Compare commits

..

239 Commits

Author SHA1 Message Date
5abfe7e46f chore: to fix build error again 2025-02-19 13:56:13 +08:00
2bf4a20875 fix: build web error 2025-02-19 13:40:20 +08:00
35312cf96c fix: remove run unit test ci to ensure build successfully (#13999) 2025-02-19 12:51:35 +08:00
15f028fe59 fix: build web image fail (#13996) 2025-02-19 12:35:16 +08:00
8a2301af56 fix: fix build web image install problem (#13994) 2025-02-19 11:52:36 +08:00
66747a8eef fix: some GitHub run action problem (#13991) 2025-02-19 11:35:19 +08:00
19d413ac1e feat: date and time picker (#13985) 2025-02-19 10:56:18 +08:00
eux
4a332ff1af fix: update the en-US i18n for logAndAnn (#13902) 2025-02-19 09:15:11 +08:00
dc942db52f chore: remove duplicate import statements (#13959) 2025-02-19 09:14:32 +08:00
f535a2aa71 chore: prompt_message is actually assistant_message which is a bit am… (#13839)
Co-authored-by: 刘江波 <jiangbo721@163.com>
2025-02-19 09:14:10 +08:00
dfdd6dfa20 fix: change the config name and fix typo in description of the number of retrieval executors (#13856) 2025-02-19 09:13:36 +08:00
2af81d1ee3 chore: translate i18n files (#13795)
Co-authored-by: douxc <7553076+douxc@users.noreply.github.com>
2025-02-19 09:13:26 +08:00
ece25bce1a fix: LLM may not return <think> tag, cause thinking time keep increase (#13962) 2025-02-18 21:39:01 +08:00
6fc234183a chore: replace marketplace search api (#13963) 2025-02-18 21:37:11 +08:00
15a56f705f fix: get tool provider (#13958) 2025-02-18 20:18:36 +08:00
899f7e125f Fix/add or update model credentials (#13952) 2025-02-18 20:00:39 +08:00
aa19bb3f30 fix session close issue (#13946) 2025-02-18 19:29:57 +08:00
562852a0ae fix: web test not install pnpm before use (#13931) 2025-02-18 18:18:37 +08:00
a4b992c1ab fix: web style workflow checkout error (#13929) 2025-02-18 18:18:20 +08:00
3460c1dfbd fix: tool id (#13932) 2025-02-18 18:17:41 +08:00
653f6c2d46 fix: fetch configured model providers (#13924) 2025-02-18 17:43:39 +08:00
ed7851a4b3 fix: plugin tool icon (#13918) 2025-02-18 16:54:14 +08:00
cb841e5cde fix: plugins install task (#13899) 2025-02-18 15:20:26 +08:00
4dae0e514e fix: ignore plugin already exists (#13888) 2025-02-18 13:22:39 +08:00
363c46ace8 fix: add missing package xinference_client to pass vdb CI tests (#13865) 2025-02-17 23:37:49 +08:00
abe5aca3e2 Retrieval service optimization (#13849) 2025-02-17 18:22:36 +08:00
bea10b4356 fix: undefined attribute 'query' on MessageAnnotation (#13852) 2025-02-17 18:16:45 +08:00
f5f83f1924 fix: markdown merge error (#13853) 2025-02-17 18:11:07 +08:00
403e2d58b9 Introduce Plugins (#13836)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
Signed-off-by: -LAN- <laipz8200@outlook.com>
Signed-off-by: xhe <xw897002528@gmail.com>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: takatost <takatost@gmail.com>
Co-authored-by: kurokobo <kuro664@gmail.com>
Co-authored-by: Novice Lee <novicelee@NoviPro.local>
Co-authored-by: zxhlyh <jasonapring2015@outlook.com>
Co-authored-by: AkaraChen <akarachen@outlook.com>
Co-authored-by: Yi <yxiaoisme@gmail.com>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: JzoNg <jzongcode@gmail.com>
Co-authored-by: twwu <twwu@dify.ai>
Co-authored-by: Hiroshi Fujita <fujita-h@users.noreply.github.com>
Co-authored-by: AkaraChen <85140972+AkaraChen@users.noreply.github.com>
Co-authored-by: NFish <douxc512@gmail.com>
Co-authored-by: Wu Tianwei <30284043+WTW0313@users.noreply.github.com>
Co-authored-by: 非法操作 <hjlarry@163.com>
Co-authored-by: Novice <857526207@qq.com>
Co-authored-by: Hiroki Nagai <82458324+nagaihiroki-git@users.noreply.github.com>
Co-authored-by: Gen Sato <52241300+halogen22@users.noreply.github.com>
Co-authored-by: eux <euxuuu@gmail.com>
Co-authored-by: huangzhuo1949 <167434202+huangzhuo1949@users.noreply.github.com>
Co-authored-by: huangzhuo <huangzhuo1@xiaomi.com>
Co-authored-by: lotsik <lotsik@mail.ru>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: nite-knite <nkCoding@gmail.com>
Co-authored-by: Jyong <76649700+JohnJyong@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: gakkiyomi <gakkiyomi@aliyun.com>
Co-authored-by: CN-P5 <heibai2006@gmail.com>
Co-authored-by: CN-P5 <heibai2006@qq.com>
Co-authored-by: Chuehnone <1897025+chuehnone@users.noreply.github.com>
Co-authored-by: yihong <zouzou0208@gmail.com>
Co-authored-by: Kevin9703 <51311316+Kevin9703@users.noreply.github.com>
Co-authored-by: -LAN- <laipz8200@outlook.com>
Co-authored-by: Boris Feld <lothiraldan@gmail.com>
Co-authored-by: mbo <himabo@gmail.com>
Co-authored-by: mabo <mabo@aeyes.ai>
Co-authored-by: Warren Chen <warren.chen830@gmail.com>
Co-authored-by: JzoNgKVO <27049666+JzoNgKVO@users.noreply.github.com>
Co-authored-by: jiandanfeng <chenjh3@wangsu.com>
Co-authored-by: zhu-an <70234959+xhdd123321@users.noreply.github.com>
Co-authored-by: zhaoqingyu.1075 <zhaoqingyu.1075@bytedance.com>
Co-authored-by: 海狸大師 <86974027+yenslife@users.noreply.github.com>
Co-authored-by: Xu Song <xusong.vip@gmail.com>
Co-authored-by: rayshaw001 <396301947@163.com>
Co-authored-by: Ding Jiatong <dingjiatong@gmail.com>
Co-authored-by: Bowen Liang <liangbowen@gf.com.cn>
Co-authored-by: JasonVV <jasonwangiii@outlook.com>
Co-authored-by: le0zh <newlight@qq.com>
Co-authored-by: zhuxinliang <zhuxinliang@didiglobal.com>
Co-authored-by: k-zaku <zaku99@outlook.jp>
Co-authored-by: luckylhb90 <luckylhb90@gmail.com>
Co-authored-by: hobo.l <hobo.l@binance.com>
Co-authored-by: jiangbo721 <365065261@qq.com>
Co-authored-by: 刘江波 <jiangbo721@163.com>
Co-authored-by: Shun Miyazawa <34241526+miya@users.noreply.github.com>
Co-authored-by: EricPan <30651140+Egfly@users.noreply.github.com>
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: sino <sino2322@gmail.com>
Co-authored-by: Jhvcc <37662342+Jhvcc@users.noreply.github.com>
Co-authored-by: lowell <lowell.hu@zkteco.in>
Co-authored-by: Boris Polonsky <BorisPolonsky@users.noreply.github.com>
Co-authored-by: Ademílson Tonato <ademilsonft@outlook.com>
Co-authored-by: Ademílson Tonato <ademilson.tonato@refurbed.com>
Co-authored-by: IWAI, Masaharu <iwaim.sub@gmail.com>
Co-authored-by: Yueh-Po Peng (Yabi) <94939112+y10ab1@users.noreply.github.com>
Co-authored-by: Jason <ggbbddjm@gmail.com>
Co-authored-by: Xin Zhang <sjhpzx@gmail.com>
Co-authored-by: yjc980121 <3898524+yjc980121@users.noreply.github.com>
Co-authored-by: heyszt <36215648+hieheihei@users.noreply.github.com>
Co-authored-by: Abdullah AlOsaimi <osaimiacc@gmail.com>
Co-authored-by: Abdullah AlOsaimi <189027247+osaimi@users.noreply.github.com>
Co-authored-by: Yingchun Lai <laiyingchun@apache.org>
Co-authored-by: Hash Brown <hi@xzd.me>
Co-authored-by: zuodongxu <192560071+zuodongxu@users.noreply.github.com>
Co-authored-by: Masashi Tomooka <tmokmss@users.noreply.github.com>
Co-authored-by: aplio <ryo.091219@gmail.com>
Co-authored-by: Obada Khalili <54270856+obadakhalili@users.noreply.github.com>
Co-authored-by: Nam Vu <zuzoovn@gmail.com>
Co-authored-by: Kei YAMAZAKI <1715090+kei-yamazaki@users.noreply.github.com>
Co-authored-by: TechnoHouse <13776377+deephbz@users.noreply.github.com>
Co-authored-by: Riddhimaan-Senapati <114703025+Riddhimaan-Senapati@users.noreply.github.com>
Co-authored-by: MaFee921 <31881301+2284730142@users.noreply.github.com>
Co-authored-by: te-chan <t-nakanome@sakura-is.co.jp>
Co-authored-by: HQidea <HQidea@users.noreply.github.com>
Co-authored-by: Joshbly <36315710+Joshbly@users.noreply.github.com>
Co-authored-by: xhe <xw897002528@gmail.com>
Co-authored-by: weiwenyan-dev <154779315+weiwenyan-dev@users.noreply.github.com>
Co-authored-by: ex_wenyan.wei <ex_wenyan.wei@tcl.com>
Co-authored-by: engchina <12236799+engchina@users.noreply.github.com>
Co-authored-by: engchina <atjapan2015@gmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: 呆萌闷油瓶 <253605712@qq.com>
Co-authored-by: Kemal <kemalmeler@outlook.com>
Co-authored-by: Lazy_Frog <4590648+lazyFrogLOL@users.noreply.github.com>
Co-authored-by: Yi Xiao <54782454+YIXIAO0@users.noreply.github.com>
Co-authored-by: Steven sun <98230804+Tuyohai@users.noreply.github.com>
Co-authored-by: steven <sunzwj@digitalchina.com>
Co-authored-by: Kalo Chin <91766386+fdb02983rhy@users.noreply.github.com>
Co-authored-by: Katy Tao <34019945+KatyTao@users.noreply.github.com>
Co-authored-by: depy <42985524+h4ckdepy@users.noreply.github.com>
Co-authored-by: 胡春东 <gycm520@gmail.com>
Co-authored-by: Junjie.M <118170653@qq.com>
Co-authored-by: MuYu <mr.muzea@gmail.com>
Co-authored-by: Naoki Takashima <39912547+takatea@users.noreply.github.com>
Co-authored-by: Summer-Gu <37869445+gubinjie@users.noreply.github.com>
Co-authored-by: Fei He <droxer.he@gmail.com>
Co-authored-by: ybalbert001 <120714773+ybalbert001@users.noreply.github.com>
Co-authored-by: Yuanbo Li <ybalbert@amazon.com>
Co-authored-by: douxc <7553076+douxc@users.noreply.github.com>
Co-authored-by: liuzhenghua <1090179900@qq.com>
Co-authored-by: Wu Jiayang <62842862+Wu-Jiayang@users.noreply.github.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: kimjion <45935338+kimjion@users.noreply.github.com>
Co-authored-by: AugNSo <song.tiankai@icloud.com>
Co-authored-by: llinvokerl <38915183+llinvokerl@users.noreply.github.com>
Co-authored-by: liusurong.lsr <liusurong.lsr@alibaba-inc.com>
Co-authored-by: Vasu Negi <vasu-negi@users.noreply.github.com>
Co-authored-by: Hundredwz <1808096180@qq.com>
Co-authored-by: Xiyuan Chen <52963600+GareArc@users.noreply.github.com>
2025-02-17 17:05:13 +08:00
222df44d21 Retrieval Service efficiency optimization (#13543) 2025-02-17 14:09:57 +08:00
566e548713 fix: update trial expire time to 3/17 (#13796) 2025-02-17 10:02:21 +08:00
1434d54e7a Revert "Feat: compliance report download" (#13799) 2025-02-17 09:58:56 +08:00
4229d0f9a7 Revert "Feat/compliance" (#13798) 2025-02-16 20:58:25 -05:00
7f9eb35e1f Feat: compliance report download (#13282) 2025-02-17 09:43:41 +08:00
ed7d7a74ea Feat/compliance (#13548) 2025-02-16 20:31:52 -05:00
035e54ba4d fix: add install a package to improve the accuracy of guessing mime type and file extension (main) (#13752) 2025-02-16 21:39:40 +08:00
284707c3a8 perf(message): optimize message loading and reduce SQL queries (#13720) 2025-02-15 12:19:01 +08:00
1f63028a83 fix: reranking_enable setting failed #13668 (#13721) 2025-02-14 17:42:09 +08:00
8a0aa91ed7 Non-Streaming Models Do Not Return Results Properly in _handle_invoke_result (#13571)
Co-authored-by: crazywoola <427733928@qq.com>
2025-02-14 17:02:04 +08:00
62079991b7 fix:Knowledge Base with Parent-Child segment mode not support in Agent (#13663) 2025-02-14 14:34:59 +08:00
4e7e172ff3 Chore/format code (#13691)
Co-authored-by: 刘江波 <jiangbo721@163.com>
2025-02-14 13:38:17 +08:00
33a565a719 perf: Implemented short-circuit evaluation for logical conditions (#13674)
Co-authored-by: liusurong.lsr <liusurong.lsr@alibaba-inc.com>
2025-02-13 19:35:03 +08:00
f0b9257387 fix: error in obtaining end_to_node_id during conditional parallel execution (#13673) 2025-02-13 18:00:28 +08:00
c398c9cb6a chore:Remove duplicate code, lines 8 to 27, same as lines 29 & 45 to 62. (#13659)
Co-authored-by: 刘江波 <jiangbo721@163.com>
2025-02-13 14:51:38 +08:00
a3d3e30e3a fix: fix tongyi models blocking mode with incremental_output=stream (#13620) 2025-02-13 10:24:05 +08:00
2b86465d4c fix document extractor node incorrectly processing doc and ppt files (#12902) 2025-02-12 18:04:28 +08:00
6529240da6 fix: no longer using old app detail cover when switch pathname (#13585) 2025-02-12 15:02:11 +08:00
0751ad1eeb feat(vdb): add HNSW vector index for TiDB vector store with TiFlash (#12043) 2025-02-12 13:53:51 +08:00
786550bdc9 fix: changed topics/keywords to topic/keywords (#13544) 2025-02-12 09:15:15 +08:00
bde756a1ab chore:Remove useless brackets and format code (#13479)
Co-authored-by: 刘江波 <jiangbo721@163.com>
2025-02-11 22:05:29 +08:00
423fb2d7bc Ensure the 'inputs' field in /chat-messages takes effect every time (#7955)
Co-authored-by: Your Name <you@example.com>
Co-authored-by: -LAN- <laipz8200@outlook.com>
2025-02-11 18:44:56 +08:00
f96b4f287a fix: iteration node log time error (#13511) 2025-02-11 16:35:21 +08:00
c00e7d3f65 fix: retry log running error (#13472)
Co-authored-by: Novice Lee <novicelee@NoviPro.local>
2025-02-11 15:48:55 +08:00
1f38d4846b fix: issue #13483 and #13434 (#13518)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-11 12:45:49 +08:00
47a64610ca Fix the issue of repeated escaping of quotes in hit test (#13477) 2025-02-11 09:58:31 +08:00
f0a845f0f9 fix: removed LLM output from the main README (#13504) 2025-02-11 09:09:07 +08:00
abec23118d feat: add support for X-Forwarded-Port in ProxyFix middleware (#13102) 2025-02-10 22:28:29 +08:00
0957119550 fix: update UTC time format for consistency (#13471) 2025-02-10 19:37:50 +08:00
f48fa3e4e8 chore: translate i18n files (#13452)
Co-authored-by: douxc <7553076+douxc@users.noreply.github.com>
2025-02-10 14:14:15 +08:00
5ffc58d6ca feat: improve think content display (#13431) 2025-02-10 14:08:17 +08:00
7d958635f0 Fix/add trial expire tip time (#13464) 2025-02-10 12:53:59 +08:00
33990426c1 fix: add ids in FetchDatasetsParams (#13459) 2025-02-10 12:28:36 +08:00
9f3fc7ebf8 ci: make ci safe using zizmor (#13397)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-02-10 12:26:08 +08:00
c8357da13b [Fix] Sagemaker LLM Provider can't adjust context size, it'a always 2… (#13462)
Co-authored-by: Yuanbo Li <ybalbert@amazon.com>
2025-02-10 12:25:04 +08:00
2290f14fb1 feat: add tooltip if user's anthropic trial quota still available (#13418) 2025-02-10 10:44:20 +08:00
7796984444 Fix: Removed model params except max_token for deepseek r1 in volcengine (#13446) 2025-02-10 10:26:26 +08:00
75113c26c6 Feat : add deepseek support for tongyi (#13445) 2025-02-10 10:26:03 +08:00
xhe
939a9ecd21 chore: use the wrap thinking api for volcengine (#13432)
Signed-off-by: xhe <xw897002528@gmail.com>
2025-02-10 10:25:07 +08:00
f307c7cd88 feat: Docker adds SSRF-related timeout settings (#13395) 2025-02-10 10:21:31 +08:00
33ecceb90c Feat: add comparison table to main readme (#13435) 2025-02-10 10:13:46 +08:00
e0d1cab079 fix: add missed background color to iteration node (#13448) 2025-02-10 10:04:56 +08:00
811d72a727 feat: added a _position.yaml for vertex ai provider (#13367) 2025-02-09 10:29:07 +08:00
c3c575c2e1 Fix: model selector UI hover issue (#13396) 2025-02-09 10:24:57 +08:00
c189629eca Fix(i18n): Refine zh-Hant workflow translations (#13421) 2025-02-09 10:24:45 +08:00
37117c22d4 feat(model): support Gemini 2.0 Flash Lite Preview model (02-05) in Google's model provider (#13399) 2025-02-09 10:22:33 +08:00
b05e9d2ab4 feat: update backend documentation (#13374) 2025-02-08 20:36:33 +08:00
0451333990 fix(settings): add notClearable prop to language selection (#13406) 2025-02-08 20:36:23 +08:00
ab2e6c19a4 Fixes #13415 reset model-provider-page form value use schema.default (#13416) 2025-02-08 20:34:52 +08:00
f7959bc887 fix(chatbot): update button class to include text color for better visibility (#13411) 2025-02-08 20:34:37 +08:00
45874c699d Nitpick/fix typos in document (#13413) 2025-02-08 20:33:45 +08:00
286cdc41ab reasoning model unified think tag is <think></think> (#13392)
Co-authored-by: crazywoola <427733928@qq.com>
2025-02-08 16:19:41 +08:00
78708eb5d5 fix: merge conflict between #11301 and #11885 (#13391) 2025-02-08 14:38:10 +08:00
cf36745770 fix(workflow_tool): enable File parameter support after workflow is published as a tool (#13175) 2025-02-08 12:30:00 +08:00
6622c7f98d fix: Fix HTTP request node non 443 port SSL site inaccessible (#13376) 2025-02-08 12:00:45 +08:00
3112b74527 fix: build failed due to getPrevChatList no longer exists (#13383) 2025-02-08 11:59:02 +08:00
b3ae6b634f feat: add pan and zoom support for MiniMap (#13382) 2025-02-08 11:57:41 +08:00
982bca5d40 fix: add rate limiting to prevent brute force on password reset (#13292) 2025-02-08 10:28:31 +08:00
c8dcde6cd0 fix: Gemini 2.0 Flash 001 model yaml file naming (#13372) 2025-02-08 09:12:42 +08:00
8f9db61688 feat: added new silicon flow models (#13369) 2025-02-08 09:12:22 +08:00
ebdbaf34e6 chore: translate i18n files (#13349)
Co-authored-by: JzoNgKVO <27049666+JzoNgKVO@users.noreply.github.com>
2025-02-07 22:41:25 +08:00
a081b1e79e fix: add compatibility config for third-party S3-compatible providers (#13354)
Co-authored-by: zhaoqingyu.1075 <zhaoqingyu.1075@bytedance.com>
2025-02-07 22:35:24 +08:00
38c31e64db add enable_search parameter to qwen_max, plus, turbo (#13335)
Co-authored-by: steven <sunzwj@digitalchina.com>
2025-02-07 22:16:26 +08:00
ae6f67420c Chore: update app detail panel (#13337) 2025-02-07 18:56:43 +08:00
