Compare commits

..

4 Commits

Author SHA1 Message Date
7314345b7a suppression 2026-01-26 15:24:50 +08:00
fb08ac1a86 Merge branch 'main' into refactor/tools-components 2026-01-26 14:41:39 +08:00
53a620b6ce test(mcp): enhance unit tests for MCP components and improve mock handling
- Added beforeEach hooks to reset mock states in  and  for better test isolation.
- Refactored mock data handling in  to streamline test setup.
- Improved error handling in  to gracefully manage JSON parsing errors.
- Updated  to utilize a pending status for optimistic updates, enhancing user experience during state changes.

These changes aim to improve the reliability and maintainability of tests across MCP components.
2026-01-26 14:41:19 +08:00
6489903c77 refactor(web): extract MCP components and add comprehensive tests
Extract logic and UI components from mcp-service-card and modal into reusable hooks and sub-components. Add comprehensive test coverage for all MCP components including new section components for authentication, configurations, and headers.

Changes:
- Extract useMCPServiceCardState and useMCPModalForm hooks
- Create section components: AuthenticationSection, ConfigurationsSection, HeadersSection
- Refactor mcp-service-card and modal for better maintainability
- Add 7000+ lines of test coverage with >95% component coverage

Co-Authored-By: Claude Haiku 4.5 <noreply@anthropic.com>
2026-01-26 14:14:42 +08:00
233 changed files with 12064 additions and 8157 deletions

View File

@ -1,27 +0,0 @@
# Notes: `large_language_model.py`
## Purpose
Provides the base `LargeLanguageModel` implementation used by the model runtime to invoke plugin-backed LLMs and to
bridge plugin daemon streaming semantics back into API-layer entities (`LLMResult`, `LLMResultChunk`).
## Key behaviors / invariants
- `invoke(..., stream=False)` still calls the plugin in streaming mode and then synthesizes a single `LLMResult` from
the first yielded `LLMResultChunk`.
- Plugin invocation is wrapped by `_invoke_llm_via_plugin(...)`, and `stream=False` normalization is handled by
`_normalize_non_stream_plugin_result(...)` / `_build_llm_result_from_first_chunk(...)`.
- Tool call deltas are merged incrementally via `_increase_tool_call(...)` to support multiple provider chunking
patterns (IDs anchored to first chunk, every chunk, or missing entirely).
- A tool-call delta with an empty `id` requires at least one existing tool call; otherwise we raise `ValueError` to
surface invalid delta sequences explicitly.
- Callback invocation is centralized in `_run_callbacks(...)` to ensure consistent error handling/logging.
- For compatibility with dify issue `#17799`, `prompt_messages` may be removed by the plugin daemon in chunks and must
be re-attached in this layer before callbacks/consumers use them.
- Callback hooks (`on_before_invoke`, `on_new_chunk`, `on_after_invoke`, `on_invoke_error`) must not break invocation
unless `callback.raise_error` is true.
## Test focus
- `api/tests/unit_tests/core/model_runtime/__base/test_increase_tool_call.py` validates tool-call delta merging and
patches `_gen_tool_call_id` for deterministic IDs.

View File

@ -146,7 +146,6 @@ class DatasetUpdatePayload(BaseModel):
embedding_model: str | None = None
embedding_model_provider: str | None = None
retrieval_model: dict[str, Any] | None = None
summary_index_setting: dict[str, Any] | None = None
partial_member_list: list[dict[str, str]] | None = None
external_retrieval_model: dict[str, Any] | None = None
external_knowledge_id: str | None = None

View File

@ -41,11 +41,10 @@ from fields.document_fields import (
from libs.datetime_utils import naive_utc_now
from libs.login import current_account_with_tenant, login_required
from models import DatasetProcessRule, Document, DocumentSegment, UploadFile
from models.dataset import DocumentPipelineExecutionLog, DocumentSegmentSummary
from models.dataset import DocumentPipelineExecutionLog
from services.dataset_service import DatasetService, DocumentService
from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig, ProcessRule, RetrievalModel
from services.file_service import FileService
from tasks.generate_summary_index_task import generate_summary_index_task
from ..app.error import (
ProviderModelCurrentlyNotSupportError,
@ -111,10 +110,6 @@ class DocumentRenamePayload(BaseModel):
name: str
class GenerateSummaryPayload(BaseModel):
document_list: list[str]
class DocumentBatchDownloadZipPayload(BaseModel):
"""Request payload for bulk downloading documents as a zip archive."""
@ -137,7 +132,6 @@ register_schema_models(
RetrievalModel,
DocumentRetryPayload,
DocumentRenamePayload,
GenerateSummaryPayload,
DocumentBatchDownloadZipPayload,
)
@ -325,86 +319,6 @@ class DatasetDocumentListApi(Resource):
paginated_documents = db.paginate(select=query, page=page, per_page=limit, max_per_page=100, error_out=False)
documents = paginated_documents.items
# Check if dataset has summary index enabled
has_summary_index = dataset.summary_index_setting and dataset.summary_index_setting.get("enable") is True
# Filter documents that need summary calculation
documents_need_summary = [doc for doc in documents if doc.need_summary is True]
document_ids_need_summary = [str(doc.id) for doc in documents_need_summary]
# Calculate summary_index_status for documents that need summary (only if dataset summary index is enabled)
summary_status_map = {}
if has_summary_index and document_ids_need_summary:
# Get all segments for these documents (excluding qa_model and re_segment)
segments = (
db.session.query(DocumentSegment.id, DocumentSegment.document_id)
.where(
DocumentSegment.document_id.in_(document_ids_need_summary),
DocumentSegment.status != "re_segment",
DocumentSegment.tenant_id == current_tenant_id,
)
.all()
)
# Group segments by document_id
document_segments_map = {}
for segment in segments:
doc_id = str(segment.document_id)
if doc_id not in document_segments_map:
document_segments_map[doc_id] = []
document_segments_map[doc_id].append(segment.id)
# Get all summary records for these segments
all_segment_ids = [seg.id for seg in segments]
summaries = {}
if all_segment_ids:
summary_records = (
db.session.query(DocumentSegmentSummary)
.where(
DocumentSegmentSummary.chunk_id.in_(all_segment_ids),
DocumentSegmentSummary.dataset_id == dataset_id,
DocumentSegmentSummary.enabled == True, # Only count enabled summaries
)
.all()
)
summaries = {summary.chunk_id: summary.status for summary in summary_records}
# Calculate summary_index_status for each document
for doc_id in document_ids_need_summary:
segment_ids = document_segments_map.get(doc_id, [])
if not segment_ids:
# No segments, status is None (not started)
summary_status_map[doc_id] = None
continue
# Check if there are any "not_started" or "generating" status summaries
# Only check enabled=True summaries (already filtered in query)
# If segment has no summary record (summaries.get returns None),
# it means the summary is disabled (enabled=False) or not created yet, ignore it
has_pending_summaries = any(
summaries.get(segment_id) is not None # Ensure summary exists (enabled=True)
and summaries[segment_id] in ("not_started", "generating")
for segment_id in segment_ids
)
if has_pending_summaries:
# Task is still running (not started or generating)
summary_status_map[doc_id] = "SUMMARIZING"
else:
# All enabled=True summaries are "completed" or "error", task finished
# Or no enabled=True summaries exist (all disabled)
summary_status_map[doc_id] = None
# Add summary_index_status to each document
for document in documents:
if has_summary_index and document.need_summary is True:
# Get status from map, default to None (not queued yet)
document.summary_index_status = summary_status_map.get(str(document.id))
else:
# Return null if summary index is not enabled or document doesn't need summary
document.summary_index_status = None
if fetch:
for document in documents:
completed_segments = (
@ -890,7 +804,6 @@ class DocumentApi(DocumentResource):
"display_status": document.display_status,
"doc_form": document.doc_form,
"doc_language": document.doc_language,
"need_summary": document.need_summary if document.need_summary is not None else False,
}
else:
dataset_process_rules = DatasetService.get_process_rules(dataset_id)
@ -926,7 +839,6 @@ class DocumentApi(DocumentResource):
"display_status": document.display_status,
"doc_form": document.doc_form,
"doc_language": document.doc_language,
"need_summary": document.need_summary if document.need_summary is not None else False,
}
return response, 200
@ -1350,216 +1262,3 @@ class DocumentPipelineExecutionLogApi(DocumentResource):
"input_data": log.input_data,
"datasource_node_id": log.datasource_node_id,
}, 200
@console_ns.route("/datasets/<uuid:dataset_id>/documents/generate-summary")
class DocumentGenerateSummaryApi(Resource):
@console_ns.doc("generate_summary_for_documents")
@console_ns.doc(description="Generate summary index for documents")
@console_ns.doc(params={"dataset_id": "Dataset ID"})
@console_ns.expect(console_ns.models[GenerateSummaryPayload.__name__])
@console_ns.response(200, "Summary generation started successfully")
@console_ns.response(400, "Invalid request or dataset configuration")
@console_ns.response(403, "Permission denied")
@console_ns.response(404, "Dataset not found")
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_rate_limit_check("knowledge")
def post(self, dataset_id):
"""
Generate summary index for specified documents.
This endpoint checks if the dataset configuration supports summary generation
(indexing_technique must be 'high_quality' and summary_index_setting.enable must be true),
then asynchronously generates summary indexes for the provided documents.
"""
current_user, _ = current_account_with_tenant()
dataset_id = str(dataset_id)
# Get dataset
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
# Check permissions
if not current_user.is_dataset_editor:
raise Forbidden()
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
# Validate request payload
payload = GenerateSummaryPayload.model_validate(console_ns.payload or {})
document_list = payload.document_list
if not document_list:
raise ValueError("document_list cannot be empty.")
# Check if dataset configuration supports summary generation
if dataset.indexing_technique != "high_quality":
raise ValueError(
f"Summary generation is only available for 'high_quality' indexing technique. "
f"Current indexing technique: {dataset.indexing_technique}"
)
summary_index_setting = dataset.summary_index_setting
if not summary_index_setting or not summary_index_setting.get("enable"):
raise ValueError("Summary index is not enabled for this dataset. Please enable it in the dataset settings.")
# Verify all documents exist and belong to the dataset
documents = (
db.session.query(Document)
.filter(
Document.id.in_(document_list),
Document.dataset_id == dataset_id,
)
.all()
)
if len(documents) != len(document_list):
found_ids = {doc.id for doc in documents}
missing_ids = set(document_list) - found_ids
raise NotFound(f"Some documents not found: {list(missing_ids)}")
# Dispatch async tasks for each document
for document in documents:
# Skip qa_model documents as they don't generate summaries
if document.doc_form == "qa_model":
logger.info("Skipping summary generation for qa_model document %s", document.id)
continue
# Dispatch async task
generate_summary_index_task.delay(dataset_id, document.id)
logger.info(
"Dispatched summary generation task for document %s in dataset %s",
document.id,
dataset_id,
)
return {"result": "success"}, 200
@console_ns.route("/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/summary-status")
class DocumentSummaryStatusApi(DocumentResource):
@console_ns.doc("get_document_summary_status")
@console_ns.doc(description="Get summary index generation status for a document")
@console_ns.doc(params={"dataset_id": "Dataset ID", "document_id": "Document ID"})
@console_ns.response(200, "Summary status retrieved successfully")
@console_ns.response(404, "Document not found")
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, document_id):
"""
Get summary index generation status for a document.
Returns:
- total_segments: Total number of segments in the document
- summary_status: Dictionary with status counts
- completed: Number of summaries completed
- generating: Number of summaries being generated
- error: Number of summaries with errors
- not_started: Number of segments without summary records
- summaries: List of summary records with status and content preview
"""
current_user, _ = current_account_with_tenant()
dataset_id = str(dataset_id)
document_id = str(document_id)
# Get document
document = self.get_document(dataset_id, document_id)
# Get dataset
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
# Check permissions
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
# Get all segments for this document
segments = (
db.session.query(DocumentSegment)
.filter(
DocumentSegment.document_id == document_id,
DocumentSegment.dataset_id == dataset_id,
DocumentSegment.status == "completed",
DocumentSegment.enabled == True,
)
.all()
)
total_segments = len(segments)
# Get all summary records for these segments
segment_ids = [segment.id for segment in segments]
summaries = []
if segment_ids:
summaries = (
db.session.query(DocumentSegmentSummary)
.filter(
DocumentSegmentSummary.document_id == document_id,
DocumentSegmentSummary.dataset_id == dataset_id,
DocumentSegmentSummary.chunk_id.in_(segment_ids),
DocumentSegmentSummary.enabled == True, # Only return enabled summaries
)
.all()
)
# Create a mapping of chunk_id to summary
summary_map = {summary.chunk_id: summary for summary in summaries}
# Count statuses
status_counts = {
"completed": 0,
"generating": 0,
"error": 0,
"not_started": 0,
}
summary_list = []
for segment in segments:
summary = summary_map.get(segment.id)
if summary:
status = summary.status
status_counts[status] = status_counts.get(status, 0) + 1
summary_list.append(
{
"segment_id": segment.id,
"segment_position": segment.position,
"status": summary.status,
"summary_preview": (
summary.summary_content[:100] + "..."
if summary.summary_content and len(summary.summary_content) > 100
else summary.summary_content
),
"error": summary.error,
"created_at": int(summary.created_at.timestamp()) if summary.created_at else None,
"updated_at": int(summary.updated_at.timestamp()) if summary.updated_at else None,
}
)
else:
status_counts["not_started"] += 1
summary_list.append(
{
"segment_id": segment.id,
"segment_position": segment.position,
"status": "not_started",
"summary_preview": None,
"error": None,
"created_at": None,
"updated_at": None,
}
)
return {
"total_segments": total_segments,
"summary_status": status_counts,
"summaries": summary_list,
}, 200

View File

@ -32,7 +32,7 @@ from extensions.ext_redis import redis_client
from fields.segment_fields import child_chunk_fields, segment_fields
from libs.helper import escape_like_pattern
from libs.login import current_account_with_tenant, login_required
from models.dataset import ChildChunk, DocumentSegment, DocumentSegmentSummary
from models.dataset import ChildChunk, DocumentSegment
from models.model import UploadFile
from services.dataset_service import DatasetService, DocumentService, SegmentService
from services.entities.knowledge_entities.knowledge_entities import ChildChunkUpdateArgs, SegmentUpdateArgs
@ -41,23 +41,6 @@ from services.errors.chunk import ChildChunkIndexingError as ChildChunkIndexingS
from tasks.batch_create_segment_to_index_task import batch_create_segment_to_index_task
def _get_segment_with_summary(segment, dataset_id):
"""Helper function to marshal segment and add summary information."""
segment_dict = marshal(segment, segment_fields)
# Query summary for this segment (only enabled summaries)
summary = (
db.session.query(DocumentSegmentSummary)
.where(
DocumentSegmentSummary.chunk_id == segment.id,
DocumentSegmentSummary.dataset_id == dataset_id,
DocumentSegmentSummary.enabled == True, # Only return enabled summaries
)
.first()
)
segment_dict["summary"] = summary.summary_content if summary else None
return segment_dict
class SegmentListQuery(BaseModel):
limit: int = Field(default=20, ge=1, le=100)
status: list[str] = Field(default_factory=list)
@ -80,7 +63,6 @@ class SegmentUpdatePayload(BaseModel):
keywords: list[str] | None = None
regenerate_child_chunks: bool = False
attachment_ids: list[str] | None = None
summary: str | None = None # Summary content for summary index
class BatchImportPayload(BaseModel):
@ -198,32 +180,8 @@ class DatasetDocumentSegmentListApi(Resource):
segments = db.paginate(select=query, page=page, per_page=limit, max_per_page=100, error_out=False)
# Query summaries for all segments in this page (batch query for efficiency)
segment_ids = [segment.id for segment in segments.items]
summaries = {}
if segment_ids:
summary_records = (
db.session.query(DocumentSegmentSummary)
.where(
DocumentSegmentSummary.chunk_id.in_(segment_ids),
DocumentSegmentSummary.dataset_id == dataset_id,
)
.all()
)
# Only include enabled summaries
summaries = {
summary.chunk_id: summary.summary_content for summary in summary_records if summary.enabled is True
}
# Add summary to each segment
segments_with_summary = []
for segment in segments.items:
segment_dict = marshal(segment, segment_fields)
segment_dict["summary"] = summaries.get(segment.id)
segments_with_summary.append(segment_dict)
response = {
"data": segments_with_summary,
"data": marshal(segments.items, segment_fields),
"limit": limit,
"total": segments.total,
"total_pages": segments.pages,
@ -369,7 +327,7 @@ class DatasetDocumentSegmentAddApi(Resource):
payload_dict = payload.model_dump(exclude_none=True)
SegmentService.segment_create_args_validate(payload_dict, document)
segment = SegmentService.create_segment(payload_dict, document, dataset)
return {"data": _get_segment_with_summary(segment, dataset_id), "doc_form": document.doc_form}, 200
return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200
@console_ns.route("/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>")
@ -431,12 +389,10 @@ class DatasetDocumentSegmentUpdateApi(Resource):
payload = SegmentUpdatePayload.model_validate(console_ns.payload or {})
payload_dict = payload.model_dump(exclude_none=True)
SegmentService.segment_create_args_validate(payload_dict, document)
# Update segment (summary update with change detection is handled in SegmentService.update_segment)
segment = SegmentService.update_segment(
SegmentUpdateArgs.model_validate(payload.model_dump(exclude_none=True)), segment, document, dataset
)
return {"data": _get_segment_with_summary(segment, dataset_id), "doc_form": document.doc_form}, 200
return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200
@setup_required
@login_required

View File

@ -1,13 +1,6 @@
from flask_restx import Resource, fields
from flask_restx import Resource
from controllers.common.schema import register_schema_model
from fields.hit_testing_fields import (
child_chunk_fields,
document_fields,
files_fields,
hit_testing_record_fields,
segment_fields,
)
from libs.login import login_required
from .. import console_ns
@ -21,45 +14,13 @@ from ..wraps import (
register_schema_model(console_ns, HitTestingPayload)
def _get_or_create_model(model_name: str, field_def):
"""Get or create a flask_restx model to avoid dict type issues in Swagger."""
existing = console_ns.models.get(model_name)
if existing is None:
existing = console_ns.model(model_name, field_def)
return existing
# Register models for flask_restx to avoid dict type issues in Swagger
document_model = _get_or_create_model("HitTestingDocument", document_fields)
segment_fields_copy = segment_fields.copy()
segment_fields_copy["document"] = fields.Nested(document_model)
segment_model = _get_or_create_model("HitTestingSegment", segment_fields_copy)
child_chunk_model = _get_or_create_model("HitTestingChildChunk", child_chunk_fields)
files_model = _get_or_create_model("HitTestingFile", files_fields)
hit_testing_record_fields_copy = hit_testing_record_fields.copy()
hit_testing_record_fields_copy["segment"] = fields.Nested(segment_model)
hit_testing_record_fields_copy["child_chunks"] = fields.List(fields.Nested(child_chunk_model))
hit_testing_record_fields_copy["files"] = fields.List(fields.Nested(files_model))
hit_testing_record_model = _get_or_create_model("HitTestingRecord", hit_testing_record_fields_copy)
# Response model for hit testing API
hit_testing_response_fields = {
"query": fields.String,
"records": fields.List(fields.Nested(hit_testing_record_model)),
}
hit_testing_response_model = _get_or_create_model("HitTestingResponse", hit_testing_response_fields)
@console_ns.route("/datasets/<uuid:dataset_id>/hit-testing")
class HitTestingApi(Resource, DatasetsHitTestingBase):
@console_ns.doc("test_dataset_retrieval")
@console_ns.doc(description="Test dataset knowledge retrieval")
@console_ns.doc(params={"dataset_id": "Dataset ID"})
@console_ns.expect(console_ns.models[HitTestingPayload.__name__])
@console_ns.response(200, "Hit testing completed successfully", model=hit_testing_response_model)
@console_ns.response(200, "Hit testing completed successfully")
@console_ns.response(404, "Dataset not found")
@console_ns.response(400, "Invalid parameters")
@setup_required

