Compare commits

..

1 Commits

Author SHA1 Message Date
bea428e308 evaluations 2026-01-30 17:35:36 +08:00
1112 changed files with 9867 additions and 81925 deletions

View File

@ -480,4 +480,4 @@ const useButtonState = () => {
### Related Skills
- `frontend-testing` - For testing refactored components
- `web/docs/test.md` - Testing specification
- `web/testing/testing.md` - Testing specification

View File

@ -7,7 +7,7 @@ description: Generate Vitest + React Testing Library tests for Dify frontend com
This skill enables Claude to generate high-quality, comprehensive frontend tests for the Dify project following established conventions and best practices.
> **⚠️ Authoritative Source**: This skill is derived from `web/docs/test.md`. Use Vitest mock/timer APIs (`vi.*`).
> **⚠️ Authoritative Source**: This skill is derived from `web/testing/testing.md`. Use Vitest mock/timer APIs (`vi.*`).
## When to Apply This Skill
@ -309,7 +309,7 @@ For more detailed information, refer to:
### Primary Specification (MUST follow)
- **`web/docs/test.md`** - The canonical testing specification. This skill is derived from this document.
- **`web/testing/testing.md`** - The canonical testing specification. This skill is derived from this document.
### Reference Examples in Codebase

View File

@ -4,7 +4,7 @@ This guide defines the workflow for generating tests, especially for complex com
## Scope Clarification
This guide addresses **multi-file workflow** (how to process multiple test files). For coverage requirements within a single test file, see `web/docs/test.md` § Coverage Goals.
This guide addresses **multi-file workflow** (how to process multiple test files). For coverage requirements within a single test file, see `web/testing/testing.md` § Coverage Goals.
| Scope | Rule |
|-------|------|

View File

@ -72,7 +72,6 @@ jobs:
OPENDAL_FS_ROOT: /tmp/dify-storage
run: |
uv run --project api pytest \
-n auto \
--timeout "${PYTEST_TIMEOUT:-180}" \
api/tests/integration_tests/workflow \
api/tests/integration_tests/tools \

View File

@ -75,9 +75,7 @@ jobs:
with:
context: "{{defaultContext}}:${{ matrix.context }}"
platforms: ${{ matrix.platform }}
build-args: |
COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
ENABLE_PROD_SOURCEMAP=${{ matrix.context == 'web' && github.ref_name == 'deploy/dev' }}
build-args: COMMIT_SHA=${{ fromJSON(steps.meta.outputs.json).labels['org.opencontainers.image.revision'] }}
labels: ${{ steps.meta.outputs.labels }}
outputs: type=image,name=${{ env[matrix.image_name_env] }},push-by-digest=true,name-canonical=true,push=true
cache-from: type=gha,scope=${{ matrix.service_name }}

View File

@ -47,9 +47,13 @@ jobs:
if: steps.changed-files.outputs.any_changed == 'true'
run: uv run --directory api --dev lint-imports
- name: Run Type Checks
- name: Run Basedpyright Checks
if: steps.changed-files.outputs.any_changed == 'true'
run: make type-check
run: dev/basedpyright-check
- name: Run Mypy Type Checks
if: steps.changed-files.outputs.any_changed == 'true'
run: uv --directory api run mypy --exclude-gitignore --exclude 'tests/' --exclude 'migrations/' --check-untyped-defs --disable-error-code=import-untyped .
- name: Dotenv check
if: steps.changed-files.outputs.any_changed == 'true'

2
.gitignore vendored
View File

@ -209,7 +209,6 @@ api/.vscode
.history
.idea/
web/migration/
# pnpm
/.pnpm-store
@ -222,7 +221,6 @@ mise.toml
# AI Assistant
.sisyphus/
.roo/
api/.env.backup
/clickzetta

View File

@ -7,7 +7,7 @@ Dify is an open-source platform for developing LLM applications with an intuitiv
The codebase is split into:
- **Backend API** (`/api`): Python Flask application organized with Domain-Driven Design
- **Frontend Web** (`/web`): Next.js application using TypeScript and React
- **Frontend Web** (`/web`): Next.js 15 application using TypeScript and React 19
- **Docker deployment** (`/docker`): Containerized deployment configurations
## Backend Workflow
@ -18,7 +18,36 @@ The codebase is split into:
## Frontend Workflow
- Read `web/AGENTS.md` for details
```bash
cd web
pnpm lint:fix
pnpm type-check:tsgo
pnpm test
```
### Frontend Linting
ESLint is used for frontend code quality. Available commands:
```bash
# Lint all files (report only)
pnpm lint
# Lint and auto-fix issues
pnpm lint:fix
# Lint specific files or directories
pnpm lint:fix app/components/base/button/
pnpm lint:fix app/components/base/button/index.tsx
# Lint quietly (errors only, no warnings)
pnpm lint:quiet
# Check code complexity
pnpm lint:complexity
```
**Important**: Always run `pnpm lint:fix` before committing. The pre-commit hook runs `lint-staged` which only lints staged files.
## Testing & Quality Practices

View File

@ -77,7 +77,7 @@ How we prioritize:
For setting up the frontend service, please refer to our comprehensive [guide](https://github.com/langgenius/dify/blob/main/web/README.md) in the `web/README.md` file. This document provides detailed instructions to help you set up the frontend environment properly.
**Testing**: All React components must have comprehensive test coverage. See [web/docs/test.md](https://github.com/langgenius/dify/blob/main/web/docs/test.md) for the canonical frontend testing guidelines and follow every requirement described there.
**Testing**: All React components must have comprehensive test coverage. See [web/testing/testing.md](https://github.com/langgenius/dify/blob/main/web/testing/testing.md) for the canonical frontend testing guidelines and follow every requirement described there.
#### Backend

View File

@ -68,11 +68,9 @@ lint:
@echo "✅ Linting complete"
type-check:
@echo "📝 Running type checks (basedpyright + mypy + ty)..."
@./dev/basedpyright-check $(PATH_TO_CHECK)
@uv --directory api run mypy --exclude-gitignore --exclude 'tests/' --exclude 'migrations/' --check-untyped-defs --disable-error-code=import-untyped .
@cd api && uv run ty check
@echo "✅ Type checks complete"
@echo "📝 Running type check with basedpyright..."
@uv run --directory api --dev basedpyright
@echo "✅ Type check complete"
test:
@echo "🧪 Running backend unit tests..."
@ -80,7 +78,7 @@ test:
echo "Target: $(TARGET_TESTS)"; \
uv run --project api --dev pytest $(TARGET_TESTS); \
else \
PYTEST_XDIST_ARGS="-n auto" uv run --project api --dev dev/pytest/pytest_unit_tests.sh; \
uv run --project api --dev dev/pytest/pytest_unit_tests.sh; \
fi
@echo "✅ Tests complete"
@ -132,7 +130,7 @@ help:
@echo " make format - Format code with ruff"
@echo " make check - Check code with ruff"
@echo " make lint - Format, fix, and lint code (ruff, imports, dotenv)"
@echo " make type-check - Run type checks (basedpyright, mypy, ty)"
@echo " make type-check - Run type checking with basedpyright"
@echo " make test - Run backend unit tests (or TARGET_TESTS=./api/tests/<target_tests>)"
@echo ""
@echo "Docker Build Targets:"

View File

@ -33,9 +33,6 @@ TRIGGER_URL=http://localhost:5001
# The time in seconds after the signature is rejected
FILES_ACCESS_TIMEOUT=300
# Collaboration mode toggle
ENABLE_COLLABORATION_MODE=false
# Access token expiration time in minutes
ACCESS_TOKEN_EXPIRE_MINUTES=60
@ -620,7 +617,6 @@ PLUGIN_DAEMON_URL=http://127.0.0.1:5002
PLUGIN_REMOTE_INSTALL_PORT=5003
PLUGIN_REMOTE_INSTALL_HOST=localhost
PLUGIN_MAX_PACKAGE_SIZE=15728640
PLUGIN_MODEL_SCHEMA_CACHE_TTL=3600
INNER_API_KEY_FOR_PLUGIN=QaHbTe77CtuXmsfyhR7+vRjI/+XbV1AaFy691iy+kGDv2Jvy0/eAh8Y1
# Marketplace configuration
@ -721,13 +717,3 @@ SANDBOX_EXPIRED_RECORDS_CLEAN_BATCH_SIZE=1000
SANDBOX_EXPIRED_RECORDS_RETENTION_DAYS=30
SANDBOX_EXPIRED_RECORDS_CLEAN_TASK_LOCK_TTL=90000
# Sandbox Dify CLI configuration
# Directory containing dify CLI binaries (dify-cli-<os>-<arch>). Defaults to api/bin when unset.
SANDBOX_DIFY_CLI_ROOT=
# CLI API URL for sandbox (dify-sandbox or e2b) to call back to Dify API.
# This URL must be accessible from the sandbox environment.
# For local development: use http://localhost:5001 or http://127.0.0.1:5001
# For Docker deployment: use http://api:5001 (internal Docker network)
# For external sandbox (e.g., e2b): use a publicly accessible URL
CLI_API_URL=http://localhost:5001

View File

@ -1,9 +0,0 @@
Summary:
Summary:
- Application configuration definitions, including file access settings.
Invariants:
- File access settings drive signed URL expiration and base URLs.
Tests:
- Config parsing tests under tests/unit_tests/configs.

View File

@ -1,9 +0,0 @@
Summary:
- Registers file-related API namespaces and routes for files service.
- Includes app-assets and sandbox archive proxy controllers.
Invariants:
- files_ns must include all file controller modules to register routes.
Tests:
- Coverage via controller unit tests and route registration smoke checks.

View File

@ -1,14 +0,0 @@
Summary:
- App assets download proxy endpoint (signed URL verification, stream from storage).
Invariants:
- Validates AssetPath fields (UUIDs, asset_type allowlist).
- Verifies tenant-scoped signature and expiration before reading storage.
- URL uses expires_at/nonce/sign query params.
Edge Cases:
- Missing files return NotFound.
- Invalid signature or expired link returns Forbidden.
Tests:
- Verify signature validation and invalid/expired cases.

View File

@ -1,13 +0,0 @@
Summary:
- App assets upload proxy endpoint (signed URL verification, upload to storage).
Invariants:
- Validates AssetPath fields (UUIDs, asset_type allowlist).
- Verifies tenant-scoped signature and expiration before writing storage.
- URL uses expires_at/nonce/sign query params.
Edge Cases:
- Invalid signature or expired link returns Forbidden.
Tests:
- Verify signature validation and invalid/expired cases.

View File

@ -1,14 +0,0 @@
Summary:
- Sandbox archive upload/download proxy endpoints (signed URL verification, stream to storage).
Invariants:
- Validates tenant_id and sandbox_id UUIDs.
- Verifies tenant-scoped signature and expiration before storage access.
- URL uses expires_at/nonce/sign query params.
Edge Cases:
- Missing archive returns NotFound.
- Invalid signature or expired link returns Forbidden.
Tests:
- Add unit tests for signature validation if needed.

View File

@ -1,9 +0,0 @@
Summary:
Summary:
- Collects file assets and emits FileAsset entries with storage keys.
Invariants:
- Storage keys are derived via AppAssetStorage for draft files.
Tests:
- Covered by asset build pipeline tests.

View File

@ -1,14 +0,0 @@
Summary:
Summary:
- Builds skill artifacts from markdown assets and uploads resolved outputs.
Invariants:
- Reads draft asset content via AppAssetStorage refs.
- Writes resolved artifacts via AppAssetStorage refs.
- FileAsset storage keys are derived via AppAssetStorage.
Edge Cases:
- Missing or invalid JSON content yields empty skill content/metadata.
Tests:
- Build pipeline unit tests covering compile/upload paths.

View File

@ -1,9 +0,0 @@
Summary:
Summary:
- Converts AppAssetFileTree to FileAsset items for packaging.
Invariants:
- Storage keys for assets are derived via AppAssetStorage.
Tests:
- Used in packaging/service tests for asset bundles.

View File

@ -1,14 +0,0 @@
# Zip Packager Notes
## Purpose
- Builds a ZIP archive of asset contents stored via the configured storage backend.
## Key Decisions
- Packaging writes assets into an in-memory zip buffer returned as bytes.
- Asset fetch + zip writing are executed via a thread pool with a lock guarding `ZipFile` writes.
## Edge Cases
- ZIP writes are serialized by the lock; storage reads still run in parallel.
## Tests/Verification
- None yet.

View File

@ -1,9 +0,0 @@
Summary:
Summary:
- Builds AssetItem entries for asset trees using AssetPath-derived storage keys.
Invariants:
- Uses AssetPath to compute draft storage keys.
Tests:
- Covered by asset parsing and packaging tests.

View File

@ -1,20 +0,0 @@
Summary:
- Defines AssetPath facade + typed asset path classes for app-asset storage access.
- Maps asset paths to storage keys and generates presigned or signed-proxy URLs.
- Signs proxy URLs using tenant private keys and enforces expiration.
- Exposes app_asset_storage singleton for reuse.
Invariants:
- AssetPathBase fields (tenant_id/app_id/resource_id/node_id) must be UUIDs.
- AssetPath.from_components enforces valid types and resolved node_id presence.
- Storage keys are derived internally via AssetPathBase.get_storage_key; callers never supply raw paths.
- AppAssetStorage.storage returns the cached presign wrapper (not the raw storage).
Edge Cases:
- Storage backends without presign support must fall back to signed proxy URLs.
- Signed proxy verification enforces expiration and tenant-scoped signing keys.
- Upload URLs also fall back to signed proxy endpoints when presign is unsupported.
- load_or_none treats SilentStorage "File Not Found" bytes as missing.
Tests:
- Unit tests for ref validation, storage key mapping, and signed URL verification.

View File

@ -1,10 +0,0 @@
Summary:
Summary:
- Extracts asset files from a zip and persists them into app asset storage.
Invariants:
- Rejects path traversal/absolute/backslash paths.
- Saves extracted files via AppAssetStorage draft refs.
Tests:
- Zip security edge cases and tree construction tests.

View File

@ -1,9 +0,0 @@
Summary:
Summary:
- Downloads published app asset zip into sandbox and extracts it.
Invariants:
- Uses AppAssetStorage to generate download URLs for build zips (internal URL).
Tests:
- Sandbox initialization integration tests.

View File

@ -1,12 +0,0 @@
Summary:
Summary:
- Downloads draft/resolved assets into sandbox for draft execution.
Invariants:
- Uses AppAssetStorage to generate download URLs for draft/resolved refs (internal URL).
Edge Cases:
- No nodes -> returns early.
Tests:
- Sandbox draft initialization tests.

View File

@ -1,9 +0,0 @@
Summary:
- Sandbox lifecycle wrapper (ready/cancel/fail signals, mount/unmount, release).
Invariants:
- wait_ready raises with the original initialization error as the cause.
- release always attempts unmount and environment release, logging failures.
Tests:
- Covered by sandbox lifecycle/unit tests and workflow execution error handling.

View File

@ -1,2 +0,0 @@
Summary:
- Sandbox security helper modules.

View File

@ -1,13 +0,0 @@
Summary:
- Generates and verifies signed URLs for sandbox archive upload/download.
Invariants:
- tenant_id and sandbox_id must be UUIDs.
- Signatures are tenant-scoped and include operation, expiry, and nonce.
Edge Cases:
- Missing tenant private key raises ValueError.
- Expired or tampered signatures are rejected.
Tests:
- Add unit tests if sandbox archive signature behavior expands.

View File

@ -1,12 +0,0 @@
Summary:
- Manages sandbox archive uploads/downloads for workspace persistence.
Invariants:
- Archive storage key is sandbox/<tenant_id>/<sandbox_id>.tar.gz.
- Signed URLs are tenant-scoped and use external files URL.
Edge Cases:
- Missing archive skips mount.
Tests:
- Covered indirectly via sandbox integration tests.

View File

@ -1,9 +0,0 @@
Summary:
Summary:
- Loads/saves skill bundles to app asset storage.
Invariants:
- Skill bundles use AppAssetStorage refs and JSON serialization.
Tests:
- Covered by skill bundle build/load unit tests.

View File

@ -1,16 +0,0 @@
# E2B Sandbox Provider Notes
## Purpose
- Implements the E2B-backed `VirtualEnvironment` provider and bootstraps sandbox metadata, file I/O, and command execution.
## Key Decisions
- Sandbox metadata is gathered during `_construct_environment` using the E2B SDK before returning `Metadata`.
- Architecture/OS detection uses a single `uname -m -s` call split by whitespace to reduce round-trips.
- Command execution streams stdout/stderr through `QueueTransportReadCloser`; stdin is unsupported.
## Edge Cases
- `release_environment` raises when sandbox termination fails.
- `execute_command` runs in a background thread; consumers must read stdout/stderr until EOF.
## Tests/Verification
- None yet. Add targeted service tests when behavior changes.

View File

@ -1,14 +0,0 @@
Summary:
- App asset CRUD, publish/build pipeline, and presigned URL generation.
Invariants:
- Asset storage access goes through AppAssetStorage + AssetPath, using app_asset_storage singleton.
- Tree operations require tenant/app scoping and lock for mutation.
- Asset zips are packaged via raw storage with storage keys from AppAssetStorage.
Edge Cases:
- File nodes larger than preview limit are rejected.
- Deletion runs asynchronously; storage failures are logged.
Tests:
- Unit tests for storage URL generation and publish/build flows.

View File

@ -1,10 +0,0 @@
Summary:
Summary:
- Imports app bundles, including asset extraction into app asset storage.
Invariants:
- Asset imports respect zip security checks and tenant/app scoping.
- Draft asset packaging uses AppAssetStorage for key mapping.
Tests:
- Bundle import unit tests and zip validation coverage.

View File

@ -1,6 +0,0 @@
Summary:
Summary:
- Unit tests for AppAssetStorage ref validation, key mapping, and signing.
Tests:
- Covers valid/invalid refs, signature verify, expiration handling, and proxy URL generation.

View File

@ -1,13 +1,4 @@
from __future__ import annotations
import os
import sys
from typing import TYPE_CHECKING, cast
if TYPE_CHECKING:
from celery import Celery
celery: Celery
def is_db_command() -> bool:
@ -17,15 +8,10 @@ def is_db_command() -> bool:
# create app
flask_app = None
socketio_app = None
if is_db_command():
from app_factory import create_migrations_app
app = create_migrations_app()
socketio_app = app
flask_app = app
else:
# Gunicorn and Celery handle monkey patching automatically in production by
# specifying the `gevent` worker class. Manual monkey patching is not required here.
@ -36,15 +22,8 @@ else:
from app_factory import create_app
socketio_app, flask_app = create_app()
app = flask_app
celery = cast("Celery", flask_app.extensions["celery"])
app = create_app()
celery = app.extensions["celery"]
if __name__ == "__main__":
from gevent import pywsgi
from geventwebsocket.handler import WebSocketHandler # type: ignore[reportMissingTypeStubs]
host = os.environ.get("HOST", "0.0.0.0")
port = int(os.environ.get("PORT", 5001))
server = pywsgi.WSGIServer((host, port), socketio_app, handler_class=WebSocketHandler)
server.serve_forever()
app.run(host="0.0.0.0", port=5001)

View File

@ -1,7 +1,6 @@
import logging
import time
import socketio # type: ignore[reportMissingTypeStubs]
from opentelemetry.trace import get_current_span
from opentelemetry.trace.span import INVALID_SPAN_ID, INVALID_TRACE_ID
@ -9,7 +8,6 @@ from configs import dify_config
from contexts.wrapper import RecyclableContextVar
from core.logging.context import init_request_context
from dify_app import DifyApp
from extensions.ext_socketio import sio
logger = logging.getLogger(__name__)
@ -62,18 +60,14 @@ def create_flask_app_with_configs() -> DifyApp:
return dify_app
def create_app() -> tuple[socketio.WSGIApp, DifyApp]:
def create_app() -> DifyApp:
start_time = time.perf_counter()
app = create_flask_app_with_configs()
initialize_extensions(app)
sio.app = app
socketio_app = socketio.WSGIApp(sio, app)
end_time = time.perf_counter()
if dify_config.DEBUG:
logger.info("Finished create_app (%s ms)", round((end_time - start_time) * 1000, 2))
return socketio_app, app
return app
def initialize_extensions(app: DifyApp):
@ -155,7 +149,7 @@ def initialize_extensions(app: DifyApp):
logger.info("Loaded %s (%s ms)", short_name, round((end_time - start_time) * 1000, 2))
def create_migrations_app() -> DifyApp:
def create_migrations_app():
app = create_flask_app_with_configs()
from extensions import ext_database, ext_migrate

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -23,8 +23,7 @@ from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.index_processor.constant.built_in_field import BuiltInField
from core.rag.models.document import ChildDocument, Document
from core.sandbox import SandboxBuilder, SandboxType
from core.tools.utils.system_encryption import encrypt_system_params
from core.tools.utils.system_oauth_encryption import encrypt_system_oauth_params
from events.app_event import app_was_created
from extensions.ext_database import db
from extensions.ext_redis import redis_client
@ -1608,7 +1607,7 @@ def remove_orphaned_files_on_storage(force: bool):
click.echo(click.style(f"- Scanning files on storage path {storage_path}", fg="white"))
files = storage.scan(path=storage_path, files=True, directories=False)
all_files_on_storage.extend(files)
except FileNotFoundError:
except FileNotFoundError as e:
click.echo(click.style(f" -> Skipping path {storage_path} as it does not exist.", fg="yellow"))
continue
except Exception as e:
@ -1856,57 +1855,6 @@ def file_usage(
click.echo(click.style(f"Use --offset {offset + limit} to see next page", fg="white"))
@click.command("setup-sandbox-system-config", help="Setup system-level sandbox provider configuration.")
@click.option(
"--provider-type", prompt=True, type=click.Choice(["e2b", "docker", "local"]), help="Sandbox provider type"
)
@click.option("--config", prompt=True, help='Configuration JSON (e.g., {"api_key": "xxx"} for e2b)')
def setup_sandbox_system_config(provider_type: str, config: str):
"""
Setup system-level sandbox provider configuration.
Examples:
flask setup-sandbox-system-config --provider-type e2b --config '{"api_key": "e2b_xxx"}'
flask setup-sandbox-system-config --provider-type docker --config '{"docker_sock": "unix:///var/run/docker.sock"}'
flask setup-sandbox-system-config --provider-type local --config '{}'
"""
from models.sandbox import SandboxProviderSystemConfig
try:
click.echo(click.style(f"Validating config: {config}", fg="yellow"))
config_dict = TypeAdapter(dict[str, Any]).validate_json(config)
click.echo(click.style("Config validated successfully.", fg="green"))
click.echo(click.style(f"Validating config schema for provider type: {provider_type}", fg="yellow"))
SandboxBuilder.validate(SandboxType(provider_type), config_dict)
click.echo(click.style("Config schema validated successfully.", fg="green"))
click.echo(click.style("Encrypting config...", fg="yellow"))
click.echo(click.style(f"Using SECRET_KEY: `{dify_config.SECRET_KEY}`", fg="yellow"))
encrypted_config = encrypt_system_params(config_dict)
click.echo(click.style("Config encrypted successfully.", fg="green"))
except Exception as e:
click.echo(click.style(f"Error validating/encrypting config: {str(e)}", fg="red"))
return
deleted_count = db.session.query(SandboxProviderSystemConfig).filter_by(provider_type=provider_type).delete()
if deleted_count > 0:
click.echo(
click.style(
f"Deleted {deleted_count} existing system config for provider type: {provider_type}", fg="yellow"
)
)
system_config = SandboxProviderSystemConfig(
provider_type=provider_type,
encrypted_config=encrypted_config,
)
db.session.add(system_config)
db.session.commit()
click.echo(click.style(f"Sandbox system config setup successfully. id: {system_config.id}", fg="green"))
click.echo(click.style(f"Provider type: {provider_type}", fg="green"))
@click.command("setup-system-tool-oauth-client", help="Setup system tool oauth client.")
@click.option("--provider", prompt=True, help="Provider name")
@click.option("--client-params", prompt=True, help="Client Params")
@ -1926,7 +1874,7 @@ def setup_system_tool_oauth_client(provider, client_params):
click.echo(click.style(f"Encrypting client params: {client_params}", fg="yellow"))
click.echo(click.style(f"Using SECRET_KEY: `{dify_config.SECRET_KEY}`", fg="yellow"))
oauth_client_params = encrypt_system_params(client_params_dict)
oauth_client_params = encrypt_system_oauth_params(client_params_dict)
click.echo(click.style("Client params encrypted successfully.", fg="green"))
except Exception as e:
click.echo(click.style(f"Error parsing client params: {str(e)}", fg="red"))
@ -1975,7 +1923,7 @@ def setup_system_trigger_oauth_client(provider, client_params):
click.echo(click.style(f"Encrypting client params: {client_params}", fg="yellow"))
click.echo(click.style(f"Using SECRET_KEY: `{dify_config.SECRET_KEY}`", fg="yellow"))
oauth_client_params = encrypt_system_params(client_params_dict)
oauth_client_params = encrypt_system_oauth_params(client_params_dict)
click.echo(click.style("Client params encrypted successfully.", fg="green"))
except Exception as e:
click.echo(click.style(f"Error parsing client params: {str(e)}", fg="red"))

View File

@ -2,7 +2,6 @@ import logging
from pathlib import Path
from typing import Any
from pydantic import Field
from pydantic.fields import FieldInfo
from pydantic_settings import BaseSettings, PydanticBaseSettingsSource, SettingsConfigDict, TomlConfigSettingsSource
@ -83,17 +82,6 @@ class DifyConfig(
extra="ignore",
)
SANDBOX_DIFY_CLI_ROOT: str | None = Field(
default=None,
description=(
"Filesystem directory containing dify CLI binaries named dify-cli-<os>-<arch>. "
"Defaults to api/bin when unset."
),
)
DIFY_PORT: int = Field(
default=5001,
description="Port used by Dify to communicate with the host machine.",
)
# Before adding any config,
# please consider to arrange it in the proper config group of existed or added
# for better readability and maintainability.

View File

@ -245,18 +245,7 @@ class PluginConfig(BaseSettings):
PLUGIN_MODEL_SCHEMA_CACHE_TTL: PositiveInt = Field(
description="TTL in seconds for caching plugin model schemas in Redis",
default=60 * 60,
)
class CliApiConfig(BaseSettings):
"""
Configuration for CLI API (for dify-cli to call back from external sandbox environments)
"""
CLI_API_URL: str = Field(
description="CLI API URL for external sandbox (e.g., e2b) to call back.",
default="http://localhost:5001",
default=24 * 60 * 60,
)
@ -1245,13 +1234,6 @@ class PositionConfig(BaseSettings):
return {item.strip() for item in self.POSITION_TOOL_EXCLUDES.split(",") if item.strip() != ""}
class CollaborationConfig(BaseSettings):
ENABLE_COLLABORATION_MODE: bool = Field(
description="Whether to enable collaboration mode features across the workspace",
default=False,
)
class LoginConfig(BaseSettings):
ENABLE_EMAIL_CODE_LOGIN: bool = Field(
description="whether to enable email code login",
@ -1346,7 +1328,6 @@ class FeatureConfig(
TriggerConfig,
AsyncWorkflowConfig,
PluginConfig,
CliApiConfig,
MarketplaceConfig,
DataSetConfig,
EndpointConfig,
@ -1371,7 +1352,6 @@ class FeatureConfig(
WorkflowConfig,
WorkflowNodeExecutionConfig,
WorkspaceConfig,
CollaborationConfig,
LoginConfig,
AccountConfig,
SwaggerUIConfig,

View File

@ -1,27 +0,0 @@
from flask import Blueprint
from flask_restx import Namespace
from libs.external_api import ExternalApi
bp = Blueprint("cli_api", __name__, url_prefix="/cli/api")
api = ExternalApi(
bp,
version="1.0",
title="CLI API",
description="APIs for Dify CLI to call back from external sandbox environments (e.g., e2b)",
)
# Create namespace
cli_api_ns = Namespace("cli_api", description="CLI API operations", path="/")
from .dify_cli import cli_api as _plugin
api.add_namespace(cli_api_ns)
__all__ = [
"_plugin",
"api",
"bp",
"cli_api_ns",
]