ca19bd31d4 chore(*): Bump version to 0.15.3 (#13308)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-07 15:20:05 +08:00
413dfd5628 feat: add completion mode and context size options for LLM configuration (#13325)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-07 15:08:53 +08:00
f9515901cc fix: Azure AI Foundry model cannot be used in the workflow (#13323)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-07 14:52:57 +08:00
3f42fabff8 chore:improve thinking display for llm from xinference and ollama pro… (#13318) 2025-02-07 14:29:29 +08:00
1caa578771 chore(*): Update style of thinking (#13319)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-07 14:06:35 +08:00
b7c11c1818 Fix the problem of Workflow terminates after parallel tasks execution, merge node not triggered (#12498)
Co-authored-by: Novice Lee <novicelee@NoviPro.local>
2025-02-07 13:56:08 +08:00
3eb3db0663 chore: refactor the OpenAICompatible and improve thinking display (#13299) 2025-02-07 13:28:46 +08:00
be46f32056 fix(credits): require model name equals (#13314)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-07 13:28:17 +08:00
6e5c915f96 feat(model): add deepseek-r1 for openrouter (#13312) 2025-02-07 12:39:13 +08:00
04d13a8116 feat(credits): Allow to configure model-credit mapping (#13274)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-07 11:01:31 +08:00
e638ede3f2 Update README_TR.md (#13294) 2025-02-07 09:11:39 +08:00
2348abe4bf feat: added a couple of models not defined in vertex ai, that were already … (#13296) 2025-02-07 09:11:25 +08:00
f7e7a399d9 feat:add think tag display for xinference deepseek r1 (#13291) 2025-02-06 22:04:58 +08:00
ba91f34636 fix: incorrect transferMethod assignment for remote file (#13286) 2025-02-06 19:32:21 +08:00
16865d43a8 feat: add deepseek models for volcengine provider (#13283)
Co-authored-by: zhaoqingyu.1075 <zhaoqingyu.1075@bytedance.com>
2025-02-06 18:20:03 +08:00
0d13aee15c feat:add deepseek r1 think display for ollama provider (#13272) 2025-02-06 15:32:10 +08:00
49b4144ffd fix: add dataset edit permissions (#13223) 2025-02-06 14:26:16 +08:00
186e2d972e chore(deps): bump katex from 0.16.10 to 0.16.21 in /web (#13270)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-02-06 13:27:07 +08:00
40dd63ecef Upgrade oracle models (#13174)
Co-authored-by: engchina <atjapan2015@gmail.com>
2025-02-06 13:24:27 +08:00
6d66d6da15 feat(model_providers): Support deepseek-r1 for Nvidia Catalog (#13269)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-06 13:03:19 +08:00
03ec3513f3 Fix bug large data no render (#12683)
Co-authored-by: ex_wenyan.wei <ex_wenyan.wei@tcl.com>
2025-02-06 13:00:04 +08:00
87763fc234 feat(model_providers): Support deepseek for Azure AI Foundry (#13267)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-06 12:45:48 +08:00
f6c44cae2e feat(model): add gemini-2.0 model (#13266) 2025-02-06 12:28:59 +08:00
xhe
da2ee04fce fix: correct linewrap think display in generic openai api (#13260)
Signed-off-by: xhe <xw897002528@gmail.com>
2025-02-06 10:53:08 +08:00
7673c36af3 feat(model): add gemini-2.0-flash-thinking-exp-01-21 (#13230) 2025-02-06 10:01:00 +08:00
9457b2af2f feat: added models :gemini 2.0 flash 001 and gemini 2.0 pro exp 02-05 (#13247) 2025-02-06 09:58:39 +08:00
7203991032 feat: add parameter "reasoning_effort" and Openai o3-mini (#13243) 2025-02-06 09:29:48 +08:00
xhe
5a685f7156 feat: add think display for volcengine and generic openapi (#13234)
Signed-off-by: xhe <xw897002528@gmail.com>
2025-02-06 09:24:40 +08:00
a6a25030ad fix: updated _position.yaml to include the latest model already integ… (#13245) 2025-02-06 09:21:51 +08:00
00458a31d5 feat: added deepseek r1 and v3 to siliconflow (#13238) 2025-02-05 21:59:18 +08:00
c6ddf6d6cc feat(model_providers): Add Groq DeepSeek-R1-Distill-Llama-70b (#13229)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-05 19:15:29 +08:00
34b21b3065 feat: Add o3-mini and o3-mini-2025-01-31 model variants (#13129)
Co-authored-by: crazywoola <427733928@qq.com>
2025-02-05 17:04:45 +08:00
8fbb355cd2 chore: squash system dependencies installation steps (#13206) 2025-02-05 16:42:53 +08:00
e8b3b7e578 Fix new variables in the conversation opener would override prompt_variables (#13191) 2025-02-05 16:16:00 +08:00
59ca44f493 chore(model_runtime): Move deepseek ahead in the providers list. (#13197)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-05 16:08:28 +08:00
9e1457c2c3 fix: mypy checks violation in AzureBlobStorage (#13215) 2025-02-05 15:56:23 +08:00
fac83e14bc Use DefaultAzureCredential for managed identity in azure blob extention (#11559) 2025-02-05 13:43:43 +08:00
a97cec57e4 fix: SSRF proxy file descriptor leak in concurrent requests (#13108) 2025-02-05 13:10:27 +08:00
38c10b47d3 Feat: add linkedin to readme (#13203) 2025-02-05 12:27:58 +08:00
1a2523fd15 feat: bedrock_endpoint_url (#12838) 2025-02-05 12:24:24 +08:00
03243cb422 Modify params for bedrock retrieve generate (#13182) 2025-02-05 12:17:42 +08:00
2ad7ee0344 chore: add tests for build docker image when dockerfile changed (#10732) 2025-02-05 11:40:22 +08:00
55ce3618ce fix: Dollar Sign Handling in Markdown (#13178)
Co-authored-by: crazywoola <427733928@qq.com>
2025-02-05 11:00:56 +08:00
e9e34c1ab2 Install apt dependencies using bookworm source, consistent with base image. Remove unnecessary, error-prone pins (#13176) 2025-02-05 10:07:22 +08:00
d4c916b496 chore(pyproject): Add type stubs into pyproject.toml (#13145)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-04 12:01:28 +08:00
8fbc9c9342 Solve circular dependency issue between workflow/constants.ts file and default.ts file (#13165) 2025-02-04 09:26:01 +08:00
1b6fd9dfe8 fix: set indexing technique from dataset during update-by-text (#13155) 2025-02-03 11:06:03 +08:00
304467e3f5 fix: not install libmagic raise error (#13146) 2025-02-03 11:05:20 +08:00
7452032d81 add azure openai api version 2024-12-01-preview (#13135) 2025-02-03 11:04:20 +08:00
87e2048f1b nitpick: fix small typos in template.en.mdx (#13156) 2025-02-03 11:03:11 +08:00
d876084392 chore: upgrade libldap2 (#13158) 2025-02-03 11:02:14 +08:00
840729afa5 feat: the think tag display of siliconflow's deepseek r1 (#13153) 2025-02-02 21:55:13 +08:00
941ad03f3c pass model and cost so that langfuse can show cost (#13117) 2025-02-02 15:27:27 +08:00
d73d191f99 feature. add feat to modify metadata via dataset api (#13116) 2025-02-02 15:27:12 +08:00
c2664e0283 chore: fix wrong VectorType match case (#13123) 2025-02-02 15:26:59 +08:00
ee61cede4e test(huggingface_hub): Skip the failed test temporarily. (#13142)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-02 14:47:26 +08:00
b47669b80b fix: deduct LLM quota after processing invoke result (#13075)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-02-02 12:05:11 +08:00
c0d0c63592 feat: switch to chat messages before regenerated (#11301)
Co-authored-by: zuodongxu <192560071+zuodongxu@users.noreply.github.com>
2025-01-31 13:05:10 +08:00
b09c39c8dc refactor: avoid to use extra space when finding model by name (#13043) 2025-01-30 15:08:29 +08:00
b4b09ddc3c add tongyi qwen2.5-14b/7b-instruct-1m model (#13089) 2025-01-29 11:58:01 +08:00
d0a21086bd refactor: Update Firecrawl API parameters and default settings (#13082) 2025-01-29 11:21:05 +08:00
d44882c1b5 refactor: reduce duplciate code by inheritance (#13073) 2025-01-28 10:52:01 +08:00
23c68efa2d fix: fix the formatter is not applied on log file (#12704) 2025-01-28 10:49:58 +08:00
560c5de1b7 Fixed Novita AI color and added DeepSeek R1 model (#13074) 2025-01-28 10:38:54 +08:00
5d91dbd000 Set default LOG_LEVEL to INFO for celery workers and beat (#13066)
Co-authored-by: Abdullah AlOsaimi <189027247+osaimi@users.noreply.github.com>
2025-01-27 17:09:41 +08:00
6c31ee36cd fix qwen-vl blocking mode (#13052) 2025-01-27 11:35:23 +08:00
edc29780ed fix: "Model schema not found" error only in agents (#12655) (#12760) 2025-01-27 11:33:13 +08:00
aad7e4dd1c fix:Improve MIME type detection for remote URL uploads using python-magic (#12693) 2025-01-27 11:33:03 +08:00
a6a727e8a4 feat: add inner API to create workspace without requiring email (#13021) 2025-01-26 15:36:56 +08:00
d1fc65fabc fix: adjust iteration node dark style (#13051) 2025-01-26 11:19:41 +08:00
d4be5ef9de Update Novita AI predefined models (#13045) 2025-01-26 09:25:29 +08:00
1374be5a31 fix: Unexpected tag creation when pressing enter during tag conversion (#13041) 2025-01-25 19:30:26 +08:00
b2bbc28580 support bedrock kb: retrieve and generate (#13027) 2025-01-25 17:28:06 +08:00
59b3e672aa feat: add agent thinking content display of deepseek R1 (#12949) 2025-01-24 20:13:42 +08:00
a2f8bce8f5 chore: add Japanese translation: model_providers/bedrock (#13016) 2025-01-24 18:43:33 +08:00
a2b9adb3a2 Change typo in translation (#13004) 2025-01-24 13:48:21 +08:00
28067640b5 fix: wrong zh_Hans translation: Ohio (#13006) 2025-01-24 13:41:20 +08:00
da67916843 feat: add glm-4-air-0111 (#12997)
Co-authored-by: lowell <lowell.hu@zkteco.in>
2025-01-24 10:04:46 +08:00
e54ce479ad Feat/prompt editor dark theme (#12976) 2025-01-23 16:20:00 +08:00
6024d8a42d refactor: Update Firecrawl to use v1 API (#12574)
Co-authored-by: Ademílson Tonato <ademilson.tonato@refurbed.com>
2025-01-23 11:14:48 +08:00
f565f08aa0 fix: get property of string type variable caused page crash (#12969) 2025-01-23 11:02:29 +08:00
fd4afe09f8 fix: tools translate search (#12950)
Co-authored-by: lowell <lowell.hu@zkteco.in>
2025-01-22 19:27:02 +08:00
dd0904f95c feat: add giteeAI risk control identification. (#12946) 2025-01-22 19:26:25 +08:00
4c3076f2a4 feat: add pg vector index (#12338)
Co-authored-by: huangzhuo <huangzhuo1@xiaomi.com>
2025-01-22 17:07:18 +08:00
1e73f63ff8 chore: update version to 0.15.2 in packaging and docker configurations (#12940)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-01-22 16:40:44 +08:00
d167d5b1be feat(ark): support doubao 1.5 series of models (#12935) 2025-01-22 15:25:57 +08:00
71fa14f791 fix: resolve clipboard.writeText failure under HTTP protocol (#12936) 2025-01-22 15:18:23 +08:00
8dd1873e76 feat: workflow note dark theme (#12932) 2025-01-22 14:22:33 +08:00
f91f5c7401 fix(batch_create_segment_to_index_task): count max_position in memory. (#12929) 2025-01-22 13:39:02 +08:00
c62b7cc679 chore(build): bump poetry from 1.x to 2.x (#12369) 2025-01-22 13:38:24 +08:00
3ee213ddca add milvus full text search setting (#12930) 2025-01-22 13:36:39 +08:00
8429877b02 fix: Agent is configured for ReAct inference mode, an error is reported when viewing the agent log (#12920)
Co-authored-by: crazywoola <427733928@qq.com>
2025-01-22 13:20:32 +08:00
05a0faff6a fix: app token's last_used_at can't be updated when last_used_at is null (#12770) 2025-01-22 11:01:45 +08:00
e09f6e4987 feat: support config chunk length by env (#12925) 2025-01-22 10:43:40 +08:00
e23f4b0265 feat: add gemini-2.0-flash-thinking-exp-01-21 (#12924) 2025-01-22 10:14:37 +08:00
f582d4a13e feat: Add ability to change profile avatar (#12642) 2025-01-22 10:11:31 +08:00
2f41bd495d fix:Fix a bug that returns null when the passed path is a file. (#12775)
Co-authored-by: 刘江波 <jiangbo721@163.com>
2025-01-22 10:10:03 +08:00
162a8c4393 fix update segment keyword with same content (#12908) 2025-01-21 19:19:32 +08:00
3d1ce4c53f bug: fixed bedrock rerank bug (#12774)
Co-authored-by: hobo.l <hobo.l@binance.com>
2025-01-21 19:09:36 +08:00
6db3ae9b8e chore: remove webapp ga (#12909) 2025-01-21 18:38:33 +08:00
6d0cb9dc33 fix: variable panel scrollable (#12769)
Co-authored-by: zhaoqingyu.1075 <zhaoqingyu.1075@bytedance.com>
2025-01-21 17:50:42 +08:00
46e95e8309 fix: OpenAI o1 Bad Request Error (#12839) 2025-01-21 15:29:13 +08:00
a7b9375877 Update deepseek model configuration (#12899) 2025-01-21 15:28:11 +08:00
0c6a8a130e fix: external dataset hit test display issue(#12564) (#12612)
Co-authored-by: zhuxinliang <zhuxinliang@didiglobal.com>
2025-01-21 14:31:45 +08:00
9903f1e703 add deepseek-reasoner (#12898) 2025-01-21 12:40:58 +08:00
6fad719e42 chore(fix): Invalid quotes for using Array[String] in HTTP request node as JSON body (#12761) 2025-01-21 10:38:44 +08:00
9aaee8ee47 fix: Issues related to the deletion of conversation_id (#12488) (#12665) 2025-01-21 10:25:35 +08:00
166221d784 chore(lint): fix quotes for f-string formatting by bumping ruff to 0.9.x (#12702) 2025-01-21 10:12:29 +08:00
925d69a2ee feat:Support Minimax-Text-01 (#12763) 2025-01-21 10:08:53 +08:00
5ff08e241a fix: serply credential check query might return empty records (#12784) 2025-01-21 09:38:56 +08:00
3defd24087 feat: allow updating chunk settings for the existing documents (#12833) 2025-01-21 09:25:40 +08:00
9d86147d20 fix: SparkLite API Auth error (#12781) (#12790) 2025-01-20 22:21:21 +08:00
80801ac4ab fix: "parmas" spelling mistake. (#12875) 2025-01-20 22:18:30 +08:00
210926cd91 Fix suggested_question_prompt (#12738) 2025-01-20 22:16:30 +08:00
677a69deed fix(i18n): correct typo in zh-Hant translation (#12852) 2025-01-20 22:15:41 +08:00
8dfdee21ce chore: fix chinese translation for 'recall' (#12772)
Co-authored-by: zhaoqingyu.1075 <zhaoqingyu.1075@bytedance.com>
2025-01-20 22:15:26 +08:00
6ea77ab4cd fix: DeepSeek API Error with response format active (text and json_object) (#12747) 2025-01-20 22:04:18 +08:00
e3c996688d feat: enhance credential extraction logic based on configurate method (#12853) 2025-01-20 21:59:22 +08:00
bc3a570dda fix: Fix rerank model switching issue (#12721)
ok
2025-01-14 15:42:45 +08:00
0800021a2d chore: translate i18n files (#12708)
Co-authored-by: JzoNgKVO <27049666+JzoNgKVO@users.noreply.github.com>
2025-01-14 13:35:23 +08:00
435eddd867 Feat: copyright modification (#12707) 2025-01-14 10:00:57 +08:00
6e0fb055d1 chore: bump version to 0.15.1 (#12690)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-01-13 19:21:06 +08:00
eux
1e9ac7ffeb feat: add table of contents to Knowledge API doc (#12688) 2025-01-13 18:31:43 +08:00
b4873ecb43 [fix] support feature restore (#12563) 2025-01-13 18:29:06 +08:00
mbo
1859d57784 api tool support multiple env url (#12249)
Co-authored-by: mabo <mabo@aeyes.ai>
2025-01-13 17:49:30 +08:00
69d58fbb50 Add new integration with Opik Tracking tool (#11501) 2025-01-13 17:41:44 +08:00
cb34991663 fix: add type hints for App model and improve error handling in audio services (#12677)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-01-13 15:55:16 +08:00
c700364e1c fix: Update variable handling in VariableAssignerNode and clean up app_dsl_service (#12672)
Signed-off-by: -LAN- <laipz8200@outlook.com>
2025-01-13 15:54:26 +08:00
9a6b1dc3a1 Revert "Feat/new saas billing" (#12673) 2025-01-13 15:17:43 +08:00
54b5b80a07 fix(workflow): fix answer node stream processing in conditional branches (#12510) 2025-01-13 14:54:21 +08:00
831459b895 fix: ruff with statements (#12578)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
2025-01-13 09:55:55 +08:00
4e101604c3 fix: ruff check for True if ... else (#12576)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-01-13 09:38:48 +08:00
a6455269f0 chore: Adjust translations to align with Taiwanese Mandarin conventions (#12633) 2025-01-13 09:12:43 +08:00
cd257b91c5 Fix pandas indexing method for knowledge base imports (#12637) (#12638)
Co-authored-by: CN-P5 <heibai2006@qq.com>
2025-01-13 09:06:59 +08:00
d8f57bf899 Feat/new saas billing (#12591) 2025-01-12 14:50:46 +08:00
989fb11fd7 improve the readability of the function generate_api_key (#12552) 2025-01-09 21:30:17 +08:00
140965b738 chore: translate i18n files (#12543)
Co-authored-by: WTW0313 <30284043+WTW0313@users.noreply.github.com>
2025-01-09 20:30:06 +08:00
14ee51aead Feat/add knowledge include all filter (#12537) 2025-01-09 20:21:25 +08:00
2e97ba5700 fix: Add datasets list access control and fix datasets config display issue (#12533)
Co-authored-by: nite-knite <nkCoding@gmail.com>
2025-01-09 17:44:11 +08:00
f549d53b68 fix: sum costs return error value on overview page (#12534) 2025-01-09 16:04:14 +08:00
a085ad4719 feat: show workflow running status (#12531) 2025-01-09 15:36:13 +08:00
f230a9232e fix: Parsing OpenAPI spec for external tools (#12518) (#12530) 2025-01-09 15:30:43 +08:00
e84bf35e2a fix: same chunk insert deadlock (#12502)
Co-authored-by: huangzhuo <huangzhuo1@xiaomi.com>
2025-01-09 15:16:41 +08:00
eux
20f090537f feat: add GET upload file API endpoint to dataset service api (#11899) 2025-01-09 14:52:09 +08:00
dbe7a7c4fd Fix: Add a INFO-level log when fallback to gpt2tokenizer (#12508) 2025-01-09 14:37:46 +08:00
b7a4e3903e fix: add last_refresh_time to track the validity of is_other_tab_refreshing (#12517) 2025-01-09 10:40:45 +08:00
548 changed files with 13035 additions and 3704 deletions