View File

@ -1,19 +1,20 @@
from typing import Literal
from flask import request
from flask_restx import Resource, fields
from pydantic import BaseModel, Field, field_validator
from configs import dify_config
from controllers.fastopenapi import console_router
from libs.helper import EmailStr, extract_remote_ip
from libs.password import valid_password
from models.model import DifySetup, db
from services.account_service import RegisterService, TenantService
from . import console_ns
from .error import AlreadySetupError, NotInitValidateError
from .init_validate import get_init_validate_status
from .wraps import only_edition_self_hosted
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
class SetupRequestPayload(BaseModel):
email: EmailStr = Field(..., description="Admin email address")
@ -27,66 +28,78 @@ class SetupRequestPayload(BaseModel):
return valid_password(value)
class SetupStatusResponse(BaseModel):
step: Literal["not_started", "finished"] = Field(description="Setup step status")
setup_at: str | None = Field(default=None, description="Setup completion time (ISO format)")
class SetupResponse(BaseModel):
result: str = Field(description="Setup result", examples=["success"])
@console_router.get(
"/setup",
response_model=SetupStatusResponse,
tags=["console"],
console_ns.schema_model(
SetupRequestPayload.__name__,
SetupRequestPayload.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0),
)
def get_setup_status_api() -> SetupStatusResponse:
"""Get system setup status."""
if dify_config.EDITION == "SELF_HOSTED":
setup_status = get_setup_status()
if setup_status and not isinstance(setup_status, bool):
return SetupStatusResponse(step="finished", setup_at=setup_status.setup_at.isoformat())
if setup_status:
return SetupStatusResponse(step="finished")
return SetupStatusResponse(step="not_started")
return SetupStatusResponse(step="finished")
@console_router.post(
"/setup",
response_model=SetupResponse,
tags=["console"],
status_code=201,
)
@only_edition_self_hosted
def setup_system(payload: SetupRequestPayload) -> SetupResponse:
"""Initialize system setup with admin account."""
if get_setup_status():
raise AlreadySetupError()
tenant_count = TenantService.get_tenant_count()
if tenant_count > 0:
raise AlreadySetupError()
if not get_init_validate_status():
raise NotInitValidateError()
normalized_email = payload.email.lower()
RegisterService.setup(
email=normalized_email,
name=payload.name,
password=payload.password,
ip_address=extract_remote_ip(request),
language=payload.language,
@console_ns.route("/setup")
class SetupApi(Resource):
@console_ns.doc("get_setup_status")
@console_ns.doc(description="Get system setup status")
@console_ns.response(
200,
"Success",
console_ns.model(
"SetupStatusResponse",
{
"step": fields.String(description="Setup step status", enum=["not_started", "finished"]),
"setup_at": fields.String(description="Setup completion time (ISO format)", required=False),
},
),
)
def get(self):
"""Get system setup status"""
if dify_config.EDITION == "SELF_HOSTED":
setup_status = get_setup_status()
# Check if setup_status is a DifySetup object rather than a bool
if setup_status and not isinstance(setup_status, bool):
return {"step": "finished", "setup_at": setup_status.setup_at.isoformat()}
elif setup_status:
return {"step": "finished"}
return {"step": "not_started"}
return {"step": "finished"}
return SetupResponse(result="success")
@console_ns.doc("setup_system")
@console_ns.doc(description="Initialize system setup with admin account")
@console_ns.expect(console_ns.models[SetupRequestPayload.__name__])
@console_ns.response(
201, "Success", console_ns.model("SetupResponse", {"result": fields.String(description="Setup result")})
)
@console_ns.response(400, "Already setup or validation failed")
@only_edition_self_hosted
def post(self):
"""Initialize system setup with admin account"""
# is set up
if get_setup_status():
raise AlreadySetupError()
# is tenant created
tenant_count = TenantService.get_tenant_count()
if tenant_count > 0:
raise AlreadySetupError()
if not get_init_validate_status():
raise NotInitValidateError()
args = SetupRequestPayload.model_validate(console_ns.payload)
normalized_email = args.email.lower()
# setup
RegisterService.setup(
email=normalized_email,
name=args.name,
password=args.password,
ip_address=extract_remote_ip(request),
language=args.language,
)
return {"result": "success"}, 201
def get_setup_status() -> DifySetup | bool | None:
def get_setup_status():
if dify_config.EDITION == "SELF_HOSTED":
return db.session.query(DifySetup).first()
return True
else:
return True

View File

@ -1,11 +1,15 @@
import json
import logging
import httpx
from flask import request
from flask_restx import Resource, fields
from packaging import version
from pydantic import BaseModel, Field
from configs import dify_config
from controllers.fastopenapi import console_router
from . import console_ns
logger = logging.getLogger(__name__)
@ -14,60 +18,68 @@ class VersionQuery(BaseModel):
current_version: str = Field(..., description="Current application version")
class VersionFeatures(BaseModel):
can_replace_logo: bool = Field(description="Whether logo replacement is supported")
model_load_balancing_enabled: bool = Field(description="Whether model load balancing is enabled")
class VersionResponse(BaseModel):
version: str = Field(description="Latest version number")
release_date: str = Field(description="Release date of latest version")
release_notes: str = Field(description="Release notes for latest version")
can_auto_update: bool = Field(description="Whether auto-update is supported")
features: VersionFeatures = Field(description="Feature flags and capabilities")
@console_router.get(
"/version",
response_model=VersionResponse,
tags=["console"],
console_ns.schema_model(
VersionQuery.__name__,
VersionQuery.model_json_schema(ref_template="#/definitions/{model}"),
)
def check_version_update(query: VersionQuery) -> VersionResponse:
"""Check for application version updates."""
check_update_url = dify_config.CHECK_UPDATE_URL
result = VersionResponse(
version=dify_config.project.version,
release_date="",
release_notes="",
can_auto_update=False,
features=VersionFeatures(
can_replace_logo=dify_config.CAN_REPLACE_LOGO,
model_load_balancing_enabled=dify_config.MODEL_LB_ENABLED,
@console_ns.route("/version")
class VersionApi(Resource):
@console_ns.doc("check_version_update")
@console_ns.doc(description="Check for application version updates")
@console_ns.expect(console_ns.models[VersionQuery.__name__])
@console_ns.response(
200,
"Success",
console_ns.model(
"VersionResponse",
{
"version": fields.String(description="Latest version number"),
"release_date": fields.String(description="Release date of latest version"),
"release_notes": fields.String(description="Release notes for latest version"),
"can_auto_update": fields.Boolean(description="Whether auto-update is supported"),
"features": fields.Raw(description="Feature flags and capabilities"),
},
),
)
def get(self):
"""Check for application version updates"""
args = VersionQuery.model_validate(request.args.to_dict(flat=True)) # type: ignore
check_update_url = dify_config.CHECK_UPDATE_URL
if not check_update_url:
return result
result = {
"version": dify_config.project.version,
"release_date": "",
"release_notes": "",
"can_auto_update": False,
"features": {
"can_replace_logo": dify_config.CAN_REPLACE_LOGO,
"model_load_balancing_enabled": dify_config.MODEL_LB_ENABLED,
},
}
try:
response = httpx.get(
check_update_url,
params={"current_version": query.current_version},
timeout=httpx.Timeout(timeout=10.0, connect=3.0),
)
content = response.json()
except Exception as error:
logger.warning("Check update version error: %s.", str(error))
result.version = query.current_version
if not check_update_url:
return result
try:
response = httpx.get(
check_update_url,
params={"current_version": args.current_version},
timeout=httpx.Timeout(timeout=10.0, connect=3.0),
)
except Exception as error:
logger.warning("Check update version error: %s.", str(error))
result["version"] = args.current_version
return result
content = json.loads(response.content)
if _has_new_version(latest_version=content["version"], current_version=f"{args.current_version}"):
result["version"] = content["version"]
result["release_date"] = content["releaseDate"]
result["release_notes"] = content["releaseNotes"]
result["can_auto_update"] = content["canAutoUpdate"]
return result
latest_version = content.get("version", result.version)
if _has_new_version(latest_version=latest_version, current_version=f"{query.current_version}"):
result.version = latest_version
result.release_date = content.get("releaseDate", "")
result.release_notes = content.get("releaseNotes", "")
result.can_auto_update = content.get("canAutoUpdate", False)
return result
def _has_new_version(*, latest_version: str, current_version: str) -> bool:

View File

@ -3,7 +3,6 @@ from pydantic import BaseModel, Field, field_validator
class PreviewDetail(BaseModel):
content: str
summary: str | None = None
child_chunks: list[str] | None = None

View File

@ -311,18 +311,14 @@ class IndexingRunner:
qa_preview_texts: list[QAPreviewDetail] = []
total_segments = 0
# doc_form represents the segmentation method (general, parent-child, QA)
index_type = doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
# one extract_setting is one source document
for extract_setting in extract_settings:
# extract
processing_rule = DatasetProcessRule(
mode=tmp_processing_rule["mode"], rules=json.dumps(tmp_processing_rule["rules"])
)
# Extract document content
text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
# Cleaning and segmentation
documents = index_processor.transform(
text_docs,
current_user=None,
@ -365,12 +361,6 @@ class IndexingRunner:
if doc_form and doc_form == "qa_model":
return IndexingEstimate(total_segments=total_segments * 20, qa_preview=qa_preview_texts, preview=[])
# Generate summary preview
summary_index_setting = tmp_processing_rule.get("summary_index_setting")
if summary_index_setting and summary_index_setting.get("enable") and preview_texts:
preview_texts = index_processor.generate_summary_preview(tenant_id, preview_texts, summary_index_setting)
return IndexingEstimate(total_segments=total_segments, preview=preview_texts)
def _extract(

View File

@ -434,20 +434,3 @@ INSTRUCTION_GENERATE_TEMPLATE_PROMPT = """The output of this prompt is not as ex
You should edit the prompt according to the IDEAL OUTPUT."""
INSTRUCTION_GENERATE_TEMPLATE_CODE = """Please fix the errors in the {{#error_message#}}."""
DEFAULT_GENERATOR_SUMMARY_PROMPT = (
"""Summarize the following content. Extract only the key information and main points. """
"""Remove redundant details.
Requirements:
1. Write a concise summary in plain text
2. Use the same language as the input content
3. Focus on important facts, concepts, and details
4. If images are included, describe their key information
5. Do not use words like "好的", "ok", "I understand", "This text discusses", "The content mentions"
6. Write directly without extra words
Output only the summary text. Start summarizing now:
"""
)

View File

@ -1,7 +1,7 @@
import logging
import time
import uuid
from collections.abc import Callable, Generator, Iterator, Sequence
from collections.abc import Generator, Sequence
from typing import Union
from pydantic import ConfigDict
@ -30,142 +30,6 @@ def _gen_tool_call_id() -> str:
return f"chatcmpl-tool-{str(uuid.uuid4().hex)}"
def _run_callbacks(callbacks: Sequence[Callback] | None, *, event: str, invoke: Callable[[Callback], None]) -> None:
if not callbacks:
return
for callback in callbacks:
try:
invoke(callback)
except Exception as e:
if callback.raise_error:
raise
logger.warning("Callback %s %s failed with error %s", callback.__class__.__name__, event, e)
def _get_or_create_tool_call(
existing_tools_calls: list[AssistantPromptMessage.ToolCall],
tool_call_id: str,
) -> AssistantPromptMessage.ToolCall:
"""
Get or create a tool call by ID.
If `tool_call_id` is empty, returns the most recently created tool call.
"""
if not tool_call_id:
if not existing_tools_calls:
raise ValueError("tool_call_id is empty but no existing tool call is available to apply the delta")
return existing_tools_calls[-1]
tool_call = next((tool_call for tool_call in existing_tools_calls if tool_call.id == tool_call_id), None)
if tool_call is None:
tool_call = AssistantPromptMessage.ToolCall(
id=tool_call_id,
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="", arguments=""),
)
existing_tools_calls.append(tool_call)
return tool_call
def _merge_tool_call_delta(
tool_call: AssistantPromptMessage.ToolCall,
delta: AssistantPromptMessage.ToolCall,
) -> None:
if delta.id:
tool_call.id = delta.id
if delta.type:
tool_call.type = delta.type
if delta.function.name:
tool_call.function.name = delta.function.name
if delta.function.arguments:
tool_call.function.arguments += delta.function.arguments
def _build_llm_result_from_first_chunk(
model: str,
prompt_messages: Sequence[PromptMessage],
chunks: Iterator[LLMResultChunk],
) -> LLMResult:
"""
Build a single `LLMResult` from the first returned chunk.
This is used for `stream=False` because the plugin side may still implement the response via a chunked stream.
"""
content = ""
content_list: list[PromptMessageContentUnionTypes] = []
usage = LLMUsage.empty_usage()
system_fingerprint: str | None = None
tools_calls: list[AssistantPromptMessage.ToolCall] = []
first_chunk = next(chunks, None)
if first_chunk is not None:
if isinstance(first_chunk.delta.message.content, str):
content += first_chunk.delta.message.content
elif isinstance(first_chunk.delta.message.content, list):
content_list.extend(first_chunk.delta.message.content)
if first_chunk.delta.message.tool_calls:
_increase_tool_call(first_chunk.delta.message.tool_calls, tools_calls)
usage = first_chunk.delta.usage or LLMUsage.empty_usage()
system_fingerprint = first_chunk.system_fingerprint
return LLMResult(
model=model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(
content=content or content_list,
tool_calls=tools_calls,
),
usage=usage,
system_fingerprint=system_fingerprint,
)
def _invoke_llm_via_plugin(
*,
tenant_id: str,
user_id: str,
plugin_id: str,
provider: str,
model: str,
credentials: dict,
model_parameters: dict,
prompt_messages: Sequence[PromptMessage],
tools: list[PromptMessageTool] | None,
stop: Sequence[str] | None,
stream: bool,
) -> Union[LLMResult, Generator[LLMResultChunk, None, None]]:
from core.plugin.impl.model import PluginModelClient
plugin_model_manager = PluginModelClient()
return plugin_model_manager.invoke_llm(
tenant_id=tenant_id,
user_id=user_id,
plugin_id=plugin_id,
provider=provider,
model=model,
credentials=credentials,
model_parameters=model_parameters,
prompt_messages=list(prompt_messages),
tools=tools,
stop=list(stop) if stop else None,
stream=stream,
)
def _normalize_non_stream_plugin_result(
model: str,
prompt_messages: Sequence[PromptMessage],
result: Union[LLMResult, Iterator[LLMResultChunk]],
) -> LLMResult:
if isinstance(result, LLMResult):
return result
return _build_llm_result_from_first_chunk(model=model, prompt_messages=prompt_messages, chunks=result)
def _increase_tool_call(
new_tool_calls: list[AssistantPromptMessage.ToolCall], existing_tools_calls: list[AssistantPromptMessage.ToolCall]
):
@ -176,13 +40,42 @@ def _increase_tool_call(
:param existing_tools_calls: List of existing tool calls to be modified IN-PLACE.
"""
def get_tool_call(tool_call_id: str):
"""
Get or create a tool call by ID
:param tool_call_id: tool call ID
:return: existing or new tool call
"""
if not tool_call_id:
return existing_tools_calls[-1]
_tool_call = next((_tool_call for _tool_call in existing_tools_calls if _tool_call.id == tool_call_id), None)
if _tool_call is None:
_tool_call = AssistantPromptMessage.ToolCall(
id=tool_call_id,
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="", arguments=""),
)
existing_tools_calls.append(_tool_call)
return _tool_call
for new_tool_call in new_tool_calls:
# generate ID for tool calls with function name but no ID to track them
if new_tool_call.function.name and not new_tool_call.id:
new_tool_call.id = _gen_tool_call_id()
tool_call = _get_or_create_tool_call(existing_tools_calls, new_tool_call.id)
_merge_tool_call_delta(tool_call, new_tool_call)
# get tool call
tool_call = get_tool_call(new_tool_call.id)
# update tool call
if new_tool_call.id:
tool_call.id = new_tool_call.id
if new_tool_call.type:
tool_call.type = new_tool_call.type
if new_tool_call.function.name:
tool_call.function.name = new_tool_call.function.name
if new_tool_call.function.arguments:
tool_call.function.arguments += new_tool_call.function.arguments
class LargeLanguageModel(AIModel):
@ -248,7 +141,10 @@ class LargeLanguageModel(AIModel):
result: Union[LLMResult, Generator[LLMResultChunk, None, None]]
try:
result = _invoke_llm_via_plugin(
from core.plugin.impl.model import PluginModelClient
plugin_model_manager = PluginModelClient()
result = plugin_model_manager.invoke_llm(
tenant_id=self.tenant_id,
user_id=user or "unknown",
plugin_id=self.plugin_id,
@ -258,13 +154,38 @@ class LargeLanguageModel(AIModel):
model_parameters=model_parameters,
prompt_messages=prompt_messages,
tools=tools,
stop=stop,
stop=list(stop) if stop else None,
stream=stream,
)
if not stream:
result = _normalize_non_stream_plugin_result(
model=model, prompt_messages=prompt_messages, result=result
content = ""
content_list = []
usage = LLMUsage.empty_usage()
system_fingerprint = None
tools_calls: list[AssistantPromptMessage.ToolCall] = []
for chunk in result:
if isinstance(chunk.delta.message.content, str):
content += chunk.delta.message.content
elif isinstance(chunk.delta.message.content, list):
content_list.extend(chunk.delta.message.content)
if chunk.delta.message.tool_calls:
_increase_tool_call(chunk.delta.message.tool_calls, tools_calls)
usage = chunk.delta.usage or LLMUsage.empty_usage()
system_fingerprint = chunk.system_fingerprint
break
result = LLMResult(
model=model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(
content=content or content_list,
tool_calls=tools_calls,
),
usage=usage,
system_fingerprint=system_fingerprint,
)
except Exception as e:
self._trigger_invoke_error_callbacks(
@ -504,21 +425,27 @@ class LargeLanguageModel(AIModel):
:param user: unique user id
:param callbacks: callbacks
"""
_run_callbacks(
callbacks,
event="on_before_invoke",
invoke=lambda callback: callback.on_before_invoke(
llm_instance=self,
model=model,
credentials=credentials,
prompt_messages=prompt_messages,
model_parameters=model_parameters,
tools=tools,
stop=stop,
stream=stream,
user=user,
),
)
if callbacks:
for callback in callbacks:
try:
callback.on_before_invoke(
llm_instance=self,
model=model,
credentials=credentials,
prompt_messages=prompt_messages,
model_parameters=model_parameters,
tools=tools,
stop=stop,
stream=stream,
user=user,
)
except Exception as e:
if callback.raise_error:
raise e
else:
logger.warning(
"Callback %s on_before_invoke failed with error %s", callback.__class__.__name__, e
)
def _trigger_new_chunk_callbacks(
self,
@ -546,22 +473,26 @@ class LargeLanguageModel(AIModel):
:param stream: is stream response
:param user: unique user id
"""
_run_callbacks(
callbacks,
event="on_new_chunk",
invoke=lambda callback: callback.on_new_chunk(
llm_instance=self,
chunk=chunk,
model=model,
credentials=credentials,
prompt_messages=prompt_messages,
model_parameters=model_parameters,
tools=tools,
stop=stop,
stream=stream,
user=user,
),
)
if callbacks:
for callback in callbacks:
try:
callback.on_new_chunk(
llm_instance=self,
chunk=chunk,
model=model,
credentials=credentials,
prompt_messages=prompt_messages,
model_parameters=model_parameters,
tools=tools,
stop=stop,
stream=stream,
user=user,
)
except Exception as e:
if callback.raise_error:
raise e
else:
logger.warning("Callback %s on_new_chunk failed with error %s", callback.__class__.__name__, e)
def _trigger_after_invoke_callbacks(
self,
@ -590,22 +521,28 @@ class LargeLanguageModel(AIModel):
:param user: unique user id
:param callbacks: callbacks
"""
_run_callbacks(
callbacks,
event="on_after_invoke",
invoke=lambda callback: callback.on_after_invoke(
llm_instance=self,
result=result,
model=model,
credentials=credentials,
prompt_messages=prompt_messages,
model_parameters=model_parameters,
tools=tools,
stop=stop,
stream=stream,
user=user,
),
)
if callbacks:
for callback in callbacks:
try:
callback.on_after_invoke(
llm_instance=self,
result=result,
model=model,
credentials=credentials,
prompt_messages=prompt_messages,
model_parameters=model_parameters,
tools=tools,
stop=stop,
stream=stream,
user=user,
)
except Exception as e:
if callback.raise_error:
raise e
else:
logger.warning(
"Callback %s on_after_invoke failed with error %s", callback.__class__.__name__, e
)
def _trigger_invoke_error_callbacks(
self,
@ -634,19 +571,25 @@ class LargeLanguageModel(AIModel):
:param user: unique user id
:param callbacks: callbacks
"""
_run_callbacks(
callbacks,
event="on_invoke_error",
invoke=lambda callback: callback.on_invoke_error(
llm_instance=self,
ex=ex,
model=model,
credentials=credentials,
prompt_messages=prompt_messages,
model_parameters=model_parameters,
tools=tools,
stop=stop,
stream=stream,
user=user,
),
)
if callbacks:
for callback in callbacks:
try:
callback.on_invoke_error(
llm_instance=self,
ex=ex,
model=model,
credentials=credentials,
prompt_messages=prompt_messages,
model_parameters=model_parameters,
tools=tools,
stop=stop,
stream=stream,
user=user,
)
except Exception as e:
if callback.raise_error:
raise e
else:
logger.warning(
"Callback %s on_invoke_error failed with error %s", callback.__class__.__name__, e
)