View File

@ -1,192 +0,0 @@
from flask import abort
from flask_restx import Resource
from pydantic import BaseModel
from controllers.cli_api import cli_api_ns
from controllers.cli_api.dify_cli.wraps import get_cli_user_tenant, plugin_data
from controllers.cli_api.wraps import cli_api_only
from controllers.console.wraps import setup_required
from core.app.entities.app_invoke_entities import InvokeFrom
from core.file.helpers import get_signed_file_url_for_plugin
from core.plugin.backwards_invocation.app import PluginAppBackwardsInvocation
from core.plugin.backwards_invocation.base import BaseBackwardsInvocationResponse
from core.plugin.backwards_invocation.model import PluginModelBackwardsInvocation
from core.plugin.backwards_invocation.tool import PluginToolBackwardsInvocation
from core.plugin.entities.request import (
RequestInvokeApp,
RequestInvokeLLM,
RequestInvokeTool,
RequestRequestUploadFile,
)
from core.sandbox.bash.dify_cli import DifyCliToolConfig
from core.session.cli_api import CliContext
from core.skill.entities import ToolInvocationRequest
from core.tools.entities.tool_entities import ToolProviderType
from core.tools.tool_manager import ToolManager
from libs.helper import length_prefixed_response
from models.account import Account
from models.model import EndUser, Tenant
class FetchToolItem(BaseModel):
tool_type: str
tool_provider: str
tool_name: str
credential_id: str | None = None
class FetchToolBatchRequest(BaseModel):
tools: list[FetchToolItem]
@cli_api_ns.route("/invoke/llm")
class CliInvokeLLMApi(Resource):
@cli_api_only
@get_cli_user_tenant
@setup_required
@plugin_data(payload_type=RequestInvokeLLM)
def post(
self,
user_model: Account | EndUser,
tenant_model: Tenant,
payload: RequestInvokeLLM,
cli_context: CliContext,
):
def generator():
response = PluginModelBackwardsInvocation.invoke_llm(user_model.id, tenant_model, payload)
return PluginModelBackwardsInvocation.convert_to_event_stream(response)
return length_prefixed_response(0xF, generator())
@cli_api_ns.route("/invoke/tool")
class CliInvokeToolApi(Resource):
@cli_api_only
@get_cli_user_tenant
@setup_required
@plugin_data(payload_type=RequestInvokeTool)
def post(
self,
user_model: Account | EndUser,
tenant_model: Tenant,
payload: RequestInvokeTool,
cli_context: CliContext,
):
tool_type = ToolProviderType.value_of(payload.tool_type)
request = ToolInvocationRequest(
tool_type=tool_type,
provider=payload.provider,
tool_name=payload.tool,
credential_id=payload.credential_id,
)
if cli_context.tool_access and not cli_context.tool_access.is_allowed(request):
abort(403, description=f"Access denied for tool: {payload.provider}/{payload.tool}")
def generator():
return PluginToolBackwardsInvocation.convert_to_event_stream(
PluginToolBackwardsInvocation.invoke_tool(
tenant_id=tenant_model.id,
user_id=user_model.id,
tool_type=tool_type,
provider=payload.provider,
tool_name=payload.tool,
tool_parameters=payload.tool_parameters,
credential_id=payload.credential_id,
),
)
return length_prefixed_response(0xF, generator())
@cli_api_ns.route("/invoke/app")
class CliInvokeAppApi(Resource):
@cli_api_only
@get_cli_user_tenant
@setup_required
@plugin_data(payload_type=RequestInvokeApp)
def post(
self,
user_model: Account | EndUser,
tenant_model: Tenant,
payload: RequestInvokeApp,
cli_context: CliContext,
):
response = PluginAppBackwardsInvocation.invoke_app(
app_id=payload.app_id,
user_id=user_model.id,
tenant_id=tenant_model.id,
conversation_id=payload.conversation_id,
query=payload.query,
stream=payload.response_mode == "streaming",
inputs=payload.inputs,
files=payload.files,
)
return length_prefixed_response(0xF, PluginAppBackwardsInvocation.convert_to_event_stream(response))
@cli_api_ns.route("/upload/file/request")
class CliUploadFileRequestApi(Resource):
@cli_api_only
@get_cli_user_tenant
@setup_required
@plugin_data(payload_type=RequestRequestUploadFile)
def post(
self,
user_model: Account | EndUser,
tenant_model: Tenant,
payload: RequestRequestUploadFile,
cli_context: CliContext,
):
url = get_signed_file_url_for_plugin(
filename=payload.filename,
mimetype=payload.mimetype,
tenant_id=tenant_model.id,
user_id=user_model.id,
)
return BaseBackwardsInvocationResponse(data={"url": url}).model_dump()
@cli_api_ns.route("/fetch/tools/batch")
class CliFetchToolsBatchApi(Resource):
@cli_api_only
@get_cli_user_tenant
@setup_required
@plugin_data(payload_type=FetchToolBatchRequest)
def post(
self,
user_model: Account | EndUser,
tenant_model: Tenant,
payload: FetchToolBatchRequest,
cli_context: CliContext,
):
tools: list[dict] = []
for item in payload.tools:
provider_type = ToolProviderType.value_of(item.tool_type)
request = ToolInvocationRequest(
tool_type=provider_type,
provider=item.tool_provider,
tool_name=item.tool_name,
credential_id=item.credential_id,
)
if cli_context.tool_access and not cli_context.tool_access.is_allowed(request):
abort(403, description=f"Access denied for tool: {item.tool_provider}/{item.tool_name}")
try:
tool_runtime = ToolManager.get_tool_runtime(
tenant_id=tenant_model.id,
provider_type=provider_type,
provider_id=item.tool_provider,
tool_name=item.tool_name,
invoke_from=InvokeFrom.AGENT,
credential_id=item.credential_id,
)
tool_config = DifyCliToolConfig.create_from_tool(tool_runtime)
tools.append(tool_config.model_dump())
except Exception:
continue
return BaseBackwardsInvocationResponse(data={"tools": tools}).model_dump()

View File

@ -1,137 +0,0 @@
from collections.abc import Callable
from functools import wraps
from typing import ParamSpec, TypeVar
from flask import current_app, g, request
from flask_login import user_logged_in
from pydantic import BaseModel
from sqlalchemy.orm import Session
from core.session.cli_api import CliApiSession, CliContext
from extensions.ext_database import db
from libs.login import current_user
from models.account import Tenant
from models.model import DefaultEndUserSessionID, EndUser
P = ParamSpec("P")
R = TypeVar("R")
class TenantUserPayload(BaseModel):
tenant_id: str
user_id: str
def get_user(tenant_id: str, user_id: str | None) -> EndUser:
"""
Get current user
NOTE: user_id is not trusted, it could be maliciously set to any value.
As a result, it could only be considered as an end user id.
"""
if not user_id:
user_id = DefaultEndUserSessionID.DEFAULT_SESSION_ID
is_anonymous = user_id == DefaultEndUserSessionID.DEFAULT_SESSION_ID
try:
with Session(db.engine) as session:
user_model = None
if is_anonymous:
user_model = (
session.query(EndUser)
.where(
EndUser.session_id == user_id,
EndUser.tenant_id == tenant_id,
)
.first()
)
else:
user_model = (
session.query(EndUser)
.where(
EndUser.id == user_id,
EndUser.tenant_id == tenant_id,
)
.first()
)
if not user_model:
user_model = EndUser(
tenant_id=tenant_id,
type="service_api",
is_anonymous=is_anonymous,
session_id=user_id,
)
session.add(user_model)
session.commit()
session.refresh(user_model)
except Exception:
raise ValueError("user not found")
return user_model
def get_cli_user_tenant(view_func: Callable[P, R]):
@wraps(view_func)
def decorated_view(*args: P.args, **kwargs: P.kwargs):
session: CliApiSession | None = getattr(g, "cli_api_session", None)
if session is None:
raise ValueError("session not found")
user_id = session.user_id
tenant_id = session.tenant_id
cli_context = CliContext.model_validate(session.context)
if not user_id:
user_id = DefaultEndUserSessionID.DEFAULT_SESSION_ID
try:
tenant_model = (
db.session.query(Tenant)
.where(
Tenant.id == tenant_id,
)
.first()
)
except Exception:
raise ValueError("tenant not found")
if not tenant_model:
raise ValueError("tenant not found")
kwargs["tenant_model"] = tenant_model
kwargs["user_model"] = get_user(tenant_id, user_id)
kwargs["cli_context"] = cli_context
current_app.login_manager._update_request_context_with_user(kwargs["user_model"]) # type: ignore
user_logged_in.send(current_app._get_current_object(), user=current_user) # type: ignore
return view_func(*args, **kwargs)
return decorated_view
def plugin_data(view: Callable[P, R] | None = None, *, payload_type: type[BaseModel]):
def decorator(view_func: Callable[P, R]):
@wraps(view_func)
def decorated_view(*args: P.args, **kwargs: P.kwargs):
try:
data = request.get_json()
except Exception:
raise ValueError("invalid json")
try:
payload = payload_type.model_validate(data)
except Exception as e:
raise ValueError(f"invalid payload: {str(e)}")
kwargs["payload"] = payload
return view_func(*args, **kwargs)
return decorated_view
if view is None:
return decorator
else:
return decorator(view)

View File

@ -1,56 +0,0 @@
import hashlib
import hmac
import time
from collections.abc import Callable
from functools import wraps
from typing import ParamSpec, TypeVar
from flask import abort, g, request
from core.session.cli_api import CliApiSessionManager
P = ParamSpec("P")
R = TypeVar("R")
SIGNATURE_TTL_SECONDS = 300
def _verify_signature(session_secret: str, timestamp: str, body: bytes, signature: str) -> bool:
expected = hmac.new(
session_secret.encode(),
f"{timestamp}.".encode() + body,
hashlib.sha256,
).hexdigest()
return hmac.compare_digest(f"sha256={expected}", signature)
def cli_api_only(view: Callable[P, R]):
@wraps(view)
def decorated(*args: P.args, **kwargs: P.kwargs):
session_id = request.headers.get("X-Cli-Api-Session-Id")
timestamp = request.headers.get("X-Cli-Api-Timestamp")
signature = request.headers.get("X-Cli-Api-Signature")
if not session_id or not timestamp or not signature:
abort(401)
try:
ts = int(timestamp)
if abs(time.time() - ts) > SIGNATURE_TTL_SECONDS:
abort(401)
except ValueError:
abort(401)
session = CliApiSessionManager().get(session_id)
if not session:
abort(401)
body = request.get_data()
if not _verify_signature(session.secret, timestamp, body, signature):
abort(401)
g.cli_api_session = session
return view(*args, **kwargs)
return decorated

View File

@ -32,7 +32,6 @@ for module_name in RESOURCE_MODULES:
# Ensure resource modules are imported so route decorators are evaluated.
# Import other controllers
# Sandbox file browser
from . import (
admin,
apikey,
@ -40,7 +39,6 @@ from . import (
feature,
init_validate,
ping,
sandbox_files,
setup,
spec,
version,
@ -52,7 +50,6 @@ from .app import (
agent,
annotation,
app,
app_asset,
audio,
completion,
conversation,
@ -63,11 +60,9 @@ from .app import (
model_config,
ops_trace,
site,
skills,
statistic,
workflow,
workflow_app_log,
workflow_comment,
workflow_draft_variable,
workflow_run,
workflow_statistic,
@ -119,7 +114,12 @@ from .explore import (
saved_message,
trial,
)
from .socketio import workflow as socketio_workflow # pyright: ignore[reportUnusedImport]
# Import evaluation controllers
from .evaluation import evaluation
# Import snippet controllers
from .snippets import snippet_workflow
# Import tag controllers
from .tag import tags
@ -134,7 +134,7 @@ from .workspace import (
model_providers,
models,
plugin,
sandbox_providers,
snippets,
tool_providers,
trigger_providers,
workspace,
@ -153,7 +153,6 @@ __all__ = [
"api",
"apikey",
"app",
"app_asset",
"audio",
"banner",
"billing",
@ -173,6 +172,7 @@ __all__ = [
"datasource_content_preview",
"email_register",
"endpoint",
"evaluation",
"extension",
"external",
"feature",
@ -202,12 +202,11 @@ __all__ = [
"rag_pipeline_import",
"rag_pipeline_workflow",
"recommended_app",
"sandbox_files",
"sandbox_providers",
"saved_message",
"setup",
"site",
"skills",
"snippet_workflow",
"snippets",
"spec",
"statistic",
"tags",
@ -218,7 +217,6 @@ __all__ = [
"website",
"workflow",
"workflow_app_log",
"workflow_comment",
"workflow_draft_variable",
"workflow_run",
"workflow_statistic",

View File

@ -1,6 +1,5 @@
import uuid
from datetime import datetime
from enum import StrEnum
from typing import Any, Literal, TypeAlias
from flask import request
@ -31,7 +30,6 @@ from extensions.ext_database import db
from libs.login import current_account_with_tenant, login_required
from models import App, DatasetPermissionEnum, Workflow
from models.model import IconType
from models.workflow_features import WorkflowFeatures
from services.app_dsl_service import AppDslService, ImportMode
from services.app_service import AppService
from services.enterprise.enterprise_service import EnterpriseService
@ -57,11 +55,6 @@ ALLOW_CREATE_APP_MODES = ["chat", "agent-chat", "advanced-chat", "workflow", "co
register_enum_models(console_ns, IconType)
class RuntimeType(StrEnum):
CLASSIC = "classic"
SANDBOXED = "sandboxed"
class AppListQuery(BaseModel):
page: int = Field(default=1, ge=1, le=99999, description="Page number (1-99999)")
limit: int = Field(default=20, ge=1, le=100, description="Page size (1-100)")
@ -126,11 +119,6 @@ class AppExportQuery(BaseModel):
workflow_id: str | None = Field(default=None, description="Specific workflow ID to export")
class AppExportBundleQuery(BaseModel):
include_secret: bool = Field(default=False, description="Include secrets in export")
workflow_id: str | None = Field(default=None, description="Specific workflow ID to export")
class AppNamePayload(BaseModel):
name: str = Field(..., min_length=1, description="Name to check")
@ -356,7 +344,6 @@ class AppPartial(ResponseModel):
create_user_name: str | None = None
author_name: str | None = None
has_draft_trigger: bool | None = None
runtime_type: RuntimeType = RuntimeType.CLASSIC
@computed_field(return_type=str | None) # type: ignore
@property
@ -506,7 +493,6 @@ class AppListApi(Resource):
str(app.id) for app in app_pagination.items if app.mode in {"workflow", "advanced-chat"}
]
draft_trigger_app_ids: set[str] = set()
sandbox_app_ids: set[str] = set()
if workflow_capable_app_ids:
draft_workflows = (
db.session.execute(
@ -524,10 +510,6 @@ class AppListApi(Resource):
NodeType.TRIGGER_PLUGIN,
}
for workflow in draft_workflows:
# Check sandbox feature
if workflow.get_feature(WorkflowFeatures.SANDBOX).enabled:
sandbox_app_ids.add(str(workflow.app_id))
try:
for _, node_data in workflow.walk_nodes():
if node_data.get("type") in trigger_node_types:
@ -538,7 +520,6 @@ class AppListApi(Resource):
for app in app_pagination.items:
app.has_draft_trigger = str(app.id) in draft_trigger_app_ids
app.runtime_type = RuntimeType.SANDBOXED if str(app.id) in sandbox_app_ids else RuntimeType.CLASSIC
pagination_model = AppPagination.model_validate(app_pagination, from_attributes=True)
return pagination_model.model_dump(mode="json"), 200
@ -707,29 +688,6 @@ class AppExportApi(Resource):
return payload.model_dump(mode="json")
@console_ns.route("/apps/<uuid:app_id>/export-bundle")
class AppExportBundleApi(Resource):
@get_app_model
@setup_required
@login_required
@account_initialization_required
@edit_permission_required
def get(self, app_model):
from services.app_bundle_service import AppBundleService
args = AppExportBundleQuery.model_validate(request.args.to_dict(flat=True))
current_user, _ = current_account_with_tenant()
result = AppBundleService.export_bundle(
app_model=app_model,
account_id=str(current_user.id),
include_secret=args.include_secret,
workflow_id=args.workflow_id,
)
return result.model_dump(mode="json")
@console_ns.route("/apps/<uuid:app_id>/name")
class AppNameApi(Resource):
@console_ns.doc("check_app_name")

View File

@ -1,321 +0,0 @@
from flask import request
from flask_restx import Resource
from pydantic import BaseModel, Field, field_validator
from controllers.console import console_ns
from controllers.console.app.error import (
AppAssetNodeNotFoundError,
AppAssetPathConflictError,
)
from controllers.console.app.wraps import get_app_model
from controllers.console.wraps import account_initialization_required, setup_required
from core.app.entities.app_asset_entities import BatchUploadNode
from libs.login import current_account_with_tenant, login_required
from models import App
from models.model import AppMode
from services.app_asset_service import AppAssetService
from services.errors.app_asset import (
AppAssetNodeNotFoundError as ServiceNodeNotFoundError,
)
from services.errors.app_asset import (
AppAssetParentNotFoundError,
)
from services.errors.app_asset import (
AppAssetPathConflictError as ServicePathConflictError,
)
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
class CreateFolderPayload(BaseModel):
name: str = Field(..., min_length=1, max_length=255)
parent_id: str | None = None
class CreateFilePayload(BaseModel):
name: str = Field(..., min_length=1, max_length=255)
parent_id: str | None = None
@field_validator("name", mode="before")
@classmethod
def strip_name(cls, v: str) -> str:
return v.strip() if isinstance(v, str) else v
@field_validator("parent_id", mode="before")
@classmethod
def empty_to_none(cls, v: str | None) -> str | None:
return v or None
class GetUploadUrlPayload(BaseModel):
name: str = Field(..., min_length=1, max_length=255)
size: int = Field(..., ge=0)
parent_id: str | None = None
@field_validator("name", mode="before")
@classmethod
def strip_name(cls, v: str) -> str:
return v.strip() if isinstance(v, str) else v
@field_validator("parent_id", mode="before")
@classmethod
def empty_to_none(cls, v: str | None) -> str | None:
return v or None
class BatchUploadPayload(BaseModel):
children: list[BatchUploadNode] = Field(..., min_length=1)
class UpdateFileContentPayload(BaseModel):
content: str
class RenameNodePayload(BaseModel):
name: str = Field(..., min_length=1, max_length=255)
class MoveNodePayload(BaseModel):
parent_id: str | None = None
class ReorderNodePayload(BaseModel):
after_node_id: str | None = Field(default=None, description="Place after this node, None for first position")
def reg(cls: type[BaseModel]) -> None:
console_ns.schema_model(cls.__name__, cls.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0))
reg(CreateFolderPayload)
reg(CreateFilePayload)
reg(GetUploadUrlPayload)
reg(BatchUploadNode)
reg(BatchUploadPayload)
reg(UpdateFileContentPayload)
reg(RenameNodePayload)
reg(MoveNodePayload)
reg(ReorderNodePayload)
@console_ns.route("/apps/<string:app_id>/assets/tree")
class AppAssetTreeResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App):
current_user, _ = current_account_with_tenant()
tree = AppAssetService.get_asset_tree(app_model, current_user.id)
return {"children": [view.model_dump() for view in tree.transform()]}
@console_ns.route("/apps/<string:app_id>/assets/folders")
class AppAssetFolderResource(Resource):
@console_ns.expect(console_ns.models[CreateFolderPayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
current_user, _ = current_account_with_tenant()
payload = CreateFolderPayload.model_validate(console_ns.payload or {})
try:
node = AppAssetService.create_folder(app_model, current_user.id, payload.name, payload.parent_id)
return node.model_dump(), 201
except AppAssetParentNotFoundError:
raise AppAssetNodeNotFoundError()
except ServicePathConflictError:
raise AppAssetPathConflictError()
@console_ns.route("/apps/<string:app_id>/assets/files/<string:node_id>")
class AppAssetFileDetailResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
try:
content = AppAssetService.get_file_content(app_model, current_user.id, node_id)
return {"content": content.decode("utf-8", errors="replace")}
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
@console_ns.expect(console_ns.models[UpdateFileContentPayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def put(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
file = request.files.get("file")
if file:
content = file.read()
else:
payload = UpdateFileContentPayload.model_validate(console_ns.payload or {})
content = payload.content.encode("utf-8")
try:
node = AppAssetService.update_file_content(app_model, current_user.id, node_id, content)
return node.model_dump()
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>")
class AppAssetNodeResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def delete(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
try:
AppAssetService.delete_node(app_model, current_user.id, node_id)
return {"result": "success"}, 200
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>/rename")
class AppAssetNodeRenameResource(Resource):
@console_ns.expect(console_ns.models[RenameNodePayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
payload = RenameNodePayload.model_validate(console_ns.payload or {})
try:
node = AppAssetService.rename_node(app_model, current_user.id, node_id, payload.name)
return node.model_dump()
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
except ServicePathConflictError:
raise AppAssetPathConflictError()
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>/move")
class AppAssetNodeMoveResource(Resource):
@console_ns.expect(console_ns.models[MoveNodePayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
payload = MoveNodePayload.model_validate(console_ns.payload or {})
try:
node = AppAssetService.move_node(app_model, current_user.id, node_id, payload.parent_id)
return node.model_dump()
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
except AppAssetParentNotFoundError:
raise AppAssetNodeNotFoundError()
except ServicePathConflictError:
raise AppAssetPathConflictError()
@console_ns.route("/apps/<string:app_id>/assets/nodes/<string:node_id>/reorder")
class AppAssetNodeReorderResource(Resource):
@console_ns.expect(console_ns.models[ReorderNodePayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
payload = ReorderNodePayload.model_validate(console_ns.payload or {})
try:
node = AppAssetService.reorder_node(app_model, current_user.id, node_id, payload.after_node_id)
return node.model_dump()
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
@console_ns.route("/apps/<string:app_id>/assets/files/<string:node_id>/download-url")
class AppAssetFileDownloadUrlResource(Resource):
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App, node_id: str):
current_user, _ = current_account_with_tenant()
try:
download_url = AppAssetService.get_file_download_url(app_model, current_user.id, node_id)
return {"download_url": download_url}
except ServiceNodeNotFoundError:
raise AppAssetNodeNotFoundError()
@console_ns.route("/apps/<string:app_id>/assets/files/upload")
class AppAssetFileUploadUrlResource(Resource):
@console_ns.expect(console_ns.models[GetUploadUrlPayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
current_user, _ = current_account_with_tenant()
payload = GetUploadUrlPayload.model_validate(console_ns.payload or {})
try:
node, upload_url = AppAssetService.get_file_upload_url(
app_model, current_user.id, payload.name, payload.size, payload.parent_id
)
return {"node": node.model_dump(), "upload_url": upload_url}, 201
except AppAssetParentNotFoundError:
raise AppAssetNodeNotFoundError()
except ServicePathConflictError:
raise AppAssetPathConflictError()
@console_ns.route("/apps/<string:app_id>/assets/batch-upload")
class AppAssetBatchUploadResource(Resource):
@console_ns.expect(console_ns.models[BatchUploadPayload.__name__])
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
"""
Create nodes from tree structure and return upload URLs.
Input:
{
"children": [
{"name": "folder1", "node_type": "folder", "children": [
{"name": "file1.txt", "node_type": "file", "size": 1024}
]},
{"name": "root.txt", "node_type": "file", "size": 512}
]
}
Output:
{
"children": [
{"id": "xxx", "name": "folder1", "node_type": "folder", "children": [
{"id": "yyy", "name": "file1.txt", "node_type": "file", "size": 1024, "upload_url": "..."}
]},
{"id": "zzz", "name": "root.txt", "node_type": "file", "size": 512, "upload_url": "..."}
]
}
"""
current_user, _ = current_account_with_tenant()
payload = BatchUploadPayload.model_validate(console_ns.payload or {})
try:
result_children = AppAssetService.batch_create_from_tree(app_model, current_user.id, payload.children)
return {"children": [child.model_dump() for child in result_children]}, 201
except AppAssetParentNotFoundError:
raise AppAssetNodeNotFoundError()
except ServicePathConflictError:
raise AppAssetPathConflictError()

View File

@ -51,14 +51,6 @@ class AppImportPayload(BaseModel):
app_id: str | None = Field(None)
class AppImportBundleConfirmPayload(BaseModel):
name: str | None = None
description: str | None = None
icon_type: str | None = None
icon: str | None = None
icon_background: str | None = None
console_ns.schema_model(
AppImportPayload.__name__, AppImportPayload.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0)
)
@ -147,68 +139,3 @@ class AppImportCheckDependenciesApi(Resource):
result = import_service.check_dependencies(app_model=app_model)
return result.model_dump(mode="json"), 200
@console_ns.route("/apps/imports-bundle/prepare")
class AppImportBundlePrepareApi(Resource):
"""Step 1: Get upload URL for bundle import."""
@setup_required
@login_required
@account_initialization_required
@edit_permission_required
def post(self):
from services.app_bundle_service import AppBundleService
current_user, current_tenant_id = current_account_with_tenant()
result = AppBundleService.prepare_import(
tenant_id=current_tenant_id,
account_id=current_user.id,
)
return {"import_id": result.import_id, "upload_url": result.upload_url}, 200
@console_ns.route("/apps/imports-bundle/<string:import_id>/confirm")
class AppImportBundleConfirmApi(Resource):
"""Step 2: Confirm bundle import after upload."""
@setup_required
@login_required
@account_initialization_required
@marshal_with(app_import_model)
@cloud_edition_billing_resource_check("apps")
@edit_permission_required
def post(self, import_id: str):
from flask import request
from core.app.entities.app_bundle_entities import BundleFormatError
from services.app_bundle_service import AppBundleService
current_user, _ = current_account_with_tenant()
args = AppImportBundleConfirmPayload.model_validate(request.get_json() or {})
try:
result = AppBundleService.confirm_import(
import_id=import_id,
account=current_user,
name=args.name,
description=args.description,
icon_type=args.icon_type,
icon=args.icon,
icon_background=args.icon_background,
)
except BundleFormatError as e:
return {"error": str(e)}, 400
if result.app_id and FeatureService.get_system_features().webapp_auth.enabled:
EnterpriseService.WebAppAuth.update_app_access_mode(result.app_id, "private")
status = result.status
if status == ImportStatus.FAILED:
return result.model_dump(mode="json"), 400
elif status == ImportStatus.PENDING:
return result.model_dump(mode="json"), 202
return result.model_dump(mode="json"), 200

View File

@ -110,6 +110,8 @@ class TracingConfigCheckError(BaseHTTPException):
class InvokeRateLimitError(BaseHTTPException):
"""Raised when the Invoke returns rate limit error."""
error_code = "rate_limit_error"
description = "Rate Limit Error"
code = 429
@ -119,21 +121,3 @@ class NeedAddIdsError(BaseHTTPException):
error_code = "need_add_ids"
description = "Need to add ids."
code = 400
class AppAssetNodeNotFoundError(BaseHTTPException):
error_code = "app_asset_node_not_found"
description = "App asset node not found."
code = 404
class AppAssetFileRequiredError(BaseHTTPException):
error_code = "app_asset_file_required"
description = "File is required."
code = 400
class AppAssetPathConflictError(BaseHTTPException):
error_code = "app_asset_path_conflict"
description = "Path already exists."
code = 409

View File

@ -12,17 +12,10 @@ from controllers.console.app.error import (
ProviderQuotaExceededError,
)
from controllers.console.wraps import account_initialization_required, setup_required
from core.app.app_config.entities import ModelConfig
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.helper.code_executor.code_node_provider import CodeNodeProvider
from core.helper.code_executor.javascript.javascript_code_provider import JavascriptCodeProvider
from core.helper.code_executor.python3.python3_code_provider import Python3CodeProvider
from core.llm_generator.context_models import (
AvailableVarPayload,
CodeContextPayload,
ParameterInfoPayload,
)
from core.llm_generator.entities import RuleCodeGeneratePayload, RuleGeneratePayload, RuleStructuredOutputPayload
from core.llm_generator.llm_generator import LLMGenerator
from core.model_runtime.errors.invoke import InvokeError
from extensions.ext_database import db
@ -33,13 +26,28 @@ from services.workflow_service import WorkflowService
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
class RuleGeneratePayload(BaseModel):
instruction: str = Field(..., description="Rule generation instruction")
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
no_variable: bool = Field(default=False, description="Whether to exclude variables")
class RuleCodeGeneratePayload(RuleGeneratePayload):
code_language: str = Field(default="javascript", description="Programming language for code generation")
class RuleStructuredOutputPayload(BaseModel):
instruction: str = Field(..., description="Structured output generation instruction")
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
class InstructionGeneratePayload(BaseModel):
flow_id: str = Field(..., description="Workflow/Flow ID")
node_id: str = Field(default="", description="Node ID for workflow context")
current: str = Field(default="", description="Current instruction text")
language: str = Field(default="javascript", description="Programming language (javascript/python)")
instruction: str = Field(..., description="Instruction for generation")
model_config_data: ModelConfig = Field(..., alias="model_config", description="Model configuration")
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
ideal_output: str = Field(default="", description="Expected ideal output")
@ -47,34 +55,6 @@ class InstructionTemplatePayload(BaseModel):
type: str = Field(..., description="Instruction template type")
class ContextGeneratePayload(BaseModel):
"""Payload for generating extractor code node."""
language: str = Field(default="python3", description="Code language (python3/javascript)")
prompt_messages: list[dict[str, Any]] = Field(
..., description="Multi-turn conversation history, last message is the current instruction"
)
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
available_vars: list[AvailableVarPayload] = Field(..., description="Available variables from upstream nodes")
parameter_info: ParameterInfoPayload = Field(..., description="Target parameter metadata from the frontend")
code_context: CodeContextPayload = Field(description="Existing code node context for incremental generation")
class SuggestedQuestionsPayload(BaseModel):
"""Payload for generating suggested questions."""
language: str = Field(
default="English", description="Language for generated questions (e.g. English, Chinese, Japanese)"
)
model_config_data: dict[str, Any] = Field(
default_factory=dict,
alias="model_config",
description="Model configuration (optional, uses system default if not provided)",
)
available_vars: list[AvailableVarPayload] = Field(..., description="Available variables from upstream nodes")
parameter_info: ParameterInfoPayload = Field(..., description="Target parameter metadata from the frontend")
def reg(cls: type[BaseModel]):
console_ns.schema_model(cls.__name__, cls.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0))
@ -84,9 +64,6 @@ reg(RuleCodeGeneratePayload)
reg(RuleStructuredOutputPayload)
reg(InstructionGeneratePayload)
reg(InstructionTemplatePayload)
reg(ContextGeneratePayload)
reg(SuggestedQuestionsPayload)
reg(ModelConfig)
@console_ns.route("/rule-generate")
@ -105,7 +82,12 @@ class RuleGenerateApi(Resource):
_, current_tenant_id = current_account_with_tenant()
try:
rules = LLMGenerator.generate_rule_config(tenant_id=current_tenant_id, args=args)
rules = LLMGenerator.generate_rule_config(
tenant_id=current_tenant_id,
instruction=args.instruction,
model_config=args.model_config_data,
no_variable=args.no_variable,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
@ -136,7 +118,9 @@ class RuleCodeGenerateApi(Resource):
try:
code_result = LLMGenerator.generate_code(
tenant_id=current_tenant_id,
args=args,
instruction=args.instruction,
model_config=args.model_config_data,
code_language=args.code_language,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -168,7 +152,8 @@ class RuleStructuredOutputGenerateApi(Resource):
try:
structured_output = LLMGenerator.generate_structured_output(
tenant_id=current_tenant_id,
args=args,
instruction=args.instruction,
model_config=args.model_config_data,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
@ -219,29 +204,23 @@ class InstructionGenerateApi(Resource):
case "llm":
return LLMGenerator.generate_rule_config(
current_tenant_id,
args=RuleGeneratePayload(
instruction=args.instruction,
model_config=args.model_config_data,
no_variable=True,
),
instruction=args.instruction,
model_config=args.model_config_data,
no_variable=True,
)
case "agent":
return LLMGenerator.generate_rule_config(
current_tenant_id,
args=RuleGeneratePayload(
instruction=args.instruction,
model_config=args.model_config_data,
no_variable=True,
),
instruction=args.instruction,
model_config=args.model_config_data,
no_variable=True,
)
case "code":
return LLMGenerator.generate_code(
tenant_id=current_tenant_id,
args=RuleCodeGeneratePayload(
instruction=args.instruction,
model_config=args.model_config_data,
code_language=args.language,
),
instruction=args.instruction,
model_config=args.model_config_data,
code_language=args.language,
)
case _:
return {"error": f"invalid node type: {node_type}"}
@ -299,70 +278,3 @@ class InstructionGenerationTemplateApi(Resource):
return {"data": INSTRUCTION_GENERATE_TEMPLATE_CODE}
case _:
raise ValueError(f"Invalid type: {args.type}")
@console_ns.route("/context-generate")
class ContextGenerateApi(Resource):
@console_ns.doc("generate_with_context")
@console_ns.doc(description="Generate with multi-turn conversation context")
@console_ns.expect(console_ns.models[ContextGeneratePayload.__name__])
@console_ns.response(200, "Content generated successfully")
@console_ns.response(400, "Invalid request parameters or workflow not found")
@console_ns.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
from core.llm_generator.utils import deserialize_prompt_messages
args = ContextGeneratePayload.model_validate(console_ns.payload)
_, current_tenant_id = current_account_with_tenant()
try:
return LLMGenerator.generate_with_context(
tenant_id=current_tenant_id,
language=args.language,
prompt_messages=deserialize_prompt_messages(args.prompt_messages),
model_config=args.model_config_data,
available_vars=args.available_vars,
parameter_info=args.parameter_info,
code_context=args.code_context,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
@console_ns.route("/context-generate/suggested-questions")
class SuggestedQuestionsApi(Resource):
@console_ns.doc("generate_suggested_questions")
@console_ns.doc(description="Generate suggested questions for context generation")
@console_ns.expect(console_ns.models[SuggestedQuestionsPayload.__name__])
@console_ns.response(200, "Questions generated successfully")
@setup_required
@login_required
@account_initialization_required
def post(self):
args = SuggestedQuestionsPayload.model_validate(console_ns.payload)
_, current_tenant_id = current_account_with_tenant()
try:
return LLMGenerator.generate_suggested_questions(
tenant_id=current_tenant_id,
language=args.language,
available_vars=args.available_vars,
parameter_info=args.parameter_info,
model_config=args.model_config_data,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)