View File

@ -4,7 +4,6 @@ on:
pull_request:
branches:
- main
- plugins/beta
paths:
- api/**
- docker/**
@ -27,6 +26,9 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Setup Poetry and Python ${{ matrix.python-version }}
uses: ./.github/actions/setup-poetry

View File

@ -5,8 +5,6 @@ on:
branches:
- "main"
- "deploy/dev"
- "plugins/beta"
- "dev/plugin-deploy"
release:
types: [published]
@ -81,10 +79,12 @@ jobs:
cache-to: type=gha,mode=max,scope=${{ matrix.service_name }}
- name: Export digest
env:
DIGEST: ${{ steps.build.outputs.digest }}
run: |
mkdir -p /tmp/digests
digest="${{ steps.build.outputs.digest }}"
touch "/tmp/digests/${digest#sha256:}"
sanitized_digest=${DIGEST#sha256:}
touch "/tmp/digests/${sanitized_digest}"
- name: Upload digest
uses: actions/upload-artifact@v4
@ -134,23 +134,15 @@ jobs:
- name: Create manifest list and push
working-directory: /tmp/digests
env:
IMAGE_NAME: ${{ env[matrix.image_name_env] }}
run: |
docker buildx imagetools create $(jq -cr '.tags | map("-t " + .) | join(" ")' <<< "$DOCKER_METADATA_OUTPUT_JSON") \
$(printf '${{ env[matrix.image_name_env] }}@sha256:%s ' *)
$(printf "$IMAGE_NAME@sha256:%s " *)
- name: Inspect image
run: |
docker buildx imagetools inspect ${{ env[matrix.image_name_env] }}:${{ steps.meta.outputs.version }}
- name: print context var
uses: actions/checkout@v4
- name: deploy pod in plugin env
if: github.ref == 'refs/heads/dev/plugin-deploy'
env:
IMAGEHASH: ${{ github.sha }}
APICMD: "${{ secrets.PLUGIN_CD_API_CURL }}"
WEBCMD: "${{ secrets.PLUGIN_CD_WEB_CURL }}"
IMAGE_NAME: ${{ env[matrix.image_name_env] }}
IMAGE_VERSION: ${{ steps.meta.outputs.version }}
run: |
bash -c "${APICMD/yourNewVersion/$IMAGEHASH}"
bash -c "${WEBCMD/yourNewVersion/$IMAGEHASH}"
docker buildx imagetools inspect "$IMAGE_NAME:$IMAGE_VERSION"

View File

@ -20,6 +20,9 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Setup Poetry and Python
uses: ./.github/actions/setup-poetry

View File

@ -1,23 +0,0 @@
name: Deploy Plugin Dev
on:
workflow_run:
workflows: ["Build and Push API & Web"]
branches:
- "dev/plugin-deploy"
types:
- completed
jobs:
deploy:
runs-on: ubuntu-latest
if: |
github.event.workflow_run.conclusion == 'success'
steps:
- name: Deploy to server
uses: appleboy/ssh-action@v0.1.8
with:
host: ${{ secrets.SSH_HOST }}
username: ${{ secrets.SSH_USER }}
key: ${{ secrets.SSH_PRIVATE_KEY }}
script: "echo 123"

47
.github/workflows/docker-build.yml vendored Normal file
View File

@ -0,0 +1,47 @@
name: Build docker image
on:
pull_request:
branches:
- "main"
paths:
- api/Dockerfile
- web/Dockerfile
concurrency:
group: docker-build-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
build-docker:
runs-on: ubuntu-latest
strategy:
matrix:
include:
- service_name: "api-amd64"
platform: linux/amd64
context: "api"
- service_name: "api-arm64"
platform: linux/arm64
context: "api"
- service_name: "web-amd64"
platform: linux/amd64
context: "web"
- service_name: "web-arm64"
platform: linux/arm64
context: "web"
steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Build Docker Image
uses: docker/build-push-action@v6
with:
push: false
context: "{{defaultContext}}:${{ matrix.context }}"
platforms: ${{ matrix.platform }}
cache-from: type=gha
cache-to: type=gha,mode=max

View File

@ -9,6 +9,6 @@ yq eval '.services["pgvecto-rs"].ports += ["5431:5432"]' -i docker/docker-compos
yq eval '.services["elasticsearch"].ports += ["9200:9200"]' -i docker/docker-compose.yaml
yq eval '.services.couchbase-server.ports += ["8091-8096:8091-8096"]' -i docker/docker-compose.yaml
yq eval '.services.couchbase-server.ports += ["11210:11210"]' -i docker/docker-compose.yaml
yq eval '.services.tidb.ports += ["4000:4000"]' -i docker/docker-compose.yaml
yq eval '.services.tidb.ports += ["4000:4000"]' -i docker/tidb/docker-compose.yaml
echo "Ports exposed for sandbox, weaviate, tidb, qdrant, chroma, milvus, pgvector, pgvecto-rs, elasticsearch, couchbase"

View File

@ -4,7 +4,6 @@ on:
pull_request:
branches:
- main
- plugins/beta
concurrency:
group: style-${{ github.head_ref || github.run_id }}
@ -18,6 +17,9 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Check changed files
id: changed-files
@ -60,6 +62,9 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Check changed files
id: changed-files
@ -87,7 +92,7 @@ jobs:
- name: Web style check
if: steps.changed-files.outputs.any_changed == 'true'
run: yarn run lint
run: pnpm run lint
docker-compose-template:
name: Docker Compose Template
@ -96,6 +101,9 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Check changed files
id: changed-files
@ -124,6 +132,9 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Check changed files
id: changed-files
@ -141,7 +152,7 @@ jobs:
if: steps.changed-files.outputs.any_changed == 'true'
env:
BASH_SEVERITY: warning
DEFAULT_BRANCH: plugins/beta
DEFAULT_BRANCH: main
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
IGNORE_GENERATED_FILES: true
IGNORE_GITIGNORED_FILES: true

View File

@ -26,6 +26,9 @@ jobs:
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Use Node.js ${{ matrix.node-version }}
uses: actions/setup-node@v4
@ -35,7 +38,7 @@ jobs:
cache-dependency-path: 'pnpm-lock.yaml'
- name: Install Dependencies
run: pnpm install
run: pnpm install --frozen-lockfile
- name: Test
run: pnpm test

View File

@ -16,6 +16,7 @@ jobs:
- uses: actions/checkout@v4
with:
fetch-depth: 2 # last 2 commits
persist-credentials: false
- name: Check for file changes in i18n/en-US
id: check_files

View File

@ -28,6 +28,9 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Setup Poetry and Python ${{ matrix.python-version }}
uses: ./.github/actions/setup-poetry
@ -51,7 +54,15 @@ jobs:
- name: Expose Service Ports
run: sh .github/workflows/expose_service_ports.sh
- name: Set up Vector Stores (TiDB, Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale, ElasticSearch, Couchbase)
- name: Set up Vector Store (TiDB)
uses: hoverkraft-tech/compose-action@v2.0.2
with:
compose-file: docker/tidb/docker-compose.yaml
services: |
tidb
tiflash
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale, ElasticSearch, Couchbase)
uses: hoverkraft-tech/compose-action@v2.0.2
with:
compose-file: |
@ -67,7 +78,9 @@ jobs:
pgvector
chroma
elasticsearch
tidb
- name: Check TiDB Ready
run: poetry run -P api python api/tests/integration_tests/vdb/tidb_vector/check_tiflash_ready.py
- name: Test Vector Stores
run: poetry run -P api bash dev/pytest/pytest_vdb.sh

View File

@ -22,25 +22,34 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Check changed files
id: changed-files
uses: tj-actions/changed-files@v45
with:
files: web/**
# to run pnpm, should install package canvas, but it always install failed on amd64 under ubuntu-latest
# - name: Install pnpm
# uses: pnpm/action-setup@v4
# with:
# version: 10
# run_install: false
- name: Setup Node.js
uses: actions/setup-node@v4
if: steps.changed-files.outputs.any_changed == 'true'
with:
node-version: 20
cache: pnpm
cache-dependency-path: ./web/package.json
# - name: Setup Node.js
# uses: actions/setup-node@v4
# if: steps.changed-files.outputs.any_changed == 'true'
# with:
# node-version: 20
# cache: pnpm
# cache-dependency-path: ./web/package.json
- name: Install dependencies
if: steps.changed-files.outputs.any_changed == 'true'
run: pnpm install --frozen-lockfile
# - name: Install dependencies
# if: steps.changed-files.outputs.any_changed == 'true'
# run: pnpm install --frozen-lockfile
- name: Run tests
if: steps.changed-files.outputs.any_changed == 'true'
run: pnpm test
# - name: Run tests
# if: steps.changed-files.outputs.any_changed == 'true'
# run: pnpm test

1
.gitignore vendored
View File

@ -163,6 +163,7 @@ docker/volumes/db/data/*
docker/volumes/redis/data/*
docker/volumes/weaviate/*
docker/volumes/qdrant/*
docker/tidb/volumes/*
docker/volumes/etcd/*
docker/volumes/minio/*
docker/volumes/milvus/*

View File

@ -25,6 +25,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -105,6 +108,72 @@ Please refer to our [FAQ](https://docs.dify.ai/getting-started/install-self-host
**7. Backend-as-a-Service**:
All of Dify's offerings come with corresponding APIs, so you could effortlessly integrate Dify into your own business logic.
## Feature Comparison
<table style="width: 100%;">
<tr>
<th align="center">Feature</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">OpenAI Assistants API</th>
</tr>
<tr>
<td align="center">Programming Approach</td>
<td align="center">API + App-oriented</td>
<td align="center">Python Code</td>
<td align="center">App-oriented</td>
<td align="center">API-oriented</td>
</tr>
<tr>
<td align="center">Supported LLMs</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">Rich Variety</td>
<td align="center">OpenAI-only</td>
</tr>
<tr>
<td align="center">RAG Engine</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Agent</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Workflow</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Observability</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Enterprise Feature (SSO/Access control)</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Local Deployment</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
## Using Dify

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="seguir en X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="seguir en LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Descargas de Docker" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="suivre sur X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="suivre sur LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Tirages Docker" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="X(Twitter)でフォロー"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="LinkedInでフォロー"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -84,9 +87,7 @@ Dify is an open-source LLM app development platform. Its intuitive interface com
## Feature Comparison
<table style="width: 100%;">
<tr
>
<tr>
<th align="center">Feature</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -25,6 +25,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -22,6 +22,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="follow on LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -103,6 +106,73 @@ Prosimo, glejte naša pogosta vprašanja [FAQ](https://docs.dify.ai/getting-star
**7. Backend-as-a-Service**:
AVse ponudbe Difyja so opremljene z ustreznimi API-ji, tako da lahko Dify brez težav integrirate v svojo poslovno logiko.
## Primerjava Funkcij
<table style="width: 100%;">
<tr>
<th align="center">Funkcija</th>
<th align="center">Dify.AI</th>
<th align="center">LangChain</th>
<th align="center">Flowise</th>
<th align="center">OpenAI Assistants API</th>
</tr>
<tr>
<td align="center">Programski pristop</td>
<td align="center">API + usmerjeno v aplikacije</td>
<td align="center">Python koda</td>
<td align="center">Usmerjeno v aplikacije</td>
<td align="center">Usmerjeno v API</td>
</tr>
<tr>
<td align="center">Podprti LLM-ji</td>
<td align="center">Bogata izbira</td>
<td align="center">Bogata izbira</td>
<td align="center">Bogata izbira</td>
<td align="center">Samo OpenAI</td>
</tr>
<tr>
<td align="center">RAG pogon</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Agent</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Potek dela</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Spremljanje</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Funkcija za podjetja (SSO/nadzor dostopa)</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">Lokalna namestitev</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</table>
## Uporaba Dify
@ -184,4 +254,4 @@ Zaradi zaščite vaše zasebnosti se izogibajte objavljanju varnostnih vprašanj
## Licenca
To skladišče je na voljo pod [odprtokodno licenco Dify](LICENSE) , ki je v bistvu Apache 2.0 z nekaj dodatnimi omejitvami.
To skladišče je na voljo pod [odprtokodno licenco Dify](LICENSE) , ki je v bistvu Apache 2.0 z nekaj dodatnimi omejitvami.