View File

@ -389,15 +389,15 @@ class RetrievalService:
.all()
}
records = []
include_segment_ids = set()
segment_child_map = {}
valid_dataset_documents = {}
image_doc_ids: list[Any] = []
child_index_node_ids = []
index_node_ids = []
doc_to_document_map = {}
summary_segment_ids = set() # Track segments retrieved via summary
summary_score_map: dict[str, float] = {} # Map original_chunk_id to summary score
# First pass: collect all document IDs and identify summary documents
for document in documents:
document_id = document.metadata.get("document_id")
if document_id not in dataset_documents:
@ -408,39 +408,16 @@ class RetrievalService:
continue
valid_dataset_documents[document_id] = dataset_document
doc_id = document.metadata.get("doc_id") or ""
doc_to_document_map[doc_id] = document
# Check if this is a summary document
is_summary = document.metadata.get("is_summary", False)
if is_summary:
# For summary documents, find the original chunk via original_chunk_id
original_chunk_id = document.metadata.get("original_chunk_id")
if original_chunk_id:
summary_segment_ids.add(original_chunk_id)
# Save summary's score for later use
summary_score = document.metadata.get("score")
if summary_score is not None:
try:
summary_score_float = float(summary_score)
# If the same segment has multiple summary hits, take the highest score
if original_chunk_id not in summary_score_map:
summary_score_map[original_chunk_id] = summary_score_float
else:
summary_score_map[original_chunk_id] = max(
summary_score_map[original_chunk_id], summary_score_float
)
except (ValueError, TypeError):
# Skip invalid score values
pass
continue # Skip adding to other lists for summary documents
if dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
doc_id = document.metadata.get("doc_id") or ""
doc_to_document_map[doc_id] = document
if document.metadata.get("doc_type") == DocType.IMAGE:
image_doc_ids.append(doc_id)
else:
child_index_node_ids.append(doc_id)
else:
doc_id = document.metadata.get("doc_id") or ""
doc_to_document_map[doc_id] = document
if document.metadata.get("doc_type") == DocType.IMAGE:
image_doc_ids.append(doc_id)
else:
@ -456,7 +433,6 @@ class RetrievalService:
attachment_map: dict[str, list[dict[str, Any]]] = {}
child_chunk_map: dict[str, list[ChildChunk]] = {}
doc_segment_map: dict[str, list[str]] = {}
segment_summary_map: dict[str, str] = {} # Map segment_id to summary content
with session_factory.create_session() as session:
attachments = cls.get_segment_attachment_infos(image_doc_ids, session)
@ -471,7 +447,6 @@ class RetrievalService:
doc_segment_map[attachment["segment_id"]].append(attachment["attachment_id"])
else:
doc_segment_map[attachment["segment_id"]] = [attachment["attachment_id"]]
child_chunk_stmt = select(ChildChunk).where(ChildChunk.index_node_id.in_(child_index_node_ids))
child_index_nodes = session.execute(child_chunk_stmt).scalars().all()
@ -495,7 +470,6 @@ class RetrievalService:
index_node_segments = session.execute(document_segment_stmt).scalars().all() # type: ignore
for index_node_segment in index_node_segments:
doc_segment_map[index_node_segment.id] = [index_node_segment.index_node_id]
if segment_ids:
document_segment_stmt = select(DocumentSegment).where(
DocumentSegment.enabled == True,
@ -507,42 +481,6 @@ class RetrievalService:
if index_node_segments:
segments.extend(index_node_segments)
# Handle summary documents: query segments by original_chunk_id
if summary_segment_ids:
summary_segment_ids_list = list(summary_segment_ids)
summary_segment_stmt = select(DocumentSegment).where(
DocumentSegment.enabled == True,
DocumentSegment.status == "completed",
DocumentSegment.id.in_(summary_segment_ids_list),
)
summary_segments = session.execute(summary_segment_stmt).scalars().all() # type: ignore
segments.extend(summary_segments)
# Add summary segment IDs to segment_ids for summary query
for seg in summary_segments:
if seg.id not in segment_ids:
segment_ids.append(seg.id)
# Batch query summaries for segments retrieved via summary (only enabled summaries)
if summary_segment_ids:
from models.dataset import DocumentSegmentSummary
summaries = (
session.query(DocumentSegmentSummary)
.filter(
DocumentSegmentSummary.chunk_id.in_(list(summary_segment_ids)),
DocumentSegmentSummary.status == "completed",
DocumentSegmentSummary.enabled == True, # Only retrieve enabled summaries
)
.all()
)
for summary in summaries:
if summary.summary_content:
segment_summary_map[summary.chunk_id] = summary.summary_content
include_segment_ids = set()
segment_child_map: dict[str, dict[str, Any]] = {}
records: list[dict[str, Any]] = []
for segment in segments:
child_chunks: list[ChildChunk] = child_chunk_map.get(segment.id, [])
attachment_infos: list[dict[str, Any]] = attachment_map.get(segment.id, [])
@ -551,43 +489,30 @@ class RetrievalService:
if ds_dataset_document and ds_dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
if segment.id not in include_segment_ids:
include_segment_ids.add(segment.id)
# Check if this segment was retrieved via summary
# Use summary score as base score if available, otherwise 0.0
max_score = summary_score_map.get(segment.id, 0.0)
if child_chunks or attachment_infos:
child_chunk_details = []
max_score = 0.0
for child_chunk in child_chunks:
document = doc_to_document_map.get(child_chunk.index_node_id)
child_score = document.metadata.get("score", 0.0) if document else 0.0
document = doc_to_document_map[child_chunk.index_node_id]
child_chunk_detail = {
"id": child_chunk.id,
"content": child_chunk.content,
"position": child_chunk.position,
"score": child_score,
"score": document.metadata.get("score", 0.0) if document else 0.0,
}
child_chunk_details.append(child_chunk_detail)
max_score = max(max_score, child_score)
max_score = max(max_score, document.metadata.get("score", 0.0) if document else 0.0)
for attachment_info in attachment_infos:
file_document = doc_to_document_map.get(attachment_info["id"])
if file_document:
max_score = max(
max_score, file_document.metadata.get("score", 0.0)
)
file_document = doc_to_document_map[attachment_info["id"]]
max_score = max(
max_score, file_document.metadata.get("score", 0.0) if file_document else 0.0
)
map_detail = {
"max_score": max_score,
"child_chunks": child_chunk_details,
}
segment_child_map[segment.id] = map_detail
else:
# No child chunks or attachments, use summary score if available
summary_score = summary_score_map.get(segment.id)
if summary_score is not None:
segment_child_map[segment.id] = {
"max_score": summary_score,
"child_chunks": [],
}
record: dict[str, Any] = {
"segment": segment,
}
@ -595,23 +520,14 @@ class RetrievalService:
else:
if segment.id not in include_segment_ids:
include_segment_ids.add(segment.id)
# Check if this segment was retrieved via summary
# Use summary score if available (summary retrieval takes priority)
max_score = summary_score_map.get(segment.id, 0.0)
# If not retrieved via summary, use original segment's score
if segment.id not in summary_score_map:
segment_document = doc_to_document_map.get(segment.index_node_id)
if segment_document:
max_score = max(max_score, segment_document.metadata.get("score", 0.0))
# Also consider attachment scores
max_score = 0.0
segment_document = doc_to_document_map.get(segment.index_node_id)
if segment_document:
max_score = max(max_score, segment_document.metadata.get("score", 0.0))
for attachment_info in attachment_infos:
file_doc = doc_to_document_map.get(attachment_info["id"])
if file_doc:
max_score = max(max_score, file_doc.metadata.get("score", 0.0))
record = {
"segment": segment,
"score": max_score,
@ -660,16 +576,9 @@ class RetrievalService:
else None
)
# Extract summary if this segment was retrieved via summary
summary_content = segment_summary_map.get(segment.id)
# Create RetrievalSegments object
retrieval_segment = RetrievalSegments(
segment=segment,
child_chunks=child_chunks_list,
score=score,
files=files,
summary=summary_content,
segment=segment, child_chunks=child_chunks_list, score=score, files=files
)
result.append(retrieval_segment)

View File

@ -20,4 +20,3 @@ class RetrievalSegments(BaseModel):
child_chunks: list[RetrievalChildChunk] | None = None
score: float | None = None
files: list[dict[str, str | int]] | None = None
summary: str | None = None # Summary content if retrieved via summary index

View File

@ -13,7 +13,6 @@ from urllib.parse import unquote, urlparse
import httpx
from configs import dify_config
from core.entities.knowledge_entities import PreviewDetail
from core.helper import ssrf_proxy
from core.rag.extractor.entity.extract_setting import ExtractSetting
from core.rag.index_processor.constant.doc_type import DocType
@ -46,17 +45,6 @@ class BaseIndexProcessor(ABC):
def transform(self, documents: list[Document], current_user: Account | None = None, **kwargs) -> list[Document]:
raise NotImplementedError
@abstractmethod
def generate_summary_preview(
self, tenant_id: str, preview_texts: list[PreviewDetail], summary_index_setting: dict
) -> list[PreviewDetail]:
"""
For each segment in preview_texts, generate a summary using LLM and attach it to the segment.
The summary can be stored in a new attribute, e.g., summary.
This method should be implemented by subclasses.
"""
raise NotImplementedError
@abstractmethod
def load(
self,

View File

@ -1,25 +1,9 @@
"""Paragraph index processor."""
import logging
import re
import uuid
from collections.abc import Mapping
from typing import Any
logger = logging.getLogger(__name__)
from core.entities.knowledge_entities import PreviewDetail
from core.file import File, FileTransferMethod, FileType, file_manager
from core.llm_generator.prompts import DEFAULT_GENERATOR_SUMMARY_PROMPT
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import (
ImagePromptMessageContent,
PromptMessageContentUnionTypes,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
from core.provider_manager import ProviderManager
from core.rag.cleaner.clean_processor import CleanProcessor
from core.rag.datasource.keyword.keyword_factory import Keyword
from core.rag.datasource.retrieval_service import RetrievalService
@ -33,16 +17,12 @@ from core.rag.index_processor.index_processor_base import BaseIndexProcessor
from core.rag.models.document import AttachmentDocument, Document, MultimodalGeneralStructureChunk
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from core.tools.utils.text_processing_utils import remove_leading_symbols
from extensions.ext_database import db
from factories.file_factory import build_from_mapping
from libs import helper
from models import UploadFile
from models.account import Account
from models.dataset import Dataset, DatasetProcessRule, DocumentSegment, SegmentAttachmentBinding
from models.dataset import Dataset, DatasetProcessRule
from models.dataset import Document as DatasetDocument
from services.account_service import AccountService
from services.entities.knowledge_entities.knowledge_entities import Rule
from services.summary_index_service import SummaryIndexService
class ParagraphIndexProcessor(BaseIndexProcessor):
@ -128,29 +108,6 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
keyword.add_texts(documents)
def clean(self, dataset: Dataset, node_ids: list[str] | None, with_keywords: bool = True, **kwargs):
# Note: Summary indexes are now disabled (not deleted) when segments are disabled.
# This method is called for actual deletion scenarios (e.g., when segment is deleted).
# For disable operations, disable_summaries_for_segments is called directly in the task.
# Only delete summaries if explicitly requested (e.g., when segment is actually deleted)
delete_summaries = kwargs.get("delete_summaries", False)
if delete_summaries:
if node_ids:
# Find segments by index_node_id
segments = (
db.session.query(DocumentSegment)
.filter(
DocumentSegment.dataset_id == dataset.id,
DocumentSegment.index_node_id.in_(node_ids),
)
.all()
)
segment_ids = [segment.id for segment in segments]
if segment_ids:
SummaryIndexService.delete_summaries_for_segments(dataset, segment_ids)
else:
# Delete all summaries for the dataset
SummaryIndexService.delete_summaries_for_segments(dataset, None)
if dataset.indexing_technique == "high_quality":
vector = Vector(dataset)
if node_ids:
@ -270,303 +227,3 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
}
else:
raise ValueError("Chunks is not a list")
def generate_summary_preview(
self, tenant_id: str, preview_texts: list[PreviewDetail], summary_index_setting: dict
) -> list[PreviewDetail]:
"""
For each segment, concurrently call generate_summary to generate a summary
and write it to the summary attribute of PreviewDetail.
In preview mode (indexing-estimate), if any summary generation fails, the method will raise an exception.
"""
import concurrent.futures
from flask import current_app
# Capture Flask app context for worker threads
flask_app = None
try:
flask_app = current_app._get_current_object() # type: ignore
except RuntimeError:
logger.warning("No Flask application context available, summary generation may fail")
def process(preview: PreviewDetail) -> None:
"""Generate summary for a single preview item."""
if flask_app:
# Ensure Flask app context in worker thread
with flask_app.app_context():
summary = self.generate_summary(tenant_id, preview.content, summary_index_setting)
preview.summary = summary
else:
# Fallback: try without app context (may fail)
summary = self.generate_summary(tenant_id, preview.content, summary_index_setting)
preview.summary = summary
# Generate summaries concurrently using ThreadPoolExecutor
# Set a reasonable timeout to prevent hanging (60 seconds per chunk, max 5 minutes total)
timeout_seconds = min(300, 60 * len(preview_texts))
errors: list[Exception] = []
with concurrent.futures.ThreadPoolExecutor(max_workers=min(10, len(preview_texts))) as executor:
futures = [
executor.submit(process, preview)
for preview in preview_texts
]
# Wait for all tasks to complete with timeout
done, not_done = concurrent.futures.wait(futures, timeout=timeout_seconds)
# Cancel tasks that didn't complete in time
if not_done:
timeout_error_msg = (
f"Summary generation timeout: {len(not_done)} chunks did not complete within {timeout_seconds}s"
)
logger.warning("%s. Cancelling remaining tasks...", timeout_error_msg)
# In preview mode, timeout is also an error
errors.append(TimeoutError(timeout_error_msg))
for future in not_done:
future.cancel()
# Wait a bit for cancellation to take effect
concurrent.futures.wait(not_done, timeout=5)
# Collect exceptions from completed futures
for future in done:
try:
future.result() # This will raise any exception that occurred
except Exception as e:
logger.exception("Error in summary generation future")
errors.append(e)
# In preview mode (indexing-estimate), if there are any errors, fail the request
if errors:
error_messages = [str(e) for e in errors]
error_summary = (
f"Failed to generate summaries for {len(errors)} chunk(s). "
f"Errors: {'; '.join(error_messages[:3])}" # Show first 3 errors
)
if len(errors) > 3:
error_summary += f" (and {len(errors) - 3} more)"
logger.error("Summary generation failed in preview mode: %s", error_summary)
raise ValueError(error_summary)
return preview_texts
@staticmethod
def generate_summary(
tenant_id: str,
text: str,
summary_index_setting: dict | None = None,
segment_id: str | None = None,
) -> str:
"""
Generate summary for the given text using ModelInstance.invoke_llm and the default or custom summary prompt,
and supports vision models by including images from the segment attachments or text content.
Args:
tenant_id: Tenant ID
text: Text content to summarize
summary_index_setting: Summary index configuration
segment_id: Optional segment ID to fetch attachments from SegmentAttachmentBinding table
"""
if not summary_index_setting or not summary_index_setting.get("enable"):
raise ValueError("summary_index_setting is required and must be enabled to generate summary.")
model_name = summary_index_setting.get("model_name")
model_provider_name = summary_index_setting.get("model_provider_name")
summary_prompt = summary_index_setting.get("summary_prompt")
# Import default summary prompt
if not summary_prompt:
summary_prompt = DEFAULT_GENERATOR_SUMMARY_PROMPT
provider_manager = ProviderManager()
provider_model_bundle = provider_manager.get_provider_model_bundle(
tenant_id, model_provider_name, ModelType.LLM
)
model_instance = ModelInstance(provider_model_bundle, model_name)
# Get model schema to check if vision is supported
model_schema = model_instance.model_type_instance.get_model_schema(model_name, model_instance.credentials)
supports_vision = model_schema and model_schema.features and ModelFeature.VISION in model_schema.features
# Extract images if model supports vision
image_files = []
if supports_vision:
# First, try to get images from SegmentAttachmentBinding (preferred method)
if segment_id:
image_files = ParagraphIndexProcessor._extract_images_from_segment_attachments(tenant_id, segment_id)
# If no images from attachments, fall back to extracting from text
if not image_files:
image_files = ParagraphIndexProcessor._extract_images_from_text(tenant_id, text)
# Build prompt messages
prompt_messages = []
if image_files:
# If we have images, create a UserPromptMessage with both text and images
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
# Add images first
for file in image_files:
try:
file_content = file_manager.to_prompt_message_content(
file, image_detail_config=ImagePromptMessageContent.DETAIL.LOW
)
prompt_message_contents.append(file_content)
except Exception as e:
logger.warning("Failed to convert image file to prompt message content: %s", str(e))
continue
# Add text content
if prompt_message_contents: # Only add text if we successfully added images
prompt_message_contents.append(TextPromptMessageContent(data=f"{summary_prompt}\n{text}"))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
# If image conversion failed, fall back to text-only
prompt = f"{summary_prompt}\n{text}"
prompt_messages.append(UserPromptMessage(content=prompt))
else:
# No images, use simple text prompt
prompt = f"{summary_prompt}\n{text}"
prompt_messages.append(UserPromptMessage(content=prompt))
result = model_instance.invoke_llm(prompt_messages=prompt_messages, model_parameters={}, stream=False)
return getattr(result.message, "content", "")
@staticmethod
def _extract_images_from_text(tenant_id: str, text: str) -> list[File]:
"""
Extract images from markdown text and convert them to File objects.
Args:
tenant_id: Tenant ID
text: Text content that may contain markdown image links
Returns:
List of File objects representing images found in the text
"""
# Extract markdown images using regex pattern
pattern = r"!\[.*?\]\((.*?)\)"
images = re.findall(pattern, text)
if not images:
return []
upload_file_id_list = []
for image in images:
# For data before v0.10.0
pattern = r"/files/([a-f0-9\-]+)/image-preview(?:\?.*?)?"
match = re.search(pattern, image)
if match:
upload_file_id = match.group(1)
upload_file_id_list.append(upload_file_id)
continue
# For data after v0.10.0
pattern = r"/files/([a-f0-9\-]+)/file-preview(?:\?.*?)?"
match = re.search(pattern, image)
if match:
upload_file_id = match.group(1)
upload_file_id_list.append(upload_file_id)
continue
# For tools directory - direct file formats (e.g., .png, .jpg, etc.)
pattern = r"/files/tools/([a-f0-9\-]+)\.([a-zA-Z0-9]+)(?:\?[^\s\)\"\']*)?"
match = re.search(pattern, image)
if match:
# Tool files are handled differently, skip for now
continue
if not upload_file_id_list:
return []
# Get unique IDs for database query
unique_upload_file_ids = list(set(upload_file_id_list))
upload_files = (
db.session.query(UploadFile)
.where(UploadFile.id.in_(unique_upload_file_ids), UploadFile.tenant_id == tenant_id)
.all()
)
# Create File objects from UploadFile records
file_objects = []
for upload_file in upload_files:
# Only process image files
if not upload_file.mime_type or "image" not in upload_file.mime_type:
continue
mapping = {
"upload_file_id": upload_file.id,
"transfer_method": FileTransferMethod.LOCAL_FILE.value,
"type": FileType.IMAGE.value,
}
try:
file_obj = build_from_mapping(
mapping=mapping,
tenant_id=tenant_id,
)
file_objects.append(file_obj)
except Exception as e:
logger.warning("Failed to create File object from UploadFile %s: %s", upload_file.id, str(e))
continue
return file_objects
@staticmethod
def _extract_images_from_segment_attachments(tenant_id: str, segment_id: str) -> list[File]:
"""
Extract images from SegmentAttachmentBinding table (preferred method).
This matches how DatasetRetrieval gets segment attachments.
Args:
tenant_id: Tenant ID
segment_id: Segment ID to fetch attachments for
Returns:
List of File objects representing images found in segment attachments
"""
from sqlalchemy import select
# Query attachments from SegmentAttachmentBinding table
attachments_with_bindings = db.session.execute(
select(SegmentAttachmentBinding, UploadFile)
.join(UploadFile, UploadFile.id == SegmentAttachmentBinding.attachment_id)
.where(
SegmentAttachmentBinding.segment_id == segment_id,
SegmentAttachmentBinding.tenant_id == tenant_id,
)
).all()
if not attachments_with_bindings:
return []
file_objects = []
for _, upload_file in attachments_with_bindings:
# Only process image files
if not upload_file.mime_type or "image" not in upload_file.mime_type:
continue
try:
# Create File object directly (similar to DatasetRetrieval)
file_obj = File(
id=upload_file.id,
filename=upload_file.name,
extension="." + upload_file.extension,
mime_type=upload_file.mime_type,
tenant_id=tenant_id,
type=FileType.IMAGE,
transfer_method=FileTransferMethod.LOCAL_FILE,
remote_url=upload_file.source_url,
related_id=upload_file.id,
size=upload_file.size,
storage_key=upload_file.key,
)
file_objects.append(file_obj)
except Exception as e:
logger.warning("Failed to create File object from UploadFile %s: %s", upload_file.id, str(e))
continue
return file_objects