View File

@ -202,7 +202,6 @@ message_detail_model = console_ns.model(
"status": fields.String,
"error": fields.String,
"parent_message_id": fields.String,
"generation_detail": fields.Raw,
},
)

View File

@ -1,83 +0,0 @@
from flask_restx import Resource
from controllers.console import console_ns
from controllers.console.app.error import DraftWorkflowNotExist
from controllers.console.app.wraps import get_app_model
from controllers.console.wraps import account_initialization_required, current_account_with_tenant, setup_required
from libs.login import login_required
from models import App
from models.model import AppMode
from services.skill_service import SkillService
from services.workflow_service import WorkflowService
@console_ns.route("/apps/<uuid:app_id>/workflows/draft/nodes/<string:node_id>/skills")
class NodeSkillsApi(Resource):
"""API for retrieving skill references for a specific workflow node."""
@console_ns.doc("get_node_skills")
@console_ns.doc(description="Get skill references for a specific node in the draft workflow")
@console_ns.doc(params={"app_id": "Application ID", "node_id": "Node ID"})
@console_ns.response(200, "Node skills retrieved successfully")
@console_ns.response(404, "Workflow or node not found")
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App, node_id: str):
"""
Get skill information for a specific node in the draft workflow.
Returns information about skill references in the node, including:
- skill_references: List of prompt messages marked as skills
- tool_references: Aggregated tool references from all skill prompts
- file_references: Aggregated file references from all skill prompts
"""
current_user, _ = current_account_with_tenant()
workflow_service = WorkflowService()
workflow = workflow_service.get_draft_workflow(app_model=app_model)
if not workflow:
raise DraftWorkflowNotExist()
skill_info = SkillService.get_node_skill_info(
app=app_model,
workflow=workflow,
node_id=node_id,
user_id=current_user.id,
)
return skill_info.model_dump()
@console_ns.route("/apps/<uuid:app_id>/workflows/draft/skills")
class WorkflowSkillsApi(Resource):
"""API for retrieving all skill references in a workflow."""
@console_ns.doc("get_workflow_skills")
@console_ns.doc(description="Get all skill references in the draft workflow")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.response(200, "Workflow skills retrieved successfully")
@console_ns.response(404, "Workflow not found")
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def get(self, app_model: App):
"""
Get skill information for all nodes in the draft workflow that have skill references.
Returns a list of nodes with their skill information.
"""
current_user, _ = current_account_with_tenant()
workflow_service = WorkflowService()
workflow = workflow_service.get_draft_workflow(app_model=app_model)
if not workflow:
raise DraftWorkflowNotExist()
skills_info = SkillService.get_workflow_skills(
app=app_model,
workflow=workflow,
user_id=current_user.id,
)
return {"nodes": [info.model_dump() for info in skills_info]}

View File

@ -33,10 +33,8 @@ from core.trigger.debug.event_selectors import (
from core.workflow.enums import NodeType
from core.workflow.graph_engine.manager import GraphEngineManager
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from factories import file_factory, variable_factory
from fields.member_fields import simple_account_fields
from fields.online_user_fields import online_user_list_fields
from fields.workflow_fields import workflow_fields, workflow_pagination_fields
from libs import helper
from libs.datetime_utils import naive_utc_now
@ -45,12 +43,9 @@ from libs.login import current_account_with_tenant, login_required
from models import App
from models.model import AppMode
from models.workflow import Workflow
from repositories.workflow_collaboration_repository import WORKFLOW_ONLINE_USERS_PREFIX
from services.app_generate_service import AppGenerateService
from services.errors.app import WorkflowHashNotEqualError
from services.errors.llm import InvokeRateLimitError
from services.workflow.entities import NestedNodeGraphRequest, NestedNodeParameterSchema
from services.workflow.nested_node_graph_service import NestedNodeGraphService
from services.workflow_service import DraftWorkflowDeletionError, WorkflowInUseError, WorkflowService
logger = logging.getLogger(__name__)
@ -165,14 +160,6 @@ class WorkflowUpdatePayload(BaseModel):
marked_comment: str | None = Field(default=None, max_length=100)
class WorkflowFeaturesPayload(BaseModel):
features: dict[str, Any] = Field(..., description="Workflow feature configuration")
class WorkflowOnlineUsersQuery(BaseModel):
workflow_ids: str = Field(..., description="Comma-separated workflow IDs")
class DraftWorkflowTriggerRunPayload(BaseModel):
node_id: str
@ -181,15 +168,6 @@ class DraftWorkflowTriggerRunAllPayload(BaseModel):
node_ids: list[str]
class NestedNodeGraphPayload(BaseModel):
"""Request payload for generating nested node graph."""
parent_node_id: str = Field(description="ID of the parent node that uses the extracted value")
parameter_key: str = Field(description="Key of the parameter being extracted")
context_source: list[str] = Field(description="Variable selector for the context source")
parameter_schema: dict[str, Any] = Field(description="Schema of the parameter to extract")
def reg(cls: type[BaseModel]):
console_ns.schema_model(cls.__name__, cls.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0))
@ -205,11 +183,8 @@ reg(DefaultBlockConfigQuery)
reg(ConvertToWorkflowPayload)
reg(WorkflowListQuery)
reg(WorkflowUpdatePayload)
reg(WorkflowFeaturesPayload)
reg(WorkflowOnlineUsersQuery)
reg(DraftWorkflowTriggerRunPayload)
reg(DraftWorkflowTriggerRunAllPayload)
reg(NestedNodeGraphPayload)
# TODO(QuantumGhost): Refactor existing node run API to handle file parameter parsing
@ -679,14 +654,13 @@ class PublishedWorkflowApi(Resource):
"""
Publish workflow
"""
from services.app_bundle_service import AppBundleService
current_user, _ = current_account_with_tenant()
args = PublishWorkflowPayload.model_validate(console_ns.payload or {})
workflow_service = WorkflowService()
with Session(db.engine) as session:
workflow = AppBundleService.publish(
workflow = workflow_service.publish_workflow(
session=session,
app_model=app_model,
account=current_user,
@ -797,31 +771,6 @@ class ConvertToWorkflowApi(Resource):
}
@console_ns.route("/apps/<uuid:app_id>/workflows/draft/features")
class WorkflowFeaturesApi(Resource):
"""Update draft workflow features."""
@console_ns.expect(console_ns.models[WorkflowFeaturesPayload.__name__])
@console_ns.doc("update_workflow_features")
@console_ns.doc(description="Update draft workflow features")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.response(200, "Workflow features updated successfully")
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
current_user, _ = current_account_with_tenant()
args = WorkflowFeaturesPayload.model_validate(console_ns.payload or {})
features = args.features
workflow_service = WorkflowService()
workflow_service.update_draft_workflow_features(app_model=app_model, features=features, account=current_user)
return {"result": "success"}
@console_ns.route("/apps/<uuid:app_id>/workflows")
class PublishedAllWorkflowApi(Resource):
@console_ns.expect(console_ns.models[WorkflowListQuery.__name__])
@ -1199,83 +1148,3 @@ class DraftWorkflowTriggerRunAllApi(Resource):
"status": "error",
}
), 400
@console_ns.route("/apps/<uuid:app_id>/workflows/draft/nested-node-graph")
class NestedNodeGraphApi(Resource):
"""
API for generating Nested Node LLM graph structures.
This endpoint creates a complete graph structure containing an LLM node
configured to extract values from list[PromptMessage] variables.
"""
@console_ns.doc("generate_nested_node_graph")
@console_ns.doc(description="Generate a Nested Node LLM graph structure")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.expect(console_ns.models[NestedNodeGraphPayload.__name__])
@console_ns.response(200, "Nested node graph generated successfully")
@console_ns.response(400, "Invalid request parameters")
@console_ns.response(403, "Permission denied")
@setup_required
@login_required
@account_initialization_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
@edit_permission_required
def post(self, app_model: App):
"""
Generate a Nested Node LLM graph structure.
Returns a complete graph structure containing a single LLM node
configured for extracting values from list[PromptMessage] context.
"""
payload = NestedNodeGraphPayload.model_validate(console_ns.payload or {})
parameter_schema = NestedNodeParameterSchema(
name=payload.parameter_schema.get("name", payload.parameter_key),
type=payload.parameter_schema.get("type", "string"),
description=payload.parameter_schema.get("description", ""),
)
request = NestedNodeGraphRequest(
parent_node_id=payload.parent_node_id,
parameter_key=payload.parameter_key,
context_source=payload.context_source,
parameter_schema=parameter_schema,
)
with Session(db.engine) as session:
service = NestedNodeGraphService(session)
response = service.generate_nested_node_graph(tenant_id=app_model.tenant_id, request=request)
return response.model_dump()
@console_ns.route("/apps/workflows/online-users")
class WorkflowOnlineUsersApi(Resource):
@console_ns.expect(console_ns.models[WorkflowOnlineUsersQuery.__name__])
@console_ns.doc("get_workflow_online_users")
@console_ns.doc(description="Get workflow online users")
@setup_required
@login_required
@account_initialization_required
@marshal_with(online_user_list_fields)
def get(self):
args = WorkflowOnlineUsersQuery.model_validate(request.args.to_dict(flat=True)) # type: ignore
workflow_ids = [workflow_id.strip() for workflow_id in args.workflow_ids.split(",") if workflow_id.strip()]
results = []
for workflow_id in workflow_ids:
users_json = redis_client.hgetall(f"{WORKFLOW_ONLINE_USERS_PREFIX}{workflow_id}")
users = []
for _, user_info_json in users_json.items():
try:
users.append(json.loads(user_info_json))
except Exception:
continue
results.append({"workflow_id": workflow_id, "users": users})
return {"data": results}

View File

@ -1,317 +0,0 @@
import logging
from flask_restx import Resource, fields, marshal_with
from pydantic import BaseModel, Field
from controllers.console import console_ns
from controllers.console.app.wraps import get_app_model
from controllers.console.wraps import account_initialization_required, setup_required
from fields.member_fields import account_with_role_fields
from fields.workflow_comment_fields import (
workflow_comment_basic_fields,
workflow_comment_create_fields,
workflow_comment_detail_fields,
workflow_comment_reply_create_fields,
workflow_comment_reply_update_fields,
workflow_comment_resolve_fields,
workflow_comment_update_fields,
)
from libs.login import current_user, login_required
from models import App
from services.account_service import TenantService
from services.workflow_comment_service import WorkflowCommentService
logger = logging.getLogger(__name__)
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
class WorkflowCommentCreatePayload(BaseModel):
position_x: float = Field(..., description="Comment X position")
position_y: float = Field(..., description="Comment Y position")
content: str = Field(..., description="Comment content")
mentioned_user_ids: list[str] = Field(default_factory=list, description="Mentioned user IDs")
class WorkflowCommentUpdatePayload(BaseModel):
content: str = Field(..., description="Comment content")
position_x: float | None = Field(default=None, description="Comment X position")
position_y: float | None = Field(default=None, description="Comment Y position")
mentioned_user_ids: list[str] = Field(default_factory=list, description="Mentioned user IDs")
class WorkflowCommentReplyCreatePayload(BaseModel):
content: str = Field(..., description="Reply content")
mentioned_user_ids: list[str] = Field(default_factory=list, description="Mentioned user IDs")
class WorkflowCommentReplyUpdatePayload(BaseModel):
content: str = Field(..., description="Reply content")
mentioned_user_ids: list[str] = Field(default_factory=list, description="Mentioned user IDs")
for model in (
WorkflowCommentCreatePayload,
WorkflowCommentUpdatePayload,
WorkflowCommentReplyCreatePayload,
WorkflowCommentReplyUpdatePayload,
):
console_ns.schema_model(model.__name__, model.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0))
workflow_comment_basic_model = console_ns.model("WorkflowCommentBasic", workflow_comment_basic_fields)
workflow_comment_detail_model = console_ns.model("WorkflowCommentDetail", workflow_comment_detail_fields)
workflow_comment_create_model = console_ns.model("WorkflowCommentCreate", workflow_comment_create_fields)
workflow_comment_update_model = console_ns.model("WorkflowCommentUpdate", workflow_comment_update_fields)
workflow_comment_resolve_model = console_ns.model("WorkflowCommentResolve", workflow_comment_resolve_fields)
workflow_comment_reply_create_model = console_ns.model(
"WorkflowCommentReplyCreate", workflow_comment_reply_create_fields
)
workflow_comment_reply_update_model = console_ns.model(
"WorkflowCommentReplyUpdate", workflow_comment_reply_update_fields
)
workflow_comment_mention_users_model = console_ns.model(
"WorkflowCommentMentionUsers",
{"users": fields.List(fields.Nested(account_with_role_fields))},
)
@console_ns.route("/apps/<uuid:app_id>/workflow/comments")
class WorkflowCommentListApi(Resource):
"""API for listing and creating workflow comments."""
@console_ns.doc("list_workflow_comments")
@console_ns.doc(description="Get all comments for a workflow")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.response(200, "Comments retrieved successfully", workflow_comment_basic_model)
@login_required
@setup_required
@account_initialization_required
@get_app_model()
@marshal_with(workflow_comment_basic_model, envelope="data")
def get(self, app_model: App):
"""Get all comments for a workflow."""
comments = WorkflowCommentService.get_comments(tenant_id=current_user.current_tenant_id, app_id=app_model.id)
return comments
@console_ns.doc("create_workflow_comment")
@console_ns.doc(description="Create a new workflow comment")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.expect(console_ns.models[WorkflowCommentCreatePayload.__name__])
@console_ns.response(201, "Comment created successfully", workflow_comment_create_model)
@login_required
@setup_required
@account_initialization_required
@get_app_model()
@marshal_with(workflow_comment_create_model)
def post(self, app_model: App):
"""Create a new workflow comment."""
payload = WorkflowCommentCreatePayload.model_validate(console_ns.payload or {})
result = WorkflowCommentService.create_comment(
tenant_id=current_user.current_tenant_id,
app_id=app_model.id,
created_by=current_user.id,
content=payload.content,
position_x=payload.position_x,
position_y=payload.position_y,
mentioned_user_ids=payload.mentioned_user_ids,
)
return result, 201
@console_ns.route("/apps/<uuid:app_id>/workflow/comments/<string:comment_id>")
class WorkflowCommentDetailApi(Resource):
"""API for managing individual workflow comments."""
@console_ns.doc("get_workflow_comment")
@console_ns.doc(description="Get a specific workflow comment")
@console_ns.doc(params={"app_id": "Application ID", "comment_id": "Comment ID"})
@console_ns.response(200, "Comment retrieved successfully", workflow_comment_detail_model)
@login_required
@setup_required
@account_initialization_required
@get_app_model()
@marshal_with(workflow_comment_detail_model)
def get(self, app_model: App, comment_id: str):
"""Get a specific workflow comment."""
comment = WorkflowCommentService.get_comment(
tenant_id=current_user.current_tenant_id, app_id=app_model.id, comment_id=comment_id
)
return comment
@console_ns.doc("update_workflow_comment")
@console_ns.doc(description="Update a workflow comment")
@console_ns.doc(params={"app_id": "Application ID", "comment_id": "Comment ID"})
@console_ns.expect(console_ns.models[WorkflowCommentUpdatePayload.__name__])
@console_ns.response(200, "Comment updated successfully", workflow_comment_update_model)
@login_required
@setup_required
@account_initialization_required
@get_app_model()
@marshal_with(workflow_comment_update_model)
def put(self, app_model: App, comment_id: str):
"""Update a workflow comment."""
payload = WorkflowCommentUpdatePayload.model_validate(console_ns.payload or {})
result = WorkflowCommentService.update_comment(
tenant_id=current_user.current_tenant_id,
app_id=app_model.id,
comment_id=comment_id,
user_id=current_user.id,
content=payload.content,
position_x=payload.position_x,
position_y=payload.position_y,
mentioned_user_ids=payload.mentioned_user_ids,
)
return result
@console_ns.doc("delete_workflow_comment")
@console_ns.doc(description="Delete a workflow comment")
@console_ns.doc(params={"app_id": "Application ID", "comment_id": "Comment ID"})
@console_ns.response(204, "Comment deleted successfully")
@login_required
@setup_required
@account_initialization_required
@get_app_model()
def delete(self, app_model: App, comment_id: str):
"""Delete a workflow comment."""
WorkflowCommentService.delete_comment(
tenant_id=current_user.current_tenant_id,
app_id=app_model.id,
comment_id=comment_id,
user_id=current_user.id,
)
return {"result": "success"}, 204
@console_ns.route("/apps/<uuid:app_id>/workflow/comments/<string:comment_id>/resolve")
class WorkflowCommentResolveApi(Resource):
"""API for resolving and reopening workflow comments."""
@console_ns.doc("resolve_workflow_comment")
@console_ns.doc(description="Resolve a workflow comment")
@console_ns.doc(params={"app_id": "Application ID", "comment_id": "Comment ID"})
@console_ns.response(200, "Comment resolved successfully", workflow_comment_resolve_model)
@login_required
@setup_required
@account_initialization_required
@get_app_model()
@marshal_with(workflow_comment_resolve_model)
def post(self, app_model: App, comment_id: str):
"""Resolve a workflow comment."""
comment = WorkflowCommentService.resolve_comment(
tenant_id=current_user.current_tenant_id,
app_id=app_model.id,
comment_id=comment_id,
user_id=current_user.id,
)
return comment
@console_ns.route("/apps/<uuid:app_id>/workflow/comments/<string:comment_id>/replies")
class WorkflowCommentReplyApi(Resource):
"""API for managing comment replies."""
@console_ns.doc("create_workflow_comment_reply")
@console_ns.doc(description="Add a reply to a workflow comment")
@console_ns.doc(params={"app_id": "Application ID", "comment_id": "Comment ID"})
@console_ns.expect(console_ns.models[WorkflowCommentReplyCreatePayload.__name__])
@console_ns.response(201, "Reply created successfully", workflow_comment_reply_create_model)
@login_required
@setup_required
@account_initialization_required
@get_app_model()
@marshal_with(workflow_comment_reply_create_model)
def post(self, app_model: App, comment_id: str):
"""Add a reply to a workflow comment."""
# Validate comment access first
WorkflowCommentService.validate_comment_access(
comment_id=comment_id, tenant_id=current_user.current_tenant_id, app_id=app_model.id
)
payload = WorkflowCommentReplyCreatePayload.model_validate(console_ns.payload or {})
result = WorkflowCommentService.create_reply(
comment_id=comment_id,
content=payload.content,
created_by=current_user.id,
mentioned_user_ids=payload.mentioned_user_ids,
)
return result, 201
@console_ns.route("/apps/<uuid:app_id>/workflow/comments/<string:comment_id>/replies/<string:reply_id>")
class WorkflowCommentReplyDetailApi(Resource):
"""API for managing individual comment replies."""
@console_ns.doc("update_workflow_comment_reply")
@console_ns.doc(description="Update a comment reply")
@console_ns.doc(params={"app_id": "Application ID", "comment_id": "Comment ID", "reply_id": "Reply ID"})
@console_ns.expect(console_ns.models[WorkflowCommentReplyUpdatePayload.__name__])
@console_ns.response(200, "Reply updated successfully", workflow_comment_reply_update_model)
@login_required
@setup_required
@account_initialization_required
@get_app_model()
@marshal_with(workflow_comment_reply_update_model)
def put(self, app_model: App, comment_id: str, reply_id: str):
"""Update a comment reply."""
# Validate comment access first
WorkflowCommentService.validate_comment_access(
comment_id=comment_id, tenant_id=current_user.current_tenant_id, app_id=app_model.id
)
payload = WorkflowCommentReplyUpdatePayload.model_validate(console_ns.payload or {})
reply = WorkflowCommentService.update_reply(
reply_id=reply_id,
user_id=current_user.id,
content=payload.content,
mentioned_user_ids=payload.mentioned_user_ids,
)
return reply
@console_ns.doc("delete_workflow_comment_reply")
@console_ns.doc(description="Delete a comment reply")
@console_ns.doc(params={"app_id": "Application ID", "comment_id": "Comment ID", "reply_id": "Reply ID"})
@console_ns.response(204, "Reply deleted successfully")
@login_required
@setup_required
@account_initialization_required
@get_app_model()
def delete(self, app_model: App, comment_id: str, reply_id: str):
"""Delete a comment reply."""
# Validate comment access first
WorkflowCommentService.validate_comment_access(
comment_id=comment_id, tenant_id=current_user.current_tenant_id, app_id=app_model.id
)
WorkflowCommentService.delete_reply(reply_id=reply_id, user_id=current_user.id)
return {"result": "success"}, 204
@console_ns.route("/apps/<uuid:app_id>/workflow/comments/mention-users")
class WorkflowCommentMentionUsersApi(Resource):
"""API for getting mentionable users for workflow comments."""
@console_ns.doc("workflow_comment_mention_users")
@console_ns.doc(description="Get all users in current tenant for mentions")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.response(200, "Mentionable users retrieved successfully", workflow_comment_mention_users_model)
@login_required
@setup_required
@account_initialization_required
@get_app_model()
@marshal_with(workflow_comment_mention_users_model)
def get(self, app_model: App):
"""Get all users in current tenant for mentions."""
members = TenantService.get_tenant_members(current_user.current_tenant)
return {"users": members}

View File

@ -17,16 +17,15 @@ from controllers.console.wraps import account_initialization_required, edit_perm
from controllers.web.error import InvalidArgumentError, NotFoundError
from core.file import helpers as file_helpers
from core.variables.segment_group import SegmentGroup
from core.variables.segments import ArrayFileSegment, ArrayPromptMessageSegment, FileSegment, Segment
from core.variables.segments import ArrayFileSegment, FileSegment, Segment
from core.variables.types import SegmentType
from core.workflow.constants import CONVERSATION_VARIABLE_NODE_ID, SYSTEM_VARIABLE_NODE_ID
from extensions.ext_database import db
from factories import variable_factory
from factories.file_factory import build_from_mapping, build_from_mappings
from libs.login import current_account_with_tenant, login_required
from factories.variable_factory import build_segment_with_type
from libs.login import login_required
from models import App, AppMode
from models.workflow import WorkflowDraftVariable
from services.sandbox.sandbox_service import SandboxService
from services.workflow_draft_variable_service import WorkflowDraftVariableList, WorkflowDraftVariableService
from services.workflow_service import WorkflowService
@ -44,16 +43,6 @@ class WorkflowDraftVariableUpdatePayload(BaseModel):
value: Any | None = Field(default=None, description="Variable value")
class ConversationVariableUpdatePayload(BaseModel):
conversation_variables: list[dict[str, Any]] = Field(
..., description="Conversation variables for the draft workflow"
)
class EnvironmentVariableUpdatePayload(BaseModel):
environment_variables: list[dict[str, Any]] = Field(..., description="Environment variables for the draft workflow")
console_ns.schema_model(
WorkflowDraftVariableListQuery.__name__,
WorkflowDraftVariableListQuery.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0),
@ -62,14 +51,6 @@ console_ns.schema_model(
WorkflowDraftVariableUpdatePayload.__name__,
WorkflowDraftVariableUpdatePayload.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0),
)
console_ns.schema_model(
ConversationVariableUpdatePayload.__name__,
ConversationVariableUpdatePayload.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0),
)
console_ns.schema_model(
EnvironmentVariableUpdatePayload.__name__,
EnvironmentVariableUpdatePayload.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0),
)
def _convert_values_to_json_serializable_object(value: Segment):
@ -77,8 +58,6 @@ def _convert_values_to_json_serializable_object(value: Segment):
return value.value.model_dump()
elif isinstance(value, ArrayFileSegment):
return [i.model_dump() for i in value.value]
elif isinstance(value, ArrayPromptMessageSegment):
return value.to_object()
elif isinstance(value, SegmentGroup):
return [_convert_values_to_json_serializable_object(i) for i in value.value]
else:
@ -268,8 +247,6 @@ class WorkflowVariableCollectionApi(Resource):
@console_ns.response(204, "Workflow variables deleted successfully")
@_api_prerequisite
def delete(self, app_model: App):
current_user, _ = current_account_with_tenant()
SandboxService.delete_draft_storage(app_model.tenant_id, app_model.id, current_user.id)
draft_var_srv = WorkflowDraftVariableService(
session=db.session(),
)
@ -406,7 +383,7 @@ class VariableApi(Resource):
if len(raw_value) > 0 and not isinstance(raw_value[0], dict):
raise InvalidArgumentError(description=f"expected dict for files[0], got {type(raw_value)}")
raw_value = build_from_mappings(mappings=raw_value, tenant_id=app_model.tenant_id)
new_value = variable_factory.build_segment_with_type(variable.value_type, raw_value)
new_value = build_segment_with_type(variable.value_type, raw_value)
draft_var_srv.update_variable(variable, name=new_name, value=new_value)
db.session.commit()
return variable
@ -499,35 +476,6 @@ class ConversationVariableCollectionApi(Resource):
db.session.commit()
return _get_variable_list(app_model, CONVERSATION_VARIABLE_NODE_ID)
@console_ns.expect(console_ns.models[ConversationVariableUpdatePayload.__name__])
@console_ns.doc("update_conversation_variables")
@console_ns.doc(description="Update conversation variables for workflow draft")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.response(200, "Conversation variables updated successfully")
@setup_required
@login_required
@account_initialization_required
@edit_permission_required
@get_app_model(mode=AppMode.ADVANCED_CHAT)
def post(self, app_model: App):
payload = ConversationVariableUpdatePayload.model_validate(console_ns.payload or {})
workflow_service = WorkflowService()
conversation_variables_list = payload.conversation_variables
conversation_variables = [
variable_factory.build_conversation_variable_from_mapping(obj) for obj in conversation_variables_list
]
current_user, _ = current_account_with_tenant()
workflow_service.update_draft_workflow_conversation_variables(
app_model=app_model,
account=current_user,
conversation_variables=conversation_variables,
)
return {"result": "success"}
@console_ns.route("/apps/<uuid:app_id>/workflows/draft/system-variables")
class SystemVariableCollectionApi(Resource):
@ -579,31 +527,3 @@ class EnvironmentVariableCollectionApi(Resource):
)
return {"items": env_vars_list}
@console_ns.expect(console_ns.models[EnvironmentVariableUpdatePayload.__name__])
@console_ns.doc("update_environment_variables")
@console_ns.doc(description="Update environment variables for workflow draft")
@console_ns.doc(params={"app_id": "Application ID"})
@console_ns.response(200, "Environment variables updated successfully")
@setup_required
@login_required
@account_initialization_required
@edit_permission_required
@get_app_model(mode=[AppMode.ADVANCED_CHAT, AppMode.WORKFLOW])
def post(self, app_model: App):
payload = EnvironmentVariableUpdatePayload.model_validate(console_ns.payload or {})
workflow_service = WorkflowService()
environment_variables_list = payload.environment_variables
environment_variables = [
variable_factory.build_environment_variable_from_mapping(obj) for obj in environment_variables_list
]
workflow_service.update_draft_workflow_environment_variables(
app_model=app_model,
account=current_user,
environment_variables=environment_variables,
)
return {"result": "success"}