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="X(Twitter)'da takip et"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="LinkedIn'da takip et"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Çekmeleri" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -62,8 +65,6 @@ Görsel bir arayüz üzerinde güçlü AI iş akışları oluşturun ve test edi
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
Özür dilerim, haklısınız. Daha anlamlı ve akıcı bir çeviri yapmaya çalışayım. İşte güncellenmiş çeviri:
**3. Prompt IDE**:
Komut istemlerini oluşturmak, model performansını karşılaştırmak ve sohbet tabanlı uygulamalara metin-konuşma gibi ek özellikler eklemek için kullanıcı dostu bir arayüz.
@ -150,8 +151,6 @@ Görsel bir arayüz üzerinde güçlü AI iş akışları oluşturun ve test edi
## Dify'ı Kullanma
- **Cloud </br>**
İşte verdiğiniz metnin Türkçe çevirisi, kod bloğu içinde:
-
Herkesin sıfır kurulumla denemesi için bir [Dify Cloud](https://dify.ai) hizmeti sunuyoruz. Bu hizmet, kendi kendine dağıtılan versiyonun tüm yeteneklerini sağlar ve sandbox planında 200 ücretsiz GPT-4 çağrısı içerir.
- **Dify Topluluk Sürümünü Kendi Sunucunuzda Barındırma</br>**
@ -177,8 +176,6 @@ GitHub'da Dify'a yıldız verin ve yeni sürümlerden anında haberdar olun.
>- RAM >= 4GB
</br>
İşte verdiğiniz metnin Türkçe çevirisi, kod bloğu içinde:
Dify sunucusunu başlatmanın en kolay yolu, [docker-compose.yml](docker/docker-compose.yaml) dosyamızı çalıştırmaktır. Kurulum komutunu çalıştırmadan önce, makinenizde [Docker](https://docs.docker.com/get-docker/) ve [Docker Compose](https://docs.docker.com/compose/install/)'un kurulu olduğundan emin olun:
```bash

View File

@ -21,6 +21,9 @@
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="theo dõi trên X(Twitter)"></a>
<a href="https://www.linkedin.com/company/langgenius/" target="_blank">
<img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff"
alt="theo dõi trên LinkedIn"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">

View File

@ -48,16 +48,20 @@ ENV TZ=UTC
WORKDIR /app/api
RUN apt-get update \
&& apt-get install -y --no-install-recommends curl nodejs libgmp-dev libmpfr-dev libmpc-dev \
# if you located in China, you can use aliyun mirror to speed up
# && echo "deb http://mirrors.aliyun.com/debian testing main" > /etc/apt/sources.list \
&& echo "deb http://deb.debian.org/debian testing main" > /etc/apt/sources.list \
&& apt-get update \
# For Security
# && apt-get install -y --no-install-recommends expat=2.6.4-1 libldap-2.5-0=2.5.19+dfsg-1 perl=5.40.0-8 libsqlite3-0=3.46.1-1 zlib1g=1:1.3.dfsg+really1.3.1-1+b1 \
# install a chinese font to support the use of tools like matplotlib
&& apt-get install -y fonts-noto-cjk \
RUN \
apt-get update \
# Install dependencies
&& apt-get install -y --no-install-recommends \
# basic environment
curl nodejs libgmp-dev libmpfr-dev libmpc-dev \
# For Security
expat libldap-2.5-0 perl libsqlite3-0 zlib1g \
# install a chinese font to support the use of tools like matplotlib
fonts-noto-cjk \
# install a package to improve the accuracy of guessing mime type and file extension
media-types \
# install libmagic to support the use of python-magic guess MIMETYPE
libmagic1 \
&& apt-get autoremove -y \
&& rm -rf /var/lib/apt/lists/*
@ -80,7 +84,6 @@ COPY . /app/api/
COPY docker/entrypoint.sh /entrypoint.sh
RUN chmod +x /entrypoint.sh
ARG COMMIT_SHA
ENV COMMIT_SHA=${COMMIT_SHA}

View File

@ -37,7 +37,13 @@
4. Create environment.
Dify API service uses [Poetry](https://python-poetry.org/docs/) to manage dependencies. You can execute `poetry shell` to activate the environment.
Dify API service uses [Poetry](https://python-poetry.org/docs/) to manage dependencies. First, you need to add the poetry shell plugin, if you don't have it already, in order to run in a virtual environment. [Note: Poetry shell is no longer a native command so you need to install the poetry plugin beforehand]
```bash
poetry self add poetry-plugin-shell
```
Then, You can execute `poetry shell` to activate the environment.
5. Install dependencies

View File

@ -707,12 +707,13 @@ def extract_unique_plugins(output_file: str, input_file: str):
@click.option(
"--output_file", prompt=True, help="The file to store the installed plugins.", default="installed_plugins.jsonl"
)
def install_plugins(input_file: str, output_file: str):
@click.option("--workers", prompt=True, help="The number of workers to install plugins.", default=100)
def install_plugins(input_file: str, output_file: str, workers: int):
"""
Install plugins.
"""
click.echo(click.style("Starting install plugins.", fg="white"))
PluginMigration.install_plugins(input_file, output_file)
PluginMigration.install_plugins(input_file, output_file, workers)
click.echo(click.style("Install plugins completed.", fg="green"))

View File

@ -373,8 +373,8 @@ class HttpConfig(BaseSettings):
)
RESPECT_XFORWARD_HEADERS_ENABLED: bool = Field(
description="Enable or disable the X-Forwarded-For Proxy Fix middleware from Werkzeug"
" to respect X-* headers to redirect clients",
description="Enable handling of X-Forwarded-For, X-Forwarded-Proto, and X-Forwarded-Port headers"
" when the app is behind a single trusted reverse proxy.",
default=False,
)
@ -556,6 +556,11 @@ class AuthConfig(BaseSettings):
default=86400,
)
FORGOT_PASSWORD_LOCKOUT_DURATION: PositiveInt = Field(
description="Time (in seconds) a user must wait before retrying password reset after exceeding the rate limit.",
default=86400,
)
class ModerationConfig(BaseSettings):
"""

View File

@ -1,9 +1,40 @@
from typing import Optional
from pydantic import Field, NonNegativeInt
from pydantic import Field, NonNegativeInt, computed_field
from pydantic_settings import BaseSettings
class HostedCreditConfig(BaseSettings):
HOSTED_MODEL_CREDIT_CONFIG: str = Field(
description="Model credit configuration in format 'model:credits,model:credits', e.g., 'gpt-4:20,gpt-4o:10'",
default="",
)
def get_model_credits(self, model_name: str) -> int:
"""
Get credit value for a specific model name.
Returns 1 if model is not found in configuration (default credit).
:param model_name: The name of the model to search for
:return: The credit value for the model
"""
if not self.HOSTED_MODEL_CREDIT_CONFIG:
return 1
try:
credit_map = dict(
item.strip().split(":", 1) for item in self.HOSTED_MODEL_CREDIT_CONFIG.split(",") if ":" in item
)
# Search for matching model pattern
for pattern, credit in credit_map.items():
if pattern.strip() == model_name:
return int(credit)
return 1 # Default quota if no match found
except (ValueError, AttributeError):
return 1 # Return default quota if parsing fails
class HostedOpenAiConfig(BaseSettings):
"""
Configuration for hosted OpenAI service
@ -202,5 +233,7 @@ class HostedServiceConfig(
HostedZhipuAIConfig,
# moderation
HostedModerationConfig,
# credit config
HostedCreditConfig,
):
pass

View File

@ -1,3 +1,4 @@
import os
from typing import Any, Literal, Optional
from urllib.parse import quote_plus
@ -166,6 +167,11 @@ class DatabaseConfig(BaseSettings):
default=False,
)
RETRIEVAL_SERVICE_EXECUTORS: NonNegativeInt = Field(
description="Number of processes for the retrieval service, default to CPU cores.",
default=os.cpu_count(),
)
@computed_field
def SQLALCHEMY_ENGINE_OPTIONS(self) -> dict[str, Any]:
return {

View File

@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description="Dify version",
default="1.0.0-beta.1",
default="1.0.0",
)
COMMIT_SHA: str = Field(

View File

@ -15,7 +15,7 @@ AUDIO_EXTENSIONS.extend([ext.upper() for ext in AUDIO_EXTENSIONS])
if dify_config.ETL_TYPE == "Unstructured":
DOCUMENT_EXTENSIONS = ["txt", "markdown", "md", "mdx", "pdf", "html", "htm", "xlsx", "xls"]
DOCUMENT_EXTENSIONS.extend(("docx", "csv", "eml", "msg", "pptx", "xml", "epub"))
DOCUMENT_EXTENSIONS.extend(("doc", "docx", "csv", "eml", "msg", "pptx", "xml", "epub"))
if dify_config.UNSTRUCTURED_API_URL:
DOCUMENT_EXTENSIONS.append("ppt")
DOCUMENT_EXTENSIONS.extend([ext.upper() for ext in DOCUMENT_EXTENSIONS])

View File

@ -1,12 +1,32 @@
import mimetypes
import os
import platform
import re
import urllib.parse
import warnings
from collections.abc import Mapping
from typing import Any
from uuid import uuid4
import httpx
try:
import magic
except ImportError:
if platform.system() == "Windows":
warnings.warn(
"To use python-magic guess MIMETYPE, you need to run `pip install python-magic-bin`", stacklevel=2
)
elif platform.system() == "Darwin":
warnings.warn("To use python-magic guess MIMETYPE, you need to run `brew install libmagic`", stacklevel=2)
elif platform.system() == "Linux":
warnings.warn(
"To use python-magic guess MIMETYPE, you need to run `sudo apt-get install libmagic1`", stacklevel=2
)
else:
warnings.warn("To use python-magic guess MIMETYPE, you need to install `libmagic`", stacklevel=2)
magic = None # type: ignore
from pydantic import BaseModel
from configs import dify_config
@ -47,6 +67,13 @@ def guess_file_info_from_response(response: httpx.Response):
# If guessing fails, use Content-Type from response headers
mimetype = response.headers.get("Content-Type", "application/octet-stream")
# Use python-magic to guess MIME type if still unknown or generic
if mimetype == "application/octet-stream" and magic is not None:
try:
mimetype = magic.from_buffer(response.content[:1024], mime=True)
except magic.MagicException:
pass
extension = os.path.splitext(filename)[1]
# Ensure filename has an extension

View File

@ -59,3 +59,9 @@ class EmailCodeAccountDeletionRateLimitExceededError(BaseHTTPException):
error_code = "email_code_account_deletion_rate_limit_exceeded"
description = "Too many account deletion emails have been sent. Please try again in 5 minutes."
code = 429
class EmailPasswordResetLimitError(BaseHTTPException):
error_code = "email_password_reset_limit"
description = "Too many failed password reset attempts. Please try again in 24 hours."
code = 429

View File

@ -8,7 +8,13 @@ from sqlalchemy.orm import Session
from constants.languages import languages
from controllers.console import api
from controllers.console.auth.error import EmailCodeError, InvalidEmailError, InvalidTokenError, PasswordMismatchError
from controllers.console.auth.error import (
EmailCodeError,
EmailPasswordResetLimitError,
InvalidEmailError,
InvalidTokenError,
PasswordMismatchError,
)
from controllers.console.error import AccountInFreezeError, AccountNotFound, EmailSendIpLimitError
from controllers.console.wraps import setup_required
from events.tenant_event import tenant_was_created
@ -65,6 +71,10 @@ class ForgotPasswordCheckApi(Resource):
user_email = args["email"]
is_forgot_password_error_rate_limit = AccountService.is_forgot_password_error_rate_limit(args["email"])
if is_forgot_password_error_rate_limit:
raise EmailPasswordResetLimitError()
token_data = AccountService.get_reset_password_data(args["token"])
if token_data is None:
raise InvalidTokenError()
@ -73,8 +83,10 @@ class ForgotPasswordCheckApi(Resource):
raise InvalidEmailError()
if args["code"] != token_data.get("code"):
AccountService.add_forgot_password_error_rate_limit(args["email"])
raise EmailCodeError()
AccountService.reset_forgot_password_error_rate_limit(args["email"])
return {"is_valid": True, "email": token_data.get("email")}

View File

@ -14,6 +14,7 @@ from controllers.console.wraps import account_initialization_required, enterpris
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.indexing_runner import IndexingRunner
from core.model_runtime.entities.model_entities import ModelType
from core.plugin.entities.plugin import ModelProviderID
from core.provider_manager import ProviderManager
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.extractor.entity.extract_setting import ExtractSetting
@ -72,7 +73,9 @@ class DatasetListApi(Resource):
data = marshal(datasets, dataset_detail_fields)
for item in data:
# convert embedding_model_provider to plugin standard format
if item["indexing_technique"] == "high_quality":
item["embedding_model_provider"] = str(ModelProviderID(item["embedding_model_provider"]))
item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
if item_model in model_names:
item["embedding_available"] = True
@ -620,7 +623,6 @@ class DatasetRetrievalSettingApi(Resource):
match vector_type:
case (
VectorType.RELYT
| VectorType.PGVECTOR
| VectorType.TIDB_VECTOR
| VectorType.CHROMA
| VectorType.TENCENT

View File

@ -50,7 +50,7 @@ class MessageListApi(InstalledAppResource):
try:
return MessageService.pagination_by_first_id(
app_model, current_user, args["conversation_id"], args["first_id"], args["limit"], "desc"
app_model, current_user, args["conversation_id"], args["first_id"], args["limit"]
)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")

View File

@ -1,3 +1,5 @@
import json
from flask_restful import Resource, reqparse # type: ignore
from controllers.console.wraps import setup_required
@ -29,4 +31,34 @@ class EnterpriseWorkspace(Resource):
return {"message": "enterprise workspace created."}
class EnterpriseWorkspaceNoOwnerEmail(Resource):
@setup_required
@enterprise_inner_api_only
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("name", type=str, required=True, location="json")
args = parser.parse_args()
tenant = TenantService.create_tenant(args["name"], is_from_dashboard=True)
tenant_was_created.send(tenant)
resp = {
"id": tenant.id,
"name": tenant.name,
"encrypt_public_key": tenant.encrypt_public_key,
"plan": tenant.plan,
"status": tenant.status,
"custom_config": json.loads(tenant.custom_config) if tenant.custom_config else {},
"created_at": tenant.created_at.isoformat() + "Z" if tenant.created_at else None,
"updated_at": tenant.updated_at.isoformat() + "Z" if tenant.updated_at else None,
}
return {
"message": "enterprise workspace created.",
"tenant": resp,
}
api.add_resource(EnterpriseWorkspace, "/enterprise/workspace")
api.add_resource(EnterpriseWorkspaceNoOwnerEmail, "/enterprise/workspace/ownerless")

View File

@ -10,6 +10,7 @@ from controllers.service_api.app.error import NotChatAppError
from controllers.service_api.wraps import FetchUserArg, WhereisUserArg, validate_app_token
from core.app.entities.app_invoke_entities import InvokeFrom
from fields.conversation_fields import message_file_fields
from fields.message_fields import feedback_fields, retriever_resource_fields
from fields.raws import FilesContainedField
from libs.helper import TimestampField, uuid_value
from models.model import App, AppMode, EndUser
@ -18,26 +19,6 @@ from services.message_service import MessageService
class MessageListApi(Resource):
feedback_fields = {"rating": fields.String}
retriever_resource_fields = {
"id": fields.String,
"message_id": fields.String,
"position": fields.Integer,
"dataset_id": fields.String,
"dataset_name": fields.String,
"document_id": fields.String,
"document_name": fields.String,
"data_source_type": fields.String,
"segment_id": fields.String,
"score": fields.Float,
"hit_count": fields.Integer,
"word_count": fields.Integer,
"segment_position": fields.Integer,
"index_node_hash": fields.String,
"content": fields.String,
"created_at": TimestampField,
}
agent_thought_fields = {
"id": fields.String,
"chain_id": fields.String,
@ -89,7 +70,7 @@ class MessageListApi(Resource):
try:
return MessageService.pagination_by_first_id(
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"]
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"], "desc"
)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")

View File

@ -18,6 +18,7 @@ from controllers.service_api.app.error import (
from controllers.service_api.dataset.error import (
ArchivedDocumentImmutableError,
DocumentIndexingError,
InvalidMetadataError,
)
from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
from core.errors.error import ProviderTokenNotInitError
@ -50,6 +51,9 @@ class DocumentAddByTextApi(DatasetApiResource):
"indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
)
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
parser.add_argument("doc_type", type=str, required=False, nullable=True, location="json")
parser.add_argument("doc_metadata", type=dict, required=False, nullable=True, location="json")
args = parser.parse_args()
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
@ -61,6 +65,28 @@ class DocumentAddByTextApi(DatasetApiResource):
if not dataset.indexing_technique and not args["indexing_technique"]:
raise ValueError("indexing_technique is required.")
# Validate metadata if provided
if args.get("doc_type") or args.get("doc_metadata"):
if not args.get("doc_type") or not args.get("doc_metadata"):
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise InvalidMetadataError(
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
)
if not isinstance(args["doc_metadata"], dict):
raise InvalidMetadataError("doc_metadata must be a dictionary")
# Validate metadata schema based on doc_type
if args["doc_type"] != "others":
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
for key, value in args["doc_metadata"].items():
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
# set to MetaDataConfig
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
text = args.get("text")
name = args.get("name")
if text is None or name is None:
@ -107,6 +133,8 @@ class DocumentUpdateByTextApi(DatasetApiResource):
"doc_language", type=str, default="English", required=False, nullable=False, location="json"
)
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
parser.add_argument("doc_type", type=str, required=False, nullable=True, location="json")
parser.add_argument("doc_metadata", type=dict, required=False, nullable=True, location="json")
args = parser.parse_args()
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
@ -115,6 +143,32 @@ class DocumentUpdateByTextApi(DatasetApiResource):
if not dataset:
raise ValueError("Dataset is not exist.")
# indexing_technique is already set in dataset since this is an update
args["indexing_technique"] = dataset.indexing_technique
# Validate metadata if provided
if args.get("doc_type") or args.get("doc_metadata"):
if not args.get("doc_type") or not args.get("doc_metadata"):
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise InvalidMetadataError(
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
)
if not isinstance(args["doc_metadata"], dict):
raise InvalidMetadataError("doc_metadata must be a dictionary")
# Validate metadata schema based on doc_type
if args["doc_type"] != "others":
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
for key, value in args["doc_metadata"].items():
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
# set to MetaDataConfig
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
if args["text"]:
text = args.get("text")
name = args.get("name")
@ -161,6 +215,30 @@ class DocumentAddByFileApi(DatasetApiResource):
args["doc_form"] = "text_model"
if "doc_language" not in args:
args["doc_language"] = "English"
# Validate metadata if provided
if args.get("doc_type") or args.get("doc_metadata"):