View File

@ -1,13 +1,11 @@
"""Paragraph index processor."""
import json
import logging
import uuid
from collections.abc import Mapping
from typing import Any
from configs import dify_config
from core.entities.knowledge_entities import PreviewDetail
from core.model_manager import ModelInstance
from core.rag.cleaner.clean_processor import CleanProcessor
from core.rag.datasource.retrieval_service import RetrievalService
@ -27,9 +25,6 @@ from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegm
from models.dataset import Document as DatasetDocument
from services.account_service import AccountService
from services.entities.knowledge_entities.knowledge_entities import ParentMode, Rule
from services.summary_index_service import SummaryIndexService
logger = logging.getLogger(__name__)
class ParentChildIndexProcessor(BaseIndexProcessor):
@ -140,29 +135,6 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
def clean(self, dataset: Dataset, node_ids: list[str] | None, with_keywords: bool = True, **kwargs):
# node_ids is segment's node_ids
# Note: Summary indexes are now disabled (not deleted) when segments are disabled.
# This method is called for actual deletion scenarios (e.g., when segment is deleted).
# For disable operations, disable_summaries_for_segments is called directly in the task.
# Only delete summaries if explicitly requested (e.g., when segment is actually deleted)
delete_summaries = kwargs.get("delete_summaries", False)
if delete_summaries:
if node_ids:
# Find segments by index_node_id
segments = (
db.session.query(DocumentSegment)
.filter(
DocumentSegment.dataset_id == dataset.id,
DocumentSegment.index_node_id.in_(node_ids),
)
.all()
)
segment_ids = [segment.id for segment in segments]
if segment_ids:
SummaryIndexService.delete_summaries_for_segments(dataset, segment_ids)
else:
# Delete all summaries for the dataset
SummaryIndexService.delete_summaries_for_segments(dataset, None)
if dataset.indexing_technique == "high_quality":
delete_child_chunks = kwargs.get("delete_child_chunks") or False
precomputed_child_node_ids = kwargs.get("precomputed_child_node_ids")
@ -354,93 +326,3 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
"preview": preview,
"total_segments": len(parent_childs.parent_child_chunks),
}
def generate_summary_preview(
self, tenant_id: str, preview_texts: list[PreviewDetail], summary_index_setting: dict
) -> list[PreviewDetail]:
"""
For each parent chunk in preview_texts, concurrently call generate_summary to generate a summary
and write it to the summary attribute of PreviewDetail.
In preview mode (indexing-estimate), if any summary generation fails, the method will raise an exception.
Note: For parent-child structure, we only generate summaries for parent chunks.
"""
import concurrent.futures
from flask import current_app
# Capture Flask app context for worker threads
flask_app = None
try:
flask_app = current_app._get_current_object() # type: ignore
except RuntimeError:
logger.warning("No Flask application context available, summary generation may fail")
def process(preview: PreviewDetail) -> None:
"""Generate summary for a single preview item (parent chunk)."""
from core.rag.index_processor.processor.paragraph_index_processor import ParagraphIndexProcessor
if flask_app:
# Ensure Flask app context in worker thread
with flask_app.app_context():
summary = ParagraphIndexProcessor.generate_summary(
tenant_id=tenant_id,
text=preview.content,
summary_index_setting=summary_index_setting,
)
preview.summary = summary
else:
# Fallback: try without app context (may fail)
summary = ParagraphIndexProcessor.generate_summary(
tenant_id=tenant_id,
text=preview.content,
summary_index_setting=summary_index_setting,
)
preview.summary = summary
# Generate summaries concurrently using ThreadPoolExecutor
# Set a reasonable timeout to prevent hanging (60 seconds per chunk, max 5 minutes total)
timeout_seconds = min(300, 60 * len(preview_texts))
errors: list[Exception] = []
with concurrent.futures.ThreadPoolExecutor(max_workers=min(10, len(preview_texts))) as executor:
futures = [
executor.submit(process, preview)
for preview in preview_texts
]
# Wait for all tasks to complete with timeout
done, not_done = concurrent.futures.wait(futures, timeout=timeout_seconds)
# Cancel tasks that didn't complete in time
if not_done:
timeout_error_msg = (
f"Summary generation timeout: {len(not_done)} chunks did not complete within {timeout_seconds}s"
)
logger.warning("%s. Cancelling remaining tasks...", timeout_error_msg)
# In preview mode, timeout is also an error
errors.append(TimeoutError(timeout_error_msg))
for future in not_done:
future.cancel()
# Wait a bit for cancellation to take effect
concurrent.futures.wait(not_done, timeout=5)
# Collect exceptions from completed futures
for future in done:
try:
future.result() # This will raise any exception that occurred
except Exception as e:
logger.exception("Error in summary generation future")
errors.append(e)
# In preview mode (indexing-estimate), if there are any errors, fail the request
if errors:
error_messages = [str(e) for e in errors]
error_summary = (
f"Failed to generate summaries for {len(errors)} chunk(s). "
f"Errors: {'; '.join(error_messages[:3])}" # Show first 3 errors
)
if len(errors) > 3:
error_summary += f" (and {len(errors) - 3} more)"
logger.error("Summary generation failed in preview mode: %s", error_summary)
raise ValueError(error_summary)
return preview_texts

View File

@ -11,7 +11,6 @@ import pandas as pd
from flask import Flask, current_app
from werkzeug.datastructures import FileStorage
from core.entities.knowledge_entities import PreviewDetail
from core.llm_generator.llm_generator import LLMGenerator
from core.rag.cleaner.clean_processor import CleanProcessor
from core.rag.datasource.retrieval_service import RetrievalService
@ -26,10 +25,9 @@ from core.rag.retrieval.retrieval_methods import RetrievalMethod
from core.tools.utils.text_processing_utils import remove_leading_symbols
from libs import helper
from models.account import Account
from models.dataset import Dataset, DocumentSegment
from models.dataset import Dataset
from models.dataset import Document as DatasetDocument
from services.entities.knowledge_entities.knowledge_entities import Rule
from services.summary_index_service import SummaryIndexService
logger = logging.getLogger(__name__)
@ -146,30 +144,6 @@ class QAIndexProcessor(BaseIndexProcessor):
vector.create_multimodal(multimodal_documents)
def clean(self, dataset: Dataset, node_ids: list[str] | None, with_keywords: bool = True, **kwargs):
# Note: Summary indexes are now disabled (not deleted) when segments are disabled.
# This method is called for actual deletion scenarios (e.g., when segment is deleted).
# For disable operations, disable_summaries_for_segments is called directly in the task.
# Note: qa_model doesn't generate summaries, but we clean them for completeness
# Only delete summaries if explicitly requested (e.g., when segment is actually deleted)
delete_summaries = kwargs.get("delete_summaries", False)
if delete_summaries:
if node_ids:
# Find segments by index_node_id
segments = (
db.session.query(DocumentSegment)
.filter(
DocumentSegment.dataset_id == dataset.id,
DocumentSegment.index_node_id.in_(node_ids),
)
.all()
)
segment_ids = [segment.id for segment in segments]
if segment_ids:
SummaryIndexService.delete_summaries_for_segments(dataset, segment_ids)
else:
# Delete all summaries for the dataset
SummaryIndexService.delete_summaries_for_segments(dataset, None)
vector = Vector(dataset)
if node_ids:
vector.delete_by_ids(node_ids)
@ -238,17 +212,6 @@ class QAIndexProcessor(BaseIndexProcessor):
"total_segments": len(qa_chunks.qa_chunks),
}
def generate_summary_preview(
self, tenant_id: str, preview_texts: list[PreviewDetail], summary_index_setting: dict
) -> list[PreviewDetail]:
"""
QA model doesn't generate summaries, so this method returns preview_texts unchanged.
Note: QA model uses question-answer pairs, which don't require summary generation.
"""
# QA model doesn't generate summaries, return as-is
return preview_texts
def _format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
format_documents = []
if document_node.page_content is None or not document_node.page_content.strip():

View File

@ -62,21 +62,6 @@ class DocumentExtractorNode(Node[DocumentExtractorNodeData]):
inputs = {"variable_selector": variable_selector}
process_data = {"documents": value if isinstance(value, list) else [value]}
# Ensure storage_key is loaded for File objects
files_to_check = value if isinstance(value, list) else [value]
files_needing_storage_key = [
f for f in files_to_check if isinstance(f, File) and not f.storage_key and f.related_id
]
if files_needing_storage_key:
from sqlalchemy.orm import Session
from extensions.ext_database import db
from factories.file_factory import StorageKeyLoader
with Session(bind=db.engine) as session:
storage_key_loader = StorageKeyLoader(session, tenant_id=self.tenant_id)
storage_key_loader.load_storage_keys(files_needing_storage_key)
try:
if isinstance(value, list):
extracted_text_list = list(map(_extract_text_from_file, value))
@ -430,16 +415,6 @@ def _download_file_content(file: File) -> bytes:
response.raise_for_status()
return response.content
else:
# Check if storage_key is set
if not file.storage_key:
raise FileDownloadError(f"File storage_key is missing for file: {file.filename}")
# Check if file exists before downloading
from extensions.ext_storage import storage
if not storage.exists(file.storage_key):
raise FileDownloadError(f"File not found in storage: {file.storage_key}")
return file_manager.download(file)
except Exception as e:
raise FileDownloadError(f"Error downloading file: {str(e)}") from e

View File

@ -158,5 +158,3 @@ class KnowledgeIndexNodeData(BaseNodeData):
type: str = "knowledge-index"
chunk_structure: str
index_chunk_variable_selector: list[str]
indexing_technique: str | None = None
summary_index_setting: dict | None = None

View File

@ -1,11 +1,9 @@
import concurrent.futures
import datetime
import logging
import time
from collections.abc import Mapping
from typing import Any
from flask import current_app
from sqlalchemy import func, select
from core.app.entities.app_invoke_entities import InvokeFrom
@ -18,9 +16,7 @@ from core.workflow.nodes.base.node import Node
from core.workflow.nodes.base.template import Template
from core.workflow.runtime import VariablePool
from extensions.ext_database import db
from models.dataset import Dataset, Document, DocumentSegment, DocumentSegmentSummary
from services.summary_index_service import SummaryIndexService
from tasks.generate_summary_index_task import generate_summary_index_task
from models.dataset import Dataset, Document, DocumentSegment
from .entities import KnowledgeIndexNodeData
from .exc import (
@ -71,20 +67,7 @@ class KnowledgeIndexNode(Node[KnowledgeIndexNodeData]):
# index knowledge
try:
if is_preview:
# Preview mode: generate summaries for chunks directly without saving to database
# Format preview and generate summaries on-the-fly
# Get indexing_technique and summary_index_setting from node_data (workflow graph config)
# or fallback to dataset if not available in node_data
indexing_technique = node_data.indexing_technique or dataset.indexing_technique
summary_index_setting = node_data.summary_index_setting or dataset.summary_index_setting
outputs = self._get_preview_output_with_summaries(
node_data.chunk_structure,
chunks,
dataset=dataset,
indexing_technique=indexing_technique,
summary_index_setting=summary_index_setting,
)
outputs = self._get_preview_output(node_data.chunk_structure, chunks)
return NodeRunResult(
status=WorkflowNodeExecutionStatus.SUCCEEDED,
inputs=variables,
@ -165,11 +148,6 @@ class KnowledgeIndexNode(Node[KnowledgeIndexNodeData]):
)
.scalar()
)
# Update need_summary based on dataset's summary_index_setting
if dataset.summary_index_setting and dataset.summary_index_setting.get("enable") is True:
document.need_summary = True
else:
document.need_summary = False
db.session.add(document)
# update document segment status
db.session.query(DocumentSegment).where(
@ -185,9 +163,6 @@ class KnowledgeIndexNode(Node[KnowledgeIndexNodeData]):
db.session.commit()
# Generate summary index if enabled
self._handle_summary_index_generation(dataset, document, variable_pool)
return {
"dataset_id": ds_id_value,
"dataset_name": dataset_name_value,
@ -198,307 +173,9 @@ class KnowledgeIndexNode(Node[KnowledgeIndexNodeData]):
"display_status": "completed",
}
def _handle_summary_index_generation(
self,
dataset: Dataset,
document: Document,
variable_pool: VariablePool,
) -> None:
"""
Handle summary index generation based on mode (debug/preview or production).
Args:
dataset: Dataset containing the document
document: Document to generate summaries for
variable_pool: Variable pool to check invoke_from
"""
# Only generate summary index for high_quality indexing technique
if dataset.indexing_technique != "high_quality":
return
# Check if summary index is enabled
summary_index_setting = dataset.summary_index_setting
if not summary_index_setting or not summary_index_setting.get("enable"):
return
# Skip qa_model documents
if document.doc_form == "qa_model":
return
# Determine if in preview/debug mode
invoke_from = variable_pool.get(["sys", SystemVariableKey.INVOKE_FROM])
is_preview = invoke_from and invoke_from.value == InvokeFrom.DEBUGGER
# Determine if only parent chunks should be processed
only_parent_chunks = dataset.chunk_structure == "parent_child_index"
if is_preview:
try:
# Query segments that need summary generation
query = db.session.query(DocumentSegment).filter_by(
dataset_id=dataset.id,
document_id=document.id,
status="completed",
enabled=True,
)
segments = query.all()
if not segments:
logger.info("No segments found for document %s", document.id)
return
# Filter segments based on mode
segments_to_process = []
for segment in segments:
# Skip if summary already exists
existing_summary = (
db.session.query(DocumentSegmentSummary)
.filter_by(chunk_id=segment.id, dataset_id=dataset.id, status="completed")
.first()
)
if existing_summary:
continue
# For parent-child mode, all segments are parent chunks, so process all
segments_to_process.append(segment)
if not segments_to_process:
logger.info("No segments need summary generation for document %s", document.id)
return
# Use ThreadPoolExecutor for concurrent generation
flask_app = current_app._get_current_object() # type: ignore
max_workers = min(10, len(segments_to_process)) # Limit to 10 workers
def process_segment(segment: DocumentSegment) -> None:
"""Process a single segment in a thread with Flask app context."""
with flask_app.app_context():
try:
SummaryIndexService.generate_and_vectorize_summary(segment, dataset, summary_index_setting)
except Exception:
logger.exception(
"Failed to generate summary for segment %s",
segment.id,
)
# Continue processing other segments
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [executor.submit(process_segment, segment) for segment in segments_to_process]
# Wait for all tasks to complete
concurrent.futures.wait(futures)
logger.info(
"Successfully generated summary index for %s segments in document %s",
len(segments_to_process),
document.id,
)
except Exception:
logger.exception("Failed to generate summary index for document %s", document.id)
# Don't fail the entire indexing process if summary generation fails
else:
# Production mode: asynchronous generation
logger.info(
"Queuing summary index generation task for document %s (production mode)",
document.id,
)
try:
generate_summary_index_task.delay(dataset.id, document.id, None)
logger.info("Summary index generation task queued for document %s", document.id)
except Exception:
logger.exception(
"Failed to queue summary index generation task for document %s",
document.id,
)
# Don't fail the entire indexing process if task queuing fails
def _get_preview_output_with_summaries(
self,
chunk_structure: str,
chunks: Any,
dataset: Dataset,
indexing_technique: str | None = None,
summary_index_setting: dict | None = None,
) -> Mapping[str, Any]:
"""
Generate preview output with summaries for chunks in preview mode.
This method generates summaries on-the-fly without saving to database.
Args:
chunk_structure: Chunk structure type
chunks: Chunks to generate preview for
dataset: Dataset object (for tenant_id)
indexing_technique: Indexing technique from node config or dataset
summary_index_setting: Summary index setting from node config or dataset
"""
def _get_preview_output(self, chunk_structure: str, chunks: Any) -> Mapping[str, Any]:
index_processor = IndexProcessorFactory(chunk_structure).init_index_processor()
preview_output = index_processor.format_preview(chunks)
# Check if summary index is enabled
if indexing_technique != "high_quality":
return preview_output
if not summary_index_setting or not summary_index_setting.get("enable"):
return preview_output
# Generate summaries for chunks
if "preview" in preview_output and isinstance(preview_output["preview"], list):
chunk_count = len(preview_output["preview"])
logger.info(
"Generating summaries for %s chunks in preview mode (dataset: %s)",
chunk_count,
dataset.id,
)
# Use ParagraphIndexProcessor's generate_summary method
from core.rag.index_processor.processor.paragraph_index_processor import ParagraphIndexProcessor
# Get Flask app for application context in worker threads
flask_app = None
try:
flask_app = current_app._get_current_object() # type: ignore
except RuntimeError:
logger.warning("No Flask application context available, summary generation may fail")
def generate_summary_for_chunk(preview_item: dict) -> None:
"""Generate summary for a single chunk."""
if "content" in preview_item:
# Set Flask application context in worker thread
if flask_app:
with flask_app.app_context():
summary = ParagraphIndexProcessor.generate_summary(
tenant_id=dataset.tenant_id,
text=preview_item["content"],
summary_index_setting=summary_index_setting,
)
if summary:
preview_item["summary"] = summary
else:
# Fallback: try without app context (may fail)
summary = ParagraphIndexProcessor.generate_summary(
tenant_id=dataset.tenant_id,
text=preview_item["content"],
summary_index_setting=summary_index_setting,
)
if summary:
preview_item["summary"] = summary
# Generate summaries concurrently using ThreadPoolExecutor
# Set a reasonable timeout to prevent hanging (60 seconds per chunk, max 5 minutes total)
timeout_seconds = min(300, 60 * len(preview_output["preview"]))
errors: list[Exception] = []
with concurrent.futures.ThreadPoolExecutor(max_workers=min(10, len(preview_output["preview"]))) as executor:
futures = [
executor.submit(generate_summary_for_chunk, preview_item)
for preview_item in preview_output["preview"]
]
# Wait for all tasks to complete with timeout
done, not_done = concurrent.futures.wait(futures, timeout=timeout_seconds)
# Cancel tasks that didn't complete in time
if not_done:
timeout_error_msg = (
f"Summary generation timeout: {len(not_done)} chunks did not complete within {timeout_seconds}s"
)
logger.warning("%s. Cancelling remaining tasks...", timeout_error_msg)
# In preview mode, timeout is also an error
errors.append(TimeoutError(timeout_error_msg))
for future in not_done:
future.cancel()
# Wait a bit for cancellation to take effect
concurrent.futures.wait(not_done, timeout=5)
# Collect exceptions from completed futures
for future in done:
try:
future.result() # This will raise any exception that occurred
except Exception as e:
logger.exception("Error in summary generation future")
errors.append(e)
# In preview mode, if there are any errors, fail the request
if errors:
error_messages = [str(e) for e in errors]
error_summary = (
f"Failed to generate summaries for {len(errors)} chunk(s). "
f"Errors: {'; '.join(error_messages[:3])}" # Show first 3 errors
)
if len(errors) > 3:
error_summary += f" (and {len(errors) - 3} more)"
logger.error("Summary generation failed in preview mode: %s", error_summary)
raise KnowledgeIndexNodeError(error_summary)
completed_count = sum(1 for item in preview_output["preview"] if item.get("summary") is not None)
logger.info(
"Completed summary generation for preview chunks: %s/%s succeeded",
completed_count,
len(preview_output["preview"]),
)
return preview_output
def _get_preview_output(
self,
chunk_structure: str,
chunks: Any,
dataset: Dataset | None = None,
variable_pool: VariablePool | None = None,
) -> Mapping[str, Any]:
index_processor = IndexProcessorFactory(chunk_structure).init_index_processor()
preview_output = index_processor.format_preview(chunks)
# If dataset is provided, try to enrich preview with summaries
if dataset and variable_pool:
document_id = variable_pool.get(["sys", SystemVariableKey.DOCUMENT_ID])
if document_id:
document = db.session.query(Document).filter_by(id=document_id.value).first()
if document:
# Query summaries for this document
summaries = (
db.session.query(DocumentSegmentSummary)
.filter_by(
dataset_id=dataset.id,
document_id=document.id,
status="completed",
enabled=True,
)
.all()
)
if summaries:
# Create a map of segment content to summary for matching
# Use content matching as chunks in preview might not be indexed yet
summary_by_content = {}
for summary in summaries:
segment = (
db.session.query(DocumentSegment)
.filter_by(id=summary.chunk_id, dataset_id=dataset.id)
.first()
)
if segment:
# Normalize content for matching (strip whitespace)
normalized_content = segment.content.strip()
summary_by_content[normalized_content] = summary.summary_content
# Enrich preview with summaries by content matching
if "preview" in preview_output and isinstance(preview_output["preview"], list):
matched_count = 0
for preview_item in preview_output["preview"]:
if "content" in preview_item:
# Normalize content for matching
normalized_chunk_content = preview_item["content"].strip()
if normalized_chunk_content in summary_by_content:
preview_item["summary"] = summary_by_content[normalized_chunk_content]
matched_count += 1
if matched_count > 0:
logger.info(
"Enriched preview with %s existing summaries (dataset: %s, document: %s)",
matched_count,
dataset.id,
document.id,
)
return preview_output
return index_processor.format_preview(chunks)
@classmethod
def version(cls) -> str:

View File

@ -419,9 +419,6 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
source["content"] = f"question:{segment.get_sign_content()} \nanswer:{segment.answer}"
else:
source["content"] = segment.get_sign_content()
# Add summary if available
if record.summary:
source["summary"] = record.summary
retrieval_resource_list.append(source)
if retrieval_resource_list:
retrieval_resource_list = sorted(

View File

@ -685,8 +685,6 @@ class LLMNode(Node[LLMNodeData]):
if "content" not in item:
raise InvalidContextStructureError(f"Invalid context structure: {item}")
if "summary" in item and item["summary"]:
context_str += item["summary"] + "\n"
context_str += item["content"] + "\n"
retriever_resource = self._convert_to_original_retriever_resource(item)

View File

@ -102,8 +102,6 @@ def init_app(app: DifyApp) -> Celery:
imports = [
"tasks.async_workflow_tasks", # trigger workers
"tasks.trigger_processing_tasks", # async trigger processing
"tasks.generate_summary_index_task", # summary index generation
"tasks.regenerate_summary_index_task", # summary index regeneration
]
day = dify_config.CELERY_BEAT_SCHEDULER_TIME

View File

@ -28,10 +28,8 @@ def init_app(app: DifyApp) -> None:
# Ensure route decorators are evaluated.
import controllers.console.ping as ping_module
from controllers.console import setup
_ = ping_module
_ = setup
router.include_router(console_router, prefix="/console/api")
CORS(

View File

@ -39,14 +39,6 @@ dataset_retrieval_model_fields = {
"score_threshold_enabled": fields.Boolean,
"score_threshold": fields.Float,
}
dataset_summary_index_fields = {
"enable": fields.Boolean,
"model_name": fields.String,
"model_provider_name": fields.String,
"summary_prompt": fields.String,
}
external_retrieval_model_fields = {
"top_k": fields.Integer,
"score_threshold": fields.Float,
@ -91,7 +83,6 @@ dataset_detail_fields = {
"embedding_model_provider": fields.String,
"embedding_available": fields.Boolean,
"retrieval_model_dict": fields.Nested(dataset_retrieval_model_fields),
"summary_index_setting": fields.Nested(dataset_summary_index_fields),
"tags": fields.List(fields.Nested(tag_fields)),
"doc_form": fields.String,
"external_knowledge_info": fields.Nested(external_knowledge_info_fields),

View File

@ -33,11 +33,6 @@ document_fields = {
"hit_count": fields.Integer,
"doc_form": fields.String,
"doc_metadata": fields.List(fields.Nested(document_metadata_fields), attribute="doc_metadata_details"),
# Summary index generation status:
# "SUMMARIZING" (when task is queued and generating)
"summary_index_status": fields.String,
# Whether this document needs summary index generation
"need_summary": fields.Boolean,
}
document_with_segments_fields = {
@ -65,10 +60,6 @@ document_with_segments_fields = {
"completed_segments": fields.Integer,
"total_segments": fields.Integer,
"doc_metadata": fields.List(fields.Nested(document_metadata_fields), attribute="doc_metadata_details"),
# Summary index generation status:
# "SUMMARIZING" (when task is queued and generating)
"summary_index_status": fields.String,
"need_summary": fields.Boolean, # Whether this document needs summary index generation
}
dataset_and_document_fields = {

View File

@ -58,5 +58,4 @@ hit_testing_record_fields = {
"score": fields.Float,
"tsne_position": fields.Raw,
"files": fields.List(fields.Nested(files_fields)),
"summary": fields.String, # Summary content if retrieved via summary index
}

View File

@ -49,5 +49,4 @@ segment_fields = {
"stopped_at": TimestampField,
"child_chunks": fields.List(fields.Nested(child_chunk_fields)),
"attachments": fields.List(fields.Nested(attachment_fields)),
"summary": fields.String, # Summary content for the segment
}

View File

@ -1,69 +0,0 @@
"""add SummaryIndex feature
Revision ID: 562dcce7d77c
Revises: 03ea244985ce
Create Date: 2026-01-12 13:58:40.584802
"""
from alembic import op
import models as models
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '562dcce7d77c'
down_revision = '03ea244985ce'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('document_segment_summary',
sa.Column('id', models.types.StringUUID(), nullable=False),
sa.Column('dataset_id', models.types.StringUUID(), nullable=False),
sa.Column('document_id', models.types.StringUUID(), nullable=False),
sa.Column('chunk_id', models.types.StringUUID(), nullable=False),
sa.Column('summary_content', models.types.LongText(), nullable=True),
sa.Column('summary_index_node_id', sa.String(length=255), nullable=True),
sa.Column('summary_index_node_hash', sa.String(length=255), nullable=True),
sa.Column('status', sa.String(length=32), server_default=sa.text("'generating'"), nullable=False),
sa.Column('error', models.types.LongText(), nullable=True),
sa.Column('enabled', sa.Boolean(), server_default=sa.text('true'), nullable=False),
sa.Column('disabled_at', sa.DateTime(), nullable=True),
sa.Column('disabled_by', models.types.StringUUID(), nullable=True),
sa.Column('created_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP'), nullable=False),
sa.Column('updated_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP'), nullable=False),
sa.PrimaryKeyConstraint('id', name='document_segment_summary_pkey')
)
with op.batch_alter_table('document_segment_summary', schema=None) as batch_op:
batch_op.create_index('document_segment_summary_chunk_id_idx', ['chunk_id'], unique=False)
batch_op.create_index('document_segment_summary_dataset_id_idx', ['dataset_id'], unique=False)
batch_op.create_index('document_segment_summary_document_id_idx', ['document_id'], unique=False)
batch_op.create_index('document_segment_summary_status_idx', ['status'], unique=False)
with op.batch_alter_table('datasets', schema=None) as batch_op:
batch_op.add_column(sa.Column('summary_index_setting', models.types.AdjustedJSON(), nullable=True))
with op.batch_alter_table('documents', schema=None) as batch_op:
batch_op.add_column(sa.Column('need_summary', sa.Boolean(), server_default=sa.text('false'), nullable=True))
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('documents', schema=None) as batch_op:
batch_op.drop_column('need_summary')
with op.batch_alter_table('datasets', schema=None) as batch_op:
batch_op.drop_column('summary_index_setting')
with op.batch_alter_table('document_segment_summary', schema=None) as batch_op:
batch_op.drop_index('document_segment_summary_status_idx')
batch_op.drop_index('document_segment_summary_document_id_idx')
batch_op.drop_index('document_segment_summary_dataset_id_idx')
batch_op.drop_index('document_segment_summary_chunk_id_idx')
op.drop_table('document_segment_summary')
# ### end Alembic commands ###

View File

@ -72,7 +72,6 @@ class Dataset(Base):
keyword_number = mapped_column(sa.Integer, nullable=True, server_default=sa.text("10"))
collection_binding_id = mapped_column(StringUUID, nullable=True)
retrieval_model = mapped_column(AdjustedJSON, nullable=True)
summary_index_setting = mapped_column(AdjustedJSON, nullable=True)
built_in_field_enabled = mapped_column(sa.Boolean, nullable=False, server_default=sa.text("false"))
icon_info = mapped_column(AdjustedJSON, nullable=True)
runtime_mode = mapped_column(sa.String(255), nullable=True, server_default=sa.text("'general'"))
@ -420,7 +419,6 @@ class Document(Base):
doc_metadata = mapped_column(AdjustedJSON, nullable=True)
doc_form = mapped_column(String(255), nullable=False, server_default=sa.text("'text_model'"))
doc_language = mapped_column(String(255), nullable=True)
need_summary: Mapped[bool | None] = mapped_column(sa.Boolean, nullable=True, server_default=sa.text("false"))
DATA_SOURCES = ["upload_file", "notion_import", "website_crawl"]
@ -1577,35 +1575,3 @@ class SegmentAttachmentBinding(Base):
segment_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
attachment_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
created_at: Mapped[datetime] = mapped_column(sa.DateTime, nullable=False, server_default=func.current_timestamp())
class DocumentSegmentSummary(Base):
__tablename__ = "document_segment_summary"
__table_args__ = (
sa.PrimaryKeyConstraint("id", name="document_segment_summary_pkey"),
sa.Index("document_segment_summary_dataset_id_idx", "dataset_id"),
sa.Index("document_segment_summary_document_id_idx", "document_id"),
sa.Index("document_segment_summary_chunk_id_idx", "chunk_id"),
sa.Index("document_segment_summary_status_idx", "status"),
)
id: Mapped[str] = mapped_column(StringUUID, nullable=False, default=lambda: str(uuid4()))
dataset_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
document_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
# corresponds to DocumentSegment.id or parent chunk id
chunk_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
summary_content: Mapped[str] = mapped_column(LongText, nullable=True)
summary_index_node_id: Mapped[str] = mapped_column(String(255), nullable=True)
summary_index_node_hash: Mapped[str] = mapped_column(String(255), nullable=True)
status: Mapped[str] = mapped_column(String(32), nullable=False, server_default=sa.text("'generating'"))
error: Mapped[str] = mapped_column(LongText, nullable=True)
enabled: Mapped[bool] = mapped_column(sa.Boolean, nullable=False, server_default=sa.text("true"))
disabled_at: Mapped[datetime | None] = mapped_column(DateTime, nullable=True)
disabled_by = mapped_column(StringUUID, nullable=True)
created_at: Mapped[datetime] = mapped_column(DateTime, nullable=False, server_default=func.current_timestamp())
updated_at: Mapped[datetime] = mapped_column(
DateTime, nullable=False, server_default=func.current_timestamp(), onupdate=func.current_timestamp()
)
def __repr__(self):
return f"<DocumentSegmentSummary id={self.id} chunk_id={self.chunk_id} status={self.status}>"

View File

@ -781,16 +781,15 @@ class AppDslService:
return dependencies
@classmethod
def get_leaked_dependencies(
cls, tenant_id: str, dsl_dependencies: list[PluginDependency]
) -> list[PluginDependency]:
def get_leaked_dependencies(cls, tenant_id: str, dsl_dependencies: list[dict]) -> list[PluginDependency]:
"""
Returns the leaked dependencies in current workspace
"""
if not dsl_dependencies:
dependencies = [PluginDependency.model_validate(dep) for dep in dsl_dependencies]
if not dependencies:
return []
return DependenciesAnalysisService.get_leaked_dependencies(tenant_id=tenant_id, dependencies=dsl_dependencies)
return DependenciesAnalysisService.get_leaked_dependencies(tenant_id=tenant_id, dependencies=dependencies)
@staticmethod
def _generate_aes_key(tenant_id: str) -> bytes:

View File

@ -89,7 +89,6 @@ from tasks.disable_segments_from_index_task import disable_segments_from_index_t
from tasks.document_indexing_update_task import document_indexing_update_task
from tasks.enable_segments_to_index_task import enable_segments_to_index_task
from tasks.recover_document_indexing_task import recover_document_indexing_task
from tasks.regenerate_summary_index_task import regenerate_summary_index_task
from tasks.remove_document_from_index_task import remove_document_from_index_task
from tasks.retry_document_indexing_task import retry_document_indexing_task
from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
@ -477,11 +476,6 @@ class DatasetService:
if external_retrieval_model:
dataset.retrieval_model = external_retrieval_model
# Update summary index setting if provided
summary_index_setting = data.get("summary_index_setting", None)
if summary_index_setting is not None:
dataset.summary_index_setting = summary_index_setting
# Update basic dataset properties
dataset.name = data.get("name", dataset.name)
dataset.description = data.get("description", dataset.description)
@ -570,9 +564,6 @@ class DatasetService:
# update Retrieval model
if data.get("retrieval_model"):
filtered_data["retrieval_model"] = data["retrieval_model"]
# update summary index setting
if data.get("summary_index_setting"):
filtered_data["summary_index_setting"] = data.get("summary_index_setting")
# update icon info
if data.get("icon_info"):
filtered_data["icon_info"] = data.get("icon_info")
@ -581,27 +572,12 @@ class DatasetService:
db.session.query(Dataset).filter_by(id=dataset.id).update(filtered_data)
db.session.commit()
# Reload dataset to get updated values
db.session.refresh(dataset)
# update pipeline knowledge base node data
DatasetService._update_pipeline_knowledge_base_node_data(dataset, user.id)
# Trigger vector index task if indexing technique changed
if action:
deal_dataset_vector_index_task.delay(dataset.id, action)
# If embedding_model changed, also regenerate summary vectors
if action == "update":
regenerate_summary_index_task.delay(
dataset.id,
regenerate_reason="embedding_model_changed",
regenerate_vectors_only=True,
)
# Note: summary_index_setting changes do not trigger automatic regeneration of existing summaries.
# The new setting will only apply to:
# 1. New documents added after the setting change
# 2. Manual summary generation requests
return dataset
@ -640,7 +616,6 @@ class DatasetService:
knowledge_index_node_data["chunk_structure"] = dataset.chunk_structure
knowledge_index_node_data["indexing_technique"] = dataset.indexing_technique # pyright: ignore[reportAttributeAccessIssue]
knowledge_index_node_data["keyword_number"] = dataset.keyword_number
knowledge_index_node_data["summary_index_setting"] = dataset.summary_index_setting
node["data"] = knowledge_index_node_data
updated = True
except Exception:
@ -879,58 +854,6 @@ class DatasetService:
)
filtered_data["collection_binding_id"] = dataset_collection_binding.id
@staticmethod
def _check_summary_index_setting_model_changed(dataset: Dataset, data: dict[str, Any]) -> bool:
"""
Check if summary_index_setting model (model_name or model_provider_name) has changed.
Args:
dataset: Current dataset object
data: Update data dictionary
Returns:
bool: True if summary model changed, False otherwise
"""
# Check if summary_index_setting is being updated
if "summary_index_setting" not in data or data.get("summary_index_setting") is None:
return False
new_summary_setting = data.get("summary_index_setting")
old_summary_setting = dataset.summary_index_setting
# If new setting is disabled, no need to regenerate
if not new_summary_setting or not new_summary_setting.get("enable"):
return False
# If old setting doesn't exist, no need to regenerate (no existing summaries to regenerate)
# Note: This task only regenerates existing summaries, not generates new ones
if not old_summary_setting:
return False
# If old setting was disabled, no need to regenerate (no existing summaries to regenerate)
if not old_summary_setting.get("enable"):
return False
# Compare model_name and model_provider_name
old_model_name = old_summary_setting.get("model_name")
old_model_provider = old_summary_setting.get("model_provider_name")
new_model_name = new_summary_setting.get("model_name")
new_model_provider = new_summary_setting.get("model_provider_name")
# Check if model changed
if old_model_name != new_model_name or old_model_provider != new_model_provider:
logger.info(
"Summary index setting model changed for dataset %s: old=%s/%s, new=%s/%s",
dataset.id,
old_model_provider,
old_model_name,
new_model_provider,
new_model_name,
)
return True
return False
@staticmethod
def update_rag_pipeline_dataset_settings(
session: Session, dataset: Dataset, knowledge_configuration: KnowledgeConfiguration, has_published: bool = False
@ -966,9 +889,6 @@ class DatasetService:
else:
raise ValueError("Invalid index method")
dataset.retrieval_model = knowledge_configuration.retrieval_model.model_dump()
# Update summary_index_setting if provided
if knowledge_configuration.summary_index_setting is not None:
dataset.summary_index_setting = knowledge_configuration.summary_index_setting
session.add(dataset)
else:
if dataset.chunk_structure and dataset.chunk_structure != knowledge_configuration.chunk_structure:
@ -1074,9 +994,6 @@ class DatasetService:
if dataset.keyword_number != knowledge_configuration.keyword_number:
dataset.keyword_number = knowledge_configuration.keyword_number
dataset.retrieval_model = knowledge_configuration.retrieval_model.model_dump()
# Update summary_index_setting if provided
if knowledge_configuration.summary_index_setting is not None:
dataset.summary_index_setting = knowledge_configuration.summary_index_setting
session.add(dataset)
session.commit()
if action:
@ -2047,8 +1964,6 @@ class DocumentService:
DuplicateDocumentIndexingTaskProxy(
dataset.tenant_id, dataset.id, duplicate_document_ids
).delay()
# Note: Summary index generation is triggered in document_indexing_task after indexing completes
# to ensure segments are available. See tasks/document_indexing_task.py
except LockNotOwnedError:
pass
@ -2353,11 +2268,6 @@ class DocumentService:
name: str,
batch: str,
):
# Set need_summary based on dataset's summary_index_setting
need_summary = False
if dataset.summary_index_setting and dataset.summary_index_setting.get("enable") is True:
need_summary = True
document = Document(
tenant_id=dataset.tenant_id,
dataset_id=dataset.id,
@ -2371,7 +2281,6 @@ class DocumentService:
created_by=account.id,
doc_form=document_form,
doc_language=document_language,
need_summary=need_summary,
)
doc_metadata = {}
if dataset.built_in_field_enabled:
@ -2596,7 +2505,6 @@ class DocumentService:
embedding_model_provider=knowledge_config.embedding_model_provider,
collection_binding_id=dataset_collection_binding_id,
retrieval_model=retrieval_model.model_dump() if retrieval_model else None,
summary_index_setting=knowledge_config.summary_index_setting,
is_multimodal=knowledge_config.is_multimodal,
)
@ -2778,14 +2686,6 @@ class DocumentService:
if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):
raise ValueError("Process rule segmentation max_tokens is invalid")
# valid summary index setting
summary_index_setting = args["process_rule"].get("summary_index_setting")
if summary_index_setting and summary_index_setting.get("enable"):
if "model_name" not in summary_index_setting or not summary_index_setting["model_name"]:
raise ValueError("Summary index model name is required")
if "model_provider_name" not in summary_index_setting or not summary_index_setting["model_provider_name"]:
raise ValueError("Summary index model provider name is required")
@staticmethod
def batch_update_document_status(
dataset: Dataset, document_ids: list[str], action: Literal["enable", "disable", "archive", "un_archive"], user
@ -3254,35 +3154,6 @@ class SegmentService:
if args.enabled or keyword_changed:
# update segment vector index
VectorService.update_segment_vector(args.keywords, segment, dataset)
# update summary index if summary is provided and has changed
if args.summary is not None:
# When user manually provides summary, allow saving even if summary_index_setting doesn't exist
# summary_index_setting is only needed for LLM generation, not for manual summary vectorization
# Vectorization uses dataset.embedding_model, which doesn't require summary_index_setting
if dataset.indexing_technique == "high_quality":
# Query existing summary from database
from models.dataset import DocumentSegmentSummary
existing_summary = (
db.session.query(DocumentSegmentSummary)
.where(
DocumentSegmentSummary.chunk_id == segment.id,
DocumentSegmentSummary.dataset_id == dataset.id,
)
.first()
)
# Check if summary has changed
existing_summary_content = existing_summary.summary_content if existing_summary else None
if existing_summary_content != args.summary:
# Summary has changed, update it
from services.summary_index_service import SummaryIndexService
try:
SummaryIndexService.update_summary_for_segment(segment, dataset, args.summary)
except Exception:
logger.exception("Failed to update summary for segment %s", segment.id)
# Don't fail the entire update if summary update fails
else:
segment_hash = helper.generate_text_hash(content)
tokens = 0
@ -3357,77 +3228,6 @@ class SegmentService:
elif document.doc_form in (IndexStructureType.PARAGRAPH_INDEX, IndexStructureType.QA_INDEX):
# update segment vector index
VectorService.update_segment_vector(args.keywords, segment, dataset)
# Handle summary index when content changed
if dataset.indexing_technique == "high_quality":
from models.dataset import DocumentSegmentSummary
existing_summary = (
db.session.query(DocumentSegmentSummary)
.where(
DocumentSegmentSummary.chunk_id == segment.id,
DocumentSegmentSummary.dataset_id == dataset.id,
)
.first()
)
if args.summary is None:
# User didn't provide summary, auto-regenerate if segment previously had summary
# Auto-regeneration only happens if summary_index_setting exists and enable is True
if (
existing_summary
and dataset.summary_index_setting
and dataset.summary_index_setting.get("enable") is True
):
# Segment previously had summary, regenerate it with new content
from services.summary_index_service import SummaryIndexService
try:
SummaryIndexService.generate_and_vectorize_summary(
segment, dataset, dataset.summary_index_setting
)
logger.info(
"Auto-regenerated summary for segment %s after content change", segment.id
)
except Exception:
logger.exception("Failed to auto-regenerate summary for segment %s", segment.id)
# Don't fail the entire update if summary regeneration fails
else:
# User provided summary, check if it has changed
# Manual summary updates are allowed even if summary_index_setting doesn't exist
existing_summary_content = existing_summary.summary_content if existing_summary else None
if existing_summary_content != args.summary:
# Summary has changed, use user-provided summary
from services.summary_index_service import SummaryIndexService
try:
SummaryIndexService.update_summary_for_segment(segment, dataset, args.summary)
logger.info(
"Updated summary for segment %s with user-provided content", segment.id
)
except Exception:
logger.exception("Failed to update summary for segment %s", segment.id)
# Don't fail the entire update if summary update fails
else:
# Summary hasn't changed, regenerate based on new content
# Auto-regeneration only happens if summary_index_setting exists and enable is True
if (
existing_summary
and dataset.summary_index_setting
and dataset.summary_index_setting.get("enable") is True
):
from services.summary_index_service import SummaryIndexService
try:
SummaryIndexService.generate_and_vectorize_summary(
segment, dataset, dataset.summary_index_setting
)
logger.info(
"Regenerated summary for segment %s after content change (summary unchanged)",
segment.id,
)
except Exception:
logger.exception("Failed to regenerate summary for segment %s", segment.id)
# Don't fail the entire update if summary regeneration fails
# update multimodel vector index
VectorService.update_multimodel_vector(segment, args.attachment_ids or [], dataset)
except Exception as e:

View File

@ -119,7 +119,6 @@ class KnowledgeConfig(BaseModel):
data_source: DataSource | None = None
process_rule: ProcessRule | None = None
retrieval_model: RetrievalModel | None = None
summary_index_setting: dict | None = None
doc_form: str = "text_model"
doc_language: str = "English"
embedding_model: str | None = None
@ -142,7 +141,6 @@ class SegmentUpdateArgs(BaseModel):
regenerate_child_chunks: bool = False
enabled: bool | None = None
attachment_ids: list[str] | None = None
summary: str | None = None # Summary content for summary index
class ChildChunkUpdateArgs(BaseModel):

View File

@ -116,8 +116,6 @@ class KnowledgeConfiguration(BaseModel):
embedding_model: str = ""
keyword_number: int | None = 10
retrieval_model: RetrievalSetting
# add summary index setting
summary_index_setting: dict | None = None
@field_validator("embedding_model_provider", mode="before")
@classmethod

View File

@ -870,16 +870,15 @@ class RagPipelineDslService:
return dependencies
@classmethod
def get_leaked_dependencies(
cls, tenant_id: str, dsl_dependencies: list[PluginDependency]
) -> list[PluginDependency]:
def get_leaked_dependencies(cls, tenant_id: str, dsl_dependencies: list[dict]) -> list[PluginDependency]:
"""
Returns the leaked dependencies in current workspace
"""
if not dsl_dependencies:
dependencies = [PluginDependency.model_validate(dep) for dep in dsl_dependencies]
if not dependencies:
return []
return DependenciesAnalysisService.get_leaked_dependencies(tenant_id=tenant_id, dependencies=dsl_dependencies)
return DependenciesAnalysisService.get_leaked_dependencies(tenant_id=tenant_id, dependencies=dependencies)
def _generate_aes_key(self, tenant_id: str) -> bytes:
"""Generate AES key based on tenant_id"""

View File

@ -44,7 +44,7 @@ class RagPipelineTransformService:
doc_form = dataset.doc_form
if not doc_form:
return self._transform_to_empty_pipeline(dataset)
retrieval_model = RetrievalSetting.model_validate(dataset.retrieval_model) if dataset.retrieval_model else None
retrieval_model = dataset.retrieval_model
pipeline_yaml = self._get_transform_yaml(doc_form, datasource_type, indexing_technique)
# deal dependencies
self._deal_dependencies(pipeline_yaml, dataset.tenant_id)
@ -154,12 +154,7 @@ class RagPipelineTransformService:
return node
def _deal_knowledge_index(
self,
dataset: Dataset,
doc_form: str,
indexing_technique: str | None,
retrieval_model: RetrievalSetting | None,
node: dict,
self, dataset: Dataset, doc_form: str, indexing_technique: str | None, retrieval_model: dict, node: dict
):
knowledge_configuration_dict = node.get("data", {})
knowledge_configuration = KnowledgeConfiguration.model_validate(knowledge_configuration_dict)
@ -168,9 +163,10 @@ class RagPipelineTransformService:
knowledge_configuration.embedding_model = dataset.embedding_model
knowledge_configuration.embedding_model_provider = dataset.embedding_model_provider
if retrieval_model:
retrieval_setting = RetrievalSetting.model_validate(retrieval_model)
if indexing_technique == "economy":
retrieval_model.search_method = RetrievalMethod.KEYWORD_SEARCH
knowledge_configuration.retrieval_model = retrieval_model
retrieval_setting.search_method = RetrievalMethod.KEYWORD_SEARCH
knowledge_configuration.retrieval_model = retrieval_setting
else:
dataset.retrieval_model = knowledge_configuration.retrieval_model.model_dump()

View File

@ -1,788 +0,0 @@
"""Summary index service for generating and managing document segment summaries."""
import logging
import time
import uuid
from datetime import UTC, datetime
from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.index_processor.constant.doc_type import DocType
from core.rag.models.document import Document
from extensions.ext_database import db
from libs import helper
from models.dataset import Dataset, DocumentSegment, DocumentSegmentSummary
from models.dataset import Document as DatasetDocument
logger = logging.getLogger(__name__)
class SummaryIndexService:
"""Service for generating and managing summary indexes."""
@staticmethod
def generate_summary_for_segment(
segment: DocumentSegment,
dataset: Dataset,
summary_index_setting: dict,
) -> str:
"""
Generate summary for a single segment.
Args:
segment: DocumentSegment to generate summary for
dataset: Dataset containing the segment
summary_index_setting: Summary index configuration
Returns:
Generated summary text
Raises:
ValueError: If summary_index_setting is invalid or generation fails
"""
# Reuse the existing generate_summary method from ParagraphIndexProcessor
# Use lazy import to avoid circular import
from core.rag.index_processor.processor.paragraph_index_processor import ParagraphIndexProcessor
summary_content = ParagraphIndexProcessor.generate_summary(
tenant_id=dataset.tenant_id,
text=segment.content,
summary_index_setting=summary_index_setting,
segment_id=segment.id,
)
if not summary_content:
raise ValueError("Generated summary is empty")
return summary_content
@staticmethod
def create_summary_record(
segment: DocumentSegment,
dataset: Dataset,
summary_content: str,
status: str = "generating",
) -> DocumentSegmentSummary:
"""
Create or update a DocumentSegmentSummary record.
If a summary record already exists for this segment, it will be updated instead of creating a new one.
Args:
segment: DocumentSegment to create summary for
dataset: Dataset containing the segment
summary_content: Generated summary content
status: Summary status (default: "generating")
Returns:
Created or updated DocumentSegmentSummary instance
"""
# Check if summary record already exists
existing_summary = (
db.session.query(DocumentSegmentSummary).filter_by(chunk_id=segment.id, dataset_id=dataset.id).first()
)
if existing_summary:
# Update existing record
existing_summary.summary_content = summary_content
existing_summary.status = status
existing_summary.error = None # Clear any previous errors
# Re-enable if it was disabled
if not existing_summary.enabled:
existing_summary.enabled = True
existing_summary.disabled_at = None
existing_summary.disabled_by = None
db.session.add(existing_summary)
db.session.flush()
return existing_summary
else:
# Create new record (enabled by default)
summary_record = DocumentSegmentSummary(
dataset_id=dataset.id,
document_id=segment.document_id,
chunk_id=segment.id,
summary_content=summary_content,
status=status,
enabled=True, # Explicitly set enabled to True
)
db.session.add(summary_record)
db.session.flush()
return summary_record
@staticmethod
def vectorize_summary(
summary_record: DocumentSegmentSummary,
segment: DocumentSegment,
dataset: Dataset,
) -> None:
"""
Vectorize summary and store in vector database.
Args:
summary_record: DocumentSegmentSummary record
segment: Original DocumentSegment
dataset: Dataset containing the segment
"""
if dataset.indexing_technique != "high_quality":
logger.warning(
"Summary vectorization skipped for dataset %s: indexing_technique is not high_quality",
dataset.id,
)
return
# Reuse existing index_node_id if available (like segment does), otherwise generate new one
old_summary_node_id = summary_record.summary_index_node_id
if old_summary_node_id:
# Reuse existing index_node_id (like segment behavior)
summary_index_node_id = old_summary_node_id
else:
# Generate new index node ID only for new summaries
summary_index_node_id = str(uuid.uuid4())
# Always regenerate hash (in case summary content changed)
summary_hash = helper.generate_text_hash(summary_record.summary_content)
# Delete old vector only if we're reusing the same index_node_id (to overwrite)
# If index_node_id changed, the old vector should have been deleted elsewhere
if old_summary_node_id and old_summary_node_id == summary_index_node_id:
try:
vector = Vector(dataset)
vector.delete_by_ids([old_summary_node_id])
except Exception as e:
logger.warning(
"Failed to delete old summary vector for segment %s: %s. Continuing with new vectorization.",
segment.id,
str(e),
)
# Create document with summary content and metadata
summary_document = Document(
page_content=summary_record.summary_content,
metadata={
"doc_id": summary_index_node_id,
"doc_hash": summary_hash,
"dataset_id": dataset.id,
"document_id": segment.document_id,
"original_chunk_id": segment.id, # Key: link to original chunk
"doc_type": DocType.TEXT,
"is_summary": True, # Identifier for summary documents
},
)
# Vectorize and store with retry mechanism for connection errors
max_retries = 3
retry_delay = 2.0
for attempt in range(max_retries):
try:
vector = Vector(dataset)
# Use duplicate_check=False to ensure re-vectorization even if old vector still exists
# The old vector should have been deleted above, but if deletion failed,
# we still want to re-vectorize (upsert will overwrite)
vector.add_texts([summary_document], duplicate_check=False)
# Success - update summary record with index node info
summary_record.summary_index_node_id = summary_index_node_id
summary_record.summary_index_node_hash = summary_hash
summary_record.status = "completed"
# Explicitly update updated_at to ensure it's refreshed even if other fields haven't changed
summary_record.updated_at = datetime.now(UTC).replace(tzinfo=None)
db.session.add(summary_record)
db.session.flush()
# Success, exit function
return
except (ConnectionError, Exception) as e:
error_str = str(e).lower()
# Check if it's a connection-related error that might be transient
is_connection_error = any(
keyword in error_str
for keyword in [
"connection",
"disconnected",
"timeout",
"network",
"could not connect",
"server disconnected",
"weaviate",
]
)
if is_connection_error and attempt < max_retries - 1:
# Retry for connection errors
wait_time = retry_delay * (2**attempt) # Exponential backoff
logger.warning(
"Vectorization attempt %s/%s failed for segment %s: %s. Retrying in %.1f seconds...",
attempt + 1,
max_retries,
segment.id,
str(e),
wait_time,
)
time.sleep(wait_time)
continue
else:
# Final attempt failed or non-connection error - log and update status
logger.error(
"Failed to vectorize summary for segment %s after %s attempts: %s",
segment.id,
attempt + 1,
str(e),
exc_info=True,
)
summary_record.status = "error"
summary_record.error = f"Vectorization failed: {str(e)}"
# Explicitly update updated_at to ensure it's refreshed
summary_record.updated_at = datetime.now(UTC).replace(tzinfo=None)
db.session.add(summary_record)
db.session.flush()
raise
@staticmethod
def batch_create_summary_records(
segments: list[DocumentSegment],
dataset: Dataset,
status: str = "not_started",
) -> None:
"""
Batch create summary records for segments with specified status.
If a record already exists, update its status.
Args:
segments: List of DocumentSegment instances
dataset: Dataset containing the segments
status: Initial status for the records (default: "not_started")
"""
segment_ids = [segment.id for segment in segments]
if not segment_ids:
return
# Query existing summary records
existing_summaries = (
db.session.query(DocumentSegmentSummary)
.filter(
DocumentSegmentSummary.chunk_id.in_(segment_ids),
DocumentSegmentSummary.dataset_id == dataset.id,
)
.all()
)
existing_summary_map = {summary.chunk_id: summary for summary in existing_summaries}
# Create or update records
for segment in segments:
existing_summary = existing_summary_map.get(segment.id)
if existing_summary:
# Update existing record
existing_summary.status = status
existing_summary.error = None # Clear any previous errors
if not existing_summary.enabled:
existing_summary.enabled = True
existing_summary.disabled_at = None
existing_summary.disabled_by = None
db.session.add(existing_summary)
else:
# Create new record
summary_record = DocumentSegmentSummary(
dataset_id=dataset.id,
document_id=segment.document_id,
chunk_id=segment.id,
summary_content=None, # Will be filled later
status=status,
enabled=True,
)
db.session.add(summary_record)
@staticmethod
def update_summary_record_error(
segment: DocumentSegment,
dataset: Dataset,
error: str,
) -> None:
"""
Update summary record with error status.
Args:
segment: DocumentSegment
dataset: Dataset containing the segment
error: Error message
"""
summary_record = (
db.session.query(DocumentSegmentSummary)
.filter_by(chunk_id=segment.id, dataset_id=dataset.id)
.first()
)
if summary_record:
summary_record.status = "error"
summary_record.error = error
db.session.add(summary_record)
db.session.flush()
else:
logger.warning(
"Summary record not found for segment %s when updating error", segment.id
)
@staticmethod
def generate_and_vectorize_summary(
segment: DocumentSegment,
dataset: Dataset,
summary_index_setting: dict,
) -> DocumentSegmentSummary:
"""
Generate summary for a segment and vectorize it.
Assumes summary record already exists (created by batch_create_summary_records).
Args:
segment: DocumentSegment to generate summary for
dataset: Dataset containing the segment
summary_index_setting: Summary index configuration
Returns:
Created DocumentSegmentSummary instance
Raises:
ValueError: If summary generation fails
"""
# Get existing summary record (should have been created by batch_create_summary_records)
summary_record = (
db.session.query(DocumentSegmentSummary)
.filter_by(chunk_id=segment.id, dataset_id=dataset.id)
.first()
)
if not summary_record:
# If not found (shouldn't happen), create one
logger.warning(
"Summary record not found for segment %s, creating one", segment.id
)
summary_record = SummaryIndexService.create_summary_record(
segment, dataset, summary_content="", status="generating"
)
try:
# Update status to "generating"
summary_record.status = "generating"
summary_record.error = None
db.session.add(summary_record)
db.session.flush()
# Generate summary
summary_content = SummaryIndexService.generate_summary_for_segment(
segment, dataset, summary_index_setting
)
# Update summary content
summary_record.summary_content = summary_content
# Vectorize summary (will delete old vector if exists before creating new one)
SummaryIndexService.vectorize_summary(summary_record, segment, dataset)
# Status will be updated to "completed" by vectorize_summary on success
db.session.commit()
logger.info("Successfully generated and vectorized summary for segment %s", segment.id)
return summary_record
except Exception as e:
logger.exception("Failed to generate summary for segment %s", segment.id)
# Update summary record with error status
summary_record.status = "error"
summary_record.error = str(e)
db.session.add(summary_record)
db.session.commit()
raise
@staticmethod
def generate_summaries_for_document(
dataset: Dataset,
document: DatasetDocument,
summary_index_setting: dict,
segment_ids: list[str] | None = None,
only_parent_chunks: bool = False,
) -> list[DocumentSegmentSummary]:
"""
Generate summaries for all segments in a document including vectorization.
Args:
dataset: Dataset containing the document
document: DatasetDocument to generate summaries for
summary_index_setting: Summary index configuration
segment_ids: Optional list of specific segment IDs to process
only_parent_chunks: If True, only process parent chunks (for parent-child mode)
Returns:
List of created DocumentSegmentSummary instances
"""
# Only generate summary index for high_quality indexing technique
if dataset.indexing_technique != "high_quality":
logger.info(
"Skipping summary generation for dataset %s: indexing_technique is %s, not 'high_quality'",
dataset.id,
dataset.indexing_technique,
)
return []
if not summary_index_setting or not summary_index_setting.get("enable"):
logger.info("Summary index is disabled for dataset %s", dataset.id)
return []
# Skip qa_model documents
if document.doc_form == "qa_model":
logger.info("Skipping summary generation for qa_model document %s", document.id)
return []
logger.info(
"Starting summary generation for document %s in dataset %s, segment_ids: %s, only_parent_chunks: %s",
document.id,
dataset.id,
len(segment_ids) if segment_ids else "all",
only_parent_chunks,
)
# Query segments (only enabled segments)
query = db.session.query(DocumentSegment).filter_by(
dataset_id=dataset.id,
document_id=document.id,
status="completed",
enabled=True, # Only generate summaries for enabled segments
)
if segment_ids:
query = query.filter(DocumentSegment.id.in_(segment_ids))
segments = query.all()
if not segments:
logger.info("No segments found for document %s", document.id)
return []
# Batch create summary records with "not_started" status before processing
# This ensures all records exist upfront, allowing status tracking
SummaryIndexService.batch_create_summary_records(
segments=segments,
dataset=dataset,
status="not_started",
)
db.session.commit() # Commit initial records
summary_records = []
for segment in segments:
# For parent-child mode, only process parent chunks
# In parent-child mode, all DocumentSegments are parent chunks,
# so we process all of them. Child chunks are stored in ChildChunk table
# and are not DocumentSegments, so they won't be in the segments list.
# This check is mainly for clarity and future-proofing.
if only_parent_chunks:
# In parent-child mode, all segments in the query are parent chunks
# Child chunks are not DocumentSegments, so they won't appear here
# We can process all segments
pass
try:
summary_record = SummaryIndexService.generate_and_vectorize_summary(
segment, dataset, summary_index_setting
)
summary_records.append(summary_record)
except Exception as e:
logger.exception("Failed to generate summary for segment %s", segment.id)
# Update summary record with error status
SummaryIndexService.update_summary_record_error(
segment=segment,
dataset=dataset,
error=str(e),
)
# Continue with other segments
continue
db.session.commit() # Commit any remaining changes
logger.info(
"Completed summary generation for document %s: %s summaries generated and vectorized",
document.id,
len(summary_records),
)
return summary_records
@staticmethod
def disable_summaries_for_segments(
dataset: Dataset,
segment_ids: list[str] | None = None,
disabled_by: str | None = None,
) -> None:
"""
Disable summary records and remove vectors from vector database for segments.
Unlike delete, this preserves the summary records but marks them as disabled.
Args:
dataset: Dataset containing the segments
segment_ids: List of segment IDs to disable summaries for. If None, disable all.
disabled_by: User ID who disabled the summaries
"""
from libs.datetime_utils import naive_utc_now
query = db.session.query(DocumentSegmentSummary).filter_by(
dataset_id=dataset.id,
enabled=True, # Only disable enabled summaries
)
if segment_ids:
query = query.filter(DocumentSegmentSummary.chunk_id.in_(segment_ids))
summaries = query.all()
if not summaries:
return
logger.info(
"Disabling %s summary records for dataset %s, segment_ids: %s",
len(summaries),
dataset.id,
len(segment_ids) if segment_ids else "all",
)
# Remove from vector database (but keep records)
if dataset.indexing_technique == "high_quality":
summary_node_ids = [s.summary_index_node_id for s in summaries if s.summary_index_node_id]
if summary_node_ids:
try:
vector = Vector(dataset)
vector.delete_by_ids(summary_node_ids)
except Exception as e:
logger.warning("Failed to remove summary vectors: %s", str(e))
# Disable summary records (don't delete)
now = naive_utc_now()
for summary in summaries:
summary.enabled = False
summary.disabled_at = now
summary.disabled_by = disabled_by
db.session.add(summary)
db.session.commit()
logger.info("Disabled %s summary records for dataset %s", len(summaries), dataset.id)
@staticmethod
def enable_summaries_for_segments(
dataset: Dataset,
segment_ids: list[str] | None = None,
) -> None:
"""
Enable summary records and re-add vectors to vector database for segments.
Note: This method enables summaries based on chunk status, not summary_index_setting.enable.
The summary_index_setting.enable flag only controls automatic generation,
not whether existing summaries can be used.
Summary.enabled should always be kept in sync with chunk.enabled.
Args:
dataset: Dataset containing the segments
segment_ids: List of segment IDs to enable summaries for. If None, enable all.
"""
# Only enable summary index for high_quality indexing technique
if dataset.indexing_technique != "high_quality":
return
query = db.session.query(DocumentSegmentSummary).filter_by(
dataset_id=dataset.id,
enabled=False, # Only enable disabled summaries
)
if segment_ids:
query = query.filter(DocumentSegmentSummary.chunk_id.in_(segment_ids))
summaries = query.all()
if not summaries:
return
logger.info(
"Enabling %s summary records for dataset %s, segment_ids: %s",
len(summaries),
dataset.id,
len(segment_ids) if segment_ids else "all",
)
# Re-vectorize and re-add to vector database
enabled_count = 0
for summary in summaries:
# Get the original segment
segment = (
db.session.query(DocumentSegment)
.filter_by(
id=summary.chunk_id,
dataset_id=dataset.id,
)
.first()
)
# Summary.enabled stays in sync with chunk.enabled, only enable summary if the associated chunk is enabled.
if not segment or not segment.enabled or segment.status != "completed":
continue
if not summary.summary_content:
continue
try:
# Re-vectorize summary
SummaryIndexService.vectorize_summary(summary, segment, dataset)
# Enable summary record
summary.enabled = True
summary.disabled_at = None
summary.disabled_by = None
db.session.add(summary)
enabled_count += 1
except Exception:
logger.exception("Failed to re-vectorize summary %s", summary.id)
# Keep it disabled if vectorization fails
continue
db.session.commit()
logger.info("Enabled %s summary records for dataset %s", enabled_count, dataset.id)
@staticmethod
def delete_summaries_for_segments(
dataset: Dataset,
segment_ids: list[str] | None = None,
) -> None:
"""
Delete summary records and vectors for segments (used only for actual deletion scenarios).
For disable/enable operations, use disable_summaries_for_segments/enable_summaries_for_segments.
Args:
dataset: Dataset containing the segments
segment_ids: List of segment IDs to delete summaries for. If None, delete all.
"""
query = db.session.query(DocumentSegmentSummary).filter_by(dataset_id=dataset.id)
if segment_ids:
query = query.filter(DocumentSegmentSummary.chunk_id.in_(segment_ids))
summaries = query.all()
if not summaries:
return
# Delete from vector database
if dataset.indexing_technique == "high_quality":
summary_node_ids = [s.summary_index_node_id for s in summaries if s.summary_index_node_id]
if summary_node_ids:
vector = Vector(dataset)
vector.delete_by_ids(summary_node_ids)
# Delete summary records
for summary in summaries:
db.session.delete(summary)
db.session.commit()
logger.info("Deleted %s summary records for dataset %s", len(summaries), dataset.id)
@staticmethod
def update_summary_for_segment(
segment: DocumentSegment,
dataset: Dataset,
summary_content: str,
) -> DocumentSegmentSummary | None:
"""
Update summary for a segment and re-vectorize it.
Args:
segment: DocumentSegment to update summary for
dataset: Dataset containing the segment
summary_content: New summary content
Returns:
Updated DocumentSegmentSummary instance, or None if indexing technique is not high_quality
"""
# Only update summary index for high_quality indexing technique
if dataset.indexing_technique != "high_quality":
return None
# When user manually provides summary, allow saving even if summary_index_setting doesn't exist
# summary_index_setting is only needed for LLM generation, not for manual summary vectorization
# Vectorization uses dataset.embedding_model, which doesn't require summary_index_setting
# Skip qa_model documents
if segment.document and segment.document.doc_form == "qa_model":
return None
try:
# Check if summary_content is empty (whitespace-only strings are considered empty)
if not summary_content or not summary_content.strip():
# If summary is empty, only delete existing summary vector and record
summary_record = (
db.session.query(DocumentSegmentSummary)
.filter_by(chunk_id=segment.id, dataset_id=dataset.id)
.first()
)
if summary_record:
# Delete old vector if exists
old_summary_node_id = summary_record.summary_index_node_id
if old_summary_node_id:
try:
vector = Vector(dataset)
vector.delete_by_ids([old_summary_node_id])
except Exception as e:
logger.warning(
"Failed to delete old summary vector for segment %s: %s",
segment.id,
str(e),
)
# Delete summary record since summary is empty
db.session.delete(summary_record)
db.session.commit()
logger.info("Deleted summary for segment %s (empty content provided)", segment.id)
return None
else:
# No existing summary record, nothing to do
logger.info("No summary record found for segment %s, nothing to delete", segment.id)
return None
# Find existing summary record
summary_record = (
db.session.query(DocumentSegmentSummary).filter_by(chunk_id=segment.id, dataset_id=dataset.id).first()
)
if summary_record:
# Update existing summary
old_summary_node_id = summary_record.summary_index_node_id
# Update summary content
summary_record.summary_content = summary_content
summary_record.status = "generating"
db.session.add(summary_record)
db.session.flush()
# Delete old vector if exists
if old_summary_node_id:
vector = Vector(dataset)
vector.delete_by_ids([old_summary_node_id])
# Re-vectorize summary
SummaryIndexService.vectorize_summary(summary_record, segment, dataset)
db.session.commit()
logger.info("Successfully updated and re-vectorized summary for segment %s", segment.id)
return summary_record
else:
# Create new summary record if doesn't exist
summary_record = SummaryIndexService.create_summary_record(
segment, dataset, summary_content, status="generating"
)
SummaryIndexService.vectorize_summary(summary_record, segment, dataset)
db.session.commit()
logger.info("Successfully created and vectorized summary for segment %s", segment.id)
return summary_record
except Exception:
logger.exception("Failed to update summary for segment %s", segment.id)
# Update summary record with error status if it exists
summary_record = (
db.session.query(DocumentSegmentSummary).filter_by(chunk_id=segment.id, dataset_id=dataset.id).first()
)
if summary_record:
summary_record.status = "error"
summary_record.error = str(e)
db.session.add(summary_record)
db.session.commit()
raise