View File

@ -0,0 +1 @@
# Evaluation controller module

View File

@ -0,0 +1,288 @@
import logging
from collections.abc import Callable
from functools import wraps
from typing import ParamSpec, TypeVar, Union
from flask import request
from flask_restx import Resource, fields
from pydantic import BaseModel, Field
from werkzeug.exceptions import NotFound
from controllers.common.schema import register_schema_models
from controllers.console import console_ns
from controllers.console.wraps import (
account_initialization_required,
edit_permission_required,
setup_required,
)
from extensions.ext_database import db
from libs.helper import TimestampField
from libs.login import current_account_with_tenant, login_required
from models import App
from models.snippet import CustomizedSnippet
logger = logging.getLogger(__name__)
P = ParamSpec("P")
R = TypeVar("R")
# Valid evaluation target types
EVALUATE_TARGET_TYPES = {"app", "snippets"}
class VersionQuery(BaseModel):
"""Query parameters for version endpoint."""
version: str
register_schema_models(
console_ns,
VersionQuery,
)
# Response field definitions
file_info_fields = {
"id": fields.String,
"name": fields.String,
}
evaluation_log_fields = {
"created_at": TimestampField,
"created_by": fields.String,
"test_file": fields.Nested(
console_ns.model(
"EvaluationTestFile",
file_info_fields,
)
),
"result_file": fields.Nested(
console_ns.model(
"EvaluationResultFile",
file_info_fields,
),
allow_null=True,
),
"version": fields.String,
}
evaluation_log_list_model = console_ns.model(
"EvaluationLogList",
{
"data": fields.List(fields.Nested(console_ns.model("EvaluationLog", evaluation_log_fields))),
},
)
customized_matrix_fields = {
"evaluation_workflow_id": fields.String,
"input_fields": fields.Raw,
"output_fields": fields.Raw,
}
condition_fields = {
"name": fields.List(fields.String),
"comparison_operator": fields.String,
"value": fields.String,
}
judgement_conditions_fields = {
"logical_operator": fields.String,
"conditions": fields.List(fields.Nested(console_ns.model("EvaluationCondition", condition_fields))),
}
evaluation_detail_fields = {
"evaluation_model": fields.String,
"evaluation_model_provider": fields.String,
"customized_matrix": fields.Nested(
console_ns.model("EvaluationCustomizedMatrix", customized_matrix_fields),
allow_null=True,
),
"judgement_conditions": fields.Nested(
console_ns.model("EvaluationJudgementConditions", judgement_conditions_fields),
allow_null=True,
),
}
evaluation_detail_model = console_ns.model("EvaluationDetail", evaluation_detail_fields)
def get_evaluation_target(view_func: Callable[P, R]):
"""
Decorator to resolve polymorphic evaluation target (app or snippet).
Validates the target_type parameter and fetches the corresponding
model (App or CustomizedSnippet) with tenant isolation.
"""
@wraps(view_func)
def decorated_view(*args: P.args, **kwargs: P.kwargs):
target_type = kwargs.get("evaluate_target_type")
target_id = kwargs.get("evaluate_target_id")
if target_type not in EVALUATE_TARGET_TYPES:
raise NotFound(f"Invalid evaluation target type: {target_type}")
_, current_tenant_id = current_account_with_tenant()
target_id = str(target_id)
# Remove path parameters
del kwargs["evaluate_target_type"]
del kwargs["evaluate_target_id"]
target: Union[App, CustomizedSnippet] | None = None
if target_type == "app":
target = (
db.session.query(App).where(App.id == target_id, App.tenant_id == current_tenant_id).first()
)
elif target_type == "snippets":
target = (
db.session.query(CustomizedSnippet)
.where(CustomizedSnippet.id == target_id, CustomizedSnippet.tenant_id == current_tenant_id)
.first()
)
if not target:
raise NotFound(f"{str(target_type)} not found")
kwargs["target"] = target
kwargs["target_type"] = target_type
return view_func(*args, **kwargs)
return decorated_view
@console_ns.route("/<string:evaluate_target_type>/<uuid:evaluate_target_id>/dataset-template/download")
class EvaluationDatasetTemplateDownloadApi(Resource):
@console_ns.doc("download_evaluation_dataset_template")
@console_ns.response(200, "Template download URL generated successfully")
@console_ns.response(404, "Target not found")
@setup_required
@login_required
@account_initialization_required
@get_evaluation_target
@edit_permission_required
def post(self, target: Union[App, CustomizedSnippet], target_type: str):
"""
Download evaluation dataset template.
Generates a download URL for the evaluation dataset template
based on the target type (app or snippets).
"""
# TODO: Implement actual template generation logic
# This is a placeholder implementation
return {
"download_url": f"/api/evaluation/{target_type}/{target.id}/template.csv",
}
@console_ns.route("/<string:evaluate_target_type>/<uuid:evaluate_target_id>/evaluation")
class EvaluationDetailApi(Resource):
@console_ns.doc("get_evaluation_detail")
@console_ns.response(200, "Evaluation details retrieved successfully", evaluation_detail_model)
@console_ns.response(404, "Target not found")
@setup_required
@login_required
@account_initialization_required
@get_evaluation_target
def get(self, target: Union[App, CustomizedSnippet], target_type: str):
"""
Get evaluation details for the target.
Returns evaluation configuration including model settings,
customized matrix, and judgement conditions.
"""
# TODO: Implement actual evaluation detail retrieval
# This is a placeholder implementation
return {
"evaluation_model": None,
"evaluation_model_provider": None,
"customized_matrix": None,
"judgement_conditions": None,
}
@console_ns.route("/<string:evaluate_target_type>/<uuid:evaluate_target_id>/evaluation/logs")
class EvaluationLogsApi(Resource):
@console_ns.doc("get_evaluation_logs")
@console_ns.response(200, "Evaluation logs retrieved successfully", evaluation_log_list_model)
@console_ns.response(404, "Target not found")
@setup_required
@login_required
@account_initialization_required
@get_evaluation_target
def get(self, target: Union[App, CustomizedSnippet], target_type: str):
"""
Get offline evaluation logs for the target.
Returns a list of evaluation runs with test files,
result files, and version information.
"""
# TODO: Implement actual evaluation logs retrieval
# This is a placeholder implementation
return {
"data": [],
}
@console_ns.route("/<string:evaluate_target_type>/<uuid:evaluate_target_id>/evaluation/files/<uuid:file_id>")
class EvaluationFileDownloadApi(Resource):
@console_ns.doc("download_evaluation_file")
@console_ns.response(200, "File download URL generated successfully")
@console_ns.response(404, "Target or file not found")
@setup_required
@login_required
@account_initialization_required
@get_evaluation_target
def get(self, target: Union[App, CustomizedSnippet], target_type: str, file_id: str):
"""
Download evaluation test file or result file.
Returns file information and download URL for the specified file.
"""
file_id = str(file_id)
# TODO: Implement actual file download logic
# This is a placeholder implementation
return {
"created_at": None,
"created_by": None,
"test_file": None,
"result_file": None,
"version": None,
}
@console_ns.route("/<string:evaluate_target_type>/<uuid:evaluate_target_id>/evaluation/version")
class EvaluationVersionApi(Resource):
@console_ns.doc("get_evaluation_version_detail")
@console_ns.expect(console_ns.models.get(VersionQuery.__name__))
@console_ns.response(200, "Version details retrieved successfully")
@console_ns.response(404, "Target or version not found")
@setup_required
@login_required
@account_initialization_required
@get_evaluation_target
def get(self, target: Union[App, CustomizedSnippet], target_type: str):
"""
Get evaluation target version details.
Returns the workflow graph for the specified version.
"""
version = request.args.get("version")
if not version:
return {"message": "version parameter is required"}, 400
# TODO: Implement actual version detail retrieval
# For now, return the current graph if available
graph = {}
if target_type == "snippets" and isinstance(target, CustomizedSnippet):
graph = target.graph_dict
return {
"graph": graph,
}

View File

@ -1,6 +1,7 @@
import urllib.parse
import httpx
from flask_restx import Resource
from pydantic import BaseModel, Field
import services
@ -10,7 +11,7 @@ from controllers.common.errors import (
RemoteFileUploadError,
UnsupportedFileTypeError,
)
from controllers.fastopenapi import console_router
from controllers.common.schema import register_schema_models
from core.file import helpers as file_helpers
from core.helper import ssrf_proxy
from extensions.ext_database import db
@ -18,74 +19,84 @@ from fields.file_fields import FileWithSignedUrl, RemoteFileInfo
from libs.login import current_account_with_tenant
from services.file_service import FileService
from . import console_ns
register_schema_models(console_ns, RemoteFileInfo, FileWithSignedUrl)
@console_ns.route("/remote-files/<path:url>")
class RemoteFileInfoApi(Resource):
@console_ns.response(200, "Remote file info", console_ns.models[RemoteFileInfo.__name__])
def get(self, url):
decoded_url = urllib.parse.unquote(url)
resp = ssrf_proxy.head(decoded_url)
if resp.status_code != httpx.codes.OK:
# failed back to get method
resp = ssrf_proxy.get(decoded_url, timeout=3)
resp.raise_for_status()
info = RemoteFileInfo(
file_type=resp.headers.get("Content-Type", "application/octet-stream"),
file_length=int(resp.headers.get("Content-Length", 0)),
)
return info.model_dump(mode="json")
class RemoteFileUploadPayload(BaseModel):
url: str = Field(..., description="URL to fetch")
@console_router.get(
"/remote-files/<path:url>",
response_model=RemoteFileInfo,
tags=["console"],
console_ns.schema_model(
RemoteFileUploadPayload.__name__,
RemoteFileUploadPayload.model_json_schema(ref_template="#/definitions/{model}"),
)
def get_remote_file_info(url: str) -> RemoteFileInfo:
decoded_url = urllib.parse.unquote(url)
resp = ssrf_proxy.head(decoded_url)
if resp.status_code != httpx.codes.OK:
resp = ssrf_proxy.get(decoded_url, timeout=3)
resp.raise_for_status()
return RemoteFileInfo(
file_type=resp.headers.get("Content-Type", "application/octet-stream"),
file_length=int(resp.headers.get("Content-Length", 0)),
)
@console_router.post(
"/remote-files/upload",
response_model=FileWithSignedUrl,
tags=["console"],
status_code=201,
)
def upload_remote_file(payload: RemoteFileUploadPayload) -> FileWithSignedUrl:
url = payload.url
@console_ns.route("/remote-files/upload")
class RemoteFileUploadApi(Resource):
@console_ns.expect(console_ns.models[RemoteFileUploadPayload.__name__])
@console_ns.response(201, "Remote file uploaded", console_ns.models[FileWithSignedUrl.__name__])
def post(self):
args = RemoteFileUploadPayload.model_validate(console_ns.payload)
url = args.url
try:
resp = ssrf_proxy.head(url=url)
if resp.status_code != httpx.codes.OK:
resp = ssrf_proxy.get(url=url, timeout=3, follow_redirects=True)
if resp.status_code != httpx.codes.OK:
raise RemoteFileUploadError(f"Failed to fetch file from {url}: {resp.text}")
except httpx.RequestError as e:
raise RemoteFileUploadError(f"Failed to fetch file from {url}: {str(e)}")
try:
resp = ssrf_proxy.head(url=url)
if resp.status_code != httpx.codes.OK:
resp = ssrf_proxy.get(url=url, timeout=3, follow_redirects=True)
if resp.status_code != httpx.codes.OK:
raise RemoteFileUploadError(f"Failed to fetch file from {url}: {resp.text}")
except httpx.RequestError as e:
raise RemoteFileUploadError(f"Failed to fetch file from {url}: {str(e)}")
file_info = helpers.guess_file_info_from_response(resp)
file_info = helpers.guess_file_info_from_response(resp)
if not FileService.is_file_size_within_limit(extension=file_info.extension, file_size=file_info.size):
raise FileTooLargeError
if not FileService.is_file_size_within_limit(extension=file_info.extension, file_size=file_info.size):
raise FileTooLargeError
content = resp.content if resp.request.method == "GET" else ssrf_proxy.get(url).content
content = resp.content if resp.request.method == "GET" else ssrf_proxy.get(url).content
try:
user, _ = current_account_with_tenant()
upload_file = FileService(db.engine).upload_file(
filename=file_info.filename,
content=content,
mimetype=file_info.mimetype,
user=user,
source_url=url,
try:
user, _ = current_account_with_tenant()
upload_file = FileService(db.engine).upload_file(
filename=file_info.filename,
content=content,
mimetype=file_info.mimetype,
user=user,
source_url=url,
)
except services.errors.file.FileTooLargeError as file_too_large_error:
raise FileTooLargeError(file_too_large_error.description)
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError()
payload = FileWithSignedUrl(
id=upload_file.id,
name=upload_file.name,
size=upload_file.size,
extension=upload_file.extension,
url=file_helpers.get_signed_file_url(upload_file_id=upload_file.id),
mime_type=upload_file.mime_type,
created_by=upload_file.created_by,
created_at=int(upload_file.created_at.timestamp()),
)
except services.errors.file.FileTooLargeError as file_too_large_error:
raise FileTooLargeError(file_too_large_error.description)
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError()
return FileWithSignedUrl(
id=upload_file.id,
name=upload_file.name,
size=upload_file.size,
extension=upload_file.extension,
url=file_helpers.get_signed_file_url(upload_file_id=upload_file.id),
mime_type=upload_file.mime_type,
created_by=upload_file.created_by,
created_at=int(upload_file.created_at.timestamp()),
)
return payload.model_dump(mode="json"), 201

View File

@ -1,103 +0,0 @@
from __future__ import annotations
from flask import request
from flask_restx import Resource, fields
from pydantic import BaseModel, Field
from controllers.console import console_ns
from controllers.console.wraps import account_initialization_required, setup_required
from libs.login import current_account_with_tenant, login_required
from services.sandbox.sandbox_file_service import SandboxFileService
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
class SandboxFileListQuery(BaseModel):
path: str | None = Field(default=None, description="Workspace relative path")
recursive: bool = Field(default=False, description="List recursively")
class SandboxFileDownloadRequest(BaseModel):
path: str = Field(..., description="Workspace relative file path")
console_ns.schema_model(
SandboxFileListQuery.__name__,
SandboxFileListQuery.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0),
)
console_ns.schema_model(
SandboxFileDownloadRequest.__name__,
SandboxFileDownloadRequest.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0),
)
SANDBOX_FILE_NODE_FIELDS = {
"path": fields.String,
"is_dir": fields.Boolean,
"size": fields.Raw,
"mtime": fields.Raw,
"extension": fields.String,
}
SANDBOX_FILE_DOWNLOAD_TICKET_FIELDS = {
"download_url": fields.String,
"expires_in": fields.Integer,
"export_id": fields.String,
}
sandbox_file_node_model = console_ns.model("SandboxFileNode", SANDBOX_FILE_NODE_FIELDS)
sandbox_file_download_ticket_model = console_ns.model("SandboxFileDownloadTicket", SANDBOX_FILE_DOWNLOAD_TICKET_FIELDS)
@console_ns.route("/apps/<string:app_id>/sandbox/files")
class SandboxFilesApi(Resource):
"""List sandbox files for the current user.
The sandbox_id is derived from the current user's ID, as each user has
their own sandbox workspace per app.
"""
@setup_required
@login_required
@account_initialization_required
@console_ns.expect(console_ns.models[SandboxFileListQuery.__name__])
@console_ns.marshal_list_with(sandbox_file_node_model)
def get(self, app_id: str):
args = SandboxFileListQuery.model_validate(request.args.to_dict(flat=True)) # type: ignore[arg-type]
account, tenant_id = current_account_with_tenant()
sandbox_id = account.id
return [
e.__dict__
for e in SandboxFileService.list_files(
tenant_id=tenant_id,
app_id=app_id,
sandbox_id=sandbox_id,
path=args.path,
recursive=args.recursive,
)
]
@console_ns.route("/apps/<string:app_id>/sandbox/files/download")
class SandboxFileDownloadApi(Resource):
"""Download a sandbox file for the current user.
The sandbox_id is derived from the current user's ID, as each user has
their own sandbox workspace per app.
"""
@setup_required
@login_required
@account_initialization_required
@console_ns.expect(console_ns.models[SandboxFileDownloadRequest.__name__])
@console_ns.marshal_with(sandbox_file_download_ticket_model)
def post(self, app_id: str):
payload = SandboxFileDownloadRequest.model_validate(console_ns.payload or {})
account, tenant_id = current_account_with_tenant()
sandbox_id = account.id
res = SandboxFileService.download_file(
tenant_id=tenant_id, app_id=app_id, sandbox_id=sandbox_id, path=payload.path
)
return res.__dict__

View File

@ -0,0 +1,75 @@
from typing import Any, Literal
from pydantic import BaseModel, Field
class SnippetListQuery(BaseModel):
"""Query parameters for listing snippets."""
page: int = Field(default=1, ge=1, le=99999)
limit: int = Field(default=20, ge=1, le=100)
keyword: str | None = None
class IconInfo(BaseModel):
"""Icon information model."""
icon: str | None = None
icon_type: Literal["emoji", "image"] | None = None
icon_background: str | None = None
icon_url: str | None = None
class InputFieldDefinition(BaseModel):
"""Input field definition for snippet parameters."""
default: str | None = None
hint: bool | None = None
label: str | None = None
max_length: int | None = None
options: list[str] | None = None
placeholder: str | None = None
required: bool | None = None
type: str | None = None # e.g., "text-input"
class CreateSnippetPayload(BaseModel):
"""Payload for creating a new snippet."""
name: str = Field(..., min_length=1, max_length=255)
description: str | None = Field(default=None, max_length=2000)
type: Literal["node", "group"] = "node"
icon_info: IconInfo | None = None
graph: dict[str, Any] | None = None
input_fields: list[InputFieldDefinition] | None = Field(default_factory=list)
class UpdateSnippetPayload(BaseModel):
"""Payload for updating a snippet."""
name: str | None = Field(default=None, min_length=1, max_length=255)
description: str | None = Field(default=None, max_length=2000)
icon_info: IconInfo | None = None
class SnippetDraftSyncPayload(BaseModel):
"""Payload for syncing snippet draft workflow."""
graph: dict[str, Any]
hash: str | None = None
environment_variables: list[dict[str, Any]] | None = None
conversation_variables: list[dict[str, Any]] | None = None
input_variables: list[dict[str, Any]] | None = None
class WorkflowRunQuery(BaseModel):
"""Query parameters for workflow runs."""
last_id: str | None = None
limit: int = Field(default=20, ge=1, le=100)
class PublishWorkflowPayload(BaseModel):
"""Payload for publishing snippet workflow."""
knowledge_base_setting: dict[str, Any] | None = None

View File

@ -0,0 +1,306 @@
import logging
from collections.abc import Callable
from functools import wraps
from typing import ParamSpec, TypeVar
from flask import request
from flask_restx import Resource, marshal_with
from sqlalchemy.orm import Session
from werkzeug.exceptions import NotFound
from controllers.common.schema import register_schema_models
from controllers.console import console_ns
from controllers.console.app.error import DraftWorkflowNotExist, DraftWorkflowNotSync
from controllers.console.app.workflow import workflow_model
from controllers.console.app.workflow_run import (
workflow_run_detail_model,
workflow_run_node_execution_list_model,
workflow_run_pagination_model,
)
from controllers.console.snippets.payloads import (
PublishWorkflowPayload,
SnippetDraftSyncPayload,
WorkflowRunQuery,
)
from controllers.console.wraps import (
account_initialization_required,
edit_permission_required,
setup_required,
)
from extensions.ext_database import db
from factories import variable_factory
from libs.helper import TimestampField
from libs.login import current_account_with_tenant, login_required
from models.snippet import CustomizedSnippet
from services.errors.app import WorkflowHashNotEqualError
from services.snippet_service import SnippetService
logger = logging.getLogger(__name__)
P = ParamSpec("P")
R = TypeVar("R")
# Register Pydantic models with Swagger
register_schema_models(
console_ns,
SnippetDraftSyncPayload,
WorkflowRunQuery,
PublishWorkflowPayload,
)
class SnippetNotFoundError(Exception):
"""Snippet not found error."""
pass
def get_snippet(view_func: Callable[P, R]):
"""Decorator to fetch and validate snippet access."""
@wraps(view_func)
def decorated_view(*args: P.args, **kwargs: P.kwargs):
if not kwargs.get("snippet_id"):
raise ValueError("missing snippet_id in path parameters")
_, current_tenant_id = current_account_with_tenant()
snippet_id = str(kwargs.get("snippet_id"))
del kwargs["snippet_id"]
snippet = SnippetService.get_snippet_by_id(
snippet_id=snippet_id,
tenant_id=current_tenant_id,
)
if not snippet:
raise NotFound("Snippet not found")
kwargs["snippet"] = snippet
return view_func(*args, **kwargs)
return decorated_view
@console_ns.route("/snippets/<uuid:snippet_id>/workflows/draft")
class SnippetDraftWorkflowApi(Resource):
@console_ns.doc("get_snippet_draft_workflow")
@console_ns.response(200, "Draft workflow retrieved successfully", workflow_model)
@console_ns.response(404, "Snippet or draft workflow not found")
@setup_required
@login_required
@account_initialization_required
@get_snippet
@edit_permission_required
@marshal_with(workflow_model)
def get(self, snippet: CustomizedSnippet):
"""Get draft workflow for snippet."""
snippet_service = SnippetService()
workflow = snippet_service.get_draft_workflow(snippet=snippet)
if not workflow:
raise DraftWorkflowNotExist()
return workflow
@console_ns.doc("sync_snippet_draft_workflow")
@console_ns.expect(console_ns.models.get(SnippetDraftSyncPayload.__name__))
@console_ns.response(200, "Draft workflow synced successfully")
@console_ns.response(400, "Hash mismatch")
@setup_required
@login_required
@account_initialization_required
@get_snippet
@edit_permission_required
def post(self, snippet: CustomizedSnippet):
"""Sync draft workflow for snippet."""
current_user, _ = current_account_with_tenant()
payload = SnippetDraftSyncPayload.model_validate(console_ns.payload or {})
try:
environment_variables_list = payload.environment_variables or []
environment_variables = [
variable_factory.build_environment_variable_from_mapping(obj) for obj in environment_variables_list
]
conversation_variables_list = payload.conversation_variables or []
conversation_variables = [
variable_factory.build_conversation_variable_from_mapping(obj) for obj in conversation_variables_list
]
snippet_service = SnippetService()
workflow = snippet_service.sync_draft_workflow(
snippet=snippet,
graph=payload.graph,
unique_hash=payload.hash,
account=current_user,
environment_variables=environment_variables,
conversation_variables=conversation_variables,
input_variables=payload.input_variables,
)
except WorkflowHashNotEqualError:
raise DraftWorkflowNotSync()
return {
"result": "success",
"hash": workflow.unique_hash,
"updated_at": TimestampField().format(workflow.updated_at or workflow.created_at),
}
@console_ns.route("/snippets/<uuid:snippet_id>/workflows/draft/config")
class SnippetDraftConfigApi(Resource):
@console_ns.doc("get_snippet_draft_config")
@console_ns.response(200, "Draft config retrieved successfully")
@setup_required
@login_required
@account_initialization_required
@get_snippet
@edit_permission_required
def get(self, snippet: CustomizedSnippet):
"""Get snippet draft workflow configuration limits."""
return {
"parallel_depth_limit": 3,
}
@console_ns.route("/snippets/<uuid:snippet_id>/workflows/publish")
class SnippetPublishedWorkflowApi(Resource):
@console_ns.doc("get_snippet_published_workflow")
@console_ns.response(200, "Published workflow retrieved successfully", workflow_model)
@console_ns.response(404, "Snippet not found")
@setup_required
@login_required
@account_initialization_required
@get_snippet
@edit_permission_required
@marshal_with(workflow_model)
def get(self, snippet: CustomizedSnippet):
"""Get published workflow for snippet."""
if not snippet.is_published:
return None
snippet_service = SnippetService()
workflow = snippet_service.get_published_workflow(snippet=snippet)
return workflow
@console_ns.doc("publish_snippet_workflow")
@console_ns.expect(console_ns.models.get(PublishWorkflowPayload.__name__))
@console_ns.response(200, "Workflow published successfully")
@console_ns.response(400, "No draft workflow found")
@setup_required
@login_required
@account_initialization_required
@get_snippet
@edit_permission_required
def post(self, snippet: CustomizedSnippet):
"""Publish snippet workflow."""
current_user, _ = current_account_with_tenant()
snippet_service = SnippetService()
with Session(db.engine) as session:
snippet = session.merge(snippet)
try:
workflow = snippet_service.publish_workflow(
session=session,
snippet=snippet,
account=current_user,
)
workflow_created_at = TimestampField().format(workflow.created_at)
session.commit()
except ValueError as e:
return {"message": str(e)}, 400
return {
"result": "success",
"created_at": workflow_created_at,
}
@console_ns.route("/snippets/<uuid:snippet_id>/workflows/default-workflow-block-configs")
class SnippetDefaultBlockConfigsApi(Resource):
@console_ns.doc("get_snippet_default_block_configs")
@console_ns.response(200, "Default block configs retrieved successfully")
@setup_required
@login_required
@account_initialization_required
@get_snippet
@edit_permission_required
def get(self, snippet: CustomizedSnippet):
"""Get default block configurations for snippet workflow."""
snippet_service = SnippetService()
return snippet_service.get_default_block_configs()
@console_ns.route("/snippets/<uuid:snippet_id>/workflow-runs")
class SnippetWorkflowRunsApi(Resource):
@console_ns.doc("list_snippet_workflow_runs")
@console_ns.response(200, "Workflow runs retrieved successfully", workflow_run_pagination_model)
@setup_required
@login_required
@account_initialization_required
@get_snippet
@marshal_with(workflow_run_pagination_model)
def get(self, snippet: CustomizedSnippet):
"""List workflow runs for snippet."""
query = WorkflowRunQuery.model_validate(
{
"last_id": request.args.get("last_id"),
"limit": request.args.get("limit", type=int, default=20),
}
)
args = {
"last_id": query.last_id,
"limit": query.limit,
}
snippet_service = SnippetService()
result = snippet_service.get_snippet_workflow_runs(snippet=snippet, args=args)
return result
@console_ns.route("/snippets/<uuid:snippet_id>/workflow-runs/<uuid:run_id>")
class SnippetWorkflowRunDetailApi(Resource):
@console_ns.doc("get_snippet_workflow_run_detail")
@console_ns.response(200, "Workflow run detail retrieved successfully", workflow_run_detail_model)
@console_ns.response(404, "Workflow run not found")
@setup_required
@login_required
@account_initialization_required
@get_snippet
@marshal_with(workflow_run_detail_model)
def get(self, snippet: CustomizedSnippet, run_id):
"""Get workflow run detail for snippet."""
run_id = str(run_id)
snippet_service = SnippetService()
workflow_run = snippet_service.get_snippet_workflow_run(snippet=snippet, run_id=run_id)
if not workflow_run:
raise NotFound("Workflow run not found")
return workflow_run
@console_ns.route("/snippets/<uuid:snippet_id>/workflow-runs/<uuid:run_id>/node-executions")
class SnippetWorkflowRunNodeExecutionsApi(Resource):
@console_ns.doc("list_snippet_workflow_run_node_executions")
@console_ns.response(200, "Node executions retrieved successfully", workflow_run_node_execution_list_model)
@setup_required
@login_required
@account_initialization_required
@get_snippet
@marshal_with(workflow_run_node_execution_list_model)
def get(self, snippet: CustomizedSnippet, run_id):
"""List node executions for a workflow run."""
run_id = str(run_id)
snippet_service = SnippetService()
node_executions = snippet_service.get_snippet_workflow_run_node_executions(
snippet=snippet,
run_id=run_id,
)
return {"data": node_executions}

View File

@ -1,119 +0,0 @@
import logging
from collections.abc import Callable
from typing import cast
from flask import Request as FlaskRequest
from extensions.ext_socketio import sio
from libs.passport import PassportService
from libs.token import extract_access_token
from repositories.workflow_collaboration_repository import WorkflowCollaborationRepository
from services.account_service import AccountService
from services.workflow_collaboration_service import WorkflowCollaborationService
repository = WorkflowCollaborationRepository()
collaboration_service = WorkflowCollaborationService(repository, sio)
def _sio_on(event: str) -> Callable[[Callable[..., object]], Callable[..., object]]:
return cast(Callable[[Callable[..., object]], Callable[..., object]], sio.on(event))
@_sio_on("connect")
def socket_connect(sid, environ, auth):
"""
WebSocket connect event, do authentication here.
"""
try:
request_environ = FlaskRequest(environ)
token = extract_access_token(request_environ)
except Exception:
logging.exception("Failed to extract token")
token = None
if not token:
logging.warning("Socket connect rejected: missing token (sid=%s)", sid)
return False
try:
decoded = PassportService().verify(token)
user_id = decoded.get("user_id")
if not user_id:
logging.warning("Socket connect rejected: missing user_id (sid=%s)", sid)
return False
with sio.app.app_context():
user = AccountService.load_logged_in_account(account_id=user_id)
if not user:
logging.warning("Socket connect rejected: user not found (user_id=%s, sid=%s)", user_id, sid)
return False
if not user.has_edit_permission:
logging.warning("Socket connect rejected: no edit permission (user_id=%s, sid=%s)", user_id, sid)
return False
collaboration_service.save_session(sid, user)
return True
except Exception:
logging.exception("Socket authentication failed")
return False
@_sio_on("user_connect")
def handle_user_connect(sid, data):
"""
Handle user connect event. Each session (tab) is treated as an independent collaborator.
"""
workflow_id = data.get("workflow_id")
if not workflow_id:
return {"msg": "workflow_id is required"}, 400
result = collaboration_service.register_session(workflow_id, sid)
if not result:
return {"msg": "unauthorized"}, 401
user_id, is_leader = result
return {"msg": "connected", "user_id": user_id, "sid": sid, "isLeader": is_leader}
@_sio_on("disconnect")
def handle_disconnect(sid):
"""
Handle session disconnect event. Remove the specific session from online users.
"""
collaboration_service.disconnect_session(sid)
@_sio_on("collaboration_event")
def handle_collaboration_event(sid, data):
"""
Handle general collaboration events, include:
1. mouse_move
2. vars_and_features_update
3. sync_request (ask leader to update graph)
4. app_state_update
5. mcp_server_update
6. workflow_update
7. comments_update
8. node_panel_presence
9. skill_file_active
10. skill_sync_request
11. skill_resync_request
"""
return collaboration_service.relay_collaboration_event(sid, data)
@_sio_on("graph_event")
def handle_graph_event(sid, data):
"""
Handle graph events - simple broadcast relay.
"""
return collaboration_service.relay_graph_event(sid, data)
@_sio_on("skill_event")
def handle_skill_event(sid, data):
"""
Handle skill events - simple broadcast relay.
"""
return collaboration_service.relay_skill_event(sid, data)

View File

@ -36,7 +36,6 @@ from controllers.console.wraps import (
only_edition_cloud,
setup_required,
)
from core.file import helpers as file_helpers
from extensions.ext_database import db
from fields.member_fields import account_fields
from libs.datetime_utils import naive_utc_now
@ -74,10 +73,6 @@ class AccountAvatarPayload(BaseModel):
avatar: str
class AccountAvatarQuery(BaseModel):
avatar: str = Field(..., description="Avatar file ID")
class AccountInterfaceLanguagePayload(BaseModel):
interface_language: str
@ -163,7 +158,6 @@ def reg(cls: type[BaseModel]):
reg(AccountInitPayload)
reg(AccountNamePayload)
reg(AccountAvatarPayload)
reg(AccountAvatarQuery)
reg(AccountInterfaceLanguagePayload)
reg(AccountInterfaceThemePayload)
reg(AccountTimezonePayload)
@ -267,18 +261,6 @@ class AccountNameApi(Resource):
@console_ns.route("/account/avatar")
class AccountAvatarApi(Resource):
@console_ns.expect(console_ns.models[AccountAvatarQuery.__name__])
@console_ns.doc("get_account_avatar")
@console_ns.doc(description="Get account avatar url")
@setup_required
@login_required
@account_initialization_required
def get(self):
args = AccountAvatarQuery.model_validate(request.args.to_dict(flat=True)) # type: ignore
avatar_url = file_helpers.get_signed_file_url(args.avatar)
return {"avatar_url": avatar_url}
@console_ns.expect(console_ns.models[AccountAvatarPayload.__name__])
@setup_required
@login_required