if not args.get("doc_type") or not args.get("doc_metadata"):
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise InvalidMetadataError(
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
)
if not isinstance(args["doc_metadata"], dict):
raise InvalidMetadataError("doc_metadata must be a dictionary")
# Validate metadata schema based on doc_type
if args["doc_type"] != "others":
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
for key, value in args["doc_metadata"].items():
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
# set to MetaDataConfig
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
# get dataset info
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
@ -228,6 +306,29 @@ class DocumentUpdateByFileApi(DatasetApiResource):
if "doc_language" not in args:
args["doc_language"] = "English"
# Validate metadata if provided
if args.get("doc_type") or args.get("doc_metadata"):
if not args.get("doc_type") or not args.get("doc_metadata"):
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise InvalidMetadataError(
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
)
if not isinstance(args["doc_metadata"], dict):
raise InvalidMetadataError("doc_metadata must be a dictionary")
# Validate metadata schema based on doc_type
if args["doc_type"] != "others":
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
for key, value in args["doc_metadata"].items():
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
# set to MetaDataConfig
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
# get dataset info
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)

View File

@ -21,7 +21,7 @@ from core.app.entities.app_invoke_entities import InvokeFrom
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
from fields.conversation_fields import message_file_fields
from fields.message_fields import agent_thought_fields
from fields.message_fields import agent_thought_fields, feedback_fields, retriever_resource_fields
from fields.raws import FilesContainedField
from libs import helper
from libs.helper import TimestampField, uuid_value
@ -34,27 +34,6 @@ from services.message_service import MessageService
class MessageListApi(WebApiResource):
feedback_fields = {"rating": fields.String}
retriever_resource_fields = {
"id": fields.String,
"message_id": fields.String,
"position": fields.Integer,
"dataset_id": fields.String,
"dataset_name": fields.String,
"document_id": fields.String,
"document_name": fields.String,
"data_source_type": fields.String,
"segment_id": fields.String,
"score": fields.Float,
"hit_count": fields.Integer,
"word_count": fields.Integer,
"segment_position": fields.Integer,
"index_node_hash": fields.String,
"content": fields.String,
"created_at": TimestampField,
}
message_fields = {
"id": fields.String,
"conversation_id": fields.String,
@ -91,7 +70,7 @@ class MessageListApi(WebApiResource):
try:
return MessageService.pagination_by_first_id(
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"], "desc"
app_model, end_user, args["conversation_id"], args["first_id"], args["limit"]
)
except services.errors.conversation.ConversationNotExistsError:
raise NotFound("Conversation Not Exists.")

View File

@ -329,6 +329,7 @@ class BaseAgentRunner(AppRunner):
)
if not updated_agent_thought:
raise ValueError("agent thought not found")
agent_thought = updated_agent_thought
if thought:
agent_thought.thought = thought

View File

@ -140,9 +140,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
app_config=app_config,
file_upload_config=file_extra_config,
conversation_id=conversation.id if conversation else None,
inputs=conversation.inputs
if conversation
else self._prepare_user_inputs(
inputs=self._prepare_user_inputs(
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
),
query=query,

View File

@ -384,6 +384,7 @@ class AdvancedChatAppGenerateTaskPipeline:
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
session.commit()
if node_finish_resp:
yield node_finish_resp

View File

@ -149,9 +149,7 @@ class AgentChatAppGenerator(MessageBasedAppGenerator):
model_conf=ModelConfigConverter.convert(app_config),
file_upload_config=file_extra_config,
conversation_id=conversation.id if conversation else None,
inputs=conversation.inputs
if conversation
else self._prepare_user_inputs(
inputs=self._prepare_user_inputs(
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
),
query=query,

View File

@ -8,16 +8,16 @@ from core.agent.fc_agent_runner import FunctionCallAgentRunner
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.base_app_runner import AppRunner
from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity, ModelConfigWithCredentialsEntity
from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMMode, LLMUsage
from core.model_runtime.entities.llm_entities import LLMMode
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.moderation.base import ModerationError
from extensions.ext_database import db
from models.model import App, Conversation, Message, MessageAgentThought
from models.model import App, Conversation, Message
logger = logging.getLogger(__name__)
@ -191,7 +191,8 @@ class AgentChatAppRunner(AppRunner):
# change function call strategy based on LLM model
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
assert model_schema is not None
if not model_schema:
raise ValueError("Model schema not found")
if {ModelFeature.MULTI_TOOL_CALL, ModelFeature.TOOL_CALL}.intersection(model_schema.features or []):
agent_entity.strategy = AgentEntity.Strategy.FUNCTION_CALLING
@ -247,29 +248,3 @@ class AgentChatAppRunner(AppRunner):
stream=application_generate_entity.stream,
agent=True,
)
def _get_usage_of_all_agent_thoughts(
self, model_config: ModelConfigWithCredentialsEntity, message: Message
) -> LLMUsage:
"""
Get usage of all agent thoughts
:param model_config: model config
:param message: message
:return:
"""
agent_thoughts = (
db.session.query(MessageAgentThought).filter(MessageAgentThought.message_id == message.id).all()
)
all_message_tokens = 0
all_answer_tokens = 0
for agent_thought in agent_thoughts:
all_message_tokens += agent_thought.message_tokens
all_answer_tokens += agent_thought.answer_tokens
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
return model_type_instance._calc_response_usage(
model_config.model, model_config.credentials, all_message_tokens, all_answer_tokens
)

View File

@ -141,9 +141,7 @@ class ChatAppGenerator(MessageBasedAppGenerator):
model_conf=ModelConfigConverter.convert(app_config),
file_upload_config=file_extra_config,
conversation_id=conversation.id if conversation else None,
inputs=conversation.inputs
if conversation
else self._prepare_user_inputs(
inputs=self._prepare_user_inputs(
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
),
query=query,

View File

@ -387,7 +387,6 @@ class WorkflowBasedAppRunner(AppRunner):
status=event.status,
data=event.data,
metadata=event.metadata,
node_id=event.node_id,
)
)
elif isinstance(event, ParallelBranchRunStartedEvent):

View File

@ -331,7 +331,6 @@ class QueueAgentLogEvent(AppQueueEvent):
status: str
data: Mapping[str, Any]
metadata: Optional[Mapping[str, Any]] = None
node_id: str
class QueueNodeRetryEvent(QueueNodeStartedEvent):

View File

@ -719,7 +719,6 @@ class AgentLogStreamResponse(StreamResponse):
status: str
data: Mapping[str, Any]
metadata: Optional[Mapping[str, Any]] = None
node_id: str
event: StreamEvent = StreamEvent.AGENT_LOG
data: Data

View File

@ -844,7 +844,7 @@ class WorkflowCycleManage:
if node_execution_id not in self._workflow_node_executions:
raise ValueError(f"Workflow node execution not found: {node_execution_id}")
cached_workflow_node_execution = self._workflow_node_executions[node_execution_id]
return cached_workflow_node_execution
return session.merge(cached_workflow_node_execution)
def _handle_agent_log(self, task_id: str, event: QueueAgentLogEvent) -> AgentLogStreamResponse:
"""
@ -864,6 +864,5 @@ class WorkflowCycleManage:
status=event.status,
data=event.data,
metadata=event.metadata,
node_id=event.node_id,
),
)

View File

@ -7,6 +7,7 @@ from json import JSONDecodeError
from typing import Optional
from pydantic import BaseModel, ConfigDict
from sqlalchemy import or_
from constants import HIDDEN_VALUE
from core.entities import DEFAULT_PLUGIN_ID
@ -28,6 +29,7 @@ from core.model_runtime.entities.provider_entities import (
)
from core.model_runtime.model_providers.__base.ai_model import AIModel
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
from core.plugin.entities.plugin import ModelProviderID
from extensions.ext_database import db
from models.provider import (
LoadBalancingModelConfig,
@ -190,8 +192,11 @@ class ProviderConfiguration(BaseModel):
db.session.query(Provider)
.filter(
Provider.tenant_id == self.tenant_id,
Provider.provider_name == self.provider.provider,
Provider.provider_type == ProviderType.CUSTOM.value,
or_(
Provider.provider_name == ModelProviderID(self.provider.provider).plugin_name,
Provider.provider_name == self.provider.provider,
),
)
.first()
)
@ -279,7 +284,10 @@ class ProviderConfiguration(BaseModel):
db.session.query(Provider)
.filter(
Provider.tenant_id == self.tenant_id,
Provider.provider_name == self.provider.provider,
or_(
Provider.provider_name == ModelProviderID(self.provider.provider).plugin_name,
Provider.provider_name == self.provider.provider,
),
Provider.provider_type == ProviderType.CUSTOM.value,
)
.first()

View File

@ -11,15 +11,6 @@ from configs import dify_config
SSRF_DEFAULT_MAX_RETRIES = dify_config.SSRF_DEFAULT_MAX_RETRIES
proxy_mounts = (
{
"http://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTP_URL),
"https://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTPS_URL),
}
if dify_config.SSRF_PROXY_HTTP_URL and dify_config.SSRF_PROXY_HTTPS_URL
else None
)
BACKOFF_FACTOR = 0.5
STATUS_FORCELIST = [429, 500, 502, 503, 504]
@ -50,7 +41,11 @@ def make_request(method, url, max_retries=SSRF_DEFAULT_MAX_RETRIES, **kwargs):
if dify_config.SSRF_PROXY_ALL_URL:
with httpx.Client(proxy=dify_config.SSRF_PROXY_ALL_URL) as client:
response = client.request(method=method, url=url, **kwargs)
elif proxy_mounts:
elif dify_config.SSRF_PROXY_HTTP_URL and dify_config.SSRF_PROXY_HTTPS_URL:
proxy_mounts = {
"http://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTP_URL),
"https://": httpx.HTTPTransport(proxy=dify_config.SSRF_PROXY_HTTPS_URL),
}
with httpx.Client(mounts=proxy_mounts) as client:
response = client.request(method=method, url=url, **kwargs)
else:
@ -70,8 +65,7 @@ def make_request(method, url, max_retries=SSRF_DEFAULT_MAX_RETRIES, **kwargs):
retries += 1
if retries <= max_retries:
time.sleep(BACKOFF_FACTOR * (2 ** (retries - 1)))
raise MaxRetriesExceededError(
f"Reached maximum retries ({max_retries}) for URL {url}")
raise MaxRetriesExceededError(f"Reached maximum retries ({max_retries}) for URL {url}")
def get(url, max_retries=SSRF_DEFAULT_MAX_RETRIES, **kwargs):

View File

@ -1,4 +1,4 @@
from .llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from .llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from .message_entities import (
AssistantPromptMessage,
AudioPromptMessageContent,
@ -23,6 +23,7 @@ __all__ = [
"AudioPromptMessageContent",
"DocumentPromptMessageContent",
"ImagePromptMessageContent",
"LLMMode",
"LLMResult",
"LLMResultChunk",
"LLMResultChunkDelta",

View File

@ -1,5 +1,5 @@
from decimal import Decimal
from enum import Enum
from enum import StrEnum
from typing import Optional
from pydantic import BaseModel
@ -8,7 +8,7 @@ from core.model_runtime.entities.message_entities import AssistantPromptMessage,
from core.model_runtime.entities.model_entities import ModelUsage, PriceInfo
class LLMMode(Enum):
class LLMMode(StrEnum):
"""
Enum class for large language model mode.
"""

View File

@ -3,8 +3,11 @@ from typing import Optional
from pydantic import BaseModel, ConfigDict, Field
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.defaults import PARAMETER_RULE_TEMPLATE
from core.model_runtime.entities.model_entities import (
AIModelEntity,
DefaultParameterName,
ModelType,
PriceConfig,
PriceInfo,
@ -18,6 +21,7 @@ from core.model_runtime.errors.invoke import (
InvokeRateLimitError,
InvokeServerUnavailableError,
)
from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
from core.plugin.entities.plugin_daemon import PluginDaemonInnerError, PluginModelProviderEntity
from core.plugin.manager.model import PluginModelManager
@ -144,3 +148,102 @@ class AIModel(BaseModel):
model=model,
credentials=credentials or {},
)
def get_customizable_model_schema_from_credentials(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
Get customizable model schema from credentials
:param model: model name
:param credentials: model credentials
:return: model schema
"""
return self._get_customizable_model_schema(model, credentials)
def _get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
Get customizable model schema and fill in the template
"""
schema = self.get_customizable_model_schema(model, credentials)
if not schema:
return None
# fill in the template
new_parameter_rules = []
for parameter_rule in schema.parameter_rules:
if parameter_rule.use_template:
try:
default_parameter_name = DefaultParameterName.value_of(parameter_rule.use_template)
default_parameter_rule = self._get_default_parameter_rule_variable_map(default_parameter_name)
if not parameter_rule.max and "max" in default_parameter_rule:
parameter_rule.max = default_parameter_rule["max"]
if not parameter_rule.min and "min" in default_parameter_rule:
parameter_rule.min = default_parameter_rule["min"]
if not parameter_rule.default and "default" in default_parameter_rule:
parameter_rule.default = default_parameter_rule["default"]
if not parameter_rule.precision and "precision" in default_parameter_rule:
parameter_rule.precision = default_parameter_rule["precision"]
if not parameter_rule.required and "required" in default_parameter_rule:
parameter_rule.required = default_parameter_rule["required"]
if not parameter_rule.help and "help" in default_parameter_rule:
parameter_rule.help = I18nObject(
en_US=default_parameter_rule["help"]["en_US"],
)
if (
parameter_rule.help
and not parameter_rule.help.en_US
and ("help" in default_parameter_rule and "en_US" in default_parameter_rule["help"])
):
parameter_rule.help.en_US = default_parameter_rule["help"]["en_US"]
if (
parameter_rule.help
and not parameter_rule.help.zh_Hans
and ("help" in default_parameter_rule and "zh_Hans" in default_parameter_rule["help"])
):
parameter_rule.help.zh_Hans = default_parameter_rule["help"].get(
"zh_Hans", default_parameter_rule["help"]["en_US"]
)
except ValueError:
pass
new_parameter_rules.append(parameter_rule)
schema.parameter_rules = new_parameter_rules
return schema
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
Get customizable model schema
:param model: model name
:param credentials: model credentials
:return: model schema
"""
return None
def _get_default_parameter_rule_variable_map(self, name: DefaultParameterName) -> dict:
"""
Get default parameter rule for given name
:param name: parameter name
:return: parameter rule
"""
default_parameter_rule = PARAMETER_RULE_TEMPLATE.get(name)
if not default_parameter_rule:
raise Exception(f"Invalid model parameter rule name {name}")
return default_parameter_rule
def _get_num_tokens_by_gpt2(self, text: str) -> int:
"""
Get number of tokens for given prompt messages by gpt2
Some provider models do not provide an interface for obtaining the number of tokens.
Here, the gpt2 tokenizer is used to calculate the number of tokens.
This method can be executed offline, and the gpt2 tokenizer has been cached in the project.
:param text: plain text of prompt. You need to convert the original message to plain text
:return: number of tokens
"""
return GPT2Tokenizer.get_num_tokens(text)

View File

@ -228,7 +228,7 @@ class LargeLanguageModel(AIModel):
:return: result generator
"""
callbacks = callbacks or []
prompt_message = AssistantPromptMessage(content="")
assistant_message = AssistantPromptMessage(content="")
usage = None
system_fingerprint = None
real_model = model
@ -250,7 +250,7 @@ class LargeLanguageModel(AIModel):
callbacks=callbacks,
)
prompt_message.content += chunk.delta.message.content
assistant_message.content += chunk.delta.message.content
real_model = chunk.model
if chunk.delta.usage:
usage = chunk.delta.usage
@ -265,7 +265,7 @@ class LargeLanguageModel(AIModel):
result=LLMResult(
model=real_model,
prompt_messages=prompt_messages,
message=prompt_message,
message=assistant_message,
usage=usage or LLMUsage.empty_usage(),
system_fingerprint=system_fingerprint,
),

View File

@ -1,4 +1,5 @@
- openai
- deepseek
- anthropic
- azure_openai
- google
@ -32,7 +33,6 @@
- localai
- volcengine_maas
- openai_api_compatible
- deepseek
- hunyuan
- siliconflow
- perfxcloud

View File

@ -20,6 +20,7 @@ from core.model_runtime.model_providers.__base.text_embedding_model import TextE
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.model_runtime.schema_validators.model_credential_schema_validator import ModelCredentialSchemaValidator
from core.model_runtime.schema_validators.provider_credential_schema_validator import ProviderCredentialSchemaValidator
from core.plugin.entities.plugin import ModelProviderID
from core.plugin.entities.plugin_daemon import PluginModelProviderEntity
from core.plugin.manager.asset import PluginAssetManager
from core.plugin.manager.model import PluginModelManager
@ -112,6 +113,9 @@ class ModelProviderFactory:
:param provider: provider name
:return: provider schema
"""
if "/" not in provider:
provider = str(ModelProviderID(provider))
# fetch plugin model providers
plugin_model_provider_entities = self.get_plugin_model_providers()
@ -363,4 +367,4 @@ class ModelProviderFactory:
plugin_id = "/".join(provider.split("/")[:-1])
provider_name = provider.split("/")[-1]
return plugin_id, provider_name
return str(plugin_id), provider_name

View File

@ -0,0 +1,22 @@
- claude-3-haiku@20240307
- claude-3-opus@20240229
- claude-3-sonnet@20240229
- claude-3-5-sonnet-v2@20241022
- claude-3-5-sonnet@20240620
- gemini-1.0-pro-vision-001
- gemini-1.0-pro-002
- gemini-1.5-flash-001
- gemini-1.5-flash-002
- gemini-1.5-pro-001
- gemini-1.5-pro-002
- gemini-2.0-flash-001
- gemini-2.0-flash-exp
- gemini-2.0-flash-lite-preview-02-05
- gemini-2.0-flash-thinking-exp-01-21
- gemini-2.0-flash-thinking-exp-1219
- gemini-2.0-pro-exp-02-05
- gemini-exp-1114
- gemini-exp-1121
- gemini-exp-1206
- gemini-flash-experimental
- gemini-pro-experimental

View File

@ -0,0 +1,41 @@
model: gemini-2.0-flash-001
label:
en_US: Gemini 2.0 Flash 001
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,41 @@
model: gemini-2.0-flash-lite-preview-02-05
label:
en_US: Gemini 2.0 Flash Lite Preview 0205
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 1048576
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,39 @@
model: gemini-2.0-flash-thinking-exp-01-21
label:
en_US: Gemini 2.0 Flash Thinking Exp 0121