View File

@ -118,19 +118,6 @@ def add_document_to_index_task(dataset_document_id: str):
)
session.commit()
# Enable summary indexes for all segments in this document
from services.summary_index_service import SummaryIndexService
segment_ids_list = [segment.id for segment in segments]
if segment_ids_list:
try:
SummaryIndexService.enable_summaries_for_segments(
dataset=dataset,
segment_ids=segment_ids_list,
)
except Exception as e:
logger.warning("Failed to enable summaries for document %s: %s", dataset_document.id, str(e))
end_at = time.perf_counter()
logger.info(
click.style(f"Document added to index: {dataset_document.id} latency: {end_at - start_at}", fg="green")

View File

@ -50,9 +50,7 @@ def batch_clean_document_task(document_ids: list[str], dataset_id: str, doc_form
if segments:
index_node_ids = [segment.index_node_id for segment in segments]
index_processor = IndexProcessorFactory(doc_form).init_index_processor()
index_processor.clean(
dataset, index_node_ids, with_keywords=True, delete_child_chunks=True, delete_summaries=True
)
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
for segment in segments:
image_upload_file_ids = get_image_upload_file_ids(segment.content)

View File

@ -51,9 +51,7 @@ def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_i
if segments:
index_node_ids = [segment.index_node_id for segment in segments]
index_processor = IndexProcessorFactory(doc_form).init_index_processor()
index_processor.clean(
dataset, index_node_ids, with_keywords=True, delete_child_chunks=True, delete_summaries=True
)
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
for segment in segments:
image_upload_file_ids = get_image_upload_file_ids(segment.content)

View File

@ -42,9 +42,7 @@ def clean_notion_document_task(document_ids: list[str], dataset_id: str):
).all()
index_node_ids = [segment.index_node_id for segment in segments]
index_processor.clean(
dataset, index_node_ids, with_keywords=True, delete_child_chunks=True, delete_summaries=True
)
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
segment_ids = [segment.id for segment in segments]
segment_delete_stmt = delete(DocumentSegment).where(DocumentSegment.id.in_(segment_ids))
session.execute(segment_delete_stmt)

View File

@ -47,7 +47,6 @@ def delete_segment_from_index_task(
doc_form = dataset_document.doc_form
# Proceed with index cleanup using the index_node_ids directly
# For actual deletion, we should delete summaries (not just disable them)
index_processor = IndexProcessorFactory(doc_form).init_index_processor()
index_processor.clean(
dataset,
@ -55,7 +54,6 @@ def delete_segment_from_index_task(
with_keywords=True,
delete_child_chunks=True,
precomputed_child_node_ids=child_node_ids,
delete_summaries=True, # Actually delete summaries when segment is deleted
)
if dataset.is_multimodal:
# delete segment attachment binding

View File

@ -60,18 +60,6 @@ def disable_segment_from_index_task(segment_id: str):
index_processor = IndexProcessorFactory(index_type).init_index_processor()
index_processor.clean(dataset, [segment.index_node_id])
# Disable summary index for this segment
from services.summary_index_service import SummaryIndexService
try:
SummaryIndexService.disable_summaries_for_segments(
dataset=dataset,
segment_ids=[segment.id],
disabled_by=segment.disabled_by,
)
except Exception as e:
logger.warning("Failed to disable summary for segment %s: %s", segment.id, str(e))
end_at = time.perf_counter()
logger.info(
click.style(

View File

@ -68,21 +68,6 @@ def disable_segments_from_index_task(segment_ids: list, dataset_id: str, documen
index_node_ids.extend(attachment_ids)
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=False)
# Disable summary indexes for these segments
from services.summary_index_service import SummaryIndexService
segment_ids_list = [segment.id for segment in segments]
try:
# Get disabled_by from first segment (they should all have the same disabled_by)
disabled_by = segments[0].disabled_by if segments else None
SummaryIndexService.disable_summaries_for_segments(
dataset=dataset,
segment_ids=segment_ids_list,
disabled_by=disabled_by,
)
except Exception as e:
logger.warning("Failed to disable summaries for segments: %s", str(e))
end_at = time.perf_counter()
logger.info(click.style(f"Segments removed from index latency: {end_at - start_at}", fg="green"))
except Exception:

View File

@ -14,7 +14,6 @@ from enums.cloud_plan import CloudPlan
from libs.datetime_utils import naive_utc_now
from models.dataset import Dataset, Document
from services.feature_service import FeatureService
from tasks.generate_summary_index_task import generate_summary_index_task
logger = logging.getLogger(__name__)
@ -100,71 +99,6 @@ def _document_indexing(dataset_id: str, document_ids: Sequence[str]):
indexing_runner.run(documents)
end_at = time.perf_counter()
logger.info(click.style(f"Processed dataset: {dataset_id} latency: {end_at - start_at}", fg="green"))
# Trigger summary index generation for completed documents if enabled
# Only generate for high_quality indexing technique and when summary_index_setting is enabled
# Re-query dataset to get latest summary_index_setting (in case it was updated)
dataset = session.query(Dataset).where(Dataset.id == dataset_id).first()
if not dataset:
logger.warning("Dataset %s not found after indexing", dataset_id)
return
if dataset.indexing_technique == "high_quality":
summary_index_setting = dataset.summary_index_setting
if summary_index_setting and summary_index_setting.get("enable"):
# expire all session to get latest document's indexing status
session.expire_all()
# Check each document's indexing status and trigger summary generation if completed
for document_id in document_ids:
# Re-query document to get latest status (IndexingRunner may have updated it)
document = (
session.query(Document)
.where(Document.id == document_id, Document.dataset_id == dataset_id)
.first()
)
if document:
logger.info(
"Checking document %s for summary generation: status=%s, doc_form=%s",
document_id,
document.indexing_status,
document.doc_form,
)
if document.indexing_status == "completed" and document.doc_form != "qa_model":
try:
generate_summary_index_task.delay(dataset.id, document_id, None)
logger.info(
"Queued summary index generation task for document %s in dataset %s "
"after indexing completed",
document_id,
dataset.id,
)
except Exception:
logger.exception(
"Failed to queue summary index generation task for document %s",
document_id,
)
# Don't fail the entire indexing process if summary task queuing fails
else:
logger.info(
"Skipping summary generation for document %s: status=%s, doc_form=%s",
document_id,
document.indexing_status,
document.doc_form,
)
else:
logger.warning("Document %s not found after indexing", document_id)
else:
logger.info(
"Summary index generation skipped for dataset %s: summary_index_setting.enable=%s",
dataset.id,
summary_index_setting.get("enable") if summary_index_setting else None,
)
else:
logger.info(
"Summary index generation skipped for dataset %s: indexing_technique=%s (not 'high_quality')",
dataset.id,
dataset.indexing_technique,
)
except DocumentIsPausedError as ex:
logger.info(click.style(str(ex), fg="yellow"))
except Exception:

View File

@ -106,17 +106,6 @@ def enable_segment_to_index_task(segment_id: str):
# save vector index
index_processor.load(dataset, [document], multimodal_documents=multimodel_documents)
# Enable summary index for this segment
from services.summary_index_service import SummaryIndexService
try:
SummaryIndexService.enable_summaries_for_segments(
dataset=dataset,
segment_ids=[segment.id],
)
except Exception as e:
logger.warning("Failed to enable summary for segment %s: %s", segment.id, str(e))
end_at = time.perf_counter()
logger.info(click.style(f"Segment enabled to index: {segment.id} latency: {end_at - start_at}", fg="green"))
except Exception as e:

View File

@ -106,18 +106,6 @@ def enable_segments_to_index_task(segment_ids: list, dataset_id: str, document_i
# save vector index
index_processor.load(dataset, documents, multimodal_documents=multimodal_documents)
# Enable summary indexes for these segments
from services.summary_index_service import SummaryIndexService
segment_ids_list = [segment.id for segment in segments]
try:
SummaryIndexService.enable_summaries_for_segments(
dataset=dataset,
segment_ids=segment_ids_list,
)
except Exception as e:
logger.warning("Failed to enable summaries for segments: %s", str(e))
end_at = time.perf_counter()
logger.info(click.style(f"Segments enabled to index latency: {end_at - start_at}", fg="green"))
except Exception as e:

View File

@ -1,112 +0,0 @@
"""Async task for generating summary indexes."""
import logging
import time
import click
from celery import shared_task
from extensions.ext_database import db
from models.dataset import Dataset, DocumentSegment
from models.dataset import Document as DatasetDocument
from services.summary_index_service import SummaryIndexService
logger = logging.getLogger(__name__)
@shared_task(queue="dataset")
def generate_summary_index_task(dataset_id: str, document_id: str, segment_ids: list[str] | None = None):
"""
Async generate summary index for document segments.
Args:
dataset_id: Dataset ID
document_id: Document ID
segment_ids: Optional list of specific segment IDs to process. If None, process all segments.
Usage:
generate_summary_index_task.delay(dataset_id, document_id)
generate_summary_index_task.delay(dataset_id, document_id, segment_ids)
"""
logger.info(
click.style(
f"Start generating summary index for document {document_id} in dataset {dataset_id}",
fg="green",
)
)
start_at = time.perf_counter()
try:
dataset = db.session.query(Dataset).where(Dataset.id == dataset_id).first()
if not dataset:
logger.error(click.style(f"Dataset not found: {dataset_id}", fg="red"))
db.session.close()
return
document = db.session.query(DatasetDocument).where(DatasetDocument.id == document_id).first()
if not document:
logger.error(click.style(f"Document not found: {document_id}", fg="red"))
db.session.close()
return
# Only generate summary index for high_quality indexing technique
if dataset.indexing_technique != "high_quality":
logger.info(
click.style(
f"Skipping summary generation for dataset {dataset_id}: "
f"indexing_technique is {dataset.indexing_technique}, not 'high_quality'",
fg="cyan",
)
)
db.session.close()
return
# Check if summary index is enabled
summary_index_setting = dataset.summary_index_setting
if not summary_index_setting or not summary_index_setting.get("enable"):
logger.info(
click.style(
f"Summary index is disabled for dataset {dataset_id}",
fg="cyan",
)
)
db.session.close()
return
# Determine if only parent chunks should be processed
only_parent_chunks = dataset.chunk_structure == "parent_child_index"
# Generate summaries
summary_records = SummaryIndexService.generate_summaries_for_document(
dataset=dataset,
document=document,
summary_index_setting=summary_index_setting,
segment_ids=segment_ids,
only_parent_chunks=only_parent_chunks,
)
end_at = time.perf_counter()
logger.info(
click.style(
f"Summary index generation completed for document {document_id}: "
f"{len(summary_records)} summaries generated, latency: {end_at - start_at}",
fg="green",
)
)
except Exception:
logger.exception("Failed to generate summary index for document %s", document_id)
# Update document segments with error status if needed
if segment_ids:
db.session.query(DocumentSegment).filter(
DocumentSegment.id.in_(segment_ids),
DocumentSegment.dataset_id == dataset_id,
).update(
{
DocumentSegment.error: f"Summary generation failed: {str(e)}",
},
synchronize_session=False,
)
db.session.commit()
finally:
db.session.close()

View File

@ -1,318 +0,0 @@
"""Task for regenerating summary indexes when dataset settings change."""
import logging
import time
from collections import defaultdict
import click
from celery import shared_task
from sqlalchemy import or_, select
from extensions.ext_database import db
from models.dataset import Dataset, DocumentSegment, DocumentSegmentSummary
from models.dataset import Document as DatasetDocument
from services.summary_index_service import SummaryIndexService
logger = logging.getLogger(__name__)
@shared_task(queue="dataset")
def regenerate_summary_index_task(
dataset_id: str,
regenerate_reason: str = "summary_model_changed",
regenerate_vectors_only: bool = False,
):
"""
Regenerate summary indexes for all documents in a dataset.
This task is triggered when:
1. summary_index_setting model changes (regenerate_reason="summary_model_changed")
- Regenerates summary content and vectors for all existing summaries
2. embedding_model changes (regenerate_reason="embedding_model_changed")
- Only regenerates vectors for existing summaries (keeps summary content)
Args:
dataset_id: Dataset ID
regenerate_reason: Reason for regeneration ("summary_model_changed" or "embedding_model_changed")
regenerate_vectors_only: If True, only regenerate vectors without regenerating summary content
"""
logger.info(
click.style(
f"Start regenerate summary index for dataset {dataset_id}, reason: {regenerate_reason}",
fg="green",
)
)
start_at = time.perf_counter()
try:
dataset = db.session.query(Dataset).filter_by(id=dataset_id).first()
if not dataset:
logger.error(click.style(f"Dataset not found: {dataset_id}", fg="red"))
db.session.close()
return
# Only regenerate summary index for high_quality indexing technique
if dataset.indexing_technique != "high_quality":
logger.info(
click.style(
f"Skipping summary regeneration for dataset {dataset_id}: "
f"indexing_technique is {dataset.indexing_technique}, not 'high_quality'",
fg="cyan",
)
)
db.session.close()
return
# Check if summary index is enabled (only for summary_model change)
# For embedding_model change, we still re-vectorize existing summaries even if setting is disabled
summary_index_setting = dataset.summary_index_setting
if not regenerate_vectors_only:
# For summary_model change, require summary_index_setting to be enabled
if not summary_index_setting or not summary_index_setting.get("enable"):
logger.info(
click.style(
f"Summary index is disabled for dataset {dataset_id}",
fg="cyan",
)
)
db.session.close()
return
total_segments_processed = 0
total_segments_failed = 0
if regenerate_vectors_only:
# For embedding_model change: directly query all segments with existing summaries
# Don't require document indexing_status == "completed"
# Include summaries with status "completed" or "error" (if they have content)
segments_with_summaries = (
db.session.query(DocumentSegment, DocumentSegmentSummary)
.join(
DocumentSegmentSummary,
DocumentSegment.id == DocumentSegmentSummary.chunk_id,
)
.join(
DatasetDocument,
DocumentSegment.document_id == DatasetDocument.id,
)
.where(
DocumentSegment.dataset_id == dataset_id,
DocumentSegment.status == "completed", # Segment must be completed
DocumentSegment.enabled == True,
DocumentSegmentSummary.dataset_id == dataset_id,
DocumentSegmentSummary.summary_content.isnot(None), # Must have summary content
# Include completed summaries or error summaries (with content)
or_(
DocumentSegmentSummary.status == "completed",
DocumentSegmentSummary.status == "error",
),
DatasetDocument.enabled == True, # Document must be enabled
DatasetDocument.archived == False, # Document must not be archived
DatasetDocument.doc_form != "qa_model", # Skip qa_model documents
)
.order_by(DocumentSegment.document_id.asc(), DocumentSegment.position.asc())
.all()
)
if not segments_with_summaries:
logger.info(
click.style(
f"No segments with summaries found for re-vectorization in dataset {dataset_id}",
fg="cyan",
)
)
db.session.close()
return
logger.info(
"Found %s segments with summaries for re-vectorization in dataset %s",
len(segments_with_summaries),
dataset_id,
)
# Group by document for logging
segments_by_document = defaultdict(list)
for segment, summary_record in segments_with_summaries:
segments_by_document[segment.document_id].append((segment, summary_record))
logger.info(
"Segments grouped into %s documents for re-vectorization",
len(segments_by_document),
)
for document_id, segment_summary_pairs in segments_by_document.items():
logger.info(
"Re-vectorizing summaries for %s segments in document %s",
len(segment_summary_pairs),
document_id,
)
for segment, summary_record in segment_summary_pairs:
try:
# Delete old vector
if summary_record.summary_index_node_id:
try:
from core.rag.datasource.vdb.vector_factory import Vector
vector = Vector(dataset)
vector.delete_by_ids([summary_record.summary_index_node_id])
except Exception as e:
logger.warning(
"Failed to delete old summary vector for segment %s: %s",
segment.id,
str(e),
)
# Re-vectorize with new embedding model
SummaryIndexService.vectorize_summary(summary_record, segment, dataset)
db.session.commit()
total_segments_processed += 1
except Exception as e:
logger.error(
"Failed to re-vectorize summary for segment %s: %s",
segment.id,
str(e),
exc_info=True,
)
total_segments_failed += 1
# Update summary record with error status
summary_record.status = "error"
summary_record.error = f"Re-vectorization failed: {str(e)}"
db.session.add(summary_record)
db.session.commit()
continue
else:
# For summary_model change: require document indexing_status == "completed"
# Get all documents with completed indexing status
dataset_documents = db.session.scalars(
select(DatasetDocument).where(
DatasetDocument.dataset_id == dataset_id,
DatasetDocument.indexing_status == "completed",
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
)
).all()
if not dataset_documents:
logger.info(
click.style(
f"No documents found for summary regeneration in dataset {dataset_id}",
fg="cyan",
)
)
db.session.close()
return
logger.info(
"Found %s documents for summary regeneration in dataset %s",
len(dataset_documents),
dataset_id,
)
for dataset_document in dataset_documents:
# Skip qa_model documents
if dataset_document.doc_form == "qa_model":
continue
try:
# Get all segments with existing summaries
segments = (
db.session.query(DocumentSegment)
.join(
DocumentSegmentSummary,
DocumentSegment.id == DocumentSegmentSummary.chunk_id,
)
.where(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.dataset_id == dataset_id,
DocumentSegment.status == "completed",
DocumentSegment.enabled == True,
DocumentSegmentSummary.dataset_id == dataset_id,
)
.order_by(DocumentSegment.position.asc())
.all()
)
if not segments:
continue
logger.info(
"Regenerating summaries for %s segments in document %s",
len(segments),
dataset_document.id,
)
for segment in segments:
try:
# Get existing summary record
summary_record = (
db.session.query(DocumentSegmentSummary)
.filter_by(
chunk_id=segment.id,
dataset_id=dataset_id,
)
.first()
)
if not summary_record:
logger.warning("Summary record not found for segment %s, skipping", segment.id)
continue
# Regenerate both summary content and vectors (for summary_model change)
SummaryIndexService.generate_and_vectorize_summary(segment, dataset, summary_index_setting)
db.session.commit()
total_segments_processed += 1
except Exception as e:
logger.error(
"Failed to regenerate summary for segment %s: %s",
segment.id,
str(e),
exc_info=True,
)
total_segments_failed += 1
# Update summary record with error status
if summary_record:
summary_record.status = "error"
summary_record.error = f"Regeneration failed: {str(e)}"
db.session.add(summary_record)
db.session.commit()
continue
except Exception as e:
logger.error(
"Failed to process document %s for summary regeneration: %s",
dataset_document.id,
str(e),
exc_info=True,
)
continue
end_at = time.perf_counter()
if regenerate_vectors_only:
logger.info(
click.style(
f"Summary re-vectorization completed for dataset {dataset_id}: "
f"{total_segments_processed} segments processed successfully, "
f"{total_segments_failed} segments failed, "
f"latency: {end_at - start_at:.2f}s",
fg="green",
)
)
else:
logger.info(
click.style(
f"Summary index regeneration completed for dataset {dataset_id}: "
f"{total_segments_processed} segments processed successfully, "
f"{total_segments_failed} segments failed, "
f"latency: {end_at - start_at:.2f}s",
fg="green",
)
)
except Exception:
logger.exception("Regenerate summary index failed for dataset %s", dataset_id)
finally:
db.session.close()