View File

@ -1,65 +0,0 @@
import json
import httpx
import yaml
from flask_restx import Resource, reqparse
from sqlalchemy.orm import Session
from werkzeug.exceptions import Forbidden
from controllers.console import console_ns
from controllers.console.wraps import account_initialization_required, setup_required
from core.plugin.impl.exc import PluginPermissionDeniedError
from extensions.ext_database import db
from libs.login import current_account_with_tenant, login_required
from models.model import App
from models.workflow import Workflow
from services.app_dsl_service import AppDslService
@console_ns.route("/workspaces/current/dsl/predict")
class DSLPredictApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
user, _ = current_account_with_tenant()
if not user.is_admin_or_owner:
raise Forbidden()
parser = (
reqparse.RequestParser()
.add_argument("app_id", type=str, required=True, location="json")
.add_argument("current_node_id", type=str, required=True, location="json")
)
args = parser.parse_args()
app_id: str = args["app_id"]
current_node_id: str = args["current_node_id"]
with Session(db.engine) as session:
app = session.query(App).filter_by(id=app_id).first()
workflow = session.query(Workflow).filter_by(app_id=app_id, version=Workflow.VERSION_DRAFT).first()
if not app:
raise ValueError("App not found")
if not workflow:
raise ValueError("Workflow not found")
try:
i = 0
for node_id, _ in workflow.walk_nodes():
if node_id == current_node_id:
break
i += 1
dsl = yaml.safe_load(AppDslService.export_dsl(app_model=app))
response = httpx.post(
"http://spark-832c:8000/predict",
json={"graph_data": dsl, "source_node_index": i},
)
return {
"nodes": json.loads(response.json()),
}
except PluginPermissionDeniedError as e:
raise ValueError(e.description) from e

View File

@ -1,103 +0,0 @@
import logging
from flask_restx import Resource, fields, reqparse
from controllers.console import console_ns
from controllers.console.wraps import account_initialization_required, setup_required
from core.model_runtime.utils.encoders import jsonable_encoder
from libs.login import current_account_with_tenant, login_required
from services.sandbox.sandbox_provider_service import SandboxProviderService
logger = logging.getLogger(__name__)
@console_ns.route("/workspaces/current/sandbox-providers")
class SandboxProviderListApi(Resource):
@console_ns.doc("list_sandbox_providers")
@console_ns.doc(description="Get list of available sandbox providers with configuration status")
@console_ns.response(200, "Success", fields.List(fields.Raw(description="Sandbox provider information")))
@setup_required
@login_required
@account_initialization_required
def get(self):
_, current_tenant_id = current_account_with_tenant()
providers = SandboxProviderService.list_providers(current_tenant_id)
return jsonable_encoder([p.model_dump() for p in providers])
config_parser = reqparse.RequestParser()
config_parser.add_argument("config", type=dict, required=True, location="json")
config_parser.add_argument("activate", type=bool, required=False, default=False, location="json")
@console_ns.route("/workspaces/current/sandbox-provider/<string:provider_type>/config")
class SandboxProviderConfigApi(Resource):
@console_ns.doc("save_sandbox_provider_config")
@console_ns.doc(description="Save or update configuration for a sandbox provider")
@console_ns.expect(config_parser)
@console_ns.response(200, "Success")
@setup_required
@login_required
@account_initialization_required
def post(self, provider_type: str):
_, current_tenant_id = current_account_with_tenant()
args = config_parser.parse_args()
try:
result = SandboxProviderService.save_config(
tenant_id=current_tenant_id,
provider_type=provider_type,
config=args["config"],
activate=args["activate"],
)
return result
except ValueError as e:
return {"message": str(e)}, 400
@console_ns.doc("delete_sandbox_provider_config")
@console_ns.doc(description="Delete configuration for a sandbox provider")
@console_ns.response(200, "Success")
@setup_required
@login_required
@account_initialization_required
def delete(self, provider_type: str):
_, current_tenant_id = current_account_with_tenant()
try:
result = SandboxProviderService.delete_config(
tenant_id=current_tenant_id,
provider_type=provider_type,
)
return result
except ValueError as e:
return {"message": str(e)}, 400
activate_parser = reqparse.RequestParser()
activate_parser.add_argument("type", type=str, required=True, location="json")
@console_ns.route("/workspaces/current/sandbox-provider/<string:provider_type>/activate")
class SandboxProviderActivateApi(Resource):
"""Activate a sandbox provider."""
@console_ns.doc("activate_sandbox_provider")
@console_ns.doc(description="Activate a sandbox provider for the current workspace")
@console_ns.response(200, "Success")
@setup_required
@login_required
@account_initialization_required
def post(self, provider_type: str):
"""Activate a sandbox provider."""
_, current_tenant_id = current_account_with_tenant()
try:
args = activate_parser.parse_args()
result = SandboxProviderService.activate_provider(
tenant_id=current_tenant_id,
provider_type=provider_type,
type=args["type"],
)
return result
except ValueError as e:
return {"message": str(e)}, 400

View File

@ -0,0 +1,202 @@
import logging
from flask import request
from flask_restx import Resource, marshal, marshal_with
from sqlalchemy.orm import Session
from werkzeug.exceptions import NotFound
from controllers.common.schema import register_schema_models
from controllers.console import console_ns
from controllers.console.snippets.payloads import (
CreateSnippetPayload,
SnippetListQuery,
UpdateSnippetPayload,
)
from controllers.console.wraps import (
account_initialization_required,
edit_permission_required,
setup_required,
)
from extensions.ext_database import db
from fields.snippet_fields import snippet_fields, snippet_list_fields, snippet_pagination_fields
from libs.login import current_account_with_tenant, login_required
from models.snippet import SnippetType
from services.snippet_service import SnippetService
logger = logging.getLogger(__name__)
# Register Pydantic models with Swagger
register_schema_models(
console_ns,
SnippetListQuery,
CreateSnippetPayload,
UpdateSnippetPayload,
)
# Create namespace models for marshaling
snippet_model = console_ns.model("Snippet", snippet_fields)
snippet_list_model = console_ns.model("SnippetList", snippet_list_fields)
snippet_pagination_model = console_ns.model("SnippetPagination", snippet_pagination_fields)
@console_ns.route("/workspaces/current/customized-snippets")
class CustomizedSnippetsApi(Resource):
@console_ns.doc("list_customized_snippets")
@console_ns.expect(console_ns.models.get(SnippetListQuery.__name__))
@console_ns.response(200, "Snippets retrieved successfully", snippet_pagination_model)
@setup_required
@login_required
@account_initialization_required
def get(self):
"""List customized snippets with pagination and search."""
_, current_tenant_id = current_account_with_tenant()
query_params = request.args.to_dict()
query = SnippetListQuery.model_validate(query_params)
snippets, total, has_more = SnippetService.get_snippets(
tenant_id=current_tenant_id,
page=query.page,
limit=query.limit,
keyword=query.keyword,
)
return {
"data": marshal(snippets, snippet_list_fields),
"page": query.page,
"limit": query.limit,
"total": total,
"has_more": has_more,
}, 200
@console_ns.doc("create_customized_snippet")
@console_ns.expect(console_ns.models.get(CreateSnippetPayload.__name__))
@console_ns.response(201, "Snippet created successfully", snippet_model)
@console_ns.response(400, "Invalid request or name already exists")
@setup_required
@login_required
@account_initialization_required
@edit_permission_required
def post(self):
"""Create a new customized snippet."""
current_user, current_tenant_id = current_account_with_tenant()
payload = CreateSnippetPayload.model_validate(console_ns.payload or {})
try:
snippet_type = SnippetType(payload.type)
except ValueError:
snippet_type = SnippetType.NODE
try:
snippet = SnippetService.create_snippet(
tenant_id=current_tenant_id,
name=payload.name,
description=payload.description,
snippet_type=snippet_type,
icon_info=payload.icon_info.model_dump() if payload.icon_info else None,
graph=payload.graph,
input_fields=[f.model_dump() for f in payload.input_fields] if payload.input_fields else None,
account=current_user,
)
except ValueError as e:
return {"message": str(e)}, 400
return marshal(snippet, snippet_fields), 201
@console_ns.route("/workspaces/current/customized-snippets/<uuid:snippet_id>")
class CustomizedSnippetDetailApi(Resource):
@console_ns.doc("get_customized_snippet")
@console_ns.response(200, "Snippet retrieved successfully", snippet_model)
@console_ns.response(404, "Snippet not found")
@setup_required
@login_required
@account_initialization_required
def get(self, snippet_id: str):
"""Get customized snippet details."""
_, current_tenant_id = current_account_with_tenant()
snippet = SnippetService.get_snippet_by_id(
snippet_id=str(snippet_id),
tenant_id=current_tenant_id,
)
if not snippet:
raise NotFound("Snippet not found")
return marshal(snippet, snippet_fields), 200
@console_ns.doc("update_customized_snippet")
@console_ns.expect(console_ns.models.get(UpdateSnippetPayload.__name__))
@console_ns.response(200, "Snippet updated successfully", snippet_model)
@console_ns.response(400, "Invalid request or name already exists")
@console_ns.response(404, "Snippet not found")
@setup_required
@login_required
@account_initialization_required
@edit_permission_required
def patch(self, snippet_id: str):
"""Update customized snippet."""
current_user, current_tenant_id = current_account_with_tenant()
snippet = SnippetService.get_snippet_by_id(
snippet_id=str(snippet_id),
tenant_id=current_tenant_id,
)
if not snippet:
raise NotFound("Snippet not found")
payload = UpdateSnippetPayload.model_validate(console_ns.payload or {})
update_data = payload.model_dump(exclude_unset=True)
if "icon_info" in update_data and update_data["icon_info"] is not None:
update_data["icon_info"] = payload.icon_info.model_dump() if payload.icon_info else None
if not update_data:
return {"message": "No valid fields to update"}, 400
try:
with Session(db.engine, expire_on_commit=False) as session:
snippet = session.merge(snippet)
snippet = SnippetService.update_snippet(
session=session,
snippet=snippet,
account_id=current_user.id,
data=update_data,
)
session.commit()
except ValueError as e:
return {"message": str(e)}, 400
return marshal(snippet, snippet_fields), 200
@console_ns.doc("delete_customized_snippet")
@console_ns.response(204, "Snippet deleted successfully")
@console_ns.response(404, "Snippet not found")
@setup_required
@login_required
@account_initialization_required
@edit_permission_required
def delete(self, snippet_id: str):
"""Delete customized snippet."""
_, current_tenant_id = current_account_with_tenant()
snippet = SnippetService.get_snippet_by_id(
snippet_id=str(snippet_id),
tenant_id=current_tenant_id,
)
if not snippet:
raise NotFound("Snippet not found")
with Session(db.engine) as session:
snippet = session.merge(snippet)
SnippetService.delete_snippet(
session=session,
snippet=snippet,
)
session.commit()
return "", 204

View File

@ -14,12 +14,7 @@ api = ExternalApi(
files_ns = Namespace("files", description="File operations", path="/")
from . import (
image_preview,
storage_files,
tool_files,
upload,
)
from . import image_preview, tool_files, upload
api.add_namespace(files_ns)
@ -28,7 +23,6 @@ __all__ = [
"bp",
"files_ns",
"image_preview",
"storage_files",
"tool_files",
"upload",
]

View File

@ -1,80 +0,0 @@
"""Token-based file proxy controller for storage operations.
This controller handles file download and upload operations using opaque UUID tokens.
The token maps to the real storage key in Redis, so the actual storage path is never
exposed in the URL.
Routes:
GET /files/storage-files/{token} - Download a file
PUT /files/storage-files/{token} - Upload a file
The operation type (download/upload) is determined by the ticket stored in Redis,
not by the HTTP method. This ensures a download ticket cannot be used for upload
and vice versa.
"""
from urllib.parse import quote
from flask import Response, request
from flask_restx import Resource
from werkzeug.exceptions import Forbidden, NotFound, RequestEntityTooLarge
from controllers.files import files_ns
from extensions.ext_storage import storage
from services.storage_ticket_service import StorageTicketService
@files_ns.route("/storage-files/<string:token>")
class StorageFilesApi(Resource):
"""Handle file operations through token-based URLs."""
def get(self, token: str):
"""Download a file using a token.
The ticket must have op="download", otherwise returns 403.
"""
ticket = StorageTicketService.get_ticket(token)
if ticket is None:
raise Forbidden("Invalid or expired token")
if ticket.op != "download":
raise Forbidden("This token is not valid for download")
try:
generator = storage.load_stream(ticket.storage_key)
except FileNotFoundError:
raise NotFound("File not found")
filename = ticket.filename or ticket.storage_key.rsplit("/", 1)[-1]
encoded_filename = quote(filename)
return Response(
generator,
mimetype="application/octet-stream",
direct_passthrough=True,
headers={
"Content-Disposition": f"attachment; filename*=UTF-8''{encoded_filename}",
},
)
def put(self, token: str):
"""Upload a file using a token.
The ticket must have op="upload", otherwise returns 403.
If the request body exceeds max_bytes, returns 413.
"""
ticket = StorageTicketService.get_ticket(token)
if ticket is None:
raise Forbidden("Invalid or expired token")
if ticket.op != "upload":
raise Forbidden("This token is not valid for upload")
content = request.get_data()
if ticket.max_bytes is not None and len(content) > ticket.max_bytes:
raise RequestEntityTooLarge(f"Upload exceeds maximum size of {ticket.max_bytes} bytes")
storage.save(ticket.storage_key, content)
return Response(status=204)

View File

@ -448,53 +448,3 @@ class PluginFetchAppInfoApi(Resource):
return BaseBackwardsInvocationResponse(
data=PluginAppBackwardsInvocation.fetch_app_info(payload.app_id, tenant_model.id)
).model_dump()
@inner_api_ns.route("/fetch/tools/list")
class PluginFetchToolsListApi(Resource):
@get_user_tenant
@setup_required
@plugin_inner_api_only
@inner_api_ns.doc("plugin_fetch_tools_list")
@inner_api_ns.doc(description="Fetch all available tools through plugin interface")
@inner_api_ns.doc(
responses={
200: "Tools list retrieved successfully",
401: "Unauthorized - invalid API key",
404: "Service not available",
}
)
def post(self, user_model: Account | EndUser, tenant_model: Tenant):
from sqlalchemy.orm import Session
from extensions.ext_database import db
from services.tools.api_tools_manage_service import ApiToolManageService
from services.tools.builtin_tools_manage_service import BuiltinToolManageService
from services.tools.mcp_tools_manage_service import MCPToolManageService
from services.tools.workflow_tools_manage_service import WorkflowToolManageService
providers = []
# Get builtin tools
builtin_providers = BuiltinToolManageService.list_builtin_tools(user_model.id, tenant_model.id)
for provider in builtin_providers:
providers.append(provider.to_dict())
# Get API tools
api_providers = ApiToolManageService.list_api_tools(tenant_model.id)
for provider in api_providers:
providers.append(provider.to_dict())
# Get workflow tools
workflow_providers = WorkflowToolManageService.list_tenant_workflow_tools(user_model.id, tenant_model.id)
for provider in workflow_providers:
providers.append(provider.to_dict())
# Get MCP tools
with Session(db.engine) as session:
mcp_service = MCPToolManageService(session)
mcp_providers = mcp_service.list_providers(tenant_id=tenant_model.id, for_list=True)
for provider in mcp_providers:
providers.append(provider.to_dict())
return BaseBackwardsInvocationResponse(data={"providers": providers}).model_dump()

View File

@ -75,6 +75,7 @@ def get_user_tenant(view_func: Callable[P, R]):
@wraps(view_func)
def decorated_view(*args: P.args, **kwargs: P.kwargs):
payload = TenantUserPayload.model_validate(request.get_json(silent=True) or {})
user_id = payload.user_id
tenant_id = payload.tenant_id

View File

@ -5,15 +5,14 @@ from hashlib import sha1
from hmac import new as hmac_new
from typing import ParamSpec, TypeVar
P = ParamSpec("P")
R = TypeVar("R")
from flask import abort, request
from configs import dify_config
from extensions.ext_database import db
from models.model import EndUser
P = ParamSpec("P")
R = TypeVar("R")
def billing_inner_api_only(view: Callable[P, R]):
@wraps(view)
@ -89,11 +88,11 @@ def plugin_inner_api_only(view: Callable[P, R]):
if not dify_config.PLUGIN_DAEMON_KEY:
abort(404)
# validate using inner api key
# get header 'X-Inner-Api-Key'
inner_api_key = request.headers.get("X-Inner-Api-Key")
if inner_api_key and inner_api_key == dify_config.INNER_API_KEY_FOR_PLUGIN:
return view(*args, **kwargs)
if not inner_api_key or inner_api_key != dify_config.INNER_API_KEY_FOR_PLUGIN:
abort(404)
abort(401)
return view(*args, **kwargs)
return decorated

View File

@ -1,381 +0,0 @@
import json
import logging
from collections.abc import Generator
from copy import deepcopy
from typing import Any
from core.agent.base_agent_runner import BaseAgentRunner
from core.agent.entities import AgentEntity, AgentLog, AgentResult
from core.agent.patterns.strategy_factory import StrategyFactory
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.file import file_manager
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMUsage,
PromptMessage,
PromptMessageContentType,
SystemPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.__base.tool import Tool
from core.tools.entities.tool_entities import ToolInvokeFrom, ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from models.model import Message
logger = logging.getLogger(__name__)
class AgentAppRunner(BaseAgentRunner):
def _create_tool_invoke_hook(self, message: Message):
"""
Create a tool invoke hook that uses ToolEngine.agent_invoke.
This hook handles file creation and returns proper meta information.
"""
# Get trace manager from app generate entity
trace_manager = self.application_generate_entity.trace_manager
def tool_invoke_hook(
tool: Tool, tool_args: dict[str, Any], tool_name: str
) -> tuple[str, list[str], ToolInvokeMeta]:
"""Hook that uses agent_invoke for proper file and meta handling."""
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool,
tool_parameters=tool_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
trace_manager=trace_manager,
app_id=self.application_generate_entity.app_config.app_id,
message_id=message.id,
conversation_id=self.conversation.id,
)
# Publish files and track IDs
for message_file_id in message_files:
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id),
PublishFrom.APPLICATION_MANAGER,
)
self._current_message_file_ids.append(message_file_id)
return tool_invoke_response, message_files, tool_invoke_meta
return tool_invoke_hook
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
"""
Run Agent application
"""
self.query = query
app_generate_entity = self.application_generate_entity
app_config = self.app_config
assert app_config is not None, "app_config is required"
assert app_config.agent is not None, "app_config.agent is required"
# convert tools into ModelRuntime Tool format
tool_instances, _ = self._init_prompt_tools()
assert app_config.agent
# Create tool invoke hook for agent_invoke
tool_invoke_hook = self._create_tool_invoke_hook(message)
# Get instruction for ReAct strategy
instruction = self.app_config.prompt_template.simple_prompt_template or ""
# Use factory to create appropriate strategy
strategy = StrategyFactory.create_strategy(
model_features=self.model_features,
model_instance=self.model_instance,
tools=list(tool_instances.values()),
files=list(self.files),
max_iterations=app_config.agent.max_iteration,
context=self.build_execution_context(),
agent_strategy=self.config.strategy,
tool_invoke_hook=tool_invoke_hook,
instruction=instruction,
tenant_id=self.tenant_id,
invoke_from=self.application_generate_entity.invoke_from,
tool_invoke_from=ToolInvokeFrom.WORKFLOW,
)
# Initialize state variables
current_agent_thought_id = None
current_tool_name: str | None = None
self._current_message_file_ids: list[str] = []
# organize prompt messages
prompt_messages = self._organize_prompt_messages()
# Run strategy
generator = strategy.run(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_conf.parameters,
stop=app_generate_entity.model_conf.stop,
)
# Consume generator and collect result
result: AgentResult | None = None
try:
while True:
try:
output = next(generator)
except StopIteration as e:
# Generator finished, get the return value
result = e.value
break
if isinstance(output, LLMResultChunk):
# No more expect streaming data
continue
else:
# Handle Agent Log using log_type for type-safe dispatch
if output.status == AgentLog.LogStatus.START:
if output.log_type == AgentLog.LogType.ROUND:
# Start of a new round
message_file_ids: list[str] = []
current_agent_thought_id = self.create_agent_thought(
message_id=message.id,
message="",
tool_name="",
tool_input="",
messages_ids=message_file_ids,
)
elif output.log_type == AgentLog.LogType.TOOL_CALL:
if current_agent_thought_id is None:
continue
# Tool call start - extract data from structured fields
current_tool_name = output.data.get("tool_name", "")
tool_input = output.data.get("tool_args", {})
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=current_tool_name,
tool_input=tool_input,
thought=None,
observation=None,
tool_invoke_meta=None,
answer=None,
messages_ids=[],
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
elif output.status == AgentLog.LogStatus.SUCCESS:
if output.log_type == AgentLog.LogType.THOUGHT:
if current_agent_thought_id is None:
continue
thought_text = output.data.get("thought")
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=None,
tool_input=None,
thought=thought_text,
observation=None,
tool_invoke_meta=None,
answer=None,
messages_ids=[],
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
elif output.log_type == AgentLog.LogType.TOOL_CALL:
if current_agent_thought_id is None:
continue
# Tool call finished
tool_output = output.data.get("output")
# Get meta from strategy output (now properly populated)
tool_meta = output.data.get("meta")
# Wrap tool_meta with tool_name as key (required by agent_service)
if tool_meta and current_tool_name:
tool_meta = {current_tool_name: tool_meta}
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=None,
tool_input=None,
thought=None,
observation=tool_output,
tool_invoke_meta=tool_meta,
answer=None,
messages_ids=self._current_message_file_ids,
)
# Clear message file ids after saving
self._current_message_file_ids = []
current_tool_name = None
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
elif output.log_type == AgentLog.LogType.ROUND:
if current_agent_thought_id is None:
continue
# Round finished - save LLM usage and answer
llm_usage = output.metadata.get(AgentLog.LogMetadata.LLM_USAGE)
llm_result = output.data.get("llm_result")
final_answer = output.data.get("final_answer")
self.save_agent_thought(
agent_thought_id=current_agent_thought_id,
tool_name=None,
tool_input=None,
thought=llm_result,
observation=None,
tool_invoke_meta=None,
answer=final_answer,
messages_ids=[],
llm_usage=llm_usage,
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
PublishFrom.APPLICATION_MANAGER,
)
except Exception:
# Re-raise any other exceptions
raise
# Process final result
if not isinstance(result, AgentResult):
raise ValueError("Agent did not return AgentResult")
output_payload = result.output
if isinstance(output_payload, dict):
final_answer = json.dumps(output_payload, ensure_ascii=False)
elif isinstance(output_payload, str):
final_answer = output_payload
else:
raise ValueError("Final output is not a string or structured data.")
usage = result.usage or LLMUsage.empty_usage()
# Publish end event
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=self.model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=usage,
system_fingerprint="",
)
),
PublishFrom.APPLICATION_MANAGER,
)
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Initialize system message
"""
if not prompt_template:
return prompt_messages or []
prompt_messages = prompt_messages or []
if prompt_messages and isinstance(prompt_messages[0], SystemPromptMessage):
prompt_messages[0] = SystemPromptMessage(content=prompt_template)
return prompt_messages
if not prompt_messages:
return [SystemPromptMessage(content=prompt_template)]
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
return prompt_messages
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""
if self.files:
# get image detail config
image_detail_config = (
self.application_generate_entity.file_upload_config.image_config.detail
if (
self.application_generate_entity.file_upload_config
and self.application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in self.files:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=query))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=query))
return prompt_messages
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
As for now, gpt supports both fc and vision at the first iteration.
We need to remove the image messages from the prompt messages at the first iteration.
"""
prompt_messages = deepcopy(prompt_messages)
for prompt_message in prompt_messages:
if isinstance(prompt_message, UserPromptMessage):
if isinstance(prompt_message.content, list):
prompt_message.content = "\n".join(
[
content.data
if content.type == PromptMessageContentType.TEXT
else "[image]"
if content.type == PromptMessageContentType.IMAGE
else "[file]"
for content in prompt_message.content
]
)
return prompt_messages
def _organize_prompt_messages(self):
# For ReAct strategy, use the agent prompt template
if self.config.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT and self.config.prompt:
prompt_template = self.config.prompt.first_prompt
else:
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
query_prompt_messages = self._organize_user_query(self.query or "", [])
self.history_prompt_messages = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
history_messages=self.history_prompt_messages,
memory=self.memory,
).get_prompt()
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
if len(self._current_thoughts) != 0:
# clear messages after the first iteration
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
return prompt_messages

View File

@ -6,8 +6,7 @@ from typing import Union, cast
from sqlalchemy import select
from core.agent.entities import AgentEntity, AgentToolEntity, ExecutionContext
from core.agent.output_tools import build_agent_output_tools
from core.agent.entities import AgentEntity, AgentToolEntity
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager
@ -37,7 +36,6 @@ from core.model_runtime.model_providers.__base.large_language_model import Large
from core.prompt.utils.extract_thread_messages import extract_thread_messages
from core.tools.__base.tool import Tool
from core.tools.entities.tool_entities import (
ToolInvokeFrom,
ToolParameter,
)
from core.tools.tool_manager import ToolManager
@ -118,20 +116,9 @@ class BaseAgentRunner(AppRunner):
features = model_schema.features if model_schema and model_schema.features else []
self.stream_tool_call = ModelFeature.STREAM_TOOL_CALL in features
self.files = application_generate_entity.files if ModelFeature.VISION in features else []
self.model_features = features
self.query: str | None = ""
self._current_thoughts: list[PromptMessage] = []
def build_execution_context(self) -> ExecutionContext:
"""Build execution context."""
return ExecutionContext(
user_id=self.user_id,
app_id=self.app_config.app_id,
conversation_id=self.conversation.id,
message_id=self.message.id,
tenant_id=self.tenant_id,
)
def _repack_app_generate_entity(
self, app_generate_entity: AgentChatAppGenerateEntity
) -> AgentChatAppGenerateEntity:
@ -253,12 +240,6 @@ class BaseAgentRunner(AppRunner):
# save tool entity
tool_instances[dataset_tool.entity.identity.name] = dataset_tool
output_tools = build_agent_output_tools(tenant_id=self.tenant_id,
invoke_from=self.application_generate_entity.invoke_from,
tool_invoke_from=ToolInvokeFrom.AGENT)
for tool in output_tools:
tool_instances[tool.entity.identity.name] = tool
return tool_instances, prompt_messages_tools
def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:

View File

@ -0,0 +1,437 @@
import json
import logging
from abc import ABC, abstractmethod
from collections.abc import Generator, Mapping, Sequence
from typing import Any
from core.agent.base_agent_runner import BaseAgentRunner
from core.agent.entities import AgentScratchpadUnit
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
PromptMessageTool,
ToolPromptMessage,
UserPromptMessage,
)
from core.ops.ops_trace_manager import TraceQueueManager
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.__base.tool import Tool
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from core.workflow.nodes.agent.exc import AgentMaxIterationError
from models.model import Message
logger = logging.getLogger(__name__)
class CotAgentRunner(BaseAgentRunner, ABC):
_is_first_iteration = True
_ignore_observation_providers = ["wenxin"]
_historic_prompt_messages: list[PromptMessage]
_agent_scratchpad: list[AgentScratchpadUnit]
_instruction: str
_query: str
_prompt_messages_tools: Sequence[PromptMessageTool]
def run(
self,
message: Message,
query: str,
inputs: Mapping[str, str],
) -> Generator:
"""
Run Cot agent application
"""
app_generate_entity = self.application_generate_entity
self._repack_app_generate_entity(app_generate_entity)
self._init_react_state(query)
trace_manager = app_generate_entity.trace_manager
# check model mode
if "Observation" not in app_generate_entity.model_conf.stop:
if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
app_generate_entity.model_conf.stop.append("Observation")
app_config = self.app_config
assert app_config.agent
# init instruction
inputs = inputs or {}
instruction = app_config.prompt_template.simple_prompt_template or ""
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
iteration_step = 1
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
# convert tools into ModelRuntime Tool format
tool_instances, prompt_messages_tools = self._init_prompt_tools()
self._prompt_messages_tools = prompt_messages_tools
function_call_state = True
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
final_answer = ""
prompt_messages: list = [] # Initialize prompt_messages
agent_thought_id = "" # Initialize agent_thought_id
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
if not final_llm_usage_dict["usage"]:
final_llm_usage_dict["usage"] = usage
else:
llm_usage = final_llm_usage_dict["usage"]
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.total_tokens += usage.total_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
llm_usage.total_price += usage.total_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
# continue to run until there is not any tool call
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
self._prompt_messages_tools = []
message_file_ids: list[str] = []
agent_thought_id = self.create_agent_thought(
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
)
if iteration_step > 1:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_conf.parameters,
tools=[],
stop=app_generate_entity.model_conf.stop,
stream=True,
user=self.user_id,
callbacks=[],
)
usage_dict: dict[str, LLMUsage | None] = {}
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
scratchpad = AgentScratchpadUnit(
agent_response="",
thought="",
action_str="",
observation="",
action=None,
)
# publish agent thought if it's first iteration
if iteration_step == 1:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
for chunk in react_chunks:
if isinstance(chunk, AgentScratchpadUnit.Action):
action = chunk
# detect action
assert scratchpad.agent_response is not None
scratchpad.agent_response += json.dumps(chunk.model_dump())
scratchpad.action_str = json.dumps(chunk.model_dump())
scratchpad.action = action
else:
assert scratchpad.agent_response is not None
scratchpad.agent_response += chunk
assert scratchpad.thought is not None
scratchpad.thought += chunk
yield LLMResultChunk(
model=self.model_config.model,
prompt_messages=prompt_messages,
system_fingerprint="",
delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
)
assert scratchpad.thought is not None
scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
self._agent_scratchpad.append(scratchpad)
# Check if max iteration is reached and model still wants to call tools
if iteration_step == max_iteration_steps and scratchpad.action:
if scratchpad.action.action_name.lower() != "final answer":
raise AgentMaxIterationError(app_config.agent.max_iteration)
# get llm usage
if "usage" in usage_dict:
if usage_dict["usage"] is not None:
increase_usage(llm_usage, usage_dict["usage"])
else:
usage_dict["usage"] = LLMUsage.empty_usage()
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
tool_invoke_meta={},
thought=scratchpad.thought or "",
observation="",
answer=scratchpad.agent_response or "",
messages_ids=[],
llm_usage=usage_dict["usage"],
)
if not scratchpad.is_final():
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
if not scratchpad.action:
# failed to extract action, return final answer directly
final_answer = ""
else:
if scratchpad.action.action_name.lower() == "final answer":
# action is final answer, return final answer directly
try:
if isinstance(scratchpad.action.action_input, dict):
final_answer = json.dumps(scratchpad.action.action_input, ensure_ascii=False)
elif isinstance(scratchpad.action.action_input, str):
final_answer = scratchpad.action.action_input
else:
final_answer = f"{scratchpad.action.action_input}"
except TypeError:
final_answer = f"{scratchpad.action.action_input}"
else:
function_call_state = True
# action is tool call, invoke tool
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
action=scratchpad.action,
tool_instances=tool_instances,
message_file_ids=message_file_ids,
trace_manager=trace_manager,
)
scratchpad.observation = tool_invoke_response
scratchpad.agent_response = tool_invoke_response
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=scratchpad.action.action_name,
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
thought=scratchpad.thought or "",
observation={scratchpad.action.action_name: tool_invoke_response},
tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
answer=scratchpad.agent_response,
messages_ids=message_file_ids,
llm_usage=usage_dict["usage"],
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# update prompt tool message
for prompt_tool in self._prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
),
system_fingerprint="",
)
# save agent thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name="",
tool_input={},
tool_invoke_meta={},
thought=final_answer,
observation={},
answer=final_answer,
messages_ids=[],
)
# publish end event
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
system_fingerprint="",
)
),
PublishFrom.APPLICATION_MANAGER,
)
def _handle_invoke_action(
self,
action: AgentScratchpadUnit.Action,
tool_instances: Mapping[str, Tool],
message_file_ids: list[str],
trace_manager: TraceQueueManager | None = None,
) -> tuple[str, ToolInvokeMeta]:
"""
handle invoke action
:param action: action
:param tool_instances: tool instances
:param message_file_ids: message file ids
:param trace_manager: trace manager
:return: observation, meta
"""
# action is tool call, invoke tool
tool_call_name = action.action_name
tool_call_args = action.action_input
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
answer = f"there is not a tool named {tool_call_name}"
return answer, ToolInvokeMeta.error_instance(answer)
if isinstance(tool_call_args, str):
try:
tool_call_args = json.loads(tool_call_args)
except json.JSONDecodeError:
pass
# invoke tool
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
trace_manager=trace_manager,
)
# publish files
for message_file_id in message_files:
# publish message file
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
)
# add message file ids
message_file_ids.append(message_file_id)
return tool_invoke_response, tool_invoke_meta
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
"""
convert dict to action
"""
return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: Mapping[str, Any]) -> str:
"""
fill in inputs from external data tools
"""
for key, value in inputs.items():
try:
instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
except Exception:
continue
return instruction
def _init_react_state(self, query):
"""
init agent scratchpad
"""
self._query = query
self._agent_scratchpad = []
self._historic_prompt_messages = self._organize_historic_prompt_messages()
@abstractmethod
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
organize prompt messages
"""
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
"""
format assistant message
"""
message = ""
for scratchpad in agent_scratchpad:
if scratchpad.is_final():
message += f"Final Answer: {scratchpad.agent_response}"
else:
message += f"Thought: {scratchpad.thought}\n\n"
if scratchpad.action_str:
message += f"Action: {scratchpad.action_str}\n\n"
if scratchpad.observation:
message += f"Observation: {scratchpad.observation}\n\n"
return message
def _organize_historic_prompt_messages(
self, current_session_messages: list[PromptMessage] | None = None
) -> list[PromptMessage]:
"""
organize historic prompt messages
"""
result: list[PromptMessage] = []
scratchpads: list[AgentScratchpadUnit] = []
current_scratchpad: AgentScratchpadUnit | None = None
for message in self.history_prompt_messages:
if isinstance(message, AssistantPromptMessage):
if not current_scratchpad:
assert isinstance(message.content, str)
current_scratchpad = AgentScratchpadUnit(
agent_response=message.content,
thought=message.content or "I am thinking about how to help you",
action_str="",
action=None,
observation=None,
)
scratchpads.append(current_scratchpad)
if message.tool_calls:
try:
current_scratchpad.action = AgentScratchpadUnit.Action(
action_name=message.tool_calls[0].function.name,
action_input=json.loads(message.tool_calls[0].function.arguments),
)
current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
except Exception:
logger.exception("Failed to parse tool call from assistant message")
elif isinstance(message, ToolPromptMessage):
if current_scratchpad:
assert isinstance(message.content, str)
current_scratchpad.observation = message.content
else:
raise NotImplementedError("expected str type")
elif isinstance(message, UserPromptMessage):
if scratchpads:
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
scratchpads = []
current_scratchpad = None
result.append(message)
if scratchpads:
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
historic_prompts = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=current_session_messages or [],
history_messages=result,
memory=self.memory,
).get_prompt()
return historic_prompts