model_type: llm
features:
- agent-thought
- vision
- document
- video
- audio
model_properties:
mode: chat
context_size: 32767
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,39 @@
model: gemini-2.0-flash-thinking-exp-1219
label:
en_US: Gemini 2.0 Flash Thinking Exp 1219
model_type: llm
features:
- agent-thought
- vision
- document
- video
- audio
model_properties:
mode: chat
context_size: 32767
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,37 @@
model: gemini-2.0-pro-exp-02-05
label:
en_US: Gemini 2.0 Pro Exp 0205
model_type: llm
features:
- agent-thought
- document
model_properties:
mode: chat
context_size: 2000000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
en_US: Top k
type: int
help:
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: max_output_tokens
use_template: max_tokens
required: true
default: 8192
min: 1
max: 8192
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,41 @@
model: gemini-exp-1114
label:
en_US: Gemini exp 1114
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 32767
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,41 @@
model: gemini-exp-1121
label:
en_US: Gemini exp 1121
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 32767
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,41 @@
model: gemini-exp-1206
label:
en_US: Gemini exp 1206
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
- document
- video
- audio
model_properties:
mode: chat
context_size: 2097152
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_output_tokens
use_template: max_tokens
default: 8192
min: 1
max: 8192
- name: json_schema
use_template: json_schema
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,66 @@
model: glm-4-air-0111
label:
en_US: glm-4-air-0111
model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
context_size: 131072
parameter_rules:
- name: temperature
use_template: temperature
default: 0.95
min: 0.0
max: 1.0
help:
zh_Hans: 采样温度,控制输出的随机性,必须为正数取值范围是:(0.0,1.0],不能等于 0,默认值为 0.95 值越大,会使输出更随机,更具创造性;值越小,输出会更加稳定或确定建议您根据应用场景调整 top_p 或 temperature 参数,但不要同时调整两个参数。
en_US: Sampling temperature, controls the randomness of the output, must be a positive number. The value range is (0.0,1.0], which cannot be equal to 0. The default value is 0.95. The larger the value, the more random and creative the output will be; the smaller the value, The output will be more stable or certain. It is recommended that you adjust the top_p or temperature parameters according to the application scenario, but do not adjust both parameters at the same time.
- name: top_p
use_template: top_p
default: 0.7
help:
zh_Hans: 用温度取样的另一种方法,称为核取样取值范围是:(0.0, 1.0) 开区间,不能等于 0 或 1默认值为 0.7 模型考虑具有 top_p 概率质量tokens的结果例如0.1 意味着模型解码器只考虑从前 10% 的概率的候选集中取 tokens 建议您根据应用场景调整 top_p 或 temperature 参数,但不要同时调整两个参数。
en_US: Another method of temperature sampling is called kernel sampling. The value range is (0.0, 1.0) open interval, which cannot be equal to 0 or 1. The default value is 0.7. The model considers the results with top_p probability mass tokens. For example 0.1 means The model decoder only considers tokens from the candidate set with the top 10% probability. It is recommended that you adjust the top_p or temperature parameters according to the application scenario, but do not adjust both parameters at the same time.
- name: do_sample
label:
zh_Hans: 采样策略
en_US: Sampling strategy
type: boolean
help:
zh_Hans: do_sample 为 true 时启用采样策略do_sample 为 false 时采样策略 temperature、top_p 将不生效。默认值为 true。
en_US: When `do_sample` is set to true, the sampling strategy is enabled. When `do_sample` is set to false, the sampling strategies such as `temperature` and `top_p` will not take effect. The default value is true.
default: true
- name: max_tokens
use_template: max_tokens
default: 1024
min: 1
max: 4095
- name: web_search
type: boolean
label:
zh_Hans: 联网搜索
en_US: Web Search
default: false
help:
zh_Hans: 模型内置了互联网搜索服务,该参数控制模型在生成文本时是否参考使用互联网搜索结果。启用互联网搜索,模型会将搜索结果作为文本生成过程中的参考信息,但模型会基于其内部逻辑“自行判断”是否使用互联网搜索结果。
en_US: The model has a built-in Internet search service. This parameter controls whether the model refers to Internet search results when generating text. When Internet search is enabled, the model will use the search results as reference information in the text generation process, but the model will "judge" whether to use Internet search results based on its internal logic.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0.0005'
output: '0.0005'
unit: '0.001'
currency: RMB

View File

@ -159,7 +159,7 @@ class GenericProviderID:
if re.match(r"^[a-z0-9_-]+$", value):
value = f"langgenius/{value}/{value}"
else:
raise ValueError("Invalid plugin id")
raise ValueError(f"Invalid plugin id {value}")
self.organization, self.plugin_name, self.provider_name = value.split("/")
self.is_hardcoded = is_hardcoded
@ -169,6 +169,21 @@ class GenericProviderID:
return f"{self.organization}/{self.plugin_name}"
class ModelProviderID(GenericProviderID):
def __init__(self, value: str, is_hardcoded: bool = False) -> None:
super().__init__(value, is_hardcoded)
if self.organization == "langgenius" and self.provider_name == "google":
self.plugin_name = "gemini"
class ToolProviderID(GenericProviderID):
def __init__(self, value: str, is_hardcoded: bool = False) -> None:
super().__init__(value, is_hardcoded)
if self.organization == "langgenius":
if self.provider_name in ["jina", "siliconflow", "stepfun"]:
self.plugin_name = f"{self.provider_name}_tool"
class PluginDependency(BaseModel):
class Type(enum.StrEnum):
Github = PluginInstallationSource.Github.value
@ -197,3 +212,9 @@ class PluginDependency(BaseModel):
type: Type
value: Github | Marketplace | Package
current_identifier: Optional[str] = None
class MissingPluginDependency(BaseModel):
plugin_unique_identifier: str
current_identifier: Optional[str] = None

View File

@ -3,6 +3,7 @@ from collections.abc import Sequence
from core.plugin.entities.bundle import PluginBundleDependency
from core.plugin.entities.plugin import (
GenericProviderID,
MissingPluginDependency,
PluginDeclaration,
PluginEntity,
PluginInstallation,
@ -175,14 +176,16 @@ class PluginInstallationManager(BasePluginManager):
headers={"Content-Type": "application/json"},
)
def fetch_missing_dependencies(self, tenant_id: str, plugin_unique_identifiers: list[str]) -> list[str]:
def fetch_missing_dependencies(
self, tenant_id: str, plugin_unique_identifiers: list[str]
) -> list[MissingPluginDependency]:
"""
Fetch missing dependencies
"""
return self._request_with_plugin_daemon_response(
"POST",
f"plugin/{tenant_id}/management/installation/missing",
list[str],
list[MissingPluginDependency],
data={"plugin_unique_identifiers": plugin_unique_identifiers},
headers={"Content-Type": "application/json"},
)

View File

@ -3,7 +3,7 @@ from typing import Any, Optional
from pydantic import BaseModel
from core.plugin.entities.plugin import GenericProviderID
from core.plugin.entities.plugin import GenericProviderID, ToolProviderID
from core.plugin.entities.plugin_daemon import PluginBasicBooleanResponse, PluginToolProviderEntity
from core.plugin.manager.base import BasePluginManager
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter
@ -45,7 +45,7 @@ class PluginToolManager(BasePluginManager):
"""
Fetch tool provider for the given tenant and plugin.
"""
tool_provider_id = GenericProviderID(provider)
tool_provider_id = ToolProviderID(provider)
def transformer(json_response: dict[str, Any]) -> dict:
data = json_response.get("data")

View File

@ -30,6 +30,7 @@ from core.model_runtime.entities.provider_entities import (
ProviderEntity,
)
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
from core.plugin.entities.plugin import ModelProviderID
from extensions import ext_hosting_provider
from extensions.ext_database import db
from extensions.ext_redis import redis_client
@ -99,6 +100,13 @@ class ProviderManager:
tenant_id, provider_name_to_provider_records_dict
)
# append providers with langgenius/openai/openai
for provider_name in list(provider_name_to_provider_records_dict.keys()):
provider_id = ModelProviderID(provider_name)
provider_name_to_provider_records_dict[str(provider_id)] = provider_name_to_provider_records_dict[
provider_name
]
# Get all provider model records of the workspace
provider_name_to_provider_model_records_dict = self._get_all_provider_models(tenant_id)
@ -191,7 +199,7 @@ class ProviderManager:
model_settings=model_settings,
)
provider_configurations[provider_name] = provider_configuration
provider_configurations[str(ModelProviderID(provider_name))] = provider_configuration
# Return the encapsulated object
return provider_configurations
@ -453,11 +461,9 @@ class ProviderManager:
provider_name_to_provider_load_balancing_model_configs_dict = defaultdict(list)
for provider_load_balancing_config in provider_load_balancing_configs:
(
provider_name_to_provider_load_balancing_model_configs_dict[
provider_load_balancing_config.provider_name
].append(provider_load_balancing_config)
)
provider_name_to_provider_load_balancing_model_configs_dict[
provider_load_balancing_config.provider_name
].append(provider_load_balancing_config)
return provider_name_to_provider_load_balancing_model_configs_dict

View File

@ -1,8 +1,12 @@
import threading
import concurrent.futures
import json
from concurrent.futures import ThreadPoolExecutor
from typing import Optional
from flask import Flask, current_app
from sqlalchemy.orm import load_only
from configs import dify_config
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
from core.rag.datasource.keyword.keyword_factory import Keyword
from core.rag.datasource.vdb.vector_factory import Vector
@ -26,6 +30,7 @@ default_retrieval_model = {
class RetrievalService:
# Cache precompiled regular expressions to avoid repeated compilation
@classmethod
def retrieve(
cls,
@ -40,74 +45,62 @@ class RetrievalService:
):
if not query:
return []
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
return []
dataset = cls._get_dataset(dataset_id)
if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
return []
all_documents: list[Document] = []
threads: list[threading.Thread] = []
exceptions: list[str] = []
# retrieval_model source with keyword
if retrieval_method == "keyword_search":
keyword_thread = threading.Thread(
target=RetrievalService.keyword_search,
kwargs={
"flask_app": current_app._get_current_object(), # type: ignore
"dataset_id": dataset_id,
"query": query,
"top_k": top_k,
"all_documents": all_documents,
"exceptions": exceptions,
},
)
threads.append(keyword_thread)
keyword_thread.start()
# retrieval_model source with semantic
if RetrievalMethod.is_support_semantic_search(retrieval_method):
embedding_thread = threading.Thread(
target=RetrievalService.embedding_search,
kwargs={
"flask_app": current_app._get_current_object(), # type: ignore
"dataset_id": dataset_id,
"query": query,
"top_k": top_k,
"score_threshold": score_threshold,
"reranking_model": reranking_model,
"all_documents": all_documents,
"retrieval_method": retrieval_method,
"exceptions": exceptions,
},
)
threads.append(embedding_thread)
embedding_thread.start()
# retrieval source with full text
if RetrievalMethod.is_support_fulltext_search(retrieval_method):
full_text_index_thread = threading.Thread(
target=RetrievalService.full_text_index_search,
kwargs={
"flask_app": current_app._get_current_object(), # type: ignore
"dataset_id": dataset_id,
"query": query,
"retrieval_method": retrieval_method,
"score_threshold": score_threshold,
"top_k": top_k,
"reranking_model": reranking_model,
"all_documents": all_documents,
"exceptions": exceptions,
},
)
threads.append(full_text_index_thread)
full_text_index_thread.start()
for thread in threads:
thread.join()
# Optimize multithreading with thread pools
with ThreadPoolExecutor(max_workers=dify_config.RETRIEVAL_SERVICE_EXECUTORS) as executor: # type: ignore
futures = []
if retrieval_method == "keyword_search":
futures.append(
executor.submit(
cls.keyword_search,
flask_app=current_app._get_current_object(), # type: ignore
dataset_id=dataset_id,
query=query,
top_k=top_k,
all_documents=all_documents,
exceptions=exceptions,
)
)
if RetrievalMethod.is_support_semantic_search(retrieval_method):
futures.append(
executor.submit(
cls.embedding_search,
flask_app=current_app._get_current_object(), # type: ignore
dataset_id=dataset_id,
query=query,
top_k=top_k,
score_threshold=score_threshold,
reranking_model=reranking_model,
all_documents=all_documents,
retrieval_method=retrieval_method,
exceptions=exceptions,
)
)
if RetrievalMethod.is_support_fulltext_search(retrieval_method):
futures.append(
executor.submit(
cls.full_text_index_search,
flask_app=current_app._get_current_object(), # type: ignore
dataset_id=dataset_id,
query=query,
top_k=top_k,
score_threshold=score_threshold,
reranking_model=reranking_model,
all_documents=all_documents,
retrieval_method=retrieval_method,
exceptions=exceptions,
)
)
concurrent.futures.wait(futures, timeout=30, return_when=concurrent.futures.ALL_COMPLETED)
if exceptions:
exception_message = ";\n".join(exceptions)
raise ValueError(exception_message)
raise ValueError(";\n".join(exceptions))
if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
data_post_processor = DataPostProcessor(
@ -132,18 +125,21 @@ class RetrievalService:
)
return all_documents
@classmethod
def _get_dataset(cls, dataset_id: str) -> Optional[Dataset]:
return db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
@classmethod
def keyword_search(
cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
):
with flask_app.app_context():
try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
dataset = cls._get_dataset(dataset_id)
if not dataset:
raise ValueError("dataset not found")
keyword = Keyword(dataset=dataset)
documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
all_documents.extend(documents)
except Exception as e:
@ -164,14 +160,13 @@ class RetrievalService:
):
with flask_app.app_context():
try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
dataset = cls._get_dataset(dataset_id)
if not dataset:
raise ValueError("dataset not found")
vector = Vector(dataset=dataset)
documents = vector.search_by_vector(
cls.escape_query_for_search(query),
query,
search_type="similarity_score_threshold",
top_k=top_k,
score_threshold=score_threshold,
@ -186,7 +181,7 @@ class RetrievalService:
and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
):
data_post_processor = DataPostProcessor(
str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL.value), reranking_model, None, False
)
all_documents.extend(
data_post_processor.invoke(
@ -216,13 +211,11 @@ class RetrievalService:
):
with flask_app.app_context():
try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
dataset = cls._get_dataset(dataset_id)
if not dataset:
raise ValueError("dataset not found")
vector_processor = Vector(
dataset=dataset,
)
vector_processor = Vector(dataset=dataset)
documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
if documents:
@ -233,7 +226,7 @@ class RetrievalService:
and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
):
data_post_processor = DataPostProcessor(
str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL.value), reranking_model, None, False
)
all_documents.extend(
data_post_processor.invoke(
@ -250,66 +243,106 @@ class RetrievalService:
@staticmethod
def escape_query_for_search(query: str) -> str:
return query.replace('"', '\\"')
return json.dumps(query).strip('"')
@classmethod
def format_retrieval_documents(cls, documents: list[Document]) -> list[RetrievalSegments]:
"""Format retrieval documents with optimized batch processing"""
if not documents:
return []
try:
# Collect document IDs
document_ids = {doc.metadata.get("document_id") for doc in documents if "document_id" in doc.metadata}
if not document_ids:
return []
# Batch query dataset documents
dataset_documents = {
doc.id: doc
for doc in db.session.query(DatasetDocument)
.filter(DatasetDocument.id.in_(document_ids))
.options(load_only(DatasetDocument.id, DatasetDocument.doc_form, DatasetDocument.dataset_id))
.all()
}
records = []
include_segment_ids = set()
segment_child_map = {}
# Process documents
for document in documents:
document_id = document.metadata.get("document_id")
if document_id not in dataset_documents:
continue
dataset_document = dataset_documents[document_id]
@staticmethod
def format_retrieval_documents(documents: list[Document]) -> list[RetrievalSegments]:
records = []
include_segment_ids = []
segment_child_map = {}
for document in documents:
document_id = document.metadata.get("document_id")
dataset_document = db.session.query(DatasetDocument).filter(DatasetDocument.id == document_id).first()
if dataset_document:
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
# Handle parent-child documents
child_index_node_id = document.metadata.get("doc_id")
result = (
db.session.query(ChildChunk, DocumentSegment)
.join(DocumentSegment, ChildChunk.segment_id == DocumentSegment.id)
child_chunk = (
db.session.query(ChildChunk).filter(ChildChunk.index_node_id == child_index_node_id).first()
)
if not child_chunk:
continue
segment = (
db.session.query(DocumentSegment)
.filter(
ChildChunk.index_node_id == child_index_node_id,
DocumentSegment.dataset_id == dataset_document.dataset_id,
DocumentSegment.enabled == True,
DocumentSegment.status == "completed",
DocumentSegment.id == child_chunk.segment_id,
)
.options(
load_only(
DocumentSegment.id,
DocumentSegment.content,
DocumentSegment.answer,
)
)
.first()
)
if result:
child_chunk, segment = result
if not segment:
continue
if segment.id not in include_segment_ids:
include_segment_ids.append(segment.id)
child_chunk_detail = {
"id": child_chunk.id,
"content": child_chunk.content,
"position": child_chunk.position,
"score": document.metadata.get("score", 0.0),
}
map_detail = {
"max_score": document.metadata.get("score", 0.0),
"child_chunks": [child_chunk_detail],
}
segment_child_map[segment.id] = map_detail
record = {
"segment": segment,
}
records.append(record)
else:
child_chunk_detail = {
"id": child_chunk.id,
"content": child_chunk.content,
"position": child_chunk.position,
"score": document.metadata.get("score", 0.0),
}
segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
segment_child_map[segment.id]["max_score"] = max(
segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
)
else:
if not segment:
continue
if segment.id not in include_segment_ids:
include_segment_ids.add(segment.id)
child_chunk_detail = {
"id": child_chunk.id,
"content": child_chunk.content,
"position": child_chunk.position,
"score": document.metadata.get("score", 0.0),
}
map_detail = {
"max_score": document.metadata.get("score", 0.0),
"child_chunks": [child_chunk_detail],
}
segment_child_map[segment.id] = map_detail
record = {
"segment": segment,
}
records.append(record)
else:
child_chunk_detail = {
"id": child_chunk.id,
"content": child_chunk.content,
"position": child_chunk.position,
"score": document.metadata.get("score", 0.0),