View File

@ -46,21 +46,6 @@ def remove_document_from_index_task(document_id: str):
index_processor = IndexProcessorFactory(document.doc_form).init_index_processor()
segments = session.scalars(select(DocumentSegment).where(DocumentSegment.document_id == document.id)).all()
# Disable summary indexes for all segments in this document
from services.summary_index_service import SummaryIndexService
segment_ids_list = [segment.id for segment in segments]
if segment_ids_list:
try:
SummaryIndexService.disable_summaries_for_segments(
dataset=dataset,
segment_ids=segment_ids_list,
disabled_by=document.disabled_by,
)
except Exception as e:
logger.warning("Failed to disable summaries for document %s: %s", document.id, str(e))
index_node_ids = [segment.index_node_id for segment in segments]
if index_node_ids:
try:

View File

@ -1,56 +0,0 @@
import builtins
from unittest.mock import patch
import pytest
from flask import Flask
from flask.views import MethodView
from extensions import ext_fastopenapi
if not hasattr(builtins, "MethodView"):
builtins.MethodView = MethodView # type: ignore[attr-defined]
@pytest.fixture
def app() -> Flask:
app = Flask(__name__)
app.config["TESTING"] = True
return app
def test_console_setup_fastopenapi_get_not_started(app: Flask):
ext_fastopenapi.init_app(app)
with (
patch("controllers.console.setup.dify_config.EDITION", "SELF_HOSTED"),
patch("controllers.console.setup.get_setup_status", return_value=None),
):
client = app.test_client()
response = client.get("/console/api/setup")
assert response.status_code == 200
assert response.get_json() == {"step": "not_started", "setup_at": None}
def test_console_setup_fastopenapi_post_success(app: Flask):
ext_fastopenapi.init_app(app)
payload = {
"email": "admin@example.com",
"name": "Admin",
"password": "Passw0rd1",
"language": "en-US",
}
with (
patch("controllers.console.wraps.dify_config.EDITION", "SELF_HOSTED"),
patch("controllers.console.setup.get_setup_status", return_value=None),
patch("controllers.console.setup.TenantService.get_tenant_count", return_value=0),
patch("controllers.console.setup.get_init_validate_status", return_value=True),
patch("controllers.console.setup.RegisterService.setup"),
):
client = app.test_client()
response = client.post("/console/api/setup", json=payload)
assert response.status_code == 201
assert response.get_json() == {"result": "success"}

View File

@ -1,35 +0,0 @@
import builtins
from unittest.mock import patch
import pytest
from flask import Flask
from flask.views import MethodView
from configs import dify_config
from extensions import ext_fastopenapi
if not hasattr(builtins, "MethodView"):
builtins.MethodView = MethodView # type: ignore[attr-defined]
@pytest.fixture
def app() -> Flask:
app = Flask(__name__)
app.config["TESTING"] = True
return app
def test_console_version_fastopenapi_returns_current_version(app: Flask):
ext_fastopenapi.init_app(app)
with patch("controllers.console.version.dify_config.CHECK_UPDATE_URL", None):
client = app.test_client()
response = client.get("/console/api/version", query_string={"current_version": "0.0.0"})
assert response.status_code == 200
data = response.get_json()
assert data["version"] == dify_config.project.version
assert data["release_date"] == ""
assert data["release_notes"] == ""
assert data["can_auto_update"] is False
assert "features" in data

View File

@ -0,0 +1,39 @@
from types import SimpleNamespace
from unittest.mock import patch
from controllers.console.setup import SetupApi
class TestSetupApi:
def test_post_lowercases_email_before_register(self):
"""Ensure setup registration normalizes email casing."""
payload = {
"email": "Admin@Example.com",
"name": "Admin User",
"password": "ValidPass123!",
"language": "en-US",
}
setup_api = SetupApi(api=None)
mock_console_ns = SimpleNamespace(payload=payload)
with (
patch("controllers.console.setup.console_ns", mock_console_ns),
patch("controllers.console.setup.get_setup_status", return_value=False),
patch("controllers.console.setup.TenantService.get_tenant_count", return_value=0),
patch("controllers.console.setup.get_init_validate_status", return_value=True),
patch("controllers.console.setup.extract_remote_ip", return_value="127.0.0.1"),
patch("controllers.console.setup.request", object()),
patch("controllers.console.setup.RegisterService.setup") as mock_register,
):
response, status = setup_api.post()
assert response == {"result": "success"}
assert status == 201
mock_register.assert_called_once_with(
email="admin@example.com",
name=payload["name"],
password=payload["password"],
ip_address="127.0.0.1",
language=payload["language"],
)

View File

@ -1,7 +1,5 @@
from unittest.mock import MagicMock, patch
import pytest
from core.model_runtime.entities.message_entities import AssistantPromptMessage
from core.model_runtime.model_providers.__base.large_language_model import _increase_tool_call
@ -99,14 +97,3 @@ def test__increase_tool_call():
mock_id_generator.side_effect = [_exp_case.id for _exp_case in EXPECTED_CASE_4]
with patch("core.model_runtime.model_providers.__base.large_language_model._gen_tool_call_id", mock_id_generator):
_run_case(INPUTS_CASE_4, EXPECTED_CASE_4)
def test__increase_tool_call__no_id_no_name_first_delta_should_raise():
inputs = [
ToolCall(id="", type="function", function=ToolCall.ToolCallFunction(name="", arguments='{"arg1": ')),
ToolCall(id="", type="function", function=ToolCall.ToolCallFunction(name="func_foo", arguments='"value"}')),
]
actual: list[ToolCall] = []
with patch("core.model_runtime.model_providers.__base.large_language_model._gen_tool_call_id", MagicMock()):
with pytest.raises(ValueError):
_increase_tool_call(inputs, actual)

View File

@ -1,103 +0,0 @@
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.model_providers.__base.large_language_model import _normalize_non_stream_plugin_result
def _make_chunk(
*,
model: str = "test-model",
content: str | list[TextPromptMessageContent] | None,
tool_calls: list[AssistantPromptMessage.ToolCall] | None = None,
usage: LLMUsage | None = None,
system_fingerprint: str | None = None,
) -> LLMResultChunk:
message = AssistantPromptMessage(content=content, tool_calls=tool_calls or [])
delta = LLMResultChunkDelta(index=0, message=message, usage=usage)
return LLMResultChunk(model=model, delta=delta, system_fingerprint=system_fingerprint)
def test__normalize_non_stream_plugin_result__from_first_chunk_str_content_and_tool_calls():
prompt_messages = [UserPromptMessage(content="hi")]
tool_calls = [
AssistantPromptMessage.ToolCall(
id="1",
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="func_foo", arguments=""),
),
AssistantPromptMessage.ToolCall(
id="",
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="", arguments='{"arg1": '),
),
AssistantPromptMessage.ToolCall(
id="",
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="", arguments='"value"}'),
),
]
usage = LLMUsage.empty_usage().model_copy(update={"prompt_tokens": 1, "total_tokens": 1})
chunk = _make_chunk(content="hello", tool_calls=tool_calls, usage=usage, system_fingerprint="fp-1")
result = _normalize_non_stream_plugin_result(
model="test-model", prompt_messages=prompt_messages, result=iter([chunk])
)
assert result.model == "test-model"
assert result.prompt_messages == prompt_messages
assert result.message.content == "hello"
assert result.usage.prompt_tokens == 1
assert result.system_fingerprint == "fp-1"
assert result.message.tool_calls == [
AssistantPromptMessage.ToolCall(
id="1",
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="func_foo", arguments='{"arg1": "value"}'),
)
]
def test__normalize_non_stream_plugin_result__from_first_chunk_list_content():
prompt_messages = [UserPromptMessage(content="hi")]
content_list = [TextPromptMessageContent(data="a"), TextPromptMessageContent(data="b")]
chunk = _make_chunk(content=content_list, usage=LLMUsage.empty_usage())
result = _normalize_non_stream_plugin_result(
model="test-model", prompt_messages=prompt_messages, result=iter([chunk])
)
assert result.message.content == content_list
def test__normalize_non_stream_plugin_result__passthrough_llm_result():
prompt_messages = [UserPromptMessage(content="hi")]
llm_result = LLMResult(
model="test-model",
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content="ok"),
usage=LLMUsage.empty_usage(),
)
assert (
_normalize_non_stream_plugin_result(model="test-model", prompt_messages=prompt_messages, result=llm_result)
== llm_result
)
def test__normalize_non_stream_plugin_result__empty_iterator_defaults():
prompt_messages = [UserPromptMessage(content="hi")]
result = _normalize_non_stream_plugin_result(model="test-model", prompt_messages=prompt_messages, result=iter([]))
assert result.model == "test-model"
assert result.prompt_messages == prompt_messages
assert result.message.content == []
assert result.message.tool_calls == []
assert result.usage == LLMUsage.empty_usage()
assert result.system_fingerprint is None

View File

@ -1,15 +1,27 @@
import type { StorybookConfig } from '@storybook/nextjs-vite'
import type { StorybookConfig } from '@storybook/nextjs'
import path from 'node:path'
import { fileURLToPath } from 'node:url'
const storybookDir = path.dirname(fileURLToPath(import.meta.url))
const config: StorybookConfig = {
stories: ['../app/components/**/*.stories.@(js|jsx|mjs|ts|tsx)'],
addons: [
// Not working with Storybook Vite framework
// '@storybook/addon-onboarding',
'@storybook/addon-onboarding',
'@storybook/addon-links',
'@storybook/addon-docs',
'@chromatic-com/storybook',
],
framework: '@storybook/nextjs-vite',
framework: {
name: '@storybook/nextjs',
options: {
builder: {
useSWC: true,
lazyCompilation: false,
},
nextConfigPath: undefined,
},
},
staticDirs: ['../public'],
core: {
disableWhatsNewNotifications: true,
@ -17,5 +29,17 @@ const config: StorybookConfig = {
docs: {
defaultName: 'Documentation',
},
webpackFinal: async (config) => {
// Add alias to mock problematic modules with circular dependencies
config.resolve = config.resolve || {}
config.resolve.alias = {
...config.resolve.alias,
// Mock the plugin index files to avoid circular dependencies
[path.resolve(storybookDir, '../app/components/base/prompt-editor/plugins/context-block/index.tsx')]: path.resolve(storybookDir, '__mocks__/context-block.tsx'),
[path.resolve(storybookDir, '../app/components/base/prompt-editor/plugins/history-block/index.tsx')]: path.resolve(storybookDir, '__mocks__/history-block.tsx'),
[path.resolve(storybookDir, '../app/components/base/prompt-editor/plugins/query-block/index.tsx')]: path.resolve(storybookDir, '__mocks__/query-block.tsx'),
}
return config
},
}
export default config

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { RiAddLine, RiDeleteBinLine, RiEditLine, RiMore2Fill, RiSaveLine, RiShareLine } from '@remixicon/react'
import ActionButton, { ActionButtonState } from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { IChatItem } from '@/app/components/base/chat/chat/type'
import type { AgentLogDetailResponse } from '@/models/log'
import { useEffect, useRef } from 'react'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { ReactNode } from 'react'
import AnswerIcon from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { AppIconSelection } from '.'
import { useState } from 'react'
import AppIconPicker from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { ComponentProps } from 'react'
import AppIcon from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { ComponentProps } from 'react'
import { useEffect } from 'react'
import AudioBtn from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import AudioGallery from '.'
const AUDIO_SOURCES = [

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { useState } from 'react'
import AutoHeightTextarea from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import Avatar from '.'
const meta = {

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import Badge from '../badge'
const meta = {

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { useState } from 'react'
import BlockInput from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import AddButton from './add-button'
const meta = {

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { RocketLaunchIcon } from '@heroicons/react/20/solid'
import { Button } from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import SyncButton from './sync-button'
const meta = {

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { ChatItem } from '../../types'
import { WorkflowRunningStatus } from '@/app/components/workflow/types'
import Answer from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { ChatItem } from '../types'
import { User } from '@/app/components/base/icons/src/public/avatar'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { useState } from 'react'
import Checkbox from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { Item } from '.'
import { useState } from 'react'
import Chip from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { useState } from 'react'
import Confirm from '.'
import Button from '../button'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { useEffect, useState } from 'react'
import ContentDialog from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { useState } from 'react'
import CopyFeedback, { CopyFeedbackNew } from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import CopyIcon from '.'
const meta = {

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import CornerLabel from '.'
const meta = {

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { DatePickerProps } from './types'
import { useState } from 'react'
import { fn } from 'storybook/test'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { useEffect, useState } from 'react'
import Dialog from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import Divider from '.'
const meta = {

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { useState } from 'react'
import { fn } from 'storybook/test'
import DrawerPlus from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { useState } from 'react'
import { fn } from 'storybook/test'
import Drawer from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { Item } from '.'
import { useState } from 'react'
import { fn } from 'storybook/test'

View File

@ -1,5 +1,5 @@
/* eslint-disable tailwindcss/classnames-order */
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import Effect from '.'
const meta = {

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { useState } from 'react'
import EmojiPickerInner from './Inner'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { useState } from 'react'
import EmojiPicker from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { Features } from './types'
import { useState } from 'react'
import { FeaturesProvider } from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import FileIcon from '.'
const meta = {

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import FileImageRender from './file-image-render'
const SAMPLE_IMAGE = 'data:image/svg+xml;utf8,<svg xmlns=\'http://www.w3.org/2000/svg\' width=\'320\' height=\'180\'><defs><linearGradient id=\'grad\' x1=\'0%\' y1=\'0%\' x2=\'100%\' y2=\'100%\'><stop offset=\'0%\' stop-color=\'#FEE2FF\'/><stop offset=\'100%\' stop-color=\'#E0EAFF\'/></linearGradient></defs><rect width=\'320\' height=\'180\' rx=\'18\' fill=\'url(#grad)\'/><text x=\'50%\' y=\'50%\' dominant-baseline=\'middle\' text-anchor=\'middle\' font-family=\'sans-serif\' font-size=\'24\' fill=\'#1F2937\'>Preview</text></svg>'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { FileEntity } from './types'
import { useState } from 'react'
import { SupportUploadFileTypes } from '@/app/components/workflow/types'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import FileTypeIcon from './file-type-icon'
import { FileAppearanceTypeEnum } from './types'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { FileEntity } from '../types'
import type { FileUpload } from '@/app/components/base/features/types'
import { useState } from 'react'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { FileEntity } from '../types'
import type { FileUpload } from '@/app/components/base/features/types'
import { useState } from 'react'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { useState } from 'react'
import { fn } from 'storybook/test'
import FloatRightContainer from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import type { FormStoryRender } from '../../../../.storybook/utils/form-story-wrapper'
import type { FormSchema } from './types'
import { useStore } from '@tanstack/react-form'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import { useState } from 'react'
import FullScreenModal from '.'

View File

@ -1,4 +1,4 @@
import type { Meta, StoryObj } from '@storybook/nextjs-vite'
import type { Meta, StoryObj } from '@storybook/nextjs'
import GridMask from '.'
const meta = {

View File

@ -1,6 +0,0 @@
<svg width="16" height="16" viewBox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M12 7.33337V2.66671H4.00002V13.3334H8.00002C8.36821 13.3334 8.66669 13.6319 8.66669 14C8.66669 14.3682 8.36821 14.6667 8.00002 14.6667H3.33335C2.96516 14.6667 2.66669 14.3682 2.66669 14V2.00004C2.66669 1.63185 2.96516 1.33337 3.33335 1.33337H12.6667C13.0349 1.33337 13.3334 1.63185 13.3334 2.00004V7.33337C13.3334 7.70156 13.0349 8.00004 12.6667 8.00004C12.2985 8.00004 12 7.70156 12 7.33337Z" fill="#354052"/>
<path d="M10 4.00004C10.3682 4.00004 10.6667 4.29852 10.6667 4.66671C10.6667 5.0349 10.3682 5.33337 10 5.33337H6.00002C5.63183 5.33337 5.33335 5.0349 5.33335 4.66671C5.33335 4.29852 5.63183 4.00004 6.00002 4.00004H10Z" fill="#354052"/>
<path d="M8.00002 6.66671C8.36821 6.66671 8.66669 6.96518 8.66669 7.33337C8.66669 7.70156 8.36821 8.00004 8.00002 8.00004H6.00002C5.63183 8.00004 5.33335 7.70156 5.33335 7.33337C5.33335 6.96518 5.63183 6.66671 6.00002 6.66671H8.00002Z" fill="#354052"/>
<path d="M12.827 10.7902L12.3624 9.58224C12.3048 9.43231 12.1607 9.33337 12 9.33337C11.8394 9.33337 11.6953 9.43231 11.6376 9.58224L11.173 10.7902C11.1054 10.9662 10.9662 11.1054 10.7902 11.173L9.58222 11.6376C9.43229 11.6953 9.33335 11.8394 9.33335 12C9.33335 12.1607 9.43229 12.3048 9.58222 12.3624L10.7902 12.827C10.9662 12.8947 11.1054 13.0338 11.173 13.2099L11.6376 14.4178C11.6953 14.5678 11.8394 14.6667 12 14.6667C12.1607 14.6667 12.3048 14.5678 12.3624 14.4178L12.827 13.2099C12.8947 13.0338 13.0338 12.8947 13.2099 12.827L14.4178 12.3624C14.5678 12.3048 14.6667 12.1607 14.6667 12C14.6667 11.8394 14.5678 11.6953 14.4178 11.6376L13.2099 11.173C13.0338 11.1054 12.8947 10.9662 12.827 10.7902Z" fill="#354052"/>
</svg>

Before

Width:  |  Height:  |  Size: 1.7 KiB

Some files were not shown because too many files have changed in this diff Show More