View File

@ -0,0 +1,118 @@
import json
from core.agent.cot_agent_runner import CotAgentRunner
from core.file import file_manager
from core.model_runtime.entities import (
AssistantPromptMessage,
PromptMessage,
SystemPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.model_runtime.utils.encoders import jsonable_encoder
class CotChatAgentRunner(CotAgentRunner):
def _organize_system_prompt(self) -> SystemPromptMessage:
"""
Organize system prompt
"""
assert self.app_config.agent
assert self.app_config.agent.prompt
prompt_entity = self.app_config.agent.prompt
if not prompt_entity:
raise ValueError("Agent prompt configuration is not set")
first_prompt = prompt_entity.first_prompt
system_prompt = (
first_prompt.replace("{{instruction}}", self._instruction)
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
)
return SystemPromptMessage(content=system_prompt)
def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""
if self.files:
# get image detail config
image_detail_config = (
self.application_generate_entity.file_upload_config.image_config.detail
if (
self.application_generate_entity.file_upload_config
and self.application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in self.files:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=query))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=query))
return prompt_messages
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
Organize
"""
# organize system prompt
system_message = self._organize_system_prompt()
# organize current assistant messages
agent_scratchpad = self._agent_scratchpad
if not agent_scratchpad:
assistant_messages = []
else:
assistant_message = AssistantPromptMessage(content="")
assistant_message.content = "" # FIXME: type check tell mypy that assistant_message.content is str
for unit in agent_scratchpad:
if unit.is_final():
assert isinstance(assistant_message.content, str)
assistant_message.content += f"Final Answer: {unit.agent_response}"
else:
assert isinstance(assistant_message.content, str)
assistant_message.content += f"Thought: {unit.thought}\n\n"
if unit.action_str:
assistant_message.content += f"Action: {unit.action_str}\n\n"
if unit.observation:
assistant_message.content += f"Observation: {unit.observation}\n\n"
assistant_messages = [assistant_message]
# query messages
query_messages = self._organize_user_query(self._query, [])
if assistant_messages:
# organize historic prompt messages
historic_messages = self._organize_historic_prompt_messages(
[system_message, *query_messages, *assistant_messages, UserPromptMessage(content="continue")]
)
messages = [
system_message,
*historic_messages,
*query_messages,
*assistant_messages,
UserPromptMessage(content="continue"),
]
else:
# organize historic prompt messages
historic_messages = self._organize_historic_prompt_messages([system_message, *query_messages])
messages = [system_message, *historic_messages, *query_messages]
# join all messages
return messages

View File

@ -0,0 +1,87 @@
import json
from core.agent.cot_agent_runner import CotAgentRunner
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.utils.encoders import jsonable_encoder
class CotCompletionAgentRunner(CotAgentRunner):
def _organize_instruction_prompt(self) -> str:
"""
Organize instruction prompt
"""
if self.app_config.agent is None:
raise ValueError("Agent configuration is not set")
prompt_entity = self.app_config.agent.prompt
if prompt_entity is None:
raise ValueError("prompt entity is not set")
first_prompt = prompt_entity.first_prompt
system_prompt = (
first_prompt.replace("{{instruction}}", self._instruction)
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
)
return system_prompt
def _organize_historic_prompt(self, current_session_messages: list[PromptMessage] | None = None) -> str:
"""
Organize historic prompt
"""
historic_prompt_messages = self._organize_historic_prompt_messages(current_session_messages)
historic_prompt = ""
for message in historic_prompt_messages:
if isinstance(message, UserPromptMessage):
historic_prompt += f"Question: {message.content}\n\n"
elif isinstance(message, AssistantPromptMessage):
if isinstance(message.content, str):
historic_prompt += message.content + "\n\n"
elif isinstance(message.content, list):
for content in message.content:
if not isinstance(content, TextPromptMessageContent):
continue
historic_prompt += content.data
return historic_prompt
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
Organize prompt messages
"""
# organize system prompt
system_prompt = self._organize_instruction_prompt()
# organize historic prompt messages
historic_prompt = self._organize_historic_prompt()
# organize current assistant messages
agent_scratchpad = self._agent_scratchpad
assistant_prompt = ""
for unit in agent_scratchpad or []:
if unit.is_final():
assistant_prompt += f"Final Answer: {unit.agent_response}"
else:
assistant_prompt += f"Thought: {unit.thought}\n\n"
if unit.action_str:
assistant_prompt += f"Action: {unit.action_str}\n\n"
if unit.observation:
assistant_prompt += f"Observation: {unit.observation}\n\n"
# query messages
query_prompt = f"Question: {self._query}"
# join all messages
prompt = (
system_prompt.replace("{{historic_messages}}", historic_prompt)
.replace("{{agent_scratchpad}}", assistant_prompt)
.replace("{{query}}", query_prompt)
)
return [UserPromptMessage(content=prompt)]

View File

@ -1,11 +1,8 @@
import uuid
from collections.abc import Mapping
from enum import StrEnum
from typing import Any
from typing import Any, Union
from pydantic import BaseModel, Field
from core.agent.output_tools import FINAL_OUTPUT_TOOL
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolProviderType
@ -42,9 +39,9 @@ class AgentScratchpadUnit(BaseModel):
"""
action_name: str
action_input: dict[str, Any] | str
action_input: Union[dict, str]
def to_dict(self) -> dict[str, Any]:
def to_dict(self):
"""
Convert to dictionary.
"""
@ -63,9 +60,9 @@ class AgentScratchpadUnit(BaseModel):
"""
Check if the scratchpad unit is final.
"""
if self.action is None:
return False
return self.action.action_name.lower() == FINAL_OUTPUT_TOOL
return self.action is None or (
"final" in self.action.action_name.lower() and "answer" in self.action.action_name.lower()
)
class AgentEntity(BaseModel):
@ -95,106 +92,3 @@ class AgentInvokeMessage(ToolInvokeMessage):
"""
pass
class ExecutionContext(BaseModel):
"""Execution context containing trace and audit information.
This context carries all the IDs and metadata that are not part of
the core business logic but needed for tracing, auditing, and
correlation purposes.
"""
user_id: str | None = None
app_id: str | None = None
conversation_id: str | None = None
message_id: str | None = None
tenant_id: str | None = None
@classmethod
def create_minimal(cls, user_id: str | None = None) -> "ExecutionContext":
"""Create a minimal context with only essential fields."""
return cls(user_id=user_id)
def to_dict(self) -> dict[str, Any]:
"""Convert to dictionary for passing to legacy code."""
return {
"user_id": self.user_id,
"app_id": self.app_id,
"conversation_id": self.conversation_id,
"message_id": self.message_id,
"tenant_id": self.tenant_id,
}
def with_updates(self, **kwargs: Any) -> "ExecutionContext":
"""Create a new context with updated fields."""
data = self.to_dict()
data.update(kwargs)
return ExecutionContext(
user_id=data.get("user_id"),
app_id=data.get("app_id"),
conversation_id=data.get("conversation_id"),
message_id=data.get("message_id"),
tenant_id=data.get("tenant_id"),
)
class AgentLog(BaseModel):
"""
Agent Log.
"""
class LogType(StrEnum):
"""Type of agent log entry."""
ROUND = "round" # A complete iteration round
THOUGHT = "thought" # LLM thinking/reasoning
TOOL_CALL = "tool_call" # Tool invocation
class LogMetadata(StrEnum):
STARTED_AT = "started_at"
FINISHED_AT = "finished_at"
ELAPSED_TIME = "elapsed_time"
TOTAL_PRICE = "total_price"
TOTAL_TOKENS = "total_tokens"
PROVIDER = "provider"
CURRENCY = "currency"
LLM_USAGE = "llm_usage"
ICON = "icon"
ICON_DARK = "icon_dark"
class LogStatus(StrEnum):
START = "start"
ERROR = "error"
SUCCESS = "success"
id: str = Field(default_factory=lambda: str(uuid.uuid4()), description="The id of the log")
label: str = Field(..., description="The label of the log")
log_type: LogType = Field(..., description="The type of the log")
parent_id: str | None = Field(default=None, description="Leave empty for root log")
error: str | None = Field(default=None, description="The error message")
status: LogStatus = Field(..., description="The status of the log")
data: Mapping[str, Any] = Field(..., description="Detailed log data")
metadata: Mapping[LogMetadata, Any] = Field(default={}, description="The metadata of the log")
class AgentOutputKind(StrEnum):
"""
Agent output kind.
"""
OUTPUT_TEXT = "output_text"
FINAL_OUTPUT_ANSWER = "final_output_answer"
FINAL_STRUCTURED_OUTPUT = "final_structured_output"
ILLEGAL_OUTPUT = "illegal_output"
class AgentResult(BaseModel):
"""
Agent execution result.
"""
output: str | dict = Field(default="", description="The generated output")
files: list[Any] = Field(default_factory=list, description="Files produced during execution")
usage: Any | None = Field(default=None, description="LLM usage statistics")
finish_reason: str | None = Field(default=None, description="Reason for completion")

View File

@ -0,0 +1,468 @@
import json
import logging
from collections.abc import Generator
from copy import deepcopy
from typing import Any, Union
from core.agent.base_agent_runner import BaseAgentRunner
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.file import file_manager
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
LLMUsage,
PromptMessage,
PromptMessageContentType,
SystemPromptMessage,
TextPromptMessageContent,
ToolPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from core.workflow.nodes.agent.exc import AgentMaxIterationError
from models.model import Message
logger = logging.getLogger(__name__)
class FunctionCallAgentRunner(BaseAgentRunner):
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
"""
Run FunctionCall agent application
"""
self.query = query
app_generate_entity = self.application_generate_entity
app_config = self.app_config
assert app_config is not None, "app_config is required"
assert app_config.agent is not None, "app_config.agent is required"
# convert tools into ModelRuntime Tool format
tool_instances, prompt_messages_tools = self._init_prompt_tools()
assert app_config.agent
iteration_step = 1
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
# continue to run until there is not any tool call
function_call_state = True
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
final_answer = ""
prompt_messages: list = [] # Initialize prompt_messages
# get tracing instance
trace_manager = app_generate_entity.trace_manager
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
if not final_llm_usage_dict["usage"]:
final_llm_usage_dict["usage"] = usage
else:
llm_usage = final_llm_usage_dict["usage"]
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.total_tokens += usage.total_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
llm_usage.total_price += usage.total_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
prompt_messages_tools = []
message_file_ids: list[str] = []
agent_thought_id = self.create_agent_thought(
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
)
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_conf.parameters,
tools=prompt_messages_tools,
stop=app_generate_entity.model_conf.stop,
stream=self.stream_tool_call,
user=self.user_id,
callbacks=[],
)
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
# save full response
response = ""
# save tool call names and inputs
tool_call_names = ""
tool_call_inputs = ""
current_llm_usage = None
if isinstance(chunks, Generator):
is_first_chunk = True
for chunk in chunks:
if is_first_chunk:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
is_first_chunk = False
# check if there is any tool call
if self.check_tool_calls(chunk):
function_call_state = True
tool_calls.extend(self.extract_tool_calls(chunk) or [])
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps(
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
)
except TypeError:
# fallback: force ASCII to handle non-serializable objects
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
if chunk.delta.message and chunk.delta.message.content:
if isinstance(chunk.delta.message.content, list):
for content in chunk.delta.message.content:
response += content.data
else:
response += str(chunk.delta.message.content)
if chunk.delta.usage:
increase_usage(llm_usage, chunk.delta.usage)
current_llm_usage = chunk.delta.usage
yield chunk
else:
result = chunks
# check if there is any tool call
if self.check_blocking_tool_calls(result):
function_call_state = True
tool_calls.extend(self.extract_blocking_tool_calls(result) or [])
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps(
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
)
except TypeError:
# fallback: force ASCII to handle non-serializable objects
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
if result.usage:
increase_usage(llm_usage, result.usage)
current_llm_usage = result.usage
if result.message and result.message.content:
if isinstance(result.message.content, list):
for content in result.message.content:
response += content.data
else:
response += str(result.message.content)
if not result.message.content:
result.message.content = ""
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=result.prompt_messages,
system_fingerprint=result.system_fingerprint,
delta=LLMResultChunkDelta(
index=0,
message=result.message,
usage=result.usage,
),
)
assistant_message = AssistantPromptMessage(content=response, tool_calls=[])
if tool_calls:
assistant_message.tool_calls = [
AssistantPromptMessage.ToolCall(
id=tool_call[0],
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
),
)
for tool_call in tool_calls
]
self._current_thoughts.append(assistant_message)
# save thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=tool_call_names,
tool_input=tool_call_inputs,
thought=response,
tool_invoke_meta=None,
observation=None,
answer=response,
messages_ids=[],
llm_usage=current_llm_usage,
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
final_answer += response + "\n"
# Check if max iteration is reached and model still wants to call tools
if iteration_step == max_iteration_steps and tool_calls:
raise AgentMaxIterationError(app_config.agent.max_iteration)
# call tools
tool_responses = []
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": f"there is not a tool named {tool_call_name}",
"meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
}
else:
# invoke tool
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
trace_manager=trace_manager,
app_id=self.application_generate_entity.app_config.app_id,
message_id=self.message.id,
conversation_id=self.conversation.id,
)
# publish files
for message_file_id in message_files:
# publish message file
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
)
# add message file ids
message_file_ids.append(message_file_id)
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": tool_invoke_response,
"meta": tool_invoke_meta.to_dict(),
}
tool_responses.append(tool_response)
if tool_response["tool_response"] is not None:
self._current_thoughts.append(
ToolPromptMessage(
content=str(tool_response["tool_response"]),
tool_call_id=tool_call_id,
name=tool_call_name,
)
)
if len(tool_responses) > 0:
# save agent thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name="",
tool_input="",
thought="",
tool_invoke_meta={
tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
},
observation={
tool_response["tool_call_name"]: tool_response["tool_response"]
for tool_response in tool_responses
},
answer="",
messages_ids=message_file_ids,
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# update prompt tool
for prompt_tool in prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
# publish end event
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
system_fingerprint="",
)
),
PublishFrom.APPLICATION_MANAGER,
)
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
"""
Check if there is any tool call in llm result chunk
"""
if llm_result_chunk.delta.message.tool_calls:
return True
return False
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
"""
Check if there is any blocking tool call in llm result
"""
if llm_result.message.tool_calls:
return True
return False
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
"""
Extract tool calls from llm result chunk
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result_chunk.delta.message.tool_calls:
args = {}
if prompt_message.function.arguments != "":
args = json.loads(prompt_message.function.arguments)
tool_calls.append(
(
prompt_message.id,
prompt_message.function.name,
args,
)
)
return tool_calls
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
"""
Extract blocking tool calls from llm result
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result.message.tool_calls:
args = {}
if prompt_message.function.arguments != "":
args = json.loads(prompt_message.function.arguments)
tool_calls.append(
(
prompt_message.id,
prompt_message.function.name,
args,
)
)
return tool_calls
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Initialize system message
"""
if not prompt_messages and prompt_template:
return [
SystemPromptMessage(content=prompt_template),
]
if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
return prompt_messages or []
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""
if self.files:
# get image detail config
image_detail_config = (
self.application_generate_entity.file_upload_config.image_config.detail
if (
self.application_generate_entity.file_upload_config
and self.application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in self.files:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=query))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=query))
return prompt_messages
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
As for now, gpt supports both fc and vision at the first iteration.
We need to remove the image messages from the prompt messages at the first iteration.
"""
prompt_messages = deepcopy(prompt_messages)
for prompt_message in prompt_messages:
if isinstance(prompt_message, UserPromptMessage):
if isinstance(prompt_message.content, list):
prompt_message.content = "\n".join(
[
content.data
if content.type == PromptMessageContentType.TEXT
else "[image]"
if content.type == PromptMessageContentType.IMAGE
else "[file]"
for content in prompt_message.content
]
)
return prompt_messages
def _organize_prompt_messages(self):
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
query_prompt_messages = self._organize_user_query(self.query or "", [])
self.history_prompt_messages = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
history_messages=self.history_prompt_messages,
memory=self.memory,
).get_prompt()
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
if len(self._current_thoughts) != 0:
# clear messages after the first iteration
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
return prompt_messages

View File

@ -1,7 +1,7 @@
import json
import re
from collections.abc import Generator
from typing import Any, Union, cast
from typing import Union
from core.agent.entities import AgentScratchpadUnit
from core.model_runtime.entities.llm_entities import LLMResultChunk
@ -10,52 +10,46 @@ from core.model_runtime.entities.llm_entities import LLMResultChunk
class CotAgentOutputParser:
@classmethod
def handle_react_stream_output(
cls, llm_response: Generator[LLMResultChunk, None, None], usage_dict: dict[str, Any]
cls, llm_response: Generator[LLMResultChunk, None, None], usage_dict: dict
) -> Generator[Union[str, AgentScratchpadUnit.Action], None, None]:
def parse_action(action: Any) -> Union[str, AgentScratchpadUnit.Action]:
action_name: str | None = None
action_input: Any | None = None
parsed_action: Any = action
if isinstance(parsed_action, str):
def parse_action(action) -> Union[str, AgentScratchpadUnit.Action]:
action_name = None
action_input = None
if isinstance(action, str):
try:
parsed_action = json.loads(parsed_action, strict=False)
action = json.loads(action, strict=False)
except json.JSONDecodeError:
return parsed_action or ""
return action or ""
# cohere always returns a list
if isinstance(parsed_action, list):
action_list: list[Any] = cast(list[Any], parsed_action)
if len(action_list) == 1:
parsed_action = action_list[0]
if isinstance(action, list) and len(action) == 1:
action = action[0]
if isinstance(parsed_action, dict):
action_dict: dict[str, Any] = cast(dict[str, Any], parsed_action)
for key, value in action_dict.items():
if "input" in key.lower():
action_input = value
elif isinstance(value, str):
action_name = value
else:
return json.dumps(parsed_action)
for key, value in action.items():
if "input" in key.lower():
action_input = value
else:
action_name = value
if action_name is not None and action_input is not None:
return AgentScratchpadUnit.Action(
action_name=action_name,
action_input=action_input,
)
return json.dumps(parsed_action)
else:
return json.dumps(action)
def extra_json_from_code_block(code_block: str) -> list[dict[str, Any] | list[Any]]:
def extra_json_from_code_block(code_block) -> list[Union[list, dict]]:
blocks = re.findall(r"```[json]*\s*([\[{].*[]}])\s*```", code_block, re.DOTALL | re.IGNORECASE)
if not blocks:
return []
try:
json_blocks: list[dict[str, Any] | list[Any]] = []
json_blocks = []
for block in blocks:
json_text = re.sub(r"^[a-zA-Z]+\n", "", block.strip(), flags=re.MULTILINE)
json_blocks.append(json.loads(json_text, strict=False))
return json_blocks
except Exception:
except:
return []
code_block_cache = ""

View File

@ -1,107 +0,0 @@
from __future__ import annotations
from collections.abc import Mapping, Sequence
from typing import Any
from core.app.entities.app_invoke_entities import InvokeFrom
from core.tools.__base.tool import Tool
from core.tools.entities.common_entities import I18nObject
from core.tools.entities.tool_entities import ToolInvokeFrom, ToolInvokeMessage, ToolParameter, ToolProviderType
from core.tools.tool_manager import ToolManager
OUTPUT_TOOL_PROVIDER = "agent_output"
OUTPUT_TEXT_TOOL = "output_text"
FINAL_OUTPUT_TOOL = "final_output_answer"
FINAL_STRUCTURED_OUTPUT_TOOL = "final_structured_output"
ILLEGAL_OUTPUT_TOOL = "illegal_output"
OUTPUT_TOOL_NAMES: Sequence[str] = (
OUTPUT_TEXT_TOOL,
FINAL_OUTPUT_TOOL,
FINAL_STRUCTURED_OUTPUT_TOOL,
ILLEGAL_OUTPUT_TOOL,
)
TERMINAL_OUTPUT_TOOL_NAMES: Sequence[str] = (FINAL_OUTPUT_TOOL, FINAL_STRUCTURED_OUTPUT_TOOL)
TERMINAL_OUTPUT_MESSAGE = "Final output received. This ends the current session."
def is_terminal_output_tool(tool_name: str) -> bool:
return tool_name in TERMINAL_OUTPUT_TOOL_NAMES
def get_terminal_tool_name(structured_output_enabled: bool) -> str:
return FINAL_STRUCTURED_OUTPUT_TOOL if structured_output_enabled else FINAL_OUTPUT_TOOL
OUTPUT_TOOL_NAME_SET = set(OUTPUT_TOOL_NAMES)
def build_agent_output_tools(
tenant_id: str,
invoke_from: InvokeFrom,
tool_invoke_from: ToolInvokeFrom,
structured_output_schema: Mapping[str, Any] | None = None,
) -> list[Tool]:
def get_tool_runtime(_tool_name: str) -> Tool:
return ToolManager.get_tool_runtime(
provider_type=ToolProviderType.BUILT_IN,
provider_id=OUTPUT_TOOL_PROVIDER,
tool_name=_tool_name,
tenant_id=tenant_id,
invoke_from=invoke_from,
tool_invoke_from=tool_invoke_from,
)
tools: list[Tool] = [
get_tool_runtime(OUTPUT_TEXT_TOOL),
get_tool_runtime(ILLEGAL_OUTPUT_TOOL),
]
if structured_output_schema:
raw_tool = get_tool_runtime(FINAL_STRUCTURED_OUTPUT_TOOL)
raw_tool.entity = raw_tool.entity.model_copy(deep=True)
data_parameter = ToolParameter(
name="data",
type=ToolParameter.ToolParameterType.OBJECT,
form=ToolParameter.ToolParameterForm.LLM,
required=True,
input_schema=dict(structured_output_schema),
label=I18nObject(en_US="__Data", zh_Hans="__Data"),
)
raw_tool.entity.parameters = [data_parameter]
def invoke_tool(
user_id: str,
tool_parameters: dict[str, Any],
conversation_id: str | None = None,
app_id: str | None = None,
message_id: str | None = None,
) -> ToolInvokeMessage:
data = tool_parameters["data"]
if not data:
return ToolInvokeMessage(message=ToolInvokeMessage.TextMessage(text="`data` field is required"))
if not isinstance(data, dict):
return ToolInvokeMessage(message=ToolInvokeMessage.TextMessage(text="`data` must be a dict"))
return ToolInvokeMessage(message=ToolInvokeMessage.TextMessage(text=TERMINAL_OUTPUT_MESSAGE))
raw_tool._invoke = invoke_tool # pyright: ignore[reportPrivateUsage]
tools.append(raw_tool)
else:
raw_tool = get_tool_runtime(FINAL_OUTPUT_TOOL)
def invoke_tool(
user_id: str,
tool_parameters: dict[str, Any],
conversation_id: str | None = None,
app_id: str | None = None,
message_id: str | None = None,
) -> ToolInvokeMessage:
return ToolInvokeMessage(message=ToolInvokeMessage.TextMessage(text=TERMINAL_OUTPUT_MESSAGE))
raw_tool._invoke = invoke_tool # pyright: ignore[reportPrivateUsage]
tools.append(raw_tool)
return tools

View File

@ -1,55 +0,0 @@
# Agent Patterns
A unified agent pattern module that powers both Agent V2 workflow nodes and agent applications. Strategies share a common execution contract while adapting to model capabilities and tool availability.
## Overview
The module applies a strategy pattern around LLM/tool orchestration. `StrategyFactory` auto-selects the best implementation based on model features or an explicit agent strategy, and each strategy streams logs and usage consistently.
## Key Features
- **Dual strategies**
- `FunctionCallStrategy`: uses native LLM function/tool calling when the model exposes `TOOL_CALL`, `MULTI_TOOL_CALL`, or `STREAM_TOOL_CALL`.
- `ReActStrategy`: ReAct (reasoning + acting) flow driven by `CotAgentOutputParser`, used when function calling is unavailable or explicitly requested.
- **Explicit or auto selection**
- `StrategyFactory.create_strategy` prefers an explicit `AgentEntity.Strategy` (FUNCTION_CALLING or CHAIN_OF_THOUGHT).
- Otherwise it falls back to function calling when tool-call features exist, or ReAct when they do not.
- **Unified execution contract**
- `AgentPattern.run` yields streaming `AgentLog` entries and `LLMResultChunk` data, returning an `AgentResult` with text, files, usage, and `finish_reason`.
- Iterations are configurable and hard-capped at 99 rounds; the last round forces a final answer by withholding tools.
- **Tool handling and hooks**
- Tools convert to `PromptMessageTool` objects before invocation.
- Optional `tool_invoke_hook` lets callers override tool execution (e.g., agent apps) while workflow runs use `ToolEngine.generic_invoke`.
- Tool outputs support text, links, JSON, variables, blobs, retriever resources, and file attachments; `target=="self"` files are reloaded into model context, others are returned as outputs.
- **File-aware arguments**
- Tool args accept `[File: <id>]` or `[Files: <id1, id2>]` placeholders that resolve to `File` objects before invocation, enabling models to reference uploaded files safely.
- **ReAct prompt shaping**
- System prompts replace `{{instruction}}`, `{{tools}}`, and `{{tool_names}}` placeholders.
- Adds `Observation` to stop sequences and appends scratchpad text so the model sees prior Thought/Action/Observation history.
- **Observability and accounting**
- Standardized `AgentLog` entries for rounds, model thoughts, and tool calls, including usage aggregation (`LLMUsage`) across streaming and non-streaming paths.
## Architecture
```
agent/patterns/
├── base.py # Shared utilities: logging, usage, tool invocation, file handling
├── function_call.py # Native function-calling loop with tool execution
├── react.py # ReAct loop with CoT parsing and scratchpad wiring
└── strategy_factory.py # Strategy selection by model features or explicit override
```
## Usage
- For auto-selection:
- Call `StrategyFactory.create_strategy(model_features, model_instance, context, tools, files, ...)` and run the returned strategy with prompt messages and model params.
- For explicit behavior:
- Pass `agent_strategy=AgentEntity.Strategy.FUNCTION_CALLING` to force native calls (falls back to ReAct if unsupported), or `CHAIN_OF_THOUGHT` to force ReAct.
- Both strategies stream chunks and logs; collect the generator output until it returns an `AgentResult`.
## Integration Points
- **Model runtime**: delegates to `ModelInstance.invoke_llm` for both streaming and non-streaming calls.
- **Tool system**: defaults to `ToolEngine.generic_invoke`, with `tool_invoke_hook` for custom callers.
- **Files**: flows through `File` objects for tool inputs/outputs and model-context attachments.
- **Execution context**: `ExecutionContext` fields (user/app/conversation/message) propagate to tool invocations and logging.