}
segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
segment_child_map[segment.id]["max_score"] = max(
segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
)
else:
index_node_id = document.metadata["doc_id"]
# Handle normal documents
index_node_id = document.metadata.get("doc_id")
if not index_node_id:
continue
segment = (
db.session.query(DocumentSegment)
@ -324,16 +357,21 @@ class RetrievalService:
if not segment:
continue
include_segment_ids.append(segment.id)
include_segment_ids.add(segment.id)
record = {
"segment": segment,
"score": document.metadata.get("score", None),
"score": document.metadata.get("score"), # type: ignore
}
records.append(record)
# Add child chunks information to records
for record in records:
if record["segment"].id in segment_child_map:
record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks", None)
record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks") # type: ignore
record["score"] = segment_child_map[record["segment"].id]["max_score"]
return [RetrievalSegments(**record) for record in records]
return [RetrievalSegments(**record) for record in records]
except Exception as e:
db.session.rollback()
raise e

View File

@ -9,6 +9,7 @@ from sqlalchemy import text as sql_text
from sqlalchemy.orm import Session, declarative_base
from configs import dify_config
from core.rag.datasource.vdb.field import Field
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
@ -54,14 +55,13 @@ class TiDBVector(BaseVector):
return Table(
self._collection_name,
self._orm_base.metadata,
Column("id", String(36), primary_key=True, nullable=False),
Column(Field.PRIMARY_KEY.value, String(36), primary_key=True, nullable=False),
Column(
"vector",
Field.VECTOR.value,
VectorType(dim),
nullable=False,
comment="" if self._distance_func is None else f"hnsw(distance={self._distance_func})",
),
Column("text", TEXT, nullable=False),
Column(Field.TEXT_KEY.value, TEXT, nullable=False),
Column("meta", JSON, nullable=False),
Column("create_time", DateTime, server_default=sqlalchemy.text("CURRENT_TIMESTAMP")),
Column(
@ -96,6 +96,7 @@ class TiDBVector(BaseVector):
collection_exist_cache_key = "vector_indexing_{}".format(self._collection_name)
if redis_client.get(collection_exist_cache_key):
return
tidb_dist_func = self._get_distance_func()
with Session(self._engine) as session:
session.begin()
create_statement = sql_text(f"""
@ -104,14 +105,14 @@ class TiDBVector(BaseVector):
text TEXT NOT NULL,
meta JSON NOT NULL,
doc_id VARCHAR(64) AS (JSON_UNQUOTE(JSON_EXTRACT(meta, '$.doc_id'))) STORED,
KEY (doc_id),
vector VECTOR<FLOAT>({dimension}) NOT NULL COMMENT "hnsw(distance={self._distance_func})",
vector VECTOR<FLOAT>({dimension}) NOT NULL,
create_time DATETIME DEFAULT CURRENT_TIMESTAMP,
update_time DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
update_time DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
KEY (doc_id),
VECTOR INDEX idx_vector (({tidb_dist_func}(vector))) USING HNSW
);
""")
session.execute(create_statement)
# tidb vector not support 'CREATE/ADD INDEX' now
session.commit()
redis_client.set(collection_exist_cache_key, 1, ex=3600)
@ -194,23 +195,30 @@ class TiDBVector(BaseVector):
)
docs = []
if self._distance_func == "l2":
tidb_func = "Vec_l2_distance"
elif self._distance_func == "cosine":
tidb_func = "Vec_Cosine_distance"
else:
tidb_func = "Vec_Cosine_distance"
tidb_dist_func = self._get_distance_func()
with Session(self._engine) as session:
select_statement = sql_text(
f"""SELECT meta, text, distance FROM (
SELECT meta, text, {tidb_func}(vector, "{query_vector_str}") as distance
FROM {self._collection_name}
ORDER BY distance
LIMIT {top_k}
) t WHERE distance < {distance};"""
select_statement = sql_text(f"""
SELECT meta, text, distance
FROM (
SELECT
meta,
text,
{tidb_dist_func}(vector, :query_vector_str) AS distance
FROM {self._collection_name}
ORDER BY distance ASC
LIMIT :top_k
) t
WHERE distance <= :distance
""")
res = session.execute(
select_statement,
params={
"query_vector_str": query_vector_str,
"distance": distance,
"top_k": top_k,
},
)
res = session.execute(select_statement)
results = [(row[0], row[1], row[2]) for row in res]
for meta, text, distance in results:
metadata = json.loads(meta)
@ -227,6 +235,16 @@ class TiDBVector(BaseVector):
session.execute(sql_text(f"""DROP TABLE IF EXISTS {self._collection_name};"""))
session.commit()
def _get_distance_func(self) -> str:
match self._distance_func:
case "l2":
tidb_dist_func = "VEC_L2_DISTANCE"
case "cosine":
tidb_dist_func = "VEC_COSINE_DISTANCE"
case _:
tidb_dist_func = "VEC_COSINE_DISTANCE"
return tidb_dist_func
class TiDBVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> TiDBVector:

View File

@ -1,6 +1,6 @@
import json
import time
from typing import cast
from typing import Any, cast
import requests
@ -14,48 +14,47 @@ class FirecrawlApp:
if self.api_key is None and self.base_url == "https://api.firecrawl.dev":
raise ValueError("No API key provided")
def scrape_url(self, url, params=None) -> dict:
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {self.api_key}"}
json_data = {"url": url}
def scrape_url(self, url, params=None) -> dict[str, Any]:
# Documentation: https://docs.firecrawl.dev/api-reference/endpoint/scrape
headers = self._prepare_headers()
json_data = {
"url": url,
"formats": ["markdown"],
"onlyMainContent": True,
"timeout": 30000,
}
if params:
json_data.update(params)
response = requests.post(f"{self.base_url}/v0/scrape", headers=headers, json=json_data)
response = self._post_request(f"{self.base_url}/v1/scrape", json_data, headers)
if response.status_code == 200:
response_data = response.json()
if response_data["success"] == True:
data = response_data["data"]
return {
"title": data.get("metadata").get("title"),
"description": data.get("metadata").get("description"),
"source_url": data.get("metadata").get("sourceURL"),
"markdown": data.get("markdown"),
}
else:
raise Exception(f"Failed to scrape URL. Error: {response_data['error']}")
elif response.status_code in {402, 409, 500}:
error_message = response.json().get("error", "Unknown error occurred")
raise Exception(f"Failed to scrape URL. Status code: {response.status_code}. Error: {error_message}")
data = response_data["data"]
return self._extract_common_fields(data)
elif response.status_code in {402, 409, 500, 429, 408}:
self._handle_error(response, "scrape URL")
return {} # Avoid additional exception after handling error
else:
raise Exception(f"Failed to scrape URL. Status code: {response.status_code}")
def crawl_url(self, url, params=None) -> str:
# Documentation: https://docs.firecrawl.dev/api-reference/endpoint/crawl-post
headers = self._prepare_headers()
json_data = {"url": url}
if params:
json_data.update(params)
response = self._post_request(f"{self.base_url}/v0/crawl", json_data, headers)
response = self._post_request(f"{self.base_url}/v1/crawl", json_data, headers)
if response.status_code == 200:
job_id = response.json().get("jobId")
# There's also another two fields in the response: "success" (bool) and "url" (str)
job_id = response.json().get("id")
return cast(str, job_id)
else:
self._handle_error(response, "start crawl job")
# FIXME: unreachable code for mypy
return "" # unreachable
def check_crawl_status(self, job_id) -> dict:
def check_crawl_status(self, job_id) -> dict[str, Any]:
headers = self._prepare_headers()
response = self._get_request(f"{self.base_url}/v0/crawl/status/{job_id}", headers)
response = self._get_request(f"{self.base_url}/v1/crawl/{job_id}", headers)
if response.status_code == 200:
crawl_status_response = response.json()
if crawl_status_response.get("status") == "completed":
@ -66,42 +65,48 @@ class FirecrawlApp:
url_data_list = []
for item in data:
if isinstance(item, dict) and "metadata" in item and "markdown" in item:
url_data = {
"title": item.get("metadata", {}).get("title"),
"description": item.get("metadata", {}).get("description"),
"source_url": item.get("metadata", {}).get("sourceURL"),
"markdown": item.get("markdown"),
}
url_data = self._extract_common_fields(item)
url_data_list.append(url_data)
if url_data_list:
file_key = "website_files/" + job_id + ".txt"
if storage.exists(file_key):
storage.delete(file_key)
storage.save(file_key, json.dumps(url_data_list).encode("utf-8"))
return {
"status": "completed",
"total": crawl_status_response.get("total"),
"current": crawl_status_response.get("current"),
"data": url_data_list,
}
try:
if storage.exists(file_key):
storage.delete(file_key)
storage.save(file_key, json.dumps(url_data_list).encode("utf-8"))
except Exception as e:
raise Exception(f"Error saving crawl data: {e}")
return self._format_crawl_status_response("completed", crawl_status_response, url_data_list)
else:
return {
"status": crawl_status_response.get("status"),
"total": crawl_status_response.get("total"),
"current": crawl_status_response.get("current"),
"data": [],
}
return self._format_crawl_status_response(
crawl_status_response.get("status"), crawl_status_response, []
)
else:
self._handle_error(response, "check crawl status")
# FIXME: unreachable code for mypy
return {} # unreachable
def _prepare_headers(self):
def _format_crawl_status_response(
self, status: str, crawl_status_response: dict[str, Any], url_data_list: list[dict[str, Any]]
) -> dict[str, Any]:
return {
"status": status,
"total": crawl_status_response.get("total"),
"current": crawl_status_response.get("completed"),
"data": url_data_list,
}
def _extract_common_fields(self, item: dict[str, Any]) -> dict[str, Any]:
return {
"title": item.get("metadata", {}).get("title"),
"description": item.get("metadata", {}).get("description"),
"source_url": item.get("metadata", {}).get("sourceURL"),
"markdown": item.get("markdown"),
}
def _prepare_headers(self) -> dict[str, Any]:
return {"Content-Type": "application/json", "Authorization": f"Bearer {self.api_key}"}
def _post_request(self, url, data, headers, retries=3, backoff_factor=0.5):
def _post_request(self, url, data, headers, retries=3, backoff_factor=0.5) -> requests.Response:
for attempt in range(retries):
response = requests.post(url, headers=headers, json=data)
if response.status_code == 502:
@ -110,7 +115,7 @@ class FirecrawlApp:
return response
return response
def _get_request(self, url, headers, retries=3, backoff_factor=0.5):
def _get_request(self, url, headers, retries=3, backoff_factor=0.5) -> requests.Response:
for attempt in range(retries):
response = requests.get(url, headers=headers)
if response.status_code == 502:
@ -119,6 +124,6 @@ class FirecrawlApp:
return response
return response
def _handle_error(self, response, action):
def _handle_error(self, response, action) -> None:
error_message = response.json().get("error", "Unknown error occurred")
raise Exception(f"Failed to {action}. Status code: {response.status_code}. Error: {error_message}")

View File

@ -13,9 +13,10 @@ class FirecrawlWebExtractor(BaseExtractor):
api_key: The API key for Firecrawl.
base_url: The base URL for the Firecrawl API. Defaults to 'https://api.firecrawl.dev'.
mode: The mode of operation. Defaults to 'scrape'. Options are 'crawl', 'scrape' and 'crawl_return_urls'.
only_main_content: Only return the main content of the page excluding headers, navs, footers, etc.
"""
def __init__(self, url: str, job_id: str, tenant_id: str, mode: str = "crawl", only_main_content: bool = False):
def __init__(self, url: str, job_id: str, tenant_id: str, mode: str = "crawl", only_main_content: bool = True):
"""Initialize with url, api_key, base_url and mode."""
self._url = url
self.job_id = job_id

View File

@ -47,6 +47,8 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
embedding_model_instance=kwargs.get("embedding_model_instance"),
)
for document in documents:
if kwargs.get("preview") and len(all_documents) >= 10:
return all_documents
# document clean
document_text = CleanProcessor.clean(document.page_content, process_rule)
document.page_content = document_text

View File

@ -125,7 +125,7 @@ class ToolInvokeMessage(BaseModel):
class VariableMessage(BaseModel):
variable_name: str = Field(..., description="The name of the variable")
variable_value: str = Field(..., description="The value of the variable")
variable_value: Any = Field(..., description="The value of the variable")
stream: bool = Field(default=False, description="Whether the variable is streamed")
@model_validator(mode="before")

View File

@ -160,8 +160,8 @@ class ToolManager:
"""
get the tool runtime
:param provider_type: the type of the provider
:param provider_name: the name of the provider
:param provider_type: the type of the provider
:param provider_name: the name of the provider
:param tool_name: the name of the tool
:return: the tool

View File

@ -3,11 +3,13 @@ from typing import Any
from pydantic import BaseModel, Field
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.entities.context_entities import DocumentContext
from core.rag.models.document import Document as RetrievalDocument
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from core.tools.utils.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
from extensions.ext_database import db
from models.dataset import Dataset, Document, DocumentSegment
from models.dataset import Dataset
from models.dataset import Document as DatasetDocument
from services.external_knowledge_service import ExternalDatasetService
default_retrieval_model = {
@ -54,7 +56,6 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
if not dataset:
return ""
for hit_callback in self.hit_callbacks:
hit_callback.on_query(query, dataset.id)
if dataset.provider == "external":
@ -125,7 +126,6 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
)
else:
documents = []
for hit_callback in self.hit_callbacks:
hit_callback.on_tool_end(documents)
document_score_list = {}
@ -134,50 +134,46 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
if item.metadata is not None and item.metadata.get("score"):
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
document_context_list = []
index_node_ids = [document.metadata["doc_id"] for document in documents]
segments = DocumentSegment.query.filter(
DocumentSegment.dataset_id == self.dataset_id,
DocumentSegment.completed_at.isnot(None),
DocumentSegment.status == "completed",
DocumentSegment.enabled == True,
DocumentSegment.index_node_id.in_(index_node_ids),
).all()
if segments:
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
sorted_segments = sorted(
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
)
for segment in sorted_segments:
records = RetrievalService.format_retrieval_documents(documents)
if records:
for record in records:
segment = record.segment
if segment.answer:
document_context_list.append(
f"question:{segment.get_sign_content()} answer:{segment.answer}"
DocumentContext(
content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
score=record.score,
)
)
else:
document_context_list.append(segment.get_sign_content())
document_context_list.append(
DocumentContext(
content=segment.get_sign_content(),
score=record.score,
)
)
retrieval_resource_list = []
if self.return_resource:
context_list = []
resource_number = 1
for segment in sorted_segments:
document_segment = Document.query.filter(
Document.id == segment.document_id,
Document.enabled == True,
Document.archived == False,
for record in records:
segment = record.segment
dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
document = DatasetDocument.query.filter(
DatasetDocument.id == segment.document_id,
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).first()
if not document_segment:
continue
if dataset and document_segment:
if dataset and document:
source = {
"position": resource_number,
"dataset_id": dataset.id,
"dataset_name": dataset.name,
"document_id": document_segment.id,
"document_name": document_segment.name,
"data_source_type": document_segment.data_source_type,
"document_id": document.id, # type: ignore
"document_name": document.name, # type: ignore
"data_source_type": document.data_source_type, # type: ignore
"segment_id": segment.id,
"retriever_from": self.retriever_from,
"score": document_score_list.get(segment.index_node_id, None),
"score": record.score or 0.0,
}
if self.retriever_from == "dev":
source["hit_count"] = segment.hit_count
source["word_count"] = segment.word_count
@ -187,10 +183,19 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
else:
source["content"] = segment.content
context_list.append(source)
resource_number += 1
retrieval_resource_list.append(source)
for hit_callback in self.hit_callbacks:
hit_callback.return_retriever_resource_info(context_list)
return str("\n".join(document_context_list))
if self.return_resource and retrieval_resource_list:
retrieval_resource_list = sorted(
retrieval_resource_list,
key=lambda x: x.get("score") or 0.0,
reverse=True,
)
for position, item in enumerate(retrieval_resource_list, start=1): # type: ignore
item["position"] = position # type: ignore
for hit_callback in self.hit_callbacks:
hit_callback.return_retriever_resource_info(retrieval_resource_list)
if document_context_list:
document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
return str("\n".join([document_context.content for document_context in document_context_list]))
return ""

View File

@ -223,14 +223,14 @@ class WorkflowTool(Tool):
if isinstance(value, list):
for item in value:
if isinstance(item, dict) and item.get("dify_model_identity") == FILE_MODEL_IDENTITY:
item["tool_file_id"] = item.get("related_id")
item = self._update_file_mapping(item)
file = build_from_mapping(
mapping=item,
tenant_id=str(cast(ToolRuntime, self.runtime).tenant_id),
)
files.append(file)
elif isinstance(value, dict) and value.get("dify_model_identity") == FILE_MODEL_IDENTITY:
value["tool_file_id"] = value.get("related_id")
value = self._update_file_mapping(value)
file = build_from_mapping(
mapping=value,
tenant_id=str(cast(ToolRuntime, self.runtime).tenant_id),
@ -240,3 +240,11 @@ class WorkflowTool(Tool):
result[key] = value
return result, files
def _update_file_mapping(self, file_dict: dict) -> dict:
transfer_method = FileTransferMethod.value_of(file_dict.get("transfer_method"))
if transfer_method == FileTransferMethod.TOOL_FILE:
file_dict["tool_file_id"] = file_dict.get("related_id")
elif transfer_method == FileTransferMethod.LOCAL_FILE:
file_dict["upload_file_id"] = file_dict.get("related_id")
return file_dict

View File

@ -207,7 +207,6 @@ class AgentLogEvent(BaseAgentEvent):
status: str = Field(..., description="status")
data: Mapping[str, Any] = Field(..., description="data")
metadata: Optional[Mapping[str, Any]] = Field(default=None, description="metadata")
node_id: str = Field(..., description="agent node id")
InNodeEvent = BaseNodeEvent | BaseParallelBranchEvent | BaseIterationEvent | BaseAgentEvent

View File

@ -590,6 +590,8 @@ class Graph(BaseModel):
start_node_id=node_id,
routes_node_ids=routes_node_ids,
)
# Exclude conditional branch nodes
and all(edge.run_condition is None for edge in reverse_edge_mapping.get(node_id, []))
