other
|
||||
documents, etc.).
|
||||
"""
|
||||
metadata: dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
class AttachmentDocument(BaseModel):
|
||||
"""Class for storing a piece of text and associated metadata."""
|
||||
|
||||
page_content: str
|
||||
|
||||
provider: str | None = "dify"
|
||||
|
||||
vector: list[float] | None = None
|
||||
|
||||
metadata: dict[str, Any] = Field(default_factory=dict)
|
||||
metadata: dict = Field(default_factory=dict)
|
||||
|
||||
|
||||
class Document(BaseModel):
|
||||
@ -42,31 +28,12 @@ class Document(BaseModel):
|
||||
"""Arbitrary metadata about the page content (e.g., source, relationships to other
|
||||
documents, etc.).
|
||||
"""
|
||||
metadata: dict[str, Any] = Field(default_factory=dict)
|
||||
metadata: dict = Field(default_factory=dict)
|
||||
|
||||
provider: str | None = "dify"
|
||||
|
||||
children: list[ChildDocument] | None = None
|
||||
|
||||
attachments: list[AttachmentDocument] | None = None
|
||||
|
||||
|
||||
class GeneralChunk(BaseModel):
|
||||
"""
|
||||
General Chunk.
|
||||
"""
|
||||
|
||||
content: str
|
||||
files: list[File] | None = None
|
||||
|
||||
|
||||
class MultimodalGeneralStructureChunk(BaseModel):
|
||||
"""
|
||||
Multimodal General Structure Chunk.
|
||||
"""
|
||||
|
||||
general_chunks: list[GeneralChunk]
|
||||
|
||||
|
||||
class GeneralStructureChunk(BaseModel):
|
||||
"""
|
||||
@ -83,7 +50,6 @@ class ParentChildChunk(BaseModel):
|
||||
|
||||
parent_content: str
|
||||
child_contents: list[str]
|
||||
files: list[File] | None = None
|
||||
|
||||
|
||||
class ParentChildStructureChunk(BaseModel):
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from core.rag.index_processor.constant.query_type import QueryType
|
||||
from core.rag.models.document import Document
|
||||
|
||||
|
||||
@ -13,7 +12,6 @@ class BaseRerankRunner(ABC):
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
query_type: QueryType = QueryType.TEXT_QUERY,
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Run rerank model
|
||||
|
||||
@ -1,15 +1,6 @@
|
||||
import base64
|
||||
|
||||
from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.entities.rerank_entities import RerankResult
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.query_type import QueryType
|
||||
from core.model_manager import ModelInstance
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.rerank.rerank_base import BaseRerankRunner
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_storage import storage
|
||||
from models.model import UploadFile
|
||||
|
||||
|
||||
class RerankModelRunner(BaseRerankRunner):
|
||||
@ -23,7 +14,6 @@ class RerankModelRunner(BaseRerankRunner):
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
query_type: QueryType = QueryType.TEXT_QUERY,
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Run rerank model
|
||||
@ -34,31 +24,38 @@ class RerankModelRunner(BaseRerankRunner):
|
||||
:param user: unique user id if needed
|
||||
:return:
|
||||
"""
|
||||
model_manager = ModelManager()
|
||||
is_support_vision = model_manager.check_model_support_vision(
|
||||
tenant_id=self.rerank_model_instance.provider_model_bundle.configuration.tenant_id,
|
||||
provider=self.rerank_model_instance.provider,
|
||||
model=self.rerank_model_instance.model,
|
||||
model_type=ModelType.RERANK,
|
||||
docs = []
|
||||
doc_ids = set()
|
||||
unique_documents = []
|
||||
for document in documents:
|
||||
if (
|
||||
document.provider == "dify"
|
||||
and document.metadata is not None
|
||||
and document.metadata["doc_id"] not in doc_ids
|
||||
):
|
||||
doc_ids.add(document.metadata["doc_id"])
|
||||
docs.append(document.page_content)
|
||||
unique_documents.append(document)
|
||||
elif document.provider == "external":
|
||||
if document not in unique_documents:
|
||||
docs.append(document.page_content)
|
||||
unique_documents.append(document)
|
||||
|
||||
documents = unique_documents
|
||||
|
||||
rerank_result = self.rerank_model_instance.invoke_rerank(
|
||||
query=query, docs=docs, score_threshold=score_threshold, top_n=top_n, user=user
|
||||
)
|
||||
if not is_support_vision:
|
||||
if query_type == QueryType.TEXT_QUERY:
|
||||
rerank_result, unique_documents = self.fetch_text_rerank(query, documents, score_threshold, top_n, user)
|
||||
else:
|
||||
return documents
|
||||
else:
|
||||
rerank_result, unique_documents = self.fetch_multimodal_rerank(
|
||||
query, documents, score_threshold, top_n, user, query_type
|
||||
)
|
||||
|
||||
rerank_documents = []
|
||||
|
||||
for result in rerank_result.docs:
|
||||
if score_threshold is None or result.score >= score_threshold:
|
||||
# format document
|
||||
rerank_document = Document(
|
||||
page_content=result.text,
|
||||
metadata=unique_documents[result.index].metadata,
|
||||
provider=unique_documents[result.index].provider,
|
||||
metadata=documents[result.index].metadata,