View File

@ -1,19 +0,0 @@
"""Agent patterns module.
This module provides different strategies for agent execution:
- FunctionCallStrategy: Uses native function/tool calling
- ReActStrategy: Uses ReAct (Reasoning + Acting) approach
- StrategyFactory: Factory for creating strategies based on model features
"""
from .base import AgentPattern
from .function_call import FunctionCallStrategy
from .react import ReActStrategy
from .strategy_factory import StrategyFactory
__all__ = [
"AgentPattern",
"FunctionCallStrategy",
"ReActStrategy",
"StrategyFactory",
]

View File

@ -1,476 +0,0 @@
"""Base class for agent strategies."""
from __future__ import annotations
import json
import re
import time
from abc import ABC, abstractmethod
from collections.abc import Callable, Generator
from typing import TYPE_CHECKING, Any
from core.agent.entities import AgentLog, AgentResult, ExecutionContext
from core.agent.output_tools import ILLEGAL_OUTPUT_TOOL
from core.file import File
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
PromptMessage,
PromptMessageTool,
)
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.entities.message_entities import TextPromptMessageContent
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMeta
if TYPE_CHECKING:
from core.tools.__base.tool import Tool
# Type alias for tool invoke hook
# Returns: (response_content, message_file_ids, tool_invoke_meta)
ToolInvokeHook = Callable[["Tool", dict[str, Any], str], tuple[str, list[str], ToolInvokeMeta]]
class AgentPattern(ABC):
"""Base class for agent execution strategies."""
def __init__(
self,
model_instance: ModelInstance,
tools: list[Tool],
context: ExecutionContext,
max_iterations: int = 10,
workflow_call_depth: int = 0,
files: list[File] = [],
tool_invoke_hook: ToolInvokeHook | None = None,
):
"""Initialize the agent strategy."""
self.model_instance = model_instance
self.tools = tools
self.context = context
self.max_iterations = min(max_iterations, 99) # Cap at 99 iterations
self.workflow_call_depth = workflow_call_depth
self.files: list[File] = files
self.tool_invoke_hook = tool_invoke_hook
@abstractmethod
def run(
self,
prompt_messages: list[PromptMessage],
model_parameters: dict[str, Any],
stop: list[str]
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
"""Execute the agent strategy."""
pass
def _accumulate_usage(self, total_usage: dict[str, Any], delta_usage: LLMUsage) -> None:
"""Accumulate LLM usage statistics."""
if not total_usage.get("usage"):
# Create a copy to avoid modifying the original
total_usage["usage"] = LLMUsage(
prompt_tokens=delta_usage.prompt_tokens,
prompt_unit_price=delta_usage.prompt_unit_price,
prompt_price_unit=delta_usage.prompt_price_unit,
prompt_price=delta_usage.prompt_price,
completion_tokens=delta_usage.completion_tokens,
completion_unit_price=delta_usage.completion_unit_price,
completion_price_unit=delta_usage.completion_price_unit,
completion_price=delta_usage.completion_price,
total_tokens=delta_usage.total_tokens,
total_price=delta_usage.total_price,
currency=delta_usage.currency,
latency=delta_usage.latency,
)
else:
current: LLMUsage = total_usage["usage"]
current.prompt_tokens += delta_usage.prompt_tokens
current.completion_tokens += delta_usage.completion_tokens
current.total_tokens += delta_usage.total_tokens
current.prompt_price += delta_usage.prompt_price
current.completion_price += delta_usage.completion_price
current.total_price += delta_usage.total_price
def _extract_content(self, content: Any) -> str:
"""Extract text content from message content."""
if isinstance(content, list):
# Content items are PromptMessageContentUnionTypes
text_parts = []
for c in content:
# Check if it's a TextPromptMessageContent (which has data attribute)
if isinstance(c, TextPromptMessageContent):
text_parts.append(c.data)
return "".join(text_parts)
return str(content)
def _has_tool_calls(self, chunk: LLMResultChunk) -> bool:
"""Check if chunk contains tool calls."""
# LLMResultChunk always has delta attribute
return bool(chunk.delta.message and chunk.delta.message.tool_calls)
def _has_tool_calls_result(self, result: LLMResult) -> bool:
"""Check if result contains tool calls (non-streaming)."""
# LLMResult always has message attribute
return bool(result.message and result.message.tool_calls)
def _extract_tool_calls(self, chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
"""Extract tool calls from streaming chunk."""
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
if chunk.delta.message and chunk.delta.message.tool_calls:
for tool_call in chunk.delta.message.tool_calls:
if tool_call.function:
try:
args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
except json.JSONDecodeError:
args = {}
tool_calls.append((tool_call.id or "", tool_call.function.name, args))
return tool_calls
def _extract_tool_calls_result(self, result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
"""Extract tool calls from non-streaming result."""
tool_calls = []
if result.message and result.message.tool_calls:
for tool_call in result.message.tool_calls:
if tool_call.function:
try:
args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
except json.JSONDecodeError:
args = {}
tool_calls.append((tool_call.id or "", tool_call.function.name, args))
return tool_calls
def _extract_text_from_message(self, message: PromptMessage) -> str:
"""Extract text content from a prompt message."""
# PromptMessage always has content attribute
content = message.content
if isinstance(content, str):
return content
elif isinstance(content, list):
# Extract text from content list
text_parts = []
for item in content:
if isinstance(item, TextPromptMessageContent):
text_parts.append(item.data)
return " ".join(text_parts)
return ""
def _get_tool_metadata(self, tool_instance: Tool) -> dict[AgentLog.LogMetadata, Any]:
"""Get metadata for a tool including provider and icon info."""
from core.tools.tool_manager import ToolManager
metadata: dict[AgentLog.LogMetadata, Any] = {}
if tool_instance.entity and tool_instance.entity.identity:
identity = tool_instance.entity.identity
if identity.provider:
metadata[AgentLog.LogMetadata.PROVIDER] = identity.provider
# Get icon using ToolManager for proper URL generation
tenant_id = self.context.tenant_id
if tenant_id and identity.provider:
try:
provider_type = tool_instance.tool_provider_type()
icon = ToolManager.get_tool_icon(tenant_id, provider_type, identity.provider)
if isinstance(icon, str):
metadata[AgentLog.LogMetadata.ICON] = icon
elif isinstance(icon, dict):
# Handle icon dict with background/content or light/dark variants
metadata[AgentLog.LogMetadata.ICON] = icon
except Exception:
# Fallback to identity.icon if ToolManager fails
if identity.icon:
metadata[AgentLog.LogMetadata.ICON] = identity.icon
elif identity.icon:
metadata[AgentLog.LogMetadata.ICON] = identity.icon
return metadata
def _create_log(
self,
label: str,
log_type: AgentLog.LogType,
status: AgentLog.LogStatus,
data: dict[str, Any] | None = None,
parent_id: str | None = None,
extra_metadata: dict[AgentLog.LogMetadata, Any] | None = None,
) -> AgentLog:
"""Create a new AgentLog with standard metadata."""
metadata: dict[AgentLog.LogMetadata, Any] = {
AgentLog.LogMetadata.STARTED_AT: time.perf_counter(),
}
if extra_metadata:
metadata.update(extra_metadata)
return AgentLog(
label=label,
log_type=log_type,
status=status,
data=data or {},
parent_id=parent_id,
metadata=metadata,
)
def _finish_log(
self,
log: AgentLog,
data: dict[str, Any] | None = None,
usage: LLMUsage | None = None,
) -> AgentLog:
"""Finish an AgentLog by updating its status and metadata."""
log.status = AgentLog.LogStatus.SUCCESS
if data is not None:
log.data = data
# Calculate elapsed time
started_at = log.metadata.get(AgentLog.LogMetadata.STARTED_AT, time.perf_counter())
finished_at = time.perf_counter()
# Update metadata
log.metadata = {
**log.metadata,
AgentLog.LogMetadata.FINISHED_AT: finished_at,
# Calculate elapsed time in seconds
AgentLog.LogMetadata.ELAPSED_TIME: round(finished_at - started_at, 4),
}
# Add usage information if provided
if usage:
log.metadata.update(
{
AgentLog.LogMetadata.TOTAL_PRICE: usage.total_price,
AgentLog.LogMetadata.CURRENCY: usage.currency,
AgentLog.LogMetadata.TOTAL_TOKENS: usage.total_tokens,
AgentLog.LogMetadata.LLM_USAGE: usage,
}
)
return log
def _replace_file_references(self, tool_args: dict[str, Any]) -> dict[str, Any]:
"""
Replace file references in tool arguments with actual File objects.
Args:
tool_args: Dictionary of tool arguments
Returns:
Updated tool arguments with file references replaced
"""
# Process each argument in the dictionary
processed_args: dict[str, Any] = {}
for key, value in tool_args.items():
processed_args[key] = self._process_file_reference(value)
return processed_args
def _process_file_reference(self, data: Any) -> Any:
"""
Recursively process data to replace file references.
Supports both single file [File: file_id] and multiple files [Files: file_id1, file_id2, ...].
Args:
data: The data to process (can be dict, list, str, or other types)
Returns:
Processed data with file references replaced
"""
single_file_pattern = re.compile(r"^\[File:\s*([^\]]+)\]$")
multiple_files_pattern = re.compile(r"^\[Files:\s*([^\]]+)\]$")
if isinstance(data, dict):
# Process dictionary recursively
return {key: self._process_file_reference(value) for key, value in data.items()}
elif isinstance(data, list):
# Process list recursively
return [self._process_file_reference(item) for item in data]
elif isinstance(data, str):
# Check for single file pattern [File: file_id]
single_match = single_file_pattern.match(data.strip())
if single_match:
file_id = single_match.group(1).strip()
# Find the file in self.files
for file in self.files:
if file.id and str(file.id) == file_id:
return file
# If file not found, return original value
return data
# Check for multiple files pattern [Files: file_id1, file_id2, ...]
multiple_match = multiple_files_pattern.match(data.strip())
if multiple_match:
file_ids_str = multiple_match.group(1).strip()
# Split by comma and strip whitespace
file_ids = [fid.strip() for fid in file_ids_str.split(",")]
# Find all matching files
matched_files: list[File] = []
for file_id in file_ids:
for file in self.files:
if file.id and str(file.id) == file_id:
matched_files.append(file)
break
# Return list of files if any were found, otherwise return original
return matched_files or data
return data
else:
# Return other types as-is
return data
def _create_text_chunk(self, text: str, prompt_messages: list[PromptMessage]) -> LLMResultChunk:
"""Create a text chunk for streaming."""
return LLMResultChunk(
model=self.model_instance.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(content=text),
usage=None,
),
system_fingerprint="",
)
def _invoke_tool(
self,
tool_instance: Tool,
tool_args: dict[str, Any],
tool_name: str,
) -> tuple[str, list[File], ToolInvokeMeta | None]:
"""
Invoke a tool and collect its response.
Args:
tool_instance: The tool instance to invoke
tool_args: Tool arguments
tool_name: Name of the tool
Returns:
Tuple of (response_content, tool_files, tool_invoke_meta)
"""
# Process tool_args to replace file references with actual File objects
tool_args = self._replace_file_references(tool_args)
# If a tool invoke hook is set, use it instead of generic_invoke
if self.tool_invoke_hook:
response_content, _, tool_invoke_meta = self.tool_invoke_hook(tool_instance, tool_args, tool_name)
# Note: message_file_ids are stored in DB, we don't convert them to File objects here
# The caller (AgentAppRunner) handles file publishing
return response_content, [], tool_invoke_meta
# Default: use generic_invoke for workflow scenarios
# Import here to avoid circular import
from core.tools.tool_engine import DifyWorkflowCallbackHandler, ToolEngine
tool_response = ToolEngine().generic_invoke(
tool=tool_instance,
tool_parameters=tool_args,
user_id=self.context.user_id or "",
workflow_tool_callback=DifyWorkflowCallbackHandler(),
workflow_call_depth=self.workflow_call_depth,
app_id=self.context.app_id,
conversation_id=self.context.conversation_id,
message_id=self.context.message_id,
)
# Collect response and files
response_content = ""
tool_files: list[File] = []
for response in tool_response:
if response.type == ToolInvokeMessage.MessageType.TEXT:
assert isinstance(response.message, ToolInvokeMessage.TextMessage)
response_content += response.message.text
elif response.type == ToolInvokeMessage.MessageType.LINK:
# Handle link messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
response_content += f"[Link: {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.IMAGE:
# Handle image URL messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
response_content += f"[Image: {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK:
# Handle image link messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
response_content += f"[Image: {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.BINARY_LINK:
# Handle binary file link messages
if isinstance(response.message, ToolInvokeMessage.TextMessage):
filename = response.meta.get("filename", "file") if response.meta else "file"
response_content += f"[File: {filename} - {response.message.text}]"
elif response.type == ToolInvokeMessage.MessageType.JSON:
# Handle JSON messages
if isinstance(response.message, ToolInvokeMessage.JsonMessage):
response_content += json.dumps(response.message.json_object, ensure_ascii=False, indent=2)
elif response.type == ToolInvokeMessage.MessageType.BLOB:
# Handle blob messages - convert to text representation
if isinstance(response.message, ToolInvokeMessage.BlobMessage):
mime_type = (
response.meta.get("mime_type", "application/octet-stream")
if response.meta
else "application/octet-stream"
)
size = len(response.message.blob)
response_content += f"[Binary data: {mime_type}, size: {size} bytes]"
elif response.type == ToolInvokeMessage.MessageType.VARIABLE:
# Handle variable messages
if isinstance(response.message, ToolInvokeMessage.VariableMessage):
var_name = response.message.variable_name
var_value = response.message.variable_value
if isinstance(var_value, str):
response_content += var_value
else:
response_content += f"[Variable {var_name}: {json.dumps(var_value, ensure_ascii=False)}]"
elif response.type == ToolInvokeMessage.MessageType.BLOB_CHUNK:
# Handle blob chunk messages - these are parts of a larger blob
if isinstance(response.message, ToolInvokeMessage.BlobChunkMessage):
response_content += f"[Blob chunk {response.message.sequence}: {len(response.message.blob)} bytes]"
elif response.type == ToolInvokeMessage.MessageType.RETRIEVER_RESOURCES:
# Handle retriever resources messages
if isinstance(response.message, ToolInvokeMessage.RetrieverResourceMessage):
response_content += response.message.context
elif response.type == ToolInvokeMessage.MessageType.FILE:
# Extract file from meta
if response.meta and "file" in response.meta:
file = response.meta["file"]
if isinstance(file, File):
# Check if file is for model or tool output
if response.meta.get("target") == "self":
# File is for model - add to files for next prompt
self.files.append(file)
response_content += f"File '{file.filename}' has been loaded into your context."
else:
# File is tool output
tool_files.append(file)
return response_content, tool_files, None
def _find_tool_by_name(self, tool_name: str) -> Tool | None:
"""Find a tool instance by its name."""
for tool in self.tools:
if tool.entity.identity.name == tool_name:
return tool
return None
def _convert_tools_to_prompt_format(self) -> list[PromptMessageTool]:
"""Convert tools to prompt message format."""
prompt_tools: list[PromptMessageTool] = []
for tool in self.tools:
if tool.entity.identity.name == ILLEGAL_OUTPUT_TOOL:
continue
prompt_tools.append(tool.to_prompt_message_tool())
return prompt_tools
def _update_usage_with_empty(self, llm_usage: dict[str, Any]) -> None:
"""Initialize usage tracking with empty usage if not set."""
if "usage" not in llm_usage or llm_usage["usage"] is None:
llm_usage["usage"] = LLMUsage.empty_usage()

View File

@ -1,357 +0,0 @@
"""Function Call strategy implementation."""
import json
import uuid
from collections.abc import Generator
from typing import Any, Literal, Protocol, Union, cast
from core.agent.entities import AgentLog, AgentResult
from core.agent.output_tools import (
ILLEGAL_OUTPUT_TOOL,
TERMINAL_OUTPUT_MESSAGE,
)
from core.file import File
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
LLMUsage,
PromptMessage,
PromptMessageTool,
ToolPromptMessage,
)
from core.tools.entities.tool_entities import ToolInvokeMeta
from .base import AgentPattern
class FunctionCallStrategy(AgentPattern):
"""Function Call strategy using model's native tool calling capability."""
def run(
self,
prompt_messages: list[PromptMessage],
model_parameters: dict[str, Any],
stop: list[str]
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
"""Execute the function call agent strategy."""
# Convert tools to prompt format
prompt_tools: list[PromptMessageTool] = self._convert_tools_to_prompt_format()
# Initialize tracking
iteration_step: int = 1
max_iterations: int = self.max_iterations + 1
function_call_state: bool = True
total_usage: dict[str, LLMUsage | None] = {"usage": None}
messages: list[PromptMessage] = list(prompt_messages) # Create mutable copy
final_text: str = ""
final_tool_args: dict[str, Any] = {"!!!": "!!!"}
finish_reason: str | None = None
output_files: list[File] = [] # Track files produced by tools
class _LLMInvoker(Protocol):
def invoke_llm(
self,
*,
prompt_messages: list[PromptMessage],
model_parameters: dict[str, Any],
tools: list[PromptMessageTool],
stop: list[str],
stream: Literal[False],
user: str | None,
callbacks: list[Any],
) -> LLMResult: ...
while function_call_state and iteration_step <= max_iterations:
function_call_state = False
round_log = self._create_log(
label=f"ROUND {iteration_step}",
log_type=AgentLog.LogType.ROUND,
status=AgentLog.LogStatus.START,
data={},
)
yield round_log
model_log = self._create_log(
label=f"{self.model_instance.model} Thought",
log_type=AgentLog.LogType.THOUGHT,
status=AgentLog.LogStatus.START,
data={},
parent_id=round_log.id,
extra_metadata={
AgentLog.LogMetadata.PROVIDER: self.model_instance.provider,
},
)
yield model_log
# Track usage for this round only
round_usage: dict[str, LLMUsage | None] = {"usage": None}
# Invoke model
invoker = cast(_LLMInvoker, self.model_instance)
chunks = invoker.invoke_llm(
prompt_messages=messages,
model_parameters=model_parameters,
tools=prompt_tools,
stop=stop,
stream=False,
user=self.context.user_id,
callbacks=[],
)
# Process response
tool_calls, response_content, chunk_finish_reason = yield from self._handle_chunks(
chunks, round_usage, model_log, emit_chunks=False
)
if response_content:
replaced_tool_call = (
str(uuid.uuid4()),
ILLEGAL_OUTPUT_TOOL,
{
"raw": response_content,
},
)
tool_calls.append(replaced_tool_call)
messages.append(self._create_assistant_message("", tool_calls))
# Accumulate to total usage
round_usage_value = round_usage.get("usage")
if round_usage_value:
self._accumulate_usage(total_usage, round_usage_value)
# Update finish reason
if chunk_finish_reason:
finish_reason = chunk_finish_reason
assert len(tool_calls) > 0
# Process tool calls
tool_outputs: dict[str, str] = {}
function_call_state = True
# Execute tools
for tool_call_id, tool_name, tool_args in tool_calls:
tool_response, tool_files, _ = yield from self._handle_tool_call(
tool_name, tool_args, tool_call_id, messages, round_log
)
tool_entity = self._find_tool_by_name(tool_name)
if not tool_entity:
raise ValueError(f"Tool {tool_name} not found")
tool_outputs[tool_name] = tool_response
# Track files produced by tools
output_files.extend(tool_files)
if tool_response == TERMINAL_OUTPUT_MESSAGE:
function_call_state = False
final_tool_args = tool_entity.transform_tool_parameters_type(
tool_args
)
yield self._finish_log(
round_log,
data={
"llm_result": response_content,
"tool_calls": [
{"name": tc[1], "args": tc[2], "output": tool_outputs.get(tc[1], "")} for tc in tool_calls
]
if tool_calls
else [],
"final_answer": final_text if not function_call_state else None,
},
usage=round_usage.get("usage"),
)
iteration_step += 1
# Return final result
from core.agent.entities import AgentResult
output_payload: str | dict
output_text = final_tool_args.get("text")
output_structured_payload = final_tool_args.get("data")
if isinstance(output_structured_payload, dict):
output_payload = output_structured_payload
elif isinstance(output_text, str):
output_payload = output_text
else:
raise ValueError("Final output is not a string or structured data.")
return AgentResult(
output=output_payload,
files=output_files,
usage=total_usage.get("usage") or LLMUsage.empty_usage(),
finish_reason=finish_reason,
)
def _handle_chunks(
self,
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult],
llm_usage: dict[str, LLMUsage | None],
start_log: AgentLog,
*,
emit_chunks: bool,
) -> Generator[
LLMResultChunk | AgentLog,
None,
tuple[list[tuple[str, str, dict[str, Any]]], str, str | None],
]:
"""Handle LLM response chunks and extract tool calls and content.
Returns a tuple of (tool_calls, response_content, finish_reason).
"""
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
response_content: str = ""
finish_reason: str | None = None
if isinstance(chunks, Generator):
# Streaming response
for chunk in chunks:
# Extract tool calls
if self._has_tool_calls(chunk):
tool_calls.extend(self._extract_tool_calls(chunk))
# Extract content
if chunk.delta.message and chunk.delta.message.content:
response_content += self._extract_content(chunk.delta.message.content)
# Track usage
if chunk.delta.usage:
self._accumulate_usage(llm_usage, chunk.delta.usage)
# Capture finish reason
if chunk.delta.finish_reason:
finish_reason = chunk.delta.finish_reason
if emit_chunks:
yield chunk
else:
# Non-streaming response
result: LLMResult = chunks
if self._has_tool_calls_result(result):
tool_calls.extend(self._extract_tool_calls_result(result))
if result.message and result.message.content:
response_content += self._extract_content(result.message.content)
if result.usage:
self._accumulate_usage(llm_usage, result.usage)
# Convert to streaming format
if emit_chunks:
yield LLMResultChunk(
model=result.model,
prompt_messages=result.prompt_messages,
delta=LLMResultChunkDelta(index=0, message=result.message, usage=result.usage),
)
yield self._finish_log(
start_log,
data={
"result": response_content,
},
usage=llm_usage.get("usage"),
)
return tool_calls, response_content, finish_reason
@staticmethod
def _format_output_text(value: Any) -> str:
if value is None:
return ""
if isinstance(value, str):
return value
return json.dumps(value, ensure_ascii=False)
def _create_assistant_message(
self, content: str, tool_calls: list[tuple[str, str, dict[str, Any]]] | None = None
) -> AssistantPromptMessage:
"""Create assistant message with tool calls."""
if tool_calls is None:
return AssistantPromptMessage(content=content)
return AssistantPromptMessage(
content=content or "",
tool_calls=[
AssistantPromptMessage.ToolCall(
id=tc[0],
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name=tc[1], arguments=json.dumps(tc[2])),
)
for tc in tool_calls
],
)
def _handle_tool_call(
self,
tool_name: str,
tool_args: dict[str, Any],
tool_call_id: str,
messages: list[PromptMessage],
round_log: AgentLog,
) -> Generator[AgentLog, None, tuple[str, list[File], ToolInvokeMeta | None]]:
"""Handle a single tool call and return response with files and meta."""
# Find tool
tool_instance = self._find_tool_by_name(tool_name)
if not tool_instance:
raise ValueError(f"Tool {tool_name} not found")
# Get tool metadata (provider, icon, etc.)
tool_metadata = self._get_tool_metadata(tool_instance)
# Create tool call log
tool_call_log = self._create_log(
label=f"CALL {tool_name}",
log_type=AgentLog.LogType.TOOL_CALL,
status=AgentLog.LogStatus.START,
data={
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"tool_args": tool_args,
},
parent_id=round_log.id,
extra_metadata=tool_metadata,
)
yield tool_call_log
# Invoke tool using base class method with error handling
try:
response_content, tool_files, tool_invoke_meta = self._invoke_tool(tool_instance, tool_args, tool_name)
yield self._finish_log(
tool_call_log,
data={
**tool_call_log.data,
"output": response_content,
"files": len(tool_files),
"meta": tool_invoke_meta.to_dict() if tool_invoke_meta else None,
},
)
final_content = response_content or "Tool executed successfully"
# Add tool response to messages
messages.append(
ToolPromptMessage(
content=final_content,
tool_call_id=tool_call_id,
name=tool_name,
)
)
return response_content, tool_files, tool_invoke_meta
except Exception as e:
# Tool invocation failed, yield error log
error_message = str(e)
tool_call_log.status = AgentLog.LogStatus.ERROR
tool_call_log.error = error_message
tool_call_log.data = {
**tool_call_log.data,
"error": error_message,
}
yield tool_call_log
# Add error message to conversation
error_content = f"Tool execution failed: {error_message}"
messages.append(
ToolPromptMessage(
content=error_content,
tool_call_id=tool_call_id,
name=tool_name,
)
)
return error_content, [], None