):
if node_id not in merge_branch_node_ids:
merge_branch_node_ids[node_id] = []

View File

@ -665,7 +665,7 @@ class GraphEngine:
retries += 1
route_node_state.node_run_result = run_result
yield NodeRunRetryEvent(
id=node_instance.id,
id=str(uuid.uuid4()),
node_id=node_instance.node_id,
node_type=node_instance.node_type,
node_data=node_instance.node_data,
@ -680,7 +680,7 @@ class GraphEngine:
start_at=retry_start_at,
)
time.sleep(retry_interval)
continue
break
route_node_state.set_finished(run_result=run_result)
if run_result.status == WorkflowNodeExecutionStatus.FAILED:

View File

@ -8,12 +8,12 @@ from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.plugin.manager.exc import PluginDaemonClientSideError
from core.plugin.manager.plugin import PluginInstallationManager
from core.tools.entities.tool_entities import ToolParameter, ToolProviderType
from core.tools.entities.tool_entities import ToolProviderType
from core.tools.tool_manager import ToolManager
from core.workflow.entities.node_entities import NodeRunResult
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.enums import SystemVariableKey
from core.workflow.nodes.agent.entities import AgentNodeData, ParamsAutoGenerated
from core.workflow.nodes.agent.entities import AgentNodeData
from core.workflow.nodes.base.entities import BaseNodeData
from core.workflow.nodes.enums import NodeType
from core.workflow.nodes.event.event import RunCompletedEvent
@ -161,29 +161,11 @@ class AgentNode(ToolNode):
value = cast(list[dict[str, Any]], value)
tool_value = []
for tool in value:
provider_type = ToolProviderType(tool.get("type", ToolProviderType.BUILT_IN.value))
# handle the original settings
original_parameters = tool.get("parameters", {})
setting_params = tool.get("settings", {})
manual_input_params = []
# handle legacy data compatibility
if not all(isinstance(v, dict) for _, v in original_parameters.items()):
parameters = original_parameters
else:
params = {}
for key, param in original_parameters.items():
if param.get("auto", ParamsAutoGenerated.OPEN.value) == ParamsAutoGenerated.CLOSE.value:
params[key] = param.get("value", "")
manual_input_params.append(key)
else:
params[key] = None
settings = {k: v.get("value", None) for k, v in setting_params.items()}
parameters = {**params, **settings}
entity = AgentToolEntity(
provider_id=tool.get("provider_name", ""),
provider_type=provider_type,
provider_type=ToolProviderType.BUILT_IN,
tool_name=tool.get("tool_name", ""),
tool_parameters=parameters,
tool_parameters=tool.get("parameters", {}),
plugin_unique_identifier=tool.get("plugin_unique_identifier", None),
)
@ -196,27 +178,13 @@ class AgentNode(ToolNode):
tool_runtime.entity.description.llm = (
extra.get("descrption", "") or tool_runtime.entity.description.llm
)
for params in tool_runtime.entity.parameters:
params.form = (
ToolParameter.ToolParameterForm.FORM
if params.name in manual_input_params
else params.form
)
if tool_runtime.entity.parameters:
manual_input_value = {
key: value for key, value in parameters.items() if key in manual_input_params
tool_value.append(
{
**tool_runtime.entity.model_dump(mode="json"),
"runtime_parameters": tool_runtime.runtime.runtime_parameters,
}
runtime_parameters = {
**tool_runtime.runtime.runtime_parameters,
**manual_input_value,
}
tool_value.append(
{
**tool_runtime.entity.model_dump(mode="json"),
"runtime_parameters": runtime_parameters,
"provider_type": provider_type.value,
}
)
)
value = tool_value
if parameter.type == "model-selector":
value = cast(dict[str, Any], value)

View File

@ -1,4 +1,3 @@
from enum import Enum
from typing import Any, Literal, Union
from pydantic import BaseModel
@ -17,8 +16,3 @@ class AgentNodeData(BaseNodeData):
type: Literal["mixed", "variable", "constant"]
agent_parameters: dict[str, AgentInput]
class ParamsAutoGenerated(Enum):
CLOSE = 0
OPEN = 1

View File

@ -195,7 +195,7 @@ class CodeNode(BaseNode[CodeNodeData]):
if output_config.type == "object":
# check if output is object
if not isinstance(result.get(output_name), dict):
if isinstance(result.get(output_name), type(None)):
if result[output_name] is None:
transformed_result[output_name] = None
else:
raise OutputValidationError(
@ -223,7 +223,7 @@ class CodeNode(BaseNode[CodeNodeData]):
elif output_config.type == "array[number]":
# check if array of number available
if not isinstance(result[output_name], list):
if isinstance(result[output_name], type(None)):
if result[output_name] is None:
transformed_result[output_name] = None
else:
raise OutputValidationError(
@ -244,7 +244,7 @@ class CodeNode(BaseNode[CodeNodeData]):
elif output_config.type == "array[string]":
# check if array of string available
if not isinstance(result[output_name], list):
if isinstance(result[output_name], type(None)):
if result[output_name] is None:
transformed_result[output_name] = None
else:
raise OutputValidationError(
@ -265,7 +265,7 @@ class CodeNode(BaseNode[CodeNodeData]):
elif output_config.type == "array[object]":
# check if array of object available
if not isinstance(result[output_name], list):
if isinstance(result[output_name], type(None)):
if result[output_name] is None:
transformed_result[output_name] = None
else:
raise OutputValidationError(

View File

@ -107,8 +107,10 @@ def _extract_text_by_mime_type(*, file_content: bytes, mime_type: str) -> str:
return _extract_text_from_plain_text(file_content)
case "application/pdf":
return _extract_text_from_pdf(file_content)
case "application/vnd.openxmlformats-officedocument.wordprocessingml.document" | "application/msword":
case "application/msword":
return _extract_text_from_doc(file_content)
case "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
return _extract_text_from_docx(file_content)
case "text/csv":
return _extract_text_from_csv(file_content)
case "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" | "application/vnd.ms-excel":
@ -142,8 +144,10 @@ def _extract_text_by_file_extension(*, file_content: bytes, file_extension: str)
return _extract_text_from_yaml(file_content)
case ".pdf":
return _extract_text_from_pdf(file_content)
case ".doc" | ".docx":
case ".doc":
return _extract_text_from_doc(file_content)
case ".docx":
return _extract_text_from_docx(file_content)
case ".csv":
return _extract_text_from_csv(file_content)
case ".xls" | ".xlsx":
@ -203,7 +207,33 @@ def _extract_text_from_pdf(file_content: bytes) -> str:
def _extract_text_from_doc(file_content: bytes) -> str:
"""
Extract text from a DOC/DOCX file.
Extract text from a DOC file.
"""
from unstructured.partition.api import partition_via_api
if not (dify_config.UNSTRUCTURED_API_URL and dify_config.UNSTRUCTURED_API_KEY):
raise TextExtractionError("UNSTRUCTURED_API_URL and UNSTRUCTURED_API_KEY must be set")
try:
with tempfile.NamedTemporaryFile(suffix=".doc", delete=False) as temp_file:
temp_file.write(file_content)
temp_file.flush()
with open(temp_file.name, "rb") as file:
elements = partition_via_api(
file=file,
metadata_filename=temp_file.name,
api_url=dify_config.UNSTRUCTURED_API_URL,
api_key=dify_config.UNSTRUCTURED_API_KEY,
)
os.unlink(temp_file.name)
return "\n".join([getattr(element, "text", "") for element in elements])
except Exception as e:
raise TextExtractionError(f"Failed to extract text from DOC: {str(e)}") from e
def _extract_text_from_docx(file_content: bytes) -> str:
"""
Extract text from a DOCX file.
For now support only paragraph and table add more if needed
"""
try:
@ -255,13 +285,13 @@ def _extract_text_from_doc(file_content: bytes) -> str:
text.append(markdown_table)
except Exception as e:
logger.warning(f"Failed to extract table from DOC/DOCX: {e}")
logger.warning(f"Failed to extract table from DOC: {e}")
continue
return "\n".join(text)
except Exception as e:
raise TextExtractionError(f"Failed to extract text from DOC/DOCX: {str(e)}") from e
raise TextExtractionError(f"Failed to extract text from DOCX: {str(e)}") from e
def _download_file_content(file: File) -> bytes:
@ -329,14 +359,29 @@ def _extract_text_from_excel(file_content: bytes) -> str:
def _extract_text_from_ppt(file_content: bytes) -> str:
from unstructured.partition.api import partition_via_api
from unstructured.partition.ppt import partition_ppt
try:
with io.BytesIO(file_content) as file:
elements = partition_ppt(file=file)
if dify_config.UNSTRUCTURED_API_URL and dify_config.UNSTRUCTURED_API_KEY:
with tempfile.NamedTemporaryFile(suffix=".ppt", delete=False) as temp_file:
temp_file.write(file_content)
temp_file.flush()
with open(temp_file.name, "rb") as file:
elements = partition_via_api(
file=file,
metadata_filename=temp_file.name,
api_url=dify_config.UNSTRUCTURED_API_URL,
api_key=dify_config.UNSTRUCTURED_API_KEY,
)
os.unlink(temp_file.name)
else:
with io.BytesIO(file_content) as file:
elements = partition_ppt(file=file)
return "\n".join([getattr(element, "text", "") for element in elements])
except Exception as e:
raise TextExtractionError(f"Failed to extract text from PPT: {str(e)}") from e
raise TextExtractionError(f"Failed to extract text from PPTX: {str(e)}") from e
def _extract_text_from_pptx(file_content: bytes) -> str:

View File

@ -64,7 +64,7 @@ class EndStreamGeneratorRouter:
node_type = node.get("data", {}).get("type")
if (
variable_selector.value_selector not in value_selectors
and (node_type in (NodeType.LLM.value, NodeType.AGENT.value))
and node_type == NodeType.LLM.value
and variable_selector.value_selector[1] == "text"
):
value_selectors.append(list(variable_selector.value_selector))

View File

@ -3,7 +3,7 @@ from typing import Any, Optional
from pydantic import BaseModel, Field, field_validator
from core.model_runtime.entities import ImagePromptMessageContent
from core.model_runtime.entities import ImagePromptMessageContent, LLMMode
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate, MemoryConfig
from core.workflow.entities.variable_entities import VariableSelector
from core.workflow.nodes.base import BaseNodeData
@ -12,7 +12,7 @@ from core.workflow.nodes.base import BaseNodeData
class ModelConfig(BaseModel):
provider: str
name: str
mode: str
mode: LLMMode
completion_params: dict[str, Any] = {}

View File

@ -3,6 +3,7 @@ import logging
from collections.abc import Generator, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Optional, cast
from configs import dify_config
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.entities.model_entities import ModelStatus
from core.entities.provider_entities import QuotaUnit
@ -185,6 +186,8 @@ class LLMNode(BaseNode[LLMNodeData]):
result_text = event.text
usage = event.usage
finish_reason = event.finish_reason
# deduct quota
self.deduct_llm_quota(tenant_id=self.tenant_id, model_instance=model_instance, usage=usage)
break
except LLMNodeError as e:
yield RunCompletedEvent(
@ -240,20 +243,28 @@ class LLMNode(BaseNode[LLMNodeData]):
user=self.user_id,
)
# handle invoke result
generator = self._handle_invoke_result(invoke_result=invoke_result)
usage = LLMUsage.empty_usage()
for event in generator:
yield event
if isinstance(event, ModelInvokeCompletedEvent):
usage = event.usage
# deduct quota
self.deduct_llm_quota(tenant_id=self.tenant_id, model_instance=model_instance, usage=usage)
return self._handle_invoke_result(invoke_result=invoke_result)
def _handle_invoke_result(self, invoke_result: LLMResult | Generator) -> Generator[NodeEvent, None, None]:
if isinstance(invoke_result, LLMResult):
content = invoke_result.message.content
if content is None:
message_text = ""
elif isinstance(content, str):
message_text = content
elif isinstance(content, list):
# Assuming the list contains PromptMessageContent objects with a "data" attribute
message_text = "".join(
item.data if hasattr(item, "data") and isinstance(item.data, str) else str(item) for item in content
)
else:
message_text = str(content)
yield ModelInvokeCompletedEvent(
text=message_text,
usage=invoke_result.usage,
finish_reason=None,
)
return
model = None
@ -740,10 +751,7 @@ class LLMNode(BaseNode[LLMNodeData]):
if quota_unit == QuotaUnit.TOKENS:
used_quota = usage.total_tokens
elif quota_unit == QuotaUnit.CREDITS:
used_quota = 1
if "gpt-4" in model_instance.model:
used_quota = 20
used_quota = dify_config.get_model_credits(model_instance.model)
else:
used_quota = 1

View File

@ -44,13 +44,11 @@ class QuestionClassifierNode(LLMNode):
variable_pool = self.graph_runtime_state.variable_pool
# extract variables
variable = variable_pool.get(
node_data.query_variable_selector) if node_data.query_variable_selector else None
variable = variable_pool.get(node_data.query_variable_selector) if node_data.query_variable_selector else None
query = variable.value if variable else None
variables = {"query": query}
# fetch model config
model_instance, model_config = self._fetch_model_config(
node_data.model)
model_instance, model_config = self._fetch_model_config(node_data.model)
# fetch memory
memory = self._fetch_memory(
node_data_memory=node_data.memory,
@ -58,8 +56,7 @@ class QuestionClassifierNode(LLMNode):
)
# fetch instruction
node_data.instruction = node_data.instruction or ""
node_data.instruction = variable_pool.convert_template(
node_data.instruction).text
node_data.instruction = variable_pool.convert_template(node_data.instruction).text
files = (
self._fetch_files(
@ -181,15 +178,12 @@ class QuestionClassifierNode(LLMNode):
variable_mapping = {"query": node_data.query_variable_selector}
variable_selectors = []
if node_data.instruction:
variable_template_parser = VariableTemplateParser(
template=node_data.instruction)
variable_selectors.extend(
variable_template_parser.extract_variable_selectors())
variable_template_parser = VariableTemplateParser(template=node_data.instruction)
variable_selectors.extend(variable_template_parser.extract_variable_selectors())
for variable_selector in variable_selectors:
variable_mapping[variable_selector.variable] = variable_selector.value_selector
variable_mapping = {node_id + "." + key: value for key,
value in variable_mapping.items()}
variable_mapping = {node_id + "." + key: value for key, value in variable_mapping.items()}
return variable_mapping
@ -210,8 +204,7 @@ class QuestionClassifierNode(LLMNode):
context: Optional[str],
) -> int:
prompt_transform = AdvancedPromptTransform(with_variable_tmpl=True)
prompt_template = self._get_prompt_template(
node_data, query, None, 2000)
prompt_template = self._get_prompt_template(node_data, query, None, 2000)
prompt_messages = prompt_transform.get_prompt(
prompt_template=prompt_template,
inputs={},
@ -224,15 +217,13 @@ class QuestionClassifierNode(LLMNode):
)
rest_tokens = 2000
model_context_tokens = model_config.model_schema.model_properties.get(
ModelPropertyKey.CONTEXT_SIZE)
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
if model_context_tokens:
model_instance = ModelInstance(
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
)
curr_message_tokens = model_instance.get_llm_num_tokens(
prompt_messages)
curr_message_tokens = model_instance.get_llm_num_tokens(prompt_messages)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
@ -273,8 +264,7 @@ class QuestionClassifierNode(LLMNode):
prompt_messages: list[LLMNodeChatModelMessage] = []
if model_mode == ModelMode.CHAT:
system_prompt_messages = LLMNodeChatModelMessage(
role=PromptMessageRole.SYSTEM, text=QUESTION_CLASSIFIER_SYSTEM_PROMPT.format(
histories=memory_str)
role=PromptMessageRole.SYSTEM, text=QUESTION_CLASSIFIER_SYSTEM_PROMPT.format(histories=memory_str)
)
prompt_messages.append(system_prompt_messages)
user_prompt_message_1 = LLMNodeChatModelMessage(
@ -315,5 +305,4 @@ class QuestionClassifierNode(LLMNode):
)
else:
raise InvalidModelTypeError(
f"Model mode {model_mode} not support.")
raise InvalidModelTypeError(f"Model mode {model_mode} not support.")

View File

@ -338,7 +338,6 @@ class ToolNode(BaseNode[ToolNodeData]):
data=message.message.data,
label=message.message.label,
metadata=message.message.metadata,
node_id=self.node_id,
)
# check if the agent log is already in the list

View File

@ -64,6 +64,10 @@ class ConditionProcessor:
expected=expected_value,
)
group_results.append(result)
# Implemented short-circuit evaluation for logical conditions
if (operator == "and" and not result) or (operator == "or" and result):
final_result = result
return input_conditions, group_results, final_result
final_result = all(group_results) if operator == "and" else any(group_results)
return input_conditions, group_results, final_result

View File

@ -20,11 +20,11 @@ if [[ "${MODE}" == "worker" ]]; then
CONCURRENCY_OPTION="-c ${CELERY_WORKER_AMOUNT:-1}"
fi
exec celery -A app.celery worker -P ${CELERY_WORKER_CLASS:-gevent} $CONCURRENCY_OPTION --loglevel ${LOG_LEVEL} \
exec celery -A app.celery worker -P ${CELERY_WORKER_CLASS:-gevent} $CONCURRENCY_OPTION --loglevel ${LOG_LEVEL:-INFO} \
-Q ${CELERY_QUEUES:-dataset,mail,ops_trace,app_deletion}
elif [[ "${MODE}" == "beat" ]]; then
exec celery -A app.celery beat --loglevel ${LOG_LEVEL}
exec celery -A app.celery beat --loglevel ${LOG_LEVEL:-INFO}
else
if [[ "${DEBUG}" == "true" ]]; then
exec flask run --host=${DIFY_BIND_ADDRESS:-0.0.0.0} --port=${DIFY_PORT:-5001} --debug

View File

@ -1,3 +1,4 @@
from configs import dify_config
from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity, ChatAppGenerateEntity
from core.entities.provider_entities import QuotaUnit
from events.message_event import message_was_created
@ -40,10 +41,7 @@ def handle(sender, **kwargs):
if quota_unit == QuotaUnit.TOKENS:
used_quota = message.message_tokens + message.answer_tokens
elif quota_unit == QuotaUnit.CREDITS:
used_quota = 1
if "gpt-4" in model_config.model:
used_quota = 20
used_quota = dify_config.get_model_credits(model_config.model)
else:
used_quota = 1

View File

@ -27,12 +27,11 @@ def init_app(app: DifyApp):
# Always add StreamHandler to log to console
sh = logging.StreamHandler(sys.stdout)
sh.addFilter(RequestIdFilter())
log_formatter = logging.Formatter(fmt=dify_config.LOG_FORMAT)
sh.setFormatter(log_formatter)
log_handlers.append(sh)
logging.basicConfig(
level=dify_config.LOG_LEVEL,
format=dify_config.LOG_FORMAT,
datefmt=dify_config.LOG_DATEFORMAT,
handlers=log_handlers,
force=True,

View File

@ -6,4 +6,4 @@ def init_app(app: DifyApp):
if dify_config.RESPECT_XFORWARD_HEADERS_ENABLED:
from werkzeug.middleware.proxy_fix import ProxyFix
app.wsgi_app = ProxyFix(app.wsgi_app) # type: ignore
app.wsgi_app = ProxyFix(app.wsgi_app, x_port=1) # type: ignore

View File

@ -32,7 +32,11 @@ class AwsS3Storage(BaseStorage):
aws_access_key_id=dify_config.S3_ACCESS_KEY,
endpoint_url=dify_config.S3_ENDPOINT,
region_name=dify_config.S3_REGION,
config=Config(s3={"addressing_style": dify_config.S3_ADDRESS_STYLE}),
config=Config(
s3={"addressing_style": dify_config.S3_ADDRESS_STYLE},
request_checksum_calculation="when_required",
response_checksum_validation="when_required",
),
)
# create bucket
try:

Some files were not shown because too many files have changed in this diff Show More