|
||||
provider=documents[result.index].provider,
|
||||
)
|
||||
if rerank_document.metadata is not None:
|
||||
rerank_document.metadata["score"] = result.score
|
||||
@ -66,126 +63,3 @@ class RerankModelRunner(BaseRerankRunner):
|
||||
|
||||
rerank_documents.sort(key=lambda x: x.metadata.get("score", 0.0), reverse=True)
|
||||
return rerank_documents[:top_n] if top_n else rerank_documents
|
||||
|
||||
def fetch_text_rerank(
|
||||
self,
|
||||
query: str,
|
||||
documents: list[Document],
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> tuple[RerankResult, list[Document]]:
|
||||
"""
|
||||
Fetch text rerank
|
||||
:param query: search query
|
||||
:param documents: documents for reranking
|
||||
:param score_threshold: score threshold
|
||||
:param top_n: top n
|
||||
:param user: unique user id if needed
|
||||
:return:
|
||||
"""
|
||||
docs = []
|
||||
doc_ids = set()
|
||||
unique_documents = []
|
||||
for document in documents:
|
||||
if (
|
||||
document.provider == "dify"
|
||||
and document.metadata is not None
|
||||
and document.metadata["doc_id"] not in doc_ids
|
||||
):
|
||||
if not document.metadata.get("doc_type") or document.metadata.get("doc_type") == DocType.TEXT:
|
||||
doc_ids.add(document.metadata["doc_id"])
|
||||
docs.append(document.page_content)
|
||||
unique_documents.append(document)
|
||||
elif document.provider == "external":
|
||||
if document not in unique_documents:
|
||||
docs.append(document.page_content)
|
||||
unique_documents.append(document)
|
||||
|
||||
rerank_result = self.rerank_model_instance.invoke_rerank(
|
||||
query=query, docs=docs, score_threshold=score_threshold, top_n=top_n, user=user
|
||||
)
|
||||
return rerank_result, unique_documents
|
||||
|
||||
def fetch_multimodal_rerank(
|
||||
self,
|
||||
query: str,
|
||||
documents: list[Document],
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
query_type: QueryType = QueryType.TEXT_QUERY,
|
||||
) -> tuple[RerankResult, list[Document]]:
|
||||
"""
|
||||
Fetch multimodal rerank
|
||||
:param query: search query
|
||||
:param documents: documents for reranking
|
||||
:param score_threshold: score threshold
|
||||
:param top_n: top n
|
||||
:param user: unique user id if needed
|
||||
:param query_type: query type
|
||||
:return: rerank result
|
||||
"""
|
||||
docs = []
|
||||
doc_ids = set()
|
||||
unique_documents = []
|
||||
for document in documents:
|
||||
if (
|
||||
document.provider == "dify"
|
||||
and document.metadata is not None
|
||||
and document.metadata["doc_id"] not in doc_ids
|
||||
):
|
||||
if document.metadata.get("doc_type") == DocType.IMAGE:
|
||||
# Query file info within db.session context to ensure thread-safe access
|
||||
upload_file = (
|
||||
db.session.query(UploadFile).where(UploadFile.id == document.metadata["doc_id"]).first()
|
||||
)
|
||||
if upload_file:
|
||||
blob = storage.load_once(upload_file.key)
|
||||
document_file_base64 = base64.b64encode(blob).decode()
|
||||
document_file_dict = {
|
||||
"content": document_file_base64,
|
||||
"content_type": document.metadata["doc_type"],
|
||||
}
|
||||
docs.append(document_file_dict)
|
||||
else:
|
||||
document_text_dict = {
|
||||
"content": document.page_content,
|
||||
"content_type": document.metadata.get("doc_type") or DocType.TEXT,
|
||||
}
|
||||
docs.append(document_text_dict)
|
||||
doc_ids.add(document.metadata["doc_id"])
|
||||
unique_documents.append(document)
|
||||
elif document.provider == "external":
|
||||
if document not in unique_documents:
|
||||
docs.append(
|
||||
{
|
||||
"content": document.page_content,
|
||||
"content_type": document.metadata.get("doc_type") or DocType.TEXT,
|
||||
}
|
||||
)
|
||||
unique_documents.append(document)
|
||||
|
||||
documents = unique_documents
|
||||
if query_type == QueryType.TEXT_QUERY:
|
||||
rerank_result, unique_documents = self.fetch_text_rerank(query, documents, score_threshold, top_n, user)
|
||||
return rerank_result, unique_documents
|
||||
elif query_type == QueryType.IMAGE_QUERY:
|
||||
# Query file info within db.session context to ensure thread-safe access
|
||||
upload_file = db.session.query(UploadFile).where(UploadFile.id == query).first()
|
||||
if upload_file:
|
||||
blob = storage.load_once(upload_file.key)
|
||||
file_query = base64.b64encode(blob).decode()
|
||||
file_query_dict = {
|
||||
"content": file_query,
|
||||
"content_type": DocType.IMAGE,
|
||||
}
|
||||
rerank_result = self.rerank_model_instance.invoke_multimodal_rerank(
|
||||
query=file_query_dict, docs=docs, score_threshold=score_threshold, top_n=top_n, user=user
|
||||
)
|
||||
return rerank_result, unique_documents
|
||||
else:
|
||||
raise ValueError(f"Upload file not found for query: {query}")
|
||||
|
||||
else:
|
||||
raise ValueError(f"Query type {query_type} is not supported")
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user