View File

@ -1,484 +0,0 @@
"""ReAct strategy implementation."""
from __future__ import annotations
import json
from collections.abc import Generator
from typing import TYPE_CHECKING, Any
from core.agent.entities import AgentLog, AgentResult, AgentScratchpadUnit, ExecutionContext
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
from core.agent.output_tools import (
FINAL_OUTPUT_TOOL,
FINAL_STRUCTURED_OUTPUT_TOOL,
ILLEGAL_OUTPUT_TOOL,
OUTPUT_TEXT_TOOL,
OUTPUT_TOOL_NAME_SET,
)
from core.file import File
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
PromptMessage,
SystemPromptMessage,
)
from .base import AgentPattern, ToolInvokeHook
if TYPE_CHECKING:
from core.tools.__base.tool import Tool
class ReActStrategy(AgentPattern):
"""ReAct strategy using reasoning and acting approach."""
def __init__(
self,
model_instance: ModelInstance,
tools: list[Tool],
context: ExecutionContext,
max_iterations: int = 10,
workflow_call_depth: int = 0,
files: list[File] = [],
tool_invoke_hook: ToolInvokeHook | None = None,
instruction: str = "",
):
"""Initialize the ReAct strategy with instruction support."""
super().__init__(
model_instance=model_instance,
tools=tools,
context=context,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
files=files,
tool_invoke_hook=tool_invoke_hook,
)
self.instruction = instruction
def run(
self,
prompt_messages:
list[PromptMessage],
model_parameters: dict[str, Any],
stop: list[str]
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
"""Execute the ReAct agent strategy."""
# Initialize tracking
agent_scratchpad: list[AgentScratchpadUnit] = []
iteration_step: int = 1
max_iterations: int = self.max_iterations + 1
react_state: bool = True
total_usage: dict[str, Any] = {"usage": None}
output_files: list[File] = [] # Track files produced by tools
final_text: str = ""
finish_reason: str | None = None
tool_instance_names = {tool.entity.identity.name for tool in self.tools}
available_output_tool_names = {
tool_name
for tool_name in tool_instance_names
if tool_name in OUTPUT_TOOL_NAME_SET and tool_name != ILLEGAL_OUTPUT_TOOL
}
if FINAL_STRUCTURED_OUTPUT_TOOL in available_output_tool_names:
terminal_tool_name = FINAL_STRUCTURED_OUTPUT_TOOL
elif FINAL_OUTPUT_TOOL in available_output_tool_names:
terminal_tool_name = FINAL_OUTPUT_TOOL
else:
raise ValueError("No terminal output tool configured")
allow_illegal_output = ILLEGAL_OUTPUT_TOOL in tool_instance_names
# Add "Observation" to stop sequences
if "Observation" not in stop:
stop = stop.copy()
stop.append("Observation")
while react_state and iteration_step <= max_iterations:
react_state = False
round_log = self._create_log(
label=f"ROUND {iteration_step}",
log_type=AgentLog.LogType.ROUND,
status=AgentLog.LogStatus.START,
data={},
)
yield round_log
# Build prompt with tool restrictions on last iteration
if iteration_step == max_iterations:
tools_for_prompt = [
tool for tool in self.tools if tool.entity.identity.name in available_output_tool_names
]
else:
tools_for_prompt = [tool for tool in self.tools if tool.entity.identity.name != ILLEGAL_OUTPUT_TOOL]
current_messages = self._build_prompt_with_react_format(
prompt_messages, agent_scratchpad, tools_for_prompt, self.instruction
)
model_log = self._create_log(
label=f"{self.model_instance.model} Thought",
log_type=AgentLog.LogType.THOUGHT,
status=AgentLog.LogStatus.START,
data={},
parent_id=round_log.id,
extra_metadata={
AgentLog.LogMetadata.PROVIDER: self.model_instance.provider,
},
)
yield model_log
# Track usage for this round only
round_usage: dict[str, Any] = {"usage": None}
# Use current messages directly (files are handled by base class if needed)
messages_to_use = current_messages
# Invoke model
chunks = self.model_instance.invoke_llm(
prompt_messages=messages_to_use,
model_parameters=model_parameters,
stop=stop,
stream=False,
user=self.context.user_id or "",
callbacks=[],
)
# Process response
scratchpad, chunk_finish_reason = yield from self._handle_chunks(
chunks, round_usage, model_log, current_messages, emit_chunks=False
)
agent_scratchpad.append(scratchpad)
# Accumulate to total usage
round_usage_value = round_usage.get("usage")
if round_usage_value:
self._accumulate_usage(total_usage, round_usage_value)
# Update finish reason
if chunk_finish_reason:
finish_reason = chunk_finish_reason
# Check if we have an action to execute
if scratchpad.action is None:
if not allow_illegal_output:
raise ValueError("Model did not call any tools")
illegal_action = AgentScratchpadUnit.Action(
action_name=ILLEGAL_OUTPUT_TOOL,
action_input={"raw": scratchpad.thought or ""},
)
scratchpad.action = illegal_action
scratchpad.action_str = illegal_action.model_dump_json()
react_state = True
observation, tool_files = yield from self._handle_tool_call(illegal_action, current_messages, round_log)
scratchpad.observation = observation
output_files.extend(tool_files)
else:
action_name = scratchpad.action.action_name
if action_name == OUTPUT_TEXT_TOOL and isinstance(scratchpad.action.action_input, dict):
pass # output_text_payload = scratchpad.action.action_input.get("text")
elif action_name == FINAL_STRUCTURED_OUTPUT_TOOL and isinstance(scratchpad.action.action_input, dict):
data = scratchpad.action.action_input.get("data")
if isinstance(data, dict):
pass # structured_output_payload = data
elif action_name == FINAL_OUTPUT_TOOL:
if isinstance(scratchpad.action.action_input, dict):
final_text = self._format_output_text(scratchpad.action.action_input.get("text"))
else:
final_text = self._format_output_text(scratchpad.action.action_input)
observation, tool_files = yield from self._handle_tool_call(
scratchpad.action, current_messages, round_log
)
scratchpad.observation = observation
output_files.extend(tool_files)
if action_name == terminal_tool_name:
pass # terminal_output_seen = True
react_state = False
else:
react_state = True
yield self._finish_log(
round_log,
data={
"thought": scratchpad.thought,
"action": scratchpad.action_str if scratchpad.action else None,
"observation": scratchpad.observation or None,
"final_answer": final_text if not react_state else None,
},
usage=round_usage.get("usage"),
)
iteration_step += 1
# Return final result
output_payload: str | dict
# TODO
return AgentResult(
output=output_payload,
files=output_files,
usage=total_usage.get("usage"),
finish_reason=finish_reason,
)
def _build_prompt_with_react_format(
self,
original_messages: list[PromptMessage],
agent_scratchpad: list[AgentScratchpadUnit],
tools: list[Tool] | None,
instruction: str = "",
) -> list[PromptMessage]:
"""Build prompt messages with ReAct format."""
# Copy messages to avoid modifying original
messages = list(original_messages)
# Find and update the system prompt that should already exist
system_prompt_found = False
for i, msg in enumerate(messages):
if isinstance(msg, SystemPromptMessage):
system_prompt_found = True
# The system prompt from frontend already has the template, just replace placeholders
# Format tools
tools_str = ""
tool_names = []
if tools:
# Convert tools to prompt message tools format
prompt_tools = [
tool.to_prompt_message_tool()
for tool in tools
if tool.entity.identity.name != ILLEGAL_OUTPUT_TOOL
]
tool_names = [tool.name for tool in prompt_tools]
# Format tools as JSON for comprehensive information
from core.model_runtime.utils.encoders import jsonable_encoder
tools_str = json.dumps(jsonable_encoder(prompt_tools), indent=2)
tool_names_str = ", ".join(f'"{name}"' for name in tool_names)
else:
tools_str = "No tools available"
tool_names_str = ""
final_tool_name = FINAL_OUTPUT_TOOL
if FINAL_STRUCTURED_OUTPUT_TOOL in tool_names:
final_tool_name = FINAL_STRUCTURED_OUTPUT_TOOL
if final_tool_name not in tool_names:
raise ValueError("No terminal output tool available for prompt")
# Replace placeholders in the existing system prompt
updated_content = msg.content
assert isinstance(updated_content, str)
updated_content = updated_content.replace("{{instruction}}", instruction)
updated_content = updated_content.replace("{{tools}}", tools_str)
updated_content = updated_content.replace("{{tool_names}}", tool_names_str)
updated_content = updated_content.replace("{{final_tool_name}}", final_tool_name)
# Create new SystemPromptMessage with updated content
messages[i] = SystemPromptMessage(content=updated_content)
break
# If no system prompt found, that's unexpected but add scratchpad anyway
if not system_prompt_found:
# This shouldn't happen if frontend is working correctly
pass
# Format agent scratchpad
scratchpad_str = ""
if agent_scratchpad:
scratchpad_parts: list[str] = []
for unit in agent_scratchpad:
if unit.thought:
scratchpad_parts.append(f"Thought: {unit.thought}")
if unit.action_str:
scratchpad_parts.append(f"Action:\n```\n{unit.action_str}\n```")
if unit.observation:
scratchpad_parts.append(f"Observation: {unit.observation}")
scratchpad_str = "\n".join(scratchpad_parts)
# If there's a scratchpad, append it to the last message
if scratchpad_str:
messages.append(AssistantPromptMessage(content=scratchpad_str))
return messages
def _handle_chunks(
self,
chunks: LLMResult,
llm_usage: dict[str, Any],
model_log: AgentLog,
current_messages: list[PromptMessage],
*,
emit_chunks: bool,
) -> Generator[
LLMResultChunk | AgentLog,
None,
tuple[AgentScratchpadUnit, str | None],
]:
"""Handle LLM response chunks and extract action/thought.
Returns a tuple of (scratchpad_unit, finish_reason).
"""
usage_dict: dict[str, Any] = {}
def result_to_chunks() -> Generator[LLMResultChunk, None, None]:
yield LLMResultChunk(
model=chunks.model,
prompt_messages=chunks.prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=chunks.message,
usage=chunks.usage,
finish_reason=None, # LLMResult doesn't have finish_reason, only streaming chunks do
),
system_fingerprint=chunks.system_fingerprint or "",
)
streaming_chunks = result_to_chunks()
react_chunks = CotAgentOutputParser.handle_react_stream_output(streaming_chunks, usage_dict)
# Initialize scratchpad unit
scratchpad = AgentScratchpadUnit(
agent_response="",
thought="",
action_str="",
observation="",
action=None,
)
finish_reason: str | None = None
# Process chunks
for chunk in react_chunks:
if isinstance(chunk, AgentScratchpadUnit.Action):
# Action detected
action_str = json.dumps(chunk.model_dump())
scratchpad.agent_response = (scratchpad.agent_response or "") + action_str
scratchpad.action_str = action_str
scratchpad.action = chunk
if emit_chunks:
yield self._create_text_chunk(json.dumps(chunk.model_dump()), current_messages)
elif isinstance(chunk, str):
# Text chunk
chunk_text = str(chunk)
scratchpad.agent_response = (scratchpad.agent_response or "") + chunk_text
scratchpad.thought = (scratchpad.thought or "") + chunk_text
if emit_chunks:
yield self._create_text_chunk(chunk_text, current_messages)
else:
raise ValueError(f"Unexpected chunk type: {type(chunk)}")
# Update usage
if usage_dict.get("usage"):
if llm_usage.get("usage"):
self._accumulate_usage(llm_usage, usage_dict["usage"])
else:
llm_usage["usage"] = usage_dict["usage"]
# Clean up thought
scratchpad.thought = (scratchpad.thought or "").strip() or "I am thinking about how to help you"
# Finish model log
yield self._finish_log(
model_log,
data={
"thought": scratchpad.thought,
"action": scratchpad.action_str if scratchpad.action else None,
},
usage=llm_usage.get("usage"),
)
return scratchpad, finish_reason
@staticmethod
def _format_output_text(value: Any) -> str:
if value is None:
return ""
if isinstance(value, str):
return value
return json.dumps(value, ensure_ascii=False)
def _handle_tool_call(
self,
action: AgentScratchpadUnit.Action,
prompt_messages: list[PromptMessage],
round_log: AgentLog,
) -> Generator[AgentLog, None, tuple[str, list[File]]]:
"""Handle tool call and return observation with files."""
tool_name = action.action_name
tool_args: dict[str, Any] | str = action.action_input
# Find tool instance first to get metadata
tool_instance = self._find_tool_by_name(tool_name)
tool_metadata = self._get_tool_metadata(tool_instance) if tool_instance else {}
# Start tool log with tool metadata
tool_log = self._create_log(
label=f"CALL {tool_name}",
log_type=AgentLog.LogType.TOOL_CALL,
status=AgentLog.LogStatus.START,
data={
"tool_name": tool_name,
"tool_args": tool_args,
},
parent_id=round_log.id,
extra_metadata=tool_metadata,
)
yield tool_log
if not tool_instance:
# Finish tool log with error
yield self._finish_log(
tool_log,
data={
**tool_log.data,
"error": f"Tool {tool_name} not found",
},
)
return f"Tool {tool_name} not found", []
# Ensure tool_args is a dict
tool_args_dict: dict[str, Any]
if isinstance(tool_args, str):
try:
tool_args_dict = json.loads(tool_args)
except json.JSONDecodeError:
tool_args_dict = {"input": tool_args}
elif not isinstance(tool_args, dict):
tool_args_dict = {"input": str(tool_args)}
else:
tool_args_dict = tool_args
# Invoke tool using base class method with error handling
try:
response_content, tool_files, tool_invoke_meta = self._invoke_tool(tool_instance, tool_args_dict, tool_name)
# Finish tool log
yield self._finish_log(
tool_log,
data={
**tool_log.data,
"output": response_content,
"files": len(tool_files),
"meta": tool_invoke_meta.to_dict() if tool_invoke_meta else None,
},
)
return response_content or "Tool executed successfully", tool_files
except Exception as e:
# Tool invocation failed, yield error log
error_message = str(e)
tool_log.status = AgentLog.LogStatus.ERROR
tool_log.error = error_message
tool_log.data = {
**tool_log.data,
"error": error_message,
}
yield tool_log
return f"Tool execution failed: {error_message}", []

View File

@ -1,129 +0,0 @@
"""Strategy factory for creating agent strategies."""
from __future__ import annotations
from collections.abc import Mapping
from typing import TYPE_CHECKING, Any
from core.agent.entities import AgentEntity, ExecutionContext
from core.file.models import File
from core.model_manager import ModelInstance
from core.model_runtime.entities.model_entities import ModelFeature
from ...app.entities.app_invoke_entities import InvokeFrom
from ...tools.entities.tool_entities import ToolInvokeFrom
from ..output_tools import build_agent_output_tools
from .base import AgentPattern, ToolInvokeHook
from .function_call import FunctionCallStrategy
from .react import ReActStrategy
if TYPE_CHECKING:
from core.tools.__base.tool import Tool
class StrategyFactory:
"""Factory for creating agent strategies based on model features."""
# Tool calling related features
TOOL_CALL_FEATURES = {ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL, ModelFeature.STREAM_TOOL_CALL}
@staticmethod
def create_strategy(
*,
tenant_id: str,
invoke_from: InvokeFrom,
tool_invoke_from: ToolInvokeFrom,
model_features: list[ModelFeature],
model_instance: ModelInstance,
context: ExecutionContext,
tools: list[Tool],
files: list[File],
max_iterations: int = 10,
workflow_call_depth: int = 0,
agent_strategy: AgentEntity.Strategy | None = None,
tool_invoke_hook: ToolInvokeHook | None = None,
instruction: str = "",
structured_output_schema: Mapping[str, Any] | None = None
) -> AgentPattern:
"""
Create an appropriate strategy based on model features.
Args:
tenant_id:
invoke_from:
tool_invoke_from:
structured_output_schema:
model_features: List of model features/capabilities
model_instance: Model instance to use
context: Execution context containing trace/audit information
tools: Available tools
files: Available files
max_iterations: Maximum iterations for the strategy
workflow_call_depth: Depth of workflow calls
agent_strategy: Optional explicit strategy override
tool_invoke_hook: Optional hook for custom tool invocation (e.g., agent_invoke)
instruction: Optional instruction for ReAct strategy
Returns:
AgentStrategy instance
"""
output_tools = build_agent_output_tools(
tenant_id=tenant_id,
invoke_from=invoke_from,
tool_invoke_from=tool_invoke_from,
structured_output_schema=structured_output_schema
)
tools.extend(output_tools)
# If explicit strategy is provided and it's Function Calling, try to use it if supported
if agent_strategy == AgentEntity.Strategy.FUNCTION_CALLING:
if set(model_features) & StrategyFactory.TOOL_CALL_FEATURES:
return FunctionCallStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
)
# Fallback to ReAct if FC is requested but not supported
# If explicit strategy is Chain of Thought (ReAct)
if agent_strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
return ReActStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
instruction=instruction,
)
# Default auto-selection logic
if set(model_features) & StrategyFactory.TOOL_CALL_FEATURES:
# Model supports native function calling
return FunctionCallStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
)
else:
# Use ReAct strategy for models without function calling
return ReActStrategy(
model_instance=model_instance,
context=context,
tools=tools,
files=files,
max_iterations=max_iterations,
workflow_call_depth=workflow_call_depth,
tool_invoke_hook=tool_invoke_hook,
instruction=instruction,
)

View File

@ -7,7 +7,7 @@ You have access to the following tools:
{{tools}}
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid "action" values: {{tool_names}}. You must call "{{final_tool_name}}" to finish.
Valid "action" values: "Final Answer" or {{tool_names}}
Provide only ONE action per $JSON_BLOB, as shown:
@ -32,14 +32,12 @@ Thought: I know what to respond
Action:
```
{
"action": "{{final_tool_name}}",
"action_input": {
"text": "Final response to human"
}
"action": "Final Answer",
"action_input": "Final response to human"
}
```
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Do not respond with plain text. Format is Action:```$JSON_BLOB```then Observation:.
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
{{historic_messages}}
Question: {{query}}
{{agent_scratchpad}}
@ -58,7 +56,7 @@ You have access to the following tools:
{{tools}}
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid "action" values: {{tool_names}}. You must call "{{final_tool_name}}" to finish.
Valid "action" values: "Final Answer" or {{tool_names}}
Provide only ONE action per $JSON_BLOB, as shown:
@ -83,14 +81,12 @@ Thought: I know what to respond
Action:
```
{
"action": "{{final_tool_name}}",
"action_input": {
"text": "Final response to human"
}
"action": "Final Answer",
"action_input": "Final response to human"
}
```
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Do not respond with plain text. Format is Action:```$JSON_BLOB```then Observation:.
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
""" # noqa: E501

View File

@ -29,13 +29,11 @@ from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
from core.app.entities.app_invoke_entities import AdvancedChatAppGenerateEntity, InvokeFrom
from core.app.entities.task_entities import ChatbotAppBlockingResponse, ChatbotAppStreamResponse
from core.app.layers.sandbox_layer import SandboxLayer
from core.helper.trace_id_helper import extract_external_trace_id_from_args
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.ops.ops_trace_manager import TraceQueueManager
from core.prompt.utils.get_thread_messages_length import get_thread_messages_length
from core.repositories import DifyCoreRepositoryFactory
from core.sandbox import Sandbox
from core.workflow.repositories.draft_variable_repository import (
DraftVariableSaverFactory,
)
@ -47,10 +45,7 @@ from factories import file_factory
from libs.flask_utils import preserve_flask_contexts
from models import Account, App, Conversation, EndUser, Message, Workflow, WorkflowNodeExecutionTriggeredFrom
from models.enums import WorkflowRunTriggeredFrom
from models.workflow_features import WorkflowFeatures
from services.conversation_service import ConversationService
from services.sandbox.sandbox_provider_service import SandboxProviderService
from services.sandbox.sandbox_service import SandboxService
from services.workflow_draft_variable_service import (
DraftVarLoader,
WorkflowDraftVariableService,
@ -522,29 +517,6 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
if workflow is None:
raise ValueError("Workflow not found")
sandbox: Sandbox | None = None
graph_engine_layers: tuple = ()
if workflow.get_feature(WorkflowFeatures.SANDBOX).enabled:
sandbox_provider = SandboxProviderService.get_sandbox_provider(
application_generate_entity.app_config.tenant_id
)
if workflow.version == Workflow.VERSION_DRAFT:
sandbox = SandboxService.create_draft(
tenant_id=application_generate_entity.app_config.tenant_id,
app_id=application_generate_entity.app_config.app_id,
user_id=application_generate_entity.user_id,
sandbox_provider=sandbox_provider,
)
else:
sandbox = SandboxService.create(
tenant_id=application_generate_entity.app_config.tenant_id,
app_id=application_generate_entity.app_config.app_id,
user_id=application_generate_entity.user_id,
sandbox_id=conversation_id,
sandbox_provider=sandbox_provider,
)
graph_engine_layers = (SandboxLayer(sandbox=sandbox),)
# Determine system_user_id based on invocation source
is_external_api_call = application_generate_entity.invoke_from in {
InvokeFrom.WEB_APP,
@ -575,8 +547,6 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
app=app,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
graph_engine_layers=graph_engine_layers,
sandbox=sandbox,
)
try:

View File

@ -25,7 +25,6 @@ from core.app.workflow.layers.persistence import PersistenceWorkflowInfo, Workfl
from core.db.session_factory import session_factory
from core.moderation.base import ModerationError
from core.moderation.input_moderation import InputModeration
from core.sandbox import Sandbox
from core.variables.variables import Variable
from core.workflow.enums import WorkflowType
from core.workflow.graph_engine.command_channels.redis_channel import RedisChannel
@ -67,7 +66,6 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
graph_engine_layers: Sequence[GraphEngineLayer] = (),
sandbox: Sandbox | None = None,
):
super().__init__(
queue_manager=queue_manager,
@ -84,7 +82,6 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
self._app = app
self._workflow_execution_repository = workflow_execution_repository
self._workflow_node_execution_repository = workflow_node_execution_repository
self._sandbox = sandbox
@trace_span(WorkflowAppRunnerHandler)
def run(self):
@ -159,10 +156,6 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
# init graph
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.time())
if self._sandbox:
graph_runtime_state.set_sandbox(self._sandbox)
graph = self._init_graph(
graph_config=self._workflow.graph_dict,
graph_runtime_state=graph_runtime_state,

View File

@ -82,7 +82,7 @@ class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk
@classmethod
@ -110,7 +110,7 @@ class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json", exclude_none=True)
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
metadata = sub_stream_response_dict.get("metadata", {})
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
response_chunk.update(sub_stream_response_dict)
@ -120,6 +120,6 @@ class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
response_chunk.update(sub_stream_response.to_ignore_detail_dict())
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk

View File

@ -4,7 +4,6 @@ import re
import time
from collections.abc import Callable, Generator, Mapping
from contextlib import contextmanager
from dataclasses import dataclass, field
from threading import Thread
from typing import Any, Union
@ -20,7 +19,6 @@ from core.app.entities.app_invoke_entities import (
InvokeFrom,
)
from core.app.entities.queue_entities import (
ChunkType,
MessageQueueMessage,
QueueAdvancedChatMessageEndEvent,
QueueAgentLogEvent,
@ -72,134 +70,13 @@ from core.workflow.runtime import GraphRuntimeState
from core.workflow.system_variable import SystemVariable
from extensions.ext_database import db
from libs.datetime_utils import naive_utc_now
from models import Account, Conversation, EndUser, LLMGenerationDetail, Message, MessageFile
from models import Account, Conversation, EndUser, Message, MessageFile
from models.enums import CreatorUserRole
from models.workflow import Workflow
logger = logging.getLogger(__name__)
@dataclass
class StreamEventBuffer:
"""
Buffer for recording stream events in order to reconstruct the generation sequence.
Records the exact order of text chunks, thoughts, and tool calls as they stream.
"""
# Accumulated reasoning content (each thought block is a separate element)
reasoning_content: list[str] = field(default_factory=list)
# Current reasoning buffer (accumulates until we see a different event type)
_current_reasoning: str = ""
# Tool calls with their details
tool_calls: list[dict] = field(default_factory=list)
# Tool call ID to index mapping for updating results
_tool_call_id_map: dict[str, int] = field(default_factory=dict)
# Sequence of events in stream order
sequence: list[dict] = field(default_factory=list)
# Current position in answer text
_content_position: int = 0
# Track last event type to detect transitions
_last_event_type: str | None = None
def _flush_current_reasoning(self) -> None:
"""Flush accumulated reasoning to the list and add to sequence."""
if self._current_reasoning.strip():
self.reasoning_content.append(self._current_reasoning.strip())
self.sequence.append({"type": "reasoning", "index": len(self.reasoning_content) - 1})
self._current_reasoning = ""
def record_text_chunk(self, text: str) -> None:
"""Record a text chunk event."""
if not text:
return
# Flush any pending reasoning first
if self._last_event_type == "thought":
self._flush_current_reasoning()
text_len = len(text)
start_pos = self._content_position
# If last event was also content, extend it; otherwise create new
if self.sequence and self.sequence[-1].get("type") == "content":
self.sequence[-1]["end"] = start_pos + text_len
else:
self.sequence.append({"type": "content", "start": start_pos, "end": start_pos + text_len})
self._content_position += text_len
self._last_event_type = "content"
def record_thought_chunk(self, text: str) -> None:
"""Record a thought/reasoning chunk event."""
if not text:
return
# Accumulate thought content
self._current_reasoning += text
self._last_event_type = "thought"
def record_tool_call(
self,
tool_call_id: str,
tool_name: str,
tool_arguments: str,
tool_icon: str | dict | None = None,
tool_icon_dark: str | dict | None = None,
) -> None:
"""Record a tool call event."""
if not tool_call_id:
return
# Flush any pending reasoning first
if self._last_event_type == "thought":
self._flush_current_reasoning()
# Check if this tool call already exists (we might get multiple chunks)
if tool_call_id in self._tool_call_id_map:
idx = self._tool_call_id_map[tool_call_id]
# Update arguments if provided
if tool_arguments:
self.tool_calls[idx]["arguments"] = tool_arguments
else:
# New tool call
tool_call = {
"id": tool_call_id or "",
"name": tool_name or "",
"arguments": tool_arguments or "",
"result": "",
"elapsed_time": None,
"icon": tool_icon,
"icon_dark": tool_icon_dark,
}
self.tool_calls.append(tool_call)
idx = len(self.tool_calls) - 1
self._tool_call_id_map[tool_call_id] = idx
self.sequence.append({"type": "tool_call", "index": idx})
self._last_event_type = "tool_call"
def record_tool_result(self, tool_call_id: str, result: str, tool_elapsed_time: float | None = None) -> None:
"""Record a tool result event (update existing tool call)."""
if not tool_call_id:
return
if tool_call_id in self._tool_call_id_map:
idx = self._tool_call_id_map[tool_call_id]
self.tool_calls[idx]["result"] = result
self.tool_calls[idx]["elapsed_time"] = tool_elapsed_time
# Remove from map after result is recorded, so that subsequent calls
# with the same tool_call_id are treated as new tool calls
del self._tool_call_id_map[tool_call_id]
def finalize(self) -> None:
"""Finalize the buffer, flushing any pending data."""
if self._last_event_type == "thought":
self._flush_current_reasoning()
def has_data(self) -> bool:
"""Check if there's any meaningful data recorded."""
return bool(self.reasoning_content or self.tool_calls or self.sequence)
class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
"""
AdvancedChatAppGenerateTaskPipeline is a class that generate stream output and state management for Application.
@ -267,8 +144,6 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
self._workflow_run_id: str = ""
self._draft_var_saver_factory = draft_var_saver_factory
self._graph_runtime_state: GraphRuntimeState | None = None
# Stream event buffer for recording generation sequence
self._stream_buffer = StreamEventBuffer()
self._seed_graph_runtime_state_from_queue_manager()
def process(self) -> Union[ChatbotAppBlockingResponse, Generator[ChatbotAppStreamResponse, None, None]]:
@ -508,7 +383,7 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle text chunk events and record to stream buffer for sequence reconstruction."""
"""Handle text chunk events."""
delta_text = event.text
if delta_text is None:
return
@ -530,53 +405,9 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
if tts_publisher and queue_message:
tts_publisher.publish(queue_message)
tool_call = event.tool_call
tool_result = event.tool_result
tool_payload = tool_call or tool_result
tool_call_id = tool_payload.id if tool_payload and tool_payload.id else ""
tool_name = tool_payload.name if tool_payload and tool_payload.name else ""
tool_arguments = tool_call.arguments if tool_call and tool_call.arguments else ""
tool_files = tool_result.files if tool_result else []
tool_elapsed_time = tool_result.elapsed_time if tool_result else None
tool_icon = tool_payload.icon if tool_payload else None
tool_icon_dark = tool_payload.icon_dark if tool_payload else None
# Record stream event based on chunk type
chunk_type = event.chunk_type or ChunkType.TEXT
match chunk_type:
case ChunkType.TEXT:
self._stream_buffer.record_text_chunk(delta_text)
self._task_state.answer += delta_text
case ChunkType.THOUGHT:
# Reasoning should not be part of final answer text
self._stream_buffer.record_thought_chunk(delta_text)
case ChunkType.TOOL_CALL:
self._stream_buffer.record_tool_call(
tool_call_id=tool_call_id,
tool_name=tool_name,
tool_arguments=tool_arguments,
tool_icon=tool_icon,
tool_icon_dark=tool_icon_dark,
)
case ChunkType.TOOL_RESULT:
self._stream_buffer.record_tool_result(
tool_call_id=tool_call_id,
result=delta_text,
tool_elapsed_time=tool_elapsed_time,
)
case _:
pass
self._task_state.answer += delta_text
yield self._message_cycle_manager.message_to_stream_response(
answer=delta_text,
message_id=self._message_id,
from_variable_selector=event.from_variable_selector,
chunk_type=event.chunk_type.value if event.chunk_type else None,
tool_call_id=tool_call_id or None,
tool_name=tool_name or None,
tool_arguments=tool_arguments or None,
tool_files=tool_files,
tool_elapsed_time=tool_elapsed_time,
tool_icon=tool_icon,
tool_icon_dark=tool_icon_dark,
answer=delta_text, message_id=self._message_id, from_variable_selector=event.from_variable_selector
)
def _handle_iteration_start_event(
@ -944,7 +775,6 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
# If there are assistant files, remove markdown image links from answer
answer_text = self._task_state.answer
answer_text = self._strip_think_blocks(answer_text)
if self._recorded_files:
# Remove markdown image links since we're storing files separately
answer_text = re.sub(r"!\[.*?\]\(.*?\)", "", answer_text).strip()
@ -996,54 +826,6 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
]
session.add_all(message_files)
# Save generation detail (reasoning/tool calls/sequence) from stream buffer
self._save_generation_detail(session=session, message=message)
@staticmethod
def _strip_think_blocks(text: str) -> str:
"""Remove <think>...</think> blocks (including their content) from text."""
if not text or "<think" not in text.lower():
return text
clean_text = re.sub(r"<think[^>]*>.*?</think>", "", text, flags=re.IGNORECASE | re.DOTALL)
clean_text = re.sub(r"\n\s*\n", "\n\n", clean_text).strip()
return clean_text
def _save_generation_detail(self, *, session: Session, message: Message) -> None:
"""
Save LLM generation detail for Chatflow using stream event buffer.
The buffer records the exact order of events as they streamed,
allowing accurate reconstruction of the generation sequence.
"""
# Finalize the stream buffer to flush any pending data
self._stream_buffer.finalize()
# Only save if there's meaningful data
if not self._stream_buffer.has_data():
return
reasoning_content = self._stream_buffer.reasoning_content
tool_calls = self._stream_buffer.tool_calls
sequence = self._stream_buffer.sequence
# Check if generation detail already exists for this message
existing = session.query(LLMGenerationDetail).filter_by(message_id=message.id).first()
if existing:
existing.reasoning_content = json.dumps(reasoning_content) if reasoning_content else None
existing.tool_calls = json.dumps(tool_calls) if tool_calls else None
existing.sequence = json.dumps(sequence) if sequence else None
else:
generation_detail = LLMGenerationDetail(
tenant_id=self._application_generate_entity.app_config.tenant_id,
app_id=self._application_generate_entity.app_config.app_id,
message_id=message.id,
reasoning_content=json.dumps(reasoning_content) if reasoning_content else None,
tool_calls=json.dumps(tool_calls) if tool_calls else None,
sequence=json.dumps(sequence) if sequence else None,
)
session.add(generation_detail)
def _seed_graph_runtime_state_from_queue_manager(self) -> None:
"""Bootstrap the cached runtime state from the queue manager when present."""
candidate = self._base_task_pipeline.queue_manager.graph_runtime_state

View File

@ -3,8 +3,10 @@ from typing import cast
from sqlalchemy import select
from core.agent.agent_app_runner import AgentAppRunner
from core.agent.cot_chat_agent_runner import CotChatAgentRunner
from core.agent.cot_completion_agent_runner import CotCompletionAgentRunner
from core.agent.entities import AgentEntity
from core.agent.fc_agent_runner import FunctionCallAgentRunner
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.base_app_runner import AppRunner
@ -12,7 +14,8 @@ from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.entities.llm_entities import LLMMode
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.moderation.base import ModerationError
from extensions.ext_database import db
@ -191,7 +194,22 @@ class AgentChatAppRunner(AppRunner):
raise ValueError("Message not found")
db.session.close()
runner = AgentAppRunner(
runner_cls: type[FunctionCallAgentRunner] | type[CotChatAgentRunner] | type[CotCompletionAgentRunner]
# start agent runner
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
# check LLM mode
if model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT:
runner_cls = CotChatAgentRunner
elif model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.COMPLETION:
runner_cls = CotCompletionAgentRunner
else:
raise ValueError(f"Invalid LLM mode: {model_schema.model_properties.get(ModelPropertyKey.MODE)}")
elif agent_entity.strategy == AgentEntity.Strategy.FUNCTION_CALLING:
runner_cls = FunctionCallAgentRunner
else:
raise ValueError(f"Invalid agent strategy: {agent_entity.strategy}")
runner = runner_cls(
tenant_id=app_config.tenant_id,
application_generate_entity=application_generate_entity,
conversation=conversation_result,

View File

@ -81,7 +81,7 @@ class AgentChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk
@classmethod
@ -109,7 +109,7 @@ class AgentChatAppGenerateResponseConverter(AppGenerateResponseConverter):
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json", exclude_none=True)
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
metadata = sub_stream_response_dict.get("metadata", {})
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
response_chunk.update(sub_stream_response_dict)
@ -117,6 +117,6 @@ class AgentChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk

View File

@ -81,7 +81,7 @@ class ChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk
@classmethod
@ -109,7 +109,7 @@ class ChatAppGenerateResponseConverter(AppGenerateResponseConverter):
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json", exclude_none=True)
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
metadata = sub_stream_response_dict.get("metadata", {})
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
response_chunk.update(sub_stream_response_dict)
@ -117,6 +117,6 @@ class ChatAppGenerateResponseConverter(AppGenerateResponseConverter):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json", exclude_none=True))
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk

View File

@ -70,8 +70,6 @@ class _NodeSnapshot:
"""Empty string means the node is not executing inside an iteration."""
loop_id: str = ""
"""Empty string means the node is not executing inside a loop."""
parent_node_id: str = ""
"""Empty string means the node is not an nested node (extractor node)."""
class WorkflowResponseConverter:
@ -133,7 +131,6 @@ class WorkflowResponseConverter:
start_at=event.start_at,
iteration_id=event.in_iteration_id or "",
loop_id=event.in_loop_id or "",
parent_node_id=event.in_parent_node_id or "",
)
node_execution_id = NodeExecutionId(event.node_execution_id)
self._node_snapshots[node_execution_id] = snapshot
@ -290,7 +287,6 @@ class WorkflowResponseConverter:
created_at=int(snapshot.start_at.timestamp()),
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
parent_node_id=event.in_parent_node_id,
agent_strategy=event.agent_strategy,
),
)
@ -377,7 +373,6 @@ class WorkflowResponseConverter:
files=self.fetch_files_from_node_outputs(event.outputs or {}),
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
parent_node_id=event.in_parent_node_id,
),
)
@ -427,7 +422,6 @@ class WorkflowResponseConverter:
files=self.fetch_files_from_node_outputs(event.outputs or {}),
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
parent_node_id=event.in_parent_node_id,
retry_index=event.retry_index,
),
)
@ -677,7 +671,7 @@ class WorkflowResponseConverter:
task_id=task_id,
data=AgentLogStreamResponse.Data(
node_execution_id=event.node_execution_id,
message_id=event.id,
id=event.id,
parent_id=event.parent_id,
label=event.label,
error=event.error,

Some files were not shown because too many files have changed in this diff